WO2023149305A1 - Plasma generation device, air purification device, etc. - Google Patents

Plasma generation device, air purification device, etc. Download PDF

Info

Publication number
WO2023149305A1
WO2023149305A1 PCT/JP2023/002262 JP2023002262W WO2023149305A1 WO 2023149305 A1 WO2023149305 A1 WO 2023149305A1 JP 2023002262 W JP2023002262 W JP 2023002262W WO 2023149305 A1 WO2023149305 A1 WO 2023149305A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
gas
metal film
glass layer
layer
Prior art date
Application number
PCT/JP2023/002262
Other languages
French (fr)
Japanese (ja)
Inventor
佑二 林
Original Assignee
インパクトワールド株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by インパクトワールド株式会社 filed Critical インパクトワールド株式会社
Publication of WO2023149305A1 publication Critical patent/WO2023149305A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/18Radiation
    • A61L9/20Ultra-violet radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/22Ionisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma

Definitions

  • the present invention relates to a plasma generator and a gas purifying device that purifies indoor air and other gases by using the same.
  • Patent Literature 1 a technology that fuses plasma and catalyst (PACT), that is, a technology that synergistically utilizes the action of plasma and the action of catalyst to purify gas (patent Literature 1), and since then, research has been conducted on this technique (for example, Patent Literature 2, Patent Literature 3, etc.).
  • This technology generates plasma at room temperature and atmospheric pressure to generate ozone and other radicals, and activates a catalyst to oxidatively decompose harmful substances contained in the gas or to reductively decompose them. , to efficiently purify the gas (Patent Document 2).
  • Patent Document 2 this technology makes both effects of plasma excitation and catalytic activity coexist spatio-temporally.
  • Non-Patent Document 1 a Non-Patent Document 1
  • virus infection routes such as contact infection, droplet infection, and droplet nuclear infection (so-called “air infection”).
  • SARS-CoV-2 (hereafter simply referred to as the “novel coronavirus”) has been reported to have the possibility of contact infection and droplet infection, and the possibility of droplet nuclear infection has also been pointed out.
  • viruses including the new coronavirus among the droplet infections, deny the possibility of those via minute droplets floating in the air (so-called “aerosol infection” or “micro droplet infection”) Unless possible, it is required to reduce the amount of virus floating in the indoor air as much as possible.
  • some of the new coronaviruses that have mutated can establish infection with a smaller amount of virus than conventional strains. It has been reported that, in part, mutations, even when humoral immunity is induced by infecting conventional ones or by vaccination with mRNA vaccines directed against conventional ones. While it has been pointed out that the humoral immunity may not be sufficiently effective for some of those who have been affected, the possibility of further mutations cannot be denied in the future.
  • Plasma generally emits visible light and other electromagnetic waves, and air contains nitrogen, so air plasma contains nitrogen plasma.
  • Nitrogen plasma emits visible rays (electromagnetic waves with a wavelength in the range of 400 to 800 nm) and ultraviolet rays (electromagnetic waves with a wavelength in the range of 1 to 400 nm). Among them, near-ultraviolet rays (electromagnetic waves with a wavelength in the range of 200 to 400 nm), particularly those with a wavelength in the range of 300 to 380 nm, are emitted.
  • the UV reflectance of aluminum oxide is not sufficient, and the UV reflectance further decreases as the surface made of aluminum oxide changes color as it continues to be exposed to UV rays. be.
  • parts other than dielectrics such as housings, are also made of stainless steel (paragraph [0023]), and their UV reflectance is considered to be even lower than that of aluminum oxide. It's becoming
  • an object of the present invention is to generate plasma by dielectric barrier discharge and to efficiently utilize ultraviolet rays and other electromagnetic waves emitted by the plasma.
  • the present invention has the following configurations as means for solving the problems.
  • a first electrode [1] a first electrode; a second electrode spaced apart from the first electrode; a first glass layer disposed between the first electrode and the second electrode and spaced apart from the second electrode; A first metal film layer disposed between the first electrode and the first glass layer, in contact with the first electrode immediately or via a conductive adhesive layer, and immediately with the first glass layer or contact via a conductive adhesive layer.
  • a first electrode-side conductive adhesive layer arranged between the first electrode and the first metal film layer, and a first glass arranged between the first glass layer and the first metal film layer
  • a third electrode-side conductive adhesive layer disposed between the third electrode and the second metal film layer, and a second glass disposed between the second glass layer and the second metal film layer
  • the second metal film layer comprises a third electrode-side metal film in contact with the third electrode via the third electrode-side conductive adhesive layer, the second glass layer, and the second glass layer-side conductive adhesive layer. and the second glass layer side metal film contacting via the plasma generator according to the above [5].
  • first electrode and the third electrode are each made of plate-like copper
  • the second electrode is made of rod-shaped, male-threaded or helical titanium, or is made of rod-shaped metal, and is made of a linear metal or its oxide that acts as a catalyst and is helical is wrapped around wherein the first glass layer and the second glass layer are each made of plate-shaped quartz glass or borosilicate glass,
  • the first metal film layer and the second metal film layer are each made of aluminum or silver foil, or each made of evaporated aluminum or silver film above [4] to [6]
  • the plasma generator according to any one of 1.
  • a fourth electrode arranged with a space between each of the first glass layer, the second electrode, and the second glass layer, wherein the second electrode is positioned between the first glass layer and the fourth electrode; It is arranged without sandwiching and is arranged without sandwiching the second electrode between the third glass layer,
  • the fourth electrode is made of rod-shaped, male-threaded or helical titanium, or made of rod-shaped metal, and a linear metal or its oxide that acts as a catalyst is helical
  • the plasma generator according to any one of [4] to [7] above.
  • a gas purifier comprising: a flow path through which a gas to be purified flows.
  • [11] Equipped with a first filter consisting of a catalyst that decomposes ozone and a carrier that holds it,
  • the first filter is arranged downstream of the second electrode in the channel, is arranged between the first electrode and the third electrode, is in contact with the first electrode, and is in contact with the first electrode.
  • a third filter made of ferric oxide and a carrier that holds it, The gas purification device according to any one of [9] to [13] above, wherein the third filter is arranged downstream of the second electrode in the channel.
  • the gas purification device according to any one of [9] to [14] above; and another gas purification device according to any one of [9] to [14] above,
  • the first electrode of the gas purification device and the third electrode of the other gas purification device are electrically connected, or the second electrode of the gas purification device and the second electrode of the other gas purification device are electrically connected.
  • a gas purifying device having a structure in which the gas purifying device and the other gas purifying device are coupled vertically or horizontally by being electrically connected to a second electrode.
  • a gas activating device comprising the plasma generating device according to any one of [1] to [8] above; and a flow path through which the gas to be activated flows; a blower for blowing air toward the gas activation device.
  • a first electrode a second electrode spaced apart from the first electrode; a third electrode spaced apart from the second electrode, wherein the second electrode is placed between the first electrode and the second electrode; a first glass layer disposed between the first electrode and the second electrode and spaced apart from the second electrode; a second glass layer disposed between the second electrode and the third electrode and spaced apart from the second electrode;
  • the first electrode and the first glass layer are in contact with each other immediately or via a conductive adhesive layer to form a first reflecting mirror that reflects ultraviolet rays
  • the plasma generator wherein the third electrode and the second glass layer are in contact with each other immediately or via a conductive adhesive layer to form a second reflecting mirror that reflects ultraviolet rays.
  • the present invention has the effect of generating plasma by dielectric barrier discharge and efficiently utilizing ultraviolet rays and other electromagnetic waves generated by the plasma.
  • FIG. 3A is an operation diagram (a) of the plasma generator according to the first embodiment of the present invention, and (b) is an operation diagram (b) of the plasma generator according to the comparative example.
  • BRIEF DESCRIPTION OF THE DRAWINGS It is the side view (a) of the plasma generator which concerns on 1st embodiment of this invention, and the operation
  • 1 is a perspective view of a plasma generator according to a first embodiment of the present invention; FIG.
  • FIG. 1 is a perspective partial cross-sectional view of a plasma generator according to a first embodiment of the present invention
  • FIG. FIG. 3A is an operation diagram (a) of the plasma generator according to the first embodiment of the present invention, and (b) is an operation diagram (b) of the plasma generator according to the comparative example.
  • 1 is an action diagram of a plasma generator according to a first embodiment of the present invention
  • BRIEF DESCRIPTION OF THE DRAWINGS It is the front view (a) of the gas purification apparatus which concerns on 1st embodiment of this invention, and the elements on larger scale (b) of the same apparatus. BRIEF DESCRIPTION OF THE DRAWINGS It is the rear view (a) of the gas purification apparatus which concerns on 1st embodiment of this invention, and the elements on larger scale (b) of the same apparatus. BRIEF DESCRIPTION OF THE DRAWINGS It is sectional drawing (a) of the gas purification apparatus which concerns on 1st embodiment of this invention, and operation
  • FIG. 1 is a perspective view of a gas purification device according to a first embodiment of the present invention
  • FIG. 1 is a perspective view of a gas purification device according to a first embodiment of the present invention
  • FIG. BRIEF DESCRIPTION OF THE DRAWINGS It is perspective sectional drawing of the gas purification apparatus which concerns on 1st embodiment of this invention.
  • FIG. 1 is an exploded perspective view of a gas purification device according to a first embodiment of the present invention
  • FIG. It is the disassembled front view (a) of the gas purification apparatus which concerns on 1st embodiment of this invention, and the disassembled sectional drawing (b) and the same (c) of the same apparatus.
  • FIG. It is an exploded plan view (a), the same (b), the same (c) and the same (d) of the gas purifier which concerns on 1st embodiment of this invention.
  • FIG. 4 is an action diagram of the gas purifier according to the second embodiment of the present invention. It is a perspective view of the gas purifier which concerns on 2nd embodiment of this invention. It is a perspective partial sectional view of the gas purifier which concerns on 2nd embodiment of this invention. It is a perspective partial sectional view of the gas purifier which concerns on 2nd embodiment of this invention. It is a perspective view of the self-propelled gas purifier which concerns on 3rd embodiment of this invention using the gas purifier which concerns on 2nd embodiment of this invention. It is a perspective partial sectional view of the self-propelled gas purifying apparatus based on 3rd embodiment of this invention using the gas purifying apparatus based on 2nd embodiment of this invention.
  • FIG. 11 is an exploded perspective view of a fifth embodiment of a solids purification device utilizing a fourth embodiment of the gas activation device of the present invention
  • FIG. 11 is an exploded perspective view of a fifth embodiment of a solids purification device utilizing a fourth embodiment of the gas activation device of the present invention
  • FIG. 10 is a perspective view of a combination of a solids purification device and closed vessel according to a fifth embodiment of the present invention utilizing a gas activation device according to a fourth embodiment of the present invention
  • FIG. 11 is a functional diagram of a combination of a solid purifying device according to a fifth embodiment of the present invention and a closed vessel utilizing a gas activation device according to the fourth embodiment of the present invention
  • It is the perspective sectional view (a) of the air conditioning purification apparatus based on 6th embodiment of this invention using the gas purification apparatus based on 1st embodiment of this invention, and the partial enlarged view (b) of the same air conditioning purification apparatus. .
  • the perspective view (a) of the gas purifying device according to the first embodiment of the present invention using the plasma generator according to the eighth embodiment of the present invention, the perspective cross-sectional view (b) of the same gas purifying device, and the cross section of the same device It is a figure (c). It is operation drawing (a) and the same (b) of the plasma generator which concerns on 1st embodiment of this invention. They are partial enlarged views (a), (b), (c), (d) and (e) of other aspects of the plasma generator according to the first embodiment of the present invention. They are partial enlarged views (a), (b), (c), (d) and (e) of other aspects of the plasma generator according to the first embodiment of the present invention.
  • FIG. 1 to FIG. The details of these are as follows. 1 to 24 (excluding FIG. 8(c)) and FIGS. 41 to 43 are drawings showing the first embodiment of the present invention, and FIGS. 25 to 30 are the second embodiment of the present invention. 31 and 32 are drawings showing the third embodiment of the present invention, and FIGS. 33 to 38 are drawings showing the fourth and fifth embodiments of the present invention.
  • FIG. 39 is a drawing showing a sixth embodiment of the present invention
  • FIG. 8(c) is a drawing showing a seventh embodiment of the present invention
  • FIG. 40 is a drawing showing an eighth embodiment of the present invention. is.
  • FIG. 1 is a front view (a) showing the front of the plasma generator according to the first embodiment of the present invention, a partial enlarged view (b) showing an enlarged portion surrounded by a broken line in (a), It consists of
  • FIG. 2 consists of an operation diagram (a) showing the operation of the plasma generator according to the first embodiment of the present invention and an operation diagram (b) showing the operation of the plasma generator according to the comparative example. .
  • FIG. 3 is a side view (a) showing the side surface of the plasma generator according to the first embodiment of the present invention, an action diagram (b) showing the action of the plasma generator according to the first embodiment of the present invention, It consists of
  • FIG. 4 is a perspective view (a) showing the front, top, and right side of the plasma generator according to the first embodiment of the present invention.
  • the cutting line for FIG. 5, which is a perspective partial cross-sectional view, is shown as line aa by a dashed line.
  • FIG. 5 is a perspective partial cross-sectional view showing the front, top, and right side of the plasma generator according to the first embodiment of the present invention, partially cut along line aa in FIG.
  • omitted lines indicating portions omitted in FIGS. 6 and 7 are indicated by wavy dashed lines.
  • FIG. 6 consists of an operation diagram (a) showing the operation of the plasma generator according to the first embodiment of the present invention and an operation diagram (b) showing the operation of the plasma generator according to the comparative example. .
  • FIG. 7 is an operation diagram showing the operation of the plasma generator according to the first embodiment of the present invention, which has a pair of opposing reflecting mirrors.
  • FIG. 8 is a combination (a) of a perspective view (a1) and a perspective cross-sectional view (a2) showing another aspect of the plasma generator according to the first embodiment of the present invention, and a perspective view ( It consists of a combination (b) of b1) and a perspective cross-sectional view (b2) and a combination (c) of a perspective view (c1) and a perspective cross-sectional view (c2) of the plasma generator according to the seventh embodiment of the present invention.
  • . (a) is a perspective view (a1) showing a plasma generator according to the first embodiment of the present invention, which includes an annular first electrode and a rod-shaped second electrode; and a perspective cross-sectional view (a2) taken along line bb.
  • FIG. 1 is a perspective view (b1) showing a plasma generator according to the first embodiment of the present invention comprising a plate-shaped first electrode and a rod-shaped second electrode, and (b1) showing the device in the middle of (b1) and a perspective cross-sectional view (b2) taken along the line cc of FIG.
  • (c) is a perspective view (c1) showing a plasma generation device according to a seventh embodiment of the present invention, and a perspective cross-sectional view showing the device cut along the dd line in (c1) ( and c2).
  • FIG. 9 shows drawings (a), (b), (c), (d) and the (e).
  • (a) is a front view showing a rod-shaped second electrode.
  • (b) is a front view showing a spiral second electrode.
  • (c) is a front view showing a combination of a rod-shaped second electrode and a spiral catalyst layer.
  • (d) is a front view showing a combination of a rod-shaped second electrode and an annular catalyst layer, and is also a partial cross-sectional view showing a cross section of a part thereof.
  • (e) is a partially enlarged front view showing a combination of the male screw-shaped second electrode and the catalyst layer arranged in the groove part thereof, while omitting the other part; It is also a partial cross-sectional view showing a cross-section of a part thereof.
  • FIG. 10 is a front view (a) showing the front of the gas purifier according to the first embodiment of the present invention, a partial enlarged view (b) showing an enlarged portion surrounded by a broken line in (a), It consists of In this figure, the cutting line for the cross-sectional view of FIG. 12 and the perspective cross-sectional view of FIG. The same applies to FIGS. 11, 15 and 16 below.
  • FIG. 11 is a rear view (a) showing the back of the gas purifier according to the first embodiment of the present invention, a partial enlarged view (b) showing an enlarged portion surrounded by a broken line in (a), It consists of
  • FIG. 12 is a cross-sectional view (a) showing the gas purification device according to the first embodiment of the present invention cut along the line ee in FIG. It consists of FIG.
  • the direction in which the gas to be purified (including the case where it is applied mutatis mutandis by reading "the gas to be activated" in the gas activation device according to the third embodiment of the present invention) flows is indicated by a black arrow.
  • the direction of heat transfer is indicated by a dashed line with a white arrow. The same applies to FIGS. 21, 22 and 41 below.
  • FIG. 13 shows a gas purifier according to the first embodiment of the present invention, which is provided with two second electrodes, cut along a cutting line corresponding to line ee in FIG. 10(a).
  • FIG. 14 is a gas purifying device according to the first embodiment of the present invention, which is provided with a first filter and a second filter, cut along a cutting line corresponding to line ee in FIG. 10(a). and a gas purifier according to the first embodiment of the present invention, which includes a first filter and a third filter, along a cutting line corresponding to the ee line in FIG. 10 (a) and a cross-sectional view (b) taken along the line.
  • FIG. 15 is a perspective view showing the front, top, and right side of the gas purification device according to the first embodiment of the present invention.
  • the cutting line for FIG. 17, which is a perspective cross-sectional view is shown as the ff line by the dashed-dotted line.
  • FIG. 16 the direction in which the second electrode extends is indicated by a dashed line with a white arrow.
  • FIGS. 16, 17 and 40(b) the cutting line for FIG. 17, which is a perspective cross-sectional view
  • FIG. 16 is a perspective view showing the back, left side and top of the gas purification device according to the first embodiment of the present invention.
  • FIG. 17 shows the gas purifier according to the first embodiment of the present invention cut along the ee line in FIGS. 15 and 16 and further cut along the ff line in FIGS. It is a perspective sectional view showing the front, the top, and the right side of what was done.
  • FIG. 18 is a perspective view (a) showing the front, plane, and right side of the first filter related to the gas purifier etc. according to the first embodiment of the present invention, and the part surrounded by the broken line in (a) It consists of a partial enlarged view (b) showing an enlarged view and a partial enlarged view (c) showing an enlarged portion surrounded by a broken line in (b).
  • FIG. 19 is a perspective view showing the front, top, and right side of the disassembled gas purification device according to the first embodiment of the present invention. It should be noted that dashed-dotted lines in the drawings indicate correspondence relationships between elements or portions in the arrangement, except for the case of cutting lines. The same applies to FIGS. 20 to 22 below.
  • the Greek letters ⁇ , ⁇ , ⁇ , and ⁇ in the figure also indicate correspondence between elements or portions in the arrangement.
  • FIG. 20 shows a front view (a) showing the front of the disassembled gas purification device according to the first embodiment of the present invention, and a view of the same device cut along the line gg in (a). It consists of a cross-sectional view (b) and a cross-sectional view (c) showing the device cut along line hh in (a).
  • FIG. 21 is a bottom view showing the bottom of the disassembled gas purifying device according to the first embodiment of the present invention, showing a portion (a) showing the first electrode and a portion (b) showing the first metal film layer. ), a portion (c) representing the first glass layer, and a portion (d) representing the second electrode, the first spacer, the second spacer and the first filter. Note that (a), (b) and (c) are also transparent views.
  • FIG. 22 is a bottom view showing the bottom of the disassembled gas purifier according to the first embodiment of the present invention, showing the second electrode, the first spacer, the second spacer, and the first filter (a). , a portion (b) representing the second glass layer, a portion (c) representing the second metal film layer, and a portion (d) representing the third electrode. Note that (b), (c) and (d) are also transparent views.
  • FIG. 23 is a perspective view (a) showing the front, top, and right side of a plurality of gas purifiers according to the first embodiment of the present invention in the process of being combined with each other, and a portion surrounded by a broken line in (a). and a perspective view (c) showing the front, plane and right side of a combination of a plurality of gas purifiers according to the first embodiment of the present invention. is.
  • FIG. 24 is a front view (a) showing the front of a combination of a plurality of gas purifiers according to the first embodiment of the present invention, and a partially enlarged view showing an enlarged portion surrounded by a broken line in (a). It is a diagram (b) emphasizing the connecting means, and a partial enlarged view showing an enlarged portion surrounded by a broken line in (a), partially transparent and emphasizing the second electrode. It consists of thing (c).
  • FIG. 25 is a rear view showing the rear side of the gas purification device according to the second embodiment of the present invention.
  • the cutting line for the sectional view of FIG. 26 is indicated by a one-dot chain line as line i-i1, and the cutting line for the perspective partial sectional views of FIGS. Shown as a line.
  • the direction in which the second electrode rotates is indicated by a dashed line with a white arrow.
  • FIGS. 28 and 29 below the same applies to FIGS. 28 and 29 below.
  • FIG. 26 is a cross-sectional view showing the gas purifying device according to the second embodiment of the present invention cut along line i-i1 in FIG.
  • FIG. 27 is an operation diagram showing the operation of the gas purification device according to the second embodiment of the present invention.
  • the direction in which ultraviolet rays travel is indicated by a dashed line with a white arrow.
  • FIG. 28 is a perspective view showing the back, left side and top of the gas purification device according to the second embodiment of the present invention.
  • FIG. 29 is a perspective partial cross-sectional view showing the back, left side and top of the gas purifier according to the second embodiment of the present invention cut along line i-i2 in FIGS. 25 and 28.
  • FIG. 29 is a perspective partial cross-sectional view showing the back, left side and top of the gas purifier according to the second embodiment of the present invention cut along line i-i2 in FIGS. 25 and 28.
  • FIG. 30 is a perspective partial cross-sectional view showing the front, left side and top of the gas purifier according to the second embodiment of the present invention cut along line i-i2 in FIGS. 25 and 28.
  • FIG. 30 is a perspective partial cross-sectional view showing the front, left side and top of the gas purifier according to the second embodiment of the present invention cut along line i-i2 in FIGS. 25 and 28.
  • Fig. 31 is a perspective view showing the front, right side and bottom of a self-propelled gas purifier according to the third embodiment of the present invention using the gas purifier according to the second embodiment of the present invention.
  • the cutting line for FIG. 32 which is a perspective partial cross-sectional view, is shown as the jj line by the dashed-dotted line.
  • FIG. 32 is a front view of the self-propelled gas purifying device according to the third embodiment of the present invention using the gas purifying device according to the second embodiment of the present invention, cut along the jj line in FIG. , a perspective partial cross-sectional view showing the right side and the bottom.
