WO2023149407A1 - 肺間葉細胞の製造方法および肺間葉細胞 - Google Patents

肺間葉細胞の製造方法および肺間葉細胞 Download PDF

Info

Publication number
WO2023149407A1
WO2023149407A1 PCT/JP2023/002943 JP2023002943W WO2023149407A1 WO 2023149407 A1 WO2023149407 A1 WO 2023149407A1 JP 2023002943 W JP2023002943 W JP 2023002943W WO 2023149407 A1 WO2023149407 A1 WO 2023149407A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
pulmonary
mesenchymal cells
mesenchymal
cell
Prior art date
Application number
PCT/JP2023/002943
Other languages
English (en)
French (fr)
Inventor
慎平 後藤
浩二 玉井
Original Assignee
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学 filed Critical 国立大学法人京都大学
Priority to JP2023578547A priority Critical patent/JPWO2023149407A1/ja
Publication of WO2023149407A1 publication Critical patent/WO2023149407A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues

Definitions

  • the present invention relates to a method for producing pulmonary mesenchymal cells and pulmonary mesenchymal cells.
  • the alveolar organoids can be created by co-culturing lung progenitor cells derived from the pluripotent stem cells and human fetal fibroblasts (HFLF).
  • HFLF human fetal fibroblasts
  • Non-Patent Documents 1 and 2 Although HFLF is an allogeneic but not autologous cell, there is a problem of graft rejection when the resulting alveolar organoids are transplanted. In addition, HFLF is difficult to obtain and is ethically problematic because it is a fetal-derived cell.
  • the present inventors developed a method of creating alveolar organoids without using the HFLF.
  • type II alveolar epithelial cells are mainly induced, and the induction of type I alveolar epithelial cells is difficult. Therefore, it was suggested that HFLF is important as supporting cells in the creation of the alveolar organoids. Therefore, there is a need for a method of inducing mesenchymal cells that function as support cells, similar to HFLF.
  • the present disclosure aims to provide a method for producing pulmonary mesenchymal cells that can be used as supporting cells in the induction of alveolar epithelial cells.
  • the method for producing pulmonary mesenchymal cells of the present disclosure comprises culturing mesoderm cells in the presence of a mesenchymal cell inducer and KGF and FGF10 to induce differentiation into pulmonary mesenchymal cells. Including the step of inducing.
  • the cell population containing mesenchymal cells of the present disclosure (hereinafter also referred to as "cell population”) contains lung mesenchymal cells expressing RSPO2 and/or RSPO3.
  • the cell population containing mesenchymal cells of the present disclosure consists of FOXF1 (Forkhead box protein F1), TCF21 (Transcription factor 21), TBX4 (T-Box Transcription Factor 4), and OSR1 (Odd-Skipped Related Transcription Factor) Lung mesenchymal cells expressing at least one transcription factor selected from the group.
  • FOXF1 Formhead box protein F1
  • TCF21 Transcription factor 21
  • TBX4 T-Box Transcription Factor 4
  • OSR1 Odd-Skipped Related Transcription Factor
  • the method for producing lung epithelial cells and/or airway epithelial cells of the present disclosure comprises culturing lung progenitor cells in the presence of pulmonary mesenchymal cells to obtain lung epithelial cells and/or A step of inducing differentiation into airway epithelial cells,
  • the pulmonary mesenchymal cells are pulmonary mesenchymal cells obtained by the method for producing pulmonary mesenchymal cells of the present disclosure and/or a cell population containing the mesenchymal cells of the present disclosure.
  • the pharmaceutical composition of the present disclosure contains pulmonary mesenchymal cells obtained by the method for producing pulmonary mesenchymal cells of the present disclosure and/or a cell population containing the mesenchymal cells of the present disclosure.
  • FIG. 1 is a schematic diagram showing an outline of a method for inducing pulmonary mesenchymal cells and pulmonary progenitor cells and forming alveolar organoids in Example 1.
  • FIG. 2 is a photograph showing a phase-contrast image and an Oil Red O-stained image showing the differentiated state of cells after culture in Example 1.
  • FIG. 3 is a graph showing flow cytometry analysis in Example 1.
  • FIG. 4 is a graph showing gene expression in cells at each culture stage in Example 1.
  • FIG. 5 is a photograph showing a fluorescent image of cells on day 7 of culture in Example 1.
  • FIG. 6 is a graph showing the results of examination of alveolar organoids in Example 1.
  • FIG. 7 is photographs and graphs showing the expression of various cell markers in alveolar organoids in Example 1.
  • FIG. 1 is a schematic diagram showing an outline of a method for inducing pulmonary mesenchymal cells and pulmonary progenitor cells and forming alveolar organoids in Example 1.
  • FIG. 2 is a photograph
  • FIG. 8 is a schematic diagram showing an overview of the assay system in Example 2.
  • FIG. 9 shows the expression of iMES markers in Example 2.
  • FIG. 10 is a diagram relating to the ability to form organoids in Example 2.
  • FIG. 11 shows the results of RNA-Seq analysis in Example 2.
  • FIG. 12 is a diagram showing relative expression levels of Wnt ligands in Example 2.
  • FIG. 13 is a diagram showing the culture method and analysis results of SFTPC-GFP-positive cells in Example 2.
  • FIG. 14 is a diagram showing the results of cluster analysis of each mesenchymal cell in Example 2.
  • FIG. 15 is a diagram showing the results of passage of type II alveolar epithelial cells in Example 3.
  • FIG. 16 shows the results of cluster analysis of scRNA-seq analysis in Example 4.
  • FIG. 17 shows results showing ligand-receptor interactions in Example 4.
  • FIG. 18 is a graph showing the results of SFTPC-GFP-positive cells/EPCAM-positive cells in
  • marker means a nucleic acid, gene, polypeptide, or protein that is expressed to different extents in cells of interest. If said marker is a positive marker, said different degree means increased expression compared to undifferentiated cells. When said marker is a negative marker, said different degree means reduced expression compared to undifferentiated cells.
  • positive (+) means that the cell expresses a detectable marker.
  • the “positive (+)” is typically detected by an analysis method such as flow cytometry using an antigen-antibody reaction, using a negative control cell that does not express the antigen or an antibody that does not react with the antigen. Means that a higher signal is detected compared to the negative control reaction.
  • the above-mentioned “express” means that the expression level of the marker gene in the reference sample and the marker gene in the target sample is compared by RT-PCR or the like, and the increase in the expression level of the marker gene is found in the target sample.
  • the expression level is the expression level corrected by an internal standard gene (eg, ⁇ -actin gene).
  • the reference sample can be induced pluripotent stem cells (iPS cells).
  • negative (-) means that the cell does not express a detectable marker.
  • the “negative (-)” is typically determined using negative control cells that do not express the antigen or an antibody that does not react with the antigen by an analysis method such as flow cytometry that is detected using an antigen-antibody reaction. Means that an equal or lesser signal is detected compared to the negative control reaction.
  • the “not expressed” means that the expression level of the marker gene in the reference sample and the marker gene in the target sample is compared by RT-PCR or the like, and the expression level of the marker gene is decreased in the target sample. means to be seen The expression level is the expression level corrected by an internal standard gene (eg, ⁇ -actin gene).
  • the reference sample can be induced pluripotent stem cells (iPS cells).
  • pluripotent cells mean cells that have the potential to differentiate into ectoderm, mesoderm, and endoderm cells. When the pluripotent cells have self-renewal ability, the pluripotent cells can also be called pluripotent stem cells.
  • mesoderm cells are destined to have the ability to differentiate into connective tissue such as bone, cartilage, blood vessels, and lymphatic vessels; muscle tissue; express mesodermal cell markers such as NCAM (neural cell adhesion molecule), PDGFR ⁇ (Platelet Derived Growth Factor Receptor ⁇ ), KDR (Kinase Insert Domain Receptor), ISL1, NKX2-5 and/or OSR1 cells, preferably cells expressing NCAM, PDGFR ⁇ , and/or KDR, and more preferably cells expressing NCAM and/or PDGFR ⁇ .
  • NCAM neural cell adhesion molecule
  • PDGFR ⁇ Platinum Derived Growth Factor Receptor ⁇
  • KDR Kinase Insert Domain Receptor
  • ISL1, NKX2-5 and/or OSR1 cells preferably cells expressing NCAM, PDGFR ⁇ , and/or KDR, and more preferably cells expressing NCAM and/or PDGFR ⁇ .
  • endodermal cells (definitive endoderm: DE), if there is a developmentally appropriate stimulation, thymus; digestive organs such as the stomach, intestines and liver; respiratory organs such as the trachea, bronchi and lungs; and urinary organs such as bladder and urethra; mean cells that are destined to have differentiation potential and express SOX17 (SRY (sex determining region Y)-box 17) and FOXA2 (Forkhead box protein A2) are cells.
  • SOX17 SRY (sex determining region Y)-box 17)
  • FOXA2 Formhead box protein A2
  • anterior foregut endoderm cells are, if there is an embryologically appropriate stimulus, the thymus; It means cells that are destined to have the potential to differentiate into respiratory organs such as, and are cells that express SOX2, SOX17, and FOXA2.
  • ventral anterior foregut endoderm (also called ventral anterior foregut cell) is an embryologically appropriate stimulus to the thyroid and lungs. It refers to cells that are destined to have differentiation potential, and are cells that express NKX2.1, GATA6 (GATA-binding factor 6), and HOPX (homeodomain-only protein).
  • mesenchymal cells are cells derived from mesodermal cells, and have the ability to differentiate into connective tissues such as bone, cartilage, blood vessels, and lymphatics when given developmentally appropriate stimulation.
  • VIM Vehiclein
  • THY1 Thy-1 Cell Surface Antigen, CD90
  • PDGFR ⁇ PDGFR ⁇
  • COL1A1 Collagen Type I Alpha 1 Chain
  • NCAM NCAM
  • KDR KDR
  • leaf cell markers preferably cells expressing VIM, THY1, and/or COL1A1.
  • the mesenchyme is also called mesenchyme. Therefore, the mesenchymal cells are also called mesenchymal cells.
  • pulmonary mesenchymal cells are mesoderm-derived cells that, upon developmentally appropriate stimulation, are destined to have the potential to differentiate into connective tissue of the lung. means, in addition to the mesenchymal cell markers, FOXF1 (Forkhead box protein F1), TCF21 (Transcription factor 21) and / or TBX4 (T-Box Transcription Factor 4) is a cell expressing.
  • FOXF1 Formhead box protein F1
  • TCF21 Transcription factor 21
  • TBX4 T-Box Transcription Factor 4
  • the pulmonary mesenchymal cells are fibroblast markers (e.g., NCAM (neural cell adhesion molecule), ADRP (Adipose differentiation-related protein), and/or COL1A1 (Collagen, type I, alpha 1), and ACTA2 (actin alpha 2), etc.), the pulmonary mesenchymal cells can also be referred to as pulmonary fibroblasts.
  • NCAM neural cell adhesion molecule
  • ADRP Adipose differentiation-related protein
  • COL1A1 Collagen, type I, alpha 1
  • ACTA2 actin alpha 2
  • pulmonary progenitor cells refer to cells that are committed to have the potential to differentiate into alveolar epithelial cells and/or airway epithelial cells upon developmentally appropriate stimulation.
  • the lung progenitor cells are carboxypeptidase M (CPM), NK2 homeobox 1 (NKX2.1 or NKX2-1), SRY-box 9 (SRY (sex determining region Y)-box 9, SOX9), SRY- Cells expressing box 2 (SRY (sex determining region Y)-box 2, SOX2) and/or forkhead box protein 2A (FOXA2).
  • the lung progenitor cells are preferably CPM and/or NKX2.1 positive cells.
  • alveolar epithelial cells mean epithelial cells present in the alveoli of the lung.
  • examples of the alveolar epithelial cells include type I alveolar epithelial cells and/or type II alveolar epithelial progenitor cells.
  • type I alveolar epithelial cells means epithelial cells having a histologically flattened shape, PDPN (Podoplanin), AGER (Advanced Glycosylation End-Product Specific Receptor), CAV1 ( Caveolin 1), HOPX (HOP Homeobox), and/or AQP5 (Aquaporin 5) expressing cells.
  • type II alveolar epithelial cells means epithelial cells that produce pulmonary surfactant proteins such as SFTPC (Surfactant protein C) and SFTPB (Surfactant protein B).
  • SFTPC Sudfactant protein C
  • SFTPB Sudfactant protein B
  • ABCA3 ATP-binding cassette sub-family A member 3
  • DCLAMP Lisosome-associated membrane glycoprotein 3
  • SLC34A2 Sodium-dependent phosphate transport protein 2B
  • a "cell population” means a collection of cells containing desired cells and composed of one or more cells.
  • the ratio of desired cells to all cells also referred to as “purity”
  • the purity is, for example, the percentage in viable cells.
  • the purity can be measured, for example, by flow cytometry, immunohistochemistry, in situ hybridization, RT-PCR, single cell analysis, and the like.
  • Desired cell purity in the cell population is, for example, 5% or more, 10% or more, 20% or more, 30% or more, 40% or more, 50% or more, 55% or more, 60% or more, 65% or more, 70% or more % or more, 75% or more, 80% or more, 85% or more, 90% or more, 91% or more, 92% or more, 93% or more, 94% or more, 95% or more, 96% or more, 97% or more, 98% or more , or greater than or equal to 99%.
  • isolated refers to identified and separated, or identified and separated and/or identified and recovered from a component in its natural state, or It means the state recovered from the ingredients in their natural state. Said “isolation” can be carried out, for example, by obtaining at least one purification step.
  • enrichment means increasing the content ratio of target cells compared to the state before treatment, or a state in which the content ratio is increased. Said enrichment can also be referred to as enrichment. Said enrichment does not comprise, for example, culturing.
  • protein or “polypeptide” means a polymer composed of unmodified amino acids (natural amino acids), modified amino acids, and/or artificial amino acids.
  • nucleic acid molecule or “nucleic acid” means a polymer of deoxyribonucleotides (DNA), ribonucleotides (RNA), and/or modified nucleotides.
  • the nucleic acid molecule may be a single-stranded nucleic acid molecule or a double-stranded nucleic acid molecule.
  • subject means an animal or an animal-derived cell, tissue, or organ. In particular, it is used in the sense of including humans. Said animal means both human and non-human animals. Examples of non-human animals include mammals such as mice, rats, rabbits, dogs, cats, cows, horses, pigs, monkeys, dolphins, and sea lions.
  • treatment means therapeutic treatment and/or prophylactic treatment.
  • treatment means treating, curing, preventing, arresting, ameliorating, ameliorating a disease, condition, or disorder, or halting, arresting, reducing, or delaying the progression of a disease, condition, or disorder. do.
  • prevention means reducing the likelihood of developing a disease or condition or delaying the onset of a disease or condition.
  • the “treatment” may be, for example, treatment of a patient who develops the target disease, or treatment of a model animal of the target disease.
  • sequence information of the proteins described herein or the nucleic acids (eg, DNA or RNA) encoding them are available from Protein Data Bank, UniPort, Genbank, or the like.
  • the present disclosure provides methods of producing pulmonary mesenchymal cells or pulmonary mesenchymal cells that can be used to form alveolar organoids.
  • the method for producing pulmonary mesenchymal cells of the present disclosure includes the step of culturing mesodermal cells in the presence of a mesenchymal cell inducer and KGF and/or FGF10 to induce differentiation into pulmonary mesenchymal cells. .
  • pulmonary mesenchymal cells that can be used to form alveolar organoids can be provided.
  • the alveolar organoids include, for example, type I alveolar epithelial cells, type II alveoli Includes airway epithelial cells such as epithelial cells and airway ciliated epithelial cells. Therefore, according to the method for producing pulmonary mesenchymal cells of the present disclosure, for example, pulmonary mesenchymal cells can be provided as supporting cells that can replace HFLF.
  • the mesoderm cells used for inducing the pulmonary mesenchymal cells can be derived, for example, from pluripotent cells. Therefore, the method for producing lung mesenchymal cells of the present disclosure may induce differentiation of the mesodermal cells from the pluripotent cells prior to the induction of the lung mesenchymal cells from the mesodermal cells.
  • the method for producing pulmonary mesenchymal cells of the present disclosure includes, for example, the step of culturing pluripotent cells in the presence of a mesoderm-inducing factor to induce differentiation into the mesoderm cells (first induction process).
  • the pluripotent cells are cultured in a medium containing the mesoderm-inducing factor to differentiate into cells that express the mesoderm cell marker, i.e., mesoderm cells. That is, the pluripotent cells and the mesoderm-inducing factors are brought into contact and cultured to differentiate into mesoderm cells. See, for example, References 1-4 below for the induction of said mesoderm cells from said pluripotent cells.
  • the mesoderm inducer by culturing using a GSK3 ⁇ inhibitor, activin A, and / or BMP4, from the pluripotent cells to the medium It can induce germ layer cells.
  • one type of the mesoderm-inducing factor may be used, or a plurality of types may be used.
  • said mesoderm-inducing factor is preferably said GSK3 ⁇ inhibitor.
  • the mesoderm-inducing factor is, for example, a combination of the GSK3 ⁇ inhibitor, the activin A, and/or BMP4; the GSK3 ⁇ inhibitor, and the activin A, and combinations of said BMP4;
  • the mesoderm-inducing factor is a peptide or protein
  • the mesoderm-inducing factor is, for example, a peptide or protein derived from an animal species different from or the same as the animal species from which the pluripotent cells are derived.
  • Lefty may be used instead of Activin A.
  • BMP2, BMP6 and/or BMP7 may be used instead of BMP4.
  • Reference 1 Han, L., Chaturvedi et al. “Single cell transcriptomics identifies a signaling network coordinating endoderm and mesoderm diversification during foregut organogenesis.” Nat Commun, 2020, 11, 4158.
  • Reference 2 Kishimoto, K. et al, “Bidirectional Wnt signaling between endoderm and mesoderm confers tracheal identity in mouse and human cells.” Nat Commun, 2020, 11, 4159.
  • Reference 3 Loh, KM et al., “Mapping the Pairwise Choices Leading from Pluripotency to Human Bone, Heart, and Other Mesoderm Cell Types.” Cell, 2016, 166, 451-467.
  • Reference 4 Xi, H. et al. “In Vivo Human Somitogenesis Guides Somite Development from hPSCs.” Cell Rep, 2017, 18, 1573-1585.
  • the pluripotent cells include, for example, induced pluripotent stem cells (iPS cells), totipotent stem cells such as embryonic stem cells (ES cells); hematopoietic stem cells, neural stem cells, mesenchymal stem cells and the like pluripotent stem cells such as tissue stem cells or somatic stem cells;
  • iPS cells induced pluripotent stem cells
  • ES cells embryonic stem cells
  • hematopoietic stem cells hematopoietic stem cells
  • neural stem cells mesenchymal stem cells and the like pluripotent stem cells
  • tissue stem cells or somatic stem cells pluripotent stem cells
  • ES cells for example, human embryonic stem cell lines such as H1, H7, and H9 (available from WiCell Research Institute) can be used.
  • the ES cells may be prepared, for example, by culturing cell masses isolated from animal blastocysts.
  • reference document 5 below can be referred to for the method of inducing the ES cells.
  • Reference 5 Thomson JA et al., "Embryonic stem cell lines derived from human blastocysts.”, Science, 1998, vol. 282, pages 1145-1147
  • iPS cells As the iPS cells, 201B7 (available from RIKEN BRC), 604A1 (available from iPS Research Institute, Kyoto University), etc. can be used.
  • the iPS cells can be prepared, for example, by introducing reprogramming factors into target cells.
  • the reprogramming factors are, for example, Oct3/4, Sox2, Sox1, Sox3, Sox15, Sox17, Klf4, Klf2, c-Myc, N-Myc, L-Myc, Nanog, Lin28, Fbx15, ERAs, ECAT15-2, Tcl1, beta-catenin, Lin28b, Sall1, Sall4, Esrrb, Nr5a2, Tbx3, Glis1 and the like, and specific examples include combinations of Oct3/4, Sox2, Klf4, L-Myc, and Lin28.
  • the GSK3 ⁇ inhibitor may be any substance that inhibits the kinase activity of the GSK3 ⁇ protein (for example, the ability to phosphorylate ⁇ -catenin).
  • BIO GSK-3 ⁇ inhibitor IX: 6-bromoindirubin '-oxime
  • SB216763 (3-(2,4-dichlorophenyl)-4-(1-methyl-1H-indol-3-yl)-1H-pyrrole-2,5-dione
  • SB415286 Maleimide derivatives such as 3-[(3-chloro-4-hydroxyphenyl)amino]-4-(2-nitrophenyl)-1H-pyrrole-2,5-dione
  • SK-3 ⁇ inhibitor VII (4-dibromo Acetophenone) and other phenyl ⁇ -bromomethyl ketone compounds
  • cell membrane-permeable phosphorylated peptides such as L803-mts (GSK-3 ⁇ peptide inhibitor; (2,4-Dichloroph
  • Activin A is a protein (SEQ ID NO: 49) encoded by a polynucleotide registered with NCBI under accession number NM_002192.
  • the activin A may be a functional equivalent of the activin A.
  • the functional equivalent is a substance capable of activating SMAD2/3 signaling via activin receptors (ACVR1/2) like activin A.
  • Examples of functional equivalents of activin A include Nodal and Lefty.
  • the BMP4 is a protein encoded by a polynucleotide registered with NCBI under accession numbers NM_001202, NM_001347914, NM_001347916, NM_130850, or NM_130851.
  • An example of the BMP4 is a protein consisting of the amino acid sequence of SEQ ID NO: 50 below.
  • BMP4 (SEQ ID NO: 50) MIPGNRMLMVVLLCQVLLGGASHASLIPETGKKKVAEIQGHAGGRRSGQSHELLRDFEATLLQMFGLRRRPQPSKSAVIPDYMRDLYRLQSGEEEEEQIHSTGLEYPERPASRANTVRSFHHEEHLENIPGTSENSAFRFLFNLSSIPENEVISSAELRLFREQVDQGPDWERGFHRINIYEVMKPPAEVVPGHLITRLLDTRLVHHNVTRWETFDVSPA VLRWTREKQPNYGLAIEVTHLHQTRTHQGQHVRISRSLPQGSGNWAQLRPLLVTFGHDGRGHALTRRRRAKRSPKHHSQRARKKNKNCRRHSLYVDFSDVGWNDWIVAPPGYQAFYCHGDCPFPLADHLNSTNHAIVQTLVNSVNSSIPKACCVPTELSAISMLYLDEYDKVVLKNYQEMVVEGCGCR
  • the BMP4 may be a functional equivalent of the BMP4.
  • the functional equivalent is a substance capable of activating SMAD1/5/8 signaling via BMP receptors (BMPR1/2) like BMP4.
  • Examples of functional equivalents of BMP4 include BMP2, BMP6, and BMP7.
  • the concentration of the mesoderm-inducing factor in the first induction step is not particularly limited as long as it is an effective concentration at which each factor exhibits the activity of inducing mesoderm cells.
  • the concentration of CHIR99021 in the medium is, for example, 0.1 to 20 ⁇ mol/l.
  • activin A is used as the mesoderm-inducing factor
  • the concentration of activin A in the medium is, for example, 1-100 ng/ml.
  • BMP4 is used as the mesoderm inducer
  • the concentration of BMP4 in the medium is 1-100 ng/ml.
  • the medium can be prepared using a medium used for culturing animal cells as a basal medium.
  • the basal medium is, for example, IMDM medium, Medium199 medium, Eagle's Minimum Essential Medium (EMEM) medium, ⁇ MEM medium, Dulbecco's modified Eagle's Medium (DMEM) medium, Ham's F12 medium, RPMI1640 medium, Fischer's medium, Neurobasal Medium (Thermo Fisher Scientific company), stem cell culture medium (e.g., mTeSR-1 (manufactured by STEMCELL Technologies), TeSR-E8 (manufactured by STEMCELL Technologies), CDM-PVA, StemPRO hESC SFM (manufactured by Life Technologies), E8 (manufactured by Life Technologies )) and their mixed media.
  • IMDM medium Medium199 medium
  • EMEM Eagle's Minimum Essential Medium
  • DMEM Dulbecco's modified Eagle's Medium
  • Ham's F12 medium RPMI1640 medium
  • the medium may be serum-supplemented or serum-free.
  • the medium includes, for example, albumin, transferrin, Knockout Serum Replacement (KSR) (serum replacement for ES cell culture), N2 supplement (manufactured by Invitrogen), B27 supplement (manufactured by Invitrogen), fatty acid, insulin, collagen precursor , trace elements, 2-mercaptoethanol, 3'-thiolglycerol and other serum replacements.
  • the medium contains lipids, amino acids, L-glutamine, Glutamax (manufactured by Invitrogen), non-essential amino acids, vitamins, growth factors, low-molecular-weight compounds, antibiotics, antioxidants, pyruvic acid, buffers, inorganic salts, etc. may contain additives.
  • the medium is preferably a stem cell culture medium supplemented with glutamic acid and antibiotics.
  • the culture period in the first induction step may be any period during which the mesodermal cells can differentiate, for example, 1 to 7 days, 1 to 5 days, or 2 to 4 days.
  • the culture conditions in the first induction step for example, normal conditions for cell culture can be adopted.
  • the culture temperature is, for example, 25-40°C, 30-40°C, or about 37°C.
  • the carbon dioxide concentration during culture is 1-10%, 3-7%, or about 5%.
  • the culture is performed, for example, in a moist environment.
  • the differentiation of the mesodermal cells can be detected, for example, by loss of expression of the mesodermal cell markers and/or loss of expression of the pluripotent cell markers.
  • the mesoderm cell markers include, for example, NCAM, PDGFR ⁇ , KDR, ISL1, NKX2-5, and/or OSR1.
  • Said mesodermal cell marker is preferably NCAM, PDGFR ⁇ and/or KDR, more preferably NCAM and/or PDGFR ⁇ , or NCAM and PDGFR ⁇ .
  • Markers of pluripotent stem cells are, for example, ABCG2, Cripto, FOXD3, Connexin43, Connexin45, Oct4, Sox2, Nanog, hTERT, UTF1, ZFP42, SSEA-3, SSEA-4, TRA-1-60, TRA-1 -81 and the like.
  • the content ratio (lower limit) of the mesoderm cells in the total cells (cell population) after the induction is, for example, 5% or more, 10% or more, based on the number of cells, 20% or more, 30% or more, 40% or more, 50% or more, 55% or more, 60% or more, 65% or more, 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 91% 92% or more, 93% or more, 94% or more, 95% or more, 96% or more, 97% or more, 98% or more, or 99% or more.
  • the content ratio (upper limit) is, for example, 100% or less, 99% or less, 98% or less, 97% or less, 96% or less, 95% or less, 94% or less, 93% or less, 92%, based on the number of cells % or less, 91% or less, 90% or less, 85% or less, 80% or less, 75% or less, 70% or less, 65% or less, 60% or less, 55% or less, or 50% or less.
  • the numerical range of the content ratio can be, for example, any combination of the lower limit and the upper limit.
  • the content ratio when cultured for 3 days in the first induction step, the content ratio is, for example, 30 to 60%.
  • the content ratio is lowered, for example, by shortening the number of culture days in the first induction step.
  • the content ratio increases, for example, by lengthening the number of culture days in the first induction step.
  • the mesoderm cells are cultured in the presence of a mesenchymal cell inducer and KGF and FGF10 to induce differentiation into pulmonary mesenchymal cells (second induction step).
  • the mesoderm cells are cultured in a medium containing the mesenchymal cell inducer, and cells expressing the mesenchymal cell marker, i.e., pulmonary mesenchymal cells, etc. Differentiate into mesenchymal cells.
  • mesenchymal cells are differentiated by culturing the mesenchymal cells in contact with the mesenchymal cell inducer.
  • the mesenchymal cell inducer includes activin A, FGF2, BMP4, retinoic acid (RA), PDGFbb (platelet-derived growth factor bb), Wnt inducer and/or, said pulmonary mesenchymal cells can be induced from said mesoderm cells by culturing with a GSK3 ⁇ inhibitor and KGF (FGF7) and/or FGF10.
  • the pulmonary mesenchymal cells can be induced by coexisting KGF and FGF10 in the mesenchymal cell induction method.
  • References 6 and 7 below, for example, can be referred to for methods for inducing the mesenchymal cells.
  • one type of mesenchymal cell-inducing factor may be used, or a plurality of types may be used.
  • the mesenchymal cell inducer is preferably BMP4 or FGF2.
  • the mesenchymal cell inducer is, for example, a combination of the activin A, the FGF2, and the BMP4; retinoic acid, BMP4, and a Wnt inhibitor; /or combinations of GSK3 ⁇ inhibitors (reference 6); combinations of FGF2 and PDGFbb (reference 7);
  • the mesenchymal cell inducer is a peptide or protein
  • the mesoderm inducer is, for example, a peptide or protein derived from an animal species different from or the same as the animal species from which the mesoderm cells are derived.
  • KGF and FGF10 are, for example, peptides or proteins derived from animal species different from or the same as the animal species from which said mesoderm cells are derived.
  • FGF1 may be used instead of FGF2.
  • FGF3 and/or FGF22 may be used instead of KGF and FGF10 (references 8-9).
  • the Wnt inhibitor and GSK3 ⁇ inhibitor can refer to the examples given below. Reference 6: Han, Lu et al. “Single cell transcriptomics identifies a signaling network coordinating endoderm and mesoderm diversification during foregut organogenesis.” Nature communications vol. 11,1 4158. 27 Aug.
  • Reference 7 Takebe, Takanori et al. “Massive and Reproducible Production of Liver Buds Entirely from Human Pluripotent Stem Cells.” Cell reports vol. 21,10 (2017): 2661-2670. doi:10.1016/j.celrep.2017.11 .005
  • Reference 8 Morichika Konishi, et al., “Regulation of biological functions by extracellular secretory factor FGF21,” Internet ⁇ https://seikagaku.jbsoc.or.jp/10.14952/SEIKAGAKU.2016.880086/index.html>
  • Reference 9 Hui, Qi et al. “FGF Family: From Drug Development to Clinical Application.” International journal of molecular sciences vol. 19,7 1875. 26 Jun. 2018, doi:10.3390/ijms19071875
  • the FGF2 is a protein (SEQ ID NO: 51 below) encoded by a polynucleotide registered with NCBI under accession number NM_002006.
  • the FGF2 may be in an activated form after being cleaved by a protease.
  • FGF2 (SEQ ID NO:51) MVGVGGGDVEDVTPRPGGCQISGRGARGCNGIPGAAAWEAALPRRRPRRHPSVNPRSRAAGSPRTRGRRTEERPSGSRLGDRGRGRALPGGRLGGRGRAPERVGGRGRGTAAPRAAPAARGSRPGPAGTMAAGSITTLPALPEDGGSGAFPPGHFKDPKRLYCKNGGFFLRIHPDGRVDGVREKSDPHIKLQLQAEERGVVSIKGVCANRYLAMKEDGRLLASKC VTDECFFFFERLESNNYNTYRSRKYTSWYVALKRTGQYKLGSKTGPGQKAILFLPMSAKS
  • the FGF2 may be a functional equivalent of the FGF2.
  • the functional equivalent is a substance capable of activating Ras-Raf via FGF receptors (FGFR1 or FGFR4) like FGF2.
  • Examples of functional equivalents of FGF2 include FGF1 belonging to the FGF1 subfamily like FGF2.
  • the KGF is a protein encoded by a polynucleotide registered with NCBI under accession number NM_002009.
  • the KGF may be in an activated form after being cleaved by a protease.
  • the KGF may be a functional equivalent of the KGF.
  • the functional equivalent is a substance capable of activating Ras-Raf via FGF receptors (FGFR2b, FGFR1b, etc.) like KGF.
  • Examples of functional equivalents of KGF include FGF3, FGF10, FGF22, etc., which belong to the FGF7 subfamily like KGF.
  • the KGF may be in an activated form after being cleaved by a protease.
  • the FGF10 is a protein encoded by a polynucleotide registered with NCBI under accession number NM_004465.
  • the FGF10 may be in an activated form after being cleaved by a protease.
  • the FGF10 may be a functional equivalent of the FGF10.
  • the functional equivalent is a substance capable of activating Ras-Raf via FGF receptors (FGFR2b, FGFR1b) like FGF10.
  • Examples of functional equivalents of FGF10 include KGF, FGF3, FGF22, etc., which belong to the FGF7 subfamily like FGF10.
  • the FGF10 may be in an activated form after being cleaved by a protease.
  • the concentration of the mesenchymal cell-inducing factor in the second induction step is not particularly limited, and may be an effective concentration at which each factor exhibits mesenchymal cell-inducing activity.
  • the concentration of activin A in the medium is, for example, 0.01 to 1000 ng/ml, 0.1 to 100 ng/ml, or 0.2 ⁇ 10 ng/ml.
  • FGF2 is used as the mesenchymal cell inducer
  • the concentration of FGF2 in the medium is, for example, 0.1-1000 ng/ml, 1-100 ng/ml, or 2-50 ng/ml.
  • BMP4 is used as the inducer of the mesenchymal cells
  • the concentration of BMP4 in the medium is, for example, 0.1-1000 ng/ml, 1-100 ng/ml, or 2-50 ng/ml.
  • the concentrations of the KGF and FGF10 in the second induction step are not particularly limited as long as each factor exhibits an effective concentration to induce pulmonary mesenchymal cells.
  • the concentration of KGF in the medium is, for example, 0.1-1000 ng/ml, 1-100 ng/ml, or 2-50 ng/ml.
  • the concentration of FGF10 in the medium is, for example, 0.1-1000 ng/ml, 1-100 ng/ml, or 2-50 ng/ml.
  • the description of the medium in the first induction step can be used.
  • the medium used in the second induction step may be the same as or different from the medium used in the first induction step.
  • the culture period in the second induction step may be a period during which the pulmonary mesenchymal cells can be differentiated, for example, 1 to 9 days, 3 to 7 days, or 4 to 6 days.
  • the description of the culture conditions in the first induction step can be used.
  • the culture conditions in the second induction step may be the same as or different from the culture conditions in the first induction step.
  • the differentiation of the pulmonary mesenchymal cells can be detected, for example, by loss of expression of the pulmonary mesenchymal cell marker and/or loss of expression of the mesoderm cell marker.
  • the mesenchymal cell markers include, for example, PDGFR ⁇ , KDR, ISL1, NKX2-5, VIM, COL1A1, FOXF1, and/or TCF21, preferably FOXF1 and TCF21.
  • mesodermal cell markers examples include TBXT (T-box transcription factor T).
  • the content ratio (lower limit) of the lung mesenchymal cells in the total cells (cell population) after the induction is, for example, 5% or more, 10% or more, based on the number of cells. , 20% or more, 30% or more, 40% or more, 50% or more, 55% or more, 60% or more, 65% or more, 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 91 % or more, 92% or more, 93% or more, 94% or more, 95% or more, 96% or more, 97% or more, 98% or more, or 99% or more.
  • the content ratio (upper limit) is, for example, 100% or less, 99% or less, 98% or less, 97% or less, 96% or less, 95% or less, 94% or less, 93% or less, 92%, based on the number of cells % or less, 91% or less, 90% or less, 85% or less, 80% or less, 75% or less, 70% or less, 65% or less, 60% or less, 55% or less, or 50% or less.
  • the numerical range of the content ratio can be, for example, any combination of the lower limit and the upper limit.
  • the content ratio is, for example, 20 to 40% when cultured for 3 days.
  • the content ratio is, for example, 60 to 90% when cultured for 7 days.
  • the content ratio is lowered, for example, by shortening the number of culture days in the second induction step.
