WO2023149474A1 - Hydrogenated terpene-polyphenol copolymer resin and adhesive composition containing said copolymer resin - Google Patents

Hydrogenated terpene-polyphenol copolymer resin and adhesive composition containing said copolymer resin Download PDF

Info

Publication number
WO2023149474A1
WO2023149474A1 PCT/JP2023/003227 JP2023003227W WO2023149474A1 WO 2023149474 A1 WO2023149474 A1 WO 2023149474A1 JP 2023003227 W JP2023003227 W JP 2023003227W WO 2023149474 A1 WO2023149474 A1 WO 2023149474A1
Authority
WO
WIPO (PCT)
Prior art keywords
copolymer resin
terpene
polyhydric phenol
hydrogenated terpene
hydrogenated
Prior art date
Application number
PCT/JP2023/003227
Other languages
French (fr)
Japanese (ja)
Inventor
藤岡健
吉田誠
古田希未
Original Assignee
ヤスハラケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤスハラケミカル株式会社 filed Critical ヤスハラケミカル株式会社
Publication of WO2023149474A1 publication Critical patent/WO2023149474A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/04Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms
    • C08G61/06Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds
    • C08G61/08Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds of carbocyclic compounds containing one or more carbon-to-carbon double bonds in the ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds

Definitions

  • the present invention relates to a hydrogenated terpene polyhydric phenol copolymer resin and an adhesive composition containing the copolymer resin.
  • Terpene phenolic resin is a liquid or resinous compound obtained by copolymerizing terpene, an essential oil extracted from pine trees and citrus peels, with phenol.
  • terpene phenolic resin is a liquid or resinous compound obtained by copolymerizing terpene, an essential oil extracted from pine trees and citrus peels, with phenol.
  • phenol an essential oil extracted from pine trees and citrus peels
  • the viscoelasticity and polarity of the polymeric materials can be adjusted. Utilizing this property, it is used in various fields such as adhesives, adhesives, rubber products such as tires, polymer modifiers, and dispersibility improvers.
  • terpene phenolic resin is added as a tackifying resin to acrylic pressure-sensitive adhesives based on acrylic polymers for the purpose of improving the adhesion to low-polar adherends such as polyolefins.
  • Patent Documents 1 and 2 for example, Patent Documents 1 and 2.
  • Patent Documents 1 and 2 the addition of terpene phenolic resins leads to deterioration of the weather resistance and transparency that characterize acrylic pressure-sensitive adhesives. was sometimes shunned.
  • Patent Document 3 a hydrogenated terpene phenolic resin obtained by subjecting a terpene phenolic resin to a hydrogenation treatment as a tackifying resin for an acrylic pressure-sensitive adhesive.
  • a hydrogenated terpene phenolic resin obtained by subjecting a terpene phenolic resin to a hydrogenation treatment
  • the thickness of the adhesive layer is also becoming thinner, making it difficult to develop sufficient adhesive strength for adherends with high polarity such as glass. It's becoming
  • the present inventors have found that a hydrogenated terpene-polyphenol copolymer resin obtained by copolymerizing a terpene-based compound and a polyhydric phenol-based compound is a highly polar adherend. It was found that it is useful as a tackifying resin for significantly improving the adhesive strength to and making it a pressure-sensitive adhesive having excellent weather resistance and transparency, and the present invention was completed.
  • ⁇ Claim 1> A hydrogenated terpene-polyphenol copolymer resin obtained by hydrogenating a terpene-polyphenol copolymer resin obtained by copolymerizing a terpene-based compound and a polyhydric phenol-based compound.
  • ⁇ Claim 2> The hydrogenated terpene polyhydric phenol covalent according to claim 1, wherein the terpene compound is at least one selected from the group consisting of ⁇ -pinene, ⁇ -pinene, limonene, dipentene, ⁇ 3-carene, alloocimene, ocimene and myrcene. Polymeric resin.
  • ⁇ Claim 3> 3 The hydrogenated terpene polyhydric phenol copolymer resin according to claim 1 or 2, wherein the polyhydric phenol compound is represented by general formula (1).
  • R1 is a hydrogen atom or an alkyl or alkenyl group having 1 to 10 carbon atoms
  • R2 is an alkyl or alkenyl group having 1 to 15 carbon atoms
  • n is an integer of 1 to 3
  • m is an integer of 0 to 2; and m are 3 or less.
  • n is 2 or more, two or more R1 may be the same or different.
  • m is 2 or more, two or more R2 may be the same or different.
  • ⁇ Claim 6> The hydrogenated terpene polyhydric phenol copolymer resin according to any one of claims 1 to 5, which has a polystyrene-equivalent weight average molecular weight (Mw) of 400 to 5,000 as measured by GPC (gel permeation chromatography).
  • Mw polystyrene-equivalent weight average molecular weight
  • ⁇ Claim 7> The hydrogenated terpene polyhydric phenol copolymer resin according to any one of claims 1 to 6, which has a softening point of 70 to 180°C.
  • ⁇ Claim 8> The hydrogenated terpene polyhydric phenol copolymer resin according to any one of claims 1 to 7, which has a hydroxyl value of 10 to 300 mgKOH/g.
  • ⁇ Claim 9> The hydrogenated terpene polyhydric phenol copolymer resin according to any one of claims 1 to 8, which has a hydrogenation rate of 5 to 100%.
  • ⁇ Claim 10> The method for producing a hydrogenated terpene-polyphenol copolymer resin according to any one of claims 1 to 9, wherein a terpene-polyphenol copolymer resin obtained by copolymerizing a terpene-based compound and a polyhydric phenol-based compound is hydrogenated. .
  • ⁇ Claim 11> A pressure sensitive adhesive composition comprising 1 to 300 parts by weight of the hydrogenated terpene polyhydric phenol copolymer resin according to any one of claims 1 to 9 with respect to 100 parts by weight of the base polymer.
  • the hydrogenated terpene polyhydric phenol copolymer resin of the present invention is excellent in the effect of modifying polymer materials such as rubber and thermoplastic elastomers. It can be used in various applications including the electronics field because it can be used as a pressure-sensitive adhesive with excellent transparency and heat stability.
  • FIG. 1 is a GPC chart of a terpene polyhydric phenol copolymer resin of Production Example 1.
  • FIG. 1 is a proton nuclear magnetic resonance (1H-NMR) spectrum of the terpene polyhydric phenol copolymer resin of Production Example 1.
  • FIG. 4 is a GPC chart of the hydrogenated terpene polyhydric phenol copolymer resin of Production Example 4.
  • FIG. 4 is a proton nuclear magnetic resonance (1H-NMR) spectrum of the hydrogenated terpene polyhydric phenol copolymer resin of Production Example 4.
  • FIG. 1 is a GPC chart of a terpene polyhydric phenol copolymer resin of Production Example 1.
  • FIG. 1 is a proton nuclear magnetic resonance (1H-NMR) spectrum of the terpene polyhydric phenol copolymer resin of Production Example 1.
  • FIG. 1 is a proton nuclear magnetic resonance (1H-NMR) spectrum of the terpene polyhydric phenol copolymer resin of
  • the hydrogenated terpene polyhydric phenol copolymer resin of the present invention is a resinous compound obtained by hydrogenating a terpene polyhydric phenol copolymer resin obtained by copolymerizing a terpene compound and a polyhydric phenol compound.
  • the terpene polyhydric phenol copolymer resin will be described.
  • ⁇ -pinene, ⁇ -pinene, 3-carene, limonene, dipentene, ocimene, alloocimene, myrcene, longifolene and caryophyllene are preferred, and ⁇ -pinene, ⁇ -pinene, 3-carene, limonene and dipentene are more preferred. . These can be used singly or in combination of two or more.
  • R1 is a hydrogen atom or an alkyl or alkenyl group having 1 to 10 carbon atoms
  • R2 is an alkyl or alkenyl group having 1 to 15 carbon atoms
  • n is an integer of 1 to 3
  • m is an integer of 0 to 2; and m are 3 or less.
  • n is 2 or more, two or more R1 may be the same or different.
  • m is 2 or more, two or more R2 may be the same or different.
  • polyhydric phenol compounds include catechol, resorcinol, hydroquinone, guaiacol, p-methoxyphenol, m-methoxyphenol, pyrogallol, phloroglucinol, eugenol, and propylcatechol. These can be used singly or in combination of two or more.
  • the terpene-based compound which is a copolymer component
  • the terpene-based compound is also usually a plant-derived essential oil component, so by using it in combination with the plant-derived polyhydric phenol-based compound, the biomass degree It is possible to provide materials with high environmental load and low environmental impact.
  • pyrogallol is found in a wide variety of plants, including quintuple (nurde galls), galls (middle eastern beech and oak galls), witch-hazel, tea leaves, and oak bark. It can be produced by decarboxylation from contained gallic acid. Moreover, it is known that catechol can be produced by a microbial fermentation method using plant-derived sugar as a raw material.
  • the terpene polyhydric phenol copolymer resin is selected from the group of monohydric phenol compounds and vinyl compounds as copolymerization components other than terpene compounds and polyhydric phenol compounds within a range that does not impair the effects of the present invention. At least one other monomer may be copolymerized at a total copolymerization ratio of about 50 mol % or less.
  • Vinyl compounds include ethylene, propylene, butylene, butadiene, isoprene, piperylene, cyclopentadiene, hexene, vinyl acetate, vinyl chloride, styrene, ⁇ -methylstyrene, coumarone, indene, vinyltoluene, isopropenyltoluene, divinylbenzene, Examples include divinyltoluene, 2-phenyl-2-butene, vinylnaphthalene and the like. Styrene, ⁇ -methylstyrene, etc. are preferred, and may be used alone or in combination of two or more.
  • the method for synthesizing the terpene polyhydric phenol copolymer resin is not particularly limited, and can be carried out based on a known method for synthesizing a terpene phenol resin except that phenol is replaced with a polyhydric phenol compound.
  • a terpene-based compound and a polyhydric phenol-based compound and optionally other monomers are dropped individually or mixed and added dropwise to a predetermined temperature and It can be produced by reacting for a period of time, and then removing the catalyst, unreacted monomers, solvent, etc. by washing with water, distillation, or the like, if necessary.
  • the ratio of the terpene-based compound and the polyhydric phenol-based compound used in the synthesis of the terpene-polyphenol copolymer resin is not particularly limited, but the ratio of the terpene-based compound to the total amount of the terpene-based compound and the polyhydric phenol-based compound is 20 to 99 mol % is preferred, 40 to 95 mol % is more preferred, and 50 to 90 mol % is even more preferred. If it is less than 20 mol %, the resin yield may become too low, and if it exceeds 99 mol %, the polyhydric phenol structure in the resin may be too small and desired properties may not be exhibited, which is not preferable.
  • the catalyst examples include hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, hydrofluoric acid, p-toluenesulfonic acid, methanesulfonic acid, trifluoroacetic acid, trifluoromethanesulfonic acid, aluminum chloride, iron chloride, zinc chloride, Copper chloride, boron trifluoride, boron trifluoride ether complex, boron trifluoride phenol complex, solid phosphoric acid, activated clay, zeolite, cation exchange resins, etc. may be mentioned, but not limited to these.
  • the amount of the catalyst used is 0.01 to 20% by weight, preferably 1 to 10% by weight, based on the raw material monomer when the reaction is a batch method. If the amount of the catalyst is less than 0.01% by weight, the reaction yield will be extremely low.
  • a reaction solvent may not be used, but a solvent may be used for the purpose of suppressing heat generation accompanying the polymerization reaction and allowing the reaction to proceed gently.
  • the solvent is not particularly limited as long as it does not inhibit polymerization. , aromatic hydrocarbons such as toluene, xylene, cumene and cymene; and ethers such as diethyl ether, diisopropyl ether, tetrahydrofuran and dioxane.
  • the amount of solvent used is preferably 500% by weight or less, more preferably 300% by weight or less, based on the total amount of the terpene-based compound and the polyhydric phenol-based compound as raw materials. If the amount of the solvent exceeds 500% by weight, the batch efficiency is lowered and the manufacturing cost is increased, which is not preferable.
  • the reaction temperature is appropriately selected in consideration of the activity of the catalyst to be used, the boiling point of the solvent, etc., but it is usually -20 to 150°C, preferably 0 to 100°C. If the temperature is less than -20°C, the reaction becomes extremely slow. In particular, when aluminum chloride or boron trifluoride is used as a catalyst, the reaction temperature is preferably 0°C to 80°C, more preferably 10°C to 60°C.
  • the weight average molecular weight (Mw) of the terpene polyhydric phenol copolymer resin thus obtained is usually 400 to 5,000, preferably 500 to 4,000, more preferably 600 to 3,000. If the Mw is less than 400, the handling of the resin itself becomes poor, and there is concern about bleeding out after being made into a compound. On the other hand, if the Mw exceeds 5,000, it may become extremely difficult to dissolve in rubber or thermoplastic elastomer, which is not preferable.
  • the average molecular weight in this specification is a value measured by gel permeation chromatography (GPC) using standard polystyrene as a standard substance.
  • the hydroxyl value of the terpene polyhydric phenol copolymer resin is usually in the range of 10-300 mgKOH/g, preferably 20-250 mgKOH/g. If the hydroxyl value is less than 10 mgKOH/g, a sufficient effect of modifying rubber or thermoplastic elastomer may not be obtained. On the other hand, when the hydroxyl value exceeds 300 mgKOH/g, compatibility deteriorates.
  • the hydroxyl value in the present specification is a hydroxyl value measured according to JIS K0070 7.1 Neutralization Titration Method.
  • the hydrogenation method is not particularly limited, and can be carried out by a known method.
  • the terpene polyhydric phenol copolymer resin is usually heated under hydrogen pressure of 1 to 25 MPa, preferably 3 to 20 MPa, for 0.5 to 24 hours, preferably 1 to 10 hours. do it by
  • hydrogenation catalysts examples include metal catalysts such as palladium, ruthenium, rhodium, platinum, and nickel, and supported catalysts in which these are supported on carriers such as activated carbon, activated alumina, and diatomaceous earth.
  • metal catalysts such as palladium, ruthenium, rhodium, platinum, and nickel
  • supported catalysts in which these are supported on carriers such as activated carbon, activated alumina, and diatomaceous earth.
  • the amount of the hydrogenation catalyst used is 0.1 to 30% by weight, preferably 1 to 20% by weight, based on the raw material (terpene polyhydric phenol copolymer resin) when the reaction is a batch system. If the amount of the catalyst is less than 0.1% by weight, the reaction rate will be extremely slow.
  • a reaction solvent may not be used during hydrogenation, but alcohols, ethers, esters, and saturated hydrocarbons are usually preferably used.
  • the amount of the reaction solvent used is generally 10 to 500% by weight, preferably about 50 to 300% by weight, based on the raw materials.
  • the reaction temperature during hydrogenation is not particularly limited, but is usually 0 to 300°C, preferably 50 to 250°C. If the reaction temperature is less than 0°C, the reaction rate will be significantly slowed. On the other hand, if it exceeds 300°C, the decomposition of the hydrogenated product will increase and the yield of the desired resin may decrease.
  • the double bond includes a double bond of an aromatic ring derived from polyhydric phenol and the like.
  • the hydrogenation rate of double bonds is 5% or more, preferably 10% or more, more preferably 20% or more.
  • the hydrogenation rate of the aromatic ring is 0.5% or more, preferably 1% or more.
  • the higher the degree of hydrogenation of the double bonds the higher the transparency and oxidation stability of the resin, which can be preferably used in applications requiring transparency such as optical materials.
  • the hydrogenation rate of double bonds is less than 5%, the hue of the resin is poor, or the oxidation stability is not sufficiently exhibited.
  • the weight average molecular weight (Mw) of the hydrogenated terpene polyhydric phenol copolymer resin is usually 400 to 5,000, preferably 500 to 4,000, more preferably 600 to 3,000. If the Mw is less than 400, the handling of the resin itself becomes poor, and there is concern about bleeding out after being made into a compound. On the other hand, if the Mw exceeds 5,000, it may become extremely difficult to dissolve in rubber or thermoplastic elastomer, which is not preferable.
