WO2023149536A1 - Prism group and projection-type video display device - Google Patents

Prism group and projection-type video display device Download PDF

Info

Publication number
WO2023149536A1
WO2023149536A1 PCT/JP2023/003533 JP2023003533W WO2023149536A1 WO 2023149536 A1 WO2023149536 A1 WO 2023149536A1 JP 2023003533 W JP2023003533 W JP 2023003533W WO 2023149536 A1 WO2023149536 A1 WO 2023149536A1
Authority
WO
WIPO (PCT)
Prior art keywords
prism
light
imaging
projection
imaging light
Prior art date
Application number
PCT/JP2023/003533
Other languages
French (fr)
Japanese (ja)
Inventor
紀和 山本
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2023149536A1 publication Critical patent/WO2023149536A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/18Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical projection, e.g. combination of mirror and condenser and objective
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details

Definitions

  • the present disclosure relates to a prism group and a projection image display device including the same.
  • a projection type image display device having a Such a projection-type image display device has a function of projecting an image onto a projection target and capturing an image of the projected image.
  • a projector (projection-type image display apparatus) described in Patent Document 1 is provided with a TIR prism that guides illumination light from a light source to a light modulation element and outputs light reflected by the light modulation element to a projection optical system.
  • the light emitted from the light emitting element enters the TIR prism through the projection lens, is reflected by the reflecting surface of the TIR prism, is emitted, and forms an image on the imaging element.
  • a TIR prism is used as an optical path branching element for illumination light, projection light, and imaging light.
  • the imaging optical system is arranged in a direction inclined with respect to the projection optical axis, and the imaging light is taken out. In such an arrangement, it may be difficult to incorporate the imaging optical system inside the projector device, which causes a problem of increasing the size of the device.
  • an optical component such as a mirror is provided outside the TIR prism to bend the optical path of the imaging light, it is difficult to reduce the size of the apparatus due to the spread of the light beam. Therefore, there has been a demand for a projection-type image display apparatus that can be made more compact than before.
  • an object of the present disclosure is to solve the above-described problems.
  • An object of the present invention is to provide a group and a projection type image display device having the same.
  • the prism group according to the present disclosure includes a TIR prism and an imaging light reflecting prism. , transmits the projection light generated by being reflected by the light modulation element, outputs it along the projection optical axis to the projection optical system on the front side of the projection optical axis, further enters from the projection optical system, and passes through the projection optical axis
  • the imaging light which is at least part of the external light propagating in the direction facing the front side of the TIR prism, is reflected and guided to the imaging light reflecting prism, and the imaging light reflecting prism internally reflects the imaging light incident from the TIR prism. , along the imaging optical axis in a plane substantially perpendicular to the projection optical axis to the imaging device.
  • the imaging optical system can be easily incorporated inside the equipment of the projection image display device, and the size reduction of the projection image display device can be facilitated.
  • FIG. 1 is a schematic diagram showing the overall configuration of a projection display apparatus of Example 1 according to an embodiment of the present disclosure
  • FIG. FIG. 2 is a layout diagram of the inside of the equipment viewed from the projection optical system side of the projection-type image display apparatus of FIG. 1
  • 1 is a perspective view showing a configuration of a prism group according to an embodiment of the present disclosure
  • FIG. 4 is a cross-sectional view of a prism group according to an embodiment of the present disclosure
  • FIG. FIG. 5 is a diagram showing an example of reflection characteristics of a visible region partial reflection coat in the prism group according to the embodiment of the present disclosure
  • FIG. 5 is a diagram showing an example of reflection characteristics of an infrared region partial reflection coat in the prism group according to the embodiment of the present disclosure
  • 2 is a diagram showing an example of the spectrum of projection light incident on the projection optical system of FIG. 1
  • FIG. FIG. 5 is a cross-sectional view of a prism group according to Modification 1 of the embodiment of the present disclosure
  • FIG. 7 is a cross-sectional view of a prism group according to Modification 2 of the embodiment of the present disclosure
  • FIG. 9A shows reflection of DMD-OFF light in the prism group according to Modification 1
  • FIG. 9B Modification 2
  • FIG. 5 is a diagram showing how imaging light propagates through a prism group according to an embodiment of the present disclosure
  • FIG. 5 is a diagram showing how imaging light propagates through a prism group according to an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram showing the configuration of a projection imaging optical system of a projection image display apparatus of Example 2 according to an embodiment of the present disclosure
  • the TIR prism and the imaging light reflecting prism are provided, and the TIR prism reflects the illumination light supplied by the illumination optical system, guides it to the light modulation element, and reflects the light from the light modulation element. transmits the projection light generated by the projection optical axis, outputs it to the projection optical system on the front side of the projection optical axis along the projection optical axis, further enters from the projection optical system, and faces the front side of the projection optical axis
  • the imaging light which is at least part of the external light propagating in the direction, is reflected and guided to the imaging light reflecting prism, which internally reflects the imaging light incident from the TIR prism, substantially along the projection optical axis.
  • the imaging optical system can be easily incorporated inside the equipment of the projection image display device, and the size reduction of the projection image display device can be facilitated.
  • the TIR prism includes a first prism and a second prism arranged in order along the projection optical axis from the front side of the projection optical axis, and illumination of the second prism
  • the illumination light reflecting surface that reflects light and the projection light incident surface of the first prism on which the projection light is incident are arranged to face each other with a parallel gap therebetween. It has an imaging light incident surface through which light passes, and is arranged adjacent to the first prism via the imaging light incident surface, and the imaging light is internally reflected multiple times in the TIR prism and the imaging light reflecting prism, and the imaging light is captured.
  • the prism group of the first aspect is provided, wherein the optical axis lies in a direction orthogonal to or near a longitudinal axis along which imaging light passes through the TIR prism and the imaging light reflecting prism.
  • a third aspect of the present disclosure provides the prism group according to the second aspect, wherein the imaging light reflecting prism is integrally configured with the first prism on the imaging light incident surface.
  • the prism according to the second aspect wherein the imaging light reflecting prism and the first prism are arranged separately with a parallel gap on the imaging light incident surface. Serve the flock.
  • the TIR prism further includes a third prism positioned between the first prism and the second prism, the third prism facing the first prism surface and , a second prism surface forming an angle with the first prism surface, the first prism surface and the projection light incident surface of the first prism being joined, the second prism surface and the second prism surface.
  • the projection light incident surface is provided with a visible region partial reflection coat, and the visible region partial reflection coat has a reflectance of 2% or more and 15% or less with respect to light in the visible region. and reflecting the imaging light.
  • the projection light incident surface is provided with an infrared partial reflection coat, and the infrared partial reflection coat has a reflectance of 50% or more with respect to infrared light.
  • the imaging light reflecting prism has an internal reflection surface, the imaging light is internally reflected by the internal reflection surface, and the internal reflection surface is directed in a direction in which the imaging light is internally reflected.
  • the imaging light forms an intermediate image within the imaging light reflecting prism, the intermediate image is formed at the position of the imaging element, and the intermediate image is spaced apart from the internal reflecting surface.
  • the imaging light reflecting prism has an imaging light exit surface, the imaging light is transmitted through the imaging light exit surface and is emitted to the imaging element, and the imaging light exit surface includes the imaging light
  • the prism group according to any one of the first to ninth aspects is provided, which has a convex shape facing the direction in which the light exits to the imaging device.
  • an illumination optical system that supplies illumination light in the visible range, a prism member including the prism group according to any one of the first to tenth aspects, and the illumination optical system one or more light modulation elements that spatially modulate incident light guided by a prism member to generate projection light corresponding to image information;
  • a projection type image display device comprising a projection optical system for displaying an image and an imaging device for receiving imaging light output from an imaging light reflection prism and converting it into an electrical image signal.
  • FIG. 1 As a specific example of the projection display apparatus to which the prism group according to the present disclosure is applied, a single-panel projection display apparatus (Example 1) having one light modulation element and three light modulation elements are provided. A three-panel projection type image display apparatus (Embodiment 2) will be described.
  • FIG. 1 is a schematic diagram showing the overall configuration of a projection display apparatus 600 of Example 1 according to the embodiment of the present disclosure.
  • 1A and 1B are schematic diagrams showing the overall configuration of the projection image display device 600 in the XZ plane of the drawing.
  • (c) of FIG. 1 is a schematic diagram showing the prism group 300, the imaging optical system 440, etc. viewed in the ⁇ Z direction from the left side of (a) of FIG. 1, that is, from the +Z side of (a) of FIG. is.
  • the projection-type image display device according to the embodiment of the present disclosure is, for example, a high-brightness projector and may be used for projection mapping or the like, and may be a low-brightness projector for home use. may
  • a projection-type image display apparatus 600 in FIG. 1 includes an illumination optical system 200 that supplies illumination light, and a projection imaging optical system 500 .
  • the illumination optical system 200 includes a light source unit 20, afocal lenses 31 and 32, a diffusion plate 41, a ⁇ /4 plate 42, condenser lenses 33, 34 and 35, a dichroic mirror 45, a rod integrator 46, It includes a phosphor wheel 50, a color wheel 60, and lenses 73, 74, 75 forming an illumination light relay optical system.
  • the light source unit 20 is composed of, for example, a plurality of semiconductor lasers (LD) or light emitting diodes (LED).
  • a semiconductor laser element 21 that emits blue light can be used.
  • the blue light emitted from the semiconductor laser element 21 has a wavelength of around 455 nm and is used as image light and also as excitation light for exciting the phosphors of the phosphor wheel 50 .
  • the blue light emitted from the semiconductor laser element 21 is emitted in the -X direction in the figure, collimated by the collimator lens 22, converged by the afocal lenses 31 and 32, transmitted through the diffusion plate 41, and directed to the dichroic mirror 45. Incident.
  • the light emitted from the light source unit 20 is, for example, S-polarized blue light
  • the dichroic mirror 45 reflects the S-polarized blue light and the P-polarized blue light and other colored lights can pass through.
  • the blue light reflected by the dichroic mirror 45 travels approximately in the ⁇ Z direction, passes through the ⁇ /4 plate 42, is condensed by the condenser lenses 33 and 34, and enters the phosphor wheel 50. excites the phosphor to emit light.
  • the color wheel 60 is controlled to rotate synchronously with the phosphor wheel 50, and separates incident light according to the transmission characteristics of different segments.
  • the light generated by the synchronously rotating phosphor wheel 50 and color wheel 60 enters the rod integrator 46 so that the component lights of each color gamut including red, green, blue, yellow, etc. are emitted in a time division manner. , where it is equalized.
  • the light emitted from the rod integrator 46 passes through the lenses 73, 74, and 75 constituting the illumination light relay optical system, is emitted from the illumination optical system 200, and becomes the illumination light Ls of white light as a time average.
  • the light enters the projection imaging optical system 500 .
  • the projection imaging optical system 500 includes a prism group 300 , an optical modulation element 400 , a projection optical system 420 , an imaging optical system 440 and an imaging element 450 . Further, in the present embodiment, the imaging optical system 440 and the imaging device 450 are arranged on the YZ plane substantially perpendicular to the projection optical axis Oa1 in the X direction in the drawing, and the imaging light Li is projected onto the imaging optical axis Ob1 in the +Y direction. incident on the imaging element 450 along (shown in (c) of FIG. 1).
  • the prism group 300 is composed of a TIR (Total Internal Reflection) prism 310 (total internal reflection prism) and an imaging light reflection prism 350 .
  • the TIR prism 310 is configured by joining a substantially triangular prism-shaped first prism 320 and a second prism 330 with a small gap therebetween. Using total reflection, the TIR prism 310 deflects the traveling direction of the incident illumination light Ls and guides it to the light modulation element 400 .
  • the imaging light reflecting prism 350 is positioned adjacent to the TIR prism 310 .
  • the imaging light reflecting prism 350 and the TIR prism 310 may be configured separately (FIG. 7) or integrated (FIGS. 4 and 8).
  • FIG. 1 the configuration in which the imaging light reflection prism 350 and the TIR prism 310 are separated is shown.
  • the imaging light reflecting prism 350 further reflects and deflects the incident imaging light Li reflected by the TIR prism 310 and guides it to the imaging element 450 .
  • the configuration of the prism group 300 will be detailed later.
  • the light modulation element 400 uses a DMD (Digital Mirror Device), which modulates the component light of each color gamut included in the illumination light Ls based on the video signal, and becomes the projection light Lp for each pixel.
  • DMD-ON light ON light
  • DMD-OFF light Lf OFF light
  • the projection light Lp for projection is emitted in the +X direction along the projection optical axis Oa1, and the DMD-OFF light Lf is deflected from the projection optical axis Oa1 and removed.
  • the projection light Lp passes through the TIR prism 310, is output from the projection light exit surface 321, and propagates to the projection optical system 420 along the projection optical axis Oa1.
  • a lens group LGp included in the projection optical system 420 enlarges and projects the projection light Lp onto a projection object such as the screen 430 to display an image.
  • the imaging light Li which is at least part of the external light Le reflected from the screen 430 in the ⁇ X direction in the figure, is used to capture the projected image by the imaging device 450 built in the projection imaging optical system 500. can do.
  • the external light Le enters from the projection optical system 420, propagates in the -X direction along the projection optical axis Oa1, and exits the projection optical system side of the first prism 320 of the TIR prism 310. Incident on surface 321 .
  • the imaging light Li which is at least part of the external light Le, is internally reflected and deflected to enter the imaging light reflection prism 350 .
  • the imaging light Li incident on the imaging light reflecting prism 350 is further internally reflected and deflected within the imaging light reflecting prism 350, and emitted from the imaging light exit surface 353 of the imaging light reflecting prism 350 along the imaging optical axis Ob1. It is introduced into the imaging optical system 440 in the +Y direction.
  • the imaging optical system 440 can be composed of a plurality of optical components, and can be composed of a relay optical system composed of a plurality of lenses in this embodiment.
  • the imaging light Li emitted from the imaging light exit surface 353 and propagating along the imaging optical axis Ob1 in the +Y direction can be imaged on the imaging device 450 by the imaging optical system 440 .
  • the imaging optical system 440 may be a reduction imaging optical system, or may be an equal magnification or magnification imaging optical system.
  • the imaging element 450 can be composed of a solid-state imaging element such as a CCD image sensor or a CMOS image sensor, and converts the received imaging light Li into an electrical image signal.
  • FIG. 2 is a layout diagram of the interior of the projection display apparatus 600 of FIG. 1 as viewed from the projection optical system side.
  • FIG. 1 is a configuration example in which the imaging optical system 440 and the imaging device 450 are arranged on the ⁇ Y side of the prism group 300, and FIG. A configuration example arranged on the Y side is shown.
  • the light modulation element 400 When viewed from the side of the projection optical system 420 in FIG. 1, that is, in the ⁇ X direction from the top of FIG. Located below the lens group LGp, the light modulation element 400 is located approximately in the center of the lens group LGp.
  • the illumination light Ls emitted from the illumination optical system 200 is deflected by the folding mirror 47, passes through the relay lens group 48, the TIR prism 310 and the imaging light reflecting prism 350, along the longitudinal axis Ob2 of the prism group 300. The light enters the prism group 300 approximately in the +Z direction in the drawing.
  • the DMD-ON light (projection light Lp, not shown in FIG. 2) from the light modulation element 400 is emitted in the +X direction shown, and the DMD-OFF light Lf is deflected in a direction near the longitudinal axis Ob2 of the prism group 300. be done.
  • the apparatus can be made smaller and less expensive. It is configured as close as possible in the range. Therefore, the space inside the housing 600A is small in the illustrated X direction, which is the direction in which the projection light Lp is emitted, and the layout of optical components and the like is limited in terms of design.
  • the imaging light Li which is at least part of the external light Le incident in the ⁇ X direction in the drawing from the projection optical system, passes through the prism group 300 multiple times. By being reflected and deflected, it can be introduced into the imaging element 450 along the imaging optical axis Ob1 in the YZ plane substantially perpendicular to the projection optical axis Oa1.
  • the imaging optical system 440 can be easily installed inside the apparatus without interfering with the projection optical system 420, and the projection type image can be displayed without changing the projection optical system provided in the conventional projection type image display apparatus. It can be used for display devices. This makes it possible to improve or expand the functions of the device at low cost.
  • the air-equivalent length of propagation of the imaging light can be shortened.
  • a reduction in lens diameter and thickness is possible. This makes it possible to reduce the size of the projection display apparatus more easily than before.
  • the illumination light Ls incident on the prism group 300 is directed from the lower right of the drawing to the long side of the housing 600A. It is designed to be incident from an oblique direction of 45 degrees. This is because the rotation axis of the micromirror of the DMD as the light modulation element 400 is inclined by 45 degrees. Therefore, the prism group 300 that guides the illumination light Ls to the light modulation element 400 is also arranged such that the longitudinal axis Ob2 is inclined about 45 degrees with respect to the long side of the housing 600A. With such an arrangement, the space on the side of the longitudinal axis Ob2 of the prism group 300 inside the device is small, as illustrated. Furthermore, if the image pickup optical system is placed near the direction in which the DMD-OFF light Lf is guided, the influence of stray light due to the DMD-OFF light Lf increases.
  • the imaging light Li is internally reflected multiple times in the prism group 300, so that the imaging light Li is located in a direction orthogonal to the longitudinal axis Ob2 of the prism group 300 or in the vicinity thereof. It can be guided along the optical axis Ob1.
  • the influence of stray light caused by the DMD-OFF light Lf can be suppressed, and the space inside the device can be effectively used, leading to further downsizing of the device.
  • FIG. 2 shows the imaging optical axis Ob1 to be substantially orthogonal to the longitudinal axis Ob2 of the prism group 300
  • the imaging optical axis Ob1 may be arranged near the direction orthogonal to the longitudinal axis Ob2 of the prism group 300 . 1 and 2, the imaging optical system 440 and the imaging device 450 may be arranged on either side of the prism group 300 along the imaging optical axis Ob1.
  • FIG. 3 is a perspective view showing the configuration of the prism group 300 according to the embodiment of the present disclosure.
  • FIG. 4 is a cross-sectional view of prism group 300 according to an embodiment of the present disclosure. Also, the prism group 300 in FIG. 3 is shown in a configuration in which the imaging light reflecting prism 350 and the TIR prism 310 are integrally formed.
  • the TIR prism 310 includes a first prism 320 and a second prism 330 having a substantially triangular prism shape. , are arranged in order along the projection optical axis Oa1.
  • the second prism 330 has an illumination light reflecting surface 331 , and the incident illumination light Ls is totally reflected by the illumination light reflecting surface 331 and introduced into the light modulation element 400 .