  • FIG. 33 shows a front view (a) showing the front of a solid purification device according to a fifth embodiment of the present invention using a gas activation device according to the fourth embodiment of the present invention, and a rear view of the same solid purification device. It consists of a rear view (b) shown.
  • FIG. 34 is a perspective view (a) showing the back, bottom and left side of a solid purifier according to the fifth embodiment of the present invention using the gas activator according to the fourth embodiment of the present invention, and and a perspective view (b) showing the front, top, and right side of the purifier.
  • FIG. 35 is a perspective view showing the front, top and right side of an exploded solid purification device according to a fifth embodiment of the present invention that utilizes the gas activation device according to the fourth embodiment of the present invention.
  • FIG. 36 is a perspective view showing the back, right side and bottom of an exploded solid purification device according to the fifth embodiment of the present invention that utilizes the gas activation device according to the fourth embodiment of the present invention.
  • FIG. 37 is a front, right side and bottom perspective view of a combination of a solids purification device and a closed vessel according to a fifth embodiment of the present invention utilizing a gas activation device according to the fourth embodiment of the present invention; .
  • a part of the sealed container is shown through to show the state of the inside of the sealed container.
  • FIG. 38 the opening and closing of the door of the sealed container is indicated by a dashed line with a white arrow.
  • FIG. 38 is an operation diagram showing the operation of the combination of the solid purifier and closed container according to the fifth embodiment of the present invention using the gas activation apparatus according to the fourth embodiment of the present invention.
  • FIG. 39 shows the front, right side and right side of the air conditioning purification device according to the sixth embodiment of the present invention using the gas purification device according to the first embodiment of the present invention cut along a plane perpendicular to the horizontal plane. It consists of a perspective cross-sectional view (a) showing the bottom surface and a partially enlarged view (b) showing an enlarged portion surrounded by a broken line in (a).
  • FIG. 40 is a front and plan view of a gas purifier according to the first embodiment of the present invention, which uses the plasma generator according to the eighth embodiment of the present invention instead of the plasma generator according to the first embodiment of the present invention.
  • the cutting line for the perspective cross-sectional view (b) and the cross-sectional view (c) is indicated by a dashed dotted line as a kk line, and the same gas purification device
  • FIG. 41 is a working diagram (a) showing the action of the plasma generator according to the first embodiment of the present invention in a more preferred mode, and shows the action of the same device for comparison with the more preferred mode.
  • Operation diagram (b) and. (a) shows that the more preferable aspect of the plasma generator according to the first embodiment of the present invention changes from a state (a1) to another state (a2) by receiving heat.
  • (b) shows that the object to be compared with the more preferred embodiment of the same device changes from a state (b1) to another state (b2) by receiving heat.
  • broken lines indicate correspondence between layers between (a1) and (a2) and between (b1) and (b2).
  • FIG. 42 is a partially enlarged view (a), (b), (c) and ( d) and (e).
  • (a) is a combination of an enlarged part (a1) and another enlarged part (a2), and (b) to (e) are also according to this example.
  • FIG. 43 is a partial enlarged view (a), (b), (c) and ( d) and (e).
  • (a) is a combination of an enlarged part (a1) and another enlarged part (a2), and (b) to (e) are also according to this example.
  • the gas purifier 1 is for obtaining a purified gas by putting indoor air or other gas G to be purified into the inside, purifying it, and then letting it out. That is, the gas purification device 1 has a gas purification function.
  • gas G to be purified may include not only the gas itself to be purified, but also the gas that has actually been purified and the gas in the state between these. shall be This also applies to the drawings.
  • Gases to be purified include, for example, indoor air, exhaled air from infectious patients in oxygen masks or respirators, refrigerant gas from air conditioners, and exhaust gas from internal combustion engines.
  • the "indoors” referred to in this specification include the indoors of houses, hospitals, schools, shops, offices, factories, warehouses and other buildings fixed on the land, as well as automobiles, trolleybuses, streetcars, and railway vehicles. , vessels, craft and other equipment occupied by persons.
  • automobile as used herein includes, for example, buses, taxis, other commercial vehicles, and private automobiles
  • aircraft as used herein includes, for example, airplanes, rotorcraft, gliders, and airships.
  • the term "railway vehicle” used herein includes monorails, automatic guide rail passenger transport systems, and linear motor cars.
  • the gas purifier 1 is generally flat, and preferably has a size that can be placed on a person's palm, such as a harmonica. However, the gas purification device 1 may be cylindrical as a whole.
  • the size of the gas purifying device 1 is as follows.
  • the width of the gas purification device 1 is preferably 40-160 mm, more preferably 60-140 mm, and even more preferably 80-120 mm.
  • the height of the gas purification device 1 is preferably 4-16 mm, more preferably 6-14 mm, and even more preferably 8-12 mm.
  • the depth of the gas purification device 1 is preferably 20-80 mm, more preferably 30-70 mm, and even more preferably 40-60 mm.
  • the weight of the gas purification device 1 is preferably 5-35 g, more preferably 10-30 g, and even more preferably 15-25 g.
  • the gas purifying device 1 is small and lightweight, it can be easily attached to an air conditioner that adjusts the air in the room while circulating it, either before or after the installation. and have an air purification function. Furthermore, it can be attached to a self-propelled device to expand its functionality. However, the gas purifying device 1 and a blower for blowing air along the flow path can be combined to form a gas purifying device having both the gas purifying function and the blowing function.
  • the gas purifier 1 includes at least a plasma generator 10 and a flow path 20.
  • the gas purifier 1 preferably further includes, for example, a filter 30 , but may not include the filter 30 .
  • the plasma generator 10 is for forming a part of the gas purifier 1 as a device for generating plasma P. As shown in FIG.
  • the plasma generator 10 consists of a combination of an electrode 11, a glass layer 12 and a metal film layer 13. That is, the plasma generator 10 includes, for example, a pair of electrodes E consisting of one electrode 11 and another electrode 11 paired therewith, a glass layer 12 and a metal film layer 13 .
  • the plasma generator 10 comprises a first pair of electrodes E1, a second pair of electrodes E2, a pair of glass layers 12, 12, and a pair of metal film layers 13, 13. is preferred.
  • the electrode 11 is made of an electric conductor, is arranged with a distance therebetween, and forms a pair of electrodes E together with another electrode 11 forming a pair therewith.
  • a pair of electrodes E discharges when a predetermined voltage is applied, generating plasma P in the space S between them.
  • the electrode 11 is preferably made of, for example, a metal, but may also be made of stainless steel (SUS) or other alloys.
  • SUS stainless steel
  • one electrode 11 and the other electrode 11 paired therewith are filled with an insulating gas (hereinafter simply referred to as "gas") in a space S between them.
  • gas an insulating gas
  • original gas it is sometimes called the "original gas”.
  • the plasma P is generated by ionizing atoms or molecules forming the gas, or by ionizing the molecules forming the gas through dissociation or simultaneously with the dissociation.
  • the plasma P includes atoms dissociated from the molecules constituting the gas that remain neutral without being ionized. It also includes anions generated by colliding with atoms or molecules that remain neutral without ionization among the atoms or molecules that make up , atoms or molecules excited by the same collision, etc.
  • the plasma P is preferably generated under atmospheric pressure, and more preferably under normal temperature. However, the plasma P may be generated under reduced pressure or under high temperature.
  • plasma P When plasma P is generated, in the process of recombination of ionized electrons with ionized atoms or molecules or the process of excited electrons transitioning to a lower energy level, in addition to emitting electromagnetic waves, gases other than the original gas are emitted. , and phenomena such as the generation of new active substances (hereinafter sometimes referred to as "new gases") are observed.
  • the electromagnetic waves emitted by the plasma P include, for example, ultraviolet rays UV in the following cases.
  • the air is a gas containing nitrogen (N 2 ) .
  • the ultraviolet ray UV emitted by the original gas is the wavelength of near ultraviolet rays is in the range of 300 to 380 nm and the peak wavelength is around 337 nm. Also, this is true regardless of the presence of other gases such as oxygen (O 2 ).
  • the term "ultraviolet rays" in particular, it may be referred to as near-ultraviolet rays.
  • the advantage of using near-ultraviolet rays among ultraviolet rays will be described in the section on the action of the plasma generator 10 and the section on the action of the gas purifier 1, respectively.
  • the source gas is a noble gas such as helium (He), neon (Ne), argon (Ar), krypton (Kr) or xenon (Xe), or any of these Ultraviolet rays are generated even if it contains Furthermore, even when the original gas contains a halogen gas, i.e. one of fluorine ( F2 ), chlorine ( Cl2 ) or bromine ( Br2 ), and a noble gas, the ultraviolet UV Occur.
  • a noble gas such as helium (He), neon (Ne), argon (Ar), krypton (Kr) or xenon (Xe)
  • a new gas is generated, for example, in the following cases.
  • atoms dissociated from the original gas molecules combine with the original gas molecules.
  • oxygen atoms (O) and oxygen molecules (O 2 ) combine to form ozone (O 3 ) is produced.
  • Atoms (Ar) among the atoms of the original gas, those in the excited state and those in the ground state are combined.
  • Atoms (Ar) combine to form argon excimers (Ar 2 ).
  • the original gas is a gas containing one gas and another gas, the atoms of the one gas in an excited state and the atoms dissociated from the molecules of the other gas are bonded.
  • an argon atom (Ar) and a fluorine atom (F) combine to form an argon fluoride exciplex (ArF).
  • the nitrogen plasma in the air emits ultraviolet rays UV
  • the oxygen (O 2 ) in the air emits ozone. Phenomena such as generation of (O 3 ) are observed.
  • various active oxygens such as oxygen atoms, superoxide anions which are negative ions of oxygen, and singlet oxygen which is excited oxygen molecules are generated.
  • the discharge between the pair of electrodes E is a dielectric barrier discharge performed through a dielectric.
  • dielectric barrier discharge the plasma P can be generated stably, and consumption of the electrode 11 can be suppressed.
  • the dielectric barrier discharge is preferably by AC voltage.
  • the waveform indicated by the AC voltage is preferably a sine wave among sine waves, rectangular waves and triangular waves.
  • the amplitude of the AC voltage that is, the maximum value of the voltage, is preferably 6-10 KV.
  • the frequency indicated by the AC voltage is preferably 5 to 25 KHz.
  • a power supply for applying the AC voltage as described above to the pair of electrodes E for example, a power supply manufactured by Logy Electronics Co., Ltd. (model name: LHV-05AC, LHV-10AC, LHV-12AC, LHV-13AC) is used. can do. Furthermore, a transformer for converting the voltage obtained from the power supply into a predetermined voltage can also be used together.
  • the AC voltage for dielectric layer barrier discharge may be obtained by converting a DC voltage obtained from a DC power source.
  • a power source for adding to E for example, a power source manufactured by Logy Electronics Co., Ltd. (type names: LHV-05DC, LHV-09K-12) can be used.
  • the electrode 11 preferably further includes the third electrode 11c.
  • the electrode 11 may include a fourth electrode 11d, a fifth electrode (not shown), a sixth electrode (not shown), a seventh electrode (not shown), and so on.
  • the pair of electrodes E is, for example, composed of a first electrode 11a and a second electrode 11b, or composed of a second electrode 11b and a third electrode 11c.
  • the first pair of electrodes E1 is composed of the first electrode 11a and the second electrode 11b
  • the third electrode 11c and the second electrode 11b are composed of the third electrode 11c and the second electrode 11b.
  • Two pairs of electrodes E2 are configured.
  • the first electrode 11a is for forming the first pair of electrodes E1 together with the second electrode 11b.
  • the first electrode 11a is preferably made of a metal with high thermal conductivity, such as aluminum (Al), copper (Cu), silver (Ag), tungsten (W), or gold (Au). It is more preferably made of any one, and among these, it is even more preferably made of aluminum, copper or silver.
  • a metal with high thermal conductivity such as aluminum (Al), copper (Cu), silver (Ag), tungsten (W), or gold (Au). It is more preferably made of any one, and among these, it is even more preferably made of aluminum, copper or silver.
  • the first electrode 11a may be made of an alloy containing one selected from the above metals as a main component, or may be made of stainless steel (SUS).
  • the shape of the first electrode 11a is as follows. 1(a), 3(a), 4, 5, 8(a), 8(b), 20, 21(a), etc. refer.
  • the first electrode 11a consists of a solid solid body having a pair of flat surfaces on its front and back sides, or a pair of curved surfaces on its front and back sides or on its inside. It consists of what it has on the outside.
  • the first electrode 11a is preferably plate-shaped or annular, more preferably plate-shaped.
  • the planar figure of the plate-shaped object consisting of a circle, polygon, or other closed curve that does not intersect with itself is arranged parallel to the direction intersecting with the planar figure. preferably consists of a solid solid or a similar solid that can be obtained by moving the It is more preferable that it consists of a solid solid body obtained by moving or a solid body similar thereto.
  • the first electrode 11a is ring-shaped
  • a rectangular plane figure among the ring-shaped ones is on the same plane as the plane figure, parallel to one side of the rectangle
  • the plane figure is a solid solid or a similar solid obtained by rotating about a straight line that does not intersect the plane figure
  • the plane figure is a rectangle having long and short sides. From solid or similar solids obtained by rotating 360 degrees around a straight line that is on the same plane as the plane figure, parallel to the long side of the rectangle, and does not intersect the plane figure It is more preferable to be
  • FIG. 8A is referred to as an example of such an annular first electrode 11a.
  • the thickness of the first electrode 11a is preferably 0.2-0.8 mm, more preferably 0.3-0.7 mm, and even more preferably 0.4-0.6 mm.
  • the dimensions of the first electrode 11a other than the thickness are as follows.
  • the width of the first electrode 11a is preferably 34-136 mm, more preferably 51-119 mm, and even more preferably 68-102 mm.
  • the depth of the first electrode 11a is preferably 20-80 mm, more preferably 30-70 mm, and even more preferably 40-60 mm.
  • FIG. 1(a), FIG. 3(a), etc. will be referred to as an example for explanation.
  • the first electrode 11a is arranged with a distance from the second electrode 11b.
  • a first glass layer 12a and a first metal film layer 13a are respectively arranged between the first electrode 11a and the second electrode 11b.
  • the surface of the first electrode 11a facing the second electrode 11b is in contact with the first metal film layer 13a immediately or via the first electrode-side conductive adhesive layer 14a1. From the viewpoint of facilitating electrical connection from the outside of the gas purifier 1, at least part or all of the surface of the first electrode 11a on the side opposite to the side facing the second electrode 11b is Exposure is preferred.
  • an object immediately touches another object means a relationship in which at least a part of an object and at least a part of another object are arranged without a distance between them.
  • An object is arranged with respect to another object so that For example, in the case of ⁇ an object immediately touches another object,'' it is prohibited that there is a distance between a part other than at least a part of the object and a part other than at least a part of the other object. can't Also, in a similar case, it is not prohibited that the other object does not have a part corresponding to a part other than at least a part of the certain object. same as below.
  • the surface of the first electrode 11a facing the second electrode 11b has a first portion 11a1 that is in contact with the first metal film layer 13a, and a second portion 11a2 that is in contact with the first filter 30a. and more preferably a third portion 11a3, which is an exposed portion located between the first portion 11a1 and the second portion 11a2.
  • the surface of the first electrode 11a facing the second electrode 11b is the fourth portion which is the portion in contact with the first spacer 40a.
  • a fifth portion 11a5, which is a portion in contact with 11a4 and the second spacer 40b, may be further provided.
  • the fourth portion 11a4 and the fifth portion 11a5 are preferably arranged with the first portion 11a1, the second portion 11a2, and the third portion 11a3 interposed therebetween, and the width direction of the first electrode 11a It is more preferable to be arranged at both ends of.
  • the second electrode 11b together with the first electrode 11a, constitutes the first pair of electrodes E1 of the electrodes 11, and is used when the plasma generator 10 includes the third electrode 11c. In addition, it is also for forming the second pair of electrodes E2 together with the third electrode 11c.
  • the second electrode 11b is preferably made of a metal that acts as a catalyst as it is or when its surface is oxidized (hereinafter sometimes simply referred to as "catalyst metal").
  • catalyst metal More preferred are those that are activated as catalysts upon exposure to ultraviolet rays or heat.
  • the catalyst metal an element belonging to Groups 3 to 11 in the periodic table and belonging to Period 4 to Period 6 in the periodic table (hereinafter referred to as "specific transition metal") is preferable, and titanium (Ti), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), rutheum (Ru), rhodium (Rh), palladium (Pd), tungsten (W) or platinum (Pt) is more preferred, and titanium is particularly preferred.
  • the surface of the second electrode 11b is oxidized to become a surface made of titanium oxide (TiO 2 ), and the second electrode 11b receives ultraviolet rays and photocatalysts. It will also work as
  • the second electrode 11b may be made of an alloy whose main component is one selected from the specific transition metals described above.
  • FIGS. 1A, 3A, 8A, 8B, 9, etc. will be referred to as examples for explanation.
  • the second electrode 11b is rod-shaped, male-thread-shaped, or spiral-shaped, and among these, the male-thread-shaped one is preferable.
  • 9(a), 8(a), 8(b), etc. as an example of a rod-shaped second electrode 11b, and an example of a male screw-shaped second electrode 11b is shown in FIG. ), FIG. 3(a), etc., and FIG. 9(b) as an example of a spiral shape.
  • the second electrode 11b when the second electrode 11b has a male screw shape, the shape in which grooves and protrusions are alternately formed can increase the amount of plasma emission and reduce the pressure loss.
  • the second electrode 11b can be screwed to the first spacer 40a and the second spacer 40b, which facilitates assembly, replacement, maintenance, and the like.
  • the second electrode 11b has a male screw shape
  • a metal or its oxide acting as a catalyst is added to the groove between the screw threads. It is also preferred to form a layer of the catalyst by vapor deposition or coating.
  • the second electrode 11b is composed of a male-threaded electrode body 11b1 and a catalyst layer 11b2 disposed between the threads.
  • FIG. 9E is referred to as an example of such a second electrode 11b.
  • the metal or its oxide that acts as a catalyst is preferably activated by ultraviolet rays or heat, and can be selected, for example, from specific transition metals or oxides thereof.
  • a specific transition metal acts as a catalyst, it adsorbs after dissociating the target molecular bond (hereinafter sometimes referred to as “dissociative adsorption type case”) and adsorbs without dissociating the target molecular bond.
  • dissociative adsorption type case There is a case (hereinafter sometimes referred to as "case of non-dissociative adsorption type”) and a.
  • transition metals those belonging to the 4th period and falling under any of Groups 3 to 8, namely scandium (Sc), titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), those belonging to period 5 and belonging to groups 3 to 7, i.e.
  • Y yttrium
  • Zr zirconium
  • Nb niobium
  • Mo molybdenum
  • Tc technetium
  • La lanthanum
  • Hf hafnium
  • Ta tantalum
  • W tungsten
  • transition metals those belonging to the 4th period and belonging to any of the 9th to 10th groups, that is, cobalt (Co), nickel (Ni), belonging to the 5th period, from the 8th group Those belonging to any of Groups 11 to 11, i.e., ruthenium (Ru), rhodium (Rh), palladium (Rd), belonging to Period 6 and belonging to any of Groups 7 to 11 That is, rhenium (Re), osmium (Os), iridium (Ir), and platinum (Pt) tend to exhibit non-dissociative adsorption type cases in acting as catalysts.
  • the second electrode 11b is made of platinum and the gas to be decomposed is carbon dioxide gas (CO 2 ) will be described as follows.
  • Whether a specific transition metal exhibits a dissociative adsorption type or a non-dissociative adsorption type when acting as a catalyst depends on the state of the surface of the specific transition metal, the type and concentration of the gas to be decomposed, and the reaction. It may vary depending on the temperature to be used, the conditions for generating plasma, and the like. In any case, it is necessary and important to select the most suitable specific transition metal as a catalyst according to the purpose.
  • the second electrode 11b is made of a rod-shaped metal, and that a wire-shaped metal or its oxide acting as a catalyst is spirally wound. At this time, the second electrode 11b is composed of a rod-shaped electrode main body 11b1 and a spiral catalyst layer 11b2 disposed therearound.
  • FIG. 9C is referred to as an example of such a second electrode 11b.
  • the second electrode 11b may be made of a rod-shaped metal and covered with a ring-shaped metal or its oxide that acts as a catalyst. At this time, the second electrode 11b is composed of a rod-shaped electrode main body 11b1 and an annular catalyst layer 11b2 disposed therearound.
  • FIG. 9D is referred to as an example of such a second electrode 11b.
  • the diameter of the second electrode 11b is preferably 1-5 mm, more preferably 2-4 mm.
  • the length of the second electrode 11b is preferably 40-160 mm, more preferably 60-140 mm, and even more preferably 80-120 mm.
  • FIG. 1(a), FIG. 3(a), etc. will be referred to as an example for explanation.
  • the second electrode 11b is arranged with a distance from the first electrode 11a.
  • a first glass layer 12a and a first metal film layer 13a are respectively arranged between the second electrode 11b and the first electrode 11a.
  • the second electrode 11b is arranged with a space between it and the first glass layer 12a.
  • the relationship between the second electrode 11b and other elements is as follows.
  • the second electrode 11b is arranged with a distance from the third electrode 11c.
  • a second glass layer 12b and a second metal film layer 13b are respectively arranged between the second electrode 11b and the third electrode 11c.
  • the second electrode 11b is arranged with a space between it and the second glass layer 12b.
  • the third electrode 11c is for constituting the second pair of electrodes E2 together with the second electrode 11b.
  • the plasma generator 10 can generate a larger amount of plasma P by further including the second pair of electrodes E2 in addition to the first pair of electrodes E1.
  • the amount of virus that can be inactivated in 1 can be further increased.
  • the plasma generator 10 may not include the third electrode 11c.
  • FIGS. 8A and 8B will be referred to as an example of the plasma generator 10 without the third electrode 11c.
  • the third electrode 11c is preferably made of a metal with high thermal conductivity, such as aluminum (Al), copper (Cu), silver (Ag), tungsten (W), or gold (Au). It is more preferably made of any one, and among these, it is even more preferably made of aluminum, copper or silver.