  • the content ratio increases, for example, by lengthening the number of culture days in the first induction step.
  • the method for producing pulmonary mesenchymal cells of the present disclosure may enrich the pulmonary mesenchymal cells after the second induction step.
  • the method for producing pulmonary mesenchymal cells of the present disclosure for example, when alveolar organoids are formed using the obtained cell population containing pulmonary mesenchymal cells and pulmonary progenitor cells described later, II It can improve the induction efficiency of type alveolar epithelial cells.
  • the method for producing pulmonary mesenchymal cells of the present disclosure includes, after the second induction step, enriching the pulmonary mesenchymal cells from the cell population derived from the mesoderm cells (enrichment step). including.
  • the enrichment of the lung mesenchymal cells is, for example, in the cell population, a marker that is expressed in the lung mesenchymal cells and not expressed in other cells, or that is expressed in other cells at low levels (positive markers)
  • a marker (negative marker) that is not expressed in the lung mesenchymal cells but is expressed in other cells or highly expressed in other cells (negative marker) can be used as an index.
  • Said positive marker and said negative-marker are preferably markers expressed on the cell surface. Examples of the positive markers include PDGFR ⁇ , KDR, VIM, THY1, NCAM and the like. Examples of the negative marker include EpCAM, E-Cadherin and the like.
  • Said enrichment may be performed using a combination of multiple markers. Said enrichment is performed, for example, with said negative marker in order to suppress the occurrence of signaling through said marker to said pulmonary mesenchymal cells.
  • the enrichment is performed, for example, after collecting the cell population after the second induction step, using an antibody against the positive marker and/or an antibody against the negative marker using an automated magnetic cell separator (e.g., autoMACS) , magnetic cell sorter (eg MACS), closed magnetic cell sorter (eg Prodigy), cell sorter (eg FACS).
  • an automated magnetic cell separator e.g., autoMACS
  • MACS magnetic cell sorter
  • closed magnetic cell sorter eg Prodigy
  • FACS cell sorter
  • the content ratio (lower limit) of positive marker-positive pulmonary mesenchymal cells in the cell population after the enrichment is, for example, 5% or more, 10% or more, 20% or more, based on the number of cells. % or more, 30% or more, 40% or more, 50% or more, 55% or more, 60% or more, 65% or more, 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 91% or more , 92% or greater, 93% or greater, 94% or greater, 95% or greater, 96% or greater, 97% or greater, 98% or greater, or 99% or greater.
  • the content ratio (upper limit) of the positive marker-positive pulmonary mesenchymal cells is, for example, 100% or less, 99% or less, 98% or less, 97% or less, 96% or less, 95% or less, based on the number of cells, 94% or less, 93% or less, 92% or less, 91% or less, 90% or less, 85% or less, 80% or less, 75% or less, 70% or less, 65% or less, 60% or less, 55% or less, or 50 % or less.
  • the numerical range of the content ratio of the positive marker-positive pulmonary mesenchymal cells can be, for example, any combination of the lower limit and the upper limit.
  • the content ratio (lower limit) of negative marker-negative pulmonary mesenchymal cells in the cell population after the enrichment is, for example, 5% or more, 10% or more based on the number of cells. , 20% or more, 30% or more, 40% or more, 50% or more, 55% or more, 60% or more, 65% or more, 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 91 % or more, 92% or more, 93% or more, 94% or more, 95% or more, 96% or more, 97% or more, 98% or more, or 99% or more.
  • the content ratio (upper limit) of the negative marker-negative pulmonary mesenchymal cells is, for example, 100% or less, 99% or less, 98% or less, 97% or less, 96% or less, 95% or less, based on the number of cells, 94% or less, 93% or less, 92% or less, 91% or less, 90% or less, 85% or less, 80% or less, 75% or less, 70% or less, 65% or less, 60% or less, 55% or less, or 50 % or less.
  • the numerical range of the content ratio of negative marker-negative pulmonary mesenchymal cells can be, for example, any combination of the lower limit and the upper limit.
  • the content ratio (lower limit) of EpCAM-negative pulmonary mesenchymal cells in the cell population after the enrichment step is, for example, 5 based on the number of cells. % or more, 10% or more, 20% or more, 30% or more, 40% or more, 50% or more, 55% or more, 60% or more, 65% or more, 70% or more, 75% or more, 80% or more, 85% or more , 90% or more, 91% or more, 92% or more, 93% or more, 94% or more, 95% or more, 96% or more, 97% or more, 98% or more, or 99% or more.
  • the content ratio (upper limit) of the EpCAM-negative pulmonary mesenchymal cells is, for example, 100% or less, 99% or less, 98% or less, 97% or less, 96% or less, 95% or less, 94%, based on the number of cells. % or less, 93% or less, 92% or less, 91% or less, or 90% or less.
  • the numerical range of the content of EpCAM-negative pulmonary mesenchymal cells can be, for example, any combination of the lower limit and the upper limit.
  • the EpCAM-negative pulmonary mesenchymal cells may be, for example, PDGFR ⁇ , KDR, VIM, and/or THY1-positive.
  • the content ratio (lower limit) of the PDGFR ⁇ -positive and KDR-positive pulmonary mesenchymal cells in the EpCAM-negative pulmonary mesenchymal cells is, for example, 5% or more, 10% or more, 20% or more, based on the number of cells, 30% or more, 40% or more, 50% or more, 55% or more, 60% or more, 65% or more, 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 91% or more, 92% 93% or more, 94% or more, 95% or more, 96% or more, 97% or more, 98% or more, or 99% or more.
  • the content ratio (upper limit) of the PDGFR ⁇ -positive and KDR-positive pulmonary mesenchymal cells is, for example, 100% or less, 99% or less, 98% or less, 97% or less, 96% or less, 95% based on the number of cells. 94% or less, 93% or less, 92% or less, 91% or less, or 90% or less.
  • the numerical range of the content ratio of PDGFR ⁇ -positive and KDR-positive pulmonary mesenchymal cells can be, for example, any combination of the lower limit and the upper limit.
  • the content ratio (lower limit) of the VIM-positive and THY1-positive pulmonary mesenchymal cells in the EpCAM-negative pulmonary mesenchymal cells is, for example, 5% or more, 10% or more, 20% or more, based on the number of cells, 30% or more, 40% or more, 50% or more, 55% or more, 60% or more, 65% or more, 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 91% or more, 92% 93% or more, 94% or more, 95% or more, 96% or more, 97% or more, 98% or more, or 99% or more.
  • the content ratio (upper limit) of lung mesenchymal cells in the VIM-positive and THY1-positive lung mesenchymal cells is, for example, 100% or less, 99% or less, 98% or less, 97% or less, 96% or less, based on the number of cells. % or less, 95% or less, 94% or less, 93% or less, 92% or less, 91% or less, or 90% or less.
  • the numerical range of the content ratio of VIM-positive and THY1-positive pulmonary mesenchymal cells can be, for example, any combination of the lower limit and the upper limit.
  • the pulmonary mesenchymal cells obtained by the method for producing pulmonary mesenchymal cells of the present disclosure may be specified, for example, by the expression of various nucleic acids and proteins.
  • the lung mesenchymal cells express, for example, RSPO2 (R-Spondin 2) and/or RSPO3 (R-Spondin 3). Also, the lung mesenchymal cells, for example, do not express WNT2. Said lung mesenchymal cells, for example, express RSPO2 and/or RSPO3 and do not express WNT2.
  • the pulmonary mesenchymal cells for example, by expressing RSPO2 and / or RSPO3, when forming alveolar organoids using a cell population containing pulmonary mesenchymal cells obtained and pulmonary progenitor cells described later In addition, type II alveolar epithelial cells can be induced.
  • the content ratio (lower limit) of RSPO2-positive pulmonary mesenchymal cells in the EpCAM-negative pulmonary mesenchymal cells is, for example, 5% or more, 10% or more, 15% or more, 20% or more, based on the number of cells, 25% or more, or 30% or more.
  • the content ratio (upper limit) of RSPO2-positive pulmonary mesenchymal cells in the EpCAM-negative pulmonary mesenchymal cells is, for example, 50% or less, 45% or less, 40% or less, 35% or less, based on the number of cells, 30% or less, or 25% or less.
  • the numerical range of the content ratio of RSPO2-positive pulmonary mesenchymal cells can be, for example, any combination of the lower limit and the upper limit. As a specific example, when cultured for 7 days in the second culture step, the content ratio is, for example, 20 to 40%.
  • the RSPO2 is particularly expressed, for example, in STC1 (Stanniocalcin-1)-positive pulmonary mesenchymal cells. Therefore, the RSPO2-positive cells can be enriched by using STC1, for example.
  • the content ratio (lower limit) of RSPO2-positive pulmonary mesenchymal cells in the EpCAM-negative STC1-positive pulmonary mesenchymal cells is, for example, 50% or more, 55% or more, 60% or more, 65%, based on the number of cells.
  • the content ratio (upper limit) of the RSPO2-positive pulmonary mesenchymal cells is, for example, 100% or less, 99% or less, 98% or less, 97% or less, 96% or less, 95% or less, 94%, based on the number of cells. % or less, 93% or less, 92% or less, 91% or less, or 90% or less.
  • the numerical range of the content ratio of RSPO2-positive pulmonary mesenchymal cells can be, for example, any combination of the lower limit and the upper limit.
  • the content ratio is, for example, 80% or more.
  • the content ratio (lower limit) of RSPO3-positive pulmonary mesenchymal cells in the EpCAM-negative pulmonary mesenchymal cells is, for example, 50% or more, 55% or more, 60% or more, 65% or more, based on the number of cells, 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 91% or more, 92% or more, 93% or more, 94% or more, 95% or more, 96% or more, 97% or more, 98% or more, or 99% or more.
  • the content ratio (upper limit) of RSPO3-positive pulmonary mesenchymal cells in the EpCAM-negative pulmonary mesenchymal cells is, for example, 100% or less, 99% or less, 98% or less, 97% or less, based on the number of cells, 96% or less, 95% or less, 94% or less, 93% or less, 92% or less, 91% or less, or 90% or less.
  • the numerical range of the content of RSPO3-positive pulmonary mesenchymal cells can be, for example, any combination of the lower limit and the upper limit. As a specific example, when cultured for 7 days in the second culture step, the content ratio is, for example, 70 to 90%.
  • the content ratio (lower limit) of Wnt2-negative pulmonary mesenchymal cells in the EpCAM-negative pulmonary mesenchymal cells is, for example, 50% or more, 55% or more, 60% or more, 65% or more, based on the number of cells, 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 91% or more, 92% or more, 93% or more, 94% or more, 95% or more, 96% or more, 97% or more, 98% or more, or 99% or more.
  • the content ratio (upper limit) of Wnt2-negative pulmonary mesenchymal cells in the EpCAM-negative pulmonary mesenchymal cells is, for example, 100% or less, 99% or less, 98% or less, 97% or less, based on the number of cells, 96% or less, 95% or less, 94% or less, 93% or less, 92% or less, 91% or less, or 90% or less.
  • the numerical range of the content of Wnt2-negative pulmonary mesenchymal cells can be, for example, any combination of the lower limit and the upper limit. As a specific example, when cultured for 7 days in the second culture step, the content ratio is, for example, 95% or more.
  • the lung mesenchymal cells for example, as transcription factors, FOXF1 (Forkhead box protein F1), TCF21 (Transcription factor 21), TBX4 (T-Box Transcription Factor 4), and OSR1 (Odd-Skipped Related Transcription Factor) expressing a transcription factor selected from the group consisting of
  • the pulmonary mesenchymal cells may, for example, express one or more transcription factors, or all transcription factors.
  • the lung mesenchymal cells do not express TBXT, eg, as a transcription factor.
  • the pulmonary mesenchymal cells express, for example, a transcription factor selected from the group consisting of FOXF1, TCF21, TBX4, and OSR1, and do not express TBXT.
  • the pulmonary mesenchymal cells may, for example, further express fibroblast markers described below and/or be mesenchymal cell marker positive.
  • the lung mesenchymal cells express, for example, fibroblast markers selected from the group consisting of NCAM, ADRP, COL1A1, and ACTA2. Said pulmonary mesenchymal cells are preferably NCAM, ADRP and/or COL1A1; cells expressing NCAM, ADRP and COL1A1.
  • the lung mesenchymal cells may, for example, express one or more fibroblast markers, or all fibroblast markers.
  • the lung mesenchymal cells are selected from the group consisting of, for example, VIM (Vimentin), THY1 (Thy-1 Cell Surface Antigen, CD90), PDGFR ⁇ (Platelet Derived Growth Factor Receptor ⁇ ), and KDR (Kinase Insert Domain Receptor) positive for mesenchymal cell markers.
  • Said pulmonary mesenchymal cells are preferably cells expressing VIM, THY1 and/or COL1A1; or VIM, THY1 and COL1A1;
  • the pulmonary mesenchymal cells may be, for example, positive for one or more types of mesenchymal cell markers, or may be positive for all types of mesenchymal cell markers.
  • the pulmonary mesenchymal cells can induce, for example, epithelial cells that form alveoli from pulmonary progenitor cells described later.
  • said pulmonary mesenchymal cells are capable of inducing type I and/or type II alveolar epithelial cells from said pulmonary progenitor cells, for example, in an alveolar organoid formation assay by co-culture with said progenitor cells.
  • the alveolar organoid formation assay can be performed in the same manner as in Example 1(3) below.
  • Examples of the alveolar epithelial cells include type I alveolar epithelial cells and type II alveolar epithelial cells.
  • the pulmonary mesenchymal cells may, for example, be capable of inducing the type I alveolar epithelial cells or the type II alveolar epithelial cells from the pulmonary progenitor cells, or Epithelial cells may be inducible.
  • the ratio (lower limit) of SFTPC-positive cells in the EpCAM-positive cell population from the pulmonary progenitor cells is 5% or more, 10% or more, 20% or more. , 30% or more, 40% or more, 50% or more, 55% or more, 60% or more, 65% or more, 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 91% or more, 92 % or greater, 93% or greater, 94% or greater, 95% or greater, 96% or greater, 97% or greater, 98% or greater, or 99% or greater.
  • the upper limit of the ratio is, for example, 100% or less, 99% or less, 98% or less, 97% or less, 96% or less, 95% or less, 94% or less, 93% or less, 92% or less, 91% or less, 90% 85% or less, 80% or less, 75% or less, 70% or less, 65% or less, 60% or less, or 55% or less.
  • the numerical range of the ratio can be, for example, any combination of the lower limit and the upper limit. As a specific example, when the pulmonary mesenchymal cells and the pulmonary progenitor cells are cultured for 14 days, the ratio of the SFTPC-positive cells is 20-70%.
  • alveolar epithelial cells can be induced when co-cultured with the pulmonary progenitor cells.
  • the pulmonary mesenchymal cells are expected to be suitably used, for example, as cells for lung tissue regeneration.
  • Cell population In another aspect, the present disclosure provides cell populations comprising pulmonary mesenchymal cells that can also be used to generate alveolar organoids.
  • Cell populations comprising mesenchymal cells of the present disclosure include lung mesenchymal cells that express RSPO2 and/or RSPO3.
  • the pulmonary mesenchymal cells of the present disclosure are, for example, pulmonary mesenchymal cells obtained by the method for producing pulmonary mesenchymal cells of the present disclosure, i.e., pulmonary mesenchymal cells after the second induction step or after the enrichment step. It may be identified by the expression of various nucleic acids, proteins in the cell description.
  • the present disclosure provides a method for producing alveolar epithelial cells using the pulmonary mesenchymal cells.
  • the method for producing alveolar epithelial cells of the present disclosure includes the step of culturing lung progenitor cells in the presence of pulmonary mesenchymal cells to induce differentiation into alveolar epithelial cells, wherein the pulmonary mesenchymal cells are It is a cell population containing lung mesenchymal cells obtained by the method for producing lung mesenchymal cells of the present disclosure and/or the mesenchymal cells of the present disclosure.
  • the lung progenitor cells used for deriving the alveolar epithelial cells can be derived, for example, from progenitor cells of lung progenitor cells such as the pluripotent cells. Therefore, in the method for producing alveolar epithelial cells of the present disclosure, the lung progenitor cells may be induced from progenitor cells of lung progenitor cells prior to the induction of the alveolar epithelial cells.
  • the method for producing alveolar epithelial cells of the present disclosure includes, for example, a step of culturing in the presence of an inducer of lung progenitor cells to induce differentiation into the lung progenitor cells (third induction step). .
  • the progenitor cells of the lung progenitor cells are cultured in a medium containing the inducer of the lung progenitor cells to differentiate into lung progenitor cells that express the lung progenitor cell marker. That is, the progenitor cells of the pulmonary progenitor cells are brought into contact with the inducer of the pulmonary progenitor cells and cultured to differentiate the pulmonary progenitor cells.
  • the induction of lung progenitor cells from progenitor cells of the lung progenitor cells is, for example, the method of inducing alveolar epithelial progenitor cells described in WO 2014/168264, the method described in WO 2019/217429.
  • the progenitor cells of the pulmonary progenitor cells are, for example, ventral anterior foregut endoderm cells, anterior foregut endoderm cells, and/or the definitive endoderm lineage cells can give.
  • Said pulmonary progenitor cells and progenitor cells of said pulmonary progenitor cells can be derived from said pluripotent cells or said pluripotent stem cells. Therefore, the lung progenitor cells and progenitor cells of the lung progenitor cells are preferably progenitor cells derived from the pluripotent cells or the pluripotent stem cells.
  • the pluripotent stem cells include, for example, induced pluripotent stem cells (iPS cells), totipotent stem cells such as embryonic stem cells (ES cells); hematopoietic stem cells, neural stem cells, mesenchymal stem cells and the like pluripotent stem cells such as tissue stem cells or somatic stem cells;
  • iPS cells induced pluripotent stem cells
  • ES cells embryonic stem cells
  • hematopoietic stem cells hematopoietic stem cells
  • neural stem cells mesenchymal stem cells and the like pluripotent stem cells
  • tissue stem cells or somatic stem cells pluripotent stem cells
  • the cell population obtained in the third induction step is a cell population containing the lung progenitor cells and/or progenitor cells of the lung progenitor cells.
  • the obtained cell population may be used as it is, or the lung progenitor cells and/or progenitor cells of the lung progenitor cells may be isolated from the obtained cell population and used.
  • the pulmonary progenitor cells can be isolated, for example, based on expression of CPM, NKX2.1, SOX9, SOX2, and/or FOXA2.
  • the lung progenitor cells are isolated as CPM-positive cells using the cell surface marker CPM.
  • the lung progenitor cells are cultured in the presence of the lung mesenchymal cells to induce differentiation into alveolar epithelial cells (fourth induction step). .
  • the lung progenitor cells are cultured in a medium containing the pulmonary mesenchymal cell inducer to differentiate into alveolar epithelial cells expressing the alveolar epithelial cell marker. That is, the lung progenitor cells are contacted with an inducer of the lung progenitor cells to differentiate the lung progenitor cells.
  • the pulmonary progenitor cells may be cultured in the presence of the pulmonary mesenchymal cells and the alveolar epithelial cell inducer to induce differentiation into alveolar epithelial cells.
  • the inducer of alveolar epithelial cells can be set according to the type of alveolar epithelial cells to be induced.
  • the inducer of alveolar epithelial cells is an inducer of type I alveolar epithelial cells, and a specific example thereof is the Wnt inducer.
  • the inducer may be of one type or of multiple types.
  • the inducer is preferably of a plurality of types, more preferably of all types.
  • the Wnt inducer is a substance that induces Wnt signals.
  • the Wnt inducer is, for example, IWP2 (N-(6-Methyl-2-benzothiazolyl)-2-(3,4,6,7-tetrahydro-4-oxo-3-phenylthieno3,2-dpyrimidin-2-yl )thio), Dickkopf-related protein 1 (DKK1), XAV939 (3,5,7,8-Tetrahydro-2-[4-(trifluoromethyl)phenyl]-4H-thiopyrano[4,3-d]pyrimidin-4-one ); Wnt protein expression-inducing nucleic acid molecules (siRNA, shRNA, antisense, etc.), etc., preferably XAV939.
  • IWP2 N-(6-Methyl-2-benzothiazolyl)-2-(3,4,6,7-tetrahydro-4-oxo-3-phenylthieno3,2-dpyr
  • the concentration of the Wnt inducer in the medium is, for example, 1 nmol/l to 50 ⁇ mol/l, 10 nmol/l to 40 ⁇ mol/l, 50 nmol/l to 30 ⁇ mol/l, 100 nmol/l to 25 ⁇ mol/l, 500 nmol/l to 20 ⁇ mol/l. l.
  • the explanation of the medium in the first induction step can be used.
  • the number of days of culture in the step of inducing the type I alveolar epithelial cells can be set according to the period during which the type I alveolar epithelial cells are induced.
  • the lower limit of the culture days is, for example, 4 days or more, 5 days or more, 6 days or more, 7 days or more, 8 days or more, 9 days or more, 10 days or more, 11 days or more, 12 days or more, or more days. is given.
  • the upper limit of the culture days is, for example, 35 days or less, 30 days or less, 28 days or less, or 21 days or less.
  • the description of the culture conditions in the first induction step can be used.
  • the inducer of the alveolar epithelial cells is an inducer of type II alveolar epithelial cells.
  • agents KGF, GSK3 ⁇ inhibitors, TGF ⁇ inhibitors, ROCK inhibitors and/or FGF10.
  • the inducer may be of one type or of multiple types.
  • the inducer is preferably of multiple types, more preferably a combination of the steroid agent, the cAMP derivative, the phosphodiesterase inhibitor, and the KGF.
  • the KGF, GSK3 ⁇ inhibitor, and FGF10 can refer to the above description.
  • the steroid drug is a steroidal anti-inflammatory drug.
  • examples of the steroid drug include glucocorticoids and synthetic derivatives thereof, and specific examples include hydrocortisone, hydrocortisone succinate, prednisolone, methylprednisolone, methylprednisolone succinate, triamcinolone, triamcinolone acetonide, dexamethasone, betamethasone, and the like. , preferably dexamethasone or hydrocortisone.
  • the concentration of the steroid agent in the medium is, for example, 1 nmol/l to 100 ⁇ mol/l, 1 nmol/l to 50 ⁇ mol/l, 10 nmol/l to 40 ⁇ mol/l, 10 nmol/l to 30 ⁇ mol/l, 10 nmol/l to 25 ⁇ mol/l. , from 10 nmol/l to 20 ⁇ mol/l.
  • the cAMP derivative is a compound in which a substituent is modified (added) to cyclic AMP.
  • the cAMP derivatives include, for example, cyclic adenosine monophosphate (cAMP), 8-bromo cyclic adenosine monophosphate (8-Br-cAMP), 8-chloro cyclic adenosine monophosphate (8-Cl-cAMP), 8-(4-Chlorophenylthio)cyclic adenosine monophosphate (8-CPT-cAMP), dibutyryl cyclic adenosine monophosphate (DB-cAMP) and the like, preferably 8-Br-cAMP.
  • cAMP cyclic adenosine monophosphate
  • 8-Br-cAMP 8-bromo cyclic adenosine monophosphate
  • 8-Cl-cAMP 8-chloro cyclic adenosine monophosphate
  • 8-CPT-cAMP
  • the concentration of the cAMP derivative in the medium is, for example, 1 nmol/l to 100 ⁇ mol/l, 1 nmol/l to 50 ⁇ mol/l, 10 nmol/l to 40 ⁇ mol/l, 50 nmol/l to 30 ⁇ mol/l, 100 nmol/l to 25 ⁇ mol/l. , from 500 nmol/l to 20 ⁇ mol/l.
  • the phosphodiesterase inhibitor is a compound that increases the intracellular concentration of cAMP or cGMP by inhibiting phosphodiesterase (PDE).
  • PDE phosphodiesterase
  • the phosphodiesterase inhibitors are, for example, 1,3-Dimethylxanthine, 6,7-Dimethoxy-1-(3,4-dimethoxybenzyl)isoquinoline, 4- ⁇ [3',4'-(Methylenedioxy)benzyl]amino ⁇ -6 -methoxyquinazoline, 8-Methoxymethyl-3-isobutyl-1-methylxanthine, 3-Isobutyl-1-methylxanthine (IBMX) and the like, preferably 1,3-dimethylxanthine.
  • the concentration of the phosphodiesterase inhibitor in the medium is, for example, 1 nmol/l to 100 ⁇ mol/l, 1 nmol/l to 50 ⁇ mol/l, 10 nmol/l to 40 ⁇ mol/l, 50 nmol/l to 30 ⁇ mol/l, 50 nmol/l to 25 ⁇ mol/l. l, 50 nmol/l to 20 ⁇ mol/l.
  • the TGF ⁇ inhibitor is a substance that inhibits signal transduction via SMAD caused by binding of TGF ⁇ to its receptor.
  • examples of the TGF ⁇ inhibitor include substances that inhibit binding to the TGF ⁇ receptors of the ALK family, substances that inhibit phosphorylation of SMAD by the ALK family, and the like.
  • TGF ⁇ inhibitor examples include Lefty-1 (NCBI Accession Number: NM_010094 (mouse), NM_020997 (human)), SB431542 (4-(4-(benzo[d][1,3]dioxol -5-yl)-5-(pyridine-2-yl)-1H-imidazol-2-yl)benzamide), SB202190 (4-(4-Fluorophenyl)-2-(4-hydroxyphenyl)-5-(4- pyridyl)-1H-imidazole), SB505124 (2-(5-Benzo1,3dioxol-5-yl-2-tert-butyl-3H-imidazol-4-yl)-6-methylpyridine), NPC30345, SD093, SD908, SD208 (Scios), LY2109761, LY364947, LY580276 (Lilly Research Laboratories), A-83-01 (WO2009/146408), etc., preferably SB43154
  • the concentration of the TGF ⁇ inhibitor in the medium is, for example, 1 nmol/l to 50 ⁇ mol/l, 10 nmol/l to 40 ⁇ mol/l, 50 nmol/l to 30 ⁇ mol/l, 100 nmol/l to 25 ⁇ mol/l, 500 nmol/l to 20 ⁇ mol. /l. Preferably, it is between 1 nmol/l and 40 ⁇ mol/l.
  • the ROCK inhibitor is a substance that can suppress the function of Rho kinase (ROCK).
  • the ROCK inhibitors include, for example, Y-27632 ((+)-(R)-trans-4-(1-aminoethyl)-N-(4-pyridyl)cyclohexanecarboxamide dihydrochloride), Fasudil/HA1077 (5-(1, 4-Diazepane-1-sulfonyl)isoquinoline), H-1152 ((S)-(+)-2-Methyl-1-[(4-methyl-5-isoquinolinyl)sulfonyl]homopiperazine), Wf-536 ((+ )-(R)-4-(1-Aminoethyl)-N-(4-pyridyl) benzamide), ROCK protein expression-suppressing nucleic acid molecules (siRNA, shRNA, antisense, etc.), etc., preferably Y- 27632.
  • the concentration of the ROCK inhibitor in the medium is, for example, 1 nmol/l to 50 ⁇ mol/l, 10 nmol/l to 40 ⁇ mol/l, 50 nmol/l to 30 ⁇ mol/l, 100 nmol/l to 25 ⁇ mol/l, 500 nmol/l to 20 ⁇ mol/l. l, 750 nmol/l to 15 ⁇ mol/l, preferably 1 nmol/l to 40 ⁇ mol/l.
  • the description of the medium in the first induction step can be used.
  • the number of days of culture in the step of inducing the type II alveolar epithelial cells can be set according to the period during which the type II alveolar epithelial cells are induced.
  • the lower limit of the culture days is, for example, 2 days or more, 4 days or more, 5 days or more, 6 days or more, 7 days or more, 8 days or more, 9 days or more, 10 days or more, 11 days or more, 12 days or more, 13 days or more. days or more, 14 days or more, 15 days or more, or more.
  • the upper limit of the culture days is, for example, 35 days or less, 30 days or less, 28 days or less, or 21 days or less.
  • the description of the culture conditions in the first induction step can be used.
  • differentiation of the alveolar epithelial cells can be detected, for example, by loss of expression of the alveolar epithelial cell marker and/or expression of the lung progenitor cell marker.
  • the alveolar epithelial cells may be, for example, a cell population containing the type I alveolar epithelial cells or the type II alveolar epithelial cells, or cells containing the type I alveolar epithelial cells and the type II alveolar epithelial cells. It can be a group.
  • markers for the alveolar epithelial cells include, for example, PDPN, AGER, CAV1, HOPX, and AQP5.
  • markers for the alveolar epithelial cells include, for example, SFTPC, SFTPB, ABCA3, DCLAMP, and SLC34A2.
  • the alveolar epithelial cells can be induced, for example, as organoids containing alveolar epithelial cells.
  • the present disclosure provides methods capable of maintaining and/or expanding type II alveolar epithelial cells.
  • the maintenance and/or expansion culture method for type II alveolar epithelial cells of the present disclosure includes a step of culturing type II alveolar epithelial cells in the presence of pulmonary mesenchymal cells to maintain or expand the culture (culturing step).
  • the pulmonary mesenchymal cells are pulmonary mesenchymal cells obtained by the method for producing pulmonary mesenchymal cells of the present disclosure and/or a cell population containing the mesenchymal cells of the present disclosure.
  • the type II alveolar epithelial cells are known to function as lung tissue stem cells. Therefore, in the culture step, for example, by inducing self-renewal (proliferation) of the type II alveolar epithelial cells, or self-renewal (proliferation) and differentiation of the type II alveolar epithelial cells, the type II alveolar Epithelial cells can be maintained and/or expanded.
  • the pulmonary progenitor cells are cultured in a medium containing the pulmonary mesenchymal cells to maintain or proliferate the pulmonary progenitor cells expressing the pulmonary progenitor cell marker, or Lung progenitor cells expressing the marker are maintained or expanded and differentiated into alveolar epithelial cells expressing said alveolar epithelial cell marker.
  • the pulmonary progenitor cells may be cultured in the presence of the pulmonary mesenchymal cells and the alveolar epithelial cell inducer to maintain or expand the pulmonary progenitor cells.
  • the inducer of alveolar epithelial cells can be set according to the type of alveolar epithelial cells to be induced, and the description of the method for producing alveolar epithelial cells of the present disclosure can be used.
  • compositions comprising pulmonary mesenchymal cells.
  • a pharmaceutical composition of the present disclosure comprises the pulmonary mesenchymal cells of the present disclosure and a pharmaceutically acceptable carrier.
  • a method of administration of the pharmaceutical composition of the present disclosure is, for example, intravenous administration.
  • the dosage form of the pharmaceutical composition of the present disclosure is, for example, an injection.
  • the number of pulmonary mesenchymal cells contained in the injection is, for example, 1 ⁇ 10 6 cells or more.
  • the pharmaceutical composition may contain a pharmaceutically acceptable carrier. Examples of the carrier include physiological saline, phosphate buffered saline (PBS), cell preservation solution, cell culture solution, hydrogel, extracellular matrix, cryopreservation solution and the like.
  • the pharmaceutical composition of the present disclosure can be suitably used, for example, for treating pulmonary diseases.
  • the present disclosure provides media for use in deriving lung mesenchymal cells from mesodermal cells.
  • the medium for use in deriving lung mesenchymal cells from mesoderm cells of the present disclosure comprises medium, an inducer of mesenchymal cells, and KGF and FGF10.
  • the types, combinations, and concentrations of mesenchymal cell-inducing factors, KGF and FGF10 contained in the medium can refer to, for example, the description of the method for producing pulmonary mesenchymal cells of the present disclosure.
  • kits for use in deriving lung mesenchymal cells from mesodermal cells includes an inducer of mesenchymal cells, and KGF and FGF10.
  • KGF and FGF10 contained in the kit for example, the description of the method for producing pulmonary mesenchymal cells of the present disclosure can be used.
  • the contents of the mesenchymal cell inducers, KGF and FGF10 in the kit for example, when added to a predetermined amount of medium, become the concentrations of each factor in the description of the method for producing pulmonary mesenchymal cells of the present disclosure. can be set as
  • Example 1 It was confirmed that pulmonary mesenchymal cells can be induced by the production method of the present disclosure, and alveolar organoids can be formed by co-culturing the pulmonary mesenchymal cells and the pulmonary progenitor cells.
  • Figure 1 shows an overview of the method for inducing pulmonary mesenchymal cells and pulmonary progenitor cells and forming alveolar organoids.
  • iPSCs human-derived iPS cells
  • D-PBS manufactured by Nacalai Tesque, Cat. No.: 14249-24
  • protease manufactured by Innivative Cell Technologies, Cat.
  • mTeSR Plus manufactured by STEMCELL technologies, Cat. No.: ST-05825 or ST-100-0276
  • the iPSC-containing cell suspension was centrifuged to obtain the supernatant.
  • Anti-EPCAM-FITC antibody manufactured by Miltenyi Biotec, Cat. No.: 130-080-301
  • Anti-NCAM-Alexa Fluor 647 antibody BioLegend, Cat. No.: 362513
  • Anti-T-Alexa Fluor 488 antibody RD systems, Cat. No.: IC2085G
  • Anti-KDR-BV421 antibody BioLegend, Cat. No.: 393009
  • Anti-THY1 (CD90)-BV421 antibody manufactured by BioLegend, Cat.
  • Anti-Vimentin-Alexa Fluor 647 antibody manufactured by Novus Biologicals, Cat. No.: NBP1-97670AF647
  • Anti -PDGFRA-Alexa Fluor 647 antibody manufactured by BD Biosciences, Cat. No.: 562798
  • the cells were stained with propidium iodide (PI).
  • PI propidium iodide
  • the cell suspension is fixed with BD Cytofix/Cytoperm (manufactured by BD Biosciences, Cat. No.: 51-2090KZ) for 20 minutes, followed by BD Perm/Wash (BD Biosciences, Cat. No.: 51-2091KZ) was used to permeabilize the cell membrane for 20 minutes.
  • the cells were washed twice with BD Perm/Wash and then stained with a primary antibody at 4°C for 15 minutes.
  • the stained cell suspension was washed twice with BD Perm/Wash, and then stained with a secondary antibody at 4°C for 15 minutes.
  • FIG. 2 is a photograph showing a phase-contrast image and an Oil Red O-stained image showing the differentiation state of cells after culture.
  • (A) shows a phase-contrast image
  • (B) shows an oil red O staining image.
  • Each scale bar in FIG. 2 represents 100 ⁇ m.
  • FIG. 2(A) each photograph is from the left on days 0, 1, 3, and 7 of culture.
  • the cells had the shape of PSCs on the 0th day of culture, but on the 1st day of culture, the boundaries of the cell clusters became unclear, suggesting that differentiation had started. These are presumed to be TBXT-expressing cells in the EpCAM-positive cell population described below.
  • FIG. 3 is a graph showing flow cytometry analysis.
  • the upper graph shows, from the left, the results on days 0, 1, 3, and 7 of culture.