  • the first prism 320 has a projection light entrance surface 322 and a projection light exit surface 321 for the projection light Lp that is reflected by the light modulation element 400 and travels in the +X direction.
  • the first prism 320 and the second prism 330 are joined with a parallel gap between the projection light incident surface 322 and the illumination light reflecting surface 331 .
  • the projection light Lp from the light modulation element 400 passes through the second prism 330, enters the first prism 320, further passes through the first prism 320, and exits from the projection light exit surface 321. It is output to the projection optical system along the axis Oa1 and imaged.
  • the DMD-OFF light Lf is removed by passing through the TIR prism 310 in a direction deflected from the projection optical axis Oa1.
  • the imaging light reflection prism 350 arranged adjacent to the first prism 320 has an imaging light entrance surface 351 , an internal reflection surface 352 and an imaging light exit surface 353 .
  • the first prism 320 of the TIR prism 310 and the imaging light reflection prism 350 are integrally formed on the imaging light incident surface 351 .
  • the external light Le incident on the first prism 320 in the -X direction from the projection optical system forms a beam spot S1 on the projection light incident surface 322.
  • the projection light incident surface 322 is partially reflective coated, and at least part of the incident external light Le is internally reflected by the partially reflective coating as imaging light Li, reaches the projection light exit surface 321, and forms a beam spot S2. do.
  • the imaging light Li is internally reflected by the projection light exit surface 321 , reaches the imaging light incident surface 351 of the imaging light reflecting prism 350 , passes through the imaging light incident surface 351 , and enters the imaging light reflecting prism 350 .
  • the imaging light Li forms a beam spot S3 on the internal reflection surface 352 and is internally reflected, and then emitted from the imaging light exit surface 353 along the imaging optical axis Ob1 in the +Y direction in the drawing, thereby performing imaging.
  • An image can be formed on the imaging element by the optical system 440 .
  • the imaging light Li is internally reflected three times in the prism group 300, and then lies on the YZ plane substantially orthogonal to the projection optical axis Oa1, and It can be introduced into the imaging device 450 along the imaging optical axis Ob1 located in the direction orthogonal to the directional axis Ob2 or in the vicinity thereof.
  • the present disclosure does not limit the number of internal reflections of the imaging light Li within the prism group 300 .
  • the imaging light Li may be totally reflected by the projection light exit surface 321 and enter the imaging light reflection prism 350 . This makes it possible to efficiently use the imaging light.
  • FIG. 5A and 5B are diagrams showing examples of reflection characteristics of the partially reflective coating in the prism group 300 according to the embodiment of the present disclosure.
  • the partial reflection coat applied to the projection light incident surface 322 may be a visible partial reflection coat (FIG. 5A) or an infrared partial reflection coat (FIG. 5B).
  • the visible region partial reflection coating When the visible region partial reflection coating is applied, the visible region projection light Lp incident on the projection light incident surface 322 from the light modulation element 400 is also partly reflected by the reflection characteristics of the visible region partial reflection coating. A loss occurs in the light Lp.
  • the visible region partial reflection coating shown in FIG. 5A has a reflectance of 2% or more and 15% or less with respect to light in the visible region with a wavelength of 400 nm to 700 nm. As a result, a part of external light in the visible range can be taken in as imaging light to capture an image without causing a large loss in the projection light Lp. Note that the reflection characteristics of the visible region partial reflection coat are not limited to this.
  • the infrared region partial reflection coating when the infrared region partial reflection coating is applied, as shown in FIG. 5B, in the present embodiment, the infrared region partial reflection coating reflects 50% or more of infrared light having a wavelength of 750 nm or more. reflect the imaging light with an index. Note that the reflection characteristics of the infrared region partial reflection coat are not limited to this.
  • FIG. 6 is a diagram showing an example of the spectrum of projection light incident on the projection optical system 420 of FIG.
  • the projection light incident on the projection optical system includes a blue light component LB of approximately 440 nm to 470 nm, a green light component LG of 520 nm to 570 nm, and a red region (yellow light component of 590 nm to 650 nm). ), and does not contain a light component in the infrared region. Therefore, by taking in external light in the infrared region as imaging light and transmitting approximately 100% of the projection light Lp in the visible region, it is possible to perform imaging without loss of projection light. Imaging using infrared rays can be used to detect or track motion in a completely dark place, and is used in night photography, night vision surveillance cameras, and the like.
  • FIG. 7 is a cross-sectional view of a prism group 300a according to Modification 1 of the embodiment of the present disclosure
  • FIG. 8 is a cross-sectional view of a prism group 300b according to Modification 2 of the embodiment of the present disclosure.
  • the prism group 300a shown in FIG. 7 is composed of a TIR prism 310a and an imaging light reflection prism 350a. As shown, the prism group 300a differs from the prism group 300 in that the imaging light reflection prism 350a is formed separately from the TIR prism 310a at the imaging light incident surface 351a.
  • the first prism 320a has a prism surface 323a adjacent to the imaging light reflecting prism 350a.
  • the first prism 320a and the imaging light reflecting prism 350a are separated from each other with a parallel gap between the prism surface 323a and the imaging light incident surface 351a.
  • the external light Le incident on the first prism 320a in the -X direction forms a beam spot S1a on the projection light incident surface 322a.
  • At least part of the incident external light Le is internally reflected as imaging light Lia by the partial reflection coat of the projection light entrance surface 322a, reaches the projection light exit surface 321a, and forms a beam spot S2a.
  • the imaging light Lia is internally reflected by the projection light exit surface 321a, passes through the prism surface 323a, reaches the imaging light incident surface 351a of the imaging light reflecting prism 350a, is transmitted therethrough, and enters the imaging light reflecting prism 350a.
  • the imaging light Lia forms a beam spot S3a on the internal reflection surface 352a, is internally reflected by the internal reflection surface 352a, and is emitted from the imaging light exit surface 353a.
  • the projection light Lp is transmitted through the TIR prism and emitted to the projection optical system. Since the high-energy projection light Lp generates heat when passing through the TIR prism, the TIR prism must be made of a heat-resistant glass material.
  • the imaging light reflecting prism is integrally formed with the TIR prism, the imaging light reflecting prism made of glass is required because it is affected by heat conduction. Also, in order to suppress the occurrence of aberration due to changes in the refractive index, it is desirable that the imaging light reflection prism 350 be made of the same glass material as the TIR prism 310 .
  • the imaging light reflecting prism 350a is formed separately from the TIR prism 310a to suppress heat conduction.
  • a prism group 300b shown in FIG. 8 is composed of a TIR prism 310b, an imaging light reflecting prism 350b, and a third prism 340, and differs from the prism group 300 in that the third prism 340 is provided.
  • the first prism 320b of the TIR prism 310b and the imaging light reflection prism 350b are integrally formed.
  • the present disclosure is not so limited.
  • the first prism 320b of the TIR prism 310b and the imaging light reflecting prism 350b may be formed separately, similar to the prism group 300a shown in FIG.
  • the third prism 340 of the prism group 300b has a first prism surface 341 and a second prism surface 342.
  • the first prism surface 341 is joined to the projection light incident surface 322b of the first prism 320b of the TIR prism 310b.
  • the second prism surface 342 intersects the first prism surface 341 at an angle.
  • the second prism surface 342 and the illumination light reflecting surface 331b of the second prism 330b of the TIR prism 310b are arranged facing each other with a parallel gap therebetween.
  • the third prism 340 has a wedge shape.
  • the first prism surface 341 and the second prism surface 342 preferably form an apex angle A of 2 to 10 degrees, and in this embodiment form an apex angle A of about 3 degrees. .
  • the external light Le incident on the first prism 320b in the -X direction forms a beam spot S1b on the projection light incident surface 322b.
  • At least part of the incident external light Le is internally reflected as imaging light Lib by the partial reflection coat of the projection light entrance surface 322b, reaches the projection light exit surface 321b, and forms a beam spot S2b.
  • the imaging light Lib is internally reflected by the projection light exit surface 321b and enters the imaging light reflection prism 350b.
  • the imaging light Lib forms a beam spot S3b on the internal reflection surface 352b, is internally reflected by the internal reflection surface 352b, and is emitted from the imaging light exit surface 353b.
  • FIG. 8 also shows a beam spot S3a formed by the imaging light Lia on the internal reflecting surface 352a (not shown) of the imaging light reflecting prism 350a in the prism group 300a shown in FIG.
  • the beam spot S3b formed by the imaging light Lib in the prism group 300b is smaller than the beam spot S3a, and the center position of the beam spot S3b is closer to the projection optical axis Oa1 than the center position of the beam spot S3a. is close by a distance D to the side. It can be seen that the propagation optical path of the imaging light Lib within the prism group 300b is shorter than the propagation optical path of the imaging light Lia within the prism group 300a.
  • the reason why the beam spot S3b formed by the imaging light Lib on the internal reflecting surface of the imaging light reflecting prism has changed in this way is that the third prism 340 is provided.
  • the second prism 330b is configured such that an illumination light reflecting surface 331b and a bottom surface 332b perpendicular to the projection optical axis Oa1 form an angle ⁇ 1.
  • the angle ⁇ 1 is restricted by the characteristics of the DMD as the light modulation element 400 and cannot be designed freely. Since the illumination light reflecting surface 331b and the projection light incident surface 322b are arranged facing each other across a parallel gap, the angle of reflection of the imaging light on the projection light incident surface is also limited.
  • the angle ⁇ formed between the projection light incident surface 322b and the projection optical axis Oa1 can be increased by the apex angle A of the wedge-shaped third prism 340.
  • the reflection angle of the imaging light Lib on the projection light incident surface 322b can be adjusted. Thereby, the propagation optical path of the imaging light Lib can be shortened, and the prism group 300b can be made more compact.
  • FIG. 9 shows DMD-OFF in a prism group 300a ((a) in FIG. 9) according to Modification 1 of the embodiment of the present disclosure and a prism group 300b ((b) in FIG. 9) according to Modification 2.
  • FIG. 4 is a cross-sectional view showing reflection of light;
  • the DMD-OFF light Lf passes through the TIR prism and is removed. At that time, the DMD-OFF light Lf is partially reflected by the visible region partial reflection coat on the projection light incident surface.
  • part of the DMD-OFF light Lf reflected by the projection light incident surface 322a (OFF light Lf1a) is light-modulated by the inclination angle ⁇ 1 of the projection light incident surface 322a. After entering the element 400 and being reflected by the light modulation element 400, it enters the prism group 300a and becomes stray light.
  • the inclination angle ⁇ 2 of the projection light incident surface 322b is greater than the inclination angle ⁇ 1 of the projection light incident surface 322a by the apex angle A of the third prism 340. growing. As a result, part of the DMD-OFF light Lf (OFF light Lf1b) reflected by the projection light incident surface 322b does not enter the light modulation element 400 and is removed. By providing the third prism 340 in this way, the tilt angle of the projection light incident surface 322b can be appropriately adjusted, and the influence of stray light within the prism group 300b due to the DMD-OFF light can be suppressed. .
  • FIG. 10 is a diagram showing how imaging light propagates through a prism group 300 ((a) in FIG. 10) and a prism group 300c ((b) in FIG. 10) according to the embodiment of the present disclosure.
  • FIG. 11 is a diagram showing how imaging light propagates through a prism group 300 (FIG. 11(a)) and a prism group 300d (FIG. 11(b)) according to the embodiment of the present disclosure.
  • the external light Le forms the beam spot S1 on the projection light incident surface 322 (see FIGS. 3 and 4), and at least a part of the external light Le is internally reflected as the imaging light Li, and the projection light It reaches the exit surface 321 (see FIGS. 3 and 4) to form a beam spot S2 and is internally reflected to enter the imaging light reflection prism 350 . Further, the beam spot S3 is formed on the internal reflecting surface 352 of the imaging light reflecting prism 350 and is internally reflected, and then emitted from the imaging light exit surface 353 . As shown in FIGS. 10(a) and 11(a), in the practice of the present disclosure, external light Le reflected from screen 430 (shown in FIG.
  • the imaging light Li which is at least part of the external light Le, is converged to form the beam spot S2.
  • the imaging light Li After being incident on the imaging light reflection prism 350 , the imaging light Li further converges to form an intermediate image Ms at a position conjugate with the screen 430 with respect to the lens group LGp of the projection optical system 420 .
  • the intermediate image Ms is formed at a position spaced apart from the internal reflection surface 352 .
  • the imaging light Li After forming the intermediate image Ms, the imaging light Li gradually expands as it travels toward the internal reflection surface 352 and forms a beam spot S3 on the internal reflection surface 352 .
  • the imaging light Li is reflected by the internal reflection surface 352 toward the imaging light exit surface 353 , passes through the imaging light exit surface 353 , is emitted, and forms an image on the imaging device 450 by the imaging optical system 440 .
  • the same reference numerals are given to the same elements as those of the prism group 300 of (a) of FIG. 10, and the description thereof is omitted.
  • the internal reflection surface 352c of the imaging light reflecting prism 350c is configured to have a concave shape C1 in the direction in which the imaging light Lic is internally reflected on the internal reflection surface 352c. can do.
  • the concave shape C1 can focus the reflected imaging light as a concave mirror with positive power.
  • the imaging optical system 440c in the latter stage can be constructed using thin optical parts having a smaller diameter than the imaging optical system 440 shown in FIG. 10(a).
  • the propagation optical path length of the imaging light Lic to the imaging element 450 can be shortened by the distance d1 from the propagation optical path length of the imaging light Li emitted from the prism group 300, as shown in the drawing. Therefore, it is possible to make the imaging optical system even more compact.
  • the imaging light exit surface 353d of the imaging light reflecting prism 350d can be configured to have a convex shape C2 in the direction in which the imaging light Lid is emitted to the imaging element 450. can.
  • the shape C2 of the convex surface can converge the emitted imaging light as a convex lens with positive power.
  • the imaging optical system 440d in the latter stage can reduce the number of parts of the optical system compared to the imaging optical system 440 shown in FIG. 10(a).
  • the propagation optical path length of the imaging light Lid to the imaging device 450 can be shortened by a distance d2 from the propagation optical path length of the imaging light Li emitted from the prism group 300, as shown in the drawing. Therefore, it is possible to make the imaging optical system even more compact.
  • the imaging light incident surface 351 of the imaging light reflecting prism can also have a curvature.
  • the imaging optical system can be made compact, and the entire apparatus can be further miniaturized.
  • FIG. 12 is a schematic diagram showing a configuration of a projection imaging optical system 500A of a projection image display apparatus of Example 2 according to the embodiment of the present disclosure.
  • the projection-type image display apparatus according to the present embodiment is a three-panel type projection-type image display apparatus, and includes an illumination optical system and a projection imaging optical system. Since the illumination optical system has a well-known configuration, FIG. 12 does not show the illumination optical system, but shows only the projection imaging optical system 500A.
  • FIG. 12(b) is a schematic diagram showing the configuration of the projection imaging optical system 500A in the illustrated XZ plane, and FIG. 12(a) is the left side of FIG. is a schematic view showing the projection imaging optical system 500A viewed in the -Z direction from the +Z side of (b) of FIG.
  • the projection imaging optical system 500A includes a prism member 360.
  • Prism member 360 is configured by prism group 300A and color separation/synthesis prism 380A according to the embodiment of the present disclosure.
  • the prism group 300A is located on the front side (on the side of the projection optical system 420A) of the color separation/synthesis prism 380A.
  • Illumination light LsA of each color gamut from the illumination optical system passes through TIR prism 310A of prism group 300A and enters color separation/combination prism 380A.
  • the color separation/synthesis prism 380A includes prisms 381A, 382A, and 383A arranged in order from the projection optical system 420A side along the projection optical axis Oa1.
  • the light of each color gamut included in the incident illumination light is color-separated by the color separation/synthesis prism 380A and separately guided to the three corresponding light modulation elements 401, 402, and 403.
  • Each of the light modulation elements 401, 402, and 403 modulates incident light of each color gamut based on a video signal, and transmits the modulated light components of each color gamut again to each of the three prisms of the color separation/synthesis prism 380A. reflect.
  • the color separation/synthesis prism 380A guides the light for projection (DMD-ON light) reflected by the DMD within each prism to the projection optical axis Oa1, performs color synthesis again, and outputs the synthesized projection light LpA along the projection optical axis Oa1. along the +X direction.
  • Light not to be projected (DMD-OFF light, not shown) is deflected away from the projection optical axis Oa1 and removed.
  • Projection light LpA is output from color separation/combination prism 380A, passes through TIR prism 310A on the front side of projection optical axis Oa1, and propagates to projection optical system 420A.
  • the projection optical system 420A enlarges and projects the projection light LpA onto the screen 430A to display an image.
  • the external light LeA reflected from the screen in the ⁇ X direction in the figure enters from the projection optical system 420A, propagates in the ⁇ X direction along the projection optical axis Oa1, and enters the first prism 320A of the TIR prism 310A. do. At least part of the external light LeA is reflected as imaging light LiA within the first prism 320A, deflected, and enters the imaging light reflecting prism 350A. Subsequently, the imaging light LiA incident on the imaging light reflecting prism 350A is further reflected and deflected within the imaging light reflecting prism 350A, and is emitted from the imaging light exit surface 353A of the imaging light reflecting prism 350A along the imaging optical axis Ob1. be. The emitted imaging light LiA travels in the +Y direction in the drawing, is introduced into the imaging optical system 440A, and forms an image on the imaging element 450A by the imaging optical system 440A.
  • the imaging light LiA which is at least a part of the external light LeA incident in the ⁇ X direction in the drawing from the projection optical system, is reflected multiple times in the prism group 300A, thereby substantially perpendicular to the projection optical axis Oa1. It can be introduced into the imaging device 450A along the imaging optical axis Ob1 on the YZ plane.
  • the imaging optical system 440A can be easily incorporated into the apparatus without interfering with the projection optical system 420A.
  • the air-equivalent length of propagation of the imaging light can be shortened, facilitating miniaturization of the projection display apparatus.
  • each prism constituting the prism group may have a substantially triangular prism shape, a substantially quadrangular prism shape, or may have another shape.
  • the present disclosure does not limit the prism surfaces included in each prism.
  • the TIR prism and the imaging light reflection prism may further include another prism surface, and the imaging light may be reflected by the other prism surface.
  • the prism surface of the imaging light reflecting prism has been described as being concave or convex, but the present disclosure is not limited to this.
  • one or more prism surfaces of the imaging light reflecting prism may be configured to have a free-form surface shape.
  • the present disclosure is applicable to prisms and to various projection-type image display devices.
  • illumination optical system 20 light source unit 21 semiconductor laser element 22 collimating lens 31, 32 afocal lens 33, 34, 35 condenser lens 41 diffusion plate 42 ⁇ /4 plate 45 dichroic mirror 46 rod integrator 50 phosphor wheel 60 color wheel 73, 74, 75 Lens constituting illumination light relay optical system 47
  • Mirror 48 Relay lens group 300, 300a, 300b, 300c, 300d, 300A Prism group 310, 310a, 310b, 310A TIR prism 320, 320a, 320b, 320A, 330, 330b, 340, 381A, 382A, 383A Prism 350, 350a, 350b, 350c, 350d, 350A Imaging light reflection prism 321, 321a, 321b Projection light exit surface 322, 322a, 322b Projection light entrance surface 323a, 341, 342 Prism surface 331, 331b Illumination light reflecting surface 351, 351a Imaging light incident surface 352, 352a, 352b, 352c Internal reflection surface