  • the hydroxyl value of the hydrogenated terpene polyhydric phenol copolymer resin varies depending on the type of elastomer to be mixed, but is usually in the range of 10 to 300 mgKOH/g, preferably 20 to 250 mgKOH/g, and more. Preferably it is 40-210 mgKOH/g. If the hydroxyl value is less than 10 mgKOH/g, it may not be possible to exhibit sufficient adhesion and adhesion properties to highly polar adherends such as metals and glass, which is not preferable. On the other hand, if the hydroxyl value exceeds 300 mgKOH/g, it may become extremely difficult to dissolve in low-polarity elastomers such as rubber.
  • additives such as known phenol-based antioxidants, phosphorus-based antioxidants, and sulfur-based antioxidants can be added to the hydrogenated terpene polyhydric phenol copolymer resin of the present invention.
  • the hydrogenated terpene polyhydric phenol copolymer resin can be blended with a base polymer such as natural rubber or thermoplastic elastomer and used as an adhesive composition.
  • Thermoplastic elastomers that can be used as base polymers are not particularly limited, but examples include styrene-isoprene-styrene block copolymers, styrene-butadiene-styrene block copolymers, and styrene-ethylene-butylene-styrene block copolymers. , styrene-based block copolymers such as styrene-ethylene-propylene-styrene block copolymers, ethylene-vinyl acetate copolymers, (meth)acrylic copolymers, and the like. Among these, a (meth)acrylic polymer is particularly preferable from the viewpoint of compatibility.
  • a (meth)acrylic polymer is a polymer obtained by polymerizing a polymerizable monomer containing at least an alkyl (meth)acrylate.
  • alkyl (meth)acrylates are not particularly limited, and examples include methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, n-butyl ( meth)acrylate, isobutyl (meth)acrylate, t-butyl (meth)acrylate, pentyl (amyl) (meth)acrylate, hexyl (meth)acrylate, heptyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, n-octyl (meth)acrylate, isooctyl (meth)acrylate, nonyl (meth)acrylate, decyl (meth)acrylate, undecy
  • a copolymerizable polar group-containing vinyl monomer may be further contained as a polymerizable monomer other than the alkyl (meth)acrylate.
  • the polar group-containing vinyl monomer effectively forms a crosslinked structure with a crosslinker having a specific functional group such as an isocyanate crosslinker, an epoxy crosslinker, and an aziridine crosslinker to form a cohesive force. It is used to achieve compatibility with repulsion resistance and, if necessary, to adjust the Tg, tackiness, etc. of the copolymer.
  • polar group-containing vinyl monomers include styrene-based monomers such as styrene, ⁇ -methylstyrene, o-methylstyrene and p-methylstyrene; carboxylic acid vinyl esters such as vinyl acetate; (meth)acrylic acid and itaconic acid.
  • polyfunctional (meth)acrylates include 1,4-butanediol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate, (Poly)ethylene glycol di(meth)acrylate, (poly)propylene glycol di(meth)acrylate, neopentyl glycol di(meth)acrylate, pentaerythritol di(meth)acrylate, glycerin methacrylate acrylate, pentaerythritol tri(meth)acrylate , trimethylolpropane trimethacrylate, allyl (meth)acrylate, vinyl (meth)acrylate, divinylbenzene, epoxy (
  • the (meth)acrylic polymer can be produced by (co)polymerizing at least one alkyl (meth)acrylate and other polymerizable monomers.
  • the mode of the polymerization reaction is not particularly limited, radical polymerization or anionic polymerization is preferred.
  • the polymerization method conventionally known methods such as bulk polymerization method, solution polymerization method, suspension polymerization method and emulsion polymerization method can be used, and the solution polymerization method and bulk polymerization method are preferable.
  • the sequence of the monomers is not particularly limited, and may be random, alternating, or block.
  • peroxide polymerization initiators such as benzoyl peroxide and lauroyl peroxide, azo polymerization initiators such as azobisisobutylnitrile, etc., as well as photopolymerization initiators such as acetophenone polymerization Initiators such as benzoin ether-based polymerization initiators, benzyl ketal-based polymerization initiators, acylphosphine oxide-based polymerization initiators, benzoin-based polymerization initiators, and benzophenone-based polymerization initiators can be used.
  • peroxide polymerization initiators such as benzoyl peroxide and lauroyl peroxide
  • azo polymerization initiators such as azobisisobutylnitrile, etc.
  • photopolymerization initiators such as acetophenone polymerization Initiators such as benzoin ether-based polymerization initiators, benzyl ketal-based polymerization initiators, acy
  • polymerization initiators for anionic polymerization include alkali metals such as lithium, sodium and potassium, alkyllithium compounds such as methyllithium, ethyllithium, n-butyllithium, s-butyllithium and t-butyllithium, and lithium-naphthalene complexes. , sodium-naphthalene complexes, potassium-naphthalene complexes and other alkali metal-naphthalene complexes, as well as Grignard reagents, ketyl anion radical complexes, enolate anions, alkoxide anions such as t-butoxypotassium, lithium aluminum hydride, and the like. .
  • the amount of the polymerization initiator to be used is not particularly limited, but is usually 0 to 5 parts by weight per 100 parts by weight of the total amount of polymerizable monomers used.
  • a solvent in the polymerization reaction does not have to be used in particular, but a solvent may be used for the purpose of suppressing the viscosity increase of the reaction solution and facilitating temperature control during the reaction.
  • Esters such as ethyl acetate and methyl acetate, ketones such as acetone and methyl ethyl ketone, alcohols such as methanol, ethanol, and butanol, aliphatic hydrocarbons such as cyclohexane, hexane, and heptane, and aromatic hydrocarbons such as toluene and xylene.
  • Esters such as ethyl acetate and methyl acetate, ketones such as acetone and methyl ethyl ketone, alcohols such as methanol, ethanol, and butanol, aliphatic hydrocarbons such as cyclohexane, hexane, and heptane, and aromatic hydrocarbons such as toluene and
  • anionic polymerization in addition to aliphatic hydrocarbons such as hexane, heptane and cyclohexane, aromatic hydrocarbons such as benzene, toluene and xylene, diethyl ether, tetrahydrofuran, tetrahydropyran, 1,4-dioxane, 1,2 Ethers such as dimethoxyethane and anisole, tertiary amines such as triethylamine and pyridine, and aprotic polar solvents such as N,N-dimethylformamide and N,N-dimethylacetamide can be used. These solvents may be used singly or in combination of two or more.
  • the (meth)acrylic polymer obtained by the above method preferably has a weight average molecular weight of 300,000 to 3,000,000 in terms of standard polystyrene measured by gel permeation chromatography (GPC). , 500,000 to 2,500,000.
  • the adhesive composition of the present invention contains 1 to 300 parts by weight, preferably 5 to 100 parts by weight, more preferably 5 to 100 parts by weight of the hydrogenated terpene polyhydric phenol copolymer resin of the present invention with respect to 100 parts by weight of the base polymer. It is blended at a ratio of 10 to 60 parts by weight. If the hydrogenated terpene polyhydric phenol copolymer resin is less than 1 part by weight, the effect of blending the hydrogenated terpene polyhydric phenol copolymer resin becomes difficult to understand. On the other hand, if it exceeds 300 parts by weight, the viscosity of the pressure-sensitive adhesive becomes too high, and the balance of adhesive properties such as ball tack, adhesive strength, and holding power deteriorates.
  • the adhesive composition of the present invention may contain a cross-linking agent as necessary.
  • cross-linking agents include polyisocyanates, epoxy resins, polycarbodiimide compounds, aziridine compounds, polyvalent metal salts, metal chelates, and the like.
  • the content of the cross-linking agent varies depending on its type, but is usually in the range of 0.005 to 10 parts by weight, preferably 1.0 to 5 parts by weight, per 100 parts by weight of the (meth)acrylic polymer. Department. If the amount of the cross-linking agent is less than 0.005 parts by weight, the heat resistance may be insufficient, and the adhesion to the adherend may be lowered. On the other hand, if it exceeds 10 parts by weight, the cross-linking tends to be excessive, the flexibility tends to decrease, the adhesion to the adherend tends to decrease, and the peel strength tends to be insufficient. In addition, the excessive cross-linking agent may deteriorate adhesive properties.
  • the adhesive composition of the present invention preferably undergoes a heating step to form a cross-linked structure.
  • the heating step may be performed before or after application to the adherend.
  • the heating temperature is appropriately set according to the type of cross-linking agent used, but is usually in the range of 40°C to 130°C, preferably 50°C to 100°C.
  • the heating time is 30 minutes to 7 days, preferably 1 hour to 5 days.
  • the adhesive composition of the present invention may further contain plasticizers, softeners, pigments, fillers, diluents, anti-aging agents, UV absorbers, antioxidants, light stabilizers, surfactants, if necessary.
  • Additives such as agents, release modifiers, and antistatic agents may be contained, and the form thereof may be any of solution type, water dispersion type, UV curing type, hot melt type, and the like.
  • the adhesive composition of the present invention can also be used by applying it to an adhesive sheet or adhesive tape.
  • the support is not particularly limited, and for example, plastic film, paper, non-woven fabric, sheet or tape such as metal foil, plastic or rubber foam can be used.
  • the method of processing the adhesive composition of the present invention into the support is not particularly limited.
  • a method for producing a solvent-type acrylic pressure-sensitive adhesive composition containing an acrylic polymer as a main component includes an organic solvent such as toluene or ethyl acetate, an acrylic polymer and the hydrogenated terpene polyhydric phenol copolymer resin of the present invention, and A mixture of cross-linking agents is stirred and dissolved to prepare a sticky liquid having a solid content of 10 to 70% by weight.
  • the pressure-sensitive adhesive composition prepared in this manner is applied to a support using, for example, a roll coater or a bar coater, and heated to volatilize the solvent to obtain a pressure-sensitive adhesive tape or pressure-sensitive adhesive sheet.
  • the thickness of the adhesive layer is not particularly limited, it is usually about 0.01 to 1.0 mm.
  • the adherend to which the pressure-sensitive adhesive composition of the present invention is applied is not particularly limited, and examples thereof include wood, metal, plastic, rubber, concrete, glass, tiles, ceramics, and composite materials. Among them, it is preferable because it can exhibit good adhesion and adhesion properties to highly polar adherends such as concrete, glass, tiles, and ceramics. Although the detailed principle is not clear, it is thought that multiple hydroxyl groups existing in close proximity in the structure of the hydrogenated terpene polyphenol copolymer resin form strong hydrogen bonds with the hydroxyl groups on the adherend. be done.
  • the adhesive composition of the present invention has high fixability to highly polar adherends such as glass.
  • it since it is excellent in heat resistance stability and transparency, it can be used in various fields such as the field of optics and electronics, the field of architecture, and the field of medicine including dentistry.
  • Differential refractometer WATERS2414 (manufactured by WATERS) was used as a detector, WATERS515 high performance liquid chromatography (manufactured by WATERS) as a pump, and TSK-gel G2000H8 ⁇ 2 and G3000HXL ⁇ 1 (manufactured by TOSOH) as columns. Measurement conditions were as follows: tetrahydrofuran was used as an eluent, the flow rate was 1.0 mL/min, and 250 ⁇ L of sample solution with a sample concentration of 5 mg/mL was injected for measurement. (hue) 10 g of the sample was dissolved in 10 g of toluene, and measured with a Gardner scale using a spectral color/haze meter COH7700 (manufactured by Nippon Denshoku Industries).
  • Production Example 1 (Production of terpene polyhydric phenol copolymer resin) 300 g of toluene, 55 g (0.5 mol) of catechol, and 20 g of boron trifluoride diethyl ether complex were introduced into a flask equipped with a stirrer, reflux condenser, thermometer, dropping pump and nitrogen gas inlet, and stirring was started. Into this, 272 g (2.0 mol) of ⁇ -pinene was added dropwise over 6 hours at a reaction temperature of 25 to 30°C.
  • Production Example 2 (Production of hydrogenated terpene polyhydric phenol copolymer resin) 100 g of the terpene polyhydric phenol copolymer resin obtained in Production Example 1, 100 g of 2-propanol, and 5 g of a powdery 5% palladium-supported alumina catalyst were placed in an autoclave, which was then sealed and the atmosphere was replaced with hydrogen gas. After that, hydrogen gas was introduced while applying a pressure of 1 MPa. Then, when the mixture was heated to 180° C. with stirring, the hydrogen pressure was adjusted to 5 MPa, and the reaction was carried out for 1 hour while maintaining the pressure at 5 MPa by compensating for the absorbed hydrogen.
  • the catalyst was filtered and 2-propanol was removed by distillation under reduced pressure to obtain 100 g of a hydrogenated terpene polyhydric phenol copolymer resin having a softening point of 130°C.
  • the values of Mn, Mw and Mz were 620, 750 and 870, respectively. Further, the hydroxyl value was 119 mgKOH/g, the hue (Gardner scale) was 2, and the hydrogenation rate was 30%.
  • Production Examples 3-20 In the same manner as in Production Examples 1 and 2, except that the terpene compound used, the type of polyhydric phenol compound and their mixing ratio, and the hydrogenation time were changed as shown in Table 1, the copolymerization reaction and, if necessary, A hydrogenation reaction was carried out accordingly to obtain a resin having the properties described in each item in Table 1.
  • the GPC chart and 1H-NMR chart of the hydrogenated terpene polyhydric phenol copolymer resin obtained in Production Example 4 are shown in FIGS. 3 and 4, respectively.
  • Examples 1-15, Comparative Examples 1-9 (Evaluation of adhesive composition) Per 100 parts by weight of an acrylic block copolymer (Clarity LA2140 (manufactured by Kuraray Co., Ltd.)), the (hydrogenated) terpene polyhydric phenol copolymer resin produced above, or 30 parts by weight of a commercially available tackifying resin, An acrylic adhesive composition was prepared by mixing 20 parts by weight of a liquid acrylic polymer (ALPHON UP-1061 (manufactured by Toagosei Co., Ltd.)) as a plasticizer. This pressure sensitive adhesive composition was coated on a 38 ⁇ m thick PET film so as to form a 30 ⁇ m thick pressure sensitive adhesive layer, and then dried to prepare a pressure sensitive adhesive sheet.
  • an acrylic block copolymer (Clarity LA2140 (manufactured by Kuraray Co., Ltd.)
  • APHON UP-1061 manufactured by Toagosei Co., Ltd.)
  • the resulting pressure-sensitive adhesive sheet was evaluated for loop tack (against SUS, glass, PE), adhesive strength (against SUS, glass, PE), holding power (against SUS, PE), and weather resistance by the methods described below. These results were as shown in Table 2.
  • loop tuck A loop was formed with the adhesive surface of the test piece of the adhesive sheet facing outward, and a 25 mm ⁇ 25 mm area was brought into close contact with the adherend, and the value when immediately pulled apart was measured with a tensile tester.
  • the pulling speed was 300 mm/min, and the measurement temperature was 23°C.
  • Adhesive force A sheet cut into a width of 25 mm and a length of about 200 mm was laminated to a SUS plate, glass plate or polyethylene (PE) plate by reciprocating a 2 kg roller twice in an atmosphere of 23°C. 180° peel adhesion was measured. A tensile tester was used for the measurement, and the tensile speed was 300 mm/min.
  • SAFT Shear Adhesion Failure Temperature Test
  • the hydrogenated terpene polyhydric phenol copolymer resin of the present invention is excellent in the effect of modifying rubber, thermoplastic elastomers, etc. It is useful as a pawn and the like.
  • polymer materials, polymer materials, compatibilizers, crystal nucleating agents, surface modifiers, filler dispersion improvers, fiber dispersion improvers, plasticizers, lubricants, curing agents, binders, oils and fats, traffic paints It can be widely used in various applications such as inks, printing inks, toners, sizing agents, sizing agents, paper strength agents, road pavement compositions, civil engineering and construction materials, raw materials for polymer materials, modifiers, etc. have a useful effect on