  • the middle and lower graphs are, from the left, the EpCAM-negative cell population on day 0, day 1, and day 3 of culture, the EpCAM-negative cell population on day 7 of culture, and the EpCAM-positive cell population on day 7 of culture. cell population results.
  • EpCAM-positive and TBXT-positive cells were observed, suggesting that they had differentiated into cells that are developmentally similar to the primitive streak.
  • mesoderm cell markers NCAM, PDGFR ⁇ , and KDR was observed in the EpCAM-negative cell population, confirming differentiation into mesodermal cells. Furthermore, on day 7 of culture, it was confirmed that VIM, THY1 (CD90), PDGFR ⁇ , and KDR-positive mesenchymal cells, which are mesenchymal cell markers, were induced. These results confirmed that mesenchymal cells were induced even when KGF and FGF10 were added under the conditions for inducing mesenchymal cells.
  • RNA extraction kit PureLink RNA mini kit, Thermo Fisher Scientific, Cat. No.: 12183020.
  • cDNA was prepared from 80 ng of total RNA per sample using reverse transcriptase (SuperScript (registered trademark) III reverse transiptase, manufactured by Thermo Fisher Scientific).
  • the resulting cDNA was amplified using an RT-PCR kit (Power SYBR Green PCR Master Mix, Applied Biosystems) and quantified using QuantStudio 3 (Applied Biosystems).
  • the expression level of each gene was normalized (standardized) using the ⁇ -actin gene as an internal standard gene. Furthermore, it was quantified as a relative gene expression level with respect to the gene expression level in cells on day 0 of culture.
  • the primer sets used for RT-qPCR are shown in Table 1 below. These results are shown in FIG.
  • Fig. 4 is a graph showing gene expression in cells at each culture stage.
  • the horizontal axis indicates the cell culture stage, and the vertical axis indicates the relative expression level.
  • TBXT and EPCAM were found to be expressed in cells in the early stage of culture after the start of culture, but were not expressed in iMES.
  • iMES the expression of fibroblast markers VIM and COL1A1 was induced.
  • iMES showed expression of FOXF1 and TBX4, which are pulmonary mesenchymal cell markers.
  • increased expression of NCAM, PDGFR ⁇ , KDR, ISL1, NKx2-5, OSR1, and ADRP was observed. From these results, it was found that the iMES induced by the method for producing pulmonary mesenchymal cells of the present disclosure are pulmonary mesenchymal cells. It was also found that the iMES can be distinguished from other cells using these markers.
  • the primary antibodies are Anti-E-Cadherin antibody (manufactured by eBiosience, Cat No.: 14-3249), Anti-Vimentin antibody (manufactured by CST, Cat No.: 49636), and Anti-FOXF1 antibody (manufactured by RD systems manufactured by Cat No.: AF4798).
  • the secondary antibody is Anti-rat IgG Alexa Fluor 488 (manufactured by Thermo Fisher Scientific, Cat No.: A-21208), Anti-mouse IgG Alexa Fluor 546 (manufactured by Thermo Fisher Scientific, Cat No.: A -10036), and Anti-goat IgG Alexa Fluor 647 (Thermo Fisher Scientific, Cat No.: A-21447).
  • the stained sample was observed with a fluorescence microscope (BZ-X710, manufactured by Keyence Corporation).
  • FIG. 5 is a photograph showing a fluorescent image of cells on day 7 of culture.
  • the scale bar indicates 100 ⁇ m.
  • E-cadherin positive cells were FOXF1 negative, while E-cadherin negative cells were VIM and FOXF1 positive.
  • the definitive endoderm cells were cultured in anteriorization medium (Step 2), and on day 10 of culture, BMP4 (20 ng/ml) and ATRA (Sigma- Aldrich, Cat. No.: R2625) and CHIR99021, followed by culture (Step 3).
  • BMP4 (20 ng/ml) and ATRA (Sigma- Aldrich, Cat. No.: R2625) and CHIR99021, followed by culture (Step 3).
  • the optimal concentrations of ATRA and CHIR99021 were 0.05-0.5 ⁇ mol/l.
  • the cells after posteriorization were cultured in CFKD preconditioning medium (Step 4).
  • NKX2-1-positive lung progenitor cells were treated with mouse anti-human CPM (manufactured by Wako, Cat.
  • lung progenitor cells are derived from SFTPC-GFP-expressing PSCs (B2-3 strain), and GFP expression is induced upon differentiation into alveolar epithelial cells.
  • Alveolar Organoid Formation Assay Alveolar organoids were prepared according to Reference 13 above and Reference 14 below. 1.0 ⁇ 10 4 CPM-positive cells (derived from 201B7 strain PSC), 5.0 ⁇ 10 5 fetal fibroblasts (HFLF, DV Biologics, Cat No.: PP002-F-1349), human pediatric skin Derived fibroblasts (human pediatric dermal fibroblast: HDF, TIG120, available from the National Institute of Biomedical Innovation and Health and Nutrition), or iMES, Y-27632 (10 ⁇ mol / l) and 100 ⁇ l Matrigel (Corning No.: 354230) was mixed in 100 ⁇ l of the alveolization medium of Table 3 below.
  • the resulting mixture was introduced onto 12-well cell culture inserts (Corning, Cat. No.: 3513). Then, it was cultured for 14 days. The medium in the lower chamber was changed every 2 days.
  • the HFLF was cultured in 10% FBS-containing DMEM (manufactured by Nacalai Tesque, Cat. No.: 08459-64) and used at passage number 10.
  • the TIG120 was cultured in a 10% FBS-containing MEM medium (manufactured by Nacalai Tesque, Cat. No.: 21442-25), and cells with a PDL of 30 or less were used.
  • the obtained alveolar organoids were dissociated with 0.1% Tripsin-EDTA at 37°C for 15 minutes, and then washed twice with 1% BSA-containing PBS. After washing, immunostaining was performed with an anti-EpCAM-APC antibody (manufactured by Miltenyi Biotec, Cat. No.: 130-113-263). After the staining, SFTPC-GFP positive cells/EPCAM positive cells were analyzed using a flow cytometer (FACS). In addition, the alveolar organoids were observed using the fluorescence microscope. Furthermore, alveolar organoids were prepared in the same manner, except that the 604A1 cell line was used as the iPSC cell line. These results are shown in FIG.
  • Fig. 6 is a graph showing the results of examination of alveolar organoids.
  • (A) shows a fluorescence image of alveolar organoids
  • (B) shows the analysis results of flow cytometry
  • (C) shows SFTPC-GFP positive in EpCAM-positive cells in alveolar organoids. indicates the percentage of As shown in FIG. 6(A), when iMES and lung progenitor cells are co-cultured, spheroids containing SFTPC-GFP-positive cells are formed, and lung progenitor cells are differentiated into alveolar epithelial cells. It could be confirmed. Although not shown, spheroids containing SFTPC-GFP-positive cells were similarly formed when the 604A1 cell line was used.
  • the constituent cells of the alveolar organoid were examined. Specifically, the alveolar organoids were fixed with PBS containing 4% paraformaldehyde for 20 minutes and then incubated overnight (about 8 hours) with PBS containing 30% sucrose. After the incubation, the alveolar organoids were embedded in OCT compound (Sakura Finetek, Cat. No.: 4583) and frozen using liquid nitrogen. Frozen alveolar organoids were sliced into 10 ⁇ m thick sections and mounted on slides. The sections obtained were permeabilized for 15 minutes with PBS containing 0.2% TritonTM X-100.
  • alveolar organoids formed using the 201B7 cell line and 604A1 cell line were used, and the genes to be measured were SFTPB, SFTPC, SFTPD, SFTPA2, ABCA3, SLC34A2, HOPX, AGER, and AQP5.
  • human fetal lung RNA (Agilent Technologies; #540177, lot 0006055802) at 17, 18, or 22 weeks of gestation was used, and the relative expression level was quantified. Otherwise, the expression of these genes in the alveolar organoids was examined in the same manner as in Example 1(1).
  • FIG. 7 is photographs and graphs showing the expression of various cell markers in the alveolar organoids.
  • (A) shows the fluorescence image of the alveolar organoid
  • (B) shows the relative expression level of each gene.
  • the horizontal axis indicates the iPSC strain
  • the vertical axis indicates the relative expression level of each gene.
  • VIM-positive iMES spread throughout the alveolar organoids.
  • the type II alveolar epithelial cell markers Pro-SFTPC, ABCA3, SFTPC-GFP, and mature-SFTPC are cuboidal. detected in cells.
  • each type I alveolar epithelial cell marker and type II alveolar epithelial cell marker were detected in alveolar organoids (iMES-AO) formed by co-culture with iMES. . From the above, it was found that alveolar organoids can be formed by three-dimensional co-culturing of iPSC-derived lung progenitor cells and iMES.
  • the production method of the present disclosure can induce pulmonary mesenchymal cells, and that alveolar organoids can be formed by co-culturing the pulmonary mesenchymal cells and the pulmonary progenitor cells.
  • pulmonary mesenchymal cells obtained by the production method of the present disclosure can be used to form alveolar organoids, it was found that the pulmonary mesenchymal cells (iMES) can be used as feeder cells instead of HFLF.
  • iMES pulmonary mesenchymal cells
  • Example 2 It was confirmed that alveolar organoids can be formed using iMES derived from iPSCs derived from other cells. In addition, the expression profile of iMES before and after culture was analyzed.
  • iPSCs were induced from different cells, and it was confirmed whether alveolar organoids could be formed using the iMES induced from the different cells. That is, it was confirmed that the induced pulmonary mesenchymal cells can be used as feeder cells regardless of the origin of the pluripotent cells.
  • iPSCs were induced from HFLF and HDF used in Example 1 above.
  • HFA HFLF-iPSCs
  • An episomal vector mix for producing human iPSCs containing cDNAs of OCT3/4, SOX2, KLF4, L-MYC, LIN28, mp53-DD, and EBNA1 was introduced by electroporation.
  • HDF-iPSC (GC23) was prepared using the episomal vector for human iPSC production (OCT3/4, SOX2, KLF4, L-MYC, LIN28, short hairpin RNA for p53 (mp53-DD)), It was established from HDF (TIG120) in a feeder cell-dependent manner. The resulting HDF-iPSCs were then expanded and frozen. The HDF-iPSCs were also maintained and passaged feeder cell-free using mTeSR Plus medium after thawing of frozen cells and prior to induction into iMES.
  • HFLF HFLF-iPSCs
  • HDF HDF
  • GC23 HDF-iPSCs
  • PowerPlex registered trademark
  • 16 HS System manufactured by Promega was used to examine 16 short tandem repeat loci (Table 4 below) of HFLF, HFLF-iPSCs (HFA), HDF, and HDF-iPSCs (GC23). rice field.
  • the tandem repeats at each locus were perfectly matched between iPSCs and the corresponding parental fibroblasts.
  • HFLF-iPSCs and HDF-iPSCs expressed undifferentiated markers (Nanog, OCT3/4), did not exhibit abnormal karyotypes, and had trigerm layers (ectoderm, mesoderm, and endoderm) was also confirmed. Therefore, iMES were prepared using HFLF-iPSCs (HFA) and HDF-iPSCs (GC23).
  • iMES pulmonary mesenchymal cells
  • the mRNAs of PFGFRA, VIM, COL1A1, FOXF1, and TBX4 were prepared in the same manner as in Example 1 (1) except that the obtained iMES and HDF were used, and the relative expression of HFLF as an exogenous control. Amount was quantified.
  • the obtained iMES was examined for expression of VIM, THY1, PDGFRA, and KDR by flow cytometry in the same manner as in Example 1(1).
  • FIG. 9 is a diagram related to iMES marker expression.
  • (A) is a photograph showing a fluorescent image of each cell
  • (B) shows gene expression in each cell
  • (C) shows the results of flow cytometry analysis.
  • FIG. 9(A) it was found that iMES induced from HFLF-iPSCs (HFA) and HDF-iPSCs (GC23) also expressed VIM and FOXF1 at the protein level.
  • VIM, THY1, and PDGFRA were found in both iMES derived from HFLF-iPSCs (HFA) and HDF-iPSCs (GC23).
  • KDR-expressing iMES was highly expressed in HFLF and iMES, but hardly expressed in HDF.
  • alveolar organoid was formed in the same manner as in Example 1(3).
  • the alveolar organoids were observed using the fluorescence microscope.
  • the cells composing the alveolar organoids were dissociated, and the obtained cells were analyzed for SFTPC-GFP-positive cells/EPCAM-positive cells.
  • FIG. 10 is a diagram relating to the ability to form organoids.
  • (A) shows the results of flow cytometry analysis
  • (B) shows the ratio of SFTPC-GFP-positive cells to EpCAM-positive cells in alveolar organoids.
  • SFTPC-GFP-positive cells were induced in both iMES induced from HFLF-iPSCs (HFA) and HDF-iPSCs (GC23). was found to induce alveolar epithelial cells.
  • RNA-Seq analysis was performed on HDFs. Specifically, total RNA was extracted using an RNA extraction kit (RNeasy micro kit, manufactured by Qiagen) according to the attached protocol. A library of each sample was prepared from the obtained RNA using TruSeq Stranded mRNA Library Prep Kit (manufactured by Illumina).
  • the resulting library was sequenced with 100 bp paired-end reads using NovaSeq 6000 (manufactured by Illumina).
  • Raw FASTQ data were trimmed using software (fastp 0.20.1, https://github.com/OpenGene/fastp#install-with-bioconda, Reference 15), and then processed using software (SortMeRna 2.1b, https:/ /github.com/biocore/sortmerna, ref. 16) was used to exclude rRNA, tRNA, snRNA, snoRNA, Mt_rRNA, and Mt_tRNA.
  • the preprocessed data were aligned to GRCh38 using software (STAR 2.7.6a, https://github.com/alexdobin/STAR, reference 17).
  • RSEM 1.3.3 https://github.com/deweylab/RSEM, reference 18
  • TPM transcripts per million
  • R 4.1.1 http://www.R-project.org
  • tximport 1.20.0 https://github.com/mikelove/tximport, reference 19
  • Reference 18 Li, B., and Dewey, CN (2011).
  • RSEM accurate transcript quantification from RNA-Seq data with or without a reference genome.
  • Reference 19 Soneson, C., Love, MI, and Robinson, MD (2015). Differential analyzes for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Res 4, 1521.
  • Reference 20 Subramanian, A., Tamayo, P., Mootha, VK, Mukherjee, S., Ebert, BL, Gillette, MA, Paulovich, A., Pomeroy, SL, Golub, TR, Lander, ES, et al. (2005).
  • FIG. 11 is a diagram showing the results of RNA-Seq analysis.
  • principal component analysis (PCA) of the RNA-seq transcriptome showed that the clusters under each condition were well separated, indicating alveolar organoid formation (hereinafter referred to as “3D culture”).
  • the transcriptomes of HFLF after iMES and 3D culture are plotted nearby.
  • the HDF after 3D culture existed separately from the iMES and HFLF after 3D culture.
  • Gene expression is often dependent on medium composition, culture conditions (eg, 2D or 3D).
  • WNT5A, FGF7, and PDGFRA are known to be important factors in type II alveolar epithelial cells, but unexpectedly, WNT5A, FGF7, and PDGFRA are elevated in HDF, as shown in FIG. Was.
  • iMES the expression levels of secretory proteins such as RSPO2, WNT11, CCN2, SPARC, BMP4, HHIP, LAMA5 and LOX were increased.
  • Expression levels of transcription factors (TFs) such as FOXF1 and TCF21 were higher in HFLF-iMES, HDF-iMES and HFLF compared to HDF. Therefore, it was suggested that iMES has characteristics of lung fibroblasts.
  • EPAS1 was a common gene in HFLF-iMES and HFLF, but in HDF, the expression level of EPAS1 was higher than in HFLF, suggesting that it is not a specific marker for pulmonary mesenchyme.
  • the top 5000 genes of HFLF-iMES and HFLF after 3D culture were picked up and a Venn diagram was drawn.
  • Genes annotated in “Lung development” again included HHIP, CCN2, SPARC, BMP4, LAMA5, and LOX, indicating that these genes are important factors in alveolar organoid formation. It was suggested.
  • transcription factors FOXF1, TCF21, and EPAS1 annotated in "Lung development” were also included, suggesting the possibility that these may serve as markers for lung fibroblasts.
  • FIG. 12 and Table 5 above show the expression levels (TPM) of Wnt ligands and TGF ⁇ antagonists.
  • TPM TGF ⁇ antagonists
  • the cells were dissociated with 0.1% Tripsin-EDTA at 37°C for 15 minutes, and then washed twice with 1% BSA-containing PBS. The washed cells were immunostained with an anti-EPCAM-APC antibody. Thereafter, the ratio of SFTPC-GFP-positive cells to EpCAM-positive cells under each condition was evaluated by flow cytometry.
  • FIG. 13 is a diagram showing the culture method and analysis results of SFTPC-GFP-positive cells.
  • A shows the culture method
  • B shows the analysis results of flow cytometry
  • C shows the ratio of SFTPC-GFP-positive cells to EpCAM-positive cells
  • D indicates GFP-positive cells in each well
  • E indicates the ratio of SFTPC-GFP-positive cells to EpCAM-positive cells.
  • GFP-positive cells were confirmed under any condition by culturing for 4 days.
  • FIGS. 13(B), (C), and (D) GFP-positive cells were confirmed under any condition by culturing for 4 days.
  • the RSPO2/SB431542 addition group, the RSPO3/SB431542 addition group, and the RSPO2/RSPO3/SB431542 addition group showed a ratio of SFTPC-GFP-positive cells to EpCAM-positive cells.
  • the RSPO2/RSPO3/SB431542 addition group increased the ratio of SFTPC-GFP-positive cells to EpCAM-positive cells to the same extent as 2i (CHIR99021/SB431542).
  • none of the TGF ⁇ family ligand antagonists increased the ratio of SFTPC-GFP-positive cells to EpCAM-positive cells.
  • SB431542 contributes to alveolar organoid formation through another endogenous mechanism that replaces its role in inhibiting the TGF ⁇ pathway. It was suggested that In addition, the following is presumed as another endogenous mechanism. Since SB431542 is an artificial low-molecular-weight compound, it induces type II alveolar epithelial cells in a living environment by a mechanism other than TGF ⁇ pathway inhibition, and iMES also induces type II by a mechanism other than TGF ⁇ pathway inhibition. Presumed to induce alveolar epithelial cells. In addition, it is presumed that iMES secretes substances other than FST that more potently inhibit the TGF ⁇ pathway. In addition, the present invention is not limited to the above estimation.
  • mice myofibrous cells, mesenchymal alveolar niche cells, references 23-24. Therefore, we analyzed the published data of scRNA-seq published in References 23 and 24 above, and examined which type of mesenchymal cells iMES resembled. Specifically, we re-clustered three types of mesenchymal cells, secondary crest myofibroblast (SCMF), Wnt2-P ⁇ cells, and mesenchymal alveolar niche cells (MANC), and identified genes that were significantly elevated in cell clusters of each lineage. picked up. Next, we constructed a gene set representing the characteristics of each mesenchymal cell cluster.
  • SCMF secondary crest myofibroblast
  • Wnt2-P ⁇ cells Wnt2-P ⁇ cells
  • MANC mesenchymal alveolar niche cells
  • mice were converted to corresponding human genes, followed by scRNA-seq analysis of iMES, HFLF and HDF.
  • GSEA was performed using the data of Specifically, scRNA-seq data was downloaded from GSE149563.
  • Gene expression data normalization, dimensionality reduction, and data visualization were performed using Seurat 4.0.5 and Plotly 4.9.4.1.
  • the overexpressed genes in each cluster were picked up by Seurat's function FindAllMarkers using Wilcoxon's rank sum test with a cutoff value of P ⁇ 0.05, and genes expressed in 25% or more cells were extracted.
  • FIG. 14 is a diagram showing the results of cluster analysis of each mesenchymal cell.
  • each mesenchymal cell-specific marker was consistent with references 23 and 24 above.
  • Wnt2 in Wnt2-P ⁇ , Stc1 in SCMF, and Mfap5 in the MANC cluster each showed high expression levels.
  • the SCMF gene set was enriched with iMES compared to HFLF and HDF after 3D culture.
  • the MANC gene set was enriched in HDF
  • the Wnt2-P ⁇ gene set was enriched in HFLF.
  • iMES can be used to form alveolar organoids
  • iMES contributes to the differentiation of alveolar epithelial cells by at least one of RSPO2 and RSPO3
  • the gene expression profile of iMES is SCMF was found to be similar to
  • Alveolar organoids were formed in the same manner as in Example 1(3). SFTPC-GFP-positive type II alveolar epithelial cells were separated from the obtained alveolar organoids, and whether they could be maintained and cultured in iMES was investigated. Specifically, it was carried out as shown in FIG. first. Alveolar organoids obtained in the same manner as in Example 1(3) were converted to single cells using PBS containing 0.1% Trypsin-EDTA. Immunostaining was performed using an anti-EPCAM-APC antibody (manufactured by Miltenyi Biotec, Cat No.: 130-113-263), and SFTPC-GFP+/EPCAM+ cells were collected using FACS.
  • SFTPC-GFP-positive type II alveolar epithelial cells were separated from the obtained alveolar organoids, and whether they could be maintained and cultured in iMES was investigated. Specifically, it was carried out as shown in FIG. first. Alveolar organoids obtained in the same manner as in Example 1(3) were converted to single cells using PBS
  • Example 1(3) Cells from P0 to P3 were analyzed for SFTPC-GFP-positive cells/EPCAM-positive cells using a flow cytometer (FACS) in the same manner as in Example 1(3).
  • FACS flow cytometer
  • the expression of SFTPB, SFTPC, SFTPD, ABCA3, SFTPA2, SLC34A2, HOPX, AGER, and AQP5 was quantified in the cells from P0 to P3 in the same manner as in Example 1(1).
  • alveolar organoids were stained using primary and secondary antibodies against Mature-GFP, PDPN, and HT1-56.
  • Fig. 15 shows the results of passage of type II alveolar epithelial cells.
  • EpCAM-positive cells increased linearly from P0 to P3.
  • SFTPC-GFP-positive cells increased in the first passage, increased significantly from P0 to P2, and reached a plateau.
  • ABCA3, SLC34A2 type II alveolar epithelial cell marker
  • HOPX type II alveolar epithelial cell marker
  • Example 4 The ligand-target and ligand-receptor interactions between iMES and alveolar epithelial cells were analyzed.
  • scRNA-seq analysis was performed on iMES after culture of P2.
  • a single cell RNA library was prepared from iMES, HFLF and HDF using the 10x genomics Chromium device according to the attached protocol (Single Cell 3' Reagent Kits v3.1).
  • the obtained library was sequenced using NovaSeq 6000 (manufactured by Illumina).
  • the obtained readings were then mapped to GRCh38 and a count matrix was generated using Cell Ranger.
  • a software (Seurat 4.0.4, ref. 26) was used to process the single-cell data obtained.
  • Dead or poor quality cells were excluded in the treatments by deleting data from cells expressing >20% and ⁇ 1.5% of the mitochondrial gene.
  • Cells with a UMI greater than or equal to 140,000 or less than 5,000 and expressed genes less than 2,000 were also removed to exclude cell doublets and cells of low quality.
  • the UMI numbers were normalized by SCTransform.
  • the obtained data were then subjected to principal component (PC) analysis using the Seurat function RunPCA and embedded in UMAP with 17 PCs and a resolution of 1 using the Seurat function RunUMAP.
  • the UMAP plot was visualized with Plotly 4.9.4.1, and the violin plot was drawn with Seurat.
  • Fig. 16 shows the results of cluster analysis of scRNA-seq analysis.
  • alveolar epithelial cells and iMES were segregated by high expression of NKX2-1 and COL1A1, respectively.
  • FIG. 16(B) as a result of the cluster analysis, the P2 cultured alveolar organoids were annotated into 15 clusters.
  • Each cluster was determined to be a cluster of the following cells based on genes with high expression in the cluster.
  • cluster 12 was considered to be type I alveolar epithelial cells because of the high expression of AGER and CAV1.
  • Clusters 1, 8, and 14 were considered to be type II alveolar epithelial cells due to the high expression level of SFTPC.
  • Clusters of other epithelial cell lines are: cluster 5, ASCL1-positive cells; clusters 2 and 7, SOX9-positive cells; cluster 6, SOX2-positive cells; cluster 0, MKI67. were considered to be the cells of Cluster 13 had high expression levels of FOXJ1, SNTN, and SFTPC, indicating that SFTPC-positive distal tip cells differentiated into ciliated cells.
  • iMES was divided into five clusters, as shown in FIG. 16(D). Specifically, as shown in FIG.
  • cluster 9 is STC1-positive iMES
  • cluster 4 is FSTL1-positive iMES
  • cluster 10 is THY1-positive iMES
  • cluster 3 is WT1-positive iMES
  • cluster 11 is , considered iMES during cell division.
  • FOXF1, RSPO2, and RSPO3 were examined among the genes listed in the iMES transcriptome after 3D culture.
  • FOXF1-positive, RSPO3-positive iMES were widely distributed in mesenchymal clusters.
  • FIG. 16(E) RSPO2 was specifically expressed in STC1-positive iMES.
  • NicheNet was also used to infer ligand-receptor interactions considering only those ligand-receptor interactions described in the literature and public databases.
  • Reference 29 Du, Y., Ouyang, W., Kitzmiller, JA, Guo, M., Zhao, S., Whitsett, JA, and Xu, Y. (2021).
  • Lung Gene Expression Analysis Web Portal Version 3 Lung-at-a-Glance. Am J Respir Cell Mol Biol 64, 146-149.
  • FIG. 17 shows results showing ligand-receptor interactions.
  • NAMPT and TGFB1 interacted with INSR and TGFBR1/2/3, respectively.
  • TGFB2, HAS2, and CTF1 interacted with TGFBR1/2/3, CD44, and IL6ST/LIFR, respectively.
  • type I alveolar epithelial cells, type II alveolar epithelial cells, ASCL1-positive cells, and ciliated epithelial cells type I alveolar epithelial cells, ASCL1 Positive cells and ciliated epithelial cells are branching around clusters of type II alveolar epithelial cells and differentiated from type II alveolar epithelial cells, i.e. cells derived from type II alveolar epithelial cells. cells.
  • Example 5 It was confirmed that pulmonary mesenchymal cells can be efficiently induced from mesodermal cells by combining a mesenchymal cell inducer with KGF and FGF10.
  • Example 3 Formation assay of alveolar organoids in the same manner as in Example 1 (3) except that the pulmonary mesenchymal cells of Example 5 (1) and the pulmonary progenitor cells of Example 5 (2) were used , formed alveolar organoids. Then, the cells composing the obtained alveolar organoids were isolated, and SFTPC-GFP-positive cells/EPCAM-positive cells were analyzed in the same manner as in Example 1(3). The results are shown in FIG.
  • FIG. 18 is a graph showing the results of SFTPC-GFP positive cells/EPCAM positive cells.
  • FIG. 18(A) shows the results of flow cytometry analysis, and (B) shows the ratio of SFTPC-GFP-positive cells to EpCAM-positive cells in alveolar organoids.
  • the horizontal axis indicates the added factor (AKB210) or the removed factor (-X), and the vertical axis indicates the ratio of SFTPC-GFP-positive cells/EPCAM-positive cells.
  • AKB210 indicates the case where activin A, KGF, BMP4, FGF2, and FGF10 were all added. As shown in FIGS.
  • Appendix> Some or all of the above-described embodiments and examples can be described as in the following appendices, but are not limited to the following.
  • ⁇ Method for producing pulmonary mesenchymal cells> (Appendix 1) A method for producing pulmonary mesenchymal cells, comprising the step of culturing mesoderm cells in the presence of a mesenchymal cell inducer and KGF and FGF10 to induce differentiation into pulmonary mesenchymal cells. (Appendix 2) 2. The method for producing pulmonary mesenchymal cells according to Appendix 1, comprising enriching EpCAM- and/or E-cadherin-negative pulmonary mesenchymal cells from the cell population derived from the mesoderm cells.
  • Appendix 3 The method for producing pulmonary mesenchymal cells according to appendix 2, wherein the enrichment is enrichment to a cell population containing 50% or more of EpCAM and/or E-cadherin negative pulmonary mesenchymal cells.
  • Appendix 4 4. The method for producing lung mesenchymal cells according to any one of Appendices 1 to 3, wherein the lung mesenchymal cells express RSPO2 (R-Spondin 2) and/or RSPO3 (R-Spondin 3).
  • the lung mesenchymal cells are selected from the group consisting of FOXF1 (Forkhead box protein F1), TCF21 (Transcription factor 21), TBX4 (T-Box Transcription Factor 4), and OSR1 (Odd-Skipped Related Transcription Factor) 5.
  • the method for producing lung mesenchymal cells according to any one of Appendices 1 to 4, which expresses a transcription factor.
  • the lung mesenchymal cells are RSPO2 (R-Spondin 2), RSPO3 (R-Spondin 3), FOXF1 (Forkhead box protein F1), TCF21 (Transcription factor 21), TBX4 (T-Box Transcription Factor 4), and 4.
  • Appendix 7 The method for producing lung mesenchymal cells according to any one of Appendices 1 to 6, wherein the lung mesenchymal cells do not express WNT2.
  • Appendix 8) 8. The method for producing lung mesenchymal cells according to any one of Appendices 1 to 7, wherein the lung mesenchymal cells do not express TBXT (T-box transcription factor T).
  • the lung mesenchymal cells are NCAM (neural cell adhesion molecule), ADRP (Adipose differentiation-related protein), COL1A1 (Collagen, type I, alpha 1), and ACTA2 (actin alpha 2) fibers selected from the group 9.
  • the method for producing lung mesenchymal cells according to any one of Appendices 1 to 8, which expresses a blast cell marker. (Appendix 10) while said pulmonary mesenchymal cells are selected from the group consisting of VIM (Vimentin), THY1 (Thy-1 Cell Surface Antigen, CD90), PDGFR ⁇ (Platelet Derived Growth Factor Receptor ⁇ ), and KDR (Kinase Insert Domain Receptor) 10.
  • Appendix 11 11.
  • the pulmonary mesenchymal cells are capable of inducing type I alveolar epithelial cells and/or type II alveolar epithelial cells from the pulmonary progenitor cells in an alveolar organoid formation assay by co-culture with pulmonary progenitor cells. 12.
  • the method for producing pulmonary mesenchymal cells according to any one of 1 to 11. (Appendix 13) 13. The method according to any one of Appendices 1 to 12, comprising culturing the pluripotent cells in the presence of a mesoderm inducer to induce differentiation into the mesoderm cells prior to the induction of the pulmonary mesenchymal cells. of the mesenchymal cells. (Appendix 14) 14. The method for producing mesenchymal cells according to Appendix 13, wherein the mesoderm-inducing factor comprises a factor selected from the group consisting of a GSK3 ⁇ inhibitor, activin A, and BMP4. (Appendix 15) 15.
  • ⁇ Lung mesenchymal cells> A cell population comprising mesenchymal cells, including pulmonary mesenchymal cells expressing RSPO2 (R-Spondin 2) and/or RSPO3 (R-Spondin 3).
  • the lung mesenchymal cells are selected from the group consisting of FOXF1 (Forkhead box protein F1), TCF21 (Transcription factor 21), TBX4 (T-Box Transcription Factor 4), and OSR1 (Odd-Skipped Related Transcription Factor) 17.
  • FOXF1 Formhead box protein F1
  • TCF21 Transcription factor 21
  • TBX4 T-Box Transcription Factor 4
  • OSR1 Odd-Skipped Related Transcription Factor
  • (Appendix 18) 18. The cell population of paragraph 16 or 17, wherein said pulmonary mesenchymal cells express RSPO2 and RSPO3.
  • Appendix 22 22.
  • Appendix 23 23.
  • the lung mesenchymal cells are at least selected from the group consisting of NCAM (neural cell adhesion molecule), ADRP (Adipose differentiation-related protein), COL1A1 (Collagen, type I, alpha 1), and ACTA2 (actin alpha 2) 24. A cell population according to any of paragraphs 16 to 23, which expresses one fibroblast marker.
  • the lung mesenchymal cells are at least selected from the group consisting of VIM (Vimentin), THY1 (Thy-1 Cell Surface Antigen, CD90), PDGFR ⁇ (Platelet Derived Growth Factor Receptor ⁇ ), and KDR (Kinase Insert Domain Receptor) 25.
  • Appendix 26 Said pulmonary mesenchymal cells are capable of inducing type I alveolar epithelial cells and/or type II alveolar epithelial cells from said pulmonary progenitor cells in an alveolar organoid formation assay by co-culture with pulmonary progenitor cells. 25. The cell population according to any one of 25.
  • ⁇ Method for producing alveolar epithelial cells> (Appendix 27) culturing lung progenitor cells in the presence of pulmonary mesenchymal cells to induce differentiation into alveolar epithelial cells;
  • the pulmonary mesenchymal cells are pulmonary mesenchymal cells obtained by the method for producing pulmonary mesenchymal cells according to any one of Appendices 1 to 15, and/or the mesenchymal cells according to any one of Appendices 16 to 26.
  • Appendix 29 29.
  • Appendix 30 30.
  • Appendix 32 The manufacture according to any one of Appendices 27 to 30, wherein the pulmonary progenitor cells are cultured in the presence of the inducer of the pulmonary mesenchymal cells and alveolar epithelial cells to induce differentiation into the alveolar epithelial cells.
  • ⁇ Pharmaceutical composition> (Appendix 33) A cell population comprising pulmonary mesenchymal cells obtained by the method for producing pulmonary mesenchymal cells according to any one of Appendices 1 to 15 and/or the mesenchymal cells according to any one of Appendices 16 to 26; A pharmaceutical composition comprising a legally acceptable carrier.
  • a step of culturing type II alveolar epithelial cells in the presence of pulmonary mesenchymal cells for maintenance The pulmonary mesenchymal cells are pulmonary mesenchymal cells obtained by the method for producing pulmonary mesenchymal cells according to any one of Appendices 1 to 15, and/or the mesenchymal cells according to any one of Appendices 16 to 26.
  • a method for maintaining and culturing type II alveolar epithelial cells which is a cell population containing (Appendix 35) 35.
  • the maintenance culture method according to Appendix 34 wherein the type II alveolar epithelial cells are SFTPC-positive cells.
  • Appendix 36 36.
  • the inducer of alveolar epithelial cells is Wnt promoter, steroid, cAMP derivative, phosphodiesterase inhibitor, KGF, GSK3 ⁇ inhibitor, TGF ⁇ inhibitor, ROCK inhibitor, FGF10, and/or EGF, according to Appendix 36
  • ⁇ Expansion culture method for type II alveolar epithelial cells> (Appendix 38) Culturing and expanding type II alveolar epithelial cells in the presence of pulmonary mesenchymal cells;
  • the pulmonary mesenchymal cells are pulmonary mesenchymal cells obtained by the method for producing pulmonary mesenchymal cells according to any one of Appendices 1 to 15, and/or the mesenchymal cells according to any one of Appendices 16 to 26.
  • the expansion culture method according to Appendix 38, wherein the type II alveolar epithelial cells are SFTPC-positive cells. (Appendix 40) 40.
  • the inducer of alveolar epithelial cells is Wnt promoter, steroid, cAMP derivative, phosphodiesterase inhibitor, KGF, GSK3 ⁇ inhibitor, TGF ⁇ inhibitor, ROCK inhibitor, FGF10, and/or EGF, according to Appendix 40 The expansion culture method described.
  • ⁇ Culture medium> A medium for deriving lung mesenchymal cells from mesoderm cells, comprising: A medium comprising a medium (basal medium), an inducer for mesenchymal cells, and KGF and FGF10. (Appendix 43) 43.
  • the medium of paragraph 42, wherein the inducer of mesenchymal cells comprises a factor selected from the group consisting of activin A, FGF2, and BMP4.
  • ⁇ Kit> A kit for deriving lung mesenchymal cells from mesodermal cells, comprising: A kit comprising an inducer of mesenchymal cells and KGF and FGF10. (Appendix 45) 45.
  • the kit of paragraph 44, wherein the inducer of mesenchymal cells comprises an agent selected from the group consisting of activin A, FGF2, and BMP4.
  • pulmonary mesenchymal cells that can also be used to create alveolar organoids can be produced. Therefore, the present disclosure is extremely useful in, for example, the fields of regenerative medicine, cell medicine, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