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

This prism group comprises a TIR prism and an imaging light reflecting prism. The TIR prism: reflects illumination light supplied by an illumination optical system and guides the illumination light to an optical modulation element; transmits projection light generated by the reflection at the optical modulation element, and outputs the projection light to a projection optical system on the front side of a projection optical axis along the projection optical axis; and reflects imaging light, which is at least portion of external light entering from the projection optical system and propagating in a direction opposing the front side of the projection optical axis, and guides the imaging light to the imaging light reflecting prism. The imaging light reflecting prism internally reflects the imaging light that has entered from the TIR prism, and guides the imaging light to an imaging element along an imaging optical axis on a plane substantially orthogonal to the projection optical axis.

Description

プリズム群及び投写型映像表示装置Prism group and projection type image display device
 本開示は、プリズム群、及びそれを備える投写型映像表示装置に関する。 The present disclosure relates to a prism group and a projection image display device including the same.
 従来、本体内部に撮像素子を有し、投影用光を投写対象物に投写する投写光学系と、投写対象物からの光などを外光として撮像素子に結像する撮像光学系と、を共に備える投写型映像表示装置が知られていた。このような投写型映像表示装置は、投写対象物に対して映像を投写するとともに、投写された映像を撮像する機能を有する。この種の投写型映像表示装置として、例えば、特許文献1に記載されたものが知られている。 Conventionally, both a projection optical system that has an imaging element inside the main body and projects projection light onto a projection target, and an imaging optical system that forms an image on the imaging element using light from the projection target as external light. A projection type image display device having a Such a projection-type image display device has a function of projecting an image onto a projection target and capturing an image of the projected image. 2. Description of the Related Art As this type of projection-type image display apparatus, for example, the apparatus described in Patent Document 1 is known.
 特許文献1に記載のプロジェクタ(投写型映像表示装置)は、光源からの照明光を光変調素子に導くと共に、光変調素子で反射された光を投写光学系へ出力するTIRプリズムが設けられている。発光素子から発された光は、投写レンズを介してTIRプリズムに入射し、TIRプリズムの反射面で反射して出射し、撮像素子上で結像する。 A projector (projection-type image display apparatus) described in Patent Document 1 is provided with a TIR prism that guides illumination light from a light source to a light modulation element and outputs light reflected by the light modulation element to a projection optical system. there is The light emitted from the light emitting element enters the TIR prism through the projection lens, is reflected by the reflecting surface of the TIR prism, is emitted, and forms an image on the imaging element.
特開2013-218262号公報JP 2013-218262 A
 特許文献1に記載のプロジェクタでは、TIRプリズムが照明光と、投写光と、撮像光との光路分岐素子として用いられている。当該プロジェクタの構成において、撮像光学系を投写光軸に対して傾斜する方向に配置して、撮像光を取り出している。このような配置では、撮像光学系がプロジェクタ機器内部への組み込みが困難である場合があり、装置が大型化となる問題が生じている。また、特許文献1のプロジェクタの構成では、TIRプリズムの外側でミラー等の光学部品を設けて撮像光の光路を折り曲げようとすると、光束の広がりにより装置の小型化が困難である。したがって、従来よりも小型化が容易な投写型映像表示装置が求められていた。 In the projector described in Patent Document 1, a TIR prism is used as an optical path branching element for illumination light, projection light, and imaging light. In the configuration of the projector, the imaging optical system is arranged in a direction inclined with respect to the projection optical axis, and the imaging light is taken out. In such an arrangement, it may be difficult to incorporate the imaging optical system inside the projector device, which causes a problem of increasing the size of the device. In addition, in the configuration of the projector disclosed in Patent Document 1, if an optical component such as a mirror is provided outside the TIR prism to bend the optical path of the imaging light, it is difficult to reduce the size of the apparatus due to the spread of the light beam. Therefore, there has been a demand for a projection-type image display apparatus that can be made more compact than before.
 そこで、本開示の目的は、前記課題を解決することにあって、撮像光学系を投写型映像表示装置の機器内部に組み込むことを容易にし、投写型映像表示装置の小型化を容易にするプリズム群、及びそれを備える投写型映像表示装置を提供することにある。 SUMMARY OF THE INVENTION Accordingly, an object of the present disclosure is to solve the above-described problems. An object of the present invention is to provide a group and a projection type image display device having the same.
 前記目的を達成するために、本開示に係るプリズム群は、TIRプリズムと撮像光反射プリズムとを備え、TIRプリズムは、照明光学系により供給された照明光を反射させて光変調素子へ導くとともに、光変調素子で反射して生成された投写光を透過させて、投写光軸に沿って投写光軸の前方側の投写光学系へ出力し、更に、投写光学系から入射し、投写光軸の前方側に対向する方向に伝搬される外部光の少なくとも一部である撮像光を反射させて撮像光反射プリズムへ導き、撮像光反射プリズムは、TIRプリズムから入射した撮像光を内部反射させて、投写光軸に実質的に直交する面にある撮像光軸に沿って撮像素子へ導くように構成されている。 In order to achieve the above object, the prism group according to the present disclosure includes a TIR prism and an imaging light reflecting prism. , transmits the projection light generated by being reflected by the light modulation element, outputs it along the projection optical axis to the projection optical system on the front side of the projection optical axis, further enters from the projection optical system, and passes through the projection optical axis The imaging light, which is at least part of the external light propagating in the direction facing the front side of the TIR prism, is reflected and guided to the imaging light reflecting prism, and the imaging light reflecting prism internally reflects the imaging light incident from the TIR prism. , along the imaging optical axis in a plane substantially perpendicular to the projection optical axis to the imaging device.
 本開示の一態様に係るプリズム群によれば、撮像光学系が容易に投写型映像表示装置の機器内部に組み込むことができ、投写型映像表示装置の小型化を容易にすることができる。 According to the prism group according to one aspect of the present disclosure, the imaging optical system can be easily incorporated inside the equipment of the projection image display device, and the size reduction of the projection image display device can be facilitated.
本開示の実施の形態に係る実施例1の投写型映像表示装置の全体構成を示す概略図である。1 is a schematic diagram showing the overall configuration of a projection display apparatus of Example 1 according to an embodiment of the present disclosure; FIG. 図1の投写型映像表示装置の投写光学系側から見た機器内部の配置図である。FIG. 2 is a layout diagram of the inside of the equipment viewed from the projection optical system side of the projection-type image display apparatus of FIG. 1 ; 本開示の実施の形態に係るプリズム群の構成を示す斜視図である。1 is a perspective view showing a configuration of a prism group according to an embodiment of the present disclosure; FIG. 本開示の実施の形態に係るプリズム群の断面図である。4 is a cross-sectional view of a prism group according to an embodiment of the present disclosure; FIG. 本開示の実施の形態に係るプリズム群における可視域部分反射コートの反射特性の例を示す図である。FIG. 5 is a diagram showing an example of reflection characteristics of a visible region partial reflection coat in the prism group according to the embodiment of the present disclosure; 本開示の実施の形態に係るプリズム群における赤外域部分反射コートの反射特性の例を示す図である。FIG. 5 is a diagram showing an example of reflection characteristics of an infrared region partial reflection coat in the prism group according to the embodiment of the present disclosure; 図1の投写光学系に入射する投写光のスペクトルの一例を示す図である。2 is a diagram showing an example of the spectrum of projection light incident on the projection optical system of FIG. 1; FIG. 本開示の実施の形態の変形例1に係るプリズム群の断面図である。FIG. 5 is a cross-sectional view of a prism group according to Modification 1 of the embodiment of the present disclosure; 本開示の実施の形態の変形例2に係るプリズム群の断面図である。FIG. 7 is a cross-sectional view of a prism group according to Modification 2 of the embodiment of the present disclosure; 本開示の実施の形態の変形例1に係るプリズム群(図9の(a))と、変形例2に係るプリズム群(図9の(b))とにおけるDMD-OFF光の反射を示す断面図である。Cross section showing reflection of DMD-OFF light in the prism group according to Modification 1 (FIG. 9A) and the prism group according to Modification 2 (FIG. 9B) of the embodiment of the present disclosure It is a diagram. 本開示の実施の形態に係るプリズム群による撮像光の伝搬の様子を示す図である。FIG. 5 is a diagram showing how imaging light propagates through a prism group according to an embodiment of the present disclosure; 本開示の実施の形態に係るプリズム群による撮像光の伝搬の様子を示す図である。FIG. 5 is a diagram showing how imaging light propagates through a prism group according to an embodiment of the present disclosure; 本開示の実施の形態に係る実施例2の投写型映像表示装置の投影撮像光学系の構成を示す概略図である。FIG. 5 is a schematic diagram showing the configuration of a projection imaging optical system of a projection image display apparatus of Example 2 according to an embodiment of the present disclosure;
 本開示の第1態様によれば、TIRプリズムと撮像光反射プリズムとを備え、TIRプリズムは、照明光学系により供給された照明光を反射させて光変調素子へ導くとともに、光変調素子で反射して生成された投写光を透過させて、投写光軸に沿って投写光軸の前方側の投写光学系へ出力し、更に、投写光学系から入射し、投写光軸の前方側に対向する方向に伝搬される外部光の少なくとも一部である撮像光を反射させて撮像光反射プリズムへ導き、撮像光反射プリズムは、TIRプリズムから入射した撮像光を内部反射させて、投写光軸に実質的に直交する面にある撮像光軸に沿って撮像素子へ導く、プリズム群を提供する。 According to the first aspect of the present disclosure, the TIR prism and the imaging light reflecting prism are provided, and the TIR prism reflects the illumination light supplied by the illumination optical system, guides it to the light modulation element, and reflects the light from the light modulation element. transmits the projection light generated by the projection optical axis, outputs it to the projection optical system on the front side of the projection optical axis along the projection optical axis, further enters from the projection optical system, and faces the front side of the projection optical axis The imaging light, which is at least part of the external light propagating in the direction, is reflected and guided to the imaging light reflecting prism, which internally reflects the imaging light incident from the TIR prism, substantially along the projection optical axis. To provide a prism group that leads to an imaging device along an imaging optical axis in a plane orthogonal to each other.
 この態様によれば、撮像光学系が容易に投写型映像表示装置の機器内部に組み込むことができ、投写型映像表示装置の小型化を容易にすることができる。 According to this aspect, the imaging optical system can be easily incorporated inside the equipment of the projection image display device, and the size reduction of the projection image display device can be facilitated.
 本開示の第2態様によれば、TIRプリズムは、投写光軸の前方側から投写光軸に沿って順に配置された第1のプリズムと第2のプリズムとを含み、第2のプリズムの照明光が反射する照明光反射面と、第1のプリズムの投写光が入射する投写光入射面とは、平行な間隙を隔てて対向して配置され、撮像光反射プリズムは、TIRプリズムからの撮像光が透過する撮像光入射面を有し、撮像光入射面を介して第1のプリズムと隣接して配置され、撮像光は、TIRプリズム及び撮像光反射プリズム内において複数回内部反射し、撮像光軸は、撮像光がTIRプリズム及び撮像光反射プリズムを通過する長手方向軸に直交する方向又はその付近に位置する、第1態様に記載のプリズム群を提供する。 According to the second aspect of the present disclosure, the TIR prism includes a first prism and a second prism arranged in order along the projection optical axis from the front side of the projection optical axis, and illumination of the second prism The illumination light reflecting surface that reflects light and the projection light incident surface of the first prism on which the projection light is incident are arranged to face each other with a parallel gap therebetween. It has an imaging light incident surface through which light passes, and is arranged adjacent to the first prism via the imaging light incident surface, and the imaging light is internally reflected multiple times in the TIR prism and the imaging light reflecting prism, and the imaging light is captured. The prism group of the first aspect is provided, wherein the optical axis lies in a direction orthogonal to or near a longitudinal axis along which imaging light passes through the TIR prism and the imaging light reflecting prism.
 本開示の第3態様によれば、撮像光反射プリズムは、撮像光入射面において、第1のプリズムと一体的に構成されている、第2態様に記載のプリズム群を提供する。 A third aspect of the present disclosure provides the prism group according to the second aspect, wherein the imaging light reflecting prism is integrally configured with the first prism on the imaging light incident surface.
 本開示の第4態様によれば、撮像光反射プリズムと、第1のプリズムとは、撮像光入射面において、平行な間隙を隔てて分離して配置されている、第2態様に記載のプリズム群を提供する。 According to a fourth aspect of the present disclosure, the prism according to the second aspect, wherein the imaging light reflecting prism and the first prism are arranged separately with a parallel gap on the imaging light incident surface. Serve the flock.
 本開示の第5態様によれば、TIRプリズムは、第1のプリズムと第2のプリズムとの間に配置された第3のプリズムを更に含み、第3のプリズムは、第1のプリズム面と、第1のプリズム面と角度を成す第2のプリズム面とを有し、第1のプリズム面と第1のプリズムの投写光入射面とが接合され、第2のプリズム面と第2のプリズムの照明光反射面とが、平行な間隙を隔てて対向して配置されている、第2から第4態様のいずれか1つに記載のプリズム群を提供する。 According to a fifth aspect of the present disclosure, the TIR prism further includes a third prism positioned between the first prism and the second prism, the third prism facing the first prism surface and , a second prism surface forming an angle with the first prism surface, the first prism surface and the projection light incident surface of the first prism being joined, the second prism surface and the second prism surface The prism group according to any one of the second to fourth aspects is provided, wherein the illumination light reflecting surfaces of and are arranged opposite to each other with a parallel gap therebetween.
 本開示の第6態様によれば、投写光入射面は、可視域部分反射コートが施され、可視域部分反射コートは、可視域の光に対し、2%以上15%以下の反射率を有して撮像光を反射させる、第2から第5態様のいずれか1つに記載のプリズム群を提供する。 According to the sixth aspect of the present disclosure, the projection light incident surface is provided with a visible region partial reflection coat, and the visible region partial reflection coat has a reflectance of 2% or more and 15% or less with respect to light in the visible region. and reflecting the imaging light.
 本開示の第7態様によれば、投写光入射面は、赤外域部分反射コートが施され、赤外域部分反射コートは、赤外域の光に対し、50%以上の反射率を有して撮像光を反射させる、第2から第5態様のいずれか1つに記載のプリズム群を提供する。 According to the seventh aspect of the present disclosure, the projection light incident surface is provided with an infrared partial reflection coat, and the infrared partial reflection coat has a reflectance of 50% or more with respect to infrared light. Provide a group of prisms according to any one of the second to fifth aspects for reflecting light.
 本開示の第8態様によれば、撮像光反射プリズムは、内部反射面を有し、撮像光は、内部反射面で内部反射し、内部反射面は、撮像光が内部反射する方向に向けて凹面の形状を有する、第1から第7態様のいずれか1つに記載のプリズム群を提供する。 According to an eighth aspect of the present disclosure, the imaging light reflecting prism has an internal reflection surface, the imaging light is internally reflected by the internal reflection surface, and the internal reflection surface is directed in a direction in which the imaging light is internally reflected. Provide a prism group according to any one of the first to seventh aspects, having a concave shape.
 本開示の第9態様によれば、撮像光は、撮像光反射プリズム内にて中間像を形成し、中間像を撮像素子の位置に結像し、中間像は、内部反射面から離間して位置している、第8態様に記載のプリズム群を提供する。 According to the ninth aspect of the present disclosure, the imaging light forms an intermediate image within the imaging light reflecting prism, the intermediate image is formed at the position of the imaging element, and the intermediate image is spaced apart from the internal reflecting surface. A prism group according to the eighth aspect, located.
 本開示の第10態様によれば、撮像光反射プリズムは、撮像光出射面を有し、撮像光は、撮像光出射面で透過して撮像素子へ出射され、撮像光出射面は、撮像光が撮像素子へ出射する方向に向けて凸面の形状を有する、第1から第9態様のいずれか1つに記載のプリズム群を提供する。 According to the tenth aspect of the present disclosure, the imaging light reflecting prism has an imaging light exit surface, the imaging light is transmitted through the imaging light exit surface and is emitted to the imaging element, and the imaging light exit surface includes the imaging light The prism group according to any one of the first to ninth aspects is provided, which has a convex shape facing the direction in which the light exits to the imaging device.
 本開示の第11態様によれば、可視域の照明光を供給する照明光学系と、第1から第10態様のいずれか1つに記載のプリズム群を含むプリズム部材と、照明光学系により供給され、プリズム部材により導かれて入射した光を空間的に変調し、映像情報に応じた投写光を生成する1つ又は複数の光変調素子と、TIRプリズムを透過した投写光を拡大投写して映像を表示する投写光学系と、撮像光反射プリズムにより出力された撮像光を受光して電気的な画像信号に変換する撮像素子と、を備える、投写型映像表示装置を提供する。 According to an eleventh aspect of the present disclosure, an illumination optical system that supplies illumination light in the visible range, a prism member including the prism group according to any one of the first to tenth aspects, and the illumination optical system one or more light modulation elements that spatially modulate incident light guided by a prism member to generate projection light corresponding to image information; Provided is a projection type image display device comprising a projection optical system for displaying an image and an imaging device for receiving imaging light output from an imaging light reflection prism and converting it into an electrical image signal.
 なお、上記様々な実施の形態のうちの任意の実施の形態を適宜組み合わせることにより、それぞれの有する効果を奏するようにすることができる。 By appropriately combining any of the various embodiments described above, the respective effects can be achieved.
 以下、適宜図面を参照しながら、実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。 Hereinafter, embodiments will be described in detail with reference to the drawings as appropriate. However, more detailed description than necessary may be omitted. For example, detailed descriptions of well-known matters and redundant descriptions of substantially the same configurations may be omitted. This is to avoid unnecessary verbosity in the following description and to facilitate understanding by those skilled in the art.
 なお、添付図面及び以下の説明は、当業者が本開示を十分に理解するために提供するものであって、これらによって請求の範囲に記載の主題を限定することを意図するものではない。また、各図においては、説明を容易なものとするため、各要素を誇張して示している。 The accompanying drawings and the following description are provided to allow those skilled in the art to fully understand the present disclosure, and are not intended to limit the subject matter described in the claims. Also, in each drawing, each element is exaggerated for ease of explanation.
 《実施の形態》
 以下、本開示の実施の形態に係るプリズム群、及びそれを備える投写型映像表示装置について、図1乃至図12を参照しながら説明する。本開示に係るプリズム群を適用した投写型映像表示装置の具体的な実施例として、1つの光変調素子を備える単板式の投写型映像表示装置(実施例1)及び3つの光変調素子を備える3板式の投写型映像表示装置(実施例2)を説明する。
<<Embodiment>>
Hereinafter, a prism group according to an embodiment of the present disclosure and a projection type image display device including the prism group will be described with reference to FIGS. 1 to 12. FIG. As a specific example of the projection display apparatus to which the prism group according to the present disclosure is applied, a single-panel projection display apparatus (Example 1) having one light modulation element and three light modulation elements are provided. A three-panel projection type image display apparatus (Embodiment 2) will be described.
 (実施例1の投写型映像表示装置600の構成)
 以下において、本開示の実施の形態に係る実施例1の投写型映像表示装置600の構成について、図1及び図2を用いて説明する。図1は、本開示の実施の形態に係る実施例1の投写型映像表示装置600の全体構成を示す概略図である。また、図1の(a)及び(b)は、図示X-Z面において投写型映像表示装置600の全体構成を示す概略図である。図1の(c)は、図1の(a)の左側、すなわち、図1の(a)の+Z側から-Z方向に向かって見たプリズム群300及び撮像光学系440等を示す概略図である。なお、本開示の実施の形態に係る投写型映像表示装置は、例えば、高輝度タイプのプロジェクタであって、プロジェクションマッピングなどに用いられてもよく、また、家庭用の低輝度タイプのプロジェクタであってもよい。
(Configuration of projection-type image display device 600 of embodiment 1)
The configuration of the projection display apparatus 600 of Example 1 according to the embodiment of the present disclosure will be described below with reference to FIGS. 1 and 2. FIG. FIG. 1 is a schematic diagram showing the overall configuration of a projection display apparatus 600 of Example 1 according to the embodiment of the present disclosure. 1A and 1B are schematic diagrams showing the overall configuration of the projection image display device 600 in the XZ plane of the drawing. (c) of FIG. 1 is a schematic diagram showing the prism group 300, the imaging optical system 440, etc. viewed in the −Z direction from the left side of (a) of FIG. 1, that is, from the +Z side of (a) of FIG. is. Note that the projection-type image display device according to the embodiment of the present disclosure is, for example, a high-brightness projector and may be used for projection mapping or the like, and may be a low-brightness projector for home use. may