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

Provided are: a terpene-based resin which has excellent adhesion to highly polar adherends such as glass, and which has high transparency and good weather resistance; and an adhesive composition using the same. Provided are: a hydrogenated terpene-polyphenol copolymer resin obtained by hydrogenating a terpene-polyphenol copolymer resin which can be obtained by polymerizing a terpene-based compound and a polyphenol-based compound; and an adhesive composition obtained by mixing the hydrogenated terpene-polyphenol copolymer resin with a base polymer.

Description

水添テルペン多価フェノール共重合樹脂、および該共重合樹脂を含有する粘接着剤組成物Hydrogenated terpene polyhydric phenol copolymer resin and adhesive composition containing the copolymer resin
 本発明は、水添テルペン多価フェノール共重合樹脂、および該共重合樹脂を含有する粘接着剤組成物に関する。 The present invention relates to a hydrogenated terpene polyhydric phenol copolymer resin and an adhesive composition containing the copolymer resin.
 テルペンフェノール樹脂は、松の木や柑橘類の果皮等から採取される精油であるテルペンと、フェノールとを共重合して得られる液状または樹脂状の化合物であり、原料モノマー組成や重合度の違いによって、極性や軟化点、ガラス転移温度等が異なる種々の製品が市販されている。 Terpene phenolic resin is a liquid or resinous compound obtained by copolymerizing terpene, an essential oil extracted from pine trees and citrus peels, with phenol. There are various products on the market that differ from each other in terms of , softening point, glass transition temperature, and the like.
 これらの樹脂は、ゴムや熱可塑性エラストマー等の高分子材料に配合することにより、高分子材料の粘弾性や極性を調整できる。この特性を利用し、粘着剤、接着剤、タイヤ等のゴム製品、ポリマー改質、分散性向上剤等、様々な分野で利用されている。 By blending these resins into polymeric materials such as rubber and thermoplastic elastomers, the viscoelasticity and polarity of the polymeric materials can be adjusted. Utilizing this property, it is used in various fields such as adhesives, adhesives, rubber products such as tires, polymer modifiers, and dispersibility improvers.
 例えば、粘着剤分野においては、ポリオレフィン等の低極性の被着体に対する粘着力を向上させる目的で、アクリル系重合体を主剤とするアクリル系粘着剤に、粘着付与樹脂としてテルペンフェノール樹脂を配合することが知られている(例えば特許文献1,2)。しかしながら、テルペンフェノール樹脂の配合は、アクリル系粘着剤の特徴である耐候性、透明性の低下を招くため、エレクトロニクス分野における各種シートやフィルムの貼り合わせ等の光学特性を要求される用途への使用は、敬遠される場合があった。 For example, in the field of pressure-sensitive adhesives, terpene phenolic resin is added as a tackifying resin to acrylic pressure-sensitive adhesives based on acrylic polymers for the purpose of improving the adhesion to low-polar adherends such as polyolefins. is known (for example, Patent Documents 1 and 2). However, the addition of terpene phenolic resins leads to deterioration of the weather resistance and transparency that characterize acrylic pressure-sensitive adhesives. was sometimes shunned.
 上記に鑑み、本出願人は、アクリル系粘着剤用の粘着付与樹脂として、テルペンフェノール樹脂に水素添加処理を施した水添テルペンフェノール樹脂を使用することを提案している(特許文献3)。当該文献によれば、水添テルペンフェノール樹脂を使用することで、アクリル系粘着剤の耐候性や透明性を低下させることなく、低極性の被着体に対する粘着力を向上させることができる。一方、ガラス等の高極性の被着体に対しては、近年のディスプレイの軽量化、薄肉化の流れに伴い、粘着層の厚みも薄くなることで充分な粘着力を発現することが困難となっている。 In view of the above, the present applicant has proposed the use of a hydrogenated terpene phenolic resin obtained by subjecting a terpene phenolic resin to a hydrogenation treatment as a tackifying resin for an acrylic pressure-sensitive adhesive (Patent Document 3). According to this document, by using a hydrogenated terpene phenolic resin, it is possible to improve the adhesion to low-polar adherends without deteriorating the weather resistance and transparency of the acrylic pressure-sensitive adhesive. On the other hand, with the trend toward lighter and thinner displays in recent years, the thickness of the adhesive layer is also becoming thinner, making it difficult to develop sufficient adhesive strength for adherends with high polarity such as glass. It's becoming
特開2015-42729号公報JP 2015-42729 A 特開2021-70744号公報JP 2021-70744 A 特開2007-224258号公報JP 2007-224258 A
 本発明の目的は、粘接着剤の粘接着特性、特にガラス等の高極性の被着体に対する粘着力に優れ、かつ耐候性や透明性に優れた新規なテルペン系樹脂、それを用いた粘接着剤組成物を提供することにある。 An object of the present invention is to provide a novel terpene-based resin that is excellent in adhesive properties of adhesives, especially adhesive strength to highly polar adherends such as glass, and that is excellent in weather resistance and transparency. An object of the present invention is to provide a pressure sensitive adhesive composition.
 本発明者らは、テルペン系化合物と多価フェノール系化合物を共重合させて得られるテルペン多価フェノール共重合樹脂を水素添加した水添テルペン多価フェノール共重合樹脂が、高極性の被着体に対する粘着力を顕著に向上させ、かつ耐候性、透明性に優れた粘接着剤とするための粘着付与樹脂として有用であることを見出し、本発明を完成した。 The present inventors have found that a hydrogenated terpene-polyphenol copolymer resin obtained by copolymerizing a terpene-based compound and a polyhydric phenol-based compound is a highly polar adherend. It was found that it is useful as a tackifying resin for significantly improving the adhesive strength to and making it a pressure-sensitive adhesive having excellent weather resistance and transparency, and the present invention was completed.
 すなわち本発明は、以下の請求項1~11から構成される。
<請求項1>
 テルペン系化合物と多価フェノール系化合物を共重合させて得られるテルペン多価フェノール共重合樹脂を、水素添加してなる水添テルペン多価フェノール共重合樹脂。
<請求項2>
 テルペン系化合物が、α-ピネン、β-ピネン、リモネン、ジペンテン、Δ3-カレン、アロオシメン、オシメン及びミルセンの群から選択された少なくとも1種である請求項1に記載の水添テルペン多価フェノール共重合樹脂。
<請求項3>
 多価フェノール系化合物が、一般式(1)である請求項1または2に記載の水添テルペン多価フェノール共重合樹脂。
That is, the present invention consists of claims 1 to 11 below.
<Claim 1>
A hydrogenated terpene-polyphenol copolymer resin obtained by hydrogenating a terpene-polyphenol copolymer resin obtained by copolymerizing a terpene-based compound and a polyhydric phenol-based compound.
<Claim 2>
The hydrogenated terpene polyhydric phenol covalent according to claim 1, wherein the terpene compound is at least one selected from the group consisting of α-pinene, β-pinene, limonene, dipentene, Δ3-carene, alloocimene, ocimene and myrcene. Polymeric resin.
<Claim 3>
3. The hydrogenated terpene polyhydric phenol copolymer resin according to claim 1 or 2, wherein the polyhydric phenol compound is represented by general formula (1).
(R1は水素原子または炭素1~10のアルキル基またはアルケニル基、R2は炭素数1~15のアルキル基またはアルケニル基、nは1~3の整数、mは0~2の整数、ただし、nとmの合計は3以下。nが2以上の場合、2以上のR1は互いに同一でも異なっていてもよい。mが2以上の場合、2以上のR2は互いに同一でも異なっていてもよい。)
<請求項4>
 多価フェノール系化合物が、カテコール、レゾルシノール、ピロガロール及びグアイアコールから選択された少なくとも1種である請求項1~3いずれかに記載の水添テルペン多価フェノール共重合樹脂。
<請求項5>
 テルペン系化合物の共重合比が、20~99モル%である請求項1~4いずれかに記載の水添テルペン多価フェノール共重合樹脂。
<請求項6>
 GPC(ゲルパーミエーションクロマトグラフィー)法のポリスチレン換算の重量平均分子量(Mw)が400~5,000である請求項1~5いずれかに記載の水添テルペン多価フェノール共重合樹脂。
<請求項7>
 軟化点が70~180℃である請求項1~6いずれかに記載の水添テルペン多価フェノール共重合樹脂。
<請求項8>
 水酸基価が10~300mgKOH/gである請求項1~7いずれかに記載の水添テルペン多価フェノール共重合樹脂。
<請求項9>
 水添率が5~100%である請求項1~8いずれかに記載の水添テルペン多価フェノール共重合樹脂。
<請求項10>
 テルペン系化合物と多価フェノール系化合物を共重合させて得られるテルペン多価フェノール共重合樹脂を水素添加する、請求項1~9いずれかに記載の水添テルペン多価フェノール共重合樹脂の製造方法。
<請求項11>
 ベースポリマー100重量部に対し、請求項1~9いずれかに記載の水添テルペン多価フェノール共重合樹脂を1~300重量部の割合で配合してなる粘接着剤組成物。
(R1 is a hydrogen atom or an alkyl or alkenyl group having 1 to 10 carbon atoms; R2 is an alkyl or alkenyl group having 1 to 15 carbon atoms; n is an integer of 1 to 3; m is an integer of 0 to 2; and m are 3 or less.When n is 2 or more, two or more R1 may be the same or different.When m is 2 or more, two or more R2 may be the same or different. )
<Claim 4>
The hydrogenated terpene polyhydric phenol copolymer resin according to any one of claims 1 to 3, wherein the polyhydric phenol compound is at least one selected from catechol, resorcinol, pyrogallol and guaiacol.
<Claim 5>
The hydrogenated terpene polyhydric phenol copolymer resin according to any one of claims 1 to 4, wherein the copolymerization ratio of the terpene compound is 20 to 99 mol%.
<Claim 6>
The hydrogenated terpene polyhydric phenol copolymer resin according to any one of claims 1 to 5, which has a polystyrene-equivalent weight average molecular weight (Mw) of 400 to 5,000 as measured by GPC (gel permeation chromatography).
<Claim 7>
The hydrogenated terpene polyhydric phenol copolymer resin according to any one of claims 1 to 6, which has a softening point of 70 to 180°C.
<Claim 8>
The hydrogenated terpene polyhydric phenol copolymer resin according to any one of claims 1 to 7, which has a hydroxyl value of 10 to 300 mgKOH/g.
<Claim 9>
The hydrogenated terpene polyhydric phenol copolymer resin according to any one of claims 1 to 8, which has a hydrogenation rate of 5 to 100%.
<Claim 10>
The method for producing a hydrogenated terpene-polyphenol copolymer resin according to any one of claims 1 to 9, wherein a terpene-polyphenol copolymer resin obtained by copolymerizing a terpene-based compound and a polyhydric phenol-based compound is hydrogenated. .
<Claim 11>
A pressure sensitive adhesive composition comprising 1 to 300 parts by weight of the hydrogenated terpene polyhydric phenol copolymer resin according to any one of claims 1 to 9 with respect to 100 parts by weight of the base polymer.
 本発明の水添テルペン多価フェノール共重合樹脂は、ゴムや熱可塑性エラストマー等の高分子材料の改質効果に優れ、特に、粘接着剤に配合すると、ガラス等の高極性の被着体に対する優れた接着特性を発揮し、しかも透明性や耐熱安定性に優れた粘接着剤とすることができるので、エレクトロニクス分野を始め各種用途に使用可能である。 The hydrogenated terpene polyhydric phenol copolymer resin of the present invention is excellent in the effect of modifying polymer materials such as rubber and thermoplastic elastomers. It can be used in various applications including the electronics field because it can be used as a pressure-sensitive adhesive with excellent transparency and heat stability.
製造例1のテルペン多価フェノール共重合樹脂のGPCチャートである。1 is a GPC chart of a terpene polyhydric phenol copolymer resin of Production Example 1. FIG. 製造例1のテルペン多価フェノール共重合樹脂のプロトン核磁気共鳴(1H―NMR)スペクトルである。1 is a proton nuclear magnetic resonance (1H-NMR) spectrum of the terpene polyhydric phenol copolymer resin of Production Example 1. FIG. 製造例4の水添テルペン多価フェノール共重合樹脂のGPCチャートである。4 is a GPC chart of the hydrogenated terpene polyhydric phenol copolymer resin of Production Example 4. FIG. 製造例4の水添テルペン多価フェノール共重合樹脂のプロトン核磁気共鳴(1H―NMR)スペクトルである。4 is a proton nuclear magnetic resonance (1H-NMR) spectrum of the hydrogenated terpene polyhydric phenol copolymer resin of Production Example 4. FIG.
 以下、本発明を構成要件別に説明する。
<水添テルペン多価フェノール共重合樹脂>
 本発明の水添テルペン多価フェノール共重合樹脂は、テルペン系化合物と多価フェノール系化合物とを共重合させて得られるテルペン多価フェノール共重合樹脂を、水素添加して得られる樹脂状化合物である。
 まず、テルペン多価フェノール共重合樹脂について説明する。
Hereinafter, the present invention will be described for each component.
<Hydrogenated terpene polyhydric phenol copolymer resin>
The hydrogenated terpene polyhydric phenol copolymer resin of the present invention is a resinous compound obtained by hydrogenating a terpene polyhydric phenol copolymer resin obtained by copolymerizing a terpene compound and a polyhydric phenol compound. be.
First, the terpene polyhydric phenol copolymer resin will be described.
 上記テルペン系化合物は、Cの分子式で表されるイソプレン単位が複数個結合した炭化水素およびその含酸素誘導体であり、イソプレン単位の数によって、モノテルペン(C、セスキテルペン(C、ジテルペン(C等に分類される。これらのうち、モノテルペンおよびセスキテルペンが好ましい。
 また、テルペン系化合物は、分子中に炭素環を有する脂環式テルペンが好ましい。さらに、分子中に水酸基等のヘテロ原子を含有しないテルペン炭化水素が好ましい。
The above terpene compounds are hydrocarbons and their oxygen-containing derivatives in which a plurality of isoprene units represented by the molecular formula of C 5 H 8 are bonded . It is classified into terpene (C 5 H 8 ) 3 , diterpene (C 5 H 8 ) 4 and the like. Of these, monoterpenes and sesquiterpenes are preferred.
Moreover, the terpene-based compound is preferably an alicyclic terpene having a carbon ring in the molecule. Furthermore, terpene hydrocarbons containing no heteroatoms such as hydroxyl groups in the molecule are preferred.