  • a metal with high thermal conductivity such as aluminum (Al), copper (Cu), silver (Ag), tungsten (W), or gold (Au). It is more preferably made of any one, and among these, it is even more preferably made of aluminum, copper or silver.
  • the third electrode 11c may be made of an alloy containing one selected from the above metals as a main component, or may be made of stainless steel (SUS).
  • FIGS. 1A, 3A, 4, 5, 20, 22D, etc. will be referred to as examples for explanation.
  • the third electrode 11c is plate-shaped. At this time, it is preferable that the third electrode 11c is congruent with that of the first electrode 11a on the two widest surfaces among the six surfaces.
  • FIGS. 1A, 3A, 4, 5, 20, 22D and the like are referred to as examples of such a third electrode 11c.
  • the thickness of the third electrode 11c is preferably 0.2-0.8 mm, more preferably 0.3-0.7 mm, and even more preferably 0.4-0.6 mm.
  • the dimensions of the third electrode 11c other than the thickness are as follows.
  • the width of the third electrode 11c is preferably 34-136 mm, more preferably 51-119 mm, and even more preferably 68-102 mm.
  • the depth of the third electrode 11c is preferably 20-80 mm, more preferably 30-70 mm, and even more preferably 40-60 mm.
  • FIG. 1(a), FIG. 3(a), etc. will be referred to as an example for explanation.
  • the third electrode 11c is arranged with a distance from the second electrode 11b.
  • a second glass layer 12b and a second metal film layer 13b are respectively arranged between the third electrode 11c and the second electrode 11b.
  • the surface of the third electrode 11c facing the second electrode 11b is in contact with the second metal film layer 13b immediately or via the third electrode-side conductive adhesive layer 14a2.
  • the surface of the third electrode 11c on the side opposite to the side facing the second electrode 11b is preferably exposed from the viewpoint of facilitating electrical connection from the outside of the gas purifier 1. .
  • the surface of the third electrode 11c facing the second electrode 11b has a first portion 11c1 that is in contact with the second metal film layer 13b, and a second portion 11c2 that is in contact with the first filter 30a. and more preferably a third portion 11c3, which is an exposed portion located between the first portion 11c1 and the second portion 11c2.
  • the surface of the third electrode 11c facing the second electrode 11b is the fourth portion which is the portion in contact with the first spacer 40a.
  • a fifth portion 11c5, which is a portion in contact with 11c4 and the second spacer 40b, may be further provided.
  • the fourth portion 11c4 and the fifth portion 11c5 are arranged with the first portion 11c1, the second portion 11c2 and the third portion 11c3 sandwiched therebetween, and the width direction of the third electrode 11c It is more preferable to be arranged at both ends of.
  • the fourth electrode 11d is for forming a third pair of electrodes E3 together with the first electrode 11a among the electrodes 11, and is used when the plasma generator 10 includes the third electrode 11c. In addition, it is also for forming a fourth pair of electrodes E4 together with the third electrode 11c.
  • FIG. 13(a) is referred to as an example for explanation.
  • the fourth electrode 11d is arranged with a space between each of the first glass layer 12a, the second electrode 11b, and the second glass layer 12b, and sandwiches the second electrode 11b between itself and the first glass layer 12a. It is arranged without sandwiching the second electrode 11b between the second glass layer 12b and the second glass layer 12b.
  • the remainder of the fourth electrode 11d is the same as that of the second electrode 11b, so the explanation given for the second electrode 11b applies mutatis mutandis to the fourth electrode 11d.
  • a fifth electrode (not shown), a sixth electrode (not shown), a seventh electrode (not shown), etc. are the same as the fourth electrode 11d.
  • the amount of plasma P to be generated can be increased.
  • the glass layer 12 is disposed between the pair of electrodes E as a dielectric layer made of glass, which is a dielectric, and is arranged between one electrode 11 of the pair of electrodes E and the metal film layer 13 (the conductive adhesive layer 14).
  • the conductive adhesive layer 14 is in contact with the metal film layer 13 to perform dielectric barrier discharge, and the metal film layer 13 is used as a layer that transmits ultraviolet rays and other electromagnetic waves.
  • it is for constructing a reflecting mirror M that reflects ultraviolet rays and other electromagnetic waves.
  • the glass layer 12 prevents the metal film layer 13 from coming into contact with oxygen in the gas, and the surface of the metal film layer 13 is oxidized. By preventing this, the metal film layer 13 maintains its characteristics so that it can reflect ultraviolet rays and other electromagnetic waves for a long period of time.
  • the glass layer 12 is preferably made of glass having properties of transmitting ultraviolet rays, and more preferably made of glass having high ultraviolet transmittance, such as quartz glass or borosilicate glass. is even more preferred.
  • borosilicate glass is preferable next to quartz glass from the viewpoint of high ultraviolet transmittance and low coefficient of thermal expansion. Borosilicate glass is also preferable because it is excellent in mass productivity.
  • borosilicate glasses in addition to containing silicon dioxide (SiO 2 ) and boron oxide (B 2 O 3 ), those further containing sodium oxide (Na 2 O) and aluminum oxide (Al 2 O 3 ) are more preferable. .
  • the thickness of the glass layer 12 is preferably 0.4 to 1.6 mm, more preferably 0.6 to 1.4 mm, even more preferably 0.8 to 1.2 mm, particularly 1.0 mm is most preferred.
  • the glass layer 12 for example, a slide glass used for observation together with an optical microscope can be used.
  • the glass layer 12 made of a slide glass is excellent in terms of ultraviolet transmittance and coefficient of thermal expansion, and can be easily obtained from the market. To enable a stable supply at a low cost.
  • the glass layer 12 includes the first glass layer 12a and preferably the second glass layer 12b.
  • the first glass layer 12a is for constituting the first reflecting mirror M1 together with the first metal film layer 13a.
  • the shape of the first glass layer 12a is as follows. 1(a), 3(a), 4, 5, 8(a), 8(b), 20, 21(c), etc. refer.
  • the first glass layer 12a is selected to be plate-shaped or ring-shaped depending on the shape of the first electrode 11a.
  • 1(a), 3(a), 4, 5, 8(b), 20 and 21(c) are examples of the first glass layer 12a having a plate shape. etc., and FIG. 8(a) as an example of an annular shape.
  • the dimensions other than the thickness of the first glass layer 12a are as follows.
  • the width of the first glass layer 12a is preferably 32-128 mm, more preferably 48-112 mm, and even more preferably 64-96 mm.
  • the depth of the first glass layer 12a is preferably 10-40 mm, more preferably 15-35 mm, and even more preferably 20-30 mm.
  • FIG. 1(a), FIG. 3(a), etc. will be referred to as an example for explanation.
  • the first glass layer 12a is arranged between the first electrode 11a and the second electrode 11b.
  • the first glass layer 12a is arranged with a space between it and the second electrode 11b.
  • the surface of the first glass layer 12a facing the first electrode 11a is in contact with the first metal film layer 13a immediately or via the first glass layer side conductive adhesive layer 14b1.
  • a surface of the first glass layer 12a facing the second electrode 11b is exposed.
  • the distance between the first glass layer 12a and the second electrode 11b is preferably 0.3-0.9 mm, more preferably 0.4-0.8 mm, and more preferably 0.5-0. 0.7 mm is even more preferred, and 0.6 mm is most preferred.
  • Space S is a space in which plasma P is generated.
  • the first glass layer 12a preferably covers the entire surface of the first metal film layer 13a facing the second electrode 11b.
  • the surface of the first glass layer 12a facing the second electrode 11b has a first portion 12a1 which is an exposed portion, a second portion 12a2 which is a portion in contact with the first spacer 40a, and a second spacer 40a.
  • a third portion 12a3, which is a portion in contact with 40b, is preferably provided.
  • the second glass layer 12b is for constituting the second reflecting mirror M2 together with the second metal film layer 13b.
  • FIGS. 1A, 3A, 4, 5, 20, 22B, etc. will be referred to as examples for explanation.
  • the second glass layer 12b is plate-shaped. At this time, it is preferable that the second glass layer 12b is congruent with that of the first glass layer 12a on the two widest surfaces among the six surfaces.
  • FIGS. 1A, 3A, 4, 5, 20, 22B and the like are referred to as examples of such a second glass layer 12b.
  • the dimensions of the second glass layer 12b other than the thickness are as follows.
  • the width of the second glass layer 12b is preferably 32-128 mm, more preferably 48-112 mm, and even more preferably 64-96 mm.
  • the depth of the second glass layer 12b is preferably 10-40 mm, more preferably 15-35 mm, and even more preferably 20-30 mm.
  • FIG. 1(a), FIG. 3(a), etc. will be referred to as an example for explanation.
  • the second glass layer 12b is arranged between the third electrode 11c and the second electrode 11b.
  • the second glass layer 12b is arranged with a space between it and the second electrode 11b.
  • the surface of the second glass layer 12b facing the third electrode 11c is in contact with the second metal film layer 13b immediately or via the second glass layer side conductive adhesive layer 14b2.
  • the surface of the second glass layer 12b facing the second electrode 11b is exposed.
  • the distance between the second glass layer 12b and the second electrode 11b is preferably 0.3 to 0.9 mm, more preferably 0.4 to 0.8 mm, and more preferably 0.5 to 0.5 mm. 0.7 mm is even more preferred, and 0.6 mm is most preferred.
  • Space S is a space in which plasma P is generated.
  • the second glass layer 12b preferably covers the entire surface of the second metal film layer 13b facing the second electrode 11b.
  • the surface of the second glass layer 12b facing the second electrode 11b has a first portion 12b1 which is an exposed portion, a second portion 12b2 which is a portion in contact with the first spacer 40a, and a second spacer 40a.
  • a third portion 12b3, which is a portion in contact with 40b, is preferably provided.
  • the metal film layer 13 is arranged between one electrode 11 of the pair of electrodes E and the glass layer 12 as a layer made of a metal film, and is in contact with them directly or via the conductive adhesive layer 14. Thus, electric conduction is performed from one electrode 11 of the pair of electrodes E to the glass layer 12, and together with the glass layer 12, a reflecting mirror M that reflects ultraviolet rays and other electromagnetic waves is formed. be.
  • the metal film layer 13 is made of a metal that has the property of reflecting ultraviolet rays.
  • the metal film layer 13 may be made of a metal having properties of reflecting not only ultraviolet rays but also visible rays, infrared rays and other electromagnetic waves other than ultraviolet rays, and such a thing may be used. preferable.
  • the metal film layer 13 is preferably made of a metal having a high ultraviolet reflectance among metals having properties of reflecting ultraviolet rays, such as aluminum (Al), chromium (Cr), iron (Fe), and nickel. (Ni), rhodium (Rh), silver (Ag) or platinum (Pt), more preferably aluminum or silver, and aluminum is most preferred.
  • a metal having a high ultraviolet reflectance among metals having properties of reflecting ultraviolet rays such as aluminum (Al), chromium (Cr), iron (Fe), and nickel. (Ni), rhodium (Rh), silver (Ag) or platinum (Pt), more preferably aluminum or silver, and aluminum is most preferred.
  • Near-ultraviolet rays include ultraviolet A waves (UV-A. Ultraviolet rays with a wavelength in the range of 315 to 400 nm) and ultraviolet B waves (UV-B. Ultraviolet rays with a wavelength in the range of 280 to 315 nm). It is further classified into ultraviolet C waves (UV-C, which refers to ultraviolet rays with a wavelength of 200 to 280 nm).
  • UV-C ultraviolet C waves
  • the near-ultraviolet rays emitted by plasma of nitrogen (N 2 ) belong to the ultraviolet A wave assuming that the wavelength is in the range of 300 to 380 nm.
  • the peak wavelength of the near-ultraviolet rays emitted from the plasma is around 337 nm.
  • Silver exhibits high reflectance in a part of the range of ultraviolet A waves, particularly in a wavelength of 380 nm, and aluminum exhibits high reflectance over the entire range of ultraviolet A waves. .
  • the metal film layer 13 is made of aluminum. or more preferably silver, and most preferably aluminum.
  • the wavelength range including the wavelength has a high reflectance. can be selected to constitute the metal film layer 13, and it is preferable to do so.
  • the metal film layer 13 may be made of a foil of a metal having a property of reflecting ultraviolet rays, preferably a metal having a high ultraviolet reflectance. It may consist of a deposited film formed by depositing a metal on one electrode 11 of the pair of electrodes E or on the glass layer 12 . As the vapor deposition method, sputtering, ion plating, and other physical vapor deposition methods can be used in addition to the vacuum vapor deposition method.
  • the metal film layer 13 is an electrodeposited film formed by electrodepositing a metal having a property of reflecting ultraviolet rays, preferably a metal having a high ultraviolet reflectance, onto one of the electrodes 11 . may
  • the metal film layer 13 may be configured by adhering an aluminum or silver foil to one of the pair of electrodes E or the glass layer 12, for example. may be configured by vapor-depositing.
  • the metal film layer 13 is not limited to having a thickness of 0.2 mm or less, and is arranged between one electrode 11 of the pair of electrodes E and the glass layer 12 to contact both of them, preferably preferably has a necessary and sufficient thickness to adhere to both of them. That is, the metal film layer 13 is selected to have an appropriate thickness according to the distance between the electrode 11 of the pair of electrodes E and the glass layer 12 . At this time, the metal film layer 13 may consist of one metal film, or may consist of a combination of two or more metal films.
  • the metal film layer 13 is preferably in contact with both the electrode 11 of the pair of electrodes E and the glass layer 12, and more preferably in close contact with both of them. In this case, the metal film layer 13 can conduct electricity more efficiently from one electrode 11 of the pair of electrodes E to the glass layer 12 .
  • the metal film layer 13 may be in contact with one electrode 11 of the pair of electrodes E via the conductive adhesive layer 14, assuming that the metal film layer 13 is in close contact with one electrode 11 of the one electrode E. , the metal film layer 13 may be in contact with the glass layer 12 via the conductive adhesive layer 14 as a layer in close contact with the glass layer 12 .
  • the metal film layer 13 may be in contact with one electrode 11 of one electrode E via the conductive adhesive layer 14 and may be in immediate contact with the glass layer 12. While being in contact with one electrode 11 via the conductive adhesive layer 14 , the glass layer 12 and the conductive adhesive layer 14 may be in contact with each other.
  • the metal film layer 13 preferably includes the second metal film layer 13b.
  • the shape of the first metal film layer 13a is as follows. 1(a), 3(a), 4, 5, 8(a), 8(b), 20, 21(b), etc. refer.
  • the first metal film layer 13a is film-like and has a shape corresponding to the shape of the first electrode 11a. 1A, 3A, 4, 5, and 8B as examples of the shape of the first metal film layer 13a corresponding to the plate-like first electrode 11a. ), FIG. 20, FIG. 21(b), etc., and FIG. 8(a) as an example of a shape corresponding to the annular first electrode 11a.
  • FIG. 1(a), FIG. 3(a), etc. will be referred to as an example for explanation.
  • the first metal film layer 13a is arranged between the first electrode 11a and the first glass layer 12a, and is in contact with the first electrode 11a immediately or via the first electrode-side conductive adhesive layer 14a1. It comes into contact with the layer 12a immediately or via the first glass side conductive adhesive layer 14b1.
  • the first metal film layer 13a preferably covers part of the surface of the first electrode 11a facing the second electrode 11b. Moreover, it is preferable that the entire surface of the first metal film layer 13a facing the second electrode 11b or the third electrode 11c is covered with the first glass layer 12a.
  • the first metal film layer 13a may be a combination of two or more metal films, for example, a combination of the first electrode-side metal film 13a1 and the first glass layer-side metal film 13a2.
  • the first electrode-side metal film 13a1 is in contact with the first electrode 11a immediately or via the first electrode-side conductive adhesive layer 14a1, and the first glass layer-side metal film 13a2 is in contact with the first glass layer 12a immediately. Alternatively, they are in contact via the first glass layer side conductive adhesive layer 14b1.
  • the second metal film layer 13b is for forming the second reflecting mirror M2 together with the second glass layer 12b.
  • FIGS. 1A, 3A, 4, 5, 20, 22C, etc. will be referred to as examples for explanation.
  • the second metal film layer 13b is film-like and has a shape corresponding to the shape of the third electrode 11c.
  • FIGS. As an example of the second metal film layer 13b having a shape corresponding to the plate-like third electrode 11c, FIGS. ).
  • FIG. 1(a), FIG. 3(a), etc. will be referred to as an example for explanation.
  • the second metal film layer 13b is disposed between the third electrode 11c and the second glass layer 12b, and is in contact with the third electrode 11c immediately or via the third electrode-side conductive adhesive layer 14a2. It is in contact with the layer 12b immediately or via the second glass side conductive adhesive layer 14b2.
  • the second metal film layer 13b preferably covers part of the surface of the third electrode 11c facing the second electrode 11b. Moreover, it is preferable that the entire surface of the second metal film layer 13b facing the second electrode 11b or the first electrode 11a is covered with the second glass layer 12b.
  • the second metal film layer 13b may be a combination of two or more metal films, for example, a combination of the third electrode-side metal film 13b1 and the second glass layer-side metal film 13b2.
  • the third electrode side metal film 13b1 is in contact with the third electrode 11c immediately or via the third electrode side conductive adhesive layer 14a2, and the second glass layer side metal film 13b2 is in contact with the second glass layer 12b. Alternatively, they are in contact via the second glass layer side conductive adhesive layer 14b2.
  • the conductive adhesive layer 14 is disposed between one electrode 11 of the pair of electrodes E and the metal film layer 13 as a layer having conductivity in addition to adhesiveness. This is for increasing the electrical conductivity from one electrode 11 of the pair of electrodes E to the metal film layer 13 .
  • the conductive adhesive layer 14 is arranged between the glass layer 12 and the metal film layer 13 as a layer as described above. It is also for increasing electrical conductivity.
  • the conductive adhesive layer 14 is composed of an adhesive layer having viscoelasticity as an adhesive layer and a large number of conductive particles contained in the adhesive layer as an electrically conductive adhesive layer. is preferred.
  • the adhesive layer is preferably made of a polymeric compound having adhesiveness and transparency, for example, an acrylic acid-based copolymer. is more preferred.
  • Acrylic acid-based copolymers include, for example, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate and other acrylic acid esters as main monomers, methyl acrylate or methyl methacrylate as comonomers, and acrylic acid or methacrylic acid.
  • the functional group-containing monomer is preferably copolymerized. In this case, instead of using acrylic acid ester as the main monomer, methacrylic acid ester may be used as the main monomer.
  • the conductive particles are preferably made of a metal having conductivity and a characteristic of reflecting ultraviolet rays, and are made of a metal having a high ultraviolet reflectance. is even more preferred.
  • the metal having a high ultraviolet reflectance is, for example, aluminum (Al), chromium (Cr), iron (Fe), nickel (Ni), rhodium (Rh), silver (Ag) or platinum (Pt). Either is preferred, aluminum or silver is even more preferred, and aluminum is most preferred.
  • the conductive adhesive layer 14 there are an electrode-side conductive adhesive layer 14a in contact with one electrode 11 of the pair of electrodes E and a glass layer-side conductive adhesive layer 14b in contact with the glass layer 12.
  • the conductive adhesive layer 14 is arranged between one metal film and the other metal film, and There is a conductive adhesive layer 14c between the metal films in contact.
  • Electrode-side conductive adhesive layer 14a there are a first electrode-side conductive adhesive layer 14a1 and a third electrode-side conductive adhesive layer 14a2.
  • the first electrode-side conductive adhesive layer 14a1 is one of the electrode-side conductive adhesive layers 14a that is in contact with the first electrode 11a.
  • the first electrode-side conductive adhesive layer 14a1 is arranged between the first electrode 11a and the first metal film layer 13a to adhere them together.
  • Electrode-side conductive adhesive layer 14a is in contact with the third electrode 11c.
  • the third electrode-side conductive adhesive layer 14a2 is arranged between the third electrode 11c and the second metal film layer 13b to adhere them together.
  • Glass layer side conductive adhesive layer 14b there are a first glass layer side conductive adhesive layer 14b1 and a second glass layer side conductive adhesive layer 14b2.
  • the first glass layer-side conductive adhesive layer 14b1 is one of the glass layer-side conductive adhesive layers 14b that is in contact with the first glass layer 12a.
  • the first glass layer side conductive adhesive layer 14b1 is arranged between the first glass layer 12a and the first metal film layer 13a to adhere them together.
  • the second glass layer-side conductive adhesive layer 14b2 is one of the glass layer-side conductive adhesive layers 14b that is in contact with the second glass layer 12b.
  • the second glass layer side conductive adhesive layer 14b2 is arranged between the second glass layer 12b and the second metal film layer 13b to adhere them together.
  • the first metal film interlayer conductive adhesive layer 14c1 is disposed between and in contact with the first electrode side metal film 13a1 and the first glass layer side metal film 13a2.
  • the first metal film interlayer conductive adhesive layer 14c1 is for adhering the first electrode side metal film 13a1 and the first glass layer side metal film 13a2.
  • the second metal film interlayer conductive adhesive layer 14c2 is disposed between and in contact with the third electrode side metal film 13b1 and the second glass layer side metal film 13b2.
  • the second metal film interlayer conductive adhesive layer 14c2 is for adhering the third electrode side metal film 13b1 and the second glass layer side metal film 13b2.
  • a conductive single-sided adhesive tape or a conductive double-sided adhesive tape can be used as a laminate in which the metal film layer 13 and the conductive adhesive layer 14 are laminated in advance.
  • a laminate consisting of the first metal film layer 13a and the first electrode side conductive adhesive layer 14a1, a laminate consisting of the second metal film layer 13b and the third electrode side conductive adhesive layer 14a2 the first metal A conductive single-sided adhesive tape is used as a laminate consisting of the film layer 13a and the first glass layer side conductive adhesive layer 14b1 or a laminate consisting of the second metal film layer 13b and the second glass layer side conductive adhesive layer 14b2.
  • the first metal A conductive single-sided adhesive tape is used as a laminate consisting of the film layer 13a and the first glass layer side conductive adhesive layer 14b1 or a laminate consisting of the second metal film layer 13b and the second glass layer side conductive adhesive layer 14b2.
  • a conductive double-sided adhesive tape can also be used as the laminate composed of 13b and the second glass layer side conductive adhesive layer 14b2.