 図1の投写型映像表示装置600は、照明光を供給する照明光学系200と、投影撮像光学系500と、を備える。照明光学系200は、光源ユニット20と、アフォーカルレンズ31,32と、拡散板41と、λ/4板42と、コンデンサレンズ33,34,35と、ダイクロイックミラー45と、ロッドインテグレータ46と、蛍光体ホイール50と、カラーホイール60と、照明光リレー光学系を構成するレンズ73,74,75と、を含む。 A projection-type image display apparatus 600 in FIG. 1 includes an illumination optical system 200 that supplies illumination light, and a projection imaging optical system 500 . The illumination optical system 200 includes a light source unit 20, afocal lenses 31 and 32, a diffusion plate 41, a λ/4 plate 42, condenser lenses 33, 34 and 35, a dichroic mirror 45, a rod integrator 46, It includes a phosphor wheel 50, a color wheel 60, and lenses 73, 74, 75 forming an illumination light relay optical system.
 <照明光学系>
 照明光学系200において、光源ユニット20は、例えば、複数の半導体レーザ(LD)又は発光ダイオード(LED)によって構成される。本実施の形態では、青色光を出射する半導体レーザ素子21を使用することができる。半導体レーザ素子21から出射される青色光は、波長が455nm付近であって、映像光として用いられるとともに、蛍光体ホイール50の蛍光体を励起するための励起光としても用いられる。半導体レーザ素子21から発された青色光は、図示-X方向に出射され、コリメートレンズ22によってコリメートされた後、アフォーカルレンズ31及び32によって集束され、拡散板41を透過してダイクロイックミラー45に入射する。
<Illumination optical system>
In the illumination optical system 200, the light source unit 20 is composed of, for example, a plurality of semiconductor lasers (LD) or light emitting diodes (LED). In this embodiment, a semiconductor laser element 21 that emits blue light can be used. The blue light emitted from the semiconductor laser element 21 has a wavelength of around 455 nm and is used as image light and also as excitation light for exciting the phosphors of the phosphor wheel 50 . The blue light emitted from the semiconductor laser element 21 is emitted in the -X direction in the figure, collimated by the collimator lens 22, converged by the afocal lenses 31 and 32, transmitted through the diffusion plate 41, and directed to the dichroic mirror 45. Incident.
 本実施の形態において、光源ユニット20から出射される光は、例えば、S偏光の青色光であって、ダイクロイックミラー45は、S偏光の青色光を反射し、P偏光の青色光及びその他の色光は透過することができる。ダイクロイックミラー45で反射された青色光は、略-Z方向に進み、λ/4板42を通過して、コンデンサレンズ33、34で集光されて蛍光体ホイール50に入射し、蛍光体ホイール50の蛍光体を励起して発光させる。 In the present embodiment, the light emitted from the light source unit 20 is, for example, S-polarized blue light, and the dichroic mirror 45 reflects the S-polarized blue light and the P-polarized blue light and other colored lights can pass through. The blue light reflected by the dichroic mirror 45 travels approximately in the −Z direction, passes through the λ/4 plate 42, is condensed by the condenser lenses 33 and 34, and enters the phosphor wheel 50. excites the phosphor to emit light.
 蛍光体ホイール50は、回転することにより、蛍光体層の異なるセグメントが入射した青色光によって励起され、例えば、黄色域の発光成分光、緑色域の発光成分光等を含む蛍光を発生することができる。また、λ/4板42を通過した青色光の一部が蛍光体ホイール50により反射されて、λ/4板42を再度通過することで、P偏光の青色成分光となり、ダイクロイックミラー45を透過する。ダイクロイックミラー45を透過した青色成分光及び各色域の発光成分光は、略Z方向に進み、コンデンサレンズ35を経てカラーホイール60に入射する。 As the phosphor wheel 50 rotates, different segments of the phosphor layer are excited by the incident blue light to generate fluorescence including, for example, yellow emission component light, green emission component light, and the like. can. Also, part of the blue light that has passed through the λ/4 plate 42 is reflected by the phosphor wheel 50 and passes through the λ/4 plate 42 again, becoming P-polarized blue component light, which passes through the dichroic mirror 45 . do. The blue component light and the emission component light of each color gamut transmitted through the dichroic mirror 45 travel substantially in the Z direction and enter the color wheel 60 via the condenser lens 35 .
 カラーホイール60は、蛍光体ホイール50と同期回転するよう制御され、異なるセグメントの透過特性によって入射した光を分光する。同期回転する蛍光体ホイール50とカラーホイール60とによって生成される光は、赤色、緑色、青色、黄色等を含む各色域の成分光が時分割で出射されるように、ロッドインテグレータ46に入射し、ここで均一化される。 The color wheel 60 is controlled to rotate synchronously with the phosphor wheel 50, and separates incident light according to the transmission characteristics of different segments. The light generated by the synchronously rotating phosphor wheel 50 and color wheel 60 enters the rod integrator 46 so that the component lights of each color gamut including red, green, blue, yellow, etc. are emitted in a time division manner. , where it is equalized.
 ロッドインテグレータ46から出射された光は、照明光リレー光学系を構成するレンズ73,74,75を透過したのち、照明光学系200から出射され、時間平均としては白色光の照明光Lsとなって投影撮像光学系500に入射する。 The light emitted from the rod integrator 46 passes through the lenses 73, 74, and 75 constituting the illumination light relay optical system, is emitted from the illumination optical system 200, and becomes the illumination light Ls of white light as a time average. The light enters the projection imaging optical system 500 .
 <投影撮像光学系>
 次に、投影撮像光学系500は、プリズム群300と、光変調素子400と、投写光学系420と、撮像光学系440と、撮像素子450と、を備える。また、本実施の形態において、撮像光学系440及び撮像素子450は、図示X方向の投写光軸Oa1に概ね直交するY-Z面に配置され、撮像光Liは、+Y方向の撮像光軸Ob1に沿って撮像素子450に入射する(図1の(c)に示す)。
<Projection imaging optical system>
Next, the projection imaging optical system 500 includes a prism group 300 , an optical modulation element 400 , a projection optical system 420 , an imaging optical system 440 and an imaging element 450 . Further, in the present embodiment, the imaging optical system 440 and the imaging device 450 are arranged on the YZ plane substantially perpendicular to the projection optical axis Oa1 in the X direction in the drawing, and the imaging light Li is projected onto the imaging optical axis Ob1 in the +Y direction. incident on the imaging element 450 along (shown in (c) of FIG. 1).
 投影撮像光学系500において、プリズム群300は、TIR(Total Internal Reflection)プリズム310(内部全反射プリズム)と、撮像光反射プリズム350とによって構成されている。TIRプリズム310は、本実施の形態において、略三角柱状の第1のプリズム320と第2のプリズム330とを、間に微小な間隙を設けて接合して構成されている。TIRプリズム310は、全反射を利用して、入射してきた照明光Lsを、進行方向を偏向させて光変調素子400に導く。撮像光反射プリズム350は、TIRプリズム310に隣接して配置されている。撮像光反射プリズム350とTIRプリズム310とは、分離して構成されてもよく(図7)、一体に構成されてもよい(図4、図8)。図1においては、撮像光反射プリズム350とTIRプリズム310とを分離した構成で示している。撮像光反射プリズム350は、TIRプリズム310で反射して入射した撮像光Liを更に反射して偏向させて撮像素子450に導く。プリズム群300の構成については、後段において詳述する。 In the projection imaging optical system 500 , the prism group 300 is composed of a TIR (Total Internal Reflection) prism 310 (total internal reflection prism) and an imaging light reflection prism 350 . In this embodiment, the TIR prism 310 is configured by joining a substantially triangular prism-shaped first prism 320 and a second prism 330 with a small gap therebetween. Using total reflection, the TIR prism 310 deflects the traveling direction of the incident illumination light Ls and guides it to the light modulation element 400 . The imaging light reflecting prism 350 is positioned adjacent to the TIR prism 310 . The imaging light reflecting prism 350 and the TIR prism 310 may be configured separately (FIG. 7) or integrated (FIGS. 4 and 8). In FIG. 1, the configuration in which the imaging light reflection prism 350 and the TIR prism 310 are separated is shown. The imaging light reflecting prism 350 further reflects and deflects the incident imaging light Li reflected by the TIR prism 310 and guides it to the imaging element 450 . The configuration of the prism group 300 will be detailed later.
 光変調素子400は、DMD(Digital Mirror Device)が用いられ、照明光Lsに含まれる各色域の成分光を、映像信号に基づいて変調し、画素毎に投写光LpとなるDMD-ON光(オン光)、又はDMD-OFF光Lf(オフ光)に振り分ける。投影用の投写光Lpは、投写光軸Oa1に沿って+X方向に出射され、DMD-OFF光Lfは投写光軸Oa1から偏向されて除去される。 The light modulation element 400 uses a DMD (Digital Mirror Device), which modulates the component light of each color gamut included in the illumination light Ls based on the video signal, and becomes the projection light Lp for each pixel. DMD-ON light ( ON light) or DMD-OFF light Lf (OFF light). The projection light Lp for projection is emitted in the +X direction along the projection optical axis Oa1, and the DMD-OFF light Lf is deflected from the projection optical axis Oa1 and removed.
 投写光Lpは、TIRプリズム310を透過し、投写光出射面321から出力されて、投写光軸Oa1に沿って投写光学系420へ伝搬される。投写光学系420が備えるレンズ群LGpは、投写光Lpをスクリーン430などの投写対象物に拡大投写して映像を表示する。 The projection light Lp passes through the TIR prism 310, is output from the projection light exit surface 321, and propagates to the projection optical system 420 along the projection optical axis Oa1. A lens group LGp included in the projection optical system 420 enlarges and projects the projection light Lp onto a projection object such as the screen 430 to display an image.
 一方、スクリーン430から図示-X方向に反射された外部光Leの少なくとも一部である撮像光Liを利用して、投写された映像を、投影撮像光学系500に内蔵された撮像素子450によって撮像することができる。 On the other hand, the imaging light Li, which is at least part of the external light Le reflected from the screen 430 in the −X direction in the figure, is used to capture the projected image by the imaging device 450 built in the projection imaging optical system 500. can do.
 図示のように、外部光Leは、投写光学系420から入射し、投写光軸Oa1に沿って-X方向に伝搬され、TIRプリズム310の第1のプリズム320の投写光学系側の投写光出射面321に入射する。TIRプリズム310内において、外部光Leの少なくとも一部である撮像光Liが内部反射し、偏向されて撮像光反射プリズム350に入射する。撮像光反射プリズム350に入射した撮像光Liが撮像光反射プリズム350内で更に内部反射して偏向され、撮像光反射プリズム350の撮像光出射面353から撮像光軸Ob1に沿って出射され、図示+Y方向に撮像光学系440に導入される。 As shown, the external light Le enters from the projection optical system 420, propagates in the -X direction along the projection optical axis Oa1, and exits the projection optical system side of the first prism 320 of the TIR prism 310. Incident on surface 321 . In the TIR prism 310 , the imaging light Li, which is at least part of the external light Le, is internally reflected and deflected to enter the imaging light reflection prism 350 . The imaging light Li incident on the imaging light reflecting prism 350 is further internally reflected and deflected within the imaging light reflecting prism 350, and emitted from the imaging light exit surface 353 of the imaging light reflecting prism 350 along the imaging optical axis Ob1. It is introduced into the imaging optical system 440 in the +Y direction.
 撮像光学系440は、複数の光学部品によって構成することができ、本実施の形態において、複数のレンズからなるリレー光学系で構成することができる。撮像光出射面353から出射され、+Y方向の撮像光軸Ob1に沿って伝搬される撮像光Liは、撮像光学系440により、撮像素子450に結像することができる。なお、本開示は、撮像光学系による結像の倍率を限定せず、撮像光学系440は、縮小結像光学系であってもよく、等倍、又は拡大結像光学系であってもよい。撮像素子450は、CCDイメージセンサー、CMOSイメージセンサー等の固体撮像素子から構成することができ、受光した撮像光Liを電気的な画像信号に変換する。 The imaging optical system 440 can be composed of a plurality of optical components, and can be composed of a relay optical system composed of a plurality of lenses in this embodiment. The imaging light Li emitted from the imaging light exit surface 353 and propagating along the imaging optical axis Ob1 in the +Y direction can be imaged on the imaging device 450 by the imaging optical system 440 . Note that the present disclosure does not limit the magnification of image formation by the imaging optical system, and the imaging optical system 440 may be a reduction imaging optical system, or may be an equal magnification or magnification imaging optical system. . The imaging element 450 can be composed of a solid-state imaging element such as a CCD image sensor or a CMOS image sensor, and converts the received imaging light Li into an electrical image signal.
 <投写型映像表示装置の機器内部の配置>
 次に、本開示の実施の形態に係る投写型映像表示装置600の機器内部の配置について、図2を参照して説明する。図2は、図1の投写型映像表示装置600の投写光学系側から見た機器内部の配置図である。ただし、図1は、撮像光学系440及び撮像素子450がプリズム群300の-Y側に配置される構成例であって、図2は、撮像光学系440及び撮像素子450がプリズム群300の-Y側に配置される構成例を示している。
<Arrangement inside the projection display device>
Next, the arrangement inside the projection display apparatus 600 according to the embodiment of the present disclosure will be described with reference to FIG. FIG. 2 is a layout diagram of the interior of the projection display apparatus 600 of FIG. 1 as viewed from the projection optical system side. However, FIG. 1 is a configuration example in which the imaging optical system 440 and the imaging device 450 are arranged on the −Y side of the prism group 300, and FIG. A configuration example arranged on the Y side is shown.
 図1の投写光学系420側、すなわち、図1の上方から、-X方向に向かってみると、投写型映像表示装置600の筐体600Aの内部において、プリズム群300は、投写光学系420のレンズ群LGpの下方に位置し、光変調素子400が概ねレンズ群LGpの中央に位置している。照明光学系200から出射された照明光Lsは、折り返しミラー47によって偏向され、リレーレンズ群48を通して、TIRプリズム310及び撮像光反射プリズム350を通過するプリズム群300の長手方向軸Ob2に沿って、図示概ね+Z方向にプリズム群300に入射する。 When viewed from the side of the projection optical system 420 in FIG. 1, that is, in the −X direction from the top of FIG. Located below the lens group LGp, the light modulation element 400 is located approximately in the center of the lens group LGp. The illumination light Ls emitted from the illumination optical system 200 is deflected by the folding mirror 47, passes through the relay lens group 48, the TIR prism 310 and the imaging light reflecting prism 350, along the longitudinal axis Ob2 of the prism group 300. The light enters the prism group 300 approximately in the +Z direction in the drawing.
 光変調素子400からのDMD-ON光(投写光Lp、図2には示さず)は図示+X方向に出射され、DMD-OFF光Lfは、プリズム群300の長手方向軸Ob2付近の方向に偏向される。 The DMD-ON light (projection light Lp, not shown in FIG. 2) from the light modulation element 400 is emitted in the +X direction shown, and the DMD-OFF light Lf is deflected in a direction near the longitudinal axis Ob2 of the prism group 300. be done.
 レンズ群LGpはバックフォーカスを短く設計した方が装置のより小型化、低コスト化が可能となるため、投写光学系420とプリズム群300の投写光学系側の投写光出射面321とは干渉しない範囲で極力近接して構成されている。そのため、投写光Lpの出射方向である図示X方向において、筐体600A内部の空間が少なく、設計上光学部品等の配置が制限される。 If the lens group LGp is designed to have a short back focus, the apparatus can be made smaller and less expensive. It is configured as close as possible in the range. Therefore, the space inside the housing 600A is small in the illustrated X direction, which is the direction in which the projection light Lp is emitted, and the layout of optical components and the like is limited in terms of design.
 本開示に係る投写型映像表示装置600において、前述したように、投写光学系から図示-X方向に入射した外部光Leの少なくとも一部である撮像光Liは、プリズム群300内で複数回内部反射して偏向させることによって、投写光軸Oa1に実質的に直交するY-Z面にある撮像光軸Ob1に沿って撮像素子450に導入することができる。これによって、撮像光学系440は、投写光学系420と干渉することなく容易に機器内部に組み込むことができ、従来の投写型映像表示装置に設けられた投写光学系が変更する必要なく投写型映像表示装置に利用することができる。これによって、低コストで装置の改良又は機能拡充が可能となる。 In the projection-type image display device 600 according to the present disclosure, as described above, the imaging light Li, which is at least part of the external light Le incident in the −X direction in the drawing from the projection optical system, passes through the prism group 300 multiple times. By being reflected and deflected, it can be introduced into the imaging element 450 along the imaging optical axis Ob1 in the YZ plane substantially perpendicular to the projection optical axis Oa1. As a result, the imaging optical system 440 can be easily installed inside the apparatus without interfering with the projection optical system 420, and the projection type image can be displayed without changing the projection optical system provided in the conventional projection type image display apparatus. It can be used for display devices. This makes it possible to improve or expand the functions of the device at low cost.
 また、プリズム群300の内部で撮像光Liを複数回内部反射して偏向させることにより、撮像光伝搬の空気換算長を短くすることができ、光束の広がりを抑制することによって、撮像光学系のレンズの口径及び厚さの低減が可能となる。これによって、投写型映像表示装置の小型化は、従来よりも容易にすることができる。 Further, by internally reflecting and deflecting the imaging light Li a plurality of times inside the prism group 300, the air-equivalent length of propagation of the imaging light can be shortened. A reduction in lens diameter and thickness is possible. This makes it possible to reduce the size of the projection display apparatus more easily than before.
 また、実際の投写型映像表示装置は、図2に示すように、投写光学系から見たときに、プリズム群300に入射する照明光Lsは、図示右下から、筐体600Aの長辺に対して斜め45度の方向から入射するように設計されている。これは、光変調素子400としてのDMDの微小ミラーの回転軸が45度傾いて設けられていることに起因している。そのため、照明光Lsを光変調素子400に導くプリズム群300も、長手方向軸Ob2が筐体600Aの長辺に対して約45度傾くように配置されている。このような配置では、図示のように、機器内部においてプリズム群300の長手方向軸Ob2側のスペースが少ない。更に、DMD-OFF光Lfが導かれる方向付近に撮像光学系を配置すると、DMD-OFF光Lfによる迷光の影響が大きくなる。 In addition, as shown in FIG. 2, in an actual projection-type image display apparatus, when viewed from the projection optical system, the illumination light Ls incident on the prism group 300 is directed from the lower right of the drawing to the long side of the housing 600A. It is designed to be incident from an oblique direction of 45 degrees. This is because the rotation axis of the micromirror of the DMD as the light modulation element 400 is inclined by 45 degrees. Therefore, the prism group 300 that guides the illumination light Ls to the light modulation element 400 is also arranged such that the longitudinal axis Ob2 is inclined about 45 degrees with respect to the long side of the housing 600A. With such an arrangement, the space on the side of the longitudinal axis Ob2 of the prism group 300 inside the device is small, as illustrated. Furthermore, if the image pickup optical system is placed near the direction in which the DMD-OFF light Lf is guided, the influence of stray light due to the DMD-OFF light Lf increases.
 本実施の形態において、図2に示すように、撮像光Liを、プリズム群300内において複数回内部反射させることによって、プリズム群300の長手方向軸Ob2と直交する方向又はその付近に位置する撮像光軸Ob1に沿って導くことができる。これによって、DMD-OFF光Lfによる迷光の影響を抑制するとともに、機器内部のスペースを有効に利用することができ、更なる装置のコンパクト化に繋がる。 In the present embodiment, as shown in FIG. 2 , the imaging light Li is internally reflected multiple times in the prism group 300, so that the imaging light Li is located in a direction orthogonal to the longitudinal axis Ob2 of the prism group 300 or in the vicinity thereof. It can be guided along the optical axis Ob1. As a result, the influence of stray light caused by the DMD-OFF light Lf can be suppressed, and the space inside the device can be effectively used, leading to further downsizing of the device.
 図2において、撮像光軸Ob1がプリズム群300の長手方向軸Ob2と概ね直交するように示しているが、本開示はこれに限定されない。撮像光軸Ob1は、プリズム群300の長手方向軸Ob2と直交する方向の付近に配置されてもよい。また、図1及び図2に示すように、撮像光学系440及び撮像素子450は、撮像光軸Ob1に沿って、プリズム群300のいずれの側に配置されてもよい。 Although FIG. 2 shows the imaging optical axis Ob1 to be substantially orthogonal to the longitudinal axis Ob2 of the prism group 300, the present disclosure is not limited to this. The imaging optical axis Ob1 may be arranged near the direction orthogonal to the longitudinal axis Ob2 of the prism group 300 . 1 and 2, the imaging optical system 440 and the imaging device 450 may be arranged on either side of the prism group 300 along the imaging optical axis Ob1.
 <プリズム群300の構成>
 図3,4を参照して実施の形態に係る投影撮像光学系500のプリズム群300の構成を説明する。明瞭化のために、各光ビームを主光線のみで示している。
<Structure of Prism Group 300>
The configuration of the prism group 300 of the projection imaging optical system 500 according to the embodiment will be described with reference to FIGS. For clarity, each light beam is shown with only the chief ray.
 図3は、本開示の実施の形態に係るプリズム群300の構成を示す斜視図である。図4は、本開示の実施の形態に係るプリズム群300の断面図である。また、図3のプリズム群300は、撮像光反射プリズム350とTIRプリズム310とが一体的に形成された構成で示されている。 FIG. 3 is a perspective view showing the configuration of the prism group 300 according to the embodiment of the present disclosure. FIG. 4 is a cross-sectional view of prism group 300 according to an embodiment of the present disclosure. Also, the prism group 300 in FIG. 3 is shown in a configuration in which the imaging light reflecting prism 350 and the TIR prism 310 are integrally formed.
 TIRプリズム310は、略三角柱状の第1のプリズム320と第2のプリズム330とを含み、第1のプリズム320と第2のプリズム330とは、投写光軸Oa1の前方側(図示+X側)から投写光軸Oa1に沿って順に配置されている。第2のプリズム330は、照明光反射面331を有し、入射した照明光Lsが照明光反射面331で全反射して光変調素子400に導入される。第1のプリズム320は、光変調素子400で反射されて+X方向に進む投写光Lpの投写光入射面322と投写光出射面321とを有する。第1のプリズム320と第2のプリズム330とは、投写光入射面322と照明光反射面331との間に平行な間隙を設けて接合されている。これによって、光変調素子400からの投写光Lpは、第2のプリズム330を透過して第1のプリズム320に入り、更に第1のプリズム320を透過して、投写光出射面321から投写光軸Oa1に沿って投写光学系に出力されて結像される。DMD-OFF光Lfは、投写光軸Oa1から偏向された方向にTIRプリズム310を透過して除去される。 The TIR prism 310 includes a first prism 320 and a second prism 330 having a substantially triangular prism shape. , are arranged in order along the projection optical axis Oa1. The second prism 330 has an illumination light reflecting surface 331 , and the incident illumination light Ls is totally reflected by the illumination light reflecting surface 331 and introduced into the light modulation element 400 . The first prism 320 has a projection light entrance surface 322 and a projection light exit surface 321 for the projection light Lp that is reflected by the light modulation element 400 and travels in the +X direction. The first prism 320 and the second prism 330 are joined with a parallel gap between the projection light incident surface 322 and the illumination light reflecting surface 331 . As a result, the projection light Lp from the light modulation element 400 passes through the second prism 330, enters the first prism 320, further passes through the first prism 320, and exits from the projection light exit surface 321. It is output to the projection optical system along the axis Oa1 and imaged. The DMD-OFF light Lf is removed by passing through the TIR prism 310 in a direction deflected from the projection optical axis Oa1.