肺胞上皮細胞の誘導において支持細胞として利用可能な肺間葉細胞の製造方法を提供する。 本開示の肺間葉細胞の製造方法は、中胚葉細胞を、間葉細胞の誘導因子とKGFおよびFGF10との存在下で培養し、肺間葉細胞への分化を誘導する工程を含む。

Description

肺間葉細胞の製造方法および肺間葉細胞
 本発明は、肺間葉細胞の製造方法および肺間葉細胞に関する。
 多能性幹細胞を用いて肺胞オルガノイドを作成する場合、前記肺胞オルガノイドは、前記多能性幹細胞由来の肺前駆細胞と、ヒト胎児線維芽細胞(HFLF)とを共培養することで作成できる(非特許文献1~2)。しかしながら、HFLFは、同種細胞であるものの、自家細胞ではなく、得られた肺胞オルガノイドを移植した場合、移植片拒絶反応の問題がある。また、HFLFは、入手が難しく、かつ胎児由来細胞であるため、倫理的問題がある。
Gotoh, Shimpei et al. "Generation of alveolar epithelial spheroids via isolated progenitor cells from human pluripotent stem cells." Stem cell reports vol. 3,3 (2014): 394-403. doi:10.1016/j.stemcr.2014.07.005 Yamamoto, Yuki et al. "Long-term expansion of alveolar stem cells derived from human iPS cells in organoids." Nature methods vol. 14,11 (2017): 1097-1106. doi:10.1038/nmeth.4448
 これらの問題を解決するために、本発明者らは、前記HFLFを用いない肺胞オルガノイドを作成する方法を開発した。しかしながら、前記肺胞オルガノイドの作成方法では、II型肺胞上皮細胞が主に誘導され、I型肺胞上皮細胞の誘導が難しいという問題が生じた。このため、HFLFは、前記肺胞オルガノイドの作成において支持細胞として重要であることが示唆された。このため、HFLFと同様に、支持細胞として機能する間葉細胞を誘導する方法が求められている。
 そこで、本開示は、肺胞上皮細胞の誘導において支持細胞として利用可能な肺間葉細胞の製造方法の提供を目的とする。
 前記目的を達成するため、本開示の肺間葉細胞の製造方法は、中胚葉細胞を、間葉細胞の誘導因子とKGFおよびFGF10との存在下で培養し、肺間葉細胞への分化を誘導する工程を含む。
 本開示の間葉細胞を含む細胞集団(以下、「細胞集団」ともいう)は、RSPO2および/またはRSPO3を発現する肺間葉細胞を含む。
 本開示の間葉細胞を含む細胞集団は、FOXF1(Forkhead box protein F1)、TCF21(Transcription factor 21)、TBX4(T-Box Transcription Factor 4)、および、OSR1(Odd-Skipped Related Transcription Factor)からなる群から選択された少なくとも一つの転写因子を発現する肺間葉細胞を含む。
 本開示の肺上皮細胞および/または気道上皮細胞の製造方法(以下、「製造方法」ともいう)は、肺前駆細胞を、肺間葉細胞の存在下で培養して、肺上皮細胞および/または気道上皮細胞への分化を誘導する工程を含み、
前記肺間葉細胞は、本開示の肺間葉細胞の製造方法により得られた肺間葉細胞、および/または、本開示の間葉細胞を含む細胞集団である。
 本開示の医薬組成物は、本開示の肺間葉細胞の製造方法により得られた肺間葉細胞、および/または、本開示の間葉細胞を含む細胞集団を含む。
 本開示によれば、肺胞上皮細胞の誘導において支持細胞として利用可能な肺間葉細胞の製造方法を提供できる。
図1は、実施例1における肺間葉細胞および肺前駆細胞の誘導および肺胞オルガノイド形成方法の概要を示す模式図である。 図2は、実施例1における培養後の細胞の分化状態を示す位相差像およびオイルレッドOの染色像を示す写真である。 図3は、実施例1におけるフローサイトメトリー解析を示すグラフである。 図4は、実施例1における各培養段階における細胞の遺伝子発現を示すグラフである。 図5は、実施例1における培養7日目の細胞の蛍光像を示す写真である。 図6は、実施例1における肺胞オルガノイドの検討結果を示すグラフである。 図7は、実施例1における肺胞オルガノイドにおける各種細胞マーカーの発現を示す写真およびグラフである。 図8は、実施例2におけるアッセイ系の概要を示す模式図である。 図9は、実施例2におけるiMESのマーカー発現に関する図である。 図10は、実施例2におけるオルガノイドの形成能に関する図である。 図11は、実施例2におけるRNA-Seqの解析結果を示す図である。 図12は、実施例2におけるWntリガンドの相対的発現量を示す図である。 図13は、実施例2における培養方法およびSFTPC-GFP陽性細胞の解析結果を示す図である。 図14は、実施例2における各間葉系細胞のクラスタ解析の結果を示す図である。 図15は、実施例3におけるII型肺胞上皮細胞の継代結果を示す図である。 図16は、実施例4におけるscRNA-seq解析のクラスタ解析の結果を示す。 図17は、実施例4におけるリガンド-受容体相互作用を示す結果である。 図18は、実施例5におけるSFTPC-GFP陽性細胞/EPCAM陽性細胞の結果を示すグラフである。
<定義>
 本明細書において、「マーカー」は、対象とする細胞で異なる程度で発現されている核酸、遺伝子、ポリペプチド、またはタンパク質を意味する。前記マーカーが陽性マーカーの場合、前記異なる程度は、未分化細胞と比較して、発現が増加していることを意味する。前記マーカーが陰性マーカーの場合、前記異なる程度は、未分化細胞と比較して、発現が低下していることを意味する。
 本明細書において「陽性(+)」、「ポジティブ」、または「発現する」は、細胞が検出可能なマーカーを発現することを意味する。前記「陽性(+)」は、典型的には、抗原抗体反応を利用して検出されるフローサイトメトリー等の解析方法により、前記抗原を発現しない陰性対照細胞または前記抗原と反応しない抗体を用いる陰性対照反応と比較して、高いシグナルが検出されることを意味する。前記「発現する」は、RT-PCR等により、基準試料中のマーカー遺伝子と対象試料中の前記マーカー遺伝子との発現量を比較して、前記対象試料において、前記マーカー遺伝子の発現量の増加が見られることを意味する。前記発現量は、内部標準遺伝子(例えば、β-アクチン遺伝子)により補正された発現量である。前記対象試料が多能性細胞から誘導された細胞または細胞集団である場合、前記基準試料は、人工多能性幹細胞(induced pluripotent stem cells:iPS細胞)を使用できる。
 本明細書において、「陰性(-)」、「ネガティブ」、または「発現しない」は、細胞が検出可能なマーカーを発現していないことを意味する。前記「陰性(-)」は、典型的には、抗原抗体反応を利用して検出されるフローサイトメトリー等の解析方法により、前記抗原を発現しない陰性対照細胞または前記抗原と反応しない抗体を用いる陰性対照反応と比較して、同等またはそれ以下のシグナルが検出されることを意味する。前記「発現しない」は、RT-PCR等により、基準試料中のマーカー遺伝子と対象試料中の前記マーカー遺伝子との発現量を比較して、前記対象試料において、前記マーカー遺伝子の発現量の減少が見られることを意味する。前記発現量は、内部標準遺伝子(例えば、β-アクチン遺伝子)により補正された発現量である。前記対象試料が多能性細胞から誘導された細胞または細胞集団である場合、前記基準試料は、人工多能性幹細胞(induced pluripotent stem cells:iPS細胞)を使用できる。
 本明細書において、「多能性細胞」は、外胚葉、中胚葉、および内胚葉の細胞への分化能を有する細胞を意味する。前記多能性細胞が自己複製能を有する場合、前記多能性細胞は、多能性幹細胞ということもできる。
 本明細書において、「中胚葉細胞」は、発生学的に適切な刺激があれば、骨、軟骨、血管、リンパ管等の結合組織;筋組織;等への分化能を有するように運命づけられた細胞を意味し、NCAM(neural cell adhesion molecule)、PDGFRα(Platelet Derived Growth Factor Receptor α)、KDR(Kinase Insert Domain Receptor)、ISL1、NKX2-5および/またはOSR1等の中胚葉細胞マーカーを発現する細胞であり、好ましくは、NCAM、PDGFRα、および/またはKDRを発現する細胞であり、より好ましくは、NCAMおよび/またはPDGFRαを発現する細胞である。
 本明細書において、「内胚葉細胞」(definitive endoderm:DE)は、発生学的に適切な刺激があれば、胸腺;胃、腸、肝臓等の消化器;気管、気管支、肺等の呼吸器;および膀胱、尿道等の泌尿器;への分化能を有するように運命づけられた細胞を意味し、SOX17(SRY (sex determining region Y)-box 17)およびFOXA2(Forkhead box protein A2)を発現する細胞である。
 本明細書において、「前方前腸内胚葉細胞」(anterior foregut endoderm:AFE)(前方前腸細胞ともいう。)は、発生学的に適切な刺激があれば、胸腺;および気管、気管支、肺等の呼吸器;への分化能を有するように運命づけられた細胞を意味し、SOX2、SOX17、およびFOXA2を発現する細胞である。
 本明細書において、「腹側前方前腸内胚葉細胞」(ventral anterior foregut endoderm:VAFE)(腹側前方前腸細胞ともいう)は、発生学的に適切な刺激があれば甲状腺および肺への分化能を有するように運命づけられた細胞を意味し、NKX2.1、GATA6(GATA-binding factor 6)、およびHOPX(Homeodomain-only protein)を発現する細胞である。
 本明細書において、「間葉細胞」は、中胚葉細胞由来の細胞であり、発生学的に適切な刺激があれば、骨、軟骨、血管、リンパ管等の結合組織への分化能を有するように運命づけられた細胞を意味し、VIM(Vimentin)、THY1(Thy-1 Cell Surface Antigen、CD90)、PDGFRα、COL1A1(Collagen Type I Alpha 1 Chain)、NCAM、および/または、KDR等の間葉細胞マーカーを発現する細胞であり、好ましくは、VIM、THY1、および/またはCOL1A1を発現する細胞である。前記間葉は、間充織ともいわれる。このため、前記間葉細胞は、間充織細胞ともいう。
 本明細書において、「肺間葉細胞」は、中胚葉細胞由来の細胞であり、発生学的に適切な刺激があれば、肺の結合組織への分化能を有するように運命づけられた細胞を意味し、前記間葉細胞マーカーに加えて、FOXF1(Forkhead box protein F1)、TCF21(Transcription factor 21)および/またはTBX4(T-Box Transcription Factor 4)を発現する細胞である。前記肺間葉細胞が、線維芽細胞マーカー(例えば、NCAM(neural cell adhesion molecule)、ADRP(Adipose differentiation-related protein)、および/または、COL1A1(Collagen, type I, alpha 1)、およびACTA2(actin alpha 2)等)を発現する場合、前記肺間葉細胞は、肺線維芽細胞ということもできる。
 本明細書において、「肺前駆細胞」は、発生学的に適切な刺激があれば肺胞上皮細胞および/または気道上皮細胞への分化能を有するように運命づけられた細胞を意味する。前記肺前駆細胞は、カルボキシペプチダーゼM(CPM)、NK2ホメオボックス1(NKX2.1まは、NKX2-1)、SRY-ボックス9(SRY (sex determining region Y)-box 9、SOX9)、SRY-ボックス2(SRY (sex determining region Y)-box 2、SOX2)、および/または、フォークヘッドボックスタンパク質2A(FOXA2)を発現している細胞である。前記肺前駆細胞は、CPMおよび/またはNKX2.1陽性細胞が好ましい。
 本明細書において、「肺胞上皮細胞」は、肺における肺胞に存在する上皮細胞を意味する。前記肺胞上皮細胞は、例えば、I型肺胞上皮細胞、および/または、II型肺胞上皮前駆細胞があげられる。
 本明細書において、「I型肺胞上皮細胞」は、組織学的に扁平状の形状を有する、上皮細胞を意味し、PDPN(Podoplanin)、AGER(Advanced Glycosylation End-Product Specific Receptor)、CAV1(Caveolin 1)、HOPX(HOP Homeobox)、および/またはAQP5(Aquaporin 5)を発現している細胞である。
 本明細書において、「II型肺胞上皮細胞」は、SFTPC(Surfactant protein C)、SFTPB(Surfactant protein B)等の肺サーファクタントタンパク質を産生する上皮細胞を意味し、SFTPC(Surfactant protein C)、SFTPB(Surfactant protein B)、ABCA3(ATP-binding cassette sub-family A member 3)、DCLAMP(Lysosome-associated membrane glycoprotein 3)、および/または、SLC34A2(Sodium-dependent phosphate transport protein 2B)を発現している細胞である。
 本明細書において、「細胞集団」は、所望の細胞を含み、且つ1または複数の細胞から構成される細胞の集まりを意味する。前記細胞集団において、全細胞に占める所望の細胞の割合(「純度」ともいう)は、例えば、所望の細胞が発現する1以上のマーカーを発現する細胞の割合として定量できる。前記純度は、例えば、生細胞中の割合である。前記純度は、例えば、フローサイトメトリー、免疫組織化学的手法、インシチュハイブリダイゼーション、RT-PCR、シングルセル解析等の方法により測定できる。前記細胞集団における所望の細胞の純度は、例えば、5%以上、10%以上、20%以上、30%以上、40%以上、50%以上、55%以上、60%以上、65%以上、70%以上、75%以上、80%以上、85%以上、90%以上、91%以上、92%以上、93%以上、94%以上、95%以上、96%以上、97%以上、98%以上、または99%以上である。
 本明細書において、「単離された」は、同定され、且つ分離すること、または同定され、且つ分離された状態、および/または、同定され、且つ自然状態での成分から回収すること、または自然状態での成分から回収された状態を意味する。前記「単離」は、例えば、少なくとも1つの精製工程を得ることにより実施できる。
 本明細書において、「富化」は、対象の細胞について、処理前の状態と比較して、含有割合を増加させること、または含有割合が増加された状態を意味する。前記富化は、濃縮ということもできる。前記富化は、例えば、培養を含まない。
 本明細書において、「タンパク質」または「ポリペプチド」は、未修飾アミノ酸(天然のアミノ酸)、修飾アミノ酸、および/または人工アミノ酸から構成されるポリマーを意味する。
 本明細書において、「核酸分子」または「核酸」は、デオキシリボヌクレオチド(DNA)、リボヌクレオチド(RNA)、および/または改変ヌクレオチドのポリマーを意味する。前記核酸分子は、一本鎖核酸分子でもよいし、二本鎖核酸分子でもよい。
 本明細書において、「対象」は、動物または動物由来の細胞、組織もしくは器官を意味する。特にヒトを含む意味で用いられる。前記動物は、ヒトおよび非ヒト動物を意味する。前記非ヒト動物は、例えば、マウス、ラット、ウサギ、イヌ、ネコ、ウシ、ウマ、ブタ、サル、イルカ、アシカ等の哺乳類動物があげられる。
 本明細書において、「処置」は、治療的処置および/または予防的処置を意味する。本明細書において、「治療」は、疾患、病態、もしくは障害の治療、治癒、防止、抑止、寛解、改善、または、疾患、病態、もしくは障害の進行の停止、抑止、低減、もしくは遅延を意味する。本明細書において、「予防」は、疾患もしくは病態の発症の可能性の低下、または疾患もしくは病態の発症の遅延を意味する。前記「治療」は、例えば、対象疾患を発病する患者に対する治療でもよいし、対象疾患のモデル動物の治療でもよい。
 本明細書に記載のタンパク質またはそれをコードする核酸(例えば、DNAまたはRNA)の配列情報は、Protein Data Bank、UniPort、またはGenbank等から入手可能である。
 以下、本開示について、例を挙げてさらに具体的に説明する。ただし、本開示は、以下の説明により限定されない。また、本開示における各説明は、特に言及がない限り、互いに援用可能である。なお、本明細書において、「~」という表現を用いた場合、その前後の数値または物理値を含む意味で用いる。また、本明細書において、「Aおよび/またはB」という表現には、「Aのみ」、「Bのみ」、「AおよびBの双方」が含まれる。
<肺間葉細胞の製造方法>
 ある態様において、本開示は、肺間葉細胞の製造方法または肺胞オルガノイドの形成に使用可能な肺間葉細胞の製造方法を提供する。本開示の肺間葉細胞の製造方法は、中胚葉細胞を、間葉細胞の誘導因子とKGFおよび/またはFGF10との存在下で培養し、肺間葉細胞への分化を誘導する工程を含む。本開示の肺間葉細胞の製造方法によれば、肺胞オルガノイドの形成に使用可能な肺間葉細胞を提供できる。また、本開示の肺間葉細胞の製造方法により得られた肺間葉細胞を用いて肺胞オルガノイドを形成した場合、前記肺胞オルガノイドでは、例えば、I型肺胞上皮細胞、II型肺胞上皮細胞、気道繊毛上皮細胞等の気道上皮細胞を含む。このため、本開示の肺間葉細胞の製造方法によれば、例えば、前記HFLFを代替可能な支持細胞としての肺間葉細胞を提供できる。
 本開示の肺間葉細胞の製造方法において、前記肺間葉細胞の誘導に用いる中胚葉細胞は、例えば、多能性細胞から誘導できる。このため、本開示の肺間葉細胞の製造方法は、前記中胚葉細胞から前記肺間葉細胞の誘導に先立ち、前記多能性細胞から前記中胚葉細胞の分化を誘導してもよい。この場合、本開示の肺間葉細胞の製造方法は、例えば、多能性細胞を、中胚葉誘導因子の存在下で培養し、前記中胚葉細胞への分化を誘導する工程(第1の誘導工程)を含む。
 前記第1の誘導工程では、例えば、前記多能性細胞を、前記中胚葉誘導因子を含有する培地内で培養し、前記中胚葉細胞マーカーを発現する細胞、すなわち、中胚葉細胞に分化させる、すなわち、前記多能性細胞と前記中胚葉誘導因子とを接触させて培養し、中胚葉細胞に分化させる。前記多能性細胞から前記中胚葉細胞への誘導は、例えば、下記参考文献1~4を参照できる。具体的には、前記第1の誘導工程では、例えば、前記中胚葉誘導因子として、GSK3β阻害剤、アクチビンA、および/または、BMP4を用いて培養することにより、前記多能性細胞から前記中胚葉細胞を誘導できる。前記中胚葉誘導因子は、例えば、1種類を用いてもよいし、複数種類を用いてもよい。1種類の中胚葉誘導因子を用いる場合、前記中胚葉誘導因子は、前記GSK3β阻害剤が好ましい。また、複数の中胚葉誘導因子を組合せて用いる場合、前記中胚葉誘導因子は、例えば、前記GSK3β阻害剤と、前記アクチビンA、および/または、BMP4との組合せ;前記GSK3β阻害剤と、前記アクチビンA、および前記BMP4の組合せ;等があげられる。前記中胚葉誘導因子がペプチドまたはタンパク質の場合、前記中胚葉誘導因子は、例えば、前記多能性細胞が由来する動物種と、異なるまたは同じ動物種由来のペプチドまたはタンパク質である。前記第1の誘導工程では、前記アクチビンAに代えて、Leftyを用いてもよい。また、前記第1の誘導工程では、前記BMP4に代えて、BMP2、BMP6、および/またはBMP7を用いてもよい。
参考文献1:Han, L., Chaturvedi et al. “Single cell transcriptomics identifies a signaling network coordinating endoderm and mesoderm diversification during foregut organogenesis.” Nat Commun, 2020, 11, 4158.
参考文献2:Kishimoto, K. et al, “Bidirectional Wnt signaling between endoderm and mesoderm confers tracheal identity in mouse and human cells.” Nat Commun, 2020, 11, 4159.
参考文献3:Loh, K.M. et al., “Mapping the Pairwise Choices Leading from Pluripotency to Human Bone, Heart, and Other Mesoderm Cell Types.” Cell, 2016, 166, 451-467.
参考文献4:Xi, H. et al. “In Vivo Human Somitogenesis Guides Somite Development from hPSCs.” Cell Rep, 2017, 18, 1573-1585.
 前記多能性細胞は、例えば、人工多能性幹細胞(induced pluripotent stem cells:iPS細胞)、胚性幹細胞(ES細胞)等の全能性の幹細胞;造血幹細胞、神経幹細胞、間葉系幹細胞等の組織性幹細胞または体性幹細胞等の多能性の幹細胞;等があげられる。
 前記ES細胞としては、例えば、H1、H7、およびH9等のヒト胚性幹細胞株(WiCell Research Instituteから入手可能)を使用できる。前記ES細胞は、例えば、動物の胚盤胞から単離された細胞塊を、培養することにより、調製してもよい。具体例として、前記ES細胞の誘導方法は、下記参考文献5を参照できる。
参考文献5:Thomson JA et al., “Embryonic stem cell lines derived from human blastocysts.”, Science, 1998, vol. 282, pages 1145-1147
 前記iPS細胞としては、201B7(RIKEN BRCより入手可能)、604A1(京都大学iPS研究所より入手可能)等が使用できる。前記iPS細胞は、例えば、対象となる細胞に、初期化因子を導入することにより調製できる。前記初期化因子は、例えば、Oct3/4、Sox2、Sox1、Sox3、Sox15、Sox17、Klf4、Klf2、c-Myc、N-Myc、L-Myc、Nanog、Lin28、Fbx15、ERas、ECAT15-2、Tcl1、beta-catenin、Lin28b、Sall1、Sall4、Esrrb、Nr5a2、Tbx3またはGlis1等があげられ、具体例として、Oct3/4、Sox2、Klf4、L-Myc、およびLin28の組合せがあげられる。
 前記GSK3β阻害剤は、GSK3βタンパク質のキナーゼ活性(例えば、βカテニンに対するリン酸化能)を阻害する物質であればよく、具体的には、BIO(GSK-3β阻害剤IX:6-ブロモインジルビン3'-オキシム)等のインジルビン誘導体;SB216763(3-(2,4-ジクロロフェニル)-4-(1-メチル-1H-インドール-3-イル)-1H-ピロール-2,5-ジオン)、SB415286(3-[(3-クロロ-4-ヒドロキシフェニル)アミノ]-4-(2-ニトロフェニル)-1H-ピロール-2,5-ジオン)等のマレイミド誘導体;SK-3β阻害剤VII(4-ジブロモアセトフェノン)等のフェニルαブロモメチルケトン化合物;L803-mts(GSK-3βペプチド阻害剤;Myr-N-GKEAPPAPPQSpP-NH2)等の細胞膜透過型のリン酸化ペプチド;CHIR99021(6-[2-[4-(2,4-Dichlorophenyl)-5-(4-methyl-1H-imidazol-2-yl)pyrimidin-2-ylamino]ethylamino]pyridine-3-carbonitrile)、GSK3βタンパク質の発現抑制核酸分子(siRNA、shRNA、アンチセンス等)等があげられる。前記GSK3β阻害剤は、GSK3βへの選択性が高いことから、CHIR99021が好ましい。前記GSK3β阻害剤は、例えば、Calbiochem社、Biomol社等から市販されている。
 前記アクチビンAは、NCBIにアクセッション番号NM_002192で登録されているポリヌクレオチドによってコードするタンパク質(配列番号49)である。
アクチビンA(配列番号49)
MPLLWLRGFLLASCWIIVRSSPTPGSEGHSAAPDCPSCALAALPKDVPNSQPEMVEAVKKHILNMLHLKKRPDVTQPVPKAALLNAIRKLHVGKVGENGYVEIEDDIGRRAEMNELMEQTSEIITFAESGTARKTLHFEISKEGSDLSVVERAEVWLFLKVPKANRTRTKVTIRLFQQQKHPQGSLDTGEEAEEVGLKGERSELLLSEKVVDARKSTWHVFPVSSSIQRLLDQGKSSLDVRIACEQCQESGASLVLLGKKKKKEEEGEGKKKGGGEGGAGADEEKEQSHRPFLMLQARQSEDHPHRRRRRGLECDGKVNICCKKQFFVSFKDIGWNDWIIAPSGYHANYCEGECPSHIAGTSGSSLSFHSTVINHYRMRGHSPFANLKSCCVPTKLRPMSMLYYDDGQNIIKKDIQNMIVEECGCS
 前記アクチビンAは、前記アクチビンAの機能等価物でもよい。前記機能等価物は、アクチビンAと同様にアクチビン受容体(ACVR1/2)を介して、SMAD2/3シグナルを活性化可能な物質である。前記アクチビンAの機能等価物は、例えば、Nodal、Lefty等があげられる。
 前記BMP4は、NCBIにアクセッション番号NM_001202、NM_001347914、NM_001347916、NM_130850、またはNM_130851で登録されているポリヌクレオチドによってコードするタンパク質である。一例として、前記BMP4は、例えば、下記配列番号50のアミノ酸配列からなるタンパク質があげられる。
BMP4(配列番号50)
MIPGNRMLMVVLLCQVLLGGASHASLIPETGKKKVAEIQGHAGGRRSGQSHELLRDFEATLLQMFGLRRRPQPSKSAVIPDYMRDLYRLQSGEEEEEQIHSTGLEYPERPASRANTVRSFHHEEHLENIPGTSENSAFRFLFNLSSIPENEVISSAELRLFREQVDQGPDWERGFHRINIYEVMKPPAEVVPGHLITRLLDTRLVHHNVTRWETFDVSPAVLRWTREKQPNYGLAIEVTHLHQTRTHQGQHVRISRSLPQGSGNWAQLRPLLVTFGHDGRGHALTRRRRAKRSPKHHSQRARKKNKNCRRHSLYVDFSDVGWNDWIVAPPGYQAFYCHGDCPFPLADHLNSTNHAIVQTLVNSVNSSIPKACCVPTELSAISMLYLDEYDKVVLKNYQEMVVEGCGCR
 前記BMP4は、前記BMP4の機能等価物でもよい。前記機能等価物は、BMP4と同様にBMP受容体(BMPR1/2)を介して、SMAD1/5/8シグナルを活性化可能な物質である。前記BMP4の機能等価物は、例えば、BMP2、BMP6、またはBMP7等があげられる。
 前記第1の誘導工程における前記中胚葉誘導因子の濃度は、特に制限されず、各因子が中胚葉細胞への誘導活性を示す有効濃度であればよい。具体例として、前記中胚葉誘導因子としてGSK3β阻害剤であるCHIR99021を用いる場合、前記培地中のCHIR99021の濃度は、例えば、0.1~20μmol/lである。前記中胚葉誘導因子としてアクチビンAを用いる場合、前記培地中のアクチビンAの濃度は、例えば、1~100ng/mlである。前記中胚葉誘導因子としてBMP4を用いる場合、前記培地中のBMP4の濃度は、1~100ng/mlである。
 前記培地は、動物細胞の培養に用いられる培地を基礎培地として調製できる。前記基礎培地は、例えば、IMDM培地、Medium199培地、Eagle's Minimum Essential Medium(EMEM)培地、αMEM培地、Dulbecco's modified Eagle's Medium(DMEM)培地、Ham's F12培地、RPMI1640培地、Fischer's培地、Neurobasal Medium(Thermo Fisher Scientific社製)、幹細胞培養用培地(例えば、mTeSR-1(STEMCELL Technologies社製)、TeSR-E8(STEMCELL Technologies社製)、CDM-PVA、StemPRO hESC SFM(Life Technologies社製)、E8(Life Technologies社製))およびそれらの混合培地等があげられる。前記培地は、血清が添加されていてもよいし、血清未添加でもよい。前記培地は、例えば、アルブミン、トランスフェリン、Knockout Serum Replacement(KSR)(ES細胞培養用の血清代替物)、N2サプリメント(Invitrogen社製)、B27サプリメント(Invitrogen社製)、脂肪酸、インスリン、コラーゲン前駆体、微量元素、2-メルカプトエタノール、3’-チオールグリセロール等の血清代替物を含んでもよい。また、前記培地は、脂質、アミノ酸、L-グルタミン、Glutamax(Invitrogen社製)、非必須アミノ酸、ビタミン、増殖因子、低分子化合物、抗生物質、抗酸化剤、ピルビン酸、緩衝剤、無機塩類等の添加剤を含んでもよい。前記構造体を用いて増殖培養を行なう場合、前記培地は、好ましくは、グルタミン酸および抗生物質が添加された幹細胞培養用培地である。
 前記第1の誘導工程の培養期間は、前記中胚葉細胞が分化可能な期間であればよく、例えば、1~7日、1~5日、または2~4日である。
 前記第1の誘導工程の培養条件は、例えば、細胞培養の通常の条件が採用できる。具体例として、培養温度は、例えば、25~40℃、30~40℃、または約37℃である。培養時の二酸化炭素濃度は、1~10%、3~7%、または約5%である。前記培養は、例えば、湿潤環境下で実施される。
 前記第1の誘導工程において、前記中胚葉細胞の分化は、例えば、前記中胚葉細胞のマーカーの発現および/または前記多能性細胞のマーカーの発現の消失により、検出できる。
 前記中胚葉細胞のマーカーは、例えば、NCAM、PDGFRα、KDR、ISL1、NKX2-5、および/またはOSR1等があげられる。前記中胚葉細胞のマーカーは、好ましくは、NCAM、PDGFRα、および/またはKDRであり、より好ましくは、NCAMおよび/またはPDGFRα、またはNCAMおよびPDGFRαである。
 前記多能性幹細胞のマーカーは、例えば、ABCG2、Cripto、FOXD3、Connexin43、Connexin45、Oct4、Sox2、Nanog、hTERT、UTF1、ZFP42、SSEA-3、SSEA-4、TRA-1-60、TRA-1-81等があげられる。
 前記第1の誘導工程後において、前記誘導後の全細胞(細胞集団)に占める前記中胚葉細胞の含有割合(下限値)は、例えば、細胞数を基準として、5%以上、10%以上、20%以上、30%以上、40%以上、50%以上、55%以上、60%以上、65%以上、70%以上、75%以上、80%以上、85%以上、90%以上、91%以上、92%以上、93%以上、94%以上、95%以上、96%以上、97%以上、98%以上、または99%以上である。前記含有割合(上限値)は、例えば、細胞数を基準として、100%以下、99%以下、98%以下、97%以下、96%以下、95%以下、94%以下、93%以下、92%以下、91%以下、90%以下、85%以下、80%以下、75%以下、70%以下、65%以下、60%以下、55%以下、または50%以下である。前記含有割合の数値範囲は、例えば、前記下限値および前記上限値の任意の組合せとできる。具体例として、前記第1の誘導工程において、3日間培養した場合、前記含有割合は、例えば、30~60%である。前記含有割合は、例えば、前記第1の誘導工程の培養日数を短くすることにより、低くなる。他方、前記含有割合は、例えば、前記第1の誘導工程の培養日数を長くすることにより、高くなる。
 つぎに、本開示の肺間葉細胞の製造方法では、前記中胚葉細胞を、間葉細胞の誘導因子とKGFおよびFGF10との存在下で培養し、肺間葉細胞への分化を誘導する(第2の誘導工程)。
 前記第2の誘導工程では、例えば、前記中胚葉細胞を、前記間葉細胞の誘導因子を含有する培地内で培養し、前記間葉細胞マーカーを発現する細胞、すなわち、肺間葉細胞等の間葉細胞に分化させる。前記第2の誘導工程では、例えば、前記中胚葉細胞を前記間葉細胞の誘導因子と接触させて培養することにより、間葉細胞を分化させる。具体的には、前記第2の誘導工程では、例えば、前記間葉細胞の誘導因子として、アクチビンA、FGF2、BMP4、レチノイン酸(RA)、PDGFbb(platelet-derived growth factor bb)、Wnt誘導剤、および/または、GSK3β阻害剤と、KGF(FGF7)および/またはFGF10とを用いて培養することにより、前記中胚葉細胞から前記肺間葉細胞を誘導できる。前記第2の誘導工程では、前記間葉細胞の誘導方法において、KGFおよびFGF10を共存させることで、前記肺間葉細胞を誘導できる。前記間葉細胞の誘導方法としては、例えば、下記参考文献6~7が参照できる。前記間葉細胞の誘導因子は、例えば、1種類を用いてもよいし、複数種類を用いてもよい。1種類の間葉細胞の誘導因子を用いる場合、前記間葉細胞の誘導因子は、前記BMP4またはFGF2が好ましい。また、複数の間葉細胞の誘導因子を組み合わせて用いる場合、前記間葉細胞の誘導因子は、例えば、前記アクチビンA、前記FGF2、および前記BMP4の組合せ;レチノイン酸、BMP4、およびWnt阻害剤および/またはGSK3β阻害剤の組合せ(参考文献6);FGF2およびPDGFbbの組合せ(参考文献7);等があげられる。前記間葉細胞の誘導因子がペプチドまたはタンパク質の場合、前記中胚葉誘導因子は、例えば、前記中胚葉細胞が由来する動物種と、異なるまたは同じ動物種由来のペプチドまたはタンパク質である。前記KGFおよびFGF10は、例えば、前記中胚葉細胞が由来する動物種と、異なるまたは同じ動物種由来のペプチドまたはタンパク質である。前記第2の誘導工程では、前記FGF2に代えて、FGF1を用いてもよい。前記第2の誘導工程では、前記KGFおよびFGF10に代えて、FGF3および/またはFGF22を用いてもよい(参考文献8~9)。前記Wnt阻害剤およびGSK3β阻害剤は、後述の例示を援用できる。
参考文献6:Han, Lu et al. “Single cell transcriptomics identifies a signaling network coordinating endoderm and mesoderm diversification during foregut organogenesis.” Nature communications vol. 11,1 4158. 27 Aug. 2020, doi:10.1038/s41467-020-17968-x
参考文献7:Takebe, Takanori et al. “Massive and Reproducible Production of Liver Buds Entirely from Human Pluripotent Stem Cells.” Cell reports vol. 21,10 (2017): 2661-2670. doi:10.1016/j.celrep.2017.11.005
参考文献8:小西 守周、他「細胞外分泌因子FGF21による生体機能調節」、インターネット<https://seikagaku.jbsoc.or.jp/10.14952/SEIKAGAKU.2016.880086/index.html>
参考文献9:Hui, Qi et al. “FGF Family: From Drug Development to Clinical Application.” International journal of molecular sciences vol. 19,7 1875. 26 Jun. 2018, doi:10.3390/ijms19071875
 前記FGF2は、NCBIにアクセッション番号NM_002006で登録されているポリヌクレオチドによってコードするタンパク質(下記配列番号51)である。前記FGF2は、プロテアーゼによる切断を受けて活性化された形態であってもよい。
FGF2(配列番号51)
MVGVGGGDVEDVTPRPGGCQISGRGARGCNGIPGAAAWEAALPRRRPRRHPSVNPRSRAAGSPRTRGRRTEERPSGSRLGDRGRGRALPGGRLGGRGRGRAPERVGGRGRGRGTAAPRAAPAARGSRPGPAGTMAAGSITTLPALPEDGGSGAFPPGHFKDPKRLYCKNGGFFLRIHPDGRVDGVREKSDPHIKLQLQAEERGVVSIKGVCANRYLAMKEDGRLLASKCVTDECFFFERLESNNYNTYRSRKYTSWYVALKRTGQYKLGSKTGPGQKAILFLPMSAKS
 前記FGF2は、前記FGF2の機能等価物でもよい。前記機能等価物は、FGF2と同様にFGF受容体(FGFR1またはFGFR4)を介して、Ras-Rafを活性化可能な物質である。前記FGF2の機能等価物は、例えば、FGF2と同様にFGF1サブファミリーに属するFGF1等があげられる。
 前記KGFは、NCBIにアクセッション番号NM_002009で登録されているポリヌクレオチドによってコードするタンパク質である。前記KGFは、プロテアーゼによる切断を受けて活性化された形態であってもよい。
 前記KGF(FGF7)は、前記KGFの機能等価物でもよい。前記機能等価物は、KGFと同様にFGF受容体(FGFR2b、FGFR1b等)を介して、Ras-Rafを活性化可能な物質である。前記KGFの機能等価物は、例えば、KGFと同様にFGF7サブファミリーに属するFGF3、FGF10、FGF22等があげられる。前記KGFは、プロテアーゼによる切断を受けて活性化された形態であってもよい。
 前記FGF10は、NCBIにアクセッション番号NM_004465で登録されているポリヌクレオチドによってコードするタンパク質である。前記FGF10は、プロテアーゼによる切断を受けて活性化された形態であってもよい。
 前記FGF10は、前記FGF10の機能等価物でもよい。前記機能等価物は、FGF10と同様にFGF受容体(FGFR2b、FGFR1b)を介して、Ras-Rafを活性化可能な物質である。前記FGF10の機能等価物は、例えば、FGF10と同様にFGF7サブファミリーに属するKGF、FGF3、FGF22等があげられる。前記FGF10は、プロテアーゼによる切断を受けて活性化された形態であってもよい。
 前記第2の誘導工程における前記間葉細胞の誘導因子の濃度は、特に制限されず、各因子が間葉細胞への誘導活性を示す有効濃度であればよい。具体例として、前記間葉細胞の誘導因子としてアクチビンAを用いる場合、前記培地中のアクチビンAの濃度は、例えば、0.01~1000ng/ml、0.1~100ng/ml、または0.2~10ng/mlである。前記間葉細胞の誘導因子としてFGF2を用いる場合、前記培地中のFGF2の濃度は、例えば、0.1~1000ng/ml、1~100ng/ml、または2~50ng/mlである。前記間葉細胞の導因子としてBMP4を用いる場合、前記培地中のBMP4の濃度は、例えば、0.1~1000ng/ml、1~100ng/ml、または2~50ng/mlである。
 前記第2の誘導工程における前記KGFおよびFGF10の濃度は、特に制限されず、各因子が肺間葉細胞への誘導活性を示す有効濃度であればよい。具体例として、前記培地中のKGFの濃度は、例えば、0.1~1000ng/ml、1~100ng/ml、または2~50ng/mlである。前記培地中のFGF10の濃度は、例えば、0.1~1000ng/ml、1~100ng/ml、または2~50ng/mlである。
 前記培地は、前記第1の誘導工程における培地の説明を援用できる。前記第2の誘導工程で用いる培地は、前記第1の誘導工程で用いる培地と同じでもよいし、異なってもよい。
 前記第2の誘導工程の培養期間は、前記肺間葉細胞が分化可能な期間であればよく、例えば、1~9日、3~7日、または4~6日である。
 前記第2の誘導工程の培養条件は、前記第1の誘導工程における培養条件の説明を援用できる。前記第2の誘導工程の培養条件は、前記第1の誘導工程の培養条件と同じでもよいし、異なってもよい。
 前記第2の誘導工程において、前記肺間葉細胞の分化は、例えば、前記肺間葉細胞のマーカーの発現および/または前記中胚葉細胞のマーカーの発現の消失により、検出できる。
 前記間葉細胞のマーカーは、例えば、PDGFRα、KDR、ISL1、NKX2-5、VIM、COL1A1、FOXF1、および/またはTCF21等があげられ、好ましくは、FOXF1およびTCF21があげられる。
 前記中胚葉細胞のマーカーは、例えば、TBXT(T-box transcription factor T)等があげられる。
 前記第2の誘導工程後において、前記誘導後の全細胞(細胞集団)に占める前記肺間葉細胞の含有割合(下限値)は、例えば、細胞数を基準として、5%以上、10%以上、20%以上、30%以上、40%以上、50%以上、55%以上、60%以上、65%以上、70%以上、75%以上、80%以上、85%以上、90%以上、91%以上、92%以上、93%以上、94%以上、95%以上、96%以上、97%以上、98%以上、または99%以上である。前記含有割合(上限値)は、例えば、細胞数を基準として、100%以下、99%以下、98%以下、97%以下、96%以下、95%以下、94%以下、93%以下、92%以下、91%以下、90%以下、85%以下、80%以下、75%以下、70%以下、65%以下、60%以下、55%以下、または50%以下である。前記含有割合の数値範囲は、例えば、前記下限値および前記上限値の任意の組合せとできる。前記第2の培養工程において、3日間培養した場合、前記含有割合は、例えば、20~40%である。前記第2の培養工程において、7日間培養した場合、前記含有割合は、例えば、60~90%である。前記含有割合は、例えば、前記第2の誘導工程の培養日数を短くすることにより、低くなる。他方、前記含有割合は、例えば、前記第1の誘導工程の培養日数を長くすることにより、高くなる。