  • a metal film layer 13 is arranged between one electrode 11 of the pair of electrodes E and the glass layer 12, and electrical conduction from one electrode 11 of the pair of electrodes E to the glass layer 12 is controlled by the metal film layer. 13, there are the following problems.
  • metal and glass have different coefficients of thermal expansion. The same applies to metals as long as they have different elements and other components.
  • FIG. 41B will be referred to regarding the possibility that a vacuum layer V or an air layer A may be formed between one electrode 11 of the pair of electrodes E and the metal film layer 13 .
  • the electrical conductivity of either vacuum or air is extremely low. Therefore, when the vacuum layer V or the air layer A is formed between one electrode 11 of the pair of electrodes E and the metal film layer 13, the plasma generator 10 may cause the conductive adhesive layer 14 to There is a possibility that the electric conductivity from one electrode 11 of the pair of electrodes E to the metal film layer 13 may decrease compared to when the metal film layer 13 is provided. Moreover, this also applies similarly between the glass layer 12 and the metal film layer 13 .
  • the plasma generator 10 stabilizes the plasma P compared to when the plasma generator 10 includes the conductive adhesive layer 14. It may not be possible to generate
  • the electrode-side conductive adhesive layer 14a is arranged between one electrode 11 of the pair of electrodes E and the metal film layer 13, thereby producing the following effects. .
  • the electrode-side conductive adhesive layer 14a has adhesiveness even when one of the pair of electrodes E, the electrode 11 and the metal film layer 13 are warped.
  • One electrode 11 and the metal film layer 13 of the pair of electrodes E are assumed to have viscoelasticity while being in close contact with each other. Therefore, it is also possible to change its own shape into a shape corresponding to these.
  • the electrode-side conductive adhesive layer 14a reduces the risk of forming a vacuum layer or an air layer between one electrode 11 of the pair of electrodes E and the metal film layer 13 .
  • the electrode-side conductive adhesive layer 14a is composed of an adhesive layer and conductive particles, and the conductive particles have higher electrical conductivity than vacuum or air.
  • Adhesive layers such as acrylic copolymers, also have higher electrical conductivity than vacuum or air.
  • the electrode-side conductive adhesive layer 14a reduces the possibility that a vacuum layer or an air layer is formed between one electrode 11 of the pair of electrodes E and the metal film layer 13.
  • the plasma generator 10 can stably generate the plasma P.
  • the glass layer-side conductive adhesive layer 14b also prevents the formation of a vacuum layer or an air layer between the glass layer 12 and the metal film layer 13 due to the same action as in the electrode-side conductive adhesive layer 14a. By reducing it, the plasma generator 10 can be made to generate the plasma P stably. The same applies to the metal film interlayer conductive adhesive layer 14c.
  • A1 First electrode 11a/first metal film layer 13a/first glass layer 12a.
  • A2) First electrode 11a/(evaporation)/first metal film layer 13a/first glass layer 12a.
  • A3 First electrode 11a/first metal film layer 13a/(evaporation)/first glass layer 12a.
  • (E1) First electrode 11a/first electrode side metal film 13a1/first glass layer side metal film 13a2/first glass layer 12a (see (d1) in FIG. 42(d)).
  • (E2) First electrode 11a/(evaporation)/first electrode side metal film 13a1/first glass layer side metal film 13a2/first glass layer 12a (see (d1) in FIG. 42(d)).
  • (E3) First electrode 11a/first electrode side metal film 13a1/first glass layer side metal film 13a2//(vapor deposition)/first glass layer 12a (see (d1) in FIG. 42(d)).
  • (B2) or (D) is preferable from the viewpoint of stably generating the plasma P by the plasma generator 10, and among these, from the viewpoint of long-term plasma generation stability , (B2) are more preferable, and from the viewpoint of short-term plasma generation stability, (D) is also more preferable, and it is even more preferable to select an appropriate one according to the purpose of using the plasma generator 10 .
  • (E5), (E7), (F5) or (F7) is also preferable, and among these, from the viewpoint of long-term plasma generation stability, (E5) or (F5) is more preferable. From the viewpoint of stable plasma generation, (E7) or (F7) is also more preferable, and it is even more preferable to select an appropriate one according to the purpose of using the plasma generator 10 .
  • (F3) or (F6) is also preferable from the viewpoint of generating the plasma P stably by the plasma generator 10 and also considering the viewpoint of being excellent in mass productivity.
  • first electrode 11a is replaced with the “third electrode 11c”
  • first metal film layer 13a is replaced with the “second metal film layer 13b”
  • first glass layer 12a is replaced with “second glass layer 12b”
  • first electrode side conductive adhesive layer 14a1 is replaced with “third electrode side conductive adhesive layer 14a2”
  • first glass layer side conductive "Electrical adhesive layer 14b1” is replaced with “second glass layer side conductive adhesive layer 14b2”
  • first electrode side metal film 13a1 is replaced with "third electrode side metal film 13b2” and "first electrode side metal film 13b2".
  • Glass layer side metal film 13a2 is changed to “second glass layer side metal film 13b2”
  • first metal film interlayer conductive adhesive layer 14c1 is changed to “second metal film interlayer conductive adhesive layer 14c2”.
  • the glass layer 12 and the metal film layer 13 together constitute a reflecting mirror M.
  • the reflecting mirror M is for reflecting the ultraviolet rays UV emitted by the plasma P and other electromagnetic waves. Moreover, the reflecting mirror M can also increase the amount of plasma P to be generated.
  • the glass layer 12 transmits ultraviolet rays, and the metal film layer 13 reflects the ultraviolet rays transmitted through the glass layer 12 .
  • the glass layer 12 protects the metal film layer 13 from factors that may reduce the UV reflectance of the metal film layer 13, such as oxidation damage.
  • the use of the metal film layer 13 in constructing the reflector M widens the range of selection of the first electrode 11a or the third electrode 11c. That is, since the reflecting mirror M can be configured from the glass layer 12 and the metal film layer 13, the first electrode 11a or the third electrode 11c can be formed from a viewpoint other than the UV reflectance, for example, the thermal conductivity. can be selected. For example, aluminum has excellent UV reflectance but poor thermal conductivity, while copper has excellent thermal conductivity but poor UV reflectance. When the reflecting mirror M is composed of the glass layer 12 and the first electrode 11a or the third electrode 11c, the first electrode 11a or the third electrode 11c should be selected so that both high ultraviolet reflectance and high thermal conductivity are achieved. It is not possible.
  • the metal film layer 13 provides a higher ultraviolet reflectance. Even if the third electrode 11c is selected, in the plasma generator 10, high ultraviolet reflectance and high thermal conductivity can coexist. More specifically, the above is as follows.
  • the glass layer 12 and the metal film layer 13 that constitute the reflecting mirror M for example, the following are preferable. That is, a combination of a glass layer 12 made of quartz glass and a metal film layer 13 made of aluminum, a combination of a glass layer 12 made of quartz glass and a metal film layer 13 made of silver, a combination of a glass layer 12 made of borosilicate glass and aluminum and the combination of the glass layer 12 made of borosilicate glass and the metal film layer 13 made of silver are preferable. Among these, the glass layer 12 made of borosilicate glass and the metal film made of aluminum A combination with layer 13 is more preferred.
  • the first electrode 11a or the third electrode 11c made of copper is preferable as the first electrode 11a or the third electrode 11c combined with the reflecting mirror M composed of the glass layer 12 and the metal film layer 13. .
  • the thermal conductivity of the first electrode 11a or the third electrode 11c can be increased while the UV reflectance of the reflecting mirror M is increased.
  • the plasma generator 10 preferably includes a first reflecting mirror M1 and a second reflecting mirror M2 as the reflecting mirrors M, which are arranged to face each other and form a paired mirror relationship. is more preferable. At this time, the ultraviolet rays are repeatedly reflected between the first reflecting mirror M1 and the second reflecting mirror M2.
  • the plasma generator 10 includes a first electrode 11a, a second electrode 11b, a first glass layer 12a, and a first metal film layer 13a, as well as a third electrode 11c, a second glass layer 12b, and a second metal film. layer 13b.
  • the plasma generator 10 is provided with a first pair of electrodes E1, a second pair of electrodes E2, a first reflecting mirror M1, and a second reflecting mirror M2.
  • the first reflecting mirror M1 and the second reflecting mirror M2 face each other.
  • FIGS. 1A, 3A, 12A and the like are referred to as examples of the first reflecting mirror M1 and the second reflecting mirror M2 having such a relationship.
  • the plasma generator 10 When a predetermined potential difference is applied between the first electrode 11a and the second electrode 11b, plasma P is generated in the space S between the first electrode 11a and the second electrode 11b. Further, in the case where the plasma generator 10 further includes a third electrode 11c, when a predetermined potential difference is applied between the third electrode 11c and the second electrode 11b, the third electrode 11c and the second electrode 11b Plasma P is generated in the space S between.
  • the potential of the first electrode 11a and the third electrode 11c are made equal, and the difference between the potential and the potential of the second electrode 11b is a predetermined value, the potential of the first electrode 11a and the potential of the second electrode 11b is The plasma P is generated in the space S between them, and the plasma P is also generated in the space S between the third electrode 11c and the second electrode 11b.
  • they may be grounded.
  • the generation of the plasma P in one or both of the space S between the first pair of electrodes E1 or the space S between the second pair of electrodes E2 will Refer to FIG. 12(b) and the like.
  • nitrogen gas (N 2 ) exists in the space S between the pair of electrodes E, nitrogen plasma is generated, and this nitrogen plasma emits ultraviolet rays UV.
  • the gas existing in the space S between the pair of electrodes E is a gas other than nitrogen, such as a noble gas, it is possible to generate ultraviolet rays UV in the same manner as when the gas is nitrogen. can.
  • the reflecting mirror M When the ultraviolet rays UV hit the reflecting mirror M, the reflecting mirror M reflects the ultraviolet rays UV without absorbing them.
  • FIG. 6(a) is referred to regarding the reflecting mirror M reflecting the ultraviolet rays UV.
  • the plasma generator 10, provided with the reflecting mirror M can repeatedly irradiate the gas existing in the space S between the pair of electrodes E and the suspended matter with the ultraviolet UV. .
  • the ultraviolet rays UV are reflected.
  • the ceramic layer C absorbs the ultraviolet rays UV and may not reflect the ultraviolet rays UV, or even if it does reflect the ultraviolet rays UV, the ultraviolet reflectance may not be sufficient.
  • FIG. 6B will be referred to regarding the ceramic layer C absorbing ultraviolet rays UV.
  • ultraviolet rays UV are emitted between the first reflecting mirror M1 and the second reflecting mirror M2. can be performed repeatedly. Referring now to FIG. 7 with respect to repeating the reflection of ultraviolet UV between the first reflector M1 and the second reflector M2.
  • the plasma generator 10 generates the plasma P by dielectric barrier discharge, reflects the ultraviolet rays UV emitted by the plasma P, and can efficiently use them.
  • the ultraviolet rays UV emitted by the original gas include near-ultraviolet rays.
  • the ultraviolet reflectance of the metal film layer 13 for near-ultraviolet rays is generally higher than the ultraviolet reflectance for ultraviolet rays other than near-ultraviolet rays. That is, the ultraviolet reflectance of the metal film layer 13 tends to decrease as the wavelength of ultraviolet rays becomes shorter, from ultraviolet A wave to ultraviolet B wave to ultraviolet C wave. Such a tendency is seen in general metals that have the property of reflecting ultraviolet rays. Even in the case of the material, the same phenomenon can be seen, albeit a gradual decrease compared to the case of the material made of silver.
  • the plasma generator 10 when nitrogen (N 2 ) or a gas containing nitrogen (N 2 ), such as air, is selected as the original gas, the plasma generator 10 generates near-ultraviolet rays among ultraviolet rays UV.
  • the generated near-ultraviolet rays are reflected by the metal film layer 13 with a high ultraviolet reflectance, thereby making it possible to use the ultraviolet rays UV more efficiently.
  • Plasma generated by dielectric barrier discharge between a pair of electrodes E is a process in which ionized electrons recombine with ionized atoms or molecules, or the number of excited electrons is lower. Electromagnetic waves are emitted in the process of transitioning to energy levels.
  • the electromagnetic wave emitted by the original plasma is reflected by the reflecting mirror M, collides with atoms or molecules constituting the gas existing around the original plasma, ionizes or excites them, and returns the original plasma. generate a new plasma around As a result, the amount of plasma P generated by the plasma generator 10 is the sum of the original plasma and the new plasma.
  • the dielectric layer disposed between the pair of electrodes E is not the glass layer 12 but the ceramic layer C as in the conventional plasma generator CEX.
  • the amount of plasma P to be generated can be increased.
  • FIG. 2 and FIG. 3(b) will be referred to regarding increasing the amount of plasma P generated by the reflecting mirror M.
  • FIG. 2 and FIG. 3(b) will be referred to regarding increasing the amount of plasma P generated by the reflecting mirror M.
  • the plasma generator 10 can generate the plasma P by dielectric barrier discharge, reflect the electromagnetic waves generated by the plasma P, and increase the amount of plasma P generated.
  • the plasma generator 10 includes ionized oxygen molecules, oxygen atoms dissociated from oxygen molecules, anions of oxygen molecules, excited oxygen molecules, and other active substances generated from oxygen (hereinafter, “active oxygen”). ) can also be generated in greater amounts.
  • the flow path 20 is a portion of the gas purifier 1 through which the indoor air or other gas G to be purified flows.
  • the plasma generator 10 is arranged in any part of the flow path 20 , and the gas G to be purified is purified while flowing through the flow path 20 .
  • the channel 20 is composed of at least an inlet 20a, an outlet 20b, and a path 20c.
  • the inlet 20a is an opening through which the gas G to be purified enters the inside of the gas purifier 1 .
  • the outlet 20b is an opening through which the gas G to be purified exits the gas purifier 1 .
  • the path 20c is a portion formed by a passage for the gas G to be purified to flow from the inlet 20a to the outlet 20b.
  • the gas G enters the gas purification device 1 from the inlet 20a, flows through the path 20c from the direction of the inlet 20a to the direction of the outlet 20b, and exits from the outlet 20b.
  • the inlet 20a and the outlet 20b are opened toward the room or connected to the room via conduits.
  • the mouth and nose of an infectious disease patient, refrigerant pipes of air conditioners, internal combustion engines and other sources of the gas The inlet 20a is connected through a conduit, and the outlet 20b is opened toward the inside of the room or opened to the outside through the conduit.
  • the portion of the path 20c that is on the inlet 20a side of the reference is referred to as "the upstream side of the flow path 20 (of the reference)", and is on the outlet 20b side of the reference.
  • the portion is referred to as "the downstream side of the flow path 20 (that which serves as a reference)”.
  • the inlet 20a side is the front side of the gas purification device 1
  • the outlet 20b side is the rear side of the gas purification device 1.
  • FIGS. 10, 11, 12(a), 15, 16, 17 and the like are referred to as examples of such a flow path 20.
  • FIG. 10 is referred to as examples of such a flow path 20.
  • the entrance 20a is preferably configured as being surrounded by the first glass layer 12a, the second glass layer 12b, the first spacer 40a and the second spacer 40b.
  • FIG. 10, FIG. 12(a), FIG. 15, etc. will be referred to as an example of such an inlet 20a.
  • the outlet 20b is preferably configured as being surrounded by the first electrode 11a, the third electrode 11c, the first spacer 40a and the second spacer 40b.
  • the path 20c includes a first portion 20c1 surrounded by the first glass layer 12a, the second glass layer 12b, the first spacers 40a and the second spacers 40b, the first electrode 11a, the third electrode 11c, the first spacer 40a and the second electrode 11c. and a second portion 20c2 surrounded by two spacers 40b. Further, it is more preferable that the first portion 20c1 is arranged upstream of the second portion 20c2 in the channel 20. As shown in FIG. Here, FIG. 12(a) and FIG. 17 are referred to as an example of such a path 20c.
  • the space S between the pair of electrodes E is constructed, and plasma P is generated in this space S.
  • the gas G to be purified is purified while passing through the space S and the portion subsequent to the space S in the path 20c.
  • the filter 30 is arranged in the second portion 20c2.
  • the extending direction of the second electrode 11b and the extending direction of the flow path 20 may be arranged so as to be parallel to each other. and more preferably arranged perpendicular to each other.
  • the extending direction of the second electrode 11b and the extending direction of the channel 20 are arranged so as to be parallel to each other. Since the length of the flow path 20 can be shortened without changing the volume of the space S between the pair of electrodes E, the pressure loss can be reduced and the gas to be purified can be reduced.
  • the amount of gas G that can be purified per unit time out of G can be increased. Furthermore, since the direction in which the second electrode 11b extends and the direction in which the flow path 20 extends are arranged so as to be perpendicular to each other, the pressure loss can be minimized. The amount of gas G that can be purified per unit can be increased most.
  • FIGS. 15, 16, 17 and the like are referred to as examples of the second electrode 11b and the channel 20 having such a relationship.
  • the acute angle among the angles formed by them is preferably 45° or more, more preferably 60° or more, and more preferably 75°. ° or more is even more preferred, and 90° is most preferred.
  • the "direction in which the flow path 20 extends” means that the flow path 20 extends while bending.
  • a tangent line at the intersection of a virtual curve extending along the direction and a virtual straight line extending along the direction in which the second electrode 11b extends is obtained, and the direction in which the tangent line extends is defined.
  • the plasma generator 10, which constitutes a part of the gas purifier 1 is provided with a reflector M to increase the amount of plasma P to be generated and increase the probability that the gas G to be purified comes into contact with the plasma P. It is also possible to purify this with increased probability, regardless of the increase in the amount of gas G to be purified.
  • the plasma generator CEX that does not include the reflecting mirror M is used. Even in this case, since the space S between the pair of electrodes E is arranged along the direction in which the flow path 20 extends, the probability that the gas G to be purified comes into contact with the plasma P can be increased. Although it can be done, the flow path 20 is also lengthened, resulting in a large pressure loss and a limited amount of the gas G to be purified.
  • the direction in which the second electrode 11b extends and the direction in which the flow path 20 extends are arranged so as to be perpendicular to each other. Together with this, the amount of gas G that can be purified can be increased.
  • the filter 30 is for reducing the concentration of a specific gas in the gas when the gas passes through it.
  • the filter 30 is made of mesh.
  • the term "net-like” as used herein means a skeleton in which two or more elements are finely and densely combined with gaps between them, and a passage for air to pass through the gaps. Among them, it refers to the one that has a surface that is a part that comes into contact with the air passing through the passage.
  • the "net-like” mentioned here includes fence-like, radial, grid-like, honeycomb-like, polka-dot-like, and other two or more elements combined according to a certain rule, as well as two or more elements being fixed. It includes those that are combined without complying with the rules of, for example, those in the form of non-woven fabrics. same as below.
  • the filter 30 preferably has a honeycomb shape among net-like ones.
  • the "honeycomb-shaped" referred to here includes, in addition to ring-shaped skeletons that have a regular hexagonal cross-section and are arranged without gaps, ring-shaped skeletons that are arranged without gaps. Polygons whose cross-sectional contours can be combined with each other or shapes similar thereto are combined with each other and arranged without gaps.
  • equilateral triangles or equilateral tetragons are preferable as polygons whose cross-sectional contours can be combined with each other, but right triangles or isosceles triangles (excluding equilateral triangles) Or it may be a trapezoid or parallelogram (including rectangles and rhombuses, but excluding regular quadrilaterals).
  • a so-called corrugated shape which is a sinusoidal curve instead of two sides of equal width, is included.
  • the filter 30 preferably consists of one on which a substance that decomposes a specific gas, either as a catalyst or by reacting with itself, is arranged.
  • the skeleton of the filter 30 itself may be made of a substance that acts as a catalyst or reacts with itself to decompose a specific gas.
  • the filter 30 is, for example, one consisting of a catalyst that decomposes a specific gas and a carrier that holds it, one that consists only of a catalyst that decomposes a specific gas, or a substance that reacts with and decomposes a specific gas and holds it.
  • a catalyst that decomposes a specific gas and a carrier that holds it one that consists only of a catalyst that decomposes a specific gas, or a substance that reacts with and decomposes a specific gas and holds it.
  • carriers those consisting only of substances that decompose by reacting with specific gases, and those consisting of a combination of catalysts that decompose specific gases and substances that react with specific gases and decomposing, and supports that hold them selected from
  • the filter 30 is arranged in any part of the channel 20 depending on the specific gas to be decomposed. At this time, it is preferable that the filter 30 be arranged so as to block the relevant portion of the channel 20 .
  • the filters 30 include, for example, a first filter 30a, a second filter 30b and a third filter 30c.
  • the first filter 30a reduces the concentration of ozone (O 3 ) in the gas when gas passes through it, thereby suppressing an increase in the concentration of ozone in the air in the room. be.
  • the gas purifier 1 can reduce the concentration of ozone in the indoor air by providing the first filter 30a, and can reduce the concentration of ozone in the indoor air by not including the first filter 30a. In addition to increasing the concentration of ozone in the air in the closed container, it is also possible to increase the ozone concentration.
  • the gas purifying device 1 when used as an air purifying device for purifying indoor air, it is preferable that the gas purifying device 1 include a first filter 30a.
  • FIGS. 10, 11, 12(a), 13(a), 14, 15, 16, 17 and the like will be referred to as examples of such a gas purifier 1.
  • the gas purifying device 1 is used as an air purifying device for purifying indoor air, when it is used in a room where there are no people, for example, at night, the first It is preferable not to include the filter 30a.
  • FIG. 13(b) is referred to as an example of such a gas purifier 1. As shown in FIG.
  • the first filter 30a preferably consists of a catalyst that decomposes ozone and a carrier that holds the same, and more preferably comprises a catalyst that decomposes ozone on the surface of a carrier having a honeycomb skeleton.
  • the first filter 30a is composed of a honeycomb-shaped skeleton 30a1 formed by finely and densely combining two or more regular hexagonal cylinders with gaps between them, and the gaps, for the air G to pass through. It has a passageway 30a2 and a surface 30a3 of the skeleton 30a1 which is a portion that comes into contact with the air G passing through the passageway 30a2, and a catalyst that decomposes ozone is held on the surface 30a3. is particularly preferred.
  • FIG. 17, FIG. 18, etc. are referred as an example of such a first filter 30a.