 テルペン系化合物の具体例としては、α-ピネン、β-ピネン、3-カレン、カンフェン、トリシクレン、リモネン、ジペンテン、α-フェランドレン、β-フェランドレン、α-テルピネン、β-テルピネン、γ-テルピネン、テルピノレン、オシメン、アロオシメン、ミルセン、1,8-シネオール、1,4-シネオール、α-ターピネオール、β-ターピネオール、γ-ターピネオール、リナロール、ロンギフォレン、カリオフィレン、ファルネセン等が挙げられる。これらのうち、α-ピネン、β-ピネン、3-カレン、リモネン、ジペンテン、オシメン、アロオシメン、ミルセン、ロンギフォレン、カリオフィレンが好ましく、α-ピネン、β-ピネン、3-カレン、リモネン、ジペンテンがより好ましい。これらは、1種単独であるいは2種以上を併用することができる。 Specific examples of terpene compounds include α-pinene, β-pinene, 3-carene, camphene, tricyclene, limonene, dipentene, α-phellandrene, β-phellandrene, α-terpinene, β-terpinene, and γ-terpinene. , terpinolene, ocimene, alloocimene, myrcene, 1,8-cineole, 1,4-cineole, α-terpineol, β-terpineol, γ-terpineol, linalool, longifolene, caryophyllene, farnesene and the like. Among these, α-pinene, β-pinene, 3-carene, limonene, dipentene, ocimene, alloocimene, myrcene, longifolene and caryophyllene are preferred, and α-pinene, β-pinene, 3-carene, limonene and dipentene are more preferred. . These can be used singly or in combination of two or more.
 上記の多価フェノール系化合物は、芳香族炭化水素の2個以上の水素原子が水酸基またはアルコキシ基で置換された化合物であり、一般式(1)で表される。 The above polyhydric phenol-based compound is a compound in which two or more hydrogen atoms of an aromatic hydrocarbon are substituted with a hydroxyl group or an alkoxy group, and is represented by general formula (1).
(R1は水素原子または炭素1~10のアルキル基またはアルケニル基、R2は炭素数1~15のアルキル基またはアルケニル基、nは1~3の整数、mは0~2の整数、ただし、nとmの合計は3以下。nが2以上の場合、2以上のR1は互いに同一でも異なっていてもよい。mが2以上の場合、2以上のR2は互いに同一でも異なっていてもよい。) (R1 is a hydrogen atom or an alkyl or alkenyl group having 1 to 10 carbon atoms; R2 is an alkyl or alkenyl group having 1 to 15 carbon atoms; n is an integer of 1 to 3; m is an integer of 0 to 2; and m are 3 or less.When n is 2 or more, two or more R1 may be the same or different.When m is 2 or more, two or more R2 may be the same or different. )
 多価フェノール系化合物の具体例としては、カテコール、レゾルシノール、ヒドロキノン、グアイアコール、p-メトキシフェノール、m-メトキシフェノール、ピロガロール、フロログルシノール、オイゲノール、プロピルカテコールなどが挙げられる。これらは、1種単独であるいは2種以上を併用することができる。 Specific examples of polyhydric phenol compounds include catechol, resorcinol, hydroquinone, guaiacol, p-methoxyphenol, m-methoxyphenol, pyrogallol, phloroglucinol, eugenol, and propylcatechol. These can be used singly or in combination of two or more.
 なお、カテコールやグアイアコール、ピロガロール等は、再生可能な天然資源から採取または誘導されることが知られている。近年、石油資源の枯渇や二酸化炭素排出量の増加による地球温暖化が危惧されていることから、こうした植物由来の多価フェノール系化合物を使用することが好ましい。本発明のテルペン多価フェノール共重合樹脂においては、共重合成分であるテルペン系化合物も、通常、植物由来の精油成分であるため、植物由来の多価フェノール系化合物と併用することで、バイオマス度が高く環境負荷の低い材料を提供することができる。
 例えば、ピロガロールは、五倍子(ヌルデの虫こぶ)、没食子(中近東のブナ・カシワの虫こぶ)、マンサク科の植物ハマメリス(Witch-hazel)、茶の葉、オークの樹皮などの多様な植物に含有される没食子酸から、脱炭酸することによって製造できる。また、カテコールは、植物由来の糖を原料とした微生物発酵法により製造できることが知られている。
Catechol, guaiacol, pyrogallol and the like are known to be collected or derived from renewable natural resources. In recent years, there is concern about global warming due to depletion of petroleum resources and an increase in carbon dioxide emissions, so it is preferable to use such plant-derived polyhydric phenol compounds. In the terpene-polyphenol copolymer resin of the present invention, the terpene-based compound, which is a copolymer component, is also usually a plant-derived essential oil component, so by using it in combination with the plant-derived polyhydric phenol-based compound, the biomass degree It is possible to provide materials with high environmental load and low environmental impact.
For example, pyrogallol is found in a wide variety of plants, including quintuple (nurde galls), galls (middle eastern beech and oak galls), witch-hazel, tea leaves, and oak bark. It can be produced by decarboxylation from contained gallic acid. Moreover, it is known that catechol can be produced by a microbial fermentation method using plant-derived sugar as a raw material.
 テルペン多価フェノール共重合樹脂は、本発明の効果を損なわない範囲で、テルペン系化合物と多価フェノール系化合物以外の共重合成分として、1価フェノール系化合物およびビニル系化合物の群から選ばれた少なくとも1種のその他の単量体を、全体の共重合比として、50モル%以下程度、共重合していてもよい。 The terpene polyhydric phenol copolymer resin is selected from the group of monohydric phenol compounds and vinyl compounds as copolymerization components other than terpene compounds and polyhydric phenol compounds within a range that does not impair the effects of the present invention. At least one other monomer may be copolymerized at a total copolymerization ratio of about 50 mol % or less.
 1価フェノール系化合物は、芳香族炭化水素の1個の水素原子が水酸基またはアルコキシ基で置換された化合物であり、具体的には、フェノール、クレゾール、キシレノール、エチルフェノール、プロピルフェノール、ブチルフェノール、オクチルフェノール、ノニルフェノール、デシルフェノール、チモール、カルバクロール等が挙げられる。これらは、1種単独であるいは2種以上を併用することができる。 A monohydric phenol compound is a compound in which one hydrogen atom of an aromatic hydrocarbon is substituted with a hydroxyl group or an alkoxy group, and specifically includes phenol, cresol, xylenol, ethylphenol, propylphenol, butylphenol, and octylphenol. , nonylphenol, decylphenol, thymol, carvacrol and the like. These can be used singly or in combination of two or more.
 ビニル系化合物としては、エチレン、プロピレン、ブチレン、ブタジエン、イソプレン、ピペリレン、シクロペンタジエン、ヘキセン、酢酸ビニル、塩化ビニル、スチレン、α-メチルスチレン、クマロン、インデン、ビニルトルエン、イソプロペニルトルエン、ジビニルベンゼン、ジビニルトルエン、2-フェニル-2-ブテン、ビニルナフタレン等が挙げられる。好ましくは、スチレン、α-メチルスチレン等であり1種単独であるいは2種以上を併用することができる。 Vinyl compounds include ethylene, propylene, butylene, butadiene, isoprene, piperylene, cyclopentadiene, hexene, vinyl acetate, vinyl chloride, styrene, α-methylstyrene, coumarone, indene, vinyltoluene, isopropenyltoluene, divinylbenzene, Examples include divinyltoluene, 2-phenyl-2-butene, vinylnaphthalene and the like. Styrene, α-methylstyrene, etc. are preferred, and may be used alone or in combination of two or more.
 テルペン多価フェノール共重合樹脂の合成方法は、特に限定されるものではなく、フェノールを多価フェノール系化合物に替える以外は公知のテルペンフェノール樹脂の合成方法をもとに実施できる。例えば、有機溶媒中に、フリーデルクラフト触媒の存在下、テルペン系化合物と多価フェノール系化合物および必要に応じてその他の単量体とを個別に、または混合して滴下し、所定の温度および時間反応させ、その後必要に応じて、水洗や蒸留等の方法で触媒、未反応の単量体、溶媒等を除去することで製造できる。 The method for synthesizing the terpene polyhydric phenol copolymer resin is not particularly limited, and can be carried out based on a known method for synthesizing a terpene phenol resin except that phenol is replaced with a polyhydric phenol compound. For example, in an organic solvent, in the presence of a Friedel-Crafts catalyst, a terpene-based compound and a polyhydric phenol-based compound and optionally other monomers are dropped individually or mixed and added dropwise to a predetermined temperature and It can be produced by reacting for a period of time, and then removing the catalyst, unreacted monomers, solvent, etc. by washing with water, distillation, or the like, if necessary.
 テルペン多価フェノール共重合樹脂の合成に使用されるテルペン系化合物と多価フェノール系化合物の比率は特に限定されないが、テルペン系化合物と多価フェノール系化合物の総量に対するテルペン系化合物の比率は20~99モル%が好ましく、40~95モル%がより好ましく、50~90モル%がさらに好ましい。20モル%未満では、樹脂収率が低くなりすぎる場合があり、99モル%を超えると、樹脂中の多価フェノール構造が少なすぎ、所望の特性が発現されない場合があるため好ましくない。 The ratio of the terpene-based compound and the polyhydric phenol-based compound used in the synthesis of the terpene-polyphenol copolymer resin is not particularly limited, but the ratio of the terpene-based compound to the total amount of the terpene-based compound and the polyhydric phenol-based compound is 20 to 99 mol % is preferred, 40 to 95 mol % is more preferred, and 50 to 90 mol % is even more preferred. If it is less than 20 mol %, the resin yield may become too low, and if it exceeds 99 mol %, the polyhydric phenol structure in the resin may be too small and desired properties may not be exhibited, which is not preferable.
 前記触媒の種類としては、例えば塩酸、硫酸、硝酸、りん酸、ふっ化水素酸、p-トルエンスルホン酸、メタンスルホン酸、トリフルオロ酢酸、トリフルオロメタンスルホン酸、塩化アルミニウム、塩化鉄、塩化亜鉛、塩化銅、三フッ化ホウ素、三フッ化ホウ素エーテル錯体、三フッ化ホウ素フェノール錯体、固体リン酸、活性白土、ゼオライト、陽イオン交換樹脂等が挙げられるが、これらに限定されるものではない。 Examples of the catalyst include hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, hydrofluoric acid, p-toluenesulfonic acid, methanesulfonic acid, trifluoroacetic acid, trifluoromethanesulfonic acid, aluminum chloride, iron chloride, zinc chloride, Copper chloride, boron trifluoride, boron trifluoride ether complex, boron trifluoride phenol complex, solid phosphoric acid, activated clay, zeolite, cation exchange resins, etc. may be mentioned, but not limited to these.
 触媒の使用量は、反応がバッチ方式の場合、原料であるモノマーに対し、0.01~20重量%、好ましくは1~10重量%である。触媒量が0.01重量%未満では、反応収率が著しく低くなり、一方、20重量%を超えても触媒効果が上がらないので好ましくない。 The amount of the catalyst used is 0.01 to 20% by weight, preferably 1 to 10% by weight, based on the raw material monomer when the reaction is a batch method. If the amount of the catalyst is less than 0.01% by weight, the reaction yield will be extremely low.
 また、反応溶媒は特に使用しなくてもよいが、重合反応に伴う発熱を抑制し、穏やかに反応を進行させる等の目的で溶媒を用いてもよい。溶媒は、重合を阻害するものでなければ特に制限されず、例えば、ペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、シクロペンタン、シクロヘキサン、メチルシクロヘキサン、シクロオクタン、パラメンタン等の飽和炭化水素類、ベンゼン、トルエン、キシレン、クメン、シメン等の芳香族炭化水素類、ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、ジオキサン等のエーテル類などが挙げられる。 In addition, a reaction solvent may not be used, but a solvent may be used for the purpose of suppressing heat generation accompanying the polymerization reaction and allowing the reaction to proceed gently. The solvent is not particularly limited as long as it does not inhibit polymerization. , aromatic hydrocarbons such as toluene, xylene, cumene and cymene; and ethers such as diethyl ether, diisopropyl ether, tetrahydrofuran and dioxane.
 溶媒の使用量は、原料であるテルペン系化合物と多価フェノール系化合物の総量に対し、好ましくは500重量%以下、より好ましくは300重量%以下である。溶媒の量が500重量%を超えると、バッチ効率が低下して製造コストが増大するため好ましくない。 The amount of solvent used is preferably 500% by weight or less, more preferably 300% by weight or less, based on the total amount of the terpene-based compound and the polyhydric phenol-based compound as raw materials. If the amount of the solvent exceeds 500% by weight, the batch efficiency is lowered and the manufacturing cost is increased, which is not preferable.
 反応温度は、使用する触媒の活性や溶媒の沸点等を考慮して適宜選択するが、通常、-20~150℃、好ましくは、0~100℃である。-20℃未満では反応が著しく遅くなり、一方、150℃を超えると反応が安定せず好ましくない。特に、触媒として塩化アルミニウムや三フッ化ホウ素を使用する場合の反応温度は、好ましくは0℃~80℃であり、より好ましくは10℃~60℃である。 The reaction temperature is appropriately selected in consideration of the activity of the catalyst to be used, the boiling point of the solvent, etc., but it is usually -20 to 150°C, preferably 0 to 100°C. If the temperature is less than -20°C, the reaction becomes extremely slow. In particular, when aluminum chloride or boron trifluoride is used as a catalyst, the reaction temperature is preferably 0°C to 80°C, more preferably 10°C to 60°C.
 このようにして得られるテルペン多価フェノール共重合樹脂の重量平均分子量(Mw)は、通常、400~5,000、好ましくは500~4,000、さらに好ましくは600~3,000である。Mwが400未満では樹脂自体のハンドリングが悪くなる、さらには配合物にした後のブリードアウトが懸念される。一方、Mwが5,000を超えると、ゴムや熱可塑性エラストマーへの溶解が著しく困難になる場合があるため好ましくない。
 なお、本明細書における平均分子量は、標準ポリスチレンを標準物質としてゲルパーミエーションクロマトグラフィー(GPC)により測定した値である。
The weight average molecular weight (Mw) of the terpene polyhydric phenol copolymer resin thus obtained is usually 400 to 5,000, preferably 500 to 4,000, more preferably 600 to 3,000. If the Mw is less than 400, the handling of the resin itself becomes poor, and there is concern about bleeding out after being made into a compound. On the other hand, if the Mw exceeds 5,000, it may become extremely difficult to dissolve in rubber or thermoplastic elastomer, which is not preferable.
The average molecular weight in this specification is a value measured by gel permeation chromatography (GPC) using standard polystyrene as a standard substance.
 テルペン多価フェノール共重合樹脂の軟化点は、特に限定されないが、好ましくは70~180℃であり、より好ましくは80~160℃、さらに好ましくは100~140℃である。軟化点が70℃未満では、配合物にした後のブリードアウトが懸念される。一方、軟化点が180℃を超えると、ゴムや熱可塑性エラストマーへの溶解が著しく困難になる場合があるため好ましくない。
 なお、本明細書における軟化点とは、JIS K2207環球法により測定される軟化点である。
The softening point of the terpene polyhydric phenol copolymer resin is not particularly limited, but is preferably 70 to 180°C, more preferably 80 to 160°C, still more preferably 100 to 140°C. If the softening point is less than 70°C, there is concern about bleeding out after being made into a compound. On the other hand, if the softening point exceeds 180° C., it may become extremely difficult to dissolve in rubber or thermoplastic elastomer, which is not preferable.
In addition, the softening point in this specification is a softening point measured by JIS K2207 ring and ball method.
 テルペン多価フェノール共重合樹脂の水酸基価は、通常、10~300mgKOH/gの範囲であり、好ましくは20~250mgKOH/gである。水酸基価が10mgKOH/g未満であると、ゴムや熱可塑性エラストマーの充分な改質効果が得られなくなる場合がある。一方、水酸基価が300mgKOH/gを超えると、相溶性が悪化する。
 なお、本明細書における水酸基価とは、JIS K0070の7.1中和滴定法に従って測定される水酸基価である。