 第1のプリズム320と隣接して配置されている撮像光反射プリズム350は、撮像光入射面351と、内部反射面352と、撮像光出射面353とを有する。本実施の形態において、TIRプリズム310の第1のプリズム320と撮像光反射プリズム350とは、撮像光入射面351において一体的に形成されている。 The imaging light reflection prism 350 arranged adjacent to the first prism 320 has an imaging light entrance surface 351 , an internal reflection surface 352 and an imaging light exit surface 353 . In this embodiment, the first prism 320 of the TIR prism 310 and the imaging light reflection prism 350 are integrally formed on the imaging light incident surface 351 .
 図示のように、投写光学系(図3に図示せず)から-X方向に第1のプリズム320に入射した外部光Leは、投写光入射面322においてビームスポットS1を形成する。投写光入射面322は、部分反射コートが施され、入射した外部光Leの少なくとも一部が部分反射コートにより撮像光Liとして内部反射し、投写光出射面321に到達してビームスポットS2を形成する。続いて、撮像光Liが投写光出射面321で内部反射し、撮像光反射プリズム350の撮像光入射面351に到達し、撮像光入射面351を透過して撮像光反射プリズム350に入射する。 As shown, the external light Le incident on the first prism 320 in the -X direction from the projection optical system (not shown in FIG. 3) forms a beam spot S1 on the projection light incident surface 322. As shown in FIG. The projection light incident surface 322 is partially reflective coated, and at least part of the incident external light Le is internally reflected by the partially reflective coating as imaging light Li, reaches the projection light exit surface 321, and forms a beam spot S2. do. Subsequently, the imaging light Li is internally reflected by the projection light exit surface 321 , reaches the imaging light incident surface 351 of the imaging light reflecting prism 350 , passes through the imaging light incident surface 351 , and enters the imaging light reflecting prism 350 .
 撮像光反射プリズム350において、撮像光Liは、内部反射面352においてビームスポットS3を形成して内部反射したのち、撮像光出射面353から図示+Y方向の撮像光軸Ob1に沿って出射され、撮像光学系440によって撮像素子に結像することができる。 In the imaging light reflecting prism 350, the imaging light Li forms a beam spot S3 on the internal reflection surface 352 and is internally reflected, and then emitted from the imaging light exit surface 353 along the imaging optical axis Ob1 in the +Y direction in the drawing, thereby performing imaging. An image can be formed on the imaging element by the optical system 440 .
 このように、本実施の形態において、撮像光Liは、プリズム群300内で3回内部反射したのち、投写光軸Oa1に実質的に直交するY-Z面にあり、且つプリズム群300の長手方向軸Ob2に直交する方向又はその付近に位置する撮像光軸Ob1に沿って、撮像素子450に導入することができる。なお、本開示は、撮像光Liがプリズム群300内での内部反射回数を限定しない。また、これに限定されないが、好ましくは、撮像光Liが、投写光出射面321で全反射して撮像光反射プリズム350に入射してもよい。これによって、効率よく撮像光を利用することができる。 As described above, in the present embodiment, the imaging light Li is internally reflected three times in the prism group 300, and then lies on the YZ plane substantially orthogonal to the projection optical axis Oa1, and It can be introduced into the imaging device 450 along the imaging optical axis Ob1 located in the direction orthogonal to the directional axis Ob2 or in the vicinity thereof. Note that the present disclosure does not limit the number of internal reflections of the imaging light Li within the prism group 300 . Although not limited to this, preferably, the imaging light Li may be totally reflected by the projection light exit surface 321 and enter the imaging light reflection prism 350 . This makes it possible to efficiently use the imaging light.
 図5Aおよび図5Bは、本開示の実施の形態に係るプリズム群300における部分反射コートの反射特性の例を示す図である。投写光入射面322に施された部分反射コートは、可視域部分反射コート(図5A)であってもよく、赤外域部分反射コート(図5B)であってもよい。 5A and 5B are diagrams showing examples of reflection characteristics of the partially reflective coating in the prism group 300 according to the embodiment of the present disclosure. The partial reflection coat applied to the projection light incident surface 322 may be a visible partial reflection coat (FIG. 5A) or an infrared partial reflection coat (FIG. 5B).
 可視域部分反射コートが施された場合、光変調素子400から投写光入射面322に入射した可視域の投写光Lpも、可視域部分反射コートの反射特性により一部が反射されるため、投写光Lpにロスが生じる。本実施の形態の場合、図5Aに示す可視域部分反射コートは、波長が400nm-700nmの可視域の光に対し、2%以上15%以下の反射率を有する。これによって、投写光Lpに大きなロスが生じることなく、可視域の外部光の一部を撮像光として取り入れて撮像することができる。なお、可視域部分反射コートの反射特性は、これに限定されない。 When the visible region partial reflection coating is applied, the visible region projection light Lp incident on the projection light incident surface 322 from the light modulation element 400 is also partly reflected by the reflection characteristics of the visible region partial reflection coating. A loss occurs in the light Lp. In the case of the present embodiment, the visible region partial reflection coating shown in FIG. 5A has a reflectance of 2% or more and 15% or less with respect to light in the visible region with a wavelength of 400 nm to 700 nm. As a result, a part of external light in the visible range can be taken in as imaging light to capture an image without causing a large loss in the projection light Lp. Note that the reflection characteristics of the visible region partial reflection coat are not limited to this.
 一方、赤外域部分反射コートが施された場合、図5Bに示すように、本実施の形態において、赤外域部分反射コートは、波長が750nm以上の赤外域の光に対し、50%以上の反射率を有して撮像光を反射させる。なお、赤外域部分反射コートの反射特性は、これに限定されない。 On the other hand, when the infrared region partial reflection coating is applied, as shown in FIG. 5B, in the present embodiment, the infrared region partial reflection coating reflects 50% or more of infrared light having a wavelength of 750 nm or more. reflect the imaging light with an index. Note that the reflection characteristics of the infrared region partial reflection coat are not limited to this.
 図6は、図1の投写光学系420に入射する投写光のスペクトルの一例を示す図である。図6に示すように、投写光学系に入射する投写光は、概ね440nm-470nmの青域の光成分LBと、520nm-570nmの緑域の光成分LGと、590nm-650nmの赤域(黄色)の光成分LR(Y)とを有し、赤外域の光成分を含まない。そこで、赤外域の外部光を撮像光として取り入れるとともに、可視域の投写光Lpを大凡100%透過させることによって、投写光にロスが生じることなく撮像することができる。なお、赤外線を利用した撮像は、全く明かりのない場所で動作の検知又は追跡することに利用することができ、夜間撮影や暗視型監視カメラなどで活用されている。 FIG. 6 is a diagram showing an example of the spectrum of projection light incident on the projection optical system 420 of FIG. As shown in FIG. 6, the projection light incident on the projection optical system includes a blue light component LB of approximately 440 nm to 470 nm, a green light component LG of 520 nm to 570 nm, and a red region (yellow light component of 590 nm to 650 nm). ), and does not contain a light component in the infrared region. Therefore, by taking in external light in the infrared region as imaging light and transmitting approximately 100% of the projection light Lp in the visible region, it is possible to perform imaging without loss of projection light. Imaging using infrared rays can be used to detect or track motion in a completely dark place, and is used in night photography, night vision surveillance cameras, and the like.
 (変形例1に係るプリズム群300a)
 次に、図7-図8を参照してプリズム群300の変形例を説明する。図7は、本開示の実施の形態の変形例1に係るプリズム群300aの断面図であり、図8は、本開示の実施の形態の変形例2に係るプリズム群300bの断面図である。
(Prism group 300a according to modification 1)
Next, a modified example of the prism group 300 will be described with reference to FIGS. 7 and 8. FIG. FIG. 7 is a cross-sectional view of a prism group 300a according to Modification 1 of the embodiment of the present disclosure, and FIG. 8 is a cross-sectional view of a prism group 300b according to Modification 2 of the embodiment of the present disclosure.
 図7に示すプリズム群300aは、図3-4に示すプリズム群300と同様に、TIRプリズム310aと撮像光反射プリズム350aとによって構成されている。図示のように、プリズム群300aは、撮像光反射プリズム350aが撮像光入射面351aにおいてTIRプリズム310aと分離して形成されている点でプリズム群300と異なる。 Similar to the prism group 300 shown in FIGS. 3-4, the prism group 300a shown in FIG. 7 is composed of a TIR prism 310a and an imaging light reflection prism 350a. As shown, the prism group 300a differs from the prism group 300 in that the imaging light reflection prism 350a is formed separately from the TIR prism 310a at the imaging light incident surface 351a.
 図7に示すように、プリズム群300aにおいて、第1のプリズム320aは、撮像光反射プリズム350aに隣接するプリズム面323aを有する。第1のプリズム320aと撮像光反射プリズム350aとは、プリズム面323aと撮像光入射面351aとの間に平行な間隙を隔てて分離して形成されている。 As shown in FIG. 7, in the prism group 300a, the first prism 320a has a prism surface 323a adjacent to the imaging light reflecting prism 350a. The first prism 320a and the imaging light reflecting prism 350a are separated from each other with a parallel gap between the prism surface 323a and the imaging light incident surface 351a.
 プリズム群300aにおいて、-X方向に第1のプリズム320aに入射した外部光Leは、投写光入射面322aにおいてビームスポットS1aを形成する。投写光入射面322aの部分反射コートによって、入射した外部光Leの少なくとも一部が撮像光Liaとして内部反射して、投写光出射面321aに到達してビームスポットS2aを形成する。続いて、撮像光Liaが投写光出射面321aで内部反射して、プリズム面323aを透過して、撮像光反射プリズム350aの撮像光入射面351aに到達して透過し、撮像光反射プリズム350aに入射する。撮像光反射プリズム350aにおいて、撮像光Liaは、内部反射面352aにおいて、ビームスポットS3aを形成し、内部反射面352aで内部反射したのち、撮像光出射面353aから出射される。 In the prism group 300a, the external light Le incident on the first prism 320a in the -X direction forms a beam spot S1a on the projection light incident surface 322a. At least part of the incident external light Le is internally reflected as imaging light Lia by the partial reflection coat of the projection light entrance surface 322a, reaches the projection light exit surface 321a, and forms a beam spot S2a. Subsequently, the imaging light Lia is internally reflected by the projection light exit surface 321a, passes through the prism surface 323a, reaches the imaging light incident surface 351a of the imaging light reflecting prism 350a, is transmitted therethrough, and enters the imaging light reflecting prism 350a. Incident. In the imaging light reflecting prism 350a, the imaging light Lia forms a beam spot S3a on the internal reflection surface 352a, is internally reflected by the internal reflection surface 352a, and is emitted from the imaging light exit surface 353a.
 前述したように、投写光LpがTIRプリズムを透過して投写光学系に出射する。TIRプリズムを通過するとき、高エネルギーの投写光Lpにより発熱が生じるため、TIRプリズムは、耐熱性のガラス素材で作製する必要がある。プリズム群300において、撮像光反射プリズムがTIRプリズムと一体に形成された場合には、熱伝導の影響を受けるため、ガラス製撮像光反射プリズムが必要である。また、屈折率の変化による収差の発生を抑制するため、撮像光反射プリズム350は、TIRプリズム310と同様のガラス素材で作製することが望ましい。一方、図7に示すプリズム群300aにおいて、撮像光反射プリズム350aは、TIRプリズム310aと分離して形成されることで、熱伝導が抑制されるため、TIRプリズム310aと異なるガラス素材、又は樹脂素材を採用して作製することができる。従って、撮像プリズムをTIRプリズムと分離して形成することによって、自由度の高い材料選択ができる。樹脂製の光学部品が優れた加工性を有するため、複雑な幾何形状の光学面を有するプリズム部材を低コストで作製できる利点もある。 As described above, the projection light Lp is transmitted through the TIR prism and emitted to the projection optical system. Since the high-energy projection light Lp generates heat when passing through the TIR prism, the TIR prism must be made of a heat-resistant glass material. In the prism group 300, if the imaging light reflecting prism is integrally formed with the TIR prism, the imaging light reflecting prism made of glass is required because it is affected by heat conduction. Also, in order to suppress the occurrence of aberration due to changes in the refractive index, it is desirable that the imaging light reflection prism 350 be made of the same glass material as the TIR prism 310 . On the other hand, in the prism group 300a shown in FIG. 7, the imaging light reflecting prism 350a is formed separately from the TIR prism 310a to suppress heat conduction. can be produced by adopting Therefore, by forming the imaging prism separately from the TIR prism, it is possible to select materials with a high degree of freedom. Since optical parts made of resin have excellent workability, there is also the advantage that prism members having optical surfaces with complicated geometric shapes can be manufactured at low cost.
 (変形例2に係るプリズム群300b)
 図8に示すプリズム群300bは、TIRプリズム310bと、撮像光反射プリズム350bと、第3のプリズム340とによって構成され、第3のプリズム340を備えている点でプリズム群300と異なる。図示のように、本実施の形態において、TIRプリズム310bの第1のプリズム320bと撮像光反射プリズム350bとは、一体的に形成されている。しかし、本開示はこれに限定されない。プリズム群300bにおいて、TIRプリズム310bの第1のプリズム320bと撮像光反射プリズム350bとは、図7に示すプリズム群300aと同様に、分離して形成されてもよい。
(Prism group 300b according to modification 2)
A prism group 300b shown in FIG. 8 is composed of a TIR prism 310b, an imaging light reflecting prism 350b, and a third prism 340, and differs from the prism group 300 in that the third prism 340 is provided. As shown, in this embodiment, the first prism 320b of the TIR prism 310b and the imaging light reflection prism 350b are integrally formed. However, the present disclosure is not so limited. In the prism group 300b, the first prism 320b of the TIR prism 310b and the imaging light reflecting prism 350b may be formed separately, similar to the prism group 300a shown in FIG.
 図8に示すように、プリズム群300bの第3のプリズム340は、第1のプリズム面341と第2のプリズム面342を有する。第1のプリズム面341は、TIRプリズム310bの第1のプリズム320bの投写光入射面322bと接合されている。第2のプリズム面342は、第1のプリズム面341と角度を成して交差している。第2のプリズム面342と、TIRプリズム310bの第2のプリズム330bの照明光反射面331bとは、平行な間隙を隔てて対向して配置されている。なお、これに限定されないが、本実施の形態において、第3のプリズム340は、楔形状を有する。第1のプリズム面341と第2のプリズム面342とは、好ましくは、2度から10度の頂角Aを成し、本実施の形態において、約3度の頂角Aを成している。 As shown in FIG. 8, the third prism 340 of the prism group 300b has a first prism surface 341 and a second prism surface 342. The first prism surface 341 is joined to the projection light incident surface 322b of the first prism 320b of the TIR prism 310b. The second prism surface 342 intersects the first prism surface 341 at an angle. The second prism surface 342 and the illumination light reflecting surface 331b of the second prism 330b of the TIR prism 310b are arranged facing each other with a parallel gap therebetween. Although not limited to this, in the present embodiment, the third prism 340 has a wedge shape. The first prism surface 341 and the second prism surface 342 preferably form an apex angle A of 2 to 10 degrees, and in this embodiment form an apex angle A of about 3 degrees. .
 プリズム群300bにおいて、-X方向に第1のプリズム320bに入射した外部光Leは、投写光入射面322bにおいてビームスポットS1bを形成する。投写光入射面322bの部分反射コートによって、入射した外部光Leの少なくとも一部が撮像光Libとして内部反射して、投写光出射面321bに到達してビームスポットS2bを形成する。続いて、撮像光Libが投写光出射面321bで内部反射して、撮像光反射プリズム350bに入射する。撮像光反射プリズム350bにおいて、撮像光Libは、内部反射面352bにおいてビームスポットS3bを形成し、内部反射面352bで内部反射したのち、撮像光出射面353bから出射される。 In the prism group 300b, the external light Le incident on the first prism 320b in the -X direction forms a beam spot S1b on the projection light incident surface 322b. At least part of the incident external light Le is internally reflected as imaging light Lib by the partial reflection coat of the projection light entrance surface 322b, reaches the projection light exit surface 321b, and forms a beam spot S2b. Subsequently, the imaging light Lib is internally reflected by the projection light exit surface 321b and enters the imaging light reflection prism 350b. In the imaging light reflection prism 350b, the imaging light Lib forms a beam spot S3b on the internal reflection surface 352b, is internally reflected by the internal reflection surface 352b, and is emitted from the imaging light exit surface 353b.
 比較するために、図8には、図7に示すプリズム群300aにおいて、撮像光Liaが撮像光反射プリズム350aの内部反射面352a(図示せず)に形成したビームスポットS3aも示している。図示のように、プリズム群300bにおいて撮像光Libが形成したビームスポットS3bは、ビームスポットS3aよりも小さく、且つ、ビームスポットS3bの中心位置は、ビームスポットS3aの中心位置に比べ、投写光軸Oa1側に距離Dだけ近接している。撮像光Liaのプリズム群300a内での伝搬光路に比べ、撮像光Libのプリズム群300b内での伝搬光路は短縮されていることが分かる。 For comparison, FIG. 8 also shows a beam spot S3a formed by the imaging light Lia on the internal reflecting surface 352a (not shown) of the imaging light reflecting prism 350a in the prism group 300a shown in FIG. As shown, the beam spot S3b formed by the imaging light Lib in the prism group 300b is smaller than the beam spot S3a, and the center position of the beam spot S3b is closer to the projection optical axis Oa1 than the center position of the beam spot S3a. is close by a distance D to the side. It can be seen that the propagation optical path of the imaging light Lib within the prism group 300b is shorter than the propagation optical path of the imaging light Lia within the prism group 300a.
 プリズム群300bにおいて、撮像光Libにより撮像光反射プリズムの内部反射面に形成されるビームスポットS3bがこのように変化したのは、第3のプリズム340が設けられているためである。図8に示すように、第2のプリズム330bは、照明光反射面331bと、投写光軸Oa1に垂直な底面332bとが角度α1を成して構成されている。当該角度α1は、光変調素子400としてのDMDの特性によって制限され、自由に設計することができない。そして、照明光反射面331bと投写光入射面322bとが、平行な間隙を隔てて対向して配置されているため、撮像光の投写光入射面での反射角度も制限されている。そこで、楔形状の第3のプリズム340を設けることによって、投写光入射面322bと投写光軸Oa1との成す角度βを、楔形状の第3のプリズム340の頂角Aの角度だけ増加させることにより、撮像光Libの投写光入射面322bでの反射角度を調整することができる。これによって、撮像光Libの伝搬光路が短縮でき、プリズム群300bをよりコンパクト化することができる。 In the prism group 300b, the reason why the beam spot S3b formed by the imaging light Lib on the internal reflecting surface of the imaging light reflecting prism has changed in this way is that the third prism 340 is provided. As shown in FIG. 8, the second prism 330b is configured such that an illumination light reflecting surface 331b and a bottom surface 332b perpendicular to the projection optical axis Oa1 form an angle α1. The angle α1 is restricted by the characteristics of the DMD as the light modulation element 400 and cannot be designed freely. Since the illumination light reflecting surface 331b and the projection light incident surface 322b are arranged facing each other across a parallel gap, the angle of reflection of the imaging light on the projection light incident surface is also limited. Therefore, by providing the wedge-shaped third prism 340, the angle β formed between the projection light incident surface 322b and the projection optical axis Oa1 can be increased by the apex angle A of the wedge-shaped third prism 340. , the reflection angle of the imaging light Lib on the projection light incident surface 322b can be adjusted. Thereby, the propagation optical path of the imaging light Lib can be shortened, and the prism group 300b can be made more compact.
 更に、楔形状の第3のプリズム340を設けることによって、プリズム群300b内の迷光の影響を抑制することができる。これについて、図9を参照して説明する。図9は、本開示の実施の形態の変形例1に係るプリズム群300a(図9の(a))と、変形例2に係るプリズム群300b(図9の(b))とにおけるDMD-OFF光の反射を示す断面図である。 Furthermore, by providing the wedge-shaped third prism 340, the influence of stray light within the prism group 300b can be suppressed. This will be described with reference to FIG. FIG. 9 shows DMD-OFF in a prism group 300a ((a) in FIG. 9) according to Modification 1 of the embodiment of the present disclosure and a prism group 300b ((b) in FIG. 9) according to Modification 2. FIG. 4 is a cross-sectional view showing reflection of light;
 図9に示すように、DMD-OFF光Lfは、TIRプリズムを透過して除去される。そのとき、DMD-OFF光Lfは、投写光入射面において、可視域部分反射コートによって部分反射される。図9の(a)に示すプリズム群300aにおいて、投写光入射面322aで反射されたDMD-OFF光Lfの一部(オフ光Lf1a)は、投写光入射面322aの傾斜角度α1によって、光変調素子400に入射し、光変調素子400で反射されたのち、プリズム群300aに入り、迷光となってしまう。一方、図9の(b)に示すプリズム群300bにおいて、投写光入射面322bの傾斜角度α2は、投写光入射面322aの傾斜角度α1よりも、第3のプリズム340の頂角Aの角度だけ大きくなる。これによって、投写光入射面322bで反射されたDMD-OFF光Lfの一部(オフ光Lf1b)は、光変調素子400に入射せず除去される。このように、第3のプリズム340を設けることによって、投写光入射面322bの傾斜角度を適切に調整することができ、DMD-OFF光によるプリズム群300b内の迷光の影響を抑制することができる。 As shown in FIG. 9, the DMD-OFF light Lf passes through the TIR prism and is removed. At that time, the DMD-OFF light Lf is partially reflected by the visible region partial reflection coat on the projection light incident surface. In the prism group 300a shown in FIG. 9A, part of the DMD-OFF light Lf reflected by the projection light incident surface 322a (OFF light Lf1a) is light-modulated by the inclination angle α1 of the projection light incident surface 322a. After entering the element 400 and being reflected by the light modulation element 400, it enters the prism group 300a and becomes stray light. On the other hand, in the prism group 300b shown in FIG. 9B, the inclination angle α2 of the projection light incident surface 322b is greater than the inclination angle α1 of the projection light incident surface 322a by the apex angle A of the third prism 340. growing. As a result, part of the DMD-OFF light Lf (OFF light Lf1b) reflected by the projection light incident surface 322b does not enter the light modulation element 400 and is removed. By providing the third prism 340 in this way, the tilt angle of the projection light incident surface 322b can be appropriately adjusted, and the influence of stray light within the prism group 300b due to the DMD-OFF light can be suppressed. .
 (撮像光反射プリズムのプリズム面の曲率設計)