 本開示の肺間葉細胞の製造方法は、前記第2の誘導工程後に、前記肺間葉細胞を富化してもよい。これにより、本開示の肺間葉細胞の製造方法は、例えば、得られた肺間葉細胞を含む細胞集団と、後述の肺前駆細胞とを用いて肺胞オルガノイドを形成させた際に、II型肺胞上皮細胞の誘導効率を向上できる。この場合、本開示の肺間葉細胞の製造方法は、前記第2の誘導工程後、前記中胚葉細胞から誘導された細胞集団から、前記肺間葉細胞を富化する工程(富化工程)を含む。
 前記肺間葉細胞の富化は、例えば、前記細胞集団において、前記肺間葉細胞に発現し、他の細胞には発現していない、もしくは、他の細胞の発現が低いマーカー(陽性マーカー)、または、前記肺間葉細胞に発現せず、他の細胞には発現している、もしくは、他の細胞の発現が高いマーカー(陰性マーカー)を指標に実施できる。前記陽性マーカーおよび前記陰性-マーカーは、細胞表面に発現しているマーカーが好ましい。前記陽性マーカーは、例えば、PDGFRα、KDR、VIM、THY1、NCAM等があげられる。前記陰性マーカーは、例えば、EpCAM、E-Cadherin等があげられる。前記富化は、複数のマーカーを組み合わせて用いて実施してもよい。前記富化は、例えば、前記肺間葉細胞に対して、前記マーカーを介したシグナル伝達の発生を抑制するため、前記陰性マーカーを用いて実施する。
 前記富化は、例えば、前記第2の誘導工程後の細胞集団を回収後、前記陽性マーカーに対する抗体、および/または、前記陰性マーカーに対する抗体を用いて、自動磁気細胞分離装置(例えば、autoMACS)、磁気細胞分離装置(例えば、MACS)、閉鎖型磁気細胞分離装置(例えば、Prodigy)、セルソータ(例えば、FACS)により、実施できる。
 前記富化工程後において、前記富化後の細胞集団に占める陽性マーカー陽性の肺間葉細胞の含有割合(下限値)は、例えば、細胞数を基準として、5%以上、10%以上、20%以上、30%以上、40%以上、50%以上、55%以上、60%以上、65%以上、70%以上、75%以上、80%以上、85%以上、90%以上、91%以上、92%以上、93%以上、94%以上、95%以上、96%以上、97%以上、98%以上、または99%以上である。前記陽性マーカー陽性の肺間葉細胞の含有割合(上限値)は、例えば、細胞数を基準として、100%以下、99%以下、98%以下、97%以下、96%以下、95%以下、94%以下、93%以下、92%以下、91%以下、90%以下、85%以下、80%以下、75%以下、70%以下、65%以下、60%以下、55%以下、または50%以下である。前記陽性マーカー陽性の肺間葉細胞の含有割合の数値範囲は、例えば、前記下限値および前記上限値の任意の組合せとできる。また、前記富化工程後において、前記富化後の細胞集団に占める陰性マーカー陰性の肺間葉細胞の含有割合(下限値)は、例えば、細胞数を基準として、5%以上、10%以上、20%以上、30%以上、40%以上、50%以上、55%以上、60%以上、65%以上、70%以上、75%以上、80%以上、85%以上、90%以上、91%以上、92%以上、93%以上、94%以上、95%以上、96%以上、97%以上、98%以上、または99%以上である。前記陰性マーカー陰性の肺間葉細胞の含有割合(上限値)は、例えば、細胞数を基準として、100%以下、99%以下、98%以下、97%以下、96%以下、95%以下、94%以下、93%以下、92%以下、91%以下、90%以下、85%以下、80%以下、75%以下、70%以下、65%以下、60%以下、55%以下、または50%以下である。前記陰性マーカー陰性の肺間葉細胞の含有割合の数値範囲は、例えば、前記下限値および前記上限値の任意の組合せとできる。
 具体例として、前記富化に用いるマーカーがEpCAMの場合、前記富化工程後の細胞集団に占めるEpCAM陰性の肺間葉細胞の含有割合(下限値)は、例えば、細胞数を基準として、5%以上、10%以上、20%以上、30%以上、40%以上、50%以上、55%以上、60%以上、65%以上、70%以上、75%以上、80%以上、85%以上、90%以上、91%以上、92%以上、93%以上、94%以上、95%以上、96%以上、97%以上、98%以上、または99%以上である。前記EpCAM陰性の肺間葉細胞の含有割合(上限値)は、例えば、細胞数を基準として、100%以下、99%以下、98%以下、97%以下、96%以下、95%以下、94%以下、93%以下、92%以下、91%以下、または90%以下である。前記EpCAM陰性の肺間葉細胞の含有割合の数値範囲は、例えば、前記下限値および前記上限値の任意の組合せとできる。
 前記EpCAM陰性の肺間葉細胞は、例えば、PDGFRα、KDR、VIM、および/または、THY1陽性であってもよい。前記EpCAM陰性の肺間葉細胞に占める前記PDGFRα陽性およびKDR陽性の肺間葉細胞の含有割合(下限値)は、例えば、細胞数を基準として、5%以上、10%以上、20%以上、30%以上、40%以上、50%以上、55%以上、60%以上、65%以上、70%以上、75%以上、80%以上、85%以上、90%以上、91%以上、92%以上、93%以上、94%以上、95%以上、96%以上、97%以上、98%以上、または99%以上である。前記PDGFRα陽性およびKDR陽性の肺間葉細胞の含有割合(上限値)は、例えば、細胞数を基準として、100%以下、99%以下、98%以下、97%以下、96%以下、95%以下、94%以下、93%以下、92%以下、91%以下、または90%以下である。前記PDGFRα陽性およびKDR陽性の肺間葉細胞の含有割合の数値範囲は、例えば、前記下限値および前記上限値の任意の組合せとできる。前記EpCAM陰性の肺間葉細胞に占める前記VIM陽性およびTHY1陽性の肺間葉細胞の含有割合(下限値)は、例えば、細胞数を基準として、5%以上、10%以上、20%以上、30%以上、40%以上、50%以上、55%以上、60%以上、65%以上、70%以上、75%以上、80%以上、85%以上、90%以上、91%以上、92%以上、93%以上、94%以上、95%以上、96%以上、97%以上、98%以上、または99%以上である。前記VIM陽性およびTHY1陽性の肺間葉細胞の肺間葉細胞の含有割合(上限値)は、例えば、細胞数を基準として、100%以下、99%以下、98%以下、97%以下、96%以下、95%以下、94%以下、93%以下、92%以下、91%以下、または90%以下である。前記VIM陽性およびTHY1陽性の肺間葉細胞の含有割合の数値範囲は、例えば、前記下限値および前記上限値の任意の組合せとできる。
 本開示の肺間葉細胞の製造方法により得られる肺間葉細胞は、例えば、各種核酸、タンパク質の発現により特定されてもよい。
 前記肺間葉細胞は、例えば、RSPO2(R-Spondin 2)および/またはRSPO3(R-Spondin 3)を発現する。また、前記肺間葉細胞は、例えば、WNT2を発現しない。前記肺間葉細胞は、例えば、RSPO2および/またはRSPO3を発現し、WNT2を発現しない。前記肺間葉細胞は、例えば、RSPO2および/またはRSPO3を発現することにより、得られた肺間葉細胞を含む細胞集団と、後述の肺前駆細胞とを用いて肺胞オルガノイドを形成させた際に、II型肺胞上皮細胞を誘導できる。
 前記EpCAM陰性の肺間葉細胞に占めるRSPO2陽性の肺間葉細胞の含有割合(下限値)は、例えば、細胞数を基準として、5%以上、10%以上、15%以上、20%以上、25%以上、または30%以上である。前記EpCAM陰性の肺間葉細胞に占めるRSPO2陽性の肺間葉細胞の含有割合(上限値)は、例えば、細胞数を基準として、50%以下、45%以下、40%以下、35%以下、30%以下、または25%以下である。前記RSPO2陽性の肺間葉細胞の含有割合の数値範囲は、例えば、前記下限値および前記上限値の任意の組合せとできる。具体例として、前記第2の培養工程において、7日間培養した場合、前記含有割合は、例えば、20~40%である。
 前記EpCAM陰性の肺間葉細胞において、前記RSPO2は、例えば、STC1(Stanniocalcin-1)陽性の肺間葉細胞に特に発現している。このため、前記RSPO2陽性細胞は、例えば、STC1を用いることにより、富化可能である。前記EpCAM陰性STC1陽性の肺間葉細胞に占めるRSPO2陽性の肺間葉細胞の含有割合(下限値)は、例えば、細胞数を基準として、50%以上、55%以上、60%以上、65%以上、70%以上、75%以上、80%以上、85%以上、90%以上、91%以上、92%以上、93%以上、94%以上、95%以上、96%以上、97%以上、98%以上、または99%以上である。前記RSPO2陽性の肺間葉細胞の含有割合(上限値)は、例えば、細胞数を基準として、100%以下、99%以下、98%以下、97%以下、96%以下、95%以下、94%以下、93%以下、92%以下、91%以下、または90%以下である。前記RSPO2陽性の肺間葉細胞の含有割合の数値範囲は、例えば、前記下限値および前記上限値の任意の組合せとできる。具体例として、前記第2の培養工程において、7日間培養した場合、前記含有割合は、例えば、80%以上である。
 前記EpCAM陰性の肺間葉細胞に占めるRSPO3陽性の肺間葉細胞の含有割合(下限値)は、例えば、細胞数を基準として、50%以上、55%以上、60%以上、65%以上、70%以上、75%以上、80%以上、85%以上、90%以上、91%以上、92%以上、93%以上、94%以上、95%以上、96%以上、97%以上、98%以上、または99%以上である。前記EpCAM陰性の肺間葉細胞に占めるRSPO3陽性の肺間葉細胞の含有割合(上限値)は、例えば、細胞数を基準として、100%以下、99%以下、98%以下、97%以下、96%以下、95%以下、94%以下、93%以下、92%以下、91%以下、または90%以下である。前記RSPO3陽性の肺間葉細胞の含有割合の数値範囲は、例えば、前記下限値および前記上限値の任意の組合せとできる。具体例として、前記第2の培養工程において、7日間培養した場合、前記含有割合は、例えば、70~90%である。
 前記EpCAM陰性の肺間葉細胞に占めるWnt2陰性の肺間葉細胞の含有割合(下限値)は、例えば、細胞数を基準として、50%以上、55%以上、60%以上、65%以上、70%以上、75%以上、80%以上、85%以上、90%以上、91%以上、92%以上、93%以上、94%以上、95%以上、96%以上、97%以上、98%以上、または99%以上である。前記EpCAM陰性の肺間葉細胞に占めるWnt2陰性の肺間葉細胞の含有割合(上限値)は、例えば、細胞数を基準として、100%以下、99%以下、98%以下、97%以下、96%以下、95%以下、94%以下、93%以下、92%以下、91%以下、または90%以下である。前記Wnt2陰性の肺間葉細胞の含有割合の数値範囲は、例えば、前記下限値および前記上限値の任意の組合せとできる。具体例として、前記第2の培養工程において、7日間培養した場合、前記含有割合は、例えば、95%以上である。
 前記肺間葉細胞は、例えば、転写因子として、FOXF1(Forkhead box protein F1)、TCF21(Transcription factor 21)、TBX4(T-Box Transcription Factor 4)、および、OSR1(Odd-Skipped Related Transcription Factor)からなる群から選択された転写因子を発現する。前記肺間葉細胞は、例えば、1種類または複数種類の転写因子を発現してもよいし、全種類の転写因子を発現してもよい。前記肺間葉細胞は、例えば、転写因子として、TBXTを発現しない。前記肺間葉細胞は、例えば、転写因子として、FOXF1、TCF21、TBX4、および、OSR1からなる群から選択された転写因子を発現し、かつTBXTを発現しない。前記肺間葉細胞は、例えば、さらに、後述の線維芽細胞マーカーを発現する、および/または、間葉細胞マーカー陽性であってもよい。
 前記肺間葉細胞は、例えば、NCAM、ADRP、COL1A1、およびACTA2からなる群から選択された線維芽細胞マーカーを発現する。前記肺間葉細胞は、好ましくは、NCAM、ADRP、および/またはCOL1A1;NCAM、ADRP、およびCOL1A1を発現する細胞である。前記肺間葉細胞は、例えば、1種類または複数種類の線維芽細胞マーカーを発現してもよいし、全種類の線維芽細胞マーカーを発現してもよい。
 前記肺間葉細胞は、例えば、VIM(Vimentin)、THY1(Thy-1 Cell Surface Antigen、CD90)、PDGFRα(Platelet Derived Growth Factor Receptor α)、およびKDR(Kinase Insert Domain Receptor)からなる群から選択された間葉細胞マーカー陽性である。前記肺間葉細胞は、好ましくは、VIM、THY1、および/またはCOL1A1;またはVIM、THY1、およびCOL1A1;を発現する細胞である。前記肺間葉細胞は、例えば、1種類または複数種類の間葉細胞マーカー陽性でもよいし、全種類の間葉細胞マーカー陽性でもよい。
 前記肺間葉細胞は、例えば、後述の肺前駆細胞から、肺胞を構成する上皮細胞を誘導できる。このため、前記肺間葉細胞は、例えば、前記前駆細胞との共培養による肺胞オルガノイド形成アッセイにおいて、前記肺前駆細胞からI型肺胞上皮細胞および/またはII型肺胞上皮細胞を誘導可能である。前記肺胞オルガノイド形成アッセイは、後述の実施例1(3)と同様に実施できる。前記肺胞上皮細胞は、例えば、I型肺胞上皮細胞、II型肺胞上皮細胞等があげられる。前記肺間葉細胞は、例えば、前記肺前駆細胞から、前記I型肺胞上皮細胞または前記II型肺胞上皮細胞を誘導可能でもよいし、前記I型肺胞上皮細胞および前記II型肺胞上皮細胞を誘導可能でもよい。
 前記肺間葉細胞は、例えば、前記肺胞オルガノイド形成アッセイにおいて、前記肺前駆細胞から、EpCAM陽性細胞集団におけるSFTPC陽性細胞の割合(下限値)が、5%以上、10%以上、20%以上、30%以上、40%以上、50%以上、55%以上、60%以上、65%以上、70%以上、75%以上、80%以上、85%以上、90%以上、91%以上、92%以上、93%以上、94%以上、95%以上、96%以上、97%以上、98%以上、または99%以上を含む細胞集団を誘導できる。前記割合の上限は、例えば、100%以下、99%以下、98%以下、97%以下、96%以下、95%以下、94%以下、93%以下、92%以下、91%以下、90%以下、85%以下、80%以下、75%以下、70%以下、65%以下、60%以下、または55%以下とできる。前記割合の数値範囲は、例えば、前記下限値および前記上限値の任意の組合せとできる。具体例として、前記肺間葉細胞と前記肺前駆細胞とを14日間培養した場合、前記SFTPC陽性細胞の割合は、20~70%である。
 本開示の肺間葉細胞の製造方法によれば、例えば、前記肺前駆細胞と共培養した際に、肺胞上皮細胞を誘導可能である。前記肺間葉細胞は、例えば、肺の組織再生に用いる細胞として好適に使用できると期待される。
<細胞集団>
 別の態様において、本開示は、肺胞オルガノイドの作成にも利用可能な肺間葉細胞を含む細胞集団を提供する。本開示の間葉細胞を含む細胞集団は、RSPO2および/またはRSPO3を発現する肺間葉細胞を含む。
 本開示の肺間葉細胞は、例えば、前記本開示の肺間葉細胞の製造方法で得られた肺間葉細胞、すなわち、前記第2の誘導工程後または前記富化工程後の肺間葉細胞の説明における各種核酸、タンパク質の発現により特定されてもよい。
<肺胞上皮細胞の製造方法>
 別の態様において、本開示は、前記肺間葉細胞を用いた肺胞上皮細胞の製造方法を提供する。本開示の肺胞上皮細胞の製造方法は、肺前駆細胞を、肺間葉細胞の存在下で培養して、肺胞上皮細胞への分化を誘導する工程を含み、前記肺間葉細胞は、本開示の肺間葉細胞の製造方法により得られた肺間葉細胞、および/または、本開示の間葉細胞を含む細胞集団である。
 本開示の肺胞上皮細胞の製造方法において、前記肺胞上皮細胞の誘導に用いる肺前駆細胞は、例えば、前記多能性細胞等の肺前駆細胞の前駆細胞から誘導できる。このため、本開示の肺胞上皮細胞の製造方法は、前記肺胞上皮細胞の誘導に先立ち、肺前駆細胞の前駆細胞から前記肺前駆細胞を誘導してもよい。この場合、本開示の肺胞上皮細胞の製造方法は、例えば、肺前駆細胞の誘導因子の存在下で培養し、前記肺前駆細胞への分化を誘導する工程(第3の誘導工程)を含む。
 前記第3の誘導工程では、例えば、前記肺前駆細胞の前駆細胞を、前記肺前駆細胞の誘導因子を含有する培地内で培養し、前記肺前駆細胞マーカーを発現する肺前駆細胞に分化させる、すなわち、前記肺前駆細胞の前駆細胞を、前記肺前駆細胞の誘導因子と接触させて、培養し、前記肺前駆細胞を分化させる。前記肺前駆細胞の前駆細胞から前記肺前駆細胞への誘導は、例えば、国際公開第2014/168264号公報に記載の肺胞上皮前駆細胞の誘導方法、国際公開第2019/217429号公報に記載の肺気道前駆細胞の誘導方法、米国特許明細書10,386,368号明細書に記載の肺前駆細胞の単離方法、または下記参考文献10に記載のNKX2-1肺前駆細胞の誘導方法を参照できる。
参考文献10:Hawkins et al., J Clin Invest. 2017 Jun 1;127(6):2277-2294. doi: 10.1172/JCI89950.
 前記肺前駆細胞の前駆細胞は、例えば、腹側前方前腸内胚葉(ventral anterior foregut endoderm)細胞、前腸内胚葉(anterior foregut endoderm)細胞、および/または前記内胚葉(definitive endoderm)系細胞があげられる。前記肺前駆細胞および前記肺前駆細胞の前駆細胞は、前記多能性細胞または前記多能性幹細胞から誘導できる。このため、前記肺前駆細胞および前記肺前駆細胞の前駆細胞は、前記多能性細胞または前記多能性幹細胞から誘導された前駆細胞であることが好ましい。前記多能性幹細胞は、例えば、人工多能性幹細胞(induced pluripotent stem cells:iPS細胞)、胚性幹細胞(ES細胞)等の全能性の幹細胞;造血幹細胞、神経幹細胞、間葉系幹細胞等の組織性幹細胞または体性幹細胞等の多能性幹細胞;等があげられる。
 前記第3の誘導工程で得られた細胞集団は、前記肺前駆細胞および/または前記肺前駆細胞の前駆細胞を含む細胞集団である。本開示の肺胞上皮細胞の製造方法では、得られた細胞集団をそのまま用いてもよいし、得られた細胞集団から前記肺前駆細胞および/または前記肺前駆細胞の前駆細胞を単離して用いてもよい。前記肺前駆細胞を単離する場合、前記肺前駆細胞は、例えば、CPM、NKX2.1、SOX9、SOX2、および/またはFOXA2の発現に基づき、単離できる。前記肺前駆細胞は、細胞表面マーカーであるCPMを用いて、CPM陽性細胞として単離されることが好ましい。
 つぎに、本開示の肺胞上皮細胞の製造方法は、前記肺前駆細胞を、前記肺間葉細胞の存在下で培養し、肺胞上皮細胞への分化を誘導する(第4の誘導工程)。
 前記第4の誘導工程では、例えば、前記肺前駆細胞を、前記肺間葉細胞の誘導因子を含有する培地内で培養し、前記肺胞上皮細胞マーカーを発現する肺胞上皮細胞に分化させる、すなわち、前記肺前駆細胞を、前記肺前駆細胞の誘導因子と接触させて、前記肺前駆細胞を分化させる。前記第4の誘導工程では、前記肺前駆細胞を、前記肺間葉細胞と肺胞上皮細胞の誘導因子との存在下で培養し、肺胞上皮細胞への分化を誘導してもよい。
 前記肺胞上皮細胞の誘導因子は、誘導される肺胞上皮細胞の種類に応じて設定できる。前記肺胞上皮細胞がI型肺胞上皮細胞である場合、前記肺胞上皮細胞の誘導因子は、I型肺胞上皮細胞の誘導因子であり、具体例として、前記Wnt誘導剤があげられる。前記誘導因子は、1種類でもよいし、複数種類でもよい。前記誘導因子は、好ましくは、複数種類であり、より好ましくは、全種類である。
 前記Wnt誘導剤は、Wntシグナルを誘導する物質である。前記Wnt誘導剤は、例えば、IWP2(N-(6-Methyl-2-benzothiazolyl)-2-(3,4,6,7-tetrahydro-4-oxo-3-phenylthieno3,2-dpyrimidin-2-yl)thio)、Dickkopf関連タンパク質1(DKK1)、XAV939(3,5,7,8-Tetrahydro-2-[4-(trifluoromethyl)phenyl]-4H-thiopyrano[4,3-d]pyrimidin-4-one);Wntタンパク質の発現誘導核酸分子(siRNA、shRNA、アンチセンス等)等があげられ、好ましくは、XAV939である。
 前記培地におけるWnt誘導剤の濃度は、例えば、1nmol/l~50μmol/l、10nmol/l~40μmol/l、50nmol/l~30μmol/l、100nmol/l~25μmol/l、500nmol/l~20μmol/lである。
 前記培地は、前記第1の誘導工程における培地の説明を援用できる。
 前記I型肺胞上皮細胞の誘導工程における培養日数は、前記I型肺胞上皮細胞が誘導される期間に応じて設定できる。前記培養日数の下限は、例えば、4日以上、5日以上、6日以上、7日以上、8日以上、9日以上、10日以上、11日以上、12日以上、またはそれ以上の日数があげられる。前記培養日数の上限は、例えば、35日日以下、30日以下、28日以下、または21日以下である。
 前記I型肺胞上皮細胞の誘導工程における培養条件は、前記第1の誘導工程における培養条件の説明を援用できる。
 前記肺胞上皮細胞がII型肺胞上皮細胞である場合、前記肺胞上皮細胞の誘導因子は、II型肺胞上皮細胞の誘導因子であり、具体例として、ステロイド剤、cAMP誘導体、ホスホジエステラーゼ阻害剤、KGF、GSK3β阻害剤、TGFβ阻害剤、ROCK阻害剤および/またはFGF10があげられる。前記誘導因子は、1種類でもよいし、複数種類でもよい。前記誘導因子は、好ましくは、複数種類であり、より好ましくは、前記ステロイド剤、前記cAMP誘導体、前記ホスホジエステラーゼ阻害剤、および前記KGFの組合せである。前記KGF、GSK3β阻害剤、およびFGF10は、前述の説明を援用できる。
 前記ステロイド剤は、ステロイド系抗炎症薬である。前記ステロイド剤は、例えば、グルココルチコイドまたはその合成誘導体があげられ、具体例として、ヒドロコルチゾン、コハク酸ヒドロコルチゾン、プレドニゾロン、メチルプレドニゾロン、コハク酸メチルプレドニゾロン、トリアムシノロン、トリアムシノロンアセトニド、デキサメタゾン、ベタメタゾン等があげられ、好ましくは、デキサメタゾンまたはヒドロコルチゾンである。
 前記培地におけるステロイド剤の濃度は、例えば、1nmol/l~100μmol/l、1nmol/l~50μmol/l、10nmol/l~40μmol/l、10nmol/l~30μmol/l、10nmol/l~25μmol/l、10nmol/l~20μmol/lである。
 前記cAMP誘導体は、cyclic AMPに置換基が修飾(付加)された化合物である。前記cAMP誘導体は、例えば、cyclic adenosine  monophosphate(cAMP)、8-bromo cyclic adenosine monophosphate(8-Br-cAMP)、8-chloro cyclic adenosine monophosphate(8-Cl-cAMP)、8-(4-Chlorophenylthio)cyclic adenosine monophosphate(8-CPT-cAMP)、Dibutyryl cyclic adenosine monophosphate(DB-cAMP)等があげられ、好ましくは、8-Br-cAMPである。
 前記培地におけるcAMP誘導体の濃度は、例えば、1nmol/l~100μmol/l、1nmol/l~50μmol/l、10nmol/l~40μmol/l、50nmol/l~30μmol/l、100nmol/l~25μmol/l、500nmol/l~20μmol/lである。
 前記ホスホジエステラーゼ阻害剤は、ホスホジエステラーゼ(PDE)を阻害することにより、cAMPまたはcGMPの細胞内濃度を上昇させる化合物である。前記ホスホジエステラーゼ阻害剤は、例えば、1,3-Dimethylxanthine、6,7-Dimethoxy-1-(3,4-dimethoxybenzyl)isoquinoline、4-{[3’,4’-(Methylenedioxy)benzyl]amino}-6-methoxyquinazoline、8-Methoxymethyl-3-isobutyl-1-methylxanthine、3-Isobutyl-1-methylxanthine(IBMX)等があげられ、好ましくは、1,3-Dimethylxanthineである。
 前記培地におけるホスホジエステラーゼ阻害剤の濃度は、例えば、1nmol/l~100μmol/l、1nmol/l~50μmol/l、10nmol/l~40μmol/l、50nmol/l~30μmol/l、50nmol/l~25μmol/l、50nmol/l~20μmol/lである。
 前記TGFβ阻害剤は、TGFβの受容体への結合により生じるSMADを介したシグナル伝達を阻害する物質である。前記TGFβ阻害剤は、例えば、TGFβ受容体であるALKファミリーへの結合を阻害する物質、またはALKファミリーによるSMADのリン酸化を阻害する物質等があげられる。具体例として、前記TGFβ阻害剤は、例えば、Lefty-1(NCBIアクセッション番号:NM_010094(マウス)、NM_020997(ヒト))、SB431542(4-(4-(benzo[d][1,3]dioxol-5-yl)-5-(pyridine-2-yl)-1H-imidazol-2-yl)benzamide)、SB202190(4-(4-Fluorophenyl)-2-(4-hydroxyphenyl)-5-(4-pyridyl)-1H-imidazole)、SB505124(2-(5-Benzo1,3dioxol-5-yl-2-tert-butyl-3H-imidazol-4-yl)-6-methylpyridine)、NPC30345、SD093、SD908、SD208(Scios)、LY2109761、LY364947、LY580276(Lilly Research Laboratories)、A-83-01(WO2009/146408)等があげられ、好ましくは、SB431542である。
 前記培地におけTGFβ阻害剤の濃度は、例えば、1nmol/l~50μmol/l、10nmol/l~40μmol/l、50nmol/l~30μmol/l、100nmol/l~25μmol/l、500nmol/l~20μmol/lである。好ましくは、1nmol/l~40μmol/lである。
 前記ROCK阻害剤は、Rhoキナーゼ(ROCK)の機能を抑制できる物質である。前記ROCK阻害剤は、例えば、Y-27632((+)-(R)-trans-4-(1-aminoethyl)-N-(4-pyridyl)cyclohexanecarboxamide dihydrochloride)、Fasudil/HA1077(5-(1,4-Diazepane-1-sulfonyl)isoquinoline)、H-1152((S)-(+)-2-Methyl-1-[(4-methyl-5-isoquinolinyl)sulfonyl]homopiperazine)、Wf-536((+)-(R)-4-(1-Aminoethyl)-N-(4-pyridyl) benzamide)、ROCKタンパク質の発現抑制核酸分子(siRNA、shRNA、アンチセンス等)等があげられ、好ましくは、Y-27632である。
 前記培地におけるROCK阻害剤の濃度は、例えば、1nmol/l~50μmol/l、10nmol/l~40μmol/l、50nmol/l~30μmol/l、100nmol/l~25μmol/l、500nmol/l~20μmol/l、750nmol/l~15μmol/lであり、好ましくは、1nmol/l~40μmol/lである。
 前記培地は、前記第1の誘導工程における培地の説明を援用できる。
 前記II型肺胞上皮細胞の誘導工程における培養日数は、前記II型肺胞上皮細胞が誘導される期間に応じて設定できる。前記培養日数の下限は、例えば、2日以上、4日以上、5日以上、6日以上、7日以上、8日以上、9日以上、10日以上、11日以上、12日以上、13日以上、14日以上、15日以上、またはそれ以上の日数があげられる。前記培養日数の上限は、例えば、35日日以下、30日以下、28日以下、または21日以下である。
 前記I型肺胞上皮細胞の誘導工程における培養条件は、前記第1の誘導工程における培養条件の説明を援用できる。
 前記第4の誘導工程において、前記肺胞上皮細胞の分化は、例えば、前記肺胞上皮細胞のマーカーの発現および/または前記肺前駆細胞のマーカーの発現の消失により、検出できる。前記肺胞上皮細胞は、例えば、前記I型肺胞上皮細胞または前記II型肺胞上皮細胞を含む細胞集団でもよいし、前記I型肺胞上皮細胞および前記II型肺胞上皮細胞を含む細胞集団でもよい。
 前記肺胞上皮細胞がI型肺胞上皮細胞である場合、前記肺胞上皮細胞のマーカーは、例えば、PDPN、AGER、CAV1、HOPX、AQP5等があげられる。また、前記肺胞上皮細胞がII型肺胞上皮細胞である場合、前記肺胞上皮細胞のマーカーは、例えば、SFTPC、SFTPB、ABCA3、DCLAMP、SLC34A2等があげられる。
 本開示の肺胞上皮細胞の製造方法によれば、例えば、肺胞上皮細胞を含むオルガノイドとして、前記肺胞上皮細胞を誘導可能である。
<肺胞上皮細胞の維持および/または拡大培養方法>
 別の態様において、本開示は、II型肺胞上皮細胞を維持および/または拡大培養可能な方法を提供する。本開示のII型肺胞上皮細胞の維持および/または拡大培養方法は、II型肺胞上皮細胞を、肺間葉細胞の存在下で培養して、維持または拡大培養する工程(培養工程)を含み、前記肺間葉細胞は、本開示の肺間葉細胞の製造方法により得られた肺間葉細胞、および/または、本開示の間葉細胞を含む細胞集団である。
 前記II型肺胞上皮細胞は、肺の組織幹細胞として機能することが知られている。そこで、前記培養工程では、例えば、前記II型肺胞上皮細胞の自己複製(増殖)、または前記II型肺胞上皮細胞の自己複製(増殖)および分化を誘導することにより、前記II型肺胞上皮細胞を維持および/または拡大培養できる。
 前記培養工程では、例えば、前記肺前駆細胞を、前記肺間葉細胞を含有する培地内で培養し、前記肺前駆細胞マーカーを発現する肺前駆細胞を維持または増殖させる、または、前記肺前駆細胞マーカーを発現する肺前駆細胞を維持または増殖させ、かつ前記肺胞上皮細胞マーカーを発現する肺胞上皮細胞に分化させる。前記培養工程では、前記肺前駆細胞を、前記肺間葉細胞と肺胞上皮細胞の誘導因子との存在下で培養し、前記肺前駆細胞を維持または拡大培養してもよい。
 前記肺胞上皮細胞の誘導因子は、誘導される肺胞上皮細胞の種類に応じて設定でき、本開示の肺胞上皮細胞の製造方法における説明を援用できる。
<医薬組成物>
 別の態様において、本開示は、肺間葉細胞を含む医薬組成物を提供する。本開示の医薬組成物は、前記本開示の肺間葉細胞と、薬学的に許容される担体とを含む。
 本開示の医薬組成物の投与方法は、例えば、静脈投与である。また、本開示の医薬組成物の剤型は、例えば、注射剤である。前記注射剤の場合、前記注射剤に含まれる肺間葉細胞の数は、例えば、1×10細胞以上である。前記医薬組成物は、薬学的に許容される担体を含有してもよい。前記担体は、例えば、生理食塩水、リン酸緩衝生理食塩水(PBS)、細胞保存液、細胞培養液、ハイドロゲル、細胞外マトリクス、凍結保存液等があげられる。
 本開示の医薬組成物は、例えば、肺疾患の処置に好適に使用できる。
<培地>
 別の態様において、本開示は、中胚葉細胞から肺間葉細胞の誘導に用いるための培地を提供する。本開示の中胚葉細胞から肺間葉細胞の誘導に用いるための培地は、培地と、間葉細胞の誘導因子と、KGFおよびFGF10とを含む。
 前記培地が含有する間葉細胞の誘導因子、KGFおよびFGF10の種類、組合せ、ならびに濃度は、例えば、前記本開示の肺間葉細胞の製造方法の説明を援用できる。
<キット>
 別の態様において、本開示は、中胚葉細胞から肺間葉細胞の誘導に用いるためのキットを提供する。本開示の中胚葉細胞から肺間葉細胞の誘導に用いるためのキットは、間葉細胞の誘導因子と、KGFおよびFGF10とを含む。
 前記キットが含有する間葉細胞の誘導因子、KGFおよびFGF10の種類および組合せは、例えば、前記本開示の肺間葉細胞の製造方法の説明を援用できる。前記キットの間葉細胞の誘導因子、KGFおよびFGF10の含有量は、例えば、所定量の培地に添加した際に、前記本開示の肺間葉細胞の製造方法の説明における各因子の濃度となるように設定できる。
 つぎに、本開示の実施例について説明する。ただし、本開示は、以下の実施例により制限されない。市販の試薬は、特に示さない限り、それらのプロトコルに基づいて使用した。
[実施例1]
 本開示の製造方法により、肺間葉細胞を誘導できること、ならびに前記肺間葉細胞および前記肺前駆細胞を共培養することにより肺胞オルガノイドを形成できることを確認した。
 前記肺間葉細胞および肺前駆細胞の誘導および肺胞オルガノイド形成方法の概要を、図1に示す。
(1)肺間葉細胞の誘導
 図1(B)に示すように、前記肺間葉細胞は、ヒト由来iPS細胞(iPSC)から誘導した。具体的には、継代培養している未分化なヒトiPSCをD-PBS(ナカライテスク社製、Cat. No.: 14249-24)で洗浄した後、プロテアーゼ(Accutase、Innivative Cell Technologies社製、Cat. No.: AT-104)存在下、37℃で20分間インキュベートして、iPSCを単細胞に解した。mTeSR Plus(STEMCELL technologies社製、Cat. No.: ST-05825またはST-100-0276)を等量添加してプロテアーゼを中和した後、iPSCを含む細胞懸濁液を遠心分離して上清を除去した。その後、回収した細胞懸濁液を、iMatrix-511(0.25μg/cm)および10μmol/lのY-27632(LC Laboratories社製、Cat. No.: Y-5301)を含むmTeSR Plusを用いて、8~15×10細胞の細胞密度で、6ウェルプレートに播種した(培養-1日目)。つぎに、培養0日目に、150ng/ml アクチビンA(API社製、Cat. No.: GF-001)、50ng/ml BMP4(R&D systems社製、Cat. No.: 314-BP)、1.5μmol/l CHIR99021(Axon Medchem社製、Cat. No.: Axon1386)、Glutamax(商標)(Thermo Fischer Scientific社製、Cat. No.: 35050061)、および50U/ml penicillin/streptomyciを添加したStemPro(商標)-34(Thermo Fischer Scientific社製、Cat. No.: 10639011)に培地を交換した。さらに、培養2日目に、同じ培地で培地交換をした。これにより、iPSCから中胚葉細胞を誘導した。以下、細胞の分化状態は、位相差顕微鏡を用いて確認した。
 培養3日目に、30ng/ml アクチビンA、10ng/mlKGF(Prospec社製、Cat. No.: CYT-219)、25ng/ml BMP4、10ng/ml bFGF(DS Pharma Biomedical社製、Cat. No.: KHFGF001)、10ng/ml FGF10、Glutamaxおよび50U/ml penicillin/streptomycinを添加したStemPro(商標)-34に培地を切り替えた。培養5日目に同じ培地で培地交換した。そして、培養7日目に、TrypLE Select Enzyme (Thermo Fischer Scientific社製、Cat. No.: 12563029)を用いて、37℃で10分間処理して、細胞をプレートから剥離した。得られた細胞懸濁液を2%FBS含有DMEMで洗浄後、1%BSA含有PBSに懸濁した。そして、1×10個/100μlの細胞に対して、1μlの抗体液を添加し、得られた混合液中で細胞を室温(約25℃、以下同様)で20分間インキュベートした。前記抗体液中の抗体は、抗EPCAM抗体(Santa Cruz Biotechnology社製、Cat. No.: sc-66020/EBA-1)を用いた。つぎに、二次抗体として、抗マウスIgGマイクロビーズ(Miltenyi Biotec社製、Cat. No.: 130-048-401)を用いて、前記インキュベート後の混合液と反応させた後、LDカラム(Miltenyi Biotec社製、Cat. No.: 130-042-901)を用いて、添付のプロトコルに基づき、得られた反応液からEPCAM陰性細胞をネガティブソーティングした。そして、回収した間葉細胞を、以下、肺間葉細胞(iMES)として使用した。
 また、培養7日目の細胞について、オイルレッドOを用いて顆粒を染色した。さらに、培養0、1、3、および7日目の細胞について、Anti-EPCAM-FITC抗体(Miltenyi Biotec社製、Cat. No.: 130-080-301)、Anti-NCAM -Alexa Fluor 647抗体(BioLegend社製、Cat. No.: 362513)、Anti-T -Alexa Fluor 488抗体(RD systems社製、Cat. No.: IC2085G)、Anti-KDR -BV421抗体(BioLegend社製、Cat. No.: 393009)、Anti-THY1(CD90)-BV421抗体(BioLegend社製、Cat. No.:328121)、Anti-Vimentin -Alexa Fluor 647抗体(Novus Biologicals社製、Cat. No.: NBP1-97670AF647)、Anti-PDGFRA -Alexa Fluor 647抗体(BD Biosciences社製、Cat. No.:562798)を用いて染色を行なった。具体的には、
単細胞懸濁液を1%BSA含有PBSで洗浄後、一次抗体を用いて、4℃、15分の条件で染色した。1%BSA含有PBSで2回洗浄後、必要に応じて、二次抗体を用いて4℃、15分の条件で染色した。1%BSA含有PBSで2回洗浄後、ヨウ化プロピジウム(PI)で染色した。また、細胞内染色を行なう場合、細胞懸濁液をBD Cytofix/Cytoperm(BD Biosciences社製、Cat. No.:51-2090KZ)を用いて、20分間固定処理した後、BD Perm/Wash(BD Biosciences社製、Cat. No.:51-2091KZ)を用いて、20分間細胞膜の透過処理を行った。前記処理後、BD Perm/Washを用いて2回洗後、一次抗体を用いて、4℃、15分間の条件で染色した。つぎに、前記染色後の細胞懸濁液について、BD Perm/Washで2回洗浄後、二次抗体を用いて、4℃、15分間の条件で、染色した。1%BSA含有PBSを用いて2回洗浄後、PIを含まない1% BSA/PBSで細胞を調製した。得られた染色後のサンプルについて、Melody(BD Biosciences社製)を用いてフローサイトメトリー解析を行った。これらの結果を、図2~3に示す。
 図2は、培養後の細胞の分化状態を示す位相差像およびオイルレッドOの染色像を示す写真である。図2において、(A)は、位相差像を示し、(B)は、オイルレッドOの染色像を示す。図2における各スケールバーは、100μmを示す。図2(A)において、各写真は、左から、培養0、1、3、および7日目の写真である。図2(A)に示すように、培養0日目ではPSCの形状を有しているものの、培養1日目には、細胞塊の境界が不明瞭となり、分化がスタートしたと考えられる。これらは、後述のEpCAM陽性細胞集団でTBXTを発現している細胞と推定される。また、培養3日目には、扁平状の細胞となり、中胚葉細胞に分化しているのが確認された。さらに、培養7日目には、細胞質に多くの顆粒を有する細胞となり、かつ図2(B)に示すように、これらの顆粒は、オイルレッドOにより染色された。
 図3は、フローサイトメトリー解析を示すグラフである。図3において、上段のグラフは、左から、培養0、1、3、および7日目の結果を示す。また、図3において、中段および下段のグラフは、左から、培養0日目、培養1日目、培養3日目のEpCAM陰性の細胞集団、培養7日目のEpCAM陰性の細胞集団およびEpCAM陽性の細胞集団の結果を示す。図3に示すように、培養1日目では、EpCAM陽性かつTBXT陽性の細胞が見られ、発生学的に原始線条に類似する細胞に分化したと考えられる。また、培養3日目には、EpCAM陰性の細胞集団において、中胚葉細胞マーカーであるNCAM、PDGFRα、およびKDRの発現が見られ、中胚葉細胞へ分化していることが確認された。さらに、培養7日目には、間葉細胞マーカーであるVIM、THY1(CD90)、PDGFRα、およびKDR陽性の間葉細胞が誘導されていることが確認された。これらの結果から、前記間葉細胞の誘導条件において、KGFおよびFGF10を添加しても、間葉細胞が誘導されることが確認された。
 つぎに、各培養段階における遺伝子発現をRT-qPCRを用いて検討した。具体的には、培養0日目の細胞、培養3日目の細胞、iMES、HFLF、およびHDFにおける遺伝子発現を検討した。各細胞からのトータルRNAの抽出は、RNA抽出キット(PureLink RNA mini kit、Thermo Fisher Scientific社製、Cat. No.:12183020)を用いて実施した。つぎに、1サンプルあたり80ngのトータルRNAについて、逆転写酵素(SuperScript(登録商標) III reverse transiptase、Thermo Fisher Scientific社製)を用いて、cDNAを調製した。得られたcDNAについて、RT-PCRキット(Power SYBR Green PCR Master Mix、Applied Biosystems社製)を用いて増幅し、QuantStudio 3(Applied Biosystems社製)を用いて定量した。また、各遺伝子の発現量は、内部標準遺伝子としてβ-アクチン遺伝子を用いて正規化(標準化)した。さらに、培養0日目の細胞中の遺伝子発現量に対する相対遺伝子発現量として定量した。RT-qPCRに使用したプライマーセットを、下記表1に示す。これらの結果を図4に示す。
Figure JPOXMLDOC01-appb-T000001
 図4は、各培養段階における細胞の遺伝子発現を示すグラフである。図4において、横軸は、細胞の培養段階を示し、縦軸は、相対的発現量を示す。図4に示すように、培養開始後にTBXTおよびEPCAMは、培養初期の細胞では発現が見られるものの、iMESでは発現が見られなかった。また、iMESでは、線維芽細胞マーカーであるVIMおよびCOL1A1の発現が誘導されていた。さらに、iMESでは、肺間葉細胞マーカーであるFOXF1およびTBX4の発現が見られた。そして、iMESでは、NCAM、PDGFRα、KDR、ISL1、NKx2-5、OSR1、およびADRPの発現上昇が見られた。これらの結果から、本開示の肺間葉細胞の製造方法で誘導されるiMESは、肺間葉細胞であることが分かった。また、前記iMESは、これらのマーカーを用いて、他の細胞と区別可能であることがわかった。