  • manganese oxide is preferable, among manganese oxides, Mn3O4 , Mn2O3 , MnO or MnO2 is more preferable, and Mn3O4 is most preferable.
  • the catalyst that decomposes ozone may be nickel oxide (NiO) or other metal oxides other than manganese oxide, or a combination of manganese oxide and other metal oxides other than manganese oxide.
  • a substance that decomposes ozone by reacting with itself may be arranged, and a catalyst that decomposes ozone and a catalyst that decomposes ozone by reacting with itself are combined.
  • a catalyst that decomposes ozone and a catalyst that decomposes ozone by reacting with itself may be combined.
  • Carbon is preferred, and activated carbon is more preferred, as the substance that decomposes ozone by reacting with itself.
  • the carrier that holds the catalyst that decomposes ozone is preferably made of an insulator, such as silica alumina fiber, silica fiber, alumina fiber, mullite fiber, glass fiber, rock wool fiber, carbon fiber and other inorganic fibers. It is more preferable to consist of
  • the carrier holding the catalyst that decomposes ozone may be made of metal, but when the first filter 30a is in contact with the electrode 11, this is not the case.
  • the thickness and width of the first filter 30a may be such that the portion of the flow path 20 where the first filter 30a is arranged can be blocked.
  • the width of the first filter 30a is preferably 30 to 120 mm, preferably 45 to 105 mm. more preferably 60 to 90 mm.
  • the depth of the first filter 30a is preferably 8-32 mm, more preferably 12-16 mm, and even more preferably 16-24 mm.
  • the first filter 30a for example, there is one in which activated carbon powder and manganese oxide are held on the surface of a carrier made of an inorganic fiber nonwoven fabric and having a honeycomb-like skeleton (Japanese Patent Application Laid-Open No. 2006-231324). ), and can be obtained through “Hanicle (registered trademark)-ZV” manufactured and sold by Nichias Corporation.
  • the first filter 30a is arranged downstream of the second electrode 11b in the channel 20.
  • FIG. 12(a), FIG. 13(a), FIG. 14, FIG. 17, etc. will be referred to as an example of such a first filter 30a.
  • the first filter 30a is preferably in contact with the first electrode 11a. Furthermore, it is more preferable that the first filter 30a is arranged between the first electrode 11a and the third electrode 11c. At this time, it is particularly preferable that the first filter 30a is in contact with the first electrode 11a and the third electrode 11c.
  • FIGS. 11, 12(a), 13(a), 14, 16, 17 and the like are referred to as examples of such a first filter 30a.
  • the ozone-containing gas passes through the first filter 30a and touches the surface where the ozone-decomposing catalyst is placed, the ozone ( O3 ) is converted to oxygen ( O2 ) and decomposed.
  • the concentration of ozone in the gas can be reduced.
  • the first filter 30a is preferably arranged in such a manner that it can be easily replaced.
  • the second filter 30b is for reducing the concentration of fluorine ( F2 ) or fluorine compounds in the gas when the gas passes through it.
  • fluorine compounds for example, specific Freons, that is, chlorofluorocarbons (CFCs), perfluorocarbons (PFCs), hydrochlorofluorocarbons (HCFCs), hydrofluorocarbons (HFCs), sulfur hexafluoride ( SF 6 ) and other CFC alternatives.
  • the plasma generator 10 and the gas purifier 1 equipped with the plasma generator 10 utilize not only the plasma P, but also ozone and ultraviolet rays UV generated along with the plasma P, and are capable of efficiently decomposing volatile organic compounds in the gas. Although it can be done, it tends to be difficult to efficiently decompose fluorine and fluorine compounds in gases.
  • the gas purification device 1 with the second filter 30b, the fluorine and fluorine compounds in the gas can be efficiently decomposed.
  • the second filter 30b is preferably composed of a catalyst that decomposes fluorine or a fluorine compound and a carrier that holds it.
  • Ca calcium
  • powdered calcium is more preferable.
  • the second filter 30b is arranged downstream of the second electrode 11b and upstream of the first filter 30a in the channel 20.
  • FIG. 14A is referred to as an example of such a second filter 30b.
  • the concentration of fluorine or fluorine compounds in the gas can be reduced.
  • the third filter 30c is for reducing the concentration of hydrogen sulfide (H 2 S) in the gas when the gas passes through it.
  • the plasma generator 10 and the gas purifying device 1 equipped with the plasma efficiently decompose volatile organic compounds in the gas by using the plasma P in combination with the ozone and ultraviolet rays UV generated along with the plasma P.
  • the second filter 30b is preferably composed of a catalyst that decomposes fluorine or a fluorine compound and a carrier that holds it.
  • the third filter 30c preferably consists of a material that reacts with itself to decompose hydrogen sulfide and a carrier that holds it.
  • Ferric oxide Fe 2 O 3
  • Ferric oxide is preferable as a substance that reacts with itself to decompose hydrogen sulfide.
  • the third filter 30c is arranged upstream of the second electrode 11b in the channel 20.
  • FIG. 14B is referred to as an example of such a third filter 30c.
  • the concentration of hydrogen sulfide in the gas can be reduced.
  • the amount of ozone generated is suppressed in order to control the concentration of ozone in indoor air to a low value. Viruses floating in passing air may not be sufficiently inactivated.
  • another object of the present invention is to further enhance the ability to decompose ozone in a filter for reducing the concentration of ozone in gas.
  • the present invention may be directed to further enhancing the ability to decompose specific gases in a filter for reducing the concentration of specific gases other than ozone.
  • the gas purification device 1 preferably has the following configuration.
  • the first electrode 11a and the first filter 30a are in contact with each other.
  • the first electrode 11a be arranged to cover the first filter 30a.
  • a second portion 11a2 is formed on the surface of the first electrode 11a facing the second electrode 11b.
  • the third portion 11a3 be configured adjacent to the second portion 11a2 on the surface of the first electrode 11a facing the second electrode 11b.
  • the third portion 11a3 as a portion that is exposed and comes into contact with gas, has a higher thermal conductivity than the first portion 11a1 that is covered with the first glass layer 12a through the first metal film layer 13a. .
  • the third electrode 11c and the first filter 30a are in contact with each other.
  • the third electrode 11c be arranged to cover the first filter 30a.
  • the second portion 11c2 is formed on the surface of the third electrode 11c facing the second electrode 11b.
  • the third portion 11c3 is configured so as to be adjacent to the second portion 11c2 on the surface of the third electrode 11c facing the second electrode 11b.
  • the third portion 11c3 is also exposed and exposed to gas, and has a higher thermal conductivity than the first portion 11c1 covered with the second glass layer 12b through the second metal film layer 13b. .
  • the energy transmitted to the pair of electrodes E the energy transmitted to the first electrode 11a is transmitted to the first filter 30a, and the temperature of the first filter 30a rises. Furthermore, the energy transmitted to the third electrode 11c is also transmitted to the first filter 30a, further increasing the temperature of the first filter 30a. Looking at the above in more detail, it is as follows.
  • the catalyst placed on the surface of the first filter 30a is heated and activated, further increasing its ability to decompose ozone.
  • the present invention has another effect of further enhancing the ability to decompose ozone in a filter for reducing the concentration of ozone in gas.
  • the spacer 40 supports the electrode 11 constituting the pair of electrodes E and the other electrode 11 and arranges them with a distance from each other. It is a member for arranging one of the electrodes 11 with a space therebetween. Furthermore, the spacer 40 preferably constitutes part of the flow path 20 as well.
  • the spacer 40 is made of an insulator, that is, a material whose electrical conductivity is lower than that of the glass forming the glass layer 14, and preferably made of epoxy resin, for example.
  • the spacer 40 can arrange the glass layer 12 in addition to the electrode 11 and the other electrode 11 constituting the pair of electrodes E as described above, the specific aspect thereof is not particularly limited. However, an appropriate one is arbitrarily selected according to the shape of the electrode 11 and the other electrode 11 constituting the pair of electrodes E and the mode of combination thereof.
  • the spacer 40 may be composed of a single member or may be composed of a pair of members. Moreover, the spacer 40 may be configured by a part of another member, for example, a part of the case. Furthermore, the spacer 40 may also serve as the connecting means 41 .
  • the spacer 40 includes a first spacer 40a and a second spacer 40b.
  • the first spacer 40a is arbitrarily selected from among the spacers 40 as suitable when the plasma generator 10 includes the first electrode 11a, the second electrode 11b, and the third electrode 11c.
  • the first spacer 40a is, for example, prism-shaped and has an upper surface, a left side surface, a lower surface, a right side front surface, and a rear surface.
  • the first spacer 40a preferably has a first electrode support surface 40a1 and a second electrode support hole 40a2, and further includes a third electrode support surface 40a3. At this time, the first spacer 40a has a vertically symmetrical structure. 10(a), 11(a), 15, 16, 17, 19, 20, 21(d) and 22 ( a), etc.
  • the first electrode support surface 40a1 is a flat surface, and consists of a surface that constitutes either the upper surface or the lower surface of the first spacer 40a.
  • the first electrode support surface 40a1 corresponds to the fourth portion 11a4 of the first electrode 11a.
  • FIGS. 19, 20, 21, etc. will be referred to as examples of such a correspondence relationship.
  • the second electrode support hole 40a2 is a through hole penetrating from the left side to the right side of the first spacer 40a.
  • the second electrode support hole 40a2 has a shape corresponding to the shape of the second electrode 11b.
  • the second electrode support hole 40a2 is screw-shaped.
  • FIGS. 17, 19, 20, 21(d), 22(a), etc. will be referred to as examples of such second electrode support holes 40a2.
  • the third electrode support surface 40a3 is a flat surface, and is a surface that constitutes the other of the top surface and the bottom surface of the first spacer 40a, which is opposite to the side on which the first electrode support surface 40a1 is located. be.
  • the third electrode support surface 40a3 corresponds to the fourth portion 11c4 of the third electrode 11c.
  • FIGS. 19, 20, 22, etc. will be referred to as examples of such a correspondence relationship.
  • the first spacer 40a may be provided with a first electrode support groove (not shown) consisting of grooves instead of the first electrode support surface 40a1, and a third electrode support surface 40a3 instead of the third electrode support surface 40a3. , a third electrode support groove (not shown) consisting of grooves.
  • the first electrode support groove is configured to allow insertion of the first electrode 11a
  • the third electrode support groove is configured to allow insertion of the third electrode 11c.
  • the first spacer 40a preferably further includes a first glass layer supporting surface 40a4 and a second glass layer supporting surface 40a5.
  • FIGS. 19, 20, 21(d), 22(a), etc. will be referred to as examples of such a first spacer 40a.
  • the first glass layer support surface 40a4 is a flat surface that forms a step with the first electrode support surface 40a1, and corresponds to the second portion 12a2 of the first glass layer 12a.
  • the second glass layer support surface 40a5 is a flat surface that forms a step with the third electrode support surface 40a3, and corresponds to the second portion 12b2 of the second glass layer 12b.
  • the second spacer 40b is arbitrarily selected from among the spacers 40 as suitable when the plasma generator 10 includes the first electrode 11a, the second electrode 11b and the third electrode 11c.
  • the second spacer 40b has, for example, a prism shape, and has an upper surface, a left side surface, a lower surface, a right side front surface, and a rear surface, and has a bilaterally symmetrical structure in relation to the first spacer 40a.
  • the second spacer 40b preferably has a first electrode support surface 40b1 and a second electrode support hole 40b2, and further includes a third electrode support surface 40b3. At this time, the second spacer 40b has a vertically symmetrical structure. 10(a), 11(a), 15, 16, 19, 20(a), 21(d), and 22 ( a), etc.
  • the first electrode supporting surface 40b1 is a flat surface, and consists of a surface that constitutes either the upper surface or the lower surface of the second spacer 40b.
  • the first electrode support surface 40b1 corresponds to the fifth portion 11a5 of the first electrode 11a.
  • FIG. 19, FIG. 20(a), FIG. 21, etc. will be referred to as examples of such a correspondence relationship.
  • the second electrode support hole 40b2 is a through hole penetrating from the left side to the right side of the second spacer 40b.
  • the second electrode support hole 40b2 has a shape corresponding to the shape of the second electrode 11b.
  • the second electrode support hole 40b2 is screw-shaped.
  • FIGS. 19, 20(a), 21(d), 22(a) and the like are referred to as examples of such second electrode support holes 40b2.
  • the third electrode support surface 40b3 is a flat surface, and is a surface that forms the other of the top surface and the bottom surface of the second spacer 40b, which is opposite to the side on which the first electrode support surface 40b1 is located. be.
  • the third electrode support surface 40b3 corresponds to the fifth portion 11c5 of the third electrode 11c.
  • FIGS. 19, 20(a), 22, etc. will be referred to as examples of such a correspondence relationship.
  • the second spacer 40b may be provided with a first electrode support groove (not shown) consisting of grooves instead of the first electrode support surface 40b1, and may be provided with a groove instead of the third electrode support surface 40b3.
  • a third electrode support groove (not shown) consisting of grooves.
  • the first electrode support groove is configured to allow insertion of the first electrode 11a
  • the third electrode support groove is configured to allow insertion of the third electrode 11c.
  • the second spacer 40b preferably further includes a first glass layer supporting surface 40b4 and a second glass layer supporting surface 40b5.
  • FIGS. 19, 20(a), 21(d), 22(a), etc. will be referred to as examples of such a second spacer 40b.
  • the first glass layer support surface 40b4 is a flat surface that forms a step with the first electrode support surface 40b1, and corresponds to the second portion 12a2 of the first glass layer 12a.
  • the second glass layer support surface 40b5 is a flat surface that forms a step with the third electrode support surface 40b3, and corresponds to the second portion 12b2 of the second glass layer 12b.
  • the first spacer 40a and the second spacer 40b constitute a pair of spacers 40a and 40b. At this time, the first spacer 40a and the second spacer 40b are arranged facing each other with a space between them. In addition, in a front view, the first spacer 40a is arranged on the left side, and the second spacer 40b is arranged on the right side.
  • a pair of spacers 40a and 40b support the first electrode 11a as follows.
  • FIGS. 19, 20, 21, etc. will be referred to as examples for explanation.
  • the first electrode supporting surface 40a1 of the first spacer 40a and the fourth portion 11a4 of the first electrode 11a are aligned and adhered.
  • a method for bonding with the spacer 40 for example, welding or welding may be used in addition to using an adhesive. same as below.
  • the first electrode supporting surface 40b1 of the second spacer 40b and the fifth portion 11a5 of the first electrode 11a are aligned and adhered.
  • a pair of spacers 40a and 40b support the second electrode 11b as follows.
  • FIGS. 19, 20, 21(d), 22(a), etc. will be referred to as examples for explanation.
  • one end of the second electrode 11b is inserted through the second electrode support hole 40b2 of the second spacer 40b, penetrates the second spacer 40b, and passes through the space between the first spacer 40a and the second spacer 40b. , is inserted from the second electrode supporting hole 40a2 of the first spacer 40a, and penetrates the first spacer 40a. At this time, the other end of the second electrode 11b should not pass through the second spacer 40b. As a result, one end of the second electrode 11b is exposed from the second electrode support hole 40a2 of the first spacer 40a, and the other end of the second electrode 11b is exposed from the second electrode support hole 40b2 of the second spacer 40b. Become.
  • a pair of spacers 40a and 40b support the third electrode 11c as follows.
  • FIGS. 19, 20, 22, etc. will be referred to as examples for explanation.
  • the third electrode supporting surface 40a3 of the first spacer 40a and the fourth portion 11c4 of the third electrode 11c are aligned and adhered.
  • the third electrode supporting surface 40a3 of the second spacer 40b and the other of the fifth portion 11c5 of the third electrode 11c are aligned and adhered.
  • the pair of spacers 40a and 40b can support the first electrode 11a, the second electrode 11b, and the third electrode 11c and arrange them in a predetermined relationship (hereinafter referred to as "electrode 11 arrangement").
  • the arrangement of the first glass layer 12a, the second glass layer 12b, the first metal film layer 13a, and the second metal film layer 13b follows the arrangement of the electrode 11, and preferably prior to this, for example, Do as follows.
  • FIGS. 19, 20, 21, 22, etc. will be referred to as examples for explanation.
  • a first laminate L1 is prepared in which a first metal film layer 13a is laminated in advance on one side of a first glass layer 12a, and a second metal film layer 13b is laminated in advance on one side of a second glass layer 12b.
  • a second laminate L2 is prepared (hereinafter sometimes referred to as "preparation of laminate L").
  • the laminate L may be prepared by vapor-depositing the metal film layer 13 on the surface of the glass layer 12, with the glass layer side conductive adhesive layer 14b between the glass layer 12 and the metal film layer 13. You may perform by laminating
  • the surface of the first layered body L1 on which the first metal film layer 13a is located is aligned with the first portion 11a1 of the first electrode 11a, and these are brought into close contact.
  • the surface of the second layered body L2 on which the second metal film layer 13b is provided is aligned with the first portion 11c1 of the third electrode 11c, and they are brought into close contact with each other.
  • the electrode-side conductive adhesive layer 14a may or preferably be placed between them.
  • the pair of spacers 40a and 40b further includes a pair of first glass layer support surfaces 40a4 and 40b4 and a pair of second glass support surfaces 40a5 and 40b5, the first glass layer 12a and the second glass layer 12a and 40b5 are provided.
  • 12b, the first metal film layer 13a and the second metal film layer 13b are arranged, for example, as follows.
  • FIGS. 19, 20, 21, 22, etc. will be referred to as examples for explanation.
  • the surface of the first laminated body L1 on which the first glass layer 12a is located is aligned with the pair of first glass layer support surfaces 40a4 and 40b4, and these are adhered.
  • the surface of the second laminated body L2 on which the second glass layer 12b is provided is aligned with the pair of second glass supporting surfaces 40a5 and 40b5, and these are adhered.
  • Placement of the electrodes 11 is performed.
  • the surface of the first electrode 11a on the side facing the second electrode 11b is brought into close contact with the first metal film layer 13a, and the side of the third electrode 11c facing the second electrode 11b is attached. It is preferable that the surface on the surface and the second metal film layer 13b are in close contact with each other.
  • the pair of spacers 40a and 40b can facilitate the assembly and disassembly of the plasma generator 10, and can make it small and lightweight.
  • the laminated body L in addition to using one in which the metal film layer 13 is previously vapor-deposited on one side of the glass layer 12, one in which the conductive adhesive layer 14 is laminated in advance on one or both sides of the metal film layer 13 is used. That is, a conductive single-sided adhesive tape or a conductive double-sided adhesive tape may be adhered to one side of the glass layer 12 .
  • the electrodes 11 and other elements may be arranged without using the laminate L.
  • spacers 40a and 40b may be arranged between the pair of spacers 40a and 40b.
  • Other spacers are placed between the first electrode 11a and the third electrode 11c to support them, thereby increasing the distance between the first electrode 11a and the second electrode 11b and the distance between the third electrode 11c and the second electrode 11c.
  • the distance between the electrodes 11b can be made more uniform.
  • connection means 41 constitutes a part of the spacer 40 and is for connecting the gas purifying device 1 and another gas purifying device 1 .
  • the connecting means 41 can connect the gas purifying device 1 and another gas purifying device 1, the specific mode thereof is not particularly limited. It is preferable to include the ridge portion 41a and the groove portion 41b.
  • FIGS. 23 and 24 are referred to as an example of a pair of spacers 40, 40 having ridges 41a and grooves 41b.
  • the ridge portion 41a is arranged on the upper surface of each of the pair of spacers 40, 40, and the groove portion 41b is arranged on the bottom surface of each of the pair of spacers 40,40.
  • the ridge portion 41b of the other gas purification device 1 When the groove portion 41b of the other gas purification device 1 is inserted from the back side and slid in the front direction with respect to the ridge portion 41a of the gas purification device 1, or the groove portion 41b is inserted from the front direction and slid in the back direction, the ridge portion is formed. 41a and groove 41b are fitted to each other, and gas purifying device 1 and another gas purifying device 1 are connected. Reference is now made to FIG. 23 for such a connection method.
  • the gas purifying device 1 emits ultraviolet rays UV to the gas existing in the space S between the pair of electrodes E and the floating matter floating in the gas. can be repeatedly irradiated.
  • the gas G to be purified by the gas purifying device 1 passes through the space S between the pair of electrodes E and exists in the space S while passing through, accompanied by the floating matter.
  • the gas purifier 1 when the gas G to be purified contains viruses as suspended matter, the gas purifier 1 repeatedly irradiates the viruses floating in the gas G to be purified with ultraviolet rays UV. can be used to inactivate a greater amount of virus.
  • the plasma generator 10 provided in the gas purifying device 1 includes a first reflecting mirror M1 and a second reflecting mirror M2 as reflecting mirrors M, the first reflecting mirror M1 and the second reflecting mirror M2 , repeated reflections of the ultraviolet UV can be performed, thus inactivating even greater amounts of virus.
  • the gas purifier 1 generates the plasma P by dielectric barrier discharge, reflects the ultraviolet rays UV emitted by the plasma P, and removes a larger amount of viruses in the gas G to be purified. It can be deactivated.
  • the gas purifier 1 can increase the amount of plasma P to be generated by assuming that the plasma generator 10 provided therein is provided with a reflecting mirror M.
  • the object to be purified is a solid
  • the solid to be purified will remain between the pair of electrodes E. Therefore, by lengthening the time for which the plasma P is generated, the probability that the surface of the solid to be cleaned comes into contact with the plasma P can be increased.
  • the object to be purified is a gas
  • the gas G to be purified passes between the pair of electrodes E, so the time for generating the plasma P is lengthened.
  • the probability that the gas G to be purified comes into contact with the plasma P cannot be increased.
  • the gas purifier 1 generates the plasma P by dielectric barrier discharge, reflects the electromagnetic waves generated by the plasma P, increases the amount of the generated plasma P, and increases the amount of the gas G to be purified. By increasing the probability that the viruses inside come into contact with the plasma P, a greater amount of viruses in the gas G to be purified can be inactivated.
  • the gas purifying device 1 can increase the amount of ozone to be generated by assuming that the plasma generating device 10 provided therein has a reflecting mirror M.
  • ozone has the function of inactivating viruses due to its strong oxidizing power.