 図10-11を参照して、本開示の実施の形態に係るプリズム群撮像光反射プリズムの内部反射面及び撮像光出射面に曲率を持たせた場合を説明する。図10は、本開示の実施の形態に係るプリズム群300(図10の(a))と、プリズム群300c(図10の(b))とによる撮像光の伝搬の様子を示す図である。図11は、本開示の実施の形態に係るプリズム群300(図11の(a))と、プリズム群300d(図11の(b))とによる撮像光の伝搬の様子を示す図である。
(Curvature Design of Prism Surface of Imaging Light Reflecting Prism)
A case where the internal reflection surface and the imaging light exit surface of the prism group imaging light reflection prism according to the embodiment of the present disclosure are given curvature will be described with reference to FIGS. 10-11. FIG. 10 is a diagram showing how imaging light propagates through a prism group 300 ((a) in FIG. 10) and a prism group 300c ((b) in FIG. 10) according to the embodiment of the present disclosure. FIG. 11 is a diagram showing how imaging light propagates through a prism group 300 (FIG. 11(a)) and a prism group 300d (FIG. 11(b)) according to the embodiment of the present disclosure.
 前述したように、外部光Leは、投写光入射面322(図3,4を参照)においてビームスポットS1を形成し、外部光Leの少なくとも一部が撮像光Liとして内部反射して、投写光出射面321(図3,4を参照)に到達してビームスポットS2を形成し、内部反射して撮像光反射プリズム350に入射する。更に、撮像光反射プリズム350の内部反射面352においてビームスポットS3を形成して内部反射したのち、撮像光出射面353から出射される。図10の(a)及び図11の(a)に示すように、本開示の実施において、スクリーン430(図1に示す)から反射され、-X方向に伝搬する外部光Leは、投写光学系420を通過してプリズム群300に入射する。このとき、投写光学系420により、外部光Leが集束され、ビームスポットS1を形成した後、外部光Leの少なくとも一部である撮像光Liが収束してビームスポットS2を形成する。撮像光反射プリズム350に入射した後、撮像光Liが更に収束し、投写光学系420のレンズ群LGpに対して、スクリーン430と共役な位置に中間像Msが形成される。本実施の形態において、当該中間像Msは、内部反射面352から離間した位置に形成されている。撮像光Liは、中間像Msを形成した後、内部反射面352に向かって進むにつれて、光束が徐々に広がり、内部反射面352にビームスポットS3を形成する。そして、内部反射面352で撮像光Liは撮像光出射面353に向かって反射し、撮像光出射面353を透過して出射され、撮像光学系440によって撮像素子450に結像する。 As described above, the external light Le forms the beam spot S1 on the projection light incident surface 322 (see FIGS. 3 and 4), and at least a part of the external light Le is internally reflected as the imaging light Li, and the projection light It reaches the exit surface 321 (see FIGS. 3 and 4) to form a beam spot S2 and is internally reflected to enter the imaging light reflection prism 350 . Further, the beam spot S3 is formed on the internal reflecting surface 352 of the imaging light reflecting prism 350 and is internally reflected, and then emitted from the imaging light exit surface 353 . As shown in FIGS. 10(a) and 11(a), in the practice of the present disclosure, external light Le reflected from screen 430 (shown in FIG. 1) and propagating in the −X direction is projected onto the projection optical system. 420 and enters the prism group 300 . At this time, after the external light Le is converged by the projection optical system 420 to form the beam spot S1, the imaging light Li, which is at least part of the external light Le, is converged to form the beam spot S2. After being incident on the imaging light reflection prism 350 , the imaging light Li further converges to form an intermediate image Ms at a position conjugate with the screen 430 with respect to the lens group LGp of the projection optical system 420 . In this embodiment, the intermediate image Ms is formed at a position spaced apart from the internal reflection surface 352 . After forming the intermediate image Ms, the imaging light Li gradually expands as it travels toward the internal reflection surface 352 and forms a beam spot S3 on the internal reflection surface 352 . The imaging light Li is reflected by the internal reflection surface 352 toward the imaging light exit surface 353 , passes through the imaging light exit surface 353 , is emitted, and forms an image on the imaging device 450 by the imaging optical system 440 .
 図10の(b)に示すプリズム群300cは、図10の(a)のプリズム群300と同様な要素について、同じ符号を付しており、説明を省略する。本実施の形態では、プリズム群300cにおいて、撮像光反射プリズム350cの内部反射面352cは、撮像光Licの当該内部反射面352cでの内部反射する方向に向けて凹面の形状C1を有するように構成することができる。当該凹面の形状C1は、正のパワーを有する凹面鏡として反射される撮像光を集束することができる。このように、撮像光反射プリズムの内部反射面352cに曲率を持たせることにより、撮像光Licのプリズム群300c内の広がりを抑制し、よって、出射する撮像光Licの光束の広がりを規定することができる。そのため、後段の撮像光学系440cは、図10の(a)示す撮像光学系440よりも、光学部品の口径が小さく、薄型の光学部品を利用して構成することができる。これによって、図示のように、撮像素子450までの撮像光Licの伝搬光路長を、プリズム群300により出射された撮像光Liの伝搬光路長よりも、距離d1だけ短縮することができる。したがって、撮像光学系の更なるコンパクト化が可能となる。 In the prism group 300c shown in (b) of FIG. 10, the same reference numerals are given to the same elements as those of the prism group 300 of (a) of FIG. 10, and the description thereof is omitted. In the present embodiment, in the prism group 300c, the internal reflection surface 352c of the imaging light reflecting prism 350c is configured to have a concave shape C1 in the direction in which the imaging light Lic is internally reflected on the internal reflection surface 352c. can do. The concave shape C1 can focus the reflected imaging light as a concave mirror with positive power. In this way, by giving curvature to the internal reflection surface 352c of the imaging light reflecting prism, the spread of the imaging light Lic within the prism group 300c is suppressed, and thus the spread of the emitted imaging light Lic is defined. can be done. Therefore, the imaging optical system 440c in the latter stage can be constructed using thin optical parts having a smaller diameter than the imaging optical system 440 shown in FIG. 10(a). As a result, the propagation optical path length of the imaging light Lic to the imaging element 450 can be shortened by the distance d1 from the propagation optical path length of the imaging light Li emitted from the prism group 300, as shown in the drawing. Therefore, it is possible to make the imaging optical system even more compact.
 次に、図11の(b)に示すプリズム群300dは、図11の(a)のプリズム群300と同様な要素について、同じ符号を付しており、説明を省略する。本実施の形態では、プリズム群300dにおいて、撮像光反射プリズム350dの撮像光出射面353dは、撮像光Lidの撮像素子450へ出射する方向に向けて凸面の形状C2を有するように構成することができる。当該凸面の形状C2は、正のパワーを有する凸レンズとして出射される撮像光を集束することができる。このように、撮像光反射プリズムの撮像光出射面353dに曲率を持たせることにより、出射する撮像光Lidの光束の広がりを規定することができる。そのため、後段の撮像光学系440dは、図10の(a)示す撮像光学系440よりも、光学系の部品点数が削減できる。これによって、図示のように、撮像素子450までの撮像光Lidの伝搬光路長を、プリズム群300により出射された撮像光Liの伝搬光路長よりも、距離d2だけ短縮することができる。したがって、撮像光学系の更なるコンパクト化が可能となる。 Next, in a prism group 300d shown in (b) of FIG. 11, the same reference numerals are given to the same elements as those of the prism group 300 of (a) of FIG. 11, and description thereof will be omitted. In the present embodiment, in the prism group 300d, the imaging light exit surface 353d of the imaging light reflecting prism 350d can be configured to have a convex shape C2 in the direction in which the imaging light Lid is emitted to the imaging element 450. can. The shape C2 of the convex surface can converge the emitted imaging light as a convex lens with positive power. In this way, by imparting a curvature to the imaging light exit surface 353d of the imaging light reflecting prism, it is possible to define the spread of the emitted imaging light Lid. Therefore, the imaging optical system 440d in the latter stage can reduce the number of parts of the optical system compared to the imaging optical system 440 shown in FIG. 10(a). As a result, the propagation optical path length of the imaging light Lid to the imaging device 450 can be shortened by a distance d2 from the propagation optical path length of the imaging light Li emitted from the prism group 300, as shown in the drawing. Therefore, it is possible to make the imaging optical system even more compact.
 なお、ここで図示していないが、撮像光反射プリズムの撮像光入射面351にも曲率を持たせることができる。撮像光反射プリズムの1つ又は複数のプリズム面に曲率を持たせることによって、撮像光学系をコンパクト化することができ、装置全体を更に小型化しやすくすることができる。 Although not shown here, the imaging light incident surface 351 of the imaging light reflecting prism can also have a curvature. By imparting curvature to one or more prism surfaces of the imaging light reflecting prism, the imaging optical system can be made compact, and the entire apparatus can be further miniaturized.
 (実施例2の投影撮像光学系500Aの構成)
 図12は、本開示の実施の形態に係る実施例2の投写型映像表示装置の投影撮像光学系500Aの構成を示す概略図である。本実施例に係る投写型映像表示装置は、3板式の投写型映像表示装置であって、照明光学系と投影撮像光学系とを備える。照明光学系が既によく知られている構成であるため、図12は、照明光学系を図示せず、投影撮像光学系500Aのみを示している。図12の(b)は、図示X-Z面において投影撮像光学系500Aの構成を示す概略図であって、図12の(a)は、図1の(b)の左側、すなわち、図12の(b)の+Z側から-Z方向に向かって見た投影撮像光学系500Aを示す概略図である。
(Configuration of projection imaging optical system 500A of Example 2)
FIG. 12 is a schematic diagram showing a configuration of a projection imaging optical system 500A of a projection image display apparatus of Example 2 according to the embodiment of the present disclosure. The projection-type image display apparatus according to the present embodiment is a three-panel type projection-type image display apparatus, and includes an illumination optical system and a projection imaging optical system. Since the illumination optical system has a well-known configuration, FIG. 12 does not show the illumination optical system, but shows only the projection imaging optical system 500A. FIG. 12(b) is a schematic diagram showing the configuration of the projection imaging optical system 500A in the illustrated XZ plane, and FIG. 12(a) is the left side of FIG. is a schematic view showing the projection imaging optical system 500A viewed in the -Z direction from the +Z side of (b) of FIG.
 図12に示すように、投影撮像光学系500Aは、プリズム部材360を備えている。プリズム部材360は、本開示の実施の形態に係るプリズム群300Aと色分離合成プリズム380Aとによって構成されている。プリズム群300Aは、色分離合成プリズム380Aの前方側(投写光学系420A側)に位置している。照明光学系からの各色域の照明光LsAは、プリズム群300AのTIRプリズム310Aを透過して、色分離合成プリズム380Aに入射する。 As shown in FIG. 12, the projection imaging optical system 500A includes a prism member 360. As shown in FIG. Prism member 360 is configured by prism group 300A and color separation/synthesis prism 380A according to the embodiment of the present disclosure. The prism group 300A is located on the front side (on the side of the projection optical system 420A) of the color separation/synthesis prism 380A. Illumination light LsA of each color gamut from the illumination optical system passes through TIR prism 310A of prism group 300A and enters color separation/combination prism 380A.
 色分離合成プリズム380Aは、投写光学系420A側から投写光軸Oa1に沿って順に配置されたプリズム381A,382A,383Aを含む。色分離合成プリズム380Aによって、入射してきた照明光に含まれる各色域の光が色分離されて、3つの対応する光変調素子401,402,403に別々に導かれる。それぞれの光変調素子401,402,403は、入射される各色域の光を映像信号に基づいて変調し、変調した各色域の光成分を、再び色分離合成プリズム380Aの3つのプリズムのそれぞれに反射する。 The color separation/synthesis prism 380A includes prisms 381A, 382A, and 383A arranged in order from the projection optical system 420A side along the projection optical axis Oa1. The light of each color gamut included in the incident illumination light is color-separated by the color separation/synthesis prism 380A and separately guided to the three corresponding light modulation elements 401, 402, and 403. FIG. Each of the light modulation elements 401, 402, and 403 modulates incident light of each color gamut based on a video signal, and transmits the modulated light components of each color gamut again to each of the three prisms of the color separation/synthesis prism 380A. reflect.
 色分離合成プリズム380Aは、それぞれのプリズム内でDMDに反射された投影用の光(DMD-ON光)を投写光軸Oa1に導いて再度色合成し、合成した投写光LpAを投写光軸Oa1に沿って+X方向に出射する。投影しない光(DMD-OFF光、図示せず)は投写光軸Oa1から偏向されて除去される。投写光LpAは、色分離合成プリズム380Aから出力され、投写光軸Oa1の前方側のTIRプリズム310Aを透過して、投写光学系420Aへ伝搬される。投写光学系420Aは、投写光LpAをスクリーン430Aに拡大投写して映像を表示する。 The color separation/synthesis prism 380A guides the light for projection (DMD-ON light) reflected by the DMD within each prism to the projection optical axis Oa1, performs color synthesis again, and outputs the synthesized projection light LpA along the projection optical axis Oa1. along the +X direction. Light not to be projected (DMD-OFF light, not shown) is deflected away from the projection optical axis Oa1 and removed. Projection light LpA is output from color separation/combination prism 380A, passes through TIR prism 310A on the front side of projection optical axis Oa1, and propagates to projection optical system 420A. The projection optical system 420A enlarges and projects the projection light LpA onto the screen 430A to display an image.
 一方、スクリーンから図示-X方向に反射された外部光LeAは、投写光学系420Aから入射し、投写光軸Oa1に沿って-X方向に伝搬され、TIRプリズム310Aの第1のプリズム320Aに入射する。第1のプリズム320A内において、外部光LeAの少なくとも一部が撮像光LiAとして反射し、偏向されて撮像光反射プリズム350Aに入射する。続いて、撮像光反射プリズム350Aに入射した撮像光LiAが撮像光反射プリズム350A内で更に反射して偏向され、撮像光反射プリズム350Aの撮像光出射面353Aから撮像光軸Ob1に沿って出射される。出射された撮像光LiAは、図示+Y方向に進み、撮像光学系440Aに導入され、撮像光学系440Aにより、撮像素子450Aに結像する。 On the other hand, the external light LeA reflected from the screen in the −X direction in the figure enters from the projection optical system 420A, propagates in the −X direction along the projection optical axis Oa1, and enters the first prism 320A of the TIR prism 310A. do. At least part of the external light LeA is reflected as imaging light LiA within the first prism 320A, deflected, and enters the imaging light reflecting prism 350A. Subsequently, the imaging light LiA incident on the imaging light reflecting prism 350A is further reflected and deflected within the imaging light reflecting prism 350A, and is emitted from the imaging light exit surface 353A of the imaging light reflecting prism 350A along the imaging optical axis Ob1. be. The emitted imaging light LiA travels in the +Y direction in the drawing, is introduced into the imaging optical system 440A, and forms an image on the imaging element 450A by the imaging optical system 440A.
 このように、投写光学系から図示-X方向に入射した外部光LeAの少なくとも一部である撮像光LiAは、プリズム群300A内で複数回反射することによって、投写光軸Oa1に実質的に直交するY-Z面にある撮像光軸Ob1に沿って撮像素子450Aに導入することができる。これによって、前述したように、撮像光学系440Aは、投写光学系420Aと干渉することなく容易に機器内部への組み込むことができる。また、プリズム群300Aの内部で撮像光LiAを反射して偏向させることにより、撮像光伝搬の空気換算長を短くすることができ、投写型映像表示装置の小型化を容易にすることができる。 In this way, the imaging light LiA, which is at least a part of the external light LeA incident in the −X direction in the drawing from the projection optical system, is reflected multiple times in the prism group 300A, thereby substantially perpendicular to the projection optical axis Oa1. It can be introduced into the imaging device 450A along the imaging optical axis Ob1 on the YZ plane. As a result, as described above, the imaging optical system 440A can be easily incorporated into the apparatus without interfering with the projection optical system 420A. In addition, by reflecting and deflecting the imaging light LiA inside the prism group 300A, the air-equivalent length of propagation of the imaging light can be shortened, facilitating miniaturization of the projection display apparatus.
 以上のように、本出願において開示する技術の例示として、上記実施の形態を説明した。しかしながら、本開示における技術は、これに限定されず、変更、置き換え、付加、省略などを行った実施の形態にも適用できる。また、上記各々の実施の形態で説明した各構成要素を組み合わせて、新たな実施の形態とすることも可能である。 As described above, the above embodiment has been described as an example of the technology disclosed in the present application. However, the technology in the present disclosure is not limited to this, and can also be applied to embodiments with modifications, replacements, additions, omissions, and the like. Moreover, it is also possible to combine the constituent elements described in each of the above embodiments to form a new embodiment.
 なお、本開示は各々のプリズムの形状を限定しない。例えば、プリズム群を構成する各々のプリズムは、略三角柱状又は略四角柱状であってもよく、他の形状を有してもよい。 Note that the present disclosure does not limit the shape of each prism. For example, each prism constituting the prism group may have a substantially triangular prism shape, a substantially quadrangular prism shape, or may have another shape.
 また、本開示は各々のプリズムに含まれるプリズム面を限定しない。例えば、TIRプリズムと撮像光反射プリズムとは、更に他のプリズム面を含んでもよく、撮像光は、他のプリズム面で反射してもよい。 Also, the present disclosure does not limit the prism surfaces included in each prism. For example, the TIR prism and the imaging light reflection prism may further include another prism surface, and the imaging light may be reflected by the other prism surface.
 また、上記実施の形態において、撮像光反射プリズムのプリズム面に曲率を持たせる場合について、凹面又は凸面を説明したが、本開示はこれに限定されない。例えば、撮像光反射プリズムの1つ又は複数のプリズム面は、自由曲面形状を有するように構成されてもよい。 Also, in the above embodiment, the prism surface of the imaging light reflecting prism has been described as being concave or convex, but the present disclosure is not limited to this. For example, one or more prism surfaces of the imaging light reflecting prism may be configured to have a free-form surface shape.
 以上のように、本開示における技術の例示として、実施の形態を説明した。そのために、添付図面及び詳細な説明を提供した。したがって、添付図面及び詳細な説明に記載された構成要素の中には、課題解決のために必須な構成要素だけでなく、上記技術を例示するために、課題解決のためには必須でない構成要素も含まれ得る。したがって、それらの必須ではない構成要素が添付図面や詳細な説明に記載されていることをもって、直ちに、それらの必須ではない構成要素が必須であるとの認定をするべきではない。 As described above, the embodiment has been described as an example of the technology of the present disclosure. To that end, the accompanying drawings and detailed description have been provided. Therefore, among the components described in the attached drawings and detailed description, there are not only components essential for solving the problem, but also components not essential for solving the problem in order to exemplify the above technology. can also be included. Therefore, it should not be determined that those non-essential components are essential just because they are described in the attached drawings and detailed description.
 本開示は、添付図面を参照しながら好ましい実施の形態に関連して充分に記載されているが、請求項に示した範囲で種々の変更が可能である。そのような変更、及び異なる実施の形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施の形態についても本開示の技術的範囲に含まれる。 Although the present disclosure has been fully described in relation to preferred embodiments with reference to the accompanying drawings, various modifications are possible within the scope indicated in the claims. Such modifications and embodiments obtained by appropriately combining technical means disclosed in different embodiments are also included in the technical scope of the present disclosure.
 本開示は、プリズムに適用可能であり、各種の投写型映像表示装置に適用可能である。 The present disclosure is applicable to prisms and to various projection-type image display devices.
  200 照明光学系
  20  光源ユニット
  21  半導体レーザ素子
  22  コリメートレンズ
  31,32 アフォーカルレンズ
  33,34,35 コンデンサレンズ
  41  拡散板
  42  λ/4板
  45  ダイクロイックミラー
  46  ロッドインテグレータ
  50  蛍光体ホイール
  60  カラーホイール
  73,74,75 照明光リレー光学系を構成するレンズ
  47  ミラー
  48  リレーレンズ群
  300,300a,300b,300c,300d,300A プリズム群
  310,310a,310b,310A TIRプリズム
  320,320a,320b,320A,330,330b,340,381A,382A,383A プリズム
  350,350a,350b,350c,350d,350A 撮像光反射プリズム
  321,321a,321b 投写光出射面
  322,322a,322b 投写光入射面
  323a,341,342 プリズム面
  331,331b 照明光反射面
  351,351a 撮像光入射面
  352,352a,352b,352c 内部反射面
  353,353a,353b,353d,353A 撮像光出射面
  360 プリズム部材
  380A 色分離合成プリズム
  400,401,402,403 光変調素子(DMD)
  420,420A 投写光学系
  430,430A スクリーン
  440,440c,440d,440A 撮像光学系
  450,450A 撮像素子
  500,500A 投影撮像光学系
  C1  凹面の形状
  C2  凸面の形状
  Ls,LsA 照明光
  Lp,LpA 投写光
  Le,LeA 外部光
  Li,Lia,Lib,Lic,Lid,LiA 撮像光
  S1,S2,S3,S1a,S2a,S3a,S1b,S2b,S3b ビームスポット
  Lf  DMD-OFF光
  Oa1 投写光軸
  Ob1 撮像光軸
  Ob2 プリズム群の長手方向軸
  Ms  中間像
  600 投写型映像表示装置
  600A 投写型映像表示装置の筐体
200 illumination optical system 20 light source unit 21 semiconductor laser element 22 collimating lens 31, 32 afocal lens 33, 34, 35 condenser lens 41 diffusion plate 42 λ/4 plate 45 dichroic mirror 46 rod integrator 50 phosphor wheel 60 color wheel 73, 74, 75 Lens constituting illumination light relay optical system 47 Mirror 48 Relay lens group 300, 300a, 300b, 300c, 300d, 300A Prism group 310, 310a, 310b, 310A TIR prism 320, 320a, 320b, 320A, 330, 330b, 340, 381A, 382A, 383A Prism 350, 350a, 350b, 350c, 350d, 350A Imaging light reflection prism 321, 321a, 321b Projection light exit surface 322, 322a, 322b Projection light entrance surface 323a, 341, 342 Prism surface 331, 331b Illumination light reflecting surface 351, 351a Imaging light incident surface 352, 352a, 352b, 352c Internal reflection surface 353, 353a, 353b, 353d, 353A Imaging light exit surface 360 Prism member 380A Color separation/synthesis prism 400, 401, 402 , 403 light modulation element (DMD)
420, 420A Projection optical system 430, 430A Screen 440, 440c, 440d, 440A Imaging optical system 450, 450A Imaging device 500, 500A Projection imaging optical system C1 Concave shape C2 Convex shape Ls, LsA Illumination light Lp, LpA Projection light Le, LeA External light Li, Lia, Lib, Lic, Lid, LiA Imaging light S1, S2, S3, S1a, S2a, S3a, S1b, S2b, S3b Beam spot Lf DMD-OFF light Oa1 Projection optical axis Ob1 Imaging optical axis Ob2 Longitudinal axis of prism group Ms Intermediate image 600 Projection type image display device 600A Housing of projection type image display device