The hydroxyl value of the terpene polyhydric phenol copolymer resin is usually in the range of 10-300 mgKOH/g, preferably 20-250 mgKOH/g. If the hydroxyl value is less than 10 mgKOH/g, a sufficient effect of modifying rubber or thermoplastic elastomer may not be obtained. On the other hand, when the hydroxyl value exceeds 300 mgKOH/g, compatibility deteriorates.
In addition, the hydroxyl value in the present specification is a hydroxyl value measured according to JIS K0070 7.1 Neutralization Titration Method.
 次に、前記方法により得られるテルペン多価フェノール共重合樹脂の水素添加(水添)について説明する。
 水素添加の方法は、特に限定されるものではなく、公知の方法で実施することができる。
 例えば、水添触媒の存在下、通常、1~25MPa、好ましくは3~20MPaの水素加圧下で、0.5~24時間、好ましくは1~10時間、テルペン多価フェノール共重合樹脂を加熱することにより行なう。
Next, the hydrogenation (hydrogenation) of the terpene polyhydric phenol copolymer resin obtained by the above method will be described.
The hydrogenation method is not particularly limited, and can be carried out by a known method.
For example, in the presence of a hydrogenation catalyst, the terpene polyhydric phenol copolymer resin is usually heated under hydrogen pressure of 1 to 25 MPa, preferably 3 to 20 MPa, for 0.5 to 24 hours, preferably 1 to 10 hours. do it by
 水添触媒としては、パラジウム、ルテニウム、ロジウム、白金、ニッケルなどの金属触媒、またはそれらを活性炭素、活性アルミナ、珪藻土などの坦体上に担持した担持触媒等が挙げられる。このとき、粉末状の触媒を懸濁攪拌しながら反応を行うバッチ方式にすることも、成形した触媒を充填した反応塔を用いた連続方式にすることも可能であり、反応形式に特に制限はない。 Examples of hydrogenation catalysts include metal catalysts such as palladium, ruthenium, rhodium, platinum, and nickel, and supported catalysts in which these are supported on carriers such as activated carbon, activated alumina, and diatomaceous earth. At this time, it is possible to use a batch system in which the reaction is carried out while stirring the powdered catalyst in suspension, or a continuous system using a reaction tower filled with a molded catalyst, and there is no particular limitation on the reaction system. do not have.
 水添触媒の使用量は、反応がバッチ方式の場合、原料(テルペン多価フェノール共重合樹脂)に対し、0.1~30重量%、好ましくは1~20重量%である。触媒量が0.1重量%未満では、反応速度が著しく遅く、一方、30重量%を超えても触媒効果が上がらないので好ましくない。 The amount of the hydrogenation catalyst used is 0.1 to 30% by weight, preferably 1 to 20% by weight, based on the raw material (terpene polyhydric phenol copolymer resin) when the reaction is a batch system. If the amount of the catalyst is less than 0.1% by weight, the reaction rate will be extremely slow.
 水添の際、反応溶媒は用いなくてもよいが、通常、アルコール類、エーテル類、エステル類、飽和炭化水素類が好適に使用される。反応溶媒の使用量は、原料に対し、通常、10~500重量%、好ましくは50~300重量%程度である。 A reaction solvent may not be used during hydrogenation, but alcohols, ethers, esters, and saturated hydrocarbons are usually preferably used. The amount of the reaction solvent used is generally 10 to 500% by weight, preferably about 50 to 300% by weight, based on the raw materials.
 水添の際の反応温度は、特に限定されないが、通常、0~300℃、好ましくは、50~250℃である。反応温度が0℃未満であると、反応速度が著しく遅くなり、一方、300℃を超えると水素添加物の分解が多くなり、目的とする樹脂の収率が低下するおそれがある。 The reaction temperature during hydrogenation is not particularly limited, but is usually 0 to 300°C, preferably 50 to 250°C. If the reaction temperature is less than 0°C, the reaction rate will be significantly slowed. On the other hand, if it exceeds 300°C, the decomposition of the hydrogenated product will increase and the yield of the desired resin may decrease.
 上記の水素添加反応では、テルペン多価フェノール共重合樹脂中の二重結合に水素が付加し、炭素-炭素単結合が形成される。該二重結合には、多価フェノール等に由来する芳香環の二重結合も含まれる。二重結合の水素添加率は、5%以上、好ましくは10%以上、より好ましくは20%以上である。また、芳香環の水素添加率は、0.5%以上、好ましくは1%以上である。二重結合の水素添加率が高くなるほど、透明性が高く、酸化安定性に優れた樹脂となり、光学材料等の透明性が求められる用途で好ましく利用できるようになる。一方、二重結合の水素添加率が5%未満では、樹脂の色相に劣り、または酸化安定性が十分発現されない。 In the above hydrogenation reaction, hydrogen is added to the double bond in the terpene polyhydric phenol copolymer resin to form a carbon-carbon single bond. The double bond includes a double bond of an aromatic ring derived from polyhydric phenol and the like. The hydrogenation rate of double bonds is 5% or more, preferably 10% or more, more preferably 20% or more. Also, the hydrogenation rate of the aromatic ring is 0.5% or more, preferably 1% or more. The higher the degree of hydrogenation of the double bonds, the higher the transparency and oxidation stability of the resin, which can be preferably used in applications requiring transparency such as optical materials. On the other hand, if the hydrogenation rate of double bonds is less than 5%, the hue of the resin is poor, or the oxidation stability is not sufficiently exhibited.
 ここで、二重結合の水素添加率(水添率)は、H-NMR(プロトンNMR)による二重結合由来ピークの各積分値から、下記式により、算出される値である。
 水添率(%)={(A-B)/A}×100
 A:水素添加前の二重結合のピークの積分値
 B:水素添加後の二重結合のピークの積分値
Here, the hydrogenation rate (hydrogenation rate) of the double bond is a value calculated by the following formula from each integrated value of the peak derived from the double bond by 1 H-NMR (proton NMR).
Hydrogenation rate (%) = {(AB) / A} × 100
A: Integral value of double bond peak before hydrogenation B: Integral value of double bond peak after hydrogenation
 水添テルペン多価フェノール共重合樹脂の重量平均分子量(Mw)は、通常、400~5,000、好ましくは500~4,000、さらに好ましくは600~3,000である。Mwが400未満では樹脂自体のハンドリングが悪くなる、さらには配合物にした後のブリードアウトが懸念される。一方、Mwが5,000を超えると、ゴムや熱可塑性エラストマーへの溶解が著しく困難になる場合があるため好ましくない。 The weight average molecular weight (Mw) of the hydrogenated terpene polyhydric phenol copolymer resin is usually 400 to 5,000, preferably 500 to 4,000, more preferably 600 to 3,000. If the Mw is less than 400, the handling of the resin itself becomes poor, and there is concern about bleeding out after being made into a compound. On the other hand, if the Mw exceeds 5,000, it may become extremely difficult to dissolve in rubber or thermoplastic elastomer, which is not preferable.
 水添テルペン多価フェノール共重合樹脂の軟化点は、特に限定されないが、好ましくは70~180℃であり、より好ましくは80~160℃、さらに好ましくは100~140℃である。軟化点が70℃未満では、樹脂自体のハンドリングが悪くなる、さらには配合物にした後のブリードアウトが懸念される。一方、軟化点が180℃を超えると、ゴムや熱可塑性エラストマーへの溶解が著しく困難になる場合があるため好ましくない。 Although the softening point of the hydrogenated terpene polyhydric phenol copolymer resin is not particularly limited, it is preferably 70 to 180°C, more preferably 80 to 160°C, and still more preferably 100 to 140°C. If the softening point is less than 70° C., handling of the resin itself becomes poor, and there is concern about bleeding out after being made into a compound. On the other hand, if the softening point exceeds 180° C., it may become extremely difficult to dissolve in rubber or thermoplastic elastomer, which is not preferable.
 水添テルペン多価フェノール共重合樹脂の水酸基価は、混合するエラストマーの種類に応じて適当な範囲は異なるが、通常、10~300mgKOH/gの範囲であり、好ましくは20~250mgKOH/g、より好ましくは40~210mgKOH/gである。水酸基価が10mgKOH/g未満であると、金属やガラス等の高極性の被着体に対して、充分な粘接着特性を発揮できない場合があるため好ましくない。一方、水酸基価が300mgKOH/gを超えると、ゴム等の低極性エラストマーへの溶解が著しく困難になる場合がある。 The hydroxyl value of the hydrogenated terpene polyhydric phenol copolymer resin varies depending on the type of elastomer to be mixed, but is usually in the range of 10 to 300 mgKOH/g, preferably 20 to 250 mgKOH/g, and more. Preferably it is 40-210 mgKOH/g. If the hydroxyl value is less than 10 mgKOH/g, it may not be possible to exhibit sufficient adhesion and adhesion properties to highly polar adherends such as metals and glass, which is not preferable. On the other hand, if the hydroxyl value exceeds 300 mgKOH/g, it may become extremely difficult to dissolve in low-polarity elastomers such as rubber.
 本発明の水添テルペン多価フェノール共重合樹脂には、公知のフェノール系酸化防止剤、リン系酸化防止剤、硫黄系酸化防止剤など各種の添加剤を添加することができる。 Various additives such as known phenol-based antioxidants, phosphorus-based antioxidants, and sulfur-based antioxidants can be added to the hydrogenated terpene polyhydric phenol copolymer resin of the present invention.
<粘接着剤組成物>
 前記水添テルペン多価フェノール共重合樹脂は、天然ゴムや熱可塑性エラストマー等のベースポリマーに配合して、粘接着剤組成物として利用することができる。
<Adhesive composition>
The hydrogenated terpene polyhydric phenol copolymer resin can be blended with a base polymer such as natural rubber or thermoplastic elastomer and used as an adhesive composition.
 ベースポリマーとして利用可能な熱可塑性エラストマーとしては、特に限定されないが、例えば、スチレン-イソプレン-スチレンブロック共重合体、スチレン-ブタジエン-スチレンブロック共重合体、スチレン-エチレン-ブチレン-スチレンブロック共重合体、スチレン-エチレン-プロピレン-スチレンブロック共重合体などのスチレン系ブロック共重合体、エチレン-酢酸ビニル共重合体、(メタ)アクリル系共重合体、などが挙げられる。これらのうち、相溶性の観点から、特に(メタ)アクリル系重合体が好ましい。 Thermoplastic elastomers that can be used as base polymers are not particularly limited, but examples include styrene-isoprene-styrene block copolymers, styrene-butadiene-styrene block copolymers, and styrene-ethylene-butylene-styrene block copolymers. , styrene-based block copolymers such as styrene-ethylene-propylene-styrene block copolymers, ethylene-vinyl acetate copolymers, (meth)acrylic copolymers, and the like. Among these, a (meth)acrylic polymer is particularly preferable from the viewpoint of compatibility.
 (メタ)アクリル系重合体は、少なくともアルキル(メタ)アクリレートを含む重合性モノマーを重合して得られる重合体である。アルキル(メタ)アクリレートの種類としては、特に限定されるものではなく、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、ペンチル(アミル)(メタ)アクリレート、ヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、ウンデシル(メタ)アクリレート、ラウリル(ドデシル)(メタ)アクリレート、トリデシル(メタ)アクリレート、テトラデシル(メタ)アクリレート等が挙げられる。
 なお、本明細書中において「(メタ)アクリレート」とは「アクリレート」もしくは「メタクリレート」を意味する。上記アルキル(メタ)アクリレートは単独で用いられても良いし、2種類以上が併用されても良い。
A (meth)acrylic polymer is a polymer obtained by polymerizing a polymerizable monomer containing at least an alkyl (meth)acrylate. The types of alkyl (meth)acrylates are not particularly limited, and examples include methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, n-butyl ( meth)acrylate, isobutyl (meth)acrylate, t-butyl (meth)acrylate, pentyl (amyl) (meth)acrylate, hexyl (meth)acrylate, heptyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, n-octyl (meth)acrylate, isooctyl (meth)acrylate, nonyl (meth)acrylate, decyl (meth)acrylate, undecyl (meth)acrylate, lauryl (dodecyl) (meth)acrylate, tridecyl (meth)acrylate, tetradecyl (meth)acrylate, etc. is mentioned.
In addition, "(meth)acrylate" means "acrylate" or "methacrylate" in this specification. The alkyl (meth)acrylates may be used alone, or two or more of them may be used in combination.
 また、アルキル(メタ)アクリレート以外の重合性モノマーとして、共重合可能な極性基含有ビニルモノマーが更に含有されていてもよい。
 この極性基含有ビニルモノマーは、後述する様に、例えばイソシアネート系架橋剤、エポキシ系架橋剤及びアジリジン系架橋剤等、特定の官能基を有する架橋剤と効果的に架橋構造を形成して凝集力と耐反発性の両立を図ったり、更には、必要に応じて、共重合体のTgや粘接着性等を調整したりするために用いられる。
Moreover, a copolymerizable polar group-containing vinyl monomer may be further contained as a polymerizable monomer other than the alkyl (meth)acrylate.
As will be described later, the polar group-containing vinyl monomer effectively forms a crosslinked structure with a crosslinker having a specific functional group such as an isocyanate crosslinker, an epoxy crosslinker, and an aziridine crosslinker to form a cohesive force. It is used to achieve compatibility with repulsion resistance and, if necessary, to adjust the Tg, tackiness, etc. of the copolymer.
 極性基含有ビニルモノマーの具体例としては、スチレン、α-メチルスチレン、o-メチルスチレン、p-メチルスチレン等のスチレン系モノマー;酢酸ビニル等のカルボン酸ビニルエステル;(メタ)アクリル酸、イタコン酸等のビニル基を含有するカルボン酸;前記ビニル基を有するカルボン酸の無水物;2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、カプロラクトン変性(メタ)アクリレート、ポリオキシエチレン(メタ)アクリレート、ポリオキシプロピレン(メタ)アクリレート等の水酸基を有するビニルモノマー;(メタ)アクリロニトリル、N-ビニルピロリドン、N-ビニルカプロラクタム、N-ビニルラウリロラクタム、(メタ)アクリロイルモルホリン、(メタ)アクリルアミド、ジメチル(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、N-ブトキシメチル(メタ)アクリルアミド、ジメチルアミノメチル(メタ)アクリレート等の窒素含有ビニルモノマーが挙げられる。
 上記、極性基含有ビニルモノマーは、単独で用いられても良いし、2種類以上併用されても良い。
Specific examples of polar group-containing vinyl monomers include styrene-based monomers such as styrene, α-methylstyrene, o-methylstyrene and p-methylstyrene; carboxylic acid vinyl esters such as vinyl acetate; (meth)acrylic acid and itaconic acid. Carboxylic acid containing a vinyl group such as; anhydride of the carboxylic acid having a vinyl group; 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, caprolactone modification vinyl monomers having a hydroxyl group such as (meth)acrylate, polyoxyethylene (meth)acrylate, polyoxypropylene (meth)acrylate; nitrogen-containing vinyl monomers such as (meth)acryloylmorpholine, (meth)acrylamide, dimethyl(meth)acrylamide, N-methylol(meth)acrylamide, N-butoxymethyl(meth)acrylamide, dimethylaminomethyl(meth)acrylate; .