  • the gas purifier 1 generates the plasma P by dielectric barrier discharge, reflects the ultraviolet rays UV emitted by the plasma P, and emits the ultraviolet rays UV to the oxygen in the gas G to be purified. Assuming that irradiation can be repeated and the amount of ozone generated can be increased, a greater amount of viruses in the gas G to be purified can be inactivated.
  • the gas purifier 1 can increase the amount of active oxygen generated, and can thereby inactivate a larger amount of viruses in the gas G to be purified.
  • the gas purifying device 1 uses plasma P in combination with ultraviolet rays UV and ozone generated along with plasma P to eliminate viruses and other microorganisms other than viruses, such as bacteria and fungi. In addition to being able to be inactivated, it is also capable of decomposing nitrogen oxides (NOx), volatile organic compounds (VOCs) and other gases that adversely affect the human body. This is equally true for carbon dioxide (CO 2 ), odor-causing ammonia (NH 3 ), and other specific gases, which are sought to be reduced.
  • NOx nitrogen oxides
  • VOCs volatile organic compounds
  • CO 2 carbon dioxide
  • NH 3 odor-causing ammonia
  • the gas purifier 1 can also be used to decompose and purify a specific gas by generating air plasma under atmospheric pressure, and it is particularly useful to do so.
  • Air contains nitrogen (N 2 ) and oxygen (O 2 ), and electromagnetic waves emitted by nitrogen (N 2 ) plasma contain near-ultraviolet rays, which does not change even in the presence of oxygen (O 2 ).
  • the energy of the near-ultraviolet rays excites the gas to be purified, and easily cuts even the bonds between the atoms that make up the gas, especially the ⁇ bonds, which are considered to be difficult to cut. It is possible.
  • the gas purifier 1 when used as described above, it is possible to decompose and purify a wide variety of gases with relatively low energy. Furthermore, in a similar case, for example, when the second electrode 11b is composed of a material that acts as a catalyst, the gas purifier 1 allows the atmospheric pressure plasma excitation and the electrode surface catalytic activity to coexist spatio-temporally. As a result, the gas can be decomposed and purified even more efficiently.
  • the gas can be excited and decomposed as long as the resonance excitation relationship is established. can be done.
  • the second electrode 11b is made of a catalyst metal that is activated as a catalyst by receiving ultraviolet light or heat
  • the second electrode 11b is activated as a catalyst by the heat or light generated with the plasma P. Therefore, a synergistic effect of plasma excitation and catalytic activity can be obtained, and the inactivation of microorganisms and the decomposition of specific gases can be performed more efficiently.
  • the second electrode 11b is made of material that acts as a photocatalyst
  • the near-ultraviolet rays having a wavelength in the range of 300 to 380 nm among the electromagnetic waves emitted by the nitrogen plasma can also activate the photocatalyst. Therefore, the presence of the reflecting mirror M can further enhance the synergistic effect between plasma excitation and catalytic activity.
  • the gas purifier 1 can increase the efficiency of inactivation of microorganisms and decomposition of specific gases. It can also be made lighter.
  • the gas purifier 1 has a plasma generator 10 with a reflecting mirror M, and generates plasma P by dielectric barrier discharge, and reflects ultraviolet UV and other electromagnetic waves generated by the plasma P, For example, it has the following effects.
  • the gas purification device 1 is (1) Repeatedly irradiating the virus in the gas G to be purified with ultraviolet UV, (2) increasing the amount of generated plasma P to increase the probability that the virus in the gas G to be purified comes into contact with the plasma P; (3) By increasing the amount of generated ozone, As a result, a larger amount of viruses in the gas G to be purified can be inactivated.
  • the gas purifier 1 which includes the plasma generator 10, can generate the plasma P by the dielectric barrier discharge and efficiently utilize the ultraviolet UV and other electromagnetic waves generated by the plasma P. .
  • the gas purifier 1 can generate a larger amount of ozone
  • the filter for reducing the concentration of ozone in the gas does not have the ability to decompose the ozone.
  • the space S between the pair of electrodes E is filled with the air in the room. Inactivate the virus in the portion of the indoor air G that has passed through the space S between the pair of electrodes E, thereby inactivating the virus in the entire indoor air G. It will be something that can be done.
  • the gas purifier 1 can be used in combination with other gas purifiers 1.
  • two or more gas purifiers 1 can be connected vertically or horizontally. As a result, the amount of gas that can be purified can be increased compared to when the gas purifier 1 is used alone.
  • the gas purifiers 1, 1 having a structure in which the gas purifier 1 and another gas purifier 1 are vertically coupled via connecting means 41 provided respectively. At this time, it is more preferable that the first electrode 11a of the gas purifier 1 and the third electrode 11c of the other gas purifier 1 are electrically connected, and that they are in contact with each other.
  • the gas purifying devices 1, 1 having a structure in which the gas purifying device 1 and another gas purifying device 1 are horizontally coupled through the second electrodes 11b respectively provided. At this time, it is more preferable that the second electrode 11b of the gas purifier 1 and the second electrode 11b of the other gas purifier 1 are electrically connected, and the gas purifier 1 and the other gas purifier 1 are connected. A structure in which a single second electrode 11b is shared with each other is particularly preferred.
  • the gas purifying device 1 having a structure in which the gas purifiers 1, 1 having a vertically coupled structure and the other gas purifying devices 1, 1 having a vertically coupled structure are further horizontally coupled. , 1,1,1.
  • the gas purifying device 1 having a structure in which the gas purifiers 1, 1 having a horizontally coupled structure and the other gas purifying devices 1, 1 having a horizontally coupled structure are further vertically coupled. , 1,1,1.
  • the gas purifying devices 1, 1 having a vertically coupled structure and the gas purifying device 1 may further have a vertically coupled structure.
  • FIGS. 23 and 24 are referred to as an example of a combination of two or more gas purifiers 1.
  • FIG. 23 and 24 are referred to as an example of a combination of two or more gas purifiers 1.
  • the gas purifying device 101 is for obtaining a purified gas by putting indoor air or other gas G to be purified into the inside, purifying it, and then letting it out to the outside. , for the inflow and outflow of the gas G to be purified.
  • the gas purification device 101 irradiate ultraviolet rays UV toward the outside. That is, the gas purifying device 101 has a gas purifying function, an air blowing function, and preferably an ultraviolet irradiation function.
  • the gas purification device 101 is cylindrical as a whole.
  • the diameter of the gas purification device 101 is preferably 50-150 mm, more preferably 75-125 mm, and particularly preferably 100 mm.
  • the depth of the gas purification device 101 is preferably 170-200 mm, more preferably 180-190 mm, and particularly preferably 185 mm.
  • the gas purifier 101 includes at least a plasma generator 110 and a flow path 120 . In addition to these, the gas purification device 101 further includes a blower device 150 . However, the gas purification device 101 does not include the first filter 130a, nor does it include the second filter 130b.
  • the gas purification device 101 further includes a perforated mirror 160 .
  • the plasma generator 110 is a device for generating plasma P, and constitutes a part of the gas purification device 101 .
  • the plasma generator 110 consists of a combination of an electrode 111, a glass layer 112 and a metal film layer 113. That is, the plasma generator 110 includes, for example, a pair of electrodes E consisting of a first electrode 111a and a second electrode 111b, a first glass layer 112a, and a first metal film layer 113a.
  • the electrodes 111 include a first electrode 111a and a second electrode 111b.
  • a pair of electrodes E is composed of a first electrode 111a and a second electrode 111b.
  • the rest of the electrode 111 is the same as the "electrode 11", so the explanation given for the "electrode 11" ([gas purifier 1/plasma generator 10/electrode 11]) is referred to. ) shall apply mutatis mutandis, excluding the part relating to the “third electrode 11c”.
  • electrode 11 shall be read as “electrode 111” and “first electrode 11a” shall be read as “first electrode 111a”. .
  • first electrode 11a shall be read as “first electrode 111a”.
  • the first electrode 111a is for forming a pair of electrodes E together with the second electrode 111b.
  • the first electrode 111a is ring-shaped.
  • FIGS. 25, 26, 28, 29, 30 and the like are referred to as examples of the first electrode 111a.
  • the surface of the first electrode 111a on the side opposite to the side facing the second electrode 111b has a diameter of 1.5 mm from the viewpoint of facilitating electrical connection from the outside of the gas purifier 101. It is preferable that it protrudes in a plate shape in the direction and penetrates the case 140 to be exposed to the outside.
  • first electrode 11a [gas purifier 1/plasma generator 10/electrode 11/first electrode 11a], except for the portions related to the "first filter 30a", “first spacer 40a” or “second spacer 40b”).
  • FIGS. 25, 26, 28, 29, 30, etc. shall be referred to instead of the drawings referred to in the same description.
  • the second electrode 111b forms a pair of electrodes E together with the first electrode 111a, and also forms a part of the blower device 150. As shown in FIG.
  • FIGS. 25, 26, 28, 29, 30, etc. will be referred to as examples for explanation.
  • the second electrode 111b is wing-shaped. That is, the second electrode 111b is directly or indirectly connected to the rotating shaft, and has a shape capable of blowing air by revolving around the center line of the rotating shaft.
  • the second electrode 111b for example, extends radially from a joint 153a tightly fitted to a drive shaft 152 extending from the prime mover 151, and revolves around the center line of the drive shaft 152 to generate wind.
  • a joint 153a tightly fitted to a drive shaft 152 extending from the prime mover 151, and revolves around the center line of the drive shaft 152 to generate wind.
  • the thickness of the second electrode 111b is preferably 0.2-0.8 mm, more preferably 0.3-0.7 mm, and even more preferably 0.4-0.6 mm.
  • the length of the second electrode 111b (meaning the length extending in the radial direction) is preferably 10 to 30 mm, more preferably 15 to 25 mm.
  • the second electrode 111b has a catalyst layer disposed at its tip portion 111b1. Also, instead of the catalyst layer, a dielectric layer may be arranged. Furthermore, as the two or more second electrodes 111b, the second electrode 111b having the catalyst layer disposed on the tip portion 111b1 and the second electrode 111b having the dielectric layer disposed on the tip portion 111b1 may be combined. The thickness of the catalyst layer or dielectric layer disposed on the tip portion 111b of the second electrode 111b is preferably 20 ⁇ m or more.
  • FIGS. 25, 26, 28, 29, 30, etc. shall be referred to instead of the drawings referred to in the same description.
  • Glass layer 112 there is a first glass layer 112a.
  • the rest of the glass layer 112 is the same as the "glass layer 12", so the explanation of the "glass layer 12" ([gas purification device 1/plasma generator 10/glass layer 12]) ) shall apply mutatis mutandis.
  • a ring-shaped first glass layer 112a is selected according to the shape of the first electrode 111a.
  • first glass layer 112a Since the remainder of the first glass layer 112a is the same as the "first glass layer 12a", the explanation of the "first glass layer 12a” ([gas purifier 1/plasma generator 10/glass layer 12/first glass layer 12a], except for the portions related to the "first spacer 40a" or the "second spacer 40b").
  • first glass layer 12a [gas purifier 1/plasma generator 10/glass layer 12/first glass layer 12a]
  • FIGS. 25, 26, 28, 29, 30, etc. shall be referred to instead of the drawings referred to in the same description.
  • the rest of the metal film layer 113 is the same as the "metal film layer 13", so the explanation of the "metal film layer 13" ([gas purification device 1/plasma generator 10/metal film layer 13] ) shall apply mutatis mutandis.
  • Gas Purifier 101/Plasma Generator 110/Conductive Adhesive Layer 114 As the conductive adhesive layer 114, there are a first electrode side conductive adhesive layer 114a1 in contact with the first electrode 111a and a glass layer side conductive adhesive layer 114b1 in contact with the first glass layer 112a.
  • the conductive adhesive layer 114 is arranged between one metal film and the other metal film, There is a first metal film interlayer conductive adhesive layer 114c1 in contact with these.
  • the rest of the conductive adhesive layer 114 is the same as the "conductive adhesive layer 14", so the explanation of the "conductive adhesive layer 14" ([gas purifier 1/plasma generator 10/conductive Adhesive layer 14] to [gas purifier 1/plasma generator 10/conductive adhesive layer 14/function], provided that "third electrode side conductive adhesive layer 14a2", “second glass layer except for the portions related to the "side conductive adhesive layer 14b2” or “second metal film interlayer conductive adhesive layer 14c2").
  • plasma generator 110 As a mode of combination of the first electrode 111a, the first glass layer 112a, the first metal film layer 113a, and the conductive adhesive layer 114, for example, "plasma generator 10" Examples are the same as those mentioned above.
  • the combination of the first electrode 111a, the first glass layer 112a, the first metal film layer 113a, and the conductive adhesive layer 114 was described with respect to the "plasma generator 10" ([gas purification device 1/plasma Combination of Generator 10/Electrode 11, Glass Layer 12, Metal Film Layer 13, and Conductive Adhesive Layer 14]) applies mutatis mutandis.
  • the first glass layer 112a and the first metal film layer 113a constitute a reflecting mirror M together.
  • the reflecting mirror M is for reflecting the ultraviolet rays UV emitted by the plasma P. Furthermore, the reflecting mirror M can also increase the amount of plasma P to be generated.
  • the first glass layer 112a transmits ultraviolet rays, and the first metal film layer 113a reflects the ultraviolet rays transmitted through the first glass layer 112a. At this time, the first glass layer 112a protects the first metal film layer 113a from damage caused by factors that may reduce the UV reflectance of the first metal film layer 113a, such as plasma, UV light, and oxidation.
  • the first electrode 111a is made of a metal having a property of reflecting ultraviolet rays, and the first electrode 111a and the first glass layer 112a are separated from each other without the first metal film layer 113a interposed therebetween.
  • the reflecting mirror M can be composed of the first electrode 111a and the first metal film layer 113a instead of being composed of the first glass layer 112a and the first metal film layer 113a. can.
  • the first electrode 111a is ring-shaped, and accordingly the first glass layer 112a and the first metal film layer 113a are both ring-shaped.
  • the reflecting mirror M is also annular. For this reason, a pair of mirrors are formed between the portions of the inner surface of the reflecting mirror M that face each other, and the ultraviolet rays are repeatedly reflected between them or between them and the perforated mirror 160 . will be done.
  • FIGS. 25, 26, 27, 28, 29, 30 and the like will be referred to as examples of such a reflecting mirror M.
  • nitrogen gas (N 2 ) exists in the space S between the pair of electrodes E, nitrogen plasma is generated, and this nitrogen plasma emits ultraviolet rays UV.
  • the reflecting mirror M When the ultraviolet rays UV hit the reflecting mirror M, the reflecting mirror M reflects the ultraviolet rays UV without absorbing them.
  • FIG. 27 Here, reference is made to FIG. 27 regarding the reflecting mirror M reflecting ultraviolet rays UV.
  • the plasma generator 110 reflects the ultraviolet rays UV
  • the increase in the amount of the plasma P and the increase in the amount of ozone etc. are the same as in the case of the "plasma generator 10".
  • the description of the "plasma generator 10" (from [gas purifier 1/plasma generator 10/action] to [gas purifier 1/action/increasing the amount of ozone, etc.).
  • the third electrode 11c shall apply mutatis mutandis.
  • the flow path 120 is a portion through which the indoor air or other gas G to be purified flows in the gas purifier 101 .
  • the plasma generator 110 is arranged in any part of the flow path 120 , and the gas G to be purified is purified while flowing through the flow path 120 .
  • the channel 120 is composed of at least an inlet 120a, an outlet 120b, and a path 120c.
  • the inlet 120a is an opening through which the gas G to be purified enters the inside of the gas purifier 101 .
  • the outlet 120b is an opening through which the gas G to be purified exits the gas purifier 101 .
  • the path 120c is a passage for the gas G to be purified to flow from the inlet 120a to the outlet 120b.
  • the gas G to be purified enters from the inlet 120a in the gas purification device 101, flows through the path 120c from the direction of the inlet 120a to the direction of the outlet 120b, and exits from the outlet 120b.
  • the inlet 120a and the outlet 120b are opened toward the room or connected to the room via conduits.
  • the mouth and nose of an infectious disease patient, the refrigerant pipe of an air conditioner, the internal combustion engine, and other sources of the gas The inlet 120a is connected via a conduit, and the outlet 120b is opened indoors or opened outdoors via a conduit.
  • the portion of the path 120c that is on the inlet 120a side of the reference is referred to as the "upstream side of the flow path 120 (of the reference)", and is on the outlet 120b side of the reference.
  • the portion is referred to as "the downstream side of the flow path 120 (that which serves as a reference)”.
  • the inlet 120a side is the front side of the gas purification device 101
  • the outlet 120b side is the rear side of the gas purification device 101. As shown in FIG.
  • the specific mode of the channel 120 is not particularly limited as long as the gas G to be purified can flow as described above. It is preferably composed of Here, FIGS. 25, 26, 28, 29, 30, etc. will be referred to as examples of such a channel 120. FIG.
  • the inlet 120a is preferably a through-hole surrounded by the case 140 and arranged at one end of the side portions of the case 140 . More preferably, the inlets 120a are configured as a pair on the left and right.
  • FIGS. 26, 28, 29, 30 and the like are referred to as examples of such an inlet 120a.
  • the outlet 120b is preferably an opening surrounded by the case 140 and arranged on the other end side of the case 140 . 25, 26, 28, 29, 30, etc. will be referred to as examples of such an outlet 120b.
  • the path 120c is preferably composed of a first portion 120c1 surrounded by the first glass layer 112a and a second portion 120c2 surrounded by the inner surface of the case 140. Further, it is more preferable that the first portion 120c1 is arranged downstream of the second portion 120c2 in the channel 120. As shown in FIG. Here, FIG. 26, FIG. 29, FIG. 30, etc. will be referred to as an example of such a path 120c.
  • the first portion 120c1 a space S between the pair of electrodes E is formed between the second electrode 111b and the first glass layer 112a, and plasma P is generated in this space S.
  • the gas G to be purified is purified while passing through the space S and the portion subsequent to the space S in the path 120c.
  • the perforated mirror 160 is arranged in the second portion 120c2.
  • the third filter 130c is preferably arranged upstream of the perforated mirror 160 in the channel 120c.
  • the filter 130 is for reducing the concentration of a specific gas in the gas when the gas passes through it.
  • the gas purifying device 101 does not include the first filter 130a nor the second filter 130b. However, the gas purification device 101 may be provided with the third filter 130c.
  • the gas purifier 101 does not include the first filter 130a, it is possible to prevent the ozone-containing gas G from being discharged to the outside from the outlet 120b on the downstream side of the second electrode 111b in the channel 120. There are no obstacles.
  • the gas purification device 101 does not include the first filter 130a nor the second filter 130b, the ultraviolet rays UV exit at the downstream side of the second electrode 111b in the channel 120. There is nothing to prevent the external irradiation from 120b.
  • the gas purifier 101 can emit the ozone-containing gas G to the outside from the outlet 120b, and can irradiate the ultraviolet rays UV to the outside from the outlet 120b. Become.
  • the third filter 130c is arranged upstream of the second electrode 111b in the channel 120. Further, when the gas purifier 101 is provided with the perforated mirror 160 , the third filter 130 c is arranged upstream of the perforated mirror 160 in the channel 120 .
  • filter 30 The rest of the filters 130 (including the first filter 130a, the second filter 130b and the third filter 130c) are referred to as "filter 30" ("first filter 30a", “second filter 30b” and “third filter 30c"), so the description of the "filter 30” (from [gas purification device 1/filter 30] to [gas purification device 1/filter 30/relationship between electrode 11 and filter 30/ Means for Solving Problems Concerning Filter 30], except for the part relating to the “third electrode 11c”).
  • the case 140 accommodates each element that constitutes the gas purifier 101, arranges them in a predetermined relationship, and protects them.
  • the specific mode of the case 140 is not particularly limited as long as it satisfies the above requirements. selected.
  • the case 140 is preferably made of an insulator, or made of a metal that is strong and capable of electromagnetic shielding.
  • an insulator is interposed between the case 140 and the first electrode 111a.
  • the case 140 has an annular shape according to the shape of the first electrode 111a.
  • the case 140 preferably has a circular shape, and may have a cylindrical shape with one end closed and the other end open. More preferably, it may be open at both ends.
  • the case 140 has an inlet 120a at one end and an outlet 120b at the other end.
  • the inlet 120a is preferably configured as a through hole arranged at one end of the side portion of the case 140, and the outlet 120b is configured as an opening arranged at the other end of the case 140. is preferred.
  • FIGS. 25, 26, 28, 29, 30 and the like are referred to as examples of such a case 140.
  • the case 140 may be composed of a single member, or may be composed of two or more members.
  • the blower 150 blows air to let the gas G to be purified enter through the inlet 120a and exit through the outlet 120b, and includes the second electrode 111b as a part thereof.
  • the blower device 150 includes, for example, a prime mover 151, a drive shaft 152 extending axially from the prime mover 151, an impeller 153 tightly fitted to the drive shaft 152, and a mounting member 154 radially extending from the prime mover 151. It will be.
  • the impeller 153 includes a stem 153a and two or more second electrodes 111b.
  • the two or more second electrodes 111b are spaced apart from each other along the circumferential direction of the lobe 153a, and each extend along the radial direction of the lobe 153a.
  • the blower device 150 is attached to the case 140 via, for example, an attachment member 154 and arranged inside the case 140 .
  • the second electrode 111b which constitutes a part of the blower device 150 as a part of the impeller 153, is arranged with a distance from the first electrode 111a. That is, the mounting member 154 functions as a spacer by arranging the blower device 150 at a predetermined position.
  • FIGS. 25, 26, 28, 29, 30 and the like are referred to as examples of such a blower device 150.
  • the drive shaft 152 rotates around its center line.
  • the joint 153 a tightly fitted to it revolves around the center line of the drive shaft 152 together with the impeller 153 .
  • the second electrode 111b revolves around the center line of the drive shaft 152, and air flows from the inlet 120a toward the outlet 120b, and blowing starts.
  • the plasma P is generated by applying a predetermined voltage to the pair of electrodes E composed of the first electrode 111a and the second electrode 111b while moving the prime mover 151.
  • the gas G containing ozone can be sent as wind, and ultraviolet rays UV can be generated in the space S between the pair of electrodes E.
  • FIG. 27 will be referred to regarding the fact that the air blower 150 generates the gas G containing ozone and the ultraviolet rays UV.