Claims (11)

  1.  TIRプリズムと撮像光反射プリズムとを備え、
     前記TIRプリズムは、
      照明光学系により供給された照明光を反射させて光変調素子へ導くとともに、前記光変調素子で反射して生成された投写光を透過させて、投写光軸に沿って前記投写光軸の前方側の投写光学系へ出力し、更に、前記投写光学系から入射し、前記投写光軸の前方側に対向する方向に伝搬される外部光の少なくとも一部である撮像光を反射させて前記撮像光反射プリズムへ導き、
     前記撮像光反射プリズムは、
      前記TIRプリズムから入射した前記撮像光を内部反射させて、前記投写光軸に実質的に直交する面にある撮像光軸に沿って撮像素子へ導く、
     プリズム群。
    comprising a TIR prism and an imaging light reflection prism,
    The TIR prism is
    The illumination light supplied by the illumination optical system is reflected and guided to the light modulation element, and the projection light generated by being reflected by the light modulation element is transmitted, along the projection optical axis in front of the projection optical axis. The imaging light, which is at least a part of the external light that is incident from the projection optical system and propagated in the direction opposite to the front side of the projection optical axis, is reflected to perform the imaging. leading to a light reflecting prism,
    The imaging light reflecting prism is
    internally reflecting the imaging light incident from the TIR prism and guiding it to an imaging device along an imaging optical axis in a plane substantially orthogonal to the projection optical axis;
    Prism group.
  2.  前記TIRプリズムは、前記投写光軸の前方側から前記投写光軸に沿って順に配置された第1のプリズムと第2のプリズムとを含み、
     前記第2のプリズムの前記照明光が反射する照明光反射面と、前記第1のプリズムの前記投写光が入射する投写光入射面とは、平行な間隙を隔てて対向して配置され、
     前記撮像光反射プリズムは、前記TIRプリズムからの前記撮像光が透過する撮像光入射面を有し、前記撮像光入射面を介して前記第1のプリズムと隣接して配置され、
     前記撮像光は、前記TIRプリズム及び前記撮像光反射プリズム内において複数回内部反射し、
     前記撮像光軸は、前記撮像光が前記TIRプリズム及び前記撮像光反射プリズムを通過する長手方向軸に直交する方向又はその付近に位置する、
     請求項1に記載のプリズム群。
    The TIR prism includes a first prism and a second prism arranged in order from the front side of the projection optical axis along the projection optical axis,
    an illumination light reflecting surface of the second prism on which the illumination light is reflected and a projection light incident surface of the first prism on which the projection light is incident are arranged to face each other with a parallel gap therebetween,
    The imaging light reflecting prism has an imaging light incident surface through which the imaging light from the TIR prism passes, and is arranged adjacent to the first prism via the imaging light incident surface,
    the imaging light is internally reflected multiple times within the TIR prism and the imaging light reflection prism;
    the imaging optical axis is located in a direction perpendicular to or near a longitudinal axis along which the imaging light passes through the TIR prism and the imaging light reflecting prism;
    The prism group according to claim 1.
  3.  前記撮像光反射プリズムは、前記撮像光入射面において、前記第1のプリズムと一体的に構成されている、
     請求項2に記載のプリズム群。
    The imaging light reflecting prism is configured integrally with the first prism on the imaging light incident surface,
    The prism group according to claim 2.
  4.  前記撮像光反射プリズムと、前記第1のプリズムとは、前記撮像光入射面において、平行な間隙を隔てて分離して配置されている、
     請求項2に記載のプリズム群。
    The imaging light reflecting prism and the first prism are arranged separately with a parallel gap on the imaging light incident surface,
    The prism group according to claim 2.
  5.  前記TIRプリズムは、前記第1のプリズムと前記第2のプリズムとの間に配置された第3のプリズムを更に含み、
     前記第3のプリズムは、第1のプリズム面と、前記第1のプリズム面と角度を成す第2のプリズム面とを有し、前記第1のプリズム面と前記第1のプリズムの前記投写光入射面とが接合され、前記第2のプリズム面と前記第2のプリズムの前記照明光反射面とが、平行な間隙を隔てて対向して配置されている、
     請求項2に記載のプリズム群。
    the TIR prism further includes a third prism positioned between the first prism and the second prism;
    The third prism has a first prism surface and a second prism surface forming an angle with the first prism surface, and the projected light from the first prism surface and the first prism is the second prism surface and the illumination light reflecting surface of the second prism are arranged to face each other with a parallel gap therebetween;
    The prism group according to claim 2.
  6.  前記投写光入射面は、可視域部分反射コートが施され、
     前記可視域部分反射コートは、可視域の光に対し、2%以上15%以下の反射率を有して前記撮像光を反射させる、
     請求項2に記載のプリズム群。
    The projection light incident surface is coated with a visible region partial reflection coating,
    The visible region partial reflection coat reflects the imaging light with a reflectance of 2% or more and 15% or less for light in the visible region.
    The prism group according to claim 2.
  7.  前記投写光入射面は、赤外域部分反射コートが施され、
     前記赤外域部分反射コートは、赤外域の光に対し、50%以上の反射率を有して前記撮像光を反射させる、
     請求項2に記載のプリズム群。
    The projection light incident surface is coated with an infrared region partial reflection coat,
    The infrared region partial reflection coat reflects the imaging light with a reflectance of 50% or more for light in the infrared region,
    The prism group according to claim 2.
  8.  前記撮像光反射プリズムは、内部反射面を有し、
     前記撮像光の少なくとも一部は、前記内部反射面で内部反射し、
     前記内部反射面は、前記撮像光が内部反射する方向に向けて凹面の形状を有する、
     請求項1に記載のプリズム群。
    The imaging light reflecting prism has an internal reflective surface,
    at least a portion of the imaging light is internally reflected at the internally reflective surface;
    wherein the internal reflection surface has a concave shape in a direction in which the imaging light is internally reflected;
    The prism group according to claim 1.
  9.  前記撮像光は、前記撮像光反射プリズム内にて中間像を形成し、前記中間像を前記撮像素子の位置に結像し、
     前記中間像は、前記内部反射面から離間して位置している、
     請求項8に記載のプリズム群。
    The imaging light forms an intermediate image within the imaging light reflecting prism, and forms the intermediate image at the position of the imaging device,
    the intermediate image is spaced from the internally reflective surface;
    A prism group according to claim 8 .
  10.  前記撮像光反射プリズムは、撮像光出射面を有し、
     前記撮像光は、前記撮像光出射面で透過して前記撮像素子へ出射され、
     前記撮像光出射面は、前記撮像光が前記撮像素子へ出射する方向に向けて凸面の形状を有する、
     請求項1に記載のプリズム群。
    The imaging light reflecting prism has an imaging light exit surface,
    the imaging light is transmitted through the imaging light exit surface and emitted to the imaging element;
    The imaging light exit surface has a convex shape in a direction in which the imaging light is emitted to the imaging device,
    The prism group according to claim 1.
  11.  可視域の照明光を供給する照明光学系と、
     請求項1から10のいずれか1つに記載の前記プリズム群を含むプリズム部材と、
     前記照明光学系により供給され、前記プリズム部材により導かれて入射した光を空間的に変調し、映像情報に応じた前記投写光を生成する1つ又は複数の光変調素子と、
     前記TIRプリズムを透過した前記投写光を拡大投写して映像を表示する投写光学系と、
     前記撮像光反射プリズムにより出力された前記撮像光を受光して電気的な画像信号に変換する撮像素子と、
     を備える、
     投写型映像表示装置。
    an illumination optical system that supplies illumination light in the visible range;
    a prism member including the prism group according to any one of claims 1 to 10;
    one or more light modulation elements that spatially modulate the incident light supplied by the illumination optical system and guided by the prism member to generate the projection light according to image information;
    a projection optical system that enlarges and projects the projection light transmitted through the TIR prism to display an image;
    an imaging device that receives the imaging light output from the imaging light reflecting prism and converts it into an electrical image signal;
    comprising
    Projection type image display device.
PCT/JP2023/003533 2022-02-07 2023-02-03 Prism group and projection-type video display device WO2023149536A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-017509 2022-02-07
JP2022017509 2022-02-07