The above polar group-containing vinyl monomers may be used alone, or two or more of them may be used in combination.
 さらに、本発明において、上記ベースポリマーには、多官能(メタ)アクリレートを微量配合することによって、アクリル系共重合体の重合と同時に架橋を行わせることもできる。
 このような多官能(メタ)アクリレートとしては、例えば、1、4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、グリセリンメタクリレートアクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリメタクリレート、(メタ)アクリル酸アリル、(メタ)アクリル酸ビニル、ジビニルベンゼン、エポキシ(メタ)アクリレート、ポリエステル(メタ)アクリレート及びウレタン(メタ)アクリレート等が挙げられる。これらは単独で用いられても、2種類以上併用されても良い。
 多官能(メタ)アクリレートの配合量は、通常、アクリル系共重合体100重量部に対して0~5重量部である。
Furthermore, in the present invention, by blending a small amount of polyfunctional (meth)acrylate into the base polymer, crosslinking can be carried out simultaneously with the polymerization of the acrylic copolymer.
Examples of such polyfunctional (meth)acrylates include 1,4-butanediol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate, (Poly)ethylene glycol di(meth)acrylate, (poly)propylene glycol di(meth)acrylate, neopentyl glycol di(meth)acrylate, pentaerythritol di(meth)acrylate, glycerin methacrylate acrylate, pentaerythritol tri(meth)acrylate , trimethylolpropane trimethacrylate, allyl (meth)acrylate, vinyl (meth)acrylate, divinylbenzene, epoxy (meth)acrylate, polyester (meth)acrylate and urethane (meth)acrylate. These may be used alone or in combination of two or more.
The amount of the polyfunctional (meth)acrylate compounded is usually 0 to 5 parts by weight with respect to 100 parts by weight of the acrylic copolymer.
 前記(メタ)アクリル系重合体は、少なくとも一種のアルキル(メタ)アクリレートとその他の重合性モノマーを(共)重合することによって製造することができる。重合反応の様式は、特に限定されないが、ラジカル重合あるいはアニオン重合が好ましい。また、重合方法としては、塊状重合法、溶液重合法、懸濁重合法、乳化重合法等の従来公知の方法により製造することができ、溶液重合法や塊状重合法で製造することが好ましい。
 また、2種類以上の重合性モノマーを共重合する場合、モノマーのシーケンスは特に限定されず、ランダム、交互、ブロックのいずれでもよい。
The (meth)acrylic polymer can be produced by (co)polymerizing at least one alkyl (meth)acrylate and other polymerizable monomers. Although the mode of the polymerization reaction is not particularly limited, radical polymerization or anionic polymerization is preferred. As the polymerization method, conventionally known methods such as bulk polymerization method, solution polymerization method, suspension polymerization method and emulsion polymerization method can be used, and the solution polymerization method and bulk polymerization method are preferable.
Moreover, when two or more types of polymerizable monomers are copolymerized, the sequence of the monomers is not particularly limited, and may be random, alternating, or block.
 ラジカル重合の場合、必要に応じて過酸化ベンゾイルや過酸化ラウロイル等の過酸化物系重合開始剤、アゾビスイソブチルニトリル等のアゾ系重合開始剤等のほか、光重合開始剤として、アセトフェノン系重合開始剤、ベンゾインエーテル系重合開始剤、ベンジルケタール系重合開始剤、アシルフォスフィンオキシド系重合開始剤、ベンゾイン系重合開始剤、ベンゾフェノン系重合開始剤等を使用することができる。 In the case of radical polymerization, if necessary, peroxide polymerization initiators such as benzoyl peroxide and lauroyl peroxide, azo polymerization initiators such as azobisisobutylnitrile, etc., as well as photopolymerization initiators such as acetophenone polymerization Initiators such as benzoin ether-based polymerization initiators, benzyl ketal-based polymerization initiators, acylphosphine oxide-based polymerization initiators, benzoin-based polymerization initiators, and benzophenone-based polymerization initiators can be used.
 一方、アニオン重合の重合開始剤としてはリチウム、ナトリウム、カリウムなどのアルカリ金属、メチルリチウム、エチルリチウム、n-ブチルリチウム、s-ブチルリチウム、t-ブチルリチウムなどのアルキルリチウム化合物、リチウム-ナフタレン錯体、ナトリウム-ナフタレン錯体、カリウム-ナフタレン錯体などのアルカリ金属-ナフタレン錯体のほか、グリニャール試薬、ケチルアニオンラジカル錯体、エノラートアニオン、t-ブトキシカリウムなどのアルコキシドアニオン、リチウムアルミニウムハイドライド等を使用することができる。
 重合開始剤の使用量は特に制限はないが、通常、使用する重合性モノマーの総量100重量部に対して0~5重量部である。
On the other hand, polymerization initiators for anionic polymerization include alkali metals such as lithium, sodium and potassium, alkyllithium compounds such as methyllithium, ethyllithium, n-butyllithium, s-butyllithium and t-butyllithium, and lithium-naphthalene complexes. , sodium-naphthalene complexes, potassium-naphthalene complexes and other alkali metal-naphthalene complexes, as well as Grignard reagents, ketyl anion radical complexes, enolate anions, alkoxide anions such as t-butoxypotassium, lithium aluminum hydride, and the like. .
The amount of the polymerization initiator to be used is not particularly limited, but is usually 0 to 5 parts by weight per 100 parts by weight of the total amount of polymerizable monomers used.
 重合反応の溶媒は特に使用しなくてもよいが、反応液の粘度上昇を抑えたり、反応中の温度制御を容易にしたりする目的で溶媒を使用してもよく、例えば、ラジカル重合においては、酢酸エチル、酢酸メチルなどのエステル類、アセトン、メチルエチルケトンなどのケトン類、メタノール、エタノール、ブタノールなどのアルコール類、シクロヘキサン、ヘキサン、ヘプタンなどの脂肪族炭化水素類、トルエン、キシレンなどの芳香族炭化水素類などがある。一方、アニオン重合においては、ヘキサン、ヘプタン、シクロヘキサンなどの脂肪族炭化水素、ベンゼン、トルエン、キシレンなどの芳香族炭化水素のほか、ジエチルエーテル、テトラヒドロフラン、テトラヒドロピラン、1,4-ジオキサン、1,2-ジメトキシエタン、アニソールなどのエーテル類や、トリエチルアミン、ピリジンなどの第三級アミン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドなどの非プロトン性極性溶媒等を使用することができる。これらの溶媒は、一種を単独で使用してもよいし、二種以上を混合使用してもよい。 A solvent in the polymerization reaction does not have to be used in particular, but a solvent may be used for the purpose of suppressing the viscosity increase of the reaction solution and facilitating temperature control during the reaction. Esters such as ethyl acetate and methyl acetate, ketones such as acetone and methyl ethyl ketone, alcohols such as methanol, ethanol, and butanol, aliphatic hydrocarbons such as cyclohexane, hexane, and heptane, and aromatic hydrocarbons such as toluene and xylene. There are types. On the other hand, in anionic polymerization, in addition to aliphatic hydrocarbons such as hexane, heptane and cyclohexane, aromatic hydrocarbons such as benzene, toluene and xylene, diethyl ether, tetrahydrofuran, tetrahydropyran, 1,4-dioxane, 1,2 Ethers such as dimethoxyethane and anisole, tertiary amines such as triethylamine and pyridine, and aprotic polar solvents such as N,N-dimethylformamide and N,N-dimethylacetamide can be used. These solvents may be used singly or in combination of two or more.
 上記方法で得られた(メタ)アクリル系重合体の重量平均分子量は、ゲルパーミエーションクロマトグラフ(GPC)で測定される標準ポリスチレン換算で、30万~300万であるものを使用することが好ましく、50万~250万であるものを使用することがより好ましい。 The (meth)acrylic polymer obtained by the above method preferably has a weight average molecular weight of 300,000 to 3,000,000 in terms of standard polystyrene measured by gel permeation chromatography (GPC). , 500,000 to 2,500,000.
 本発明の粘接着剤組成物は、前記ベースポリマー100重量部に対し、本発明の水添テルペン多価フェノール共重合樹脂を1~300重量部、好ましくは5~100重量部、より好ましくは10~60重量部の割合で配合したものである。水添テルペン多価フェノール共重合樹脂が1重量部未満では、水添テルペン多価フェノール共重合樹脂を配合した効果が分かりづらくなる。一方、300重量部を超えると、粘接着剤の粘度が高くなりすぎ、ボールタック、接着力、保持力の粘着特性のバランスが悪くなる。 The adhesive composition of the present invention contains 1 to 300 parts by weight, preferably 5 to 100 parts by weight, more preferably 5 to 100 parts by weight of the hydrogenated terpene polyhydric phenol copolymer resin of the present invention with respect to 100 parts by weight of the base polymer. It is blended at a ratio of 10 to 60 parts by weight. If the hydrogenated terpene polyhydric phenol copolymer resin is less than 1 part by weight, the effect of blending the hydrogenated terpene polyhydric phenol copolymer resin becomes difficult to understand. On the other hand, if it exceeds 300 parts by weight, the viscosity of the pressure-sensitive adhesive becomes too high, and the balance of adhesive properties such as ball tack, adhesive strength, and holding power deteriorates.
 本発明の粘接着剤組成物は、必要に応じて架橋剤を含有していてもよい。架橋剤としては、例えば、ポリイソシアネート、エポキシ樹脂、ポリカルボジイミド化合物、アジリジン化合物、多価金属塩、金属キレート等が挙げられる。これら架橋剤の少なくとも1種を使用することによって、ポリマー鎖やその他の配合剤との結合により凝集力の向上が図れ、高温時の保持力、定荷重を上昇させることが可能となる。 The adhesive composition of the present invention may contain a cross-linking agent as necessary. Examples of cross-linking agents include polyisocyanates, epoxy resins, polycarbodiimide compounds, aziridine compounds, polyvalent metal salts, metal chelates, and the like. By using at least one of these cross-linking agents, it is possible to improve the cohesive strength by bonding with polymer chains and other compounding agents, and to increase the holding power and constant load at high temperatures.
 架橋剤の含有量は、その種類によっても変わるが、(メタ)アクリル系重合体100重量部に対して、通常、0.005~10重量部の範囲であり、好ましくは1.0~5重量部である。架橋剤が0.005重量部未満の場合は耐熱性の不足や、被着体への接着力の低下を引き起こす場合がある。一方、10重量部を越える場合は、架橋が過剰となり易く、柔軟性が低下し、被着体への密着性が低下し、剥離力が不十分になり易い。また、余剰の架橋剤が粘接着物性を低下させることもある。 The content of the cross-linking agent varies depending on its type, but is usually in the range of 0.005 to 10 parts by weight, preferably 1.0 to 5 parts by weight, per 100 parts by weight of the (meth)acrylic polymer. Department. If the amount of the cross-linking agent is less than 0.005 parts by weight, the heat resistance may be insufficient, and the adhesion to the adherend may be lowered. On the other hand, if it exceeds 10 parts by weight, the cross-linking tends to be excessive, the flexibility tends to decrease, the adhesion to the adherend tends to decrease, and the peel strength tends to be insufficient. In addition, the excessive cross-linking agent may deteriorate adhesive properties.
 本発明の粘接着剤組成物は、架橋剤を用いた場合、架橋構造を形成するために加熱工程を経るのが好ましい。加熱工程は、被着体に貼付前であっても良く、貼付後であっても良い。基材上に粘着剤層が積層されたテープとして用いる場合は、基材上に粘接着剤組成物を塗布後に加熱するのが、生産効率上好ましい。加熱温度は使用する架橋剤の種類によって適宜設定するものであるが、通常、40℃から130℃の範囲であり、好ましくは50℃~100℃である。加熱時間は30分から7日、好ましくは1時間から5日である。 When using a cross-linking agent, the adhesive composition of the present invention preferably undergoes a heating step to form a cross-linked structure. The heating step may be performed before or after application to the adherend. When used as a tape in which an adhesive layer is laminated on a substrate, it is preferable from the standpoint of production efficiency to heat the substrate after applying the adhesive composition. The heating temperature is appropriately set according to the type of cross-linking agent used, but is usually in the range of 40°C to 130°C, preferably 50°C to 100°C. The heating time is 30 minutes to 7 days, preferably 1 hour to 5 days.
 本発明の粘接着剤組成物には、さらに必要に応じて、可塑剤、軟化剤、顔料、充填剤、希釈剤、老化防止剤、紫外線吸収剤、酸化防止剤、光安定剤、界面活性剤、剥離調整剤、静電防止剤等の添加剤を含有していてもよく、その形態は、溶液型、水分散型、UV硬化型、ホットメルト型等のいずれであってもよい。 The adhesive composition of the present invention may further contain plasticizers, softeners, pigments, fillers, diluents, anti-aging agents, UV absorbers, antioxidants, light stabilizers, surfactants, if necessary. Additives such as agents, release modifiers, and antistatic agents may be contained, and the form thereof may be any of solution type, water dispersion type, UV curing type, hot melt type, and the like.
 本発明の粘接着剤組成物は、粘着シートまたは粘着テープに塗布して使用する事も出来る。その場合、支持体としては、特に制限されないが、例えば、プラスチックフィルム、紙、不織布のほか、金属箔やプラスチック製あるいはゴム製の発泡体などのシートあるいはテープ状のもの等が適用できる。 The adhesive composition of the present invention can also be used by applying it to an adhesive sheet or adhesive tape. In this case, the support is not particularly limited, and for example, plastic film, paper, non-woven fabric, sheet or tape such as metal foil, plastic or rubber foam can be used.
 本発明の粘接着剤組成物を上記支持体へ加工する方法としては、特に限定されない。例えば、アクリル系ポリマーを主剤とする溶剤型アクリル系粘着剤組成物の製造方法としては、有機溶剤、例えばトルエンや酢酸エチルと、アクリル系ポリマーと本発明の水添テルペン多価フェノール共重合樹脂および架橋剤の混合物を攪拌溶解させ、固形分含有量10~70重量%の粘着液として調製する。このように調製した粘接着剤組成物を、例えばロールコーターやバーコーターなどで支持体に塗布し、加熱して溶剤を揮散させることにより粘着テープまたは粘着シートが得られる。粘着剤層の厚みは特に制限されないが、通常0.01~1.0mm程度である。 The method of processing the adhesive composition of the present invention into the support is not particularly limited. For example, a method for producing a solvent-type acrylic pressure-sensitive adhesive composition containing an acrylic polymer as a main component includes an organic solvent such as toluene or ethyl acetate, an acrylic polymer and the hydrogenated terpene polyhydric phenol copolymer resin of the present invention, and A mixture of cross-linking agents is stirred and dissolved to prepare a sticky liquid having a solid content of 10 to 70% by weight. The pressure-sensitive adhesive composition prepared in this manner is applied to a support using, for example, a roll coater or a bar coater, and heated to volatilize the solvent to obtain a pressure-sensitive adhesive tape or pressure-sensitive adhesive sheet. Although the thickness of the adhesive layer is not particularly limited, it is usually about 0.01 to 1.0 mm.