 つぎに、前記培養7日目の細胞について、4%パラホルムアルデヒド含有PBSを用いて15分間固定後、さらに、0.2% Triton(商標) X-100含有PBSを用いて、15分間透過処理を行なった。前記処理後、一次抗体と二次抗体を用いて、前述のように染色を行った(下記参考文献11)。前記一次抗体は、Anti-E-Cadherin抗体(eBiosience社製、Cat No.: 14-3249)、Anti-Vimentin抗体(CST社製、Cat No.: 49636)、およびAnti-FOXF1抗体(RD systems社製、Cat No.: AF4798)を用いた。また、前記二次抗体は、Anti-rat IgG Alexa Fluor 488(Thermo Fisher Scientific社製、Cat No.: A-21208)、Anti-mouse IgG Alexa Fluor 546(Thermo Fisher Scientific 社製、Cat No.: A-10036)、およびAnti-goat IgG Alexa Fluor 647(Thermo Fisher Scientific社製、Cat No.: A-21447)を用いた。前記染色後のサンプルは、蛍光顕微鏡(BZ-X710、キーエンス社製)で観察した。これらの結果を図5に示す。参考文献11:Gotoh, S., Ito, I., Nagasaki, T., Yamamoto, Y., Konishi, S., Korogi, Y., Matsumoto, H., Muro, S., Hirai, T., Funato, M., et al. (2014). Generation of alveolar epithelial spheroids via isolated progenitor cells from human pluripotent stem cells. Stem Cell Reports 3, 394-403.
 図5は、培養7日目の細胞の蛍光像を示す写真である。図5において、スケールバーは、100μmを示す。図5に示すように、E-カドヘリン陽性細胞は、FOXF1陰性である一方、E-カドヘリン陰性細胞は、VIMおよびFOXF1陽性であった。これらの結果から、iMESは、タンパク質レベルで、VIMとFOXF1とを発現していることが分かった。
(2)肺前駆細胞の誘導
 ヒトiPSC由来の肺前駆細胞への分化は、前記参考文献11および下記参考文献12~13に順じて実施した。具体的には、未分化のヒトiPSCを、Geltrexコーティングプレート上で、胚体内胚葉化培地の存在下、6日間培養して胚体内胚葉細胞に分化させた(Step1)。前記胚体内胚葉細胞への分化では、100ng/ml アクチビンA、1μmol/l CHIR99021、2% B27サプリメント(ThermoFisher社製、Cat. No.: 17504-001)、50U/ml penicillin/streptomycinを含有するRPMI1640(Nacalai Tesque社製、Cat. No.: 30264-56)培地を使用した。各培地は、以下、2日ごとに交換した。また、下記表2に示すように、前記胚体内胚葉細胞への分化において、培養0日目には、Y-27632を、培養1日目、2日目、および4日目には酪酸ナトリウム(Wako社製、Cat. 193-015122)を添加した。
参考文献12:Konishi, S., Gotoh, S., Tateishi, K., Yamamoto, Y., Korogi, Y., Nagasaki, T., Matsumoto, H., Muro, S., Hirai, T., Ito, I., et al. (2016). Directed Induction of Functional Multi-ciliated Cells in Proximal Airway Epithelial Spheroids from Human Pluripotent Stem Cells. Stem Cell Reports 6, 18-25.
参考文献13:Yamamoto, Y., Gotoh, S., Korogi, Y., Seki, M., Konishi, S., Ikeo, S., Sone, N., Nagasaki, T., Matsumoto, H., Muro, S., et al. (2017). Long-term expansion of alveolar stem cells derived from human iPS cells in organoids. Nat Methods 14, 1097-1106.
Figure JPOXMLDOC01-appb-T000002
 つぎに、培養6~10日目では、前記胚体内胚葉細胞を前方化培地で培養し(Step2)、つづいて、培養10日目に、BMP4(20ng/ml)と所定濃度のATRA(Sigma-Aldrich社製、Cat. No.: R2625)およびCHIR99021とを含む後方化培地に培地交換して、培養した(Step3)。B2-3株PSCを用いる場合、ATRAおよびCHIR99021の最適濃度は0.05~0.5μmol/lであった。培養14~21日目では、後方化後の細胞は、CFKDプレコンディショニング培地で培養した(Step4)。そして、培養21日目に、NKX2-1陽性肺前駆細胞を、マウス抗ヒトCPM(Wako社製、Cat. No.: 014-27501)と、CPM陽性細胞をゲートするための抗マウスIgG-Alexa647(Thermo Fischer Scientific社製、Cat. No.: A-31571)を用いて、前記参考文献13と同様にして単離した。なお、一部の肺前駆細胞は、SFTPC-GFPを発現させたPSC(B2-3株)から誘導しており、肺胞上皮細胞に分化するとGFPの発現が誘導される。
(3)肺胞オルガノイドの形成アッセイ
 肺胞オルガノイドは、前記参考文献13および下記参考文献14に準じて作成した。1.0×10 CPM陽性細胞(201B7株PSC由来)と、5.0×10 胎児由来線維芽細胞(HFLF、DV Biologics社製、Cat No.: PP002-F-1349)、ヒト小児皮膚由来線維芽細胞(human pediatric dermal fibroblast:HDF、TIG120、国立研究開発法人 医薬基盤・健康栄養研究所から入手可能)、またはiMESとを、Y-27632(10μmol/l)および100μlのマトリゲル(Corning社製、Cat. No.: 354230)を添加した下記表3の肺胞化培地100μl中で混合した。得られた混合液を、12ウェルの細胞培養インサート(Corning社製、Cat. No.: 3513)上に導入した。そして、14日間培養した。下段のチャンバーの培地は、2日毎に交換した。前記HFLFは、10%FBS含有DMEM(Nacalai Tesque社製、Cat. No.: 08459-64)で培養し、継代数10の細胞を使用した。前記TIG120は、10%FBS含有MEM培地(Nacalai Tesque社製、Cat. No.: 21442-25)で培養し、PDL30以内の細胞を使用した。そして、得られた肺胞オルガノイドは、0.1% Tripsin-EDTAを用いて、37℃、15分間の条件で解離させた後、1%BSA含有PBSを用いて2回洗浄した。前記洗浄後、抗EpCAM-APC抗体(Miltenyi Biotec社製、Cat. No.: 130-113-263)で免疫染色した。前記染色後、フローサイトメーター(FACS)を用いて、SFTPC-GFP陽性細胞/EPCAM陽性細胞を分析した。また、前記肺胞オルガノイドについて、前記蛍光顕微鏡を用いて観察した。さらに、iPSC細胞株として、604A1細胞株を用いた以外は、同様にして肺胞オルガノイドを作成した。これらの結果を図6に示す。
参考文献14:Korogi, Y., Gotoh, S., Ikeo, S., Yamamoto, Y., Sone, N., Tamai, K., Konishi, S., Nagasaki, T., Matsumoto, H., Ito, I., et al. (2019). In Vitro Disease Modeling of Hermansky-Pudlak Syndrome Type 2 Using Human Induced Pluripotent Stem Cell-Derived Alveolar Organoids. Stem Cell Reports 12, 431-440.
 図6は、肺胞オルガノイドの検討結果を示すグラフである。図6において、(A)は、肺胞オルガノイドの蛍光像を示し、(B)は、フローサイトメトリーの解析結果を示し、(C)は、肺胞オルガノイドにおけるEpCAM陽性細胞に占めるSFTPC-GFP陽性の割合を示す。図6(A)に示すように、iMESと肺前駆細胞とを共培養すると、SFTPC-GFP陽性細胞を含むスフェロイドが形成されており、肺前駆細胞が肺胞上皮細胞に分化しているのが確認できた。また、図示していないが、604A1細胞株を用いた場合も、同様にSFTPC-GFP陽性細胞を含むスフェロイドが形成された。さらに、図6(B)および(C)に示すように、iMESによって誘導されるSFTPC-GFP陽性細胞の割合は、フィーダ細胞として使用されているHFLFと同等であった。他方、HDFでは、SFTPC-GFP陽性細胞は誘導されなかった。
 つぎに、前記肺胞オルガノイドの構成細胞について検討した。具体的には、前記肺胞オルガノイドは、4%パラホルムアルデヒド含有PBSを用いて、20分間固定後、30%スクロース含有PBSで一晩(約8時間)インキュベートした。前記インキュベート後、前記肺胞オルガノイドを、OCTコンパウンド(Sakura Finetek社製、Cat. No.: 4583)に包埋し、液体窒素を用いて凍結した。凍結された肺胞オルガノイドを10μmの厚さの切片にスライス後、スライドに貼付けた。得られた切片について、0.2% Triton(商標) X-100含有PBSを用いて、15分間透過処理を行なった。前記透過処理後、5% normal donkey serum(EMD-Millipore社製および1%BSA含有PBSを用いて、30分間ブロッキング処理を行った。前記ブロッキング処理後、EPCAM、VIM、Pro-SFTPC、ABCA3、GFP、Mature-GFP、SFTPB、PDPN、およびHT1-56に対する一次抗体および二次抗体を用いて染色した。前記二次抗体溶液には、細胞核を標識するためにHoechst-33342(同仁堂社製、Cat. No.: H342)を添加した。前記染色後の切片について、前記蛍光顕微鏡を用いて観察した。さらに、PSC細胞株として、604A1細胞株を用いた以外は、同様にして肺胞オルガノイドを作成した。
 また、201B7細胞株および604A1細胞株を用いて形成した肺胞オルガノイドを用い、測定対象の遺伝子を、SFTPB、SFTPC、SFTPD、SFTPA2、ABCA3、SLC34A2、HOPX、AGER、およびAQP5とした.なお、外因性コントロールは、妊娠17週、18週、または22週のヒト胎児肺のRNA(Agilent Technologies; #540177, lot 0006055802)を用い,それに対する相対発現量を定量した.それ以外は、前記実施例1(1)と同様にして、前記肺胞オルガノイドにおけるこれらの遺伝子の発現を検討した。これらの結果を図7に示す。
 図7は、前記肺胞オルガノイドにおける各種細胞マーカーの発現を示す写真およびグラフである。図7において、(A)は、前記肺胞オルガノイドの蛍光像を示し、(B)は、各遺伝子の相対的発現量を示す。図7(B)において、横軸は、iPSCの株を示し、縦軸は、各遺伝子の相対的発現量を示す。図7(A)に示すように、SFTPC-GFP陽性細胞を含む肺胞オルガノイドでは、VIM陽性のiMESが肺胞オルガノイド全体に広がっていた。また、図7(A)および(B)に示すように、前記肺胞オルガノイドでは、II型肺胞上皮細胞マーカーであるPro-SFTPC、ABCA3、SFTPC-GFP、およびmature-SFTPCが、立方体状の細胞に検出された。また、I型肺胞上皮細胞マーカーであるPDPNおよびHT1-56陽性の扁平な細胞も、前記肺胞オルガノイドに観察された。そして、図7(B)示すように、iMESとの共培養で形成された肺胞オルガノイド(iMES-AO)では、各I型肺胞上皮細胞マーカーおよびII型肺胞上皮細胞マーカーが検出された。以上のことから、iPSC由来の肺前駆細胞とiMESとを3次元的に共培養すると、肺胞オルガノイドが形成できることが分かった。
 以上のことから、本開示の製造方法により、肺間葉細胞を誘導できること、ならびに前記肺間葉細胞および前記肺前駆細胞を共培養することにより肺胞オルガノイドを形成できることがわかった。また、本開示の製造方法で得られた肺間葉細胞を用いて、肺胞オルガノイドを形成できることから、前記肺間葉細胞(iMES)は、HFLFに代えてフィーダ細胞として使用できることがわかった。
[実施例2]
 他の細胞由来のiPSCから誘導したiMESを用いて、肺胞オルガノイドを形成できることを確認した。また、培養前後におけるiMESの発現プロファイルを解析した。
 図8に示すように、異なる細胞からiPSCを誘導し、前記異なる細胞から誘導したiMESを用いて肺胞オルガノイドの形成ができるかを確認した。すなわち、多能性細胞の由来によらず、誘導された肺間葉細胞が、フィーダ細胞として使用できることを確認した。
(1)iPSCの誘導
 iPSCは、前記実施例1で用いたHFLFおよびHDFから誘導した。まず、HFLF-iPSC(HFA)は、HFLF(妊娠17.5週、DVバイオロジクス社製、Cat. No.: PP002-F-1349、ロット121109VA)から樹立した。1×10細胞のHFLFに対して、OCT3/4、SOX2、KLF4、L-MYC、LIN28、mp53-DD、およびEBNA1のcDNAを含むヒトiPSC作製用エピソーマルベクターミックス(Takara社製、Cat. No.: 3673)を、エレクトロポレーションにより導入した。前記導入後の細胞のうち5×10の細胞を、10%FBS含有DMEMを導入した6ウェルプレートの各ウェルに播種した(培養0日目)。前記培地は、培養1日目、培養3日目、培養および5日目に、10%FBS含有DMEMに交換した。また、培養6日目に、各ウェルの培地を、StemFit AK02N(味の素社製、Cat. No.: AJ100)に変更した。そして、得られたiPSCのコロニーをピックアップし、StemFit AK02NとiMatrix-511(タカラバイオ社製、Cat. No.: 892021)(0.25μg/cm)を導入した12ウェルプレートの各ウェルに播種した。得られたiPSCは、StemFit AK02Nで維持および継代した。数回の継代後、各ウェルの培地を、mTeSR Plus(STEMCELL technologies社製、Cat. No.: ST-05825またはST-100-0276)に変更し、その後、前記iPSC(HFLF-iPSC)をiMESの誘導に用いた。
 HDF-iPSC(GC23)は、前記ヒトiPSC作製用エピソームベクター(OCT3/4、SOX2、KLF4、L-MYC、LIN28、p53用ショートヘアピンRNA(mp53-DD))を用いて、前記参考文献14に準じてHDF(TIG120)からフィーダ細胞依存的に樹立した。得られたHDF-iPSCは、その後増殖させ、凍結させた。また、凍結細胞の解凍後、iMESへの誘導前では、前記HDF-iPSCは、mTeSR Plus培地を用いてフィーダ細胞フリーで維持および継代した。
 HFLF、HFLF-iPSCs(HFA)、HDF(TIG120)、およびHDF-iPSCs(GC23)について、操作中の細胞の取り違えやクロスコンタミネーションの除外のため、親株とのゲノム同一性を確認するために、PowerPlex(登録商標)16 HS System(Promega社製)を用いて、HFLF、HFLF-iPSCs(HFA)、HDF、およびHDF-iPSCs(GC23)のショートタンデムリピートの16遺伝子座(下記表4)を調べた。各遺伝子座のタンデムリピートは、iPSCと対応する親の線維芽細胞との間で完全に一致していた。また、図示していないが、HFLF-iPSCとHDF-iPSCとは、未分化マーカー(Nanog、OCT3/4)を発現し、異常な核型を示さず、三胚葉(外胚葉、中胚葉、および内胚葉)への分化の能力も確認された。そこで、HFLF-iPSCs(HFA)およびHDF-iPSCs(GC23)を用いて、iMESを調製した。
(2)肺間葉細胞(iMES)の誘導
 iPSCからiMESへの誘導は、iPSCとして、HFLF-iPSCs(HFA)およびHDF-iPSCs(GC23)を用いた以外は、前記実施例1(1)と同様にして実施した。得られたiMES、HFLF、およびHDFについて、前記実施例1(1)と同様にして、E-Cadherin、Vimentin(VIM)、およびFOXF1を染色後、蛍光顕微鏡により観察した。また、得られたiMESおよびHDFを用いた以外は、前記実施例1(1)と同様にして、PFGFRA、VIM、COL1A1、FOXF1、およびTBX4のmRNAを、HFLFを外因性コントロールとして、その相対発現量を定量した。また、得られたiMESについて、前記実施例1(1)と同様にして、フローサイトメトリーにより、VIM、THY1、PDGFRA、およびKDRの発現を検討した。これらの結果を図9に示す。
 図9は、iMESのマーカー発現に関する図である。図9において、(A)は、各細胞の蛍光像を示す写真であり、(B)は、各細胞の遺伝子発現を示し、(C)は、フローサイトメトリーの解析結果を示す。図9(A)に示すように、HFLF-iPSCs(HFA)およびHDF-iPSCs(GC23)から誘導したiMESにおいても、タンパク質レベルで、VIMとFOXF1とを発現していることが分かった。また、図9(B)に示すように、前記実施例1(1)と同様に、HFLF-iPSCs(HFA)およびHDF-iPSCs(GC23)から誘導したiMESのいずれにおいても、VIM、THY1、PDGFRA、およびKDRを発現するiMESに分化することが確認できた。さらに、前記実施例1(1)と同様に、HFLFおよびiMESでは、FOXF1が高発現していたが、HDFでは、ほとんど発現が見られなかった。
(3)肺胞オルガノイドの形成
 さらに、得られたiMES、HFLF、およびHDFを用いて、前記実施例1(3)と同様にして、肺胞オルガノイドを形成させた。前記肺胞オルガノイドについて、前記蛍光顕微鏡を用いて観察した。また、前記実施例1(3)と同様にして、前記肺胞オルガノイドを構成する細胞を解離させ、得られた細胞について、SFTPC-GFP陽性細胞/EPCAM陽性細胞を分析した。これらの結果を図10に示す。
 つぎに、図10は、オルガノイドの形成能に関する図である。図10において、(A)は、フローサイトメトリーの解析結果を示し、(B)は、肺胞オルガノイドにおけるEpCAM陽性細胞に占めるSFTPC-GFP陽性の割合を示す。図10(A)および(B)に示すように、HFLF-iPSCs(HFA)およびHDF-iPSCs(GC23)から誘導したiMESのいずれにおいても、SFTPC-GFP陽性細胞が誘導されており、これらの細胞を用いることで、肺胞上皮細胞を誘導できることがわかった。
(4)iMESのトランスクリプトーム解析
 iMESが、肺胞オルガノイド形成におけるフィーダ細胞として機能する要因を解析するため、肺胞オルガノイド形成アッセイ前後のHFLF、HFLF-iPSCs由来iMES、HDF-iPSCs由来iMES、およびHDFについて、RNA-Seq解析を実施した。具体的には、トータルRNAを、RNA抽出キット(RNeasy micro kit、Qiagen社製)を用いて、添付のプロトコルに従って抽出した。得られたRNAについて、TruSeq Stranded mRNA Library Prep Kit(illumina社製)を用いて、各サンプルのライブラリを調製した。得られたライブラリは、NovaSeq 6000(Illumina社製)を用いて100bpのペアエンドリードでシークエンスした。FASTQの生データについて、ソフトウェア(fastp 0.20.1、https://github.com/OpenGene/fastp#install-with-bioconda、参考文献15)を用いてトリミング後、ソフトウェア(SortMeRna 2.1b、https://github.com/biocore/sortmerna、参考文献16)を用いてrRNA、tRNA、snRNA、snoRNA、Mt_rRNA、およびMt_tRNAを除外した。前記前処理後のデータを、ソフトウェア(STAR 2.7.6a、https://github.com/alexdobin/STAR、参考文献17)を用いてGRCh38にアラインメントした。得られたアライメントデータとソフトウェア(RSEM 1.3.3、https://github.com/deweylab/RSEM、参考文献18)とを用いて、transcripts per million (TPM)とread countを算出した。これらのデータをソフトウェア(tximport 1.20.0、https://github.com/mikelove/tximport、参考文献19)を用いて R 4.1.1(http://www.R-project.org)にインポートした。つぎに、インポートしたデータセットのサンプルの平均リード数が、1以下の低発現遺伝子を検出限界以下として、解析対象から除外した。前記除外後、ソフトウェア(DESeq2 1.32.0、https://github.com/mikelove/DESeq2、参考文献20)を用いてDEGs(参考文献21)を同定した。そして、DESeq2で算出されたp値の順番でソートした遺伝子を用いてpre-ranked GSEAを行った。GOエンリッチメント分析は、ソフトウェア(clusterProfiler 4.0.5、https://github.com/YuLab-SMU/clusterProfiler、参考文献22)およびorg.Hs.eg.db 3.13.0(https://anaconda.org/bioconda/bioconductor-org.hs.eg.db)を用いて実施した。これらの結果を図11に示す。
参考文献15:Chen, S., Zhou, Y., Chen, Y., and Gu, J. (2018). fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884-i890.
参考文献16:Kopylova, E., Noe, L., and Touzet, H. (2012). SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28, 3211-3217.
参考文献17:Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., and Gingeras, T.R. (2013). STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15-21.
参考文献18:Li, B., and Dewey, C.N. (2011). RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12, 323.
参考文献19:Soneson, C., Love, M.I., and Robinson, M.D. (2015). Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Res 4, 1521.
参考文献20:Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A., Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S., et al. (2005). Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102, 15545-15550.
参考文献21:Love, M.I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15, 550.
参考文献22:Wu, T., Hu, E., Xu, S., Chen, M., Guo, P., Dai, Z., Feng, T., Zhou, L., Tang, W., Zhan, L., et al. (2021). clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. The Innovation 2.
 図11は、RNA-Seqの解析結果を示す図である。図11(A)に示すように、RNA-seqのトランスクリプトームの主成分分析(PCA)では、各条件のクラスタがよく分離しており、肺胞オルガノイド形成(以下、「3D培養」という)後のiMESと3D培養後のHFLFのトランスクリプトームは近くにプロットされた。また、3D培養後のHDFは、3D培養後のiMESおよびHFLFと離れて存在していた。遺伝子発現は、培地組成、培養条件(例えば、2Dまたは3D)に依存することが多い。そこで、iMESにおける肺胞オルガノイド形成に寄与する因子を明確にするために、3D培養後のサンプルの解析結果を親株とのペア(HDF-iMES対HDF、HFLF-iMES対HFLF)として遺伝子発現を解析した。その結果、図11(C)に示すように、GOエンリッチメント分析では、3D培養後のHDF-iMESとHDFの間で、「Embryonic development」と「Lung development」がエンリッチされていた。「Lung development」にアノテートされるDEGを抽出し、HDF-iMES、HDF、HFLF-iMES、およびHFLFの4つのグループでヒートマップを作成した。WNT5A、FGF7、およびPDGFRAは、II型肺胞上皮細胞において重要な因子として知られているが、図11(C)に示すように、予想外にもHDFで、WNT5A、FGF7、およびPDGFRAが上昇していた。他方、iMESでは、RSPO2、WNT11、CCN2、SPARC、BMP4、HHIP、LAMA5、LOX等の分泌タンパク質の発現量が増加していた。FOXF1およびTCF21等の転写因子(TF)の発現レベルは、HFLF-iMES、HDF-iMES、およびHFLFが、HDFと比較して高かった。このため、iMESは、肺線維芽細胞の特徴を有していることが示唆された。また、EPAS1は、HFLF-iMESとHFLFとで共通する遺伝子であったが、HDFでは、HFLFよりもEPAS1の発現量が高く、肺間葉に特異的なマーカーではないと考えられた。つぎに、3D培養後のHFLF-iMESとHFLFとの上位5000個の遺伝子をピックアップし、ベン図を描いた。図11(D)に示すように、4220個の遺伝子が共通し、かつこれらの遺伝子でも、「Lung development」がエンリッチされていた(FDR q-value=0.001)。また、「Lung development」にアノテーションされた遺伝子には、HHIP、CCN2、SPARC、BMP4、LAMA5、およびLOXが再び含まれており、これらの遺伝子が、肺胞オルガノイド形成の重要な要因であることが示唆された。さらに、「Lung development」にアノテーションされる転写因子のFOXF1、TCF21、EPAS1も含まれており、これらは肺線維芽細胞のマーカーとなる可能性が示唆された。
(5)iMESにおけるRSPO2およびRSPO3の機能解析
 本発明者らは、WntリガンドおよびTGFβファミリーリガンドのアンタゴニスト等がII型肺胞上皮細胞の分化に寄与しているとの知見を有している。そこで、前記RNA-seqのデータにおいて、3D培養後のWntリガンドの発現を比較した。この結果を図12および下記表5に示す。
Figure JPOXMLDOC01-appb-T000005
 図12および前記表5は、WntリガンドとTGFβアンタゴニストの発現量(TPM)を示す図である。図12および前記表5に示すように、3D培養後では、HFLF-iMES、HDF-iMES、およびHFLFでは、RSPO2とRSPO3の発現量が、HDFよりも高かった。そこで、肺胞オルガノイド形成におけるRSPO2とRSPO3の役割を検討した。また、相対発現量としてはHFLFやHDFより低いものの、十分な発現が認められるTGFβアンタゴニスト(FST、FSTL1、FSTL3、DCN)の役割も検討した。
 つぎに、図13(A)に示すように、2.0×10個の単離したCPM陽性の肺前駆細胞と、各因子(Y-27632 10μmol/l、CHIR99021 3μmol/l、RSPO2 200ng/ml、RSPO3 200ng/ml、SB431542 10μmol/l、FST 200ng/ml、 FSTL1 200ng/ml、FSTL3 200ng/ml、DCN 200ng/ml)とを、ポリ(2-ヒドロキシエチルメタクリレート)(Sigma-Aldrich社製、Cat. No.: 192066)でコーティングした96ウェルプレート(Corning社製、Cat. No.: 4446)に播種し、37℃、5%COの条件下で24時間培養することにより、細胞の凝集体(スフェロイド)を形成した。得られたスフェロイドを遠心分離後、前記スフェロイドを含むペレットを、20μlの予冷したマトリゲルに穏やかに再懸濁し、24ウェルプレート(Greiner Bio-One社製、Cat. No.: 662160)の各ウェルに導入した。前記導入後、37℃、20分間の条件でインキュベートし、さらに、前記各因子を添加した前記肺胞化培地500μlを、前記マトリゲルで包埋したスフェロイド上に添加した。前記培地は、2日毎に交換した。前記スフェロイドの形成開始から5日目に、0.1% Tripsin-EDTAを用い、37℃、15分の条件で細胞を解離させ、ついで、1%BSA含有PBSを用いて2回洗浄した。前記洗浄後の細胞について、抗EPCAM-APC抗体で免疫染色した。その後、各条件におけるEpCAM陽性細胞に占めるSFTPC-GFP陽性細胞の比率をフローサイトメトリーで評価した。
 図13は、培養方法およびSFTPC-GFP陽性細胞の解析結果を示す図である。図13において、(A)は、培養方法を示し、(B)は、フローサイトメトリーの解析結果を示し(C)は、EpCAM陽性細胞に占めるSFTPC-GFP陽性細胞の比率を示し、(D)は、各ウェルのGFP陽性細胞を示し、(E)は、EpCAM陽性細胞に占めるSFTPC-GFP陽性細胞の比率を示す。図13(B)、(C)、および(D)に示すように、4日間の培養により、いずれの条件でも、GFP陽性細胞は確認された。また、図13(B)および(C)に示すように、RSPO2/SB431542添加群、RSPO3/SB431542添加群、およびRSPO2/RSPO3/SB431542添加群は、EpCAM陽性細胞に占めるSFTPC-GFP陽性細胞の比率を増加させ、特に、RSPO2/RSPO3/SB431542添加群は、2i(CHIR99021/SB431542)と同等にEpCAM陽性細胞に占めるSFTPC-GFP陽性細胞の比率を増加させた。また、図13(E)に示すように、TGFβファミリーリガンドのアンタゴニストは、いずれもEpCAM陽性細胞に占めるSFTPC-GFP陽性細胞の比率を増加させなかった。これらの結果から、iMESのRSPO2およびRSPO3が、肺胞オルガノイド形成に寄与していること、ならびにSB431542は、TGFβ経路を阻害する役割に代わる別の内因性メカニズムにより、肺胞オルガノイド形成に寄与していることが示唆された。なお、別の内因性のメカニズムとしては、以下が推定される。SB431542は、人工的な低分子化合物であるため、生体の環境下ではTGFβ経路阻害以外の機序でII型肺胞上皮細胞を誘導すること、およびiMESもTGFβ経路阻害以外の機序でII型肺胞上皮細胞を誘導することが推定される。また、iMESが、FST以外のさらに強力的にTGFβ経路を阻害する物質を分泌していることが推定される。なお、本発明は前記推定に何ら制限されない。
(6)間葉細胞の種類
 マウスでは、異なるタイプの間葉細胞が同定されている(筋線維性細胞、mesenchymal alveolar niche cell細胞、参考文献23~24)。そこで、前記参考文献23~24で公開されているscRNA-seqの公開データを解析し、iMESがいずれのタイプの間葉細胞に類似しているかを検討した。具体的には、Secondary crest myofibroblast(SCMF)、Wnt2-Pα細胞、およびmesenchymal alveolar niche cell(MANC)の3種類の間葉系細胞を再クラスタリングし、各系統の細胞クラスタで有意に上昇した遺伝子をピックアップした。つぎに、各間葉細胞のクラスタの特徴を示す遺伝子セットを構築した。そして、ソフトウェア(biomaRt、https://github.com/grimbough/biomaRt、参考文献25)を用いて、マウスの遺伝子を対応するヒトの遺伝子に変換した後、iMES、HFLFおよびHDFのscRNA-seq解析のデータを用いてGSEAを行った。具体的には、scRNA-seqデータは、GSE149563からダウンロードした。遺伝子発現データの正規化、次元削減、およびデータの可視化は、Seurat 4.0.5および Plotly 4.9.4.1を用いて実施した。各クラスタにおける発現上昇遺伝子は、P<0.05のカットオフ値でWilcoxonの順位和検定を用いてSeuratの関数FindAllMarkersでピックアップし、25%以上の細胞で発現している遺伝子を抽出した。前記抽出後、抽出されたマウス遺伝子は、biomaRt 2.48.3を用いてヒト遺伝子に変換した。この結果を図14に示す。
参考文献23:Zepp, J.A., Morley, M.P., Loebel, C., Kremp, M.M., Chaudhry, F.N., Basil, M.C., Leach, J.P., Liberti, D.C., Niethamer, T.K., Ying, Y., et al. (2021). Genomic, epigenomic, and biophysical cues controlling the emergence of the lung alveolus. Science 371.
参考文献24:Zepp, J.A., Zacharias, W.J., Frank, D.B., Cavanaugh, C.A., Zhou, S., Morley, M.P., and Morrisey, E.E. (2017). Distinct Mesenchymal Lineages and Niches Promote Epithelial Self-Renewal and Myofibrogenesis in the Lung. Cell 170, 1134-1148 e1110.
参考文献25:Durinck, S., Spellman, P.T., Birney, E., and Huber, W. (2009). Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nat Protoc 4, 1184-1191.
 図14は、各間葉系細胞のクラスタ解析の結果を示す図である。図14(A)~(C)に示すように、各間葉系細胞特異的なマーカーは、前記参考文献23および24と一致していた。また、図14(D)に示すように、Wnt2-PαではWnt2、SCMFではStc1、MANCクラスタではMfap5がそれぞれ高い発現量を示した。また、図14(E)に示すように、SCMFの遺伝子セットは、3D培養後において、HFLFおよびHDFと比較して、iMESでエンリッチされていた。一方、図14(E)に示すように、MANCの遺伝子セットは、HDFで、Wnt2-Pαの遺伝子セットはHFLFで、それぞれエンリッチされていた。さらに、図14(F)に示すように、iMESではSTC1、HFLFではWNT2、HDFではMFAP5が、それぞれ3D培養後において高い発現量を示した。さらに、図14(G)に示すように、免疫蛍光染色において、肺胞オルガノイド形成後において、iMES中に、STC1陽性VIM陽性細胞が検出されたが、上皮細胞の一部も染色されていた。これらの結果から、3D培養後のiMESでは、3D培養前に比べて「Muscle system process」が濃縮されており、3D培養中に筋肉系(SCMF)の間葉細胞の特徴を獲得したことが示唆された。また、図14(H)に示すように、HFLFでは、「Canonical Wnt signaling pathway」が3D培養後に3D培養前と比べて濃縮されており、Wnt2-Pαの間葉細胞の特徴を獲得したことが示唆された。
 以上のことから、iMESを用いて、肺胞オルガノイドを形成できること、iMESは、RSPO2およびRSPO3の少なくとも一方により、肺胞上皮細胞の分化に寄与していること、およびiMESの遺伝子発現プロファイルは、SCMFと類似していることがわかった。
[実施例3]
 iMESを用いて、肺胞上皮細胞を維持培養できることを確認した。
 前記実施例1(3)と同様に肺胞オルガノイドを形成した。得られた肺胞オルガノイドから、SFTPC-GFP陽性のII型肺胞上皮細胞を分取し、iMESで維持培養できるかの検討を行なった。具体的には、図15(A)に示すように、実施した。まず。前記実施例1(3)と同様にして得られた肺胞オルガノイドを0.1% Trypsin-EDTA含有PBSを用いて、シングルセルにした。抗EPCAM-APC抗体(Miltenyi Biotec社製、Cat No.: 130-113-263)を用いて免疫染色を行い、FACSを用いてSFTPC-GFP+/EPCAM+細胞を回収した。前記回収後、回収したII型肺胞上皮細胞1×10細胞と、iMES 5×105細胞とをY-27632(10μmol/l)を添加した100μlの肺胞化培地および100μlのマトリゲルに混合した。前記混合後、12wellセルカルチャーインサートに3D包埋し、14日間培養した(P0)。前記培養では、前記肺胞化培地を用いた。前記培養後、SFTPC-GFP陽性細胞を回収後II型肺胞上皮細胞の数をカウントし、同様の条件でiMESと培養した(P1)。同様の継代を繰り返した(P2~P3)。前記継代は、2週間おきに行った。P0~P3の細胞について、前記実施例1(3)と同様にして、フローサイトメーター(FACS)を用いて、SFTPC-GFP陽性細胞/EPCAM陽性細胞を分析した。また、P0~P3の細胞について、前記実施例1(1)と同様にして、SFTPB、SFTPC、SFTPD、ABCA3、SFTPA2、SLC34A2、HOPX、AGER、およびAQP5の発現を定量した。さらに、前記実施例1(3)と同様にして、肺胞オルガノイドについて、Mature-GFP、PDPN、およびHT1-56に対する一次抗体および二次抗体を用いて染色した。
 また、II型肺胞上皮細胞のラメラ構造が観察されるかを確認するため、電子顕微鏡による観察を行なった。具体的には、各培養で得られた肺胞オルガノイドの小片を、2.5%グルタルアルデヒド、4%パラホルムアルデヒド、1%タンニン酸、0.1mol/l リン酸緩衝液(pH7.4)からなる固定液中で4℃、一晩インキュベートした。翌日、固定液はタンニン酸を含まないものに変更した。具体的には、0.1mol/l リン酸緩衝液(pH7.4)で20分間3回洗浄した。前記洗浄後、1%四酸化オスミウムで2時間固定し、徐々に脱水して既述のように純粋エポンに埋め込んだ(前記参考文献12)。前記埋め込み後、超薄切片を酢酸ウラニルおよびクエン酸鉛で染色し,透過型電子顕微鏡(JEOL;JEM-1400)を用いて解析した。これらの結果を、図15に示す。
 図15は、II型肺胞上皮細胞の継代結果を示す図である。図15(B)に示すように、EpCAM陽性細胞は、P0~P3において、直線的に増加した。また、図15(C)および(D)に示すように、SFTPC-GFP陽性細胞は、1回目の継代で増加し、かつP0~P2にかけて有意に増加し、プラトーに達した。さらに、図15(E)に示すように、ABCA3、SLC34A2(II型肺胞上皮細胞マーカー)と、HOPX(II型肺胞上皮細胞マーカー)は、P0~P3にかけて有意に増加しており、II型肺胞上皮細胞だけでなく、I型肺胞上皮細胞も成熟していることがわかった。さらに、その他の肺胞上皮系細胞のマーカーであるSFTPB、SFTPD2、SFTPA2、AGER、およびAQP5の発現は、継代中も維持されていたことから、肺胞オルガノイドを形成する様々な上皮細胞が維持されていることがわかった。また、図15(F)に示すように、P2の肺胞オルガノイドには、SFTPC-GFP陽性のII型肺胞上皮細胞と、PDPN陽性HT1-56陽性のI型肺胞上皮細胞の両者が観察された。そして、図15(G)に示すように、前記肺胞オルガノイドでは、II型肺胞上皮細胞特異的な構造であるラメラ体が確認された。これらのことから、iMESは、肺の組織幹細胞であるII型肺胞上皮細胞を維持培養でき、かつ肺胞オルガノイドを構成する様々な上皮細胞の分化を誘導できることがわかった。
[実施例4]
 iMESと、肺胞上皮細胞とのリガンド-ターゲットおよびリガンド-レセプターの相互作用を解析した。
 前記実施例3のP2の培養後の肺胞オルガノイドを用い、肺胞上皮細胞との相互作用に重要なリガンド-ターゲットおよびリガンド-レセプターの相互作用の解析を行なった。具体的には、P2の培養後のiMESについて、scRNA-seq解析を行なった。10×genomics Chromiumデバイスを用い、添付のプロトコルに従って、iMES、HFLFおよびHDFからシングルセルRNAライブラリを調製した(Single Cell 3’ Reagent Kits v3.1)。得られたライブラリは、NovaSeq 6000(Illumina社製)を用いてシークエンスした。そして、得られた読み取り値をGRCh38にマッピングし、Cell Rangerを用いてカウントマトリックスを作成した。得られたシングルセルデータの処理には、ソフトウェア(Seurat 4.0.4、参考文献26)を用いた。前記処理において、ミトコンドリア遺伝子を20%以上および1.5%未満発現している細胞のデータを削除することにより、死んだ細胞や質の低い細胞を除外した。また、細胞のダブレットおよび低品質の細胞を除外するために、UMIが、140000以上または5000未満、発現遺伝子が、2000未満の細胞も除去した。その後、UMI数をSCTransformで正規化した。そして、得られたデータについて、Seurat関数RunPCAを用いて主成分(PC)分析を行い、Seurat関数RunUMAPを用いて17個のPCと解像度1でUMAPに埋め込んだ。UMAPのプロットは、Plotly 4.9.4.1で可視化し、バイオリンのプロットはSeuratで描いた。リガンド活性の解析、活性リガンド、その標的遺伝子、および受容体の予測は、ソフトウェア(nichenetr 1.0.0、参考文献27)を用いて実施した。I型肺胞上皮細胞、II型肺胞上皮細胞、ASCL1陽性細胞、および線毛細胞を含む上皮細胞間の軌跡推論は、ソフトウェア(monocle3 1.0.0、参考文献28)を用いて実施した。この結果を図16に示す。
 