Publications (1)

Publication Number Publication Date
WO2023149536A1 true WO2023149536A1 (en) 2023-08-10

Family

ID=87552602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/003533 WO2023149536A1 (en) 2022-02-07 2023-02-03 Prism group and projection-type video display device

Country Status (1)

Country Link
WO (1) WO2023149536A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002006397A (en) * 2000-06-22 2002-01-09 Sony Corp Image display device
US20030122780A1 (en) * 2000-08-18 2003-07-03 International Business Machines Corporation Projector and camera arrangement with shared optics and optical marker for use with whiteboard systems
JP2009205442A (en) * 2008-02-28 2009-09-10 Panasonic Corp Image-projecting device
US20100091253A1 (en) * 2008-10-14 2010-04-15 Young Optics Inc. Image projection and detection apparatus
JP2010243686A (en) * 2009-04-03 2010-10-28 Konica Minolta Opto Inc Image projecting device and method for detecting pixel deviation amount
JP2020064206A (en) * 2018-10-18 2020-04-23 セイコーエプソン株式会社 Projection type display device and polarized light separation element
JP2020098224A (en) * 2018-12-17 2020-06-25 セイコーエプソン株式会社 Optical module and projector

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002006397A (en) * 2000-06-22 2002-01-09 Sony Corp Image display device
US20030122780A1 (en) * 2000-08-18 2003-07-03 International Business Machines Corporation Projector and camera arrangement with shared optics and optical marker for use with whiteboard systems
JP2009205442A (en) * 2008-02-28 2009-09-10 Panasonic Corp Image-projecting device
US20100091253A1 (en) * 2008-10-14 2010-04-15 Young Optics Inc. Image projection and detection apparatus
JP2010243686A (en) * 2009-04-03 2010-10-28 Konica Minolta Opto Inc Image projecting device and method for detecting pixel deviation amount
JP2020064206A (en) * 2018-10-18 2020-04-23 セイコーエプソン株式会社 Projection type display device and polarized light separation element
JP2020098224A (en) * 2018-12-17 2020-06-25 セイコーエプソン株式会社 Optical module and projector

Similar Documents

Publication Publication Date Title
US6491398B2 (en) Video projector
US9551917B2 (en) Light source unit and projection display system using same
KR101321631B1 (en) Light collecting optical system and projection-type image display device
US10203592B2 (en) Image projection apparatus
JP5042168B2 (en) Image projection apparatus, prism, prism system, and projection optical system
WO2010100898A1 (en) Laser light source apparatus and image display apparatus
JP2020034696A (en) Light source device and projection type image display device
US20110032487A1 (en) Color splitter and combiner system and projection display apparatus
US7891817B2 (en) Projection display apparatus for reducing optical elements
US9454068B2 (en) Projection-type image display apparatus including light source unit with dichroic mirror
WO2023149536A1 (en) Prism group and projection-type video display device
CN108700796B (en) Projection display device
US6671101B2 (en) Color combining optical element, color separation optical element, and projection type display apparatus using them
JP6673332B2 (en) Prism unit and projector
US10652509B2 (en) Illuminator and projector
WO2023149537A1 (en) Projection imaging optical system and projection-type image display device
WO2024075748A1 (en) Prism group and projection-type video display device
JP6642298B2 (en) Projection display device
JP5830218B2 (en) Image display device
JP2002350779A (en) Illumination optical system, liquid crystal display device and projector
KR100288153B1 (en) 3-Plate Digital Micro Mirror Projector Optical System
JP2023083090A (en) Color separation combining prism integrated with imaging light separation prism and image sensor built-in projection type image display device including the same
JP2022182597A (en) Prism block and projection type video display device
JP2005316087A (en) Modulation optical system and video projection device
JP4040496B2 (en) Reflective LCD projector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23749852

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023578634

Country of ref document: JP

Kind code of ref document: A