 本発明の粘接着剤組成物に適用される被着体としては、特に限定されず、例えば、木材、金属、プラスチック、ゴム、コンクリート、ガラス、タイル、セラミックス、複合材料などが挙げられる。なかでも、コンクリート、ガラス、タイル、セラミックスなどの高極性の被着体に対しては良好な粘接着特性を発揮しうるため好ましい。その詳細な原理は明らかではないが、水添テルペン多価フェノール共重合樹脂の構造中に近接して存在する複数の水酸基が、被着体上の水酸基と強固な水素結合を形成するためと考えられる。 The adherend to which the pressure-sensitive adhesive composition of the present invention is applied is not particularly limited, and examples thereof include wood, metal, plastic, rubber, concrete, glass, tiles, ceramics, and composite materials. Among them, it is preferable because it can exhibit good adhesion and adhesion properties to highly polar adherends such as concrete, glass, tiles, and ceramics. Although the detailed principle is not clear, it is thought that multiple hydroxyl groups existing in close proximity in the structure of the hydrogenated terpene polyphenol copolymer resin form strong hydrogen bonds with the hydroxyl groups on the adherend. be done.
 本発明の粘接着剤組成物は、ガラス等の高極性の被着体に対する高い固定性を有している。また、耐熱安定性、透明性に優れているので、光学・エレクトロニクス分野をはじめ、建築分野、歯科を含む医療分野など各種用途に使用可能である。 The adhesive composition of the present invention has high fixability to highly polar adherends such as glass. In addition, since it is excellent in heat resistance stability and transparency, it can be used in various fields such as the field of optics and electronics, the field of architecture, and the field of medicine including dentistry.
 以下、本発明を実施例及び比較例によりさらに具体的に説明する。ただし、本発明は、実施例により限定されるものではない。
 なお、(水添)テルペン多価フェノール共重合樹脂の軟化点、および水酸基価は、本明細書の各測定項目に記載の方法で測定した。また、水添率、分子量、および色相の測定は、以下の方法によった。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. However, the present invention is not limited by the examples.
The softening point and hydroxyl value of the (hydrogenated) terpene polyhydric phenol copolymer resin were measured by the methods described in each measurement item in the specification. Further, the hydrogenation rate, molecular weight and hue were measured by the following methods.
(水添率)
 核磁気共鳴装置AVANCEIII 600MHz(BRUKER製)にて、プロトン核磁気共鳴(1H-NMR)スペクトルを測定した。重水素溶媒として、1,1,2,2-テトラクロロエタン-d2を使用した。水添前と水添後の各樹脂の二重結合由来ピークの積分値より、上述の計算式により水添率を算出した。
(分子量)
 ゲルパーミエーションクロマトグラフィー(GPC)を用い、標準ポリスチレン換算の分子量を測定した。検出器は示差屈折計WATERS2414(WATERS製)、ポンプにWATERS515高速液体クロマトグラフィー(WATERS製)、カラムにTSK-gel G2000H8×2およびG3000HXL×1(TOSOH製)を用いた。測定条件は、溶離液にテトラヒドロフランを用い、流速1.0mL/分とし、試料濃度5mg/mLの試料溶液を250μL注入して測定した。
(色相)
 試料10gをトルエン10gに溶解し、分光色彩・ヘーズメーターCOH7700(日本電色工業製)を用い、ガードナースケールで測定した。
(Hydrogenation rate)
A proton nuclear magnetic resonance (1H-NMR) spectrum was measured with a nuclear magnetic resonance apparatus AVANCE III 600 MHz (manufactured by BRUKER). 1,1,2,2-tetrachloroethane-d2 was used as the deuterated solvent. The degree of hydrogenation was calculated by the above formula from the integrated values of the double bond-derived peaks of each resin before and after hydrogenation.
(molecular weight)
Using gel permeation chromatography (GPC), the molecular weight in terms of standard polystyrene was measured. Differential refractometer WATERS2414 (manufactured by WATERS) was used as a detector, WATERS515 high performance liquid chromatography (manufactured by WATERS) as a pump, and TSK-gel G2000H8×2 and G3000HXL×1 (manufactured by TOSOH) as columns. Measurement conditions were as follows: tetrahydrofuran was used as an eluent, the flow rate was 1.0 mL/min, and 250 μL of sample solution with a sample concentration of 5 mg/mL was injected for measurement.
(hue)
10 g of the sample was dissolved in 10 g of toluene, and measured with a Gardner scale using a spectral color/haze meter COH7700 (manufactured by Nippon Denshoku Industries).
 製造例1(テルペン多価フェノール共重合樹脂の製造)
 撹拌装置、還流冷却機、温度計、滴下用ポンプおよび窒素ガス吹き込み口を備えたフラスコに、トルエン300g、カテコール55g(0.5mol)および三フッ化ホウ素ジエチルエーテル錯体20gを仕込み攪拌を開始した。この中に、α-ピネン272g(2.0mol)を、反応温度25~30℃で6時間かけて滴下した。滴下後1時間反応させ、その後水洗し、245℃、3mmHgの減圧蒸留にて蒸留を行い、軟化点126℃の赤褐色のテルペン多価フェノール共重合樹脂225gを得た。Mn(数平均分子量)、Mw(重量平均分子量)、Mz(Z平均分子量)は、それぞれ、610,745,870であった。また、水酸基価は120mgKOH/g、色相(ガードナースケール)は14であった。得られたテルペン多価フェノール共重合樹脂のGPCチャート、1H-NMRチャートをそれぞれ図1~図2に示す。
Production Example 1 (Production of terpene polyhydric phenol copolymer resin)
300 g of toluene, 55 g (0.5 mol) of catechol, and 20 g of boron trifluoride diethyl ether complex were introduced into a flask equipped with a stirrer, reflux condenser, thermometer, dropping pump and nitrogen gas inlet, and stirring was started. Into this, 272 g (2.0 mol) of α-pinene was added dropwise over 6 hours at a reaction temperature of 25 to 30°C. After dropping, the reaction mixture was allowed to react for 1 hour, then washed with water, and distilled at 245°C under reduced pressure of 3 mmHg to obtain 225 g of a reddish brown terpene polyhydric phenol copolymer resin having a softening point of 126°C. Mn (number average molecular weight), Mw (weight average molecular weight) and Mz (Z average molecular weight) were 610, 745 and 870, respectively. Further, the hydroxyl value was 120 mgKOH/g, and the hue (Gardner scale) was 14. The GPC chart and 1H-NMR chart of the obtained terpene polyhydric phenol copolymer resin are shown in FIGS. 1 and 2, respectively.
 製造例2(水添テルペン多価フェノール共重合樹脂の製造)
 製造例1で得られたテルペン多価フェノール共重合樹脂100g、2-プロパノール100g、および粉末状の5%パラジウム担持アルミナ触媒5gをオートクレーブに仕込み、次いで、これを密閉し、雰囲気を水素ガスで置換した後、水素ガス1MPaの圧力をかけながら導入した。そして攪拌しながら加熱し180℃となったところで、水素の圧力を5MPaとし、吸収された水素を補うことで圧力を5MPaに保ちながら1時間反応させた。反応後、触媒をろ過し、2-プロパノールを減圧蒸留にて除去して、軟化点130℃の水添テルペン多価フェノール共重合樹脂100gを得た。Mn、Mw、Mzの値は、それぞれ、620、750、870であった。また、水酸基価は119mgKOH/g、色相(ガードナースケール)は2、水添率は30%であった。
Production Example 2 (Production of hydrogenated terpene polyhydric phenol copolymer resin)
100 g of the terpene polyhydric phenol copolymer resin obtained in Production Example 1, 100 g of 2-propanol, and 5 g of a powdery 5% palladium-supported alumina catalyst were placed in an autoclave, which was then sealed and the atmosphere was replaced with hydrogen gas. After that, hydrogen gas was introduced while applying a pressure of 1 MPa. Then, when the mixture was heated to 180° C. with stirring, the hydrogen pressure was adjusted to 5 MPa, and the reaction was carried out for 1 hour while maintaining the pressure at 5 MPa by compensating for the absorbed hydrogen. After the reaction, the catalyst was filtered and 2-propanol was removed by distillation under reduced pressure to obtain 100 g of a hydrogenated terpene polyhydric phenol copolymer resin having a softening point of 130°C. The values of Mn, Mw and Mz were 620, 750 and 870, respectively. Further, the hydroxyl value was 119 mgKOH/g, the hue (Gardner scale) was 2, and the hydrogenation rate was 30%.
 製造例3~20
 使用したテルペン系化合物、多価フェノール系化合物の種類とそれらの混合比率、および水添時間を表1のように変更した以外は製造例1,2と同様の方法で、共重合反応および必要に応じて水添反応を行ない、表1の各項目に記載の性状を有する樹脂を得た。
 なお、製造例4で得られた水添テルペン多価フェノール共重合樹脂のGPCチャート、1H-NMRチャートを、それぞれ図3~図4に示す。
Production Examples 3-20
In the same manner as in Production Examples 1 and 2, except that the terpene compound used, the type of polyhydric phenol compound and their mixing ratio, and the hydrogenation time were changed as shown in Table 1, the copolymerization reaction and, if necessary, A hydrogenation reaction was carried out accordingly to obtain a resin having the properties described in each item in Table 1.
The GPC chart and 1H-NMR chart of the hydrogenated terpene polyhydric phenol copolymer resin obtained in Production Example 4 are shown in FIGS. 3 and 4, respectively.
 実施例1~15,比較例1~9
 (粘接着剤組成物の評価)
 アクリル系ブロック共重合体(クラリティLA2140(株式会社クラレ製))100重量部に対して、上記で製造した(水添)テルペン多価フェノール共重合樹脂、または市販の粘着付与樹脂30重量部と、可塑剤として液状アクリルポリマー(アルフォンUP-1061(東亞合成株式会社製))20重量部を混合しアクリル系粘接着剤組成物を調製した。この粘接着剤組成物を38μm厚のPETフィルム上に30μm厚の粘着剤層となるように塗工後、乾燥して粘着シートを作製した。
Examples 1-15, Comparative Examples 1-9
(Evaluation of adhesive composition)
Per 100 parts by weight of an acrylic block copolymer (Clarity LA2140 (manufactured by Kuraray Co., Ltd.)), the (hydrogenated) terpene polyhydric phenol copolymer resin produced above, or 30 parts by weight of a commercially available tackifying resin, An acrylic adhesive composition was prepared by mixing 20 parts by weight of a liquid acrylic polymer (ALPHON UP-1061 (manufactured by Toagosei Co., Ltd.)) as a plasticizer. This pressure sensitive adhesive composition was coated on a 38 μm thick PET film so as to form a 30 μm thick pressure sensitive adhesive layer, and then dried to prepare a pressure sensitive adhesive sheet.
 なお、市販の粘着付与樹脂としては、下記の樹脂を使用した。
 比較例6:テルペンフェノール樹脂A(YSポリスターT115、ヤスハラケミカル株式会社製)
 比較例7:テルペンフェノール樹脂B(YSポリスターK125、ヤスハラケミカル株式会社製)
 比較例8:水添テルペンフェノール樹脂(YSポリスターNH、ヤスハラケミカル株式会社製)
 比較例9:ロジンエステル樹脂(スーパーエステルA100、荒川化学工業株式会社製)
In addition, the following resin was used as a commercially available tackifying resin.
Comparative Example 6: Terpene Phenolic Resin A (YS Polyster T115, manufactured by Yasuhara Chemical Co., Ltd.)
Comparative Example 7: Terpene Phenolic Resin B (YS Polyster K125, manufactured by Yasuhara Chemical Co., Ltd.)
Comparative Example 8: Hydrogenated Terpene Phenolic Resin (YS Polyster NH, manufactured by Yasuhara Chemical Co., Ltd.)
Comparative Example 9: Rosin ester resin (Super Ester A100, manufactured by Arakawa Chemical Industries, Ltd.)
 得られた粘着シートについて、以下に記載した方法によりループタック(対SUS、ガラス、PE)、接着力(対SUS、ガラス、PE)、保持力(対SUS、PE)および耐候性を評価した。これらの結果は表2に示される通りであった。 The resulting pressure-sensitive adhesive sheet was evaluated for loop tack (against SUS, glass, PE), adhesive strength (against SUS, glass, PE), holding power (against SUS, PE), and weather resistance by the methods described below. These results were as shown in Table 2.
 (ループタック)
 粘着シートの試験片の粘着剤面を外側にして輪を作り、被着体に対して25mm×25mmを密着させ、すぐに引き離したときの値を引っ張り試験機で測定した。引張り速度は300mm/分、測定温度は23℃とした。
(loop tuck)
A loop was formed with the adhesive surface of the test piece of the adhesive sheet facing outward, and a 25 mm×25 mm area was brought into close contact with the adherend, and the value when immediately pulled apart was measured with a tensile tester. The pulling speed was 300 mm/min, and the measurement temperature was 23°C.
 (粘着力)
 幅25mm、長さ約200mmに切断したシートをSUS板、ガラス板もしくはポリエチレン(PE)板に23℃雰囲気下で2kgのローラーを2往復させて貼り合わせ、貼り合わせ30分後に23℃雰囲気下で180°ピール接着力を測定した。測定には引っ張り試験機を使用し、引っ張り速度は300mm/分で行った。
(Adhesive force)
A sheet cut into a width of 25 mm and a length of about 200 mm was laminated to a SUS plate, glass plate or polyethylene (PE) plate by reciprocating a 2 kg roller twice in an atmosphere of 23°C. 180° peel adhesion was measured. A tensile tester was used for the measurement, and the tensile speed was 300 mm/min.
 (剪断接着破壊温度試験(SAFT))
 幅25mm、長さ約200mmに切断したシートを、23℃雰囲気下でSUS板もしくはPE板に25mm長さ、2kgのローラーを2往復させて貼り合わせた。貼り合わせ30分後に40℃雰囲気下に30分静置し、その後1Kgの荷重をかけた。荷重をかけると同時に5分間に2℃の割合で昇温させ、試験片が被着体から落下した時の温度を読み取った。
(Shear Adhesion Failure Temperature Test (SAFT))
A sheet cut into a width of 25 mm and a length of about 200 mm was attached to a SUS plate or a PE plate in an atmosphere of 23° C. by reciprocating a roller of 25 mm in length and 2 kg twice. After 30 minutes from bonding, it was allowed to stand in an atmosphere of 40° C. for 30 minutes, and then a load of 1 kg was applied. Simultaneously with applying the load, the temperature was raised at a rate of 2° C. for 5 minutes, and the temperature was read when the test piece dropped from the adherend.
 (耐候性)
 スガ試験機(株)製テーブルサンXT750を用い、50℃環境下で48,000lxの光を試験片に100時間照射した後の粘着剤の状態を観察した。粘着剤が黄変し、表面がひび割れているものを×、何も変化がないものを〇とした。