参考文献26:Hao, Y., Hao, S., Andersen-Nissen, E., Mauck, W.M., 3rd, Zheng, S., Butler, A., Lee, M.J., Wilk, A.J., Darby, C., Zager, M., et al. (2021). Integrated analysis of multimodal single-cell data. Cell 184, 3573-3587 e3529.
参考文献27:Browaeys, R., Saelens, W., and Saeys, Y. (2020). NicheNet: modeling intercellular communication by linking ligands to target genes. Nat Methods 17, 159-162.
参考文献28:Cao, J., Spielmann, M., Qiu, X., Huang, X., Ibrahim, D.M., Hill, A.J., Zhang, F., Mundlos, S., Christiansen, L., Steemers, F.J., et al. (2019). The single-cell transcriptional landscape of mammalian organogenesis. Nature 566, 496-502.
 図16は、scRNA-seq解析のクラスタ解析の結果を示す。図16(A)に示すように、肺胞上皮細胞およびiMESは、それぞれ、NKX2-1およびCOL1A1を高発現していることで分離された。また、図16(B)に示すように、前記クラスタ解析の結果、前記P2の培養後の肺胞オルガノイドは、15個のクラスタにアノテーションされた。各クラスタは、当該クラスタで発現が高い遺伝子から以下の細胞のクラスタと判断した。具体的には、図16(C)に示すように、クラスタ12は、AGERとCAV1との発現が高いことから、I型肺胞上皮細胞と考えられた。クラスタ1、8、および14は、SFTPCの発現量が高いことから、II型肺胞上皮細胞と考えられた。その他の上皮細胞系のクラスタは、クラスタ5は、ASCL1陽性細胞、クラスタ2および7は、SOX9陽性細胞、クラスタ6は、SOX2陽性細胞、クラスタ0は、MKI67を発現していることから細胞分裂中の細胞と考えられた。クラスタ13は、FOXJ1、SNTN、およびSFTPCの発現レベルが高く、SFTPC陽性遠位端細胞(distal tip cell)が線毛細胞に分化していることを示していた。他方、図16(D)に示すように、iMESは、5つのクラスタに分けられた。具体的には、図16(B)に示すように、クラスタ9は、STC1陽性iMES、クラスタ4は、FSTL1陽性iMES、クラスタ10は、THY1陽性iMES、クラスタ3は、WT1陽性iMES、クラスタ11は、細胞分裂中のiMESと考えられた。また、3D培養後のiMESのトランスクリプトームで挙がった遺伝子のうち、FOXF1、RSPO2、およびRSPO3について検討した。FOXF1陽性、RSPO3陽性iMESは、間葉系のクラスタに広く分布していた。他方、図16(E)に示すように、RSPO2は、STC1陽性iMESに特異的に発現していた。
 つぎに、ソフトウェア(NicheNet 1.0.0、https://github.com/saeyslab/nichenetr、前記参考文献27)を用いて、iMESと肺胞上皮細胞との間の細胞間コミュニケーションを解析した。前記解析では、I型肺胞上皮細胞(AT1)とII型肺胞上皮細胞(AT2)との遺伝子セットを下記表6のように定義した。I型肺胞上皮細胞(AT1)およびII型肺胞上皮細胞(AT2)の代表的遺伝子は、Lung Gene Expression Analysis Web Portalから取得した(参考文献29)。Seurat関数FindAllMarkers(調整後P値<0.05)でリストアップされた、肺遺伝子の代表的遺伝子と、AT1およびAT2クラスタで発現上昇している共通遺伝子を抽出した。これらの遺伝子のうち、iMESで発現するNAMPT、HMGB1、およびTGFB1は、リガンド活性が上位にランクされ、AT1の代表的遺伝子を広くカバーしていた。また、AT2細胞に関して、TGFB2、HAS2、およびCTF1が、AT2の代表的遺伝子を広範に制御すると推測された。これらのiMES由来のリガンド(iMES-リガンド)は、iMESの様々なクラスタ上で発現しており、したがって、各タイプのiMESが、肺胞上皮細胞の発生過程で協働して作用していると考えられた。また、NicheNetを用いて、文献および公開されているデータベースに記載されているリガンド-受容体相互作用のみを考慮して、リガンド-受容体相互作用を推論した。
参考文献29:Du, Y., Ouyang, W., Kitzmiller, J.A., Guo, M., Zhao, S., Whitsett, J.A., and Xu, Y. (2021). Lung Gene Expression Analysis Web Portal Version 3: Lung-at-a-Glance. Am J Respir Cell Mol Biol 64, 146-149.
 図17は、リガンド-受容体相互作用を示す結果である。図17(A)に示すように、
I型肺胞上皮細胞では、NAMPTとTGFB1とが、それぞれ、INSRとTGFBR1/2/3と相互作用していた。また、図17(B)に示すように、II型肺胞上皮細胞では、TGFB2、HAS2、およびCTF1が、それぞれ、TGFBR1/2/3、CD44、およびIL6ST/LIFRと相互作用していた。これらの結果から、iMESに発現するリガンドが、肺胞上皮細胞と相互作用し、各ターゲットマーカー遺伝子の発現に関与していることを裏付けている。さらに、図17(C)に示すように、I型肺胞上皮細胞、II型肺胞上皮細胞、ASCL1陽性細胞、および繊毛上皮細胞の分化の軌跡を推定すると、I型肺胞上皮細胞、ASCL1陽性細胞、および繊毛上皮細胞は、II型肺胞上皮細胞のクラスタを中心にして分岐しており、II型肺胞上皮細胞から派生する細胞、すなわち、II型肺胞上皮細胞から分化している細胞であることが示唆された。
[実施例5]
 間葉細胞の誘導因子と、KGFおよびFGF10とを組み合わせることにより、中胚葉細胞から肺間葉細胞を効率よく誘導できることを確認した。
(1)肺間葉細胞の誘導
 前記中胚葉細胞から肺間葉細胞の誘導において、アクチビンA(AA)、KGF、BMP4、FGF2、およびFGF10のいずれか1つを除いた以外は、前記実施例1(1)と同様にして、間葉細胞を誘導した。
(2)肺前駆細胞の誘導
 前記肺前駆細胞の誘導は、iPSCとして、B2-3株を用いた以外は、前記実施例1(2)と同様にして実施した。
(3)肺胞オルガノイドの形成アッセイ
 前記実施例5(1)の肺間葉細胞および前記実施例5(2)の肺前駆細胞を用いた以外は、前記実施例1(3)と同様にして、肺胞オルガノイドを形成した。そして、得られた肺胞オルガノイドを構成する細胞を単離して、前記実施例1(3)と同様にして、SFTPC-GFP陽性細胞/EPCAM陽性細胞を分析した。この結果を図18に示す。
 図18は、SFTPC-GFP陽性細胞/EPCAM陽性細胞の結果を示すグラフである。図18(A)は、フローサイトメトリーの解析結果を示し、(B)は、肺胞オルガノイドにおけるEpCAM陽性細胞に占めるSFTPC-GFP陽性の割合を示す。図18(B)において、横軸は、添加した因子(AKB210)または除去した因子(-X)を示し、縦軸は、SFTPC-GFP陽性細胞/EPCAM陽性細胞の割合を示す。なお、AKB210は、アクチビンA、KGF、BMP4、FGF2、およびFGF10を全て添加した場合を示す。図18(A)および(B)に示すように、いずれの因子を除去しても肺胞上皮細胞の誘導効率は低下することから、間葉細胞の誘導因子と、KGFおよびFGF10とを組み合わせることにより、肺間葉細胞を効率よく誘導できることが分かった。
 以上、実施形態および実施例を参照して本開示を説明したが、本開示は、上記実施形態および実施例に限定されるものではない。本開示の構成や詳細には、本開示のスコープ内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2022年2月1日に出願された日本出願特願2022-014212を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 
<付記>
 上記の実施形態および実施例の一部または全部は、以下の付記のように記載されうるが、以下には限られない。
<肺間葉細胞の製造方法>
(付記1)
中胚葉細胞を、間葉細胞の誘導因子とKGFおよびFGF10との存在下で培養し、肺間葉細胞への分化を誘導する工程を含む、肺間葉細胞の製造方法。
(付記2)
前記中胚葉細胞から誘導された細胞集団から、EpCAMおよび/またはE-cadherin陰性の肺間葉細胞を富化する工程を含む、付記1に記載の肺間葉細胞の製造方法。
(付記3)
前記富化は、EpCAMおよび/またはE-cadherin陰性の肺間葉細胞を50%以上含む細胞集団への富化である、付記2に記載の肺間葉細胞の製造方法。
(付記4)
前記肺間葉細胞は、RSPO2(R-Spondin 2)および/またはRSPO3(R-Spondin 3)を発現する、付記1から3のいずれかに記載の肺間葉細胞の製造方法。
(付記5)
前記肺間葉細胞は、FOXF1(Forkhead box protein F1)、TCF21(Transcription factor 21)、TBX4(T-Box Transcription Factor 4)、および、OSR1(Odd-Skipped Related Transcription Factor)からなる群から選択される転写因子を発現する、付記1から4のいずれかに記載の肺間葉細胞の製造方法。
(付記6)
前記肺間葉細胞は、RSPO2(R-Spondin 2)、RSPO3(R-Spondin 3)、FOXF1(Forkhead box protein F1)、TCF21(Transcription factor 21)、TBX4(T-Box Transcription Factor 4)、および、OSR1(Odd-Skipped Related Transcription Factor)からなる群から選択される少なくとも一つの因子を発現する、付記1から3のいずれかに記載の肺間葉細胞の製造方法。
(付記7)
前記肺間葉細胞は、WNT2を発現しない、付記1から6のいずれかに記載の肺間葉細胞の製造方法。
(付記8)
前記肺間葉細胞は、TBXT(T-box transcription factor T)を発現しない、付記1から7のいずれかに記載の肺間葉細胞の製造方法。
(付記9)
前記肺間葉細胞は、NCAM(neural cell adhesion molecule)、ADRP(Adipose differentiation-related protein)、COL1A1(Collagen, type I, alpha 1)、およびACTA2(actin alpha 2)からなる群から選択される線維芽細胞マーカーを発現する、付記1から8のいずれかに記載の肺間葉細胞の製造方法。
(付記10)
前記肺間葉細胞は、VIM(Vimentin)、THY1(Thy-1 Cell Surface Antigen、CD90)、PDGFRα(Platelet Derived Growth Factor Receptor α)、およびKDR(Kinase Insert Domain Receptor)からなる群から選択される間葉細胞マーカー陽性である、付記1から9のいずれかに記載の肺間葉細胞の製造方法。
(付記11)
前記間葉細胞の誘導因子は、アクチビンA、FGF2、およびBMP4からなる群から選択される因子を含む、付記1から10のいずれかに記載の肺間葉細胞の製造方法。
(付記12)
前記肺間葉細胞は、肺前駆細胞との共培養による肺胞オルガノイド形成アッセイにおいて、前記肺前駆細胞から、I型肺胞上皮細胞および/またはII型肺胞上皮細胞を誘導可能である、付記1から11のいずれかに記載の肺間葉細胞の製造方法。
(付記13)
前記肺間葉細胞の誘導に先立ち、多能性細胞を、中胚葉誘導因子の存在下で培養し、前記中胚葉細胞への分化を誘導する工程を含む、付記1から12のいずれかに記載の間葉細胞の製造方法。
(付記14)
前記中胚葉誘導因子は、GSK3β阻害剤、アクチビンA、およびBMP4からなる群から選択される因子を含む、付記13に記載の間葉細胞の製造方法。
(付記15)
前記GSK3β阻害剤は、CHIR99021である、付記14に記載の間葉細胞の製造方法。
<肺間葉細胞>
(付記16)
RSPO2(R-Spondin 2)および/またはRSPO3(R-Spondin 3)を発現する肺間葉細胞を含む、間葉細胞を含む細胞集団。
(付記17)
前記肺間葉細胞は、FOXF1(Forkhead box protein F1)、TCF21(Transcription factor 21)、TBX4(T-Box Transcription Factor 4)、および、OSR1(Odd-Skipped Related Transcription Factor)からなる群から選択される転写因子を発現する、付記16に記載の細胞集団。
(付記18)
前記肺間葉細胞は、RSPO2およびRSPO3を発現する、付記16または17に記載の細胞集団。
(付記19)
FOXF1(Forkhead box protein F1)、TCF21(Transcription factor 21)、TBX4(T-Box Transcription Factor 4)、および、OSR1(Odd-Skipped Related Transcription Factor)からなる群から選択される少なくとも一つの転写因子を発現する肺間葉細胞を含む、間葉細胞を含む細胞集団。
(付記20)
前記肺間葉細胞は、EpCAMおよび/またはE-cadherin陰性である、付記16から19のいずれかに記載の細胞集団。
(付記21)
前記細胞集団の全細胞に対するEpCAMおよび/またはE-cadherin陰性の肺間葉細胞の割合(細胞数)が、50%以上である、付記20に記載の細胞集団。
(付記22)
前記肺間葉細胞は、Wnt2を発現しない、付記16から21のいずれかに記載の細胞集団。
(付記23)
前記肺間葉細胞は、TBXT(T-box transcription factor T)を発現しない、付記16から22のいずれかに記載の細胞集団。
(付記24)
前記肺間葉細胞は、NCAM(neural cell adhesion molecule)、ADRP(Adipose differentiation-related protein)、COL1A1(Collagen, type I, alpha 1)、およびACTA2(actin alpha 2)からなる群から選択される少なくとも一つの線維芽細胞マーカーを発現する、付記16から23のいずれかに記載の細胞集団。
(付記25)
前記肺間葉細胞は、VIM(Vimentin)、THY1(Thy-1 Cell Surface Antigen、CD90)、PDGFRα(Platelet Derived Growth Factor Receptor α)、およびKDR(Kinase Insert Domain Receptor)からなる群から選択される少なくとも一つの間葉細胞マーカー陽性である、付記16から24のいずれかに記載の細胞集団。
(付記26)
前記肺間葉細胞は、肺前駆細胞との共培養による肺胞オルガノイド形成アッセイにおいて、前記肺前駆細胞からI型肺胞上皮細胞および/またはII型肺胞上皮細胞を誘導可能である、付記16から25のいずれかに記載の細胞集団。
<肺胞上皮細胞の製造方法>
(付記27)
肺前駆細胞を、肺間葉細胞の存在下で培養して、肺胞上皮細胞への分化を誘導する工程を含み、
前記肺間葉細胞は、付記1から15のいずれかに記載の肺間葉細胞の製造方法により得られた肺間葉細胞、および/または、付記16から26のいずれかに記載の間葉細胞を含む細胞集団である、肺上皮細胞の製造方法。
(付記28)
前記肺胞上皮細胞は、I型肺胞上皮細胞、および/または、II型肺胞上皮細胞である、付記27に記載の製造方法。
(付記29)
前記肺胞上皮細胞は、肺胞オルガノイドを構成している肺胞上皮細胞である、付記27または28に記載の製造方法。
(付記30)
前記肺前駆細胞は、NKX2-1陽性および/またはCPM陽性である、付記27から29のいずれかに記載の製造方法。
(付記31)
前記肺前駆細胞を、前記肺間葉細胞および肺胞上皮細胞の誘導因子の存在下で培養して、前記肺胞上皮細胞への分化を誘導する、付記27から30のいずれかに記載の製造方法。
(付記32)
前記肺胞上皮細胞の誘導因子は、Wnt促進剤、ステロイド剤、cAMP誘導体、ホスホジエステラーゼ阻害剤、KGF、GSK3β阻害剤、TGFβ阻害剤、ROCK阻害剤、および/またはFGF10である、付記31に記載の製造方法。
<医薬組成物>
(付記33)
付記1から15のいずれかに記載の肺間葉細胞の製造方法により得られた肺間葉細胞、および/または、付記16から26のいずれかに記載の間葉細胞を含む細胞集団と、薬学的に許容される担体とを含む、医薬組成物。
<II型肺胞上皮細胞の維持培養方法>
(付記34)
II型肺胞上皮細胞を、肺間葉細胞の存在下で培養して、維持培養する工程を含み、
前記肺間葉細胞は、付記1から15のいずれかに記載の肺間葉細胞の製造方法により得られた肺間葉細胞、および/または、付記16から26のいずれかに記載の間葉細胞を含む細胞集団である、II型肺胞上皮細胞の維持培養方法。
(付記35)
前記II型肺胞上皮細胞は、SFTPC陽性細胞である、付記34に記載の維持培養方法。
(付記36)
前記II型肺胞上皮細胞を、前記肺間葉細胞および肺胞上皮細胞の誘導因子の存在下で培養して、維持培養する、付記34または35に記載の維持培養方法。
(付記37)
前記肺胞上皮細胞の誘導因子は、Wnt促進剤、ステロイド剤、cAMP誘導体、ホスホジエステラーゼ阻害剤、KGF、GSK3β阻害剤、TGFβ阻害剤、ROCK阻害剤、FGF10、および/またはEGFである、付記36に記載の維持培養方法。
<II型肺胞上皮細胞の拡大培養方法>
(付記38)
II型肺胞上皮細胞を、肺間葉細胞の存在下で培養して、拡大培養する工程を含み、
前記肺間葉細胞は、付記1から15のいずれかに記載の肺間葉細胞の製造方法により得られた肺間葉細胞、および/または、付記16から26のいずれかに記載の間葉細胞を含む細胞集団である、II型肺胞上皮細胞の拡大培養方法。
(付記39)
前記II型肺胞上皮細胞は、SFTPC陽性細胞である、付記38に記載の拡大培養方法。
(付記40)
前記II型肺胞上皮細胞を、前記肺間葉細胞および肺胞上皮細胞の誘導因子の存在下で培養して、拡大培養する、付記38または39に記載の拡大培養方法。
(付記41)
前記肺胞上皮細胞の誘導因子は、Wnt促進剤、ステロイド剤、cAMP誘導体、ホスホジエステラーゼ阻害剤、KGF、GSK3β阻害剤、TGFβ阻害剤、ROCK阻害剤、FGF10、および/またはEGFである、付記40に記載の拡大培養方法。
<培地>
(付記42)
中胚葉細胞から肺間葉細胞を誘導するための培地であって、
培地(基礎培地)と、間葉細胞の誘導因子と、KGFおよびFGF10とを含む、培地。
(付記43)
前記間葉細胞の誘導因子は、アクチビンA、FGF2、およびBMP4からなる群から選択される因子を含む、付記42に記載の培地。
<キット>
(付記44)
中胚葉細胞から肺間葉細胞を誘導するためのキットであって、
間葉細胞の誘導因子と、KGFおよびFGF10とを含む、キット。
(付記45)
前記間葉細胞の誘導因子は、アクチビンA、FGF2、およびBMP4からなる群から選択される因子を含む、付記44に記載のキット。
 以上のように、本開示によれば、肺胞オルガノイドの作成にも利用可能な肺間葉細胞を製造できる。このため、本開示は、例えば、再生医療分野、細胞医薬分野等において極めて有用である。
 