  • the perforated mirror 160 reflects the ultraviolet rays UV generated in the space S between the pair of electrodes E, thereby efficiently irradiating the ultraviolet rays UV from the exit 120b toward the outside of the gas purifier 101. be.
  • the perforated mirror 160 is preferably made of an annular flat mirror. However, instead of the flat mirror, a convex mirror or a concave mirror may be used.
  • FIGS. 25, 26, 29, 30, etc. will be referred to as examples for explanation.
  • the perforated mirror 160 preferably has two or more ventilation holes 161 and further has a central hole 162 .
  • the ventilation hole 161 is a through hole penetrating the perforated mirror 160.
  • circular through holes are arranged at intervals along the circumferential direction of the perforated mirror 160. is preferred.
  • the specific aspect of the ventilation hole 161 is not particularly limited as long as it can pass air.
  • a central hole 162 is a hole passing through the center of the perforated mirror 160, and is for passing part or all of the air blower 150 therethrough.
  • the pair of electrodes E and the perforated mirror 160 are brought closer to each other to reduce the reflection of the ultraviolet rays UV. can be done efficiently. For example, by allowing the motor 151 to pass through the center hole 162, it is preferable that the perforated mirror 160 and the pair of electrodes E are brought close to each other and the rotation of the second electrode 111b is not hindered.
  • the perforated mirror 160 is arranged so that the mirror surface side faces the exit 120b side.
  • the perforated mirror 160 intersects the path 120c and is arranged upstream of the second electrode 111b in the flow path 120.
  • the perforated mirror 160 is preferably arranged closer to the inlet 120a than the first electrode 111a, and is particularly preferably close to the first electrode 111a. At this time, the perforated mirror 160 can reflect the ultraviolet rays UV more efficiently.
  • the gas purifying device 101 further includes a perforated mirror 160 in addition to the reflecting mirror M, so that it can efficiently irradiate ultraviolet rays UV from the exit 120b toward the outside.
  • the perforated mirror 160 intersects with the path 120c, it has the ventilation holes 161, so it does not interfere with the passage of air.
  • the gas purifier 101 has a plasma generator 110 with a reflecting mirror M, and generates plasma P by dielectric barrier discharge. For example, it has the following effects.
  • the gas purification device 101 (1) Repeatedly irradiating the virus in the gas G to be purified with ultraviolet UV, (2) increasing the amount of generated plasma P to increase the probability that the virus in the gas G to be purified comes into contact with the plasma P; (3) By increasing the amount of ozone or other activated gas it generates, As a result, a larger amount of viruses in the gas G to be purified can be inactivated.
  • the gas purifying device 101 is provided with a blower 150, which can discharge the generated gas G containing a larger amount of ozone to the outside of the gas purifying device 101, For example, it can inactivate viruses floating in the indoor air as well as viruses adhering to indoor floors, walls and other surfaces.
  • ultraviolet rays UV can be irradiated toward the outside of the gas purifying device 101, for example, It can also inactivate viruses attached to indoor floors, walls and other surfaces.
  • the gas purifier 101 emits ozone-containing gas G to the outside and irradiates ultraviolet rays UV, with reference to FIG. 27 and the like.
  • ozone-containing gas G and ultraviolet rays UV have an undesirable effect on the human body, when releasing or irradiating them indoors, avoid nights or other times when there are no people in the room. It is preferable to choose.
  • Another gas purifier 201 is for obtaining a purified gas by putting indoor air or other gas G to be purified inside, purifying it, and then letting it out to the outside. This is for taking in and out the gas G to be purified. That is, the other gas purifier 201 has a function of blowing air in addition to the function of purifying gas.
  • Another gas purifier 201 includes at least a plasma generator 210 and a flow path 220 .
  • another gas purification device 201 further includes a blower device 250 .
  • another gas purification device 201 further includes a first filter 230a.
  • another gas purifying device 201 may be provided with the second filter 230b, or may be provided with the third filter 230c.
  • the first filter 230a is preferably arranged between the first electrodes 211a and is in contact with the inner peripheral surface thereof.
  • the second filter 230b is preferably arranged between the first electrodes 211a and is in contact with the inner peripheral surface thereof.
  • the other gas purifying device 201 when comparing the other gas purifying device 201 and the gas purifying device 101, the other gas purifying device 201 has at least the first filter 230a, whereas the gas purifying device 101 has the first filter 130a. and does not include the second filter 130b, and the rest are common.
  • the explanation of the "gas purifier 101" shall apply mutatis mutandis.
  • the gas purification device 101/perforated mirror 160 “the gas purification device 101 is provided with the perforated mirror 160, so that it can irradiate ultraviolet rays UV from the outlet 120b toward the outside. ' can be read as 'the other gas purifying device 201 can repeat the reflection of ultraviolet rays UV inside it by providing the perforated mirror 260 '.
  • Another gas purifier 201 has a plasma generator 210 with a reflecting mirror M, and generates plasma P by dielectric barrier discharge, and reflects ultraviolet UV and other electromagnetic waves generated by the plasma P.
  • a plasma generator 210 with a reflecting mirror M, and generates plasma P by dielectric barrier discharge, and reflects ultraviolet UV and other electromagnetic waves generated by the plasma P.
  • the gas purification device 201 (1) Repeatedly irradiating the virus in the gas G to be purified with ultraviolet UV, (2) increasing the amount of generated plasma P to increase the probability that the virus in the gas G to be purified comes into contact with the plasma P; (3) By increasing the amount of ozone or other activated gas it generates, As a result, a larger amount of viruses in the gas G to be purified can be inactivated.
  • the other gas purifying device 201 further comprises a perforated mirror 260, the other gas purifying device 201 will repeat the reflection of the ultraviolet rays UV inside it to produce an even greater amount of of viruses can be inactivated.
  • the self-propelled gas purifying device 1001 puts indoor air or other gas G to be purified into the interior, purifies it, and then discharges it to the outside to obtain the purified gas. By blowing air by itself, it is possible to take in and out the gas G to be purified and to run by itself.
  • the self-propelled gas purification device 1001 includes, for example, a traveling means 1010 for traveling on the floor surface, a driving means (not shown) for driving the traveling means 1010, and a driving means. and automatic control means (not shown) for control, and more preferably, another gas purifying device 201 in addition to these.
  • the traveling means 1010 is arranged on the bottom surface of the self-propelled gas purifier 1001, and consists of, for example, two or more wheels. Further, the traveling means 1010 is preferably controlled by automatic control means.
  • the gas purifying device 101 also has a blowing function, and by attaching it to a device other than an air conditioner, it is possible to give the device a gas purifying function and a blowing function.
  • the gas purifier 101 it is preferable to attach the gas purifier 101 to a device 1000 that runs automatically (hereinafter simply referred to as a "self-propelled device") 1000, so that the self-propelled gas purifier 1001 further has a self-propelled function.
  • self-propelled devices include self-propelled robots and self-propelled vacuum cleaners.
  • the outlet 120b of the gas purification device 101 is preferably directed downward.
  • the self-propelled gas purifier 1001 blows the gas G containing ozone toward the floor from the outlet 120b and irradiates the floor with ultraviolet rays UV from the outlet 120b.
  • the specific aspect of the mounting position is not particularly limited, but for example, the outlet 220b of the other gas purifying device 201 is directed forward. is preferred.
  • FIGS. 31 and 32 are referred to as an example of the self-propelled gas purifier 1001 as described above.
  • the self-propelled gas purifier 1001 can inactivate viruses in the air or on the floor by discharging the ozone-containing gas G and ultraviolet rays UV while automatically traveling. Become. Moreover, this also applies to microorganisms other than viruses.
  • the gas activation device 301 is for obtaining an activated gas by putting the gas G to be activated inside, activating it, and then letting it out. That is, the gas activation device 301 has a gas activation function.
  • gas G to be activated includes not only the gas itself to be activated, but also the gas that is actually activated and the gas in the state between these. It is assumed that there is This also applies to the drawings.
  • Gases to be activated include, for example, air, oxygen (O 2 ), nitrogen (N 2 ), and hydrogen (H 2 ).
  • the air includes the air in the airtight container as well as the air in the room.
  • gases to be activated include noble gases and mixed gases of halogen gases and noble gases, but are not particularly limited to the above.
  • the activated gas examples include, when the gas to be activated contains oxygen (O 2 ), active oxygen in addition to ozone (O 3 ), and nitrogen (N 2 ). Excited molecules (N 2 ) or excited atoms (N) of nitrogen may be mentioned.
  • the activated gas is released to the outside of the gas activation device 301, and the activated gas and the gas to be purified are brought into contact with each other, thereby exciting and decomposing the gas to be purified, You can also purify it. That is, to excite a gas is to activate it, and possibly to purify it.
  • the voltage, frequency, and other conditions for generating plasma are optimized, thereby optimizing the discharge form of the generated plasma.
  • the second electrode 311b is composed of a material that acts as a catalyst, plasma excitation and electrode It is also necessary and important to coexist with the surface catalytic activity spatio-temporally, thereby rendering harmful substances contained in the gas to be purified as harmless as possible.
  • the gas activation device 301 constitutes the solid purification device 2001 by being arranged and used inside the sealed container 2000 or being arranged and used indoors.
  • the gas activation device 301 includes at least a plasma generator 310 and a flow path 320. However, gas activation device 301 does not include filter 330 .
  • the depth of the gas activation device 301 is preferably 10-40 mm, more preferably 15-35 mm, and even more preferably 20-30 mm.
  • the size (excluding the depth) and weight of the gas activation device 301 are the same as in the "gas purification device 1", so the explanation given for the "gas purification device 1" applies mutatis mutandis.
  • the plasma generator 310 is for forming a part of the gas activation device 301 as a device for generating plasma P. As shown in FIG.
  • the flow path 320 is a portion through which the gas G to be activated flows in the gas activation device 301 .
  • the plasma generator 310 is arranged in any part of the channel 320 , and the gas G to be activated is activated while flowing through the channel 320 .
  • the inlet 320a and the outlet 320b are opened toward the inside of the closed container, or the closed container is opened through a conduit. connect within.
  • the inlet 320a and the outlet 320b are opened toward the room or connected to the room via conduits.
  • the filter 330 is for reducing the concentration of a specific gas in the gas when the gas passes through it.
  • the gas activation device 301 does not include the filter 330 . That is, the gas activation device 301 does not include the first filter 330a, the second filter 330b, or the third filter 330c.
  • FIG. 13B will be applied and referred to.
  • the gas activation device 301 does not include the first filter 330a and other filters 330, the activated gas G such as ozone is discharged from the outlet 320b to the outside in the flow path 320 downstream of the second electrode 311b. There is nothing to prevent it from being emitted towards
  • the gas activation device 301 can release ozone or other activated gas G to the outside from the outlet 320b.
  • filter 30 The rest of the filters 330 (including the first filter 330a, the second filter 330b and the third filter 330c) are referred to as “filter 30" ("first filter 30a", “second filter 30b” and “third filter 30c"), so the description of the "filter 30” (from [gas purification device 1/filter 30] to [gas purification device 1/filter 30/third filter 30c] ) shall apply mutatis mutandis.
  • “gas purifier 1" is read as "gas activator 301".
  • the gas purifying device 301 is provided with a plasma generator 310 having a reflecting mirror M, and generates plasma P by dielectric barrier discharge. For example, it has the following effects.
  • the gas purifying device 301 repeatedly irradiates the gas G to be activated with ultraviolet rays UV or other electromagnetic waves, or increases the amount of the generated plasma P, thereby increasing the amount of the gas to be activated. By increasing the probability that G contacts the plasma P, the amount of activated gas generated can be increased.
  • the gas purifier 301 uses a larger amount of ozone (O 3 ) as well as a larger amount of active oxygen. can be generated.
  • the sealed container 2000 constitutes a premise for using the gas activation device 301 as the solid purification device 2001 by using the gas activation device 301 inside it. That is, the closed vessel 2000 does not always constitute the solid purification device 2001 . However, the solid purification device 2001 may be provided with the sealed container 2000 in advance.
  • the sealed container 2000 is sealed with the gas activator 301 and the solid O to be purified inside, and is filled with the activated gas G emitted by the gas activator 301. , to keep the activated gas G in contact with the surface of the solid O to be purified.
  • the closed container 2000 is preferably made of metal, and for example, lockers provided in indoor facilities can be used as they are.
  • the sealed container 2000 includes, for example, a sealed container main body 2000a, a hinge 2000b, and a door 2000c.
  • the door 2000c is connected to the sealed container main body 2000a via a hinge 2000b so as to be openable and closable.
  • a person who intends to use the sealed container 2000 opens the door 2000c, stores the solid O to be stored inside the sealed container main body 2000, and then closes the door 2000c to seal it.
  • FIGS. 37 and 38 are referred to as an example of the closed container 2000 as described above.
  • Solid purification device 2001 The solid purifier 2001 is arranged inside the closed container 2000 together with the solid O to be purified, and fills the inside of the closed container 2000 with the activated gas G to obtain the purified solid. That is, the solid purification device 2001 has a solid purification function.
  • Solids O to be purified include, for example, medical equipment, medical clothing, and other items used for providing medical care and equivalent actions (persons receiving the provision of medical care and equivalent actions (Including things to be handed out.) Including things to be used.), vegetables, fruits, and other perishable foods.
  • the solid purification device 2001 includes at least the gas activation device 301. That is, the gas activation device 301 is used inside the sealed container 2000 to configure the solid purification device 2001 .
  • the solid purifier 2001 may be constituted by a sealed container 2000 in which the gas activation device 301 is installed in advance.
  • the solid purifier 2001 preferably includes, for example, a blower 2010 in addition to the gas activation device 301, and also includes a box 2020, a power supply 2030, a control means 2040, a detection means 2050, and an installation means. 2060, and is preferably further provided.
  • FIGS. 33, 34, 35, 36 and the like are referred to as examples of the solid purification device 2001 as described above.
  • the solid purifier 2001 may include the gas purifier 101 as a gas activator instead of including the gas activator 301 and the blower 2010 . This is because the gas purifying device 101 does not include the filter 130 and thus can be used as a gas activating device.
  • the gas activating device 301 puts the gas G to be activated inside, activates it, and then lets it out to obtain the activated gas, which fills the inside of the sealed container 2000. is. That is, the gas activation device 301 has a gas activation function.
  • the number of gas activation devices 301 may be one, or two or more, for example, three gas activation devices 301, 301, and 301 may be used.
  • FIGS. 35, 36, etc. will be referred to as examples of the three gas activation devices 301, 301, 301 constituting the solid purification device 2001.
  • FIG. 35, 36, etc. will be referred to as examples of the three gas activation devices 301, 301, 301 constituting the solid purification device 2001.
  • the rest of the gas activating device 301 is the same as the "gas activating device 301". 301/operation]) is referred to.
  • the blower 2010 is for blowing air toward the gas activating device 301 so that the gas G to be activated is introduced from the inlet 320a of the gas activating device 301 and discharged from the outlet 320b. It is also for entering from the entrance 2020a of the box 2020 and leaving from the exit 2020b.
  • the blower device 2010 includes, for example, a motor, a drive shaft extending axially from the motor, an impeller tightly fitted to the drive shaft, a mounting member extending radially from the motor, and a frame connected to the mounting member. and consists of
  • the blower device 2010 is preferably arranged on the side of the inlet 320 a with respect to the gas activation device 301 . As a result, the activated gas G can be released to the outside of the gas activation device 301 before it loses its activity. However, the arrangement of the air blower 2010 on the side of the outlet 320b is not prevented.
  • blowers 2010 may be one, or two or more, for example, three blowers 2010, 2010, 2010.
  • 35, 36, etc. will be referred to as an example of the three blowers 2010, 2010, 2010 that are arranged on the inlet 320a side of the gas activation device 301 and constitute a part of the solid purification device 2001. .
  • Box 2020 is for enclosing gas activation device 301 and blower device 2010 therein so as to place them in proper relation to each other.
  • the box 2020 is preferably capable of containing, for example, a power source 2030, and more preferably capable of being provided with control means 2040, detection means 2050 and installation means 2060.
  • the box 2020 has at least a space large enough to accommodate the gas activation device 301 and the blower device 2010 therein, an inlet 2020a for entering the gas G to be activated, and an activated and an outlet 2020b for the gas G to exit. Also, the box 2020 preferably comprises a box body 2020c and a lid 2020d.
  • FIGS. 33, 34, 35, 36 and the like are referred to as examples of the box 2020 as described above.
  • the power supply 2030 is for applying voltage to the plasma generator 310 included in the gas activation device 301 .
  • the power source 2030 can apply voltages to the air blower 2010, the control means 2040, and the detection means 2050, respectively.
  • the power supply 2030 is placed inside the box 2020 and electrically connected to the gas activator 301 and other devices to which voltage is to be applied through electric wires (not shown). Reference is now made to FIGS. 35 and 36 as examples of such a power supply 2030.
  • FIG. 35 and 36 as examples of such a power supply 2030.
  • the power source 2030 is not particularly limited as long as it can apply a predetermined voltage to a gas activation device or other device to which a voltage is to be applied. It may consist of a storage battery that stores electricity and a transformer for converting the voltage obtained from this to a predetermined voltage, or a wire for connecting to another external power supply and the voltage obtained from this and a transformer for converting to a predetermined voltage.
  • the control means 2040 determines whether or not the power supply 2030 applies voltage to the plasma generator 310 provided in the gas activation device 301, and, for example, what level of voltage is applied when the voltage is applied. and other matters necessary for the solid purification device 2001 to achieve its purpose, are controlled according to the request of the person who intends to use the solid purification device 2001 or according to a predetermined place. It is for
  • the control means 2040 preferably comprises an operation means 2040a and a display means 2040b, as well as storage means (not shown) and calculation means (not shown).
  • the operating means 2040a determines whether or not the power source 2030 applies voltage to the plasma generator 310 provided in the gas activation device 301, and if voltage is to be applied, what level of voltage to apply. It is for a person who intends to use the solid purification device 2001 to operate it.
  • control means 2040 has a function of waiting for a predetermined period of time after determining to perform a predetermined process and starting the process, and a function of waiting a predetermined period of time after starting the predetermined process. It is preferable to further have a function of waiting for progress and ending the processing.
  • the display means 2040b is for displaying the result or state of the operation.
  • the display means 2040b is preferably capable of displaying information detected by the detection means 2050, and more preferably uses a liquid crystal display.
  • FIG. 33(a), FIG. 34(b), FIG. 35, etc. will be referred to as an example of the control means 2040 including the operation means 2040a and the display means 2040b.
  • operation means 2040a and the display means 2040b may use touch panels.
  • the detection means 2050 is for detecting the concentration of ozone or other specific gas, or detecting the presence or approach of a human inside or near the sealed container 2000 in which the gas activation device 301 is installed. be.
  • the detection means 2050 is preferably arranged on the surface of the box 2020, and is preferably arranged on the surface of the box 2020 on the bottom side.
  • FIGS. 33, 34(a), 35, 36 and the like are referred to as examples of such detection means 2050.
  • FIG. 33, 34(a), 35, 36 and the like are referred to as examples of such detection means 2050.
  • the power supply 2030 is directed to the gas activation device 301 through the control means 2040. Perform processing to stop applying voltage.
  • the detection means 2050 performs similar processing when it detects a person approaching the vicinity of the closed container 2000 when, for example, the closed container 2000 is unsealed.
  • the installation means 2060 is for installing the solid purification device 2001 inside the closed container 2000 by attaching the gas activation device 301 to the inner surface of the closed container 2000 .
  • the installation means 2060 may be arranged on the upper surface side of the box 2020, and the solid purification device 2001 may be placed on the wall surface of the closed container 2000. When installed, it may be placed on the side of the box 2020 .
  • the installation means 2060 is preferably made of a magnet.
  • the number of installation means 2060 may be one, but preferably two or more.
  • Solid purification device 2001/Method of use A method of using the solid purification device 2001 is as follows. Here, reference is made to FIGS. 37 and 38 as examples for explanation.
  • a person who intends to use the solid purification apparatus 2001 performs, for example, the following operations.
  • C Seal the closed container 2000 again.
  • the solid purification device 2001 performs the following processing.
  • the control means 2040 waits for a predetermined time to pass, and instructs the power source 2030 to apply a predetermined voltage to the plasma generator 310 of the gas activation device 301, and the blower 2010 Command the gas activation device 301 to blow air.
  • the gas activation device 301 and the blower device 2010, according to the command from the control means 2040, introduce the air G inside the sealed container 2000 from the inlet 320a, activate it, and then let it out from the outlet 320b. At this time, for example, oxygen (O 2 ) contained in the air G produces not only ozone (O 3 ) but also active oxygen.
  • the control means 2040 waits for another predetermined time to pass, and instructs the power source 2030 to stop applying a predetermined voltage to the plasma generator 310 of the gas activation device 301, and The blower 2010 is commanded to stop blowing the gas activation device 301, and the power source 2030 and the blower 2010 follow the command.
  • Ozone or other activated gas G filling the inside of the sealed container 2000 loses its activity over time.
  • the sealed container 2000 is unsealed, and the purified solid O is obtained from its interior.
  • Solid purification device 2001/action As described above, the solid purification apparatus 2001 generates plasma P by dielectric barrier discharge, reflects ultraviolet rays UV and other electromagnetic waves generated by plasma P, and generates a greater amount of activated gas G. and inactivate a greater amount of viruses adhering to the surface of the solid O to be purified.
  • the solid O to be purified is perishable food
  • the solid O to be purified is stored in the closed container 2000 and the solid purification device 2001 is continuously operated to hold the solid O to be purified. It is possible to inactivate the mold adhering to the surface of O, prevent it from multiplying, and keep the solid O to be purified while maintaining its freshness.
  • Air conditioning purification device 401 The air conditioning and purifying device 401 is for taking indoor air G inside, regulating it, purifying it, and then letting it out. That is, the air conditioning and purification device 401 has an air purification function in addition to the air conditioning function.
  • the air conditioning purification device 401 is, for example, as follows. Reference is now made to FIG. 39 as an illustrative example.
  • the air conditioning purification device 401 can be manufactured, for example, by attaching the gas purification device 1 to the indoor unit 400 of the air conditioning device.
  • the air conditioning device is a device for adjusting while circulating indoor air G, and for example, an indoor unit 400, an outdoor unit (not shown), and between the indoor unit 400 and the outdoor unit. and a refrigerant pipe (not shown) to be connected.