 
(Weatherability)
Using a table sun XT750 manufactured by Suga Test Instruments Co., Ltd., the state of the adhesive was observed after irradiating the test piece with light of 48,000 lx for 100 hours in a 50° C. environment. When the adhesive turned yellow and cracked on the surface, it was evaluated as x, and when there was no change, it was evaluated as ◯.


 

 
 表2から明らかなように、アクリル系粘着剤に本発明の水添テルペン多価フェノール共重合樹脂を配合すると、未水添のテルペン多価フェノール共重合樹脂等と比較して耐候性が良好で、かつ粘接着特性、とりわけガラスに対するタックや粘着力を向上できる。 As is clear from Table 2, when the hydrogenated terpene polyhydric phenol copolymer resin of the present invention is mixed with an acrylic pressure-sensitive adhesive, the weather resistance is better than that of an unhydrogenated terpene polyhydric phenol copolymer resin or the like. , and adhesive properties, especially tack and adhesion to glass, can be improved.
 本発明の水添テルペン多価フェノール共重合樹脂は、ゴムや熱可塑性エラストマー等の改質効果に優れており、粘着剤、接着剤、ポリマー改質剤、シーリング剤、ゴム用添加剤、塗料改質剤等として有用である。
 その他にも、高分子材料、ポリマー材料、相溶化剤、結晶核剤、表面改質剤、フィラー分散改良剤、繊維分散改良剤、可塑剤、滑剤、硬化剤、結合材、油脂、トラフィックペイント、インキ、印刷インキ、トナー、糊剤、サイズ剤、紙力増強剤、道路舗装用組成物、土木建築材料、高分子材料用原料、改質剤など様々な用途に幅広く利用でき、産業上において非常に有用な効果を持つ。

 
The hydrogenated terpene polyhydric phenol copolymer resin of the present invention is excellent in the effect of modifying rubber, thermoplastic elastomers, etc. It is useful as a pawn and the like.
In addition, polymer materials, polymer materials, compatibilizers, crystal nucleating agents, surface modifiers, filler dispersion improvers, fiber dispersion improvers, plasticizers, lubricants, curing agents, binders, oils and fats, traffic paints, It can be widely used in various applications such as inks, printing inks, toners, sizing agents, sizing agents, paper strength agents, road pavement compositions, civil engineering and construction materials, raw materials for polymer materials, modifiers, etc. have a useful effect on

Claims (11)

  1.  テルペン系化合物と多価フェノール系化合物を共重合させて得られるテルペン多価フェノール共重合樹脂を、水素添加してなる水添テルペン多価フェノール共重合樹脂。 A hydrogenated terpene-polyphenol copolymer resin obtained by hydrogenating a terpene-polyphenol copolymer resin obtained by copolymerizing a terpene-based compound and a polyhydric phenol-based compound.
  2.  テルペン系化合物が、α-ピネン、β-ピネン、リモネン、ジペンテン、Δ3-カレン、アロオシメン、オシメン及びミルセンの群から選択された少なくとも1種である請求項1に記載の水添テルペン多価フェノール共重合樹脂。 The hydrogenated terpene polyhydric phenol covalent according to claim 1, wherein the terpene compound is at least one selected from the group consisting of α-pinene, β-pinene, limonene, dipentene, Δ3-carene, alloocimene, ocimene and myrcene. Polymeric resin.
  3.  多価フェノール系化合物が、一般式(1)である請求項1または2に記載の水添テルペン多価フェノール共重合樹脂。
    (R1は水素原子または炭素1~10のアルキル基またはアルケニル基、R2は炭素数1~15のアルキル基またはアルケニル基、nは1~3の整数、mは0~2の整数、ただし、nとmの合計は3以下。nが2以上の場合、2以上のR1は互いに同一でも異なっていてもよい。mが2以上の場合、2以上のR2は互いに同一でも異なっていてもよい。)
    3. The hydrogenated terpene polyhydric phenol copolymer resin according to claim 1 or 2, wherein the polyhydric phenol compound is represented by general formula (1).
    (R1 is a hydrogen atom or an alkyl or alkenyl group having 1 to 10 carbon atoms; R2 is an alkyl or alkenyl group having 1 to 15 carbon atoms; n is an integer of 1 to 3; m is an integer of 0 to 2; and m are 3 or less.When n is 2 or more, two or more R1 may be the same or different.When m is 2 or more, two or more R2 may be the same or different. )
  4.  多価フェノール系化合物が、カテコール、レゾルシノール、ピロガロール及びグアイアコールから選択された少なくとも1種である請求項1~3いずれかに記載の水添テルペン多価フェノール共重合樹脂。 The hydrogenated terpene polyhydric phenol copolymer resin according to any one of claims 1 to 3, wherein the polyhydric phenol compound is at least one selected from catechol, resorcinol, pyrogallol and guaiacol.
  5.  テルペン系化合物の共重合比が、20~99モル%である請求項1~4いずれかに記載の水添テルペン多価フェノール共重合樹脂。 The hydrogenated terpene polyhydric phenol copolymer resin according to any one of claims 1 to 4, wherein the copolymerization ratio of the terpene compound is 20 to 99 mol%.
  6.  GPC(ゲルパーミエーションクロマトグラフィー)法のポリスチレン換算の重量平均分子量(Mw)が400~5,000である請求項1~5いずれかに記載の水添テルペン多価フェノール共重合樹脂。 The hydrogenated terpene polyhydric phenol copolymer resin according to any one of claims 1 to 5, wherein the polystyrene-equivalent weight average molecular weight (Mw) of the GPC (gel permeation chromatography) method is 400 to 5,000.
  7.  軟化点が70~180℃である請求項1~6いずれかに記載の水添テルペン多価フェノール共重合樹脂。 The hydrogenated terpene polyhydric phenol copolymer resin according to any one of claims 1 to 6, which has a softening point of 70 to 180°C.
  8.  水酸基価が10~300mgKOH/gである請求項1~7いずれかに記載の水添テルペン多価フェノール共重合樹脂。 The hydrogenated terpene polyhydric phenol copolymer resin according to any one of claims 1 to 7, which has a hydroxyl value of 10 to 300 mgKOH/g.
  9.  水添率が5~100%である請求項1~8いずれかに記載の水添テルペン多価フェノール共重合樹脂。 The hydrogenated terpene polyhydric phenol copolymer resin according to any one of claims 1 to 8, which has a hydrogenation rate of 5 to 100%.
  10.  テルペン系化合物と多価フェノール系化合物を共重合させて得られるテルペン多価フェノール共重合樹脂を水素添加する、請求項1~9いずれかに記載の水添テルペン多価フェノール共重合樹脂の製造方法。 The method for producing a hydrogenated terpene-polyphenol copolymer resin according to any one of claims 1 to 9, wherein a terpene-polyphenol copolymer resin obtained by copolymerizing a terpene-based compound and a polyhydric phenol-based compound is hydrogenated. .
  11.  ベースポリマー100重量部に対し、請求項1~9いずれかに記載の水添テルペン多価フェノール共重合樹脂を1~300重量部の割合で配合してなる粘接着剤組成物。

     
    A pressure sensitive adhesive composition comprising 1 to 300 parts by weight of the hydrogenated terpene polyhydric phenol copolymer resin according to any one of claims 1 to 9 with respect to 100 parts by weight of the base polymer.

PCT/JP2023/003227 2022-02-04 2023-02-01 Hydrogenated terpene-polyphenol copolymer resin and adhesive composition containing said copolymer resin WO2023149474A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-016314 2022-02-04
JP2022016314A JP2023114141A (en) 2022-02-04 2022-02-04 Hydrogenated terpene-polyphenol copolymer resin

Publications (1)

Publication Number Publication Date
WO2023149474A1 true WO2023149474A1 (en) 2023-08-10

Family

ID=87552507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/003227 WO2023149474A1 (en) 2022-02-04 2023-02-01 Hydrogenated terpene-polyphenol copolymer resin and adhesive composition containing said copolymer resin

Country Status (2)

Country Link
JP (1) JP2023114141A (en)
WO (1) WO2023149474A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58136627A (en) * 1982-02-09 1983-08-13 Nippon Oil & Fats Co Ltd Coating composition for polypropylene resin
JPH09208919A (en) * 1996-01-30 1997-08-12 Toagosei Co Ltd Hot-melt adhesive composition for optical type disk
JPH09278933A (en) * 1996-04-11 1997-10-28 Mitsubishi Cable Ind Ltd Resin composition containing magnetic material
JP2000053937A (en) * 1998-08-04 2000-02-22 Toyo Ink Mfg Co Ltd Reactive hot-melt adhesive
JP2001011409A (en) * 1999-04-28 2001-01-16 Yokohama Rubber Co Ltd:The Hot melt adhesive composition
JP2004284575A (en) * 2003-03-06 2004-10-14 Hitachi Kasei Polymer Co Ltd Precoated surface material for vehicular interior material and manufacturing method of vehicular interior material
WO2022045306A1 (en) * 2020-08-28 2022-03-03 積水化学工業株式会社 Compound, method for producing compound, adhesive composition and adhesive tape

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58136627A (en) * 1982-02-09 1983-08-13 Nippon Oil & Fats Co Ltd Coating composition for polypropylene resin
JPH09208919A (en) * 1996-01-30 1997-08-12 Toagosei Co Ltd Hot-melt adhesive composition for optical type disk
JPH09278933A (en) * 1996-04-11 1997-10-28 Mitsubishi Cable Ind Ltd Resin composition containing magnetic material
JP2000053937A (en) * 1998-08-04 2000-02-22 Toyo Ink Mfg Co Ltd Reactive hot-melt adhesive
JP2001011409A (en) * 1999-04-28 2001-01-16 Yokohama Rubber Co Ltd:The Hot melt adhesive composition
JP2004284575A (en) * 2003-03-06 2004-10-14 Hitachi Kasei Polymer Co Ltd Precoated surface material for vehicular interior material and manufacturing method of vehicular interior material
WO2022045306A1 (en) * 2020-08-28 2022-03-03 積水化学工業株式会社 Compound, method for producing compound, adhesive composition and adhesive tape

Also Published As

Publication number Publication date
JP2023114141A (en) 2023-08-17

Similar Documents

Publication Publication Date Title
TWI664255B (en) Pressure-sensitive adhesive composition and pressure-sensitive adhesive sheet
CN107709387B (en) Hydrocarbon resin, process for producing hydrocarbon resin, and adhesive composition
JPH09511260A (en) Radial Styrene-Isopropylene-Butadiene Multiple Limb Block Copolymers And Compositions And Those Containing Copolymers
JP2017512860A5 (en)
KR101655131B1 (en) Tackifier, adherence adhesive, acrylic adherence adhesive and radiation curable acrylic adherence adhesive
CN113416518A (en) Pressure sensitive adhesive
JP2007224258A (en) Acrylic pressure-sensitive adhesive composition
EP4087882B1 (en) Farnesene-based tackifying resins and adhesive compositions containing the same
CN102348766A (en) Modifier for resins, adhesive compositions, and thermoplastic resin compositions
Baek et al. Eco-friendly UV-curable pressure sensitive adhesives containing acryloyl derivatives of monosaccharides and their adhesive performances
WO2022045306A1 (en) Compound, method for producing compound, adhesive composition and adhesive tape
JP7080020B2 (en) Resin-like compounds, pressure-sensitive adhesive compositions and elastomer compositions
JP2010215880A (en) Terpene-based liquid resin, and adhesive composition blending the same
WO2004052955A1 (en) Method for producing petroleum resin and hydrogenated petroleum resin
WO2023149474A1 (en) Hydrogenated terpene-polyphenol copolymer resin and adhesive composition containing said copolymer resin
JP2003128714A (en) Method for producing partially polymerized acrylic polymer composition, partially polymerized acrylic polymer composition produced by the production method and adhesive composition produced by ultraviolet polymerization of the composition
CN109679528A (en) A kind of toilet seat hot-fusible pressure-sensitive adhesive and preparation method thereof
JP2003096116A (en) Photopolymerizable composition, pressure-sensitive adhesive, and pressure-sensitive adhesive sheet
KR102188079B1 (en) Petroleum Resin, Adhesive Composition Comprising the Same and Adhesive Tape
JP2017052945A (en) Plasticizer and adhesive composition for optical use
JP4998767B2 (en) Method for producing acrylic polymer composition, adhesive / adhesive containing acrylic polymer composition obtained by the production method, and active energy ray-curable resin composition
JP7105581B2 (en) Acrylic adhesive composition and acrylic adhesive processed product
KR102122943B1 (en) Adhesive Composition and Adhesive Tape Comprising the Same
US20060205876A1 (en) Block copolymers comprising a mixed block derived from isoprene and butadiene and compositions comprising them
US11168156B2 (en) Hydrocarbon resin, method for preparing hydrocarbon resin, and adhesive composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23749790

Country of ref document: EP

Kind code of ref document: A1