Claims (12)

  1. 中胚葉細胞を、間葉細胞の誘導因子とKGFおよびFGF10との存在下で培養し、肺間葉細胞への分化を誘導する工程を含む、肺間葉細胞の製造方法。
  2. 前記中胚葉細胞から誘導された細胞集団から、EpCAMおよび/またはE-cadherin陰性の肺間葉細胞を富化する工程を含む、請求項1に記載の肺間葉細胞の製造方法。
  3. 前記富化は、EpCAMおよび/またはE-cadherin陰性の肺間葉細胞を50%以上含む細胞集団への富化である、請求項2に記載の肺間葉細胞の製造方法。
  4. 前記肺間葉細胞は、RSPO2(R-Spondin 2)、RSPO3(R-Spondin 3)、FOXF1(Forkhead box protein F1)、TCF21(Transcription factor 21)、TBX4(T-Box Transcription Factor 4)、および、OSR1(Odd-Skipped Related Transcription Factor)からなる群から選択される少なくとも一つの因子を発現する、請求項1から3のいずれか一項に記載の肺間葉細胞の製造方法。
  5. 前記間葉細胞の誘導因子は、アクチビンA、FGF2、およびBMP4からなる群から選択される因子を含む、請求項1から4のいずれか一項に記載の肺間葉細胞の製造方法。
  6. 前記肺間葉細胞の誘導に先立ち、多能性細胞を、中胚葉誘導因子の存在下で培養し、前記中胚葉細胞への分化を誘導する工程を含む、請求項1から5のいずれか一項に記載の間葉細胞の製造方法。
  7. RSPO2(R-Spondin 2)および/またはRSPO3(R-Spondin 3)を発現する肺間葉細胞を含む、間葉細胞を含む細胞集団。
  8. FOXF1(Forkhead box protein F1)、TCF21(Transcription factor 21)、TBX4(T-Box Transcription Factor 4)、および、OSR1(Odd-Skipped Related Transcription Factor)からなる群から選択される少なくとも一つの転写因子を発現する肺間葉細胞を含む、間葉細胞を含む細胞集団。
  9. 前記肺間葉細胞は、EpCAM陰性である、請求項7または8に記載の細胞集団。
  10. 前記肺間葉細胞は、肺前駆細胞との共培養による肺胞オルガノイド形成アッセイにおいて、前記肺前駆細胞からI型肺胞上皮細胞および/またはII型肺胞上皮細胞を誘導可能である、請求項7から9のいずれか一項に記載の細胞集団。
  11. 肺前駆細胞を、肺間葉細胞の存在下で培養して、肺胞上皮細胞への分化を誘導する工程を含み、
    前記肺間葉細胞は、請求項1から6のいずれか一項に記載の肺間葉細胞の製造方法により得られた肺間葉細胞、および/または、請求項7から10のいずれか一項に記載の間葉細胞を含む細胞集団である、肺上皮細胞の製造方法。
  12. II型肺胞上皮細胞を、肺間葉細胞の存在下で培養して、拡大培養する工程を含み、
    前記肺間葉細胞は、請求項1から6のいずれか一項に記載の肺間葉細胞の製造方法により得られた肺間葉細胞、および/または、請求項7から10のいずれか一項に記載の間葉細胞を含む細胞集団である、II型肺胞上皮細胞の拡大培養方法。

     
PCT/JP2023/002943 2022-02-01 2023-01-30 肺間葉細胞の製造方法および肺間葉細胞 WO2023149407A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023578547A JPWO2023149407A1 (ja) 2022-02-01 2023-01-30

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-014212 2022-02-01
JP2022014212 2022-02-01

Publications (1)

Publication Number Publication Date
WO2023149407A1 true WO2023149407A1 (ja) 2023-08-10

Family

ID=87552379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/002943 WO2023149407A1 (ja) 2022-02-01 2023-01-30 肺間葉細胞の製造方法および肺間葉細胞

Country Status (2)

Country Link
JP (1) JPWO2023149407A1 (ja)
WO (1) WO2023149407A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116855455A (zh) * 2023-09-01 2023-10-10 再少年(北京)生物科技有限公司 iPS诱导定向分化成神经干细胞(iNSC)的方法及应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009146408A1 (en) 2008-05-30 2009-12-03 Summa Health Systems Llc Methods for using tgf-b receptor inhibitors or activin-like kinase (alk) 5 inhibitors a-83-01 and sb-431542 to treat eye disease and wound healing conditions
US20110250589A1 (en) * 2010-01-21 2011-10-13 The Regents Of The University Of Michigan Biomarkers for lung disease monitoring
WO2014168264A1 (ja) 2013-04-12 2014-10-16 国立大学法人京都大学 肺胞上皮前駆細胞の誘導方法
WO2016143803A1 (ja) * 2015-03-06 2016-09-15 国立大学法人京都大学 肺胞上皮細胞の分化誘導法
US10386368B2 (en) 2017-02-24 2019-08-20 Trustees Of Boston University Isolation of human lung progenitors derived from pluripotent stem cells
WO2019217429A1 (en) 2018-05-07 2019-11-14 The Trustees Of Columbia University In The City Of New York Lung and airway progenitors generated from human pluripotent stem cells and related treatments
JP2022014212A (ja) 2020-07-06 2022-01-19 グローバルウェーハズ・ジャパン株式会社 シリコン基板及びその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009146408A1 (en) 2008-05-30 2009-12-03 Summa Health Systems Llc Methods for using tgf-b receptor inhibitors or activin-like kinase (alk) 5 inhibitors a-83-01 and sb-431542 to treat eye disease and wound healing conditions
US20110250589A1 (en) * 2010-01-21 2011-10-13 The Regents Of The University Of Michigan Biomarkers for lung disease monitoring
WO2014168264A1 (ja) 2013-04-12 2014-10-16 国立大学法人京都大学 肺胞上皮前駆細胞の誘導方法
WO2016143803A1 (ja) * 2015-03-06 2016-09-15 国立大学法人京都大学 肺胞上皮細胞の分化誘導法
US10386368B2 (en) 2017-02-24 2019-08-20 Trustees Of Boston University Isolation of human lung progenitors derived from pluripotent stem cells
WO2019217429A1 (en) 2018-05-07 2019-11-14 The Trustees Of Columbia University In The City Of New York Lung and airway progenitors generated from human pluripotent stem cells and related treatments
JP2022014212A (ja) 2020-07-06 2022-01-19 グローバルウェーハズ・ジャパン株式会社 シリコン基板及びその製造方法

Non-Patent Citations (39)

* Cited by examiner, † Cited by third party
Title
"NCBI", Database accession no. NM_001347916
BROWAEYS, R.SAELENS, W.SAEYS, Y: "NicheNet: modeling intercellular communication by linking ligands to target genes", NAT METHODS, vol. 17, 2020, pages 159 - 162, XP037006733, DOI: 10.1038/s41592-019-0667-5
CAO, J.SPIELMANN, M.QIU, X.HUANG, X.IBRAHIM, D.M.HILL, A.J.ZHANG, F.MUNDLOS, S.CHRISTIANSEN, L.STEEMERS, F.J. ET AL.: "The single-cell transcriptional landscape of mammalian organogenesis", NATURE, vol. 566, 2019, pages 496 - 502, XP036713041, DOI: 10.1038/s41586-019-0969-x
CHEN, S.ZHOU, YCHEN, YGU, J.: "fastp: an ultra-fast all-in-one FASTQ preprocessor", BIOINFORMATICS, vol. 34, 2018, pages i884 - i890, XP055862120, DOI: 10.1093/bioinformatics/bty560
DOBIN, A.DAVIS, C.A.SCHLESINGER, F.DRENKOW, J.ZALESKI, C.JHA, S.BATUT, P.CHAISSON, M.GINGERAS, T.R.: "STAR: ultrafast universal RNA-seq aligner", BIOINFORMATICS, vol. 29, 2013, pages 15 - 21, XP055500895, DOI: 10.1093/bioinformatics/bts635
DU, Y, OUYANG, W., KITZMILLER, J.A., GUO, M., ZHAO, S., WHITSETT, J.A., AND XU, Y: "Lung Gene Expression Analysis Web Portal Version 3: Lung-at-a-Glance", AM J RESPIR CELL MOL BIOL, vol. 64, 2021, pages 146 - 149
DURINCK, S.SPELLMAN, P.T.BIRNEY, E.HUBER, W.: "Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt", NAT PROTOC, vol. 4, 2009, pages 1184 - 1191
GOTOH, S.ITO, I.NAGASAKI, T.YAMAMOTO, YKONISHI, S.KOROGI, YMATSUMOTO, H.MURO, S.HIRAI, T.FUNATO, M. ET AL.: "Generation of alveolar epithelial spheroids via isolated progenitor cells from human pluripotent stem cells", STEM CELL REPORTS, vol. 3, 2014, pages 394 - 403, XP055293770, DOI: 10.1016/j.stemcr.2014.07.005
GOTOH, SHIMPEI ET AL.: "Generation of alveolar epithelial spheroids via isolated progenitor cells from human pluripotent stem cells.", STEM CELL REPORTS, vol. 3, no. 3, 2014, pages 394 - 403, XP055293770, DOI: 10.1016/j.stemcr.2014.07.005
HAN, L., CHATURVEDI ET AL.: "Single cell transcriptomics identifies a signaling network coordinating endoderm and mesoderm diversification during foregut organogenesis", NAT COMMUN, vol. 11, 2020, pages 4158
HAN, LU ET AL.: "Single cell transcriptomics identifies a signaling network coordinating endoderm and mesoderm diversification during foregut organogenesis.", NATURE COMMUNICATIONS, vol. 11, 27 August 2020 (2020-08-27), pages 1 4158
HAO, YHAO, S.ANDERSEN-NISSEN, E.MAUCK, W.M.3RD, ZHENG, S.BUTLER, ALEE, M.J.WILK, A.J.DARBY, C.ZAGER, M. ET AL.: "Integrated analysis of multimodal single-cell data", CELL, vol. 184, 2021, pages 3573 - 3587
HAWKINS ET AL., J CLIN INVEST., vol. 127, no. 6, 1 June 2017 (2017-06-01), pages 2277 - 2294
HEIN RENEE F.C.; WU JOSHUA H.; HOLLOWAY EMILY M.; FRUM TRISTAN; CONCHOLA ANSLEY S.; TSAI YU-HWAI; WU ANGELINE; FINE ALEXIS S.; MIL: "R-SPONDIN2+ mesenchymal cells form the bud tip progenitor niche during human lung development", DEVELOPMENTAL CELL, CELL PRESS, US, vol. 57, no. 13, 8 June 2022 (2022-06-08), US , pages 1598, XP087115817, ISSN: 1534-5807, DOI: 10.1016/j.devcel.2022.05.010 *
HORIE MASAFUMI, MIYASHITA NAOYA, MIKAMI YU, NOGUCHI SATOSHI, YAMAUCHI YASUHIRO, SUZUKAWA MAHO, FUKAMI TAKESHI, OHTA KEN, ASANO YOS: "TBX4 is involved in the super-enhancer-driven transcriptional programs underlying features specific to lung fibroblasts", AMERICAN JOURNAL OF PHYSIOLOGY - LUNG CELLULAR AND MOLECULAR PHYSIOLOGY, AMERICAN PHYSIOLOGICAL SOCIETY, US, vol. 314, no. 1, 1 January 2018 (2018-01-01), US , pages 177 - 191, XP093082936, ISSN: 1040-0605, DOI: 10.1152/ajplung.00193.2017 *
HUI, QI ET AL.: "FGF Family: From Drug Development to Clinical Application.", INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, vol. 19, no. 7, 26 June 2018 (2018-06-26), pages 1875
KISHIMOTO, K. ET AL.: "Bidirectional Wnt signaling between endoderm and mesoderm confers tracheal identity in mouse and human cells", NAT COMMUN, vol. 11, 2020, pages 4159
KONISHI, S.GOTOH, S.TATEISHI, K.YAMAMOTO, YKOROGI, YNAGASAKI, T.MATSUMOTO, H.MURO, S.HIRAI, T.ITO, I. ET AL.: "Directed Induction of Functional Multi-ciliated Cells in Proximal Airway Epithelial Spheroids from Human Pluripotent Stem Cells", STEM CELL REPORTS, vol. 6, 2016, pages 18 - 25, XP055294072, DOI: 10.1016/j.stemcr.2015.11.010
KOPYLOVA, E.NOE, L.TOUZET, H.: "SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data", BIOINFORMATICS, vol. 28, 2012, pages 3211 - 3217, XP055680679, DOI: 10.1093/bioinformatics/bts611
KOROGI, YGOTOH, S.IKEO, S.YAMAMOTO, YSONE, N.TAMAI, K.KONISHI, S.NAGASAKI, T.MATSUMOTO, H.ITO, I. ET AL.: "In Vitro Disease Modeling of Hermansky-Pudlak Syndrome Type 2 Using Human Induced Pluripotent Stem Cell-Derived Alveolar Organoids", STEM CELL REPORTS, vol. 12, 2019, pages 431 - 440
LI, B.DEWEY, C.N.: "RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome", BMC BIOINFORMATICS, vol. 12, 2011, pages 323, XP021104619, DOI: 10.1186/1471-2105-12-323
LOH, K.M. ET AL.: "Mapping the Pairwise Choices Leading from Pluripotency to Human Bone, Heart, and Other Mesoderm Cell Types", CELL, vol. 166, 2016, pages 451 - 467, XP029639977, DOI: 10.1016/j.cell.2016.06.011
LOVE, M.I.HUBER, W.ANDERS, S.: "Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2", GENOME BIOL, vol. 15, 2014, pages 550, XP021210395, DOI: 10.1186/s13059-014-0550-8
MORICHIKA KONISHI ET AL.: "Regulation of Biological Function by Extracellular Secretory Factor FGF21", INTERNET
MURUGAPOOPATHY VASIKAR, CAMMISOTTO PHILIPPE G., MOSSA ABUBAKR H., CAMPEAU LYSANNE, GUPTA INDRA R.: "Osr1 Is Required for Mesenchymal Derivatives That Produce Collagen in the Bladder", INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, vol. 22, no. 22, pages 12387, XP093082938, DOI: 10.3390/ijms222212387 *
PARK JUWON, IVEY MALINA J., DEANA YANIK, RIGGSBEE KARA L., SÖRENSEN EMELIE, SCHWABL VERONIKA, SJÖBERG CAROLINE, HJERTBERG TILDA, P: "The Tcf21 lineage constitutes the lung lipofibroblast population", AMERICAN JOURNAL OF PHYSIOLOGY - LUNG CELLULAR AND MOLECULAR PHYSIOLOGY, AMERICAN PHYSIOLOGICAL SOCIETY, US, vol. 316, no. 5, 1 May 2019 (2019-05-01), US , pages 872 - 885, XP093082934, ISSN: 1040-0605, DOI: 10.1152/ajplung.00254.2018 *
SHIMPEI GOTOH, ISAO ITO, TADAO NAGASAKI, YUKI YAMAMOTO, SATOSHI KONISHI, YOHEI KOROGI, HISAKO MATSUMOTO, SHIGEO MURO, TOYOHIRO HIR: "Generation of Alveolar Epithelial Spheroids via Isolated Progenitor Cells from Human Pluripotent Stem Cells", STEM CELL REPORTS, CELL PRESS, UNITED STATES, vol. 3, no. 3, 1 September 2014 (2014-09-01), United States , pages 394 - 403, XP055293770, ISSN: 2213-6711, DOI: 10.1016/j.stemcr.2014.07.005 *
SONESON, C.LOVE, M.I.ROBINSON, M.D.: "Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences", F1000RES, vol. 4, 2015, pages 1521
SUBRAMANIAN, A.TAMAYO, P.MOOTHA, VK.MUKHERJEE, S.EBERT, B.L.GILLETTE, M.A.PAULOVICH, A.POMEROY, S.L.GOLUB, T.R.LANDER, E.S. ET AL.: "Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles", PROC NATL ACAD SCI U S A, vol. 102, 2005, pages 15545 - 15550, XP002464143, DOI: 10.1073/pnas.0506580102
TAGHIZADEH SARA, HEINER MONIKA, VAZQUEZ-ARMENDARIZ ANA IVONNE, WILHELM JOCHEN, HEROLD SUSANNE, CHEN CHENGSHUI, ZHANG JIN SAN, BELL: "Characterization in Mice of the Resident Mesenchymal Niche Maintaining At2 Stem Cell Proliferation in Homeostasis and Disease", STEM CELLS, WILEY, vol. 39, no. 10, 1 October 2021 (2021-10-01), pages 1382 - 1394, XP093082929, ISSN: 1066-5099, DOI: 10.1002/stem.3423 *
TAKEBE, TAKANORI ET AL.: "Massive and Reproducible Production of Liver Buds Entirely from Human Pluripotent Stem Cells.", CELL REPORTS, vol. 21, no. 10, 2017, pages 2661 - 2670, XP055602129, DOI: 10.1016/j.celrep.2017.11.005
TAMAI KOJI, SAKAI KOUJI, YAMAKI HARUKA, MORIGUCHI KEITA, IGURA KOICHI, MAEHANA SHOTARO, SUEZAWA TAKAHIRO, TAKEHARA KAZUAKI, HAGIWA: "iPSC-derived mesenchymal cells that support alveolar organoid development", CELL REPORTS METHODS, vol. 2, no. 10, 1 October 2022 (2022-10-01), pages 100314, XP093082940, ISSN: 2667-2375, DOI: 10.1016/j.crmeth.2022.100314 *
THOMSON JA ET AL.: "Embryonic stem cell lines derived from human blastocysts.", SCIENCE, vol. 282, 1998, pages 1145 - 1147, XP002933311, DOI: 10.1126/science.282.5391.1145
WU, T.HU, E.XU, S.CHEN, M.GUO, P.DAI, Z.FENG, T.ZHOU, L.TANG, W.ZHAN, L. ET AL.: "clusterProfiler 4.0: A universal enrichment tool for interpreting omics data", THE INNOVATION, vol. 2, 2021
XI, H. ET AL.: "In Vivo Human Somitogenesis Guides Somite Development from hPSCs", CELL REP, vol. 18, 2017, pages 1573 - 1585, XP055606866, DOI: 10.1016/j.celrep.2017.01.040
YAMAMOTO, YGOTOH, S.KOROGI, YSEKI, M.KONISHI, S.IKEO, S.SONE, N.NAGASAKI, T.MATSUMOTO, H.MURO, S. ET AL.: "Long-term expansion of alveolar stem cells derived from human iPS cells in organoids", NAT METHODS, vol. 14, 2017, pages 1097 - 1106, XP055865567, DOI: 10.1038/nmeth.4448
YAMAMOTO, YUKI ET AL.: "Long-term expansion of alveolar stem cells derived from human iPS cells in organoids.", NATURE METHODS, vol. 14, no. 11, 2017, pages 1097 - 1106, XP055865567, DOI: 10.1038/nmeth.4448
ZEPP, J.A.MORLEY, M.P.LOEBEL, C.KREMP, M.M.CHAUDHRY, F.N.BASIL, M.C.LEACH, J.PLIBERTI, D.C.NIETHAMER, T.K.YING, Y ET AL.: "Genomic, epigenomic, and biophysical cues controlling the emergence of the lung alveolus", SCIENCE, vol. 371, 2021
ZEPP, J.A.ZACHARIAS, W.J.FRANK, D.B.CAVANAUGH, C.A.ZHOU, S.MORLEY, M.P.MORRISEY, E.E.: "Distinct Mesenchymal Lineages and Niches Promote Epithelial Self-Renewal and Myofibrogenesis in the Lung", CELL, vol. 170, 2017, pages 1134 - 1148

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116855455A (zh) * 2023-09-01 2023-10-10 再少年(北京)生物科技有限公司 iPS诱导定向分化成神经干细胞(iNSC)的方法及应用
CN116855455B (zh) * 2023-09-01 2023-11-24 再少年(北京)生物科技有限公司 iPS诱导定向分化成神经干细胞(iNSC)的方法及应用

Also Published As

Publication number Publication date
JPWO2023149407A1 (ja) 2023-08-10

Similar Documents

Publication Publication Date Title
US20230114089A1 (en) Method for inducing dopaminergic neuron progenitor cells
US20210284968A1 (en) Method for inducing alveolar epithelial progenitor cells
JP7161775B2 (ja) 中間中胚葉細胞から腎前駆細胞への分化誘導方法、および多能性幹細胞から腎前駆細胞への分化誘導方法
JP6602288B2 (ja) 浮遊液中で内胚葉前駆細胞を培養するための方法および組成物
EP3447130A1 (en) Method for producing dopamine-producing neural precursor cells
JP7176764B2 (ja) ナイーブ型多能性幹細胞からの原始内胚葉誘導方法
US20240182867A1 (en) Chemical reprogramming of human somatic cells into pluripotent cells
JP7357369B2 (ja) 新規腎前駆細胞マーカーおよびそれを利用した腎前駆細胞の濃縮方法
EP2737057B1 (en) Novel markers for dopaminergic neuron progenitor cells
US20230138022A1 (en) Methods of making pluripotent stem cells and uses thereof
US20230159887A1 (en) Methods for Generating Thymic Cells in Vitro
WO2023149407A1 (ja) 肺間葉細胞の製造方法および肺間葉細胞
JP7274683B2 (ja) 多能性幹細胞から樹状分岐した集合管を伴う腎臓構造を作製する方法
JP7541700B2 (ja) 腎間質細胞の製造方法
CN113646424A (zh) 具有分化成特定细胞的能力的多能干细胞的制造方法及其应用
US20240318142A1 (en) Method for producing renal interstitial progenitor cells, erythropoietin-producing cells, and method for producing renin-producing cells
WO2020095423A1 (ja) 多能性幹細胞から樹状分岐した集合管を伴う腎臓構造を作製する方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23749723

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023578547

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2023749723

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2023749723

Country of ref document: EP

Effective date: 20240829