  • the indoor unit 400 is installed indoors, and generally includes a case 410, a flow path 420, a blower 430, a heat exchanger 440, and a drain pan 450.
  • the flow path 420 is a portion of the indoor unit 400 through which the indoor air G to be adjusted flows, and is composed of at least an inlet 420a, an outlet 420b, and a path 420c.
  • the inlet 420 a is normally arranged on the upper surface side of the case 410 and the outlet 420 b is arranged on the front side of the case 410 .
  • the indoor air G enters from the inlet 420a, flows through the path 420c from the direction of the inlet 420a to the direction of the outlet 420b, and exits from the outlet 420b.
  • the room air G to be adjusted is guided by the blower 430, and is cooled and otherwise adjusted in the process of passing near the heat exchanger 440 arranged between the paths 420. .
  • the indoor air G is cooled by the heat being absorbed by the refrigerant in the heat exchanger 440. At this time, the water vapor contained in the indoor air G is condensed and becomes a liquid, and the heat is exchanged. Dew condensation forms on the surface of the container 440 .
  • Drain pan 450 is arranged below heat exchanger 440 as a receiver for receiving this condensation.
  • An outlet 420 b is arranged below the drain pan 450 .
  • the gas purifier 1 has an inlet 20a arranged on the upstream side and an outlet 11b arranged on the downstream side. It is attached to the indoor unit 400 as follows.
  • the space in which the gas purification device 1 is arranged is preferably, for example, the vicinity of the entrance 420a of the indoor unit 400 or the vicinity of the exit 420b of the indoor unit 400. Proximity to exit 420b of machine 400 is more preferred.
  • the gas purification device 1 When arranging the gas purification device 1 near the outlet 420b of the indoor unit 400, the gas purification device 1 is preferably attached to the lower side of the drain pan 450, for example.
  • the gas purification device 1 is attached to the indoor unit 400 to constitute the air conditioning and purification device 401.
  • the gas purification device 1 includes a case 50, a power supply (not shown), a control means 60, and an attachment means (not shown). , is preferably further provided.
  • the case 50 can accommodate, in its interior, devices other than the case 50 among devices constituting the gas purification device 1, such as the plasma generator 10, the flow path 20, the filter 30, and the spacer 40.
  • the power supply can be accommodated and the control means 60 can be arranged on the surface thereof.
  • the power supply is for applying voltage to the plasma generator 10 provided in the gas purifier 1.
  • the power supply is preferably capable of applying voltage to the control means 60 as well.
  • the power supply is placed inside the case 50 and electrically connected to the plasma generator 10 and other devices to which voltage is to be applied through electric wires (not shown).
  • the power supply preferably consists of a wire for connecting to the power supply for the indoor unit 400 and a transformer for converting the voltage obtained from this to a predetermined voltage.
  • the control means 60 determines whether or not the power source applies voltage to the plasma generator 10 provided in the gas purifier 1, and, if voltage is to be applied, for example, what magnitude the voltage should be.
  • the gas purifying device 1, in the air conditioning purification device 401 in response to the request of the person who intends to use the air conditioning purification device 401, or in advance It is for controlling according to the prescribed place.
  • the control means 60 preferably comprises an operation means 60a and a display means 60b, as well as storage means (not shown) and calculation means (not shown).
  • the operation means 60a determines whether or not the power source applies voltage to the plasma generator 10 provided in the gas purifying device 1, and if voltage is applied, how large the voltage should be. , to be operated by a person who intends to use the air conditioning purification device 401 .
  • the display means 60b is for displaying the result or state of the operation, and more preferably uses a liquid crystal display, for example.
  • the operation means 60a and the display means 60b may use touch panels.
  • the installation means is for attaching the gas purification device 1 to the indoor unit 400 , and is preferably arranged on the upper surface of the gas purification device 1 , more preferably on the upper surface of the case 50 .
  • the air conditioning purification device 401 By applying voltage to the air conditioner and also to the gas purification device 1, the air conditioning purification device 401 starts to operate.
  • the air conditioning purification device 401 When the air conditioning purification device 401 starts to operate, it purifies the indoor air G while adjusting it. Looking at this in more detail, for example, it is as follows.
  • the indoor air G is guided by the blower 430, enters the interior of the indoor unit 400 from the inlet 420a of the air conditioner 400, and is cooled while passing near the heat exchanger 440 in the process of passing through the path 420c. , after adjustment such as heating, enters the interior of the gas purifier 1 from the inlet 20a of the gas purifier 1, and in the process of passing through the path 20c, while passing through the space S between the pair of electrodes E After the viruses and other microorganisms are inactivated, they exit from the outlet 20b of the gas purifier 1 to the outside of the gas purifier 1, and then exit from the outlet 420b of the indoor unit 400 to the outside of the indoor unit 400. , will reach the room again.
  • the air conditioning and purifying device 401 repeats the adjustment and purification as described above while circulating the indoor air G, thereby adjusting and purifying the indoor air G. is.
  • the plasma generator 10 In place of the pair of electrodes E composed of the first electrode 11a and the second electrode 11b, the plasma generator 10 includes a pair of electrodes E composed of a first plate-like electrode 11e and a second plate-like electrode 11f. (hereinafter referred to as "second plasma generator 10").
  • the second plasma generator 10 includes the first plate-like electrode 11e and the second plate-like electrode 11f arranged with a distance between the first plate-like electrode 11e and the first plate-like electrode 11e.
  • a first glass layer 12a arranged between the second plate-like electrode 11f and a
  • the second glass layer 12b which is spaced apart, is arranged between the first plate-like electrode 11e and the first glass layer 12a, and is in contact with the first plate-like electrode 11e and the first glass layer 12a.
  • a second metal film layer 13b disposed between the first metal film layer 13a, the second plate-like electrode 11f, and the second glass layer 12b, in contact with the second plate-like electrode 11f, and in contact with the second glass layer 12b.
  • the first plate-like electrode 11e and the second plate-like electrode 11f together constitute a pair of electrodes E, and between the first glass layer 12a and the second glass layer 12b A plasma P is generated in the space S of .
  • first plate-like electrode 11e is the same as the "first electrode 11a", so the explanation given for the "first electrode 11a” applies mutatis mutandis.
  • second plate-like electrode 11f is also the same as the "third electrode 11c", so the explanation given for the "third electrode 11c” applies mutatis mutandis.
  • the first glass layer 12a and the first metal film layer 13a constitute the first reflecting mirror M1
  • the second glass layer 12b and the second metal film layer 13b constitute the second mirror M1.
  • the configuration of the reflecting mirror M2 is the same as in the "plasma generator 10".
  • the second plasma generator 10 can be used as a substitute for the plasma generator 10 in the gas purification apparatus 1, and can also be used as a substitute for the plasma generator 310 in the gas activation apparatus 301. That is, the second plasma generator 10 is particularly useful when two or more gas purifiers 1 are used in combination, especially when they are vertically connected and used.
  • the plasma generator 10 has a first electrode 11a and a first glass layer 12a instead of the first reflecting mirror M1 made up of the first glass layer 12a and the first metal film layer 13a. and a third electrode 11c and a second glass layer 12b instead of the second reflecting mirror M2 made up of the second glass layer 12b and the second metal film layer 13b. It may be provided with a second reflecting mirror M2 (hereinafter referred to as "third plasma generator 10").
  • the third plasma generator 10 is arranged with a distance between the first electrode 11a and the second electrode 11b arranged with a distance between the first electrode 11a and the second electrode 11b.
  • the third electrode 11c is arranged between the first electrode 11a and the second electrode 11b, and the third electrode 11c is arranged between the first electrode 11a and the second electrode 11b.
  • a first glass layer 12a arranged with a space between the two electrodes 11b, and a glass layer 12a arranged between the second electrode 11b and the third electrode 11c and with a space between the second electrode 11b.
  • FIG. 40 is referred to as an example of the third plasma generator 10.
  • FIG. 40 is referred to as an example of the third plasma generator 10.
  • both the first electrode 11a and the third electrode 11c are made of a metal having a property of reflecting ultraviolet rays.
  • the first electrode 11a and the third electrode 11c may be made of a metal having characteristics of reflecting not only ultraviolet rays but also visible rays, infrared rays and other electromagnetic waves other than ultraviolet rays. It is preferable to be
  • the first electrode 11a and the third electrode 11c are preferably made of a metal having a high ultraviolet reflectance, among metals that reflect ultraviolet rays. It is more preferably made of any one of aluminum (Al), chromium (Cr), iron (Fe), nickel (Ni), rhodium (Rh), silver (Ag) or platinum (Pt), and aluminum or silver, and most preferably aluminum.
  • the first electrode 11a and the third electrode 11c may be film-like. That is, the first electrode 11a may be configured by adhering a metal foil, for example, an aluminum or silver foil to the first glass layer 12a via the conductive adhesive layer 14. For example, it may be constructed by vapor-depositing aluminum or silver.
  • the third electrode 11c may also be configured by adhering a metal foil, for example, an aluminum or silver foil to the second glass layer 12b via the conductive adhesive layer 14. For example, it may be constructed by vapor-depositing aluminum or silver.
  • the first electrode 11a and the first glass layer 12a together constitute the first reflecting mirror M1
  • the third electrode 11c and the second glass layer 12b together constitute the first mirror M1.
  • a two-reflecting mirror M2 is configured, and reflection of ultraviolet rays UV is repeatedly performed between the first reflecting mirror M1 and the second reflecting mirror M2.
  • the remainder of the third plasma generator 10 is the same as the "plasma generator 10", so the explanation given for the "plasma generator 10" applies mutatis mutandis.
  • the third plasma generator 10 can be used as a substitute for the plasma generator 10 in the gas purification apparatus 1, and can also be used as a substitute for the plasma generator 310 in the gas activation apparatus 301. That is, the third plasma generator 10 is particularly useful when high thermal conductivity is not required for the first electrode 11a and the third electrode 11c.
  • 1 gas purification device 10 plasma generator 11 electrode 11a first electrode 11a1 first portion (portion in contact with the first metal film layer) ... 11a2 Second part (part in contact with the first filter) ⁇ 11a3 Third part (exposed part) ⁇ 11a4 Fourth portion (portion in contact with the first spacer) ⁇ 11a5 Fifth portion (portion in contact with the second spacer) 11b Second electrode 11b1 Electrode main body 11b2 Catalyst layer 11c Third electrode 11c1 First portion (portion in contact with the first metal film layer) ...
  • Gas purification device 110 Plasma generator 111 Electrode 111a First electrode 111b Second electrode 111b1 Tip portion 112 Glass layer 112a First glass layer 113 Metal film layer 113a First metal film layer 120 Channel 120a Inlet 120b Outlet 120c Route 140 Case 150 Blower 151 Motor 152 Drive shaft 153 Impeller 153a Wheel 111b Second electrode 154 Mounting member 160 Perforated mirror 161 Ventilation hole 162 Center hole 201 Other gas purification device 220a Inlet 220b Outlet 230a First filter 1000 Self-propelled device 1001

Abstract

[Problem] To provide: a plasma generation device that generates plasma through dielectric barrier discharge and can efficiently use electromagnetic waves, other than ultraviolet rays, that are produced by the plasma; an air purification device in which the plasma generation device is used; and the like. [Solution] A plasma generation device (10) comprising: a first electrode (11a); a second electrode (11b) disposed so as to be set apart from the first electrode (11a) by a given distance; a first glass layer (12a) disposed between the first electrode (11a) and the second electrode (11b) so as to be set apart from the second electrode (11b) by a gap; and a first metal film layer (13a) disposed between the first electrode (11a) and the first glass layer (12a), the first metal film layer (13a) contacting the first electrode (11a) either directly or with an electroconductive adhesive layer interposed therebetween, and contacting the first glass layer (12a) either directly or with an electroconductive adhesive layer interposed therebetween.

Description

プラズマ発生装置及び気体浄化装置等Plasma generator, gas purifier, etc.
 本発明は、プラズマ発生装置及びこれを利用することにより室内の空気その他の気体を浄化する気体浄化装置等に関するものである。 The present invention relates to a plasma generator and a gas purifying device that purifies indoor air and other gases by using the same.
 本発明者は、プラズマと触媒とを融合させた技術(Plasma Assisted Catalytic Technology,PACT)、すなわち、プラズマの作用と触媒の作用とを相乗的に利用して気体を浄化する技術を開発し(特許文献1)、以来、当該技術について研究を重ねてきた(例えば、特許文献2、特許文献3等)。 The present inventor has developed a technology that fuses plasma and catalyst (PACT), that is, a technology that synergistically utilizes the action of plasma and the action of catalyst to purify gas (patent Literature 1), and since then, research has been conducted on this technique (for example, Patent Literature 2, Patent Literature 3, etc.).
 当該技術は、常温かつ大気圧下においてプラズマを発生させ、オゾンその他のラジカルを発生させるとともに、触媒を活性化させることによって、気体中に含まれる有害物質を酸化分解し、あるいはこれを還元分解し、もって当該気体を効率的に浄化するものである(特許文献2)。すなわち、当該技術は、プラズマ励起と触媒活性の両効果を時空間的に共存させるものである。 This technology generates plasma at room temperature and atmospheric pressure to generate ozone and other radicals, and activates a catalyst to oxidatively decompose harmful substances contained in the gas or to reductively decompose them. , to efficiently purify the gas (Patent Document 2). In other words, this technology makes both effects of plasma excitation and catalytic activity coexist spatio-temporally.
 さらに、本発明者らが当該技術を使用してウイルスを不活性化させることができるか否かについて試験を行ったところ、当該技術がウイルスを不活性化させるための有効な手段となることが示された(非特許文献1)。 Furthermore, when the present inventors tested whether or not the virus can be inactivated using the technology, the technology was found to be an effective means for inactivating the virus. was shown (Non-Patent Document 1).
 ところで、ウイルスの感染経路として、接触感染、飛沫感染又は飛沫核感染(いわゆる「空気感染」)等の種類があるところ、現下の新型コロナウイルス感染症(COVID-19)の病原体であるコロナウイルス(SARS-CoV-2。以下単に「新型コロナウイルス」という。)については、接触感染及び飛沫感染の蓋然性が報告されているほか、飛沫核感染の可能性も指摘されている。 By the way, there are various types of virus infection routes, such as contact infection, droplet infection, and droplet nuclear infection (so-called "air infection"). SARS-CoV-2 (hereafter simply referred to as the "novel coronavirus") has been reported to have the possibility of contact infection and droplet infection, and the possibility of droplet nuclear infection has also been pointed out.
 いずれにせよ、新型コロナウイルスを含むウイルスについて、飛沫感染のうち、空気中で浮遊する微小化した飛沫を介したもの(いわゆる「エアロゾル感染」ないし「マイクロ飛沫感染」)の可能性を否定することができない限り、室内の空気中を浮遊するウイルスの量を可能な限り減少させることが求められている。 In any case, regarding viruses including the new coronavirus, among the droplet infections, deny the possibility of those via minute droplets floating in the air (so-called "aerosol infection" or "micro droplet infection") Unless possible, it is required to reduce the amount of virus floating in the indoor air as much as possible.
 取り分け、新型コロナウイルスのうち、突然変異をしたものの一部、例えば、デルタ株(B.1.617.2)等にあっては、従来のものに比してより少ないウイルスの量をもって感染が成立することが報告されており、その一因として、従来のものに感染するか、又は従来のものに向けられたmRNAワクチンを接種することにより液性免疫が誘導された場合であっても、突然変異をしたものの一部に対しては、当該液性免疫が十分な効果を奏しないおそれが指摘される中、今後も更なる突然変異の可能性を否定することができない。 In particular, some of the new coronaviruses that have mutated, such as the delta strain (B.1.617.2), can establish infection with a smaller amount of virus than conventional strains. It has been reported that, in part, mutations, even when humoral immunity is induced by infecting conventional ones or by vaccination with mRNA vaccines directed against conventional ones. While it has been pointed out that the humoral immunity may not be sufficiently effective for some of those who have been affected, the possibility of further mutations cannot be denied in the future.
 このため、新型コロナウイルスの突然変異に対応することができるワクチン及び治療薬の開発が急がれる中、これらの開発とともに、日常生活においても、室内の空気中に浮遊するウイルスの量を可能な限り減少させることが求められている。 For this reason, the development of vaccines and therapeutic drugs that can respond to the mutation of the new coronavirus is urgently needed. required to be reduced as much as possible.
 そこで、従来の空気浄化装置のうちプラズマ発生装置を利用するものについてみると、例えば、「放電電極の少なくとも一部が誘電体で覆われた電極パネルを積層した構造を有し、隣接する前記電極パネル間の隙間に気体を流して電圧を印加することによりプラズマを発生させるプラズマパネル積層体を備えるプラズマ発生器と、前記プラズマ発生器の下流側に配設され、オゾンを分解する触媒を触媒担体に担持させてなるオゾンフィルタとを備えたことを特徴とする空気清浄器」がある(特許文献4の段落[0008]。以下この空気清浄器を「従来の空気浄化装置」という。)。 Therefore, when looking at conventional air purifiers that use a plasma generator, for example, "having a structure in which electrode panels in which at least a part of the discharge electrode is covered with a dielectric is laminated, and the adjacent electrodes A plasma generator comprising a plasma panel laminate that generates plasma by applying a voltage by flowing gas through a gap between panels; (Patent Document 4, paragraph [0008]; hereinafter, this air purifier is referred to as a 'conventional air purifier').
 そして、従来の空気浄化装置によれば、「気体がプラズマ発生器の電極パネル間の隙間を通過する際に、誘電体バリア放電による電撃により、……、生物微粒子であるウイルスが不活性化される」(特許文献4の段落[0009])という。 According to the conventional air purifying device, "when the gas passes through the gap between the electrode panels of the plasma generator, the electric shock caused by the dielectric barrier discharge … inactivates the virus, which is a biological particle. (Patent Document 4, paragraph [0009]).
特公平8-22367号公報Japanese Patent Publication No. 8-22367 特開2011-50929号公報(特許第5479826号公報)Japanese Patent Application Laid-Open No. 2011-50929 (Patent No. 5479826) 特開2012-34760号公報(特許第5697075号公報)Japanese Patent Application Laid-Open No. 2012-34760 (Patent No. 5697075) 特開2018-110648号公報JP 2018-110648 A
 プラズマは、一般に、可視光線その他の電磁波を発するものであるところ、空気は窒素を含むことから、空気のプラズマは窒素のプラズマを含むことになる。 Plasma generally emits visible light and other electromagnetic waves, and air contains nitrogen, so air plasma contains nitrogen plasma.
 そして、窒素のプラズマは、可視光線(電磁波のうち波長が400~800nmの範囲にあるものをいう。)を発するほか、紫外線(電磁波のうち波長が1~400nmの範囲にあるものをいう。)のうち、近紫外線(電磁波のうち波長が200~400nmの範囲にあるものをいう。)、特に波長が300~380nmの範囲にあるものを発する。 Nitrogen plasma emits visible rays (electromagnetic waves with a wavelength in the range of 400 to 800 nm) and ultraviolet rays (electromagnetic waves with a wavelength in the range of 1 to 400 nm). Among them, near-ultraviolet rays (electromagnetic waves with a wavelength in the range of 200 to 400 nm), particularly those with a wavelength in the range of 300 to 380 nm, are emitted.
 ところで、紫外線にウイルスを不活性化させる働きがあることが知られているところ、この点に関し、従来の空気浄化装置についてみると、次のとおりである。 By the way, it is known that ultraviolet rays have the effect of inactivating viruses, and regarding this point, conventional air purification devices are as follows.
 従来の空気浄化装置にあっては、誘電体として、セラミックス、特に酸化アルミニウム(Al)からなるものが採用されている(特許文献4の段落[0011])。 In conventional air purifiers, ceramics, particularly aluminum oxide (Al 2 O 3 ), is used as a dielectric (paragraph [0011] of Patent Document 4).
 しかしながら、酸化アルミニウムの有する紫外線反射率は十分なものではなく、また、酸化アルミニウムからなる表面が紫外線の照射を受け続けるうちに変色することに伴って紫外線反射率が更に低減する、との問題がある。 However, the UV reflectance of aluminum oxide is not sufficient, and the UV reflectance further decreases as the surface made of aluminum oxide changes color as it continues to be exposed to UV rays. be.
 同様に、誘電体以外の部分、例えば、ハウジングについてみても、ステンレスからなるものが採用されており(同段落[0023])、その紫外線反射率は、酸化アルミニウムに比して、更に低いものとなっている。 Similarly, parts other than dielectrics, such as housings, are also made of stainless steel (paragraph [0023]), and their UV reflectance is considered to be even lower than that of aluminum oxide. It's becoming
 このため、従来の空気浄化装置にあっては、窒素のプラズマが発する紫外線が誘電体又はハウジングの表面に衝突した場合において、その少なくない部分が反射されることなく吸収されてしまい、紫外線の利用に損失が生じる結果、紫外線により不活性化させることができるウイルスの量を十分なものとすることができないおそれがある。 For this reason, in the conventional air purifying device, when the ultraviolet rays emitted by the nitrogen plasma collide with the surface of the dielectric or the housing, not a small portion of the ultraviolet rays are absorbed without being reflected. As a result, the amount of virus that can be inactivated by UV light may not be sufficient.
 そこで、本発明は、誘電体バリア放電によりプラズマを発生させるとともに、プラズマが発する紫外線その他の電磁波を効率的に利用することを課題とするものである。 Therefore, an object of the present invention is to generate plasma by dielectric barrier discharge and to efficiently utilize ultraviolet rays and other electromagnetic waves emitted by the plasma.
 本発明は、課題を解決するための手段として、以下の構成を有する。 The present invention has the following configurations as means for solving the problems.
[1]
 第一電極と、
 前記第一電極との間に距離を隔てて配置される第二電極と、
 前記第一電極と前記第二電極との間に配置されるとともに、前記第二電極との間に空間を隔てて配置される第一ガラス層と、
 前記第一電極と前記第一ガラス層との間に配置される第一金属膜層であって、前記第一電極と直ちに又は導電性粘着層を介して接するとともに、前記第一ガラス層と直ちに又は導電性粘着層を介して接するものと、を備える
 プラズマ発生装置。
[1]
a first electrode;
a second electrode spaced apart from the first electrode;
a first glass layer disposed between the first electrode and the second electrode and spaced apart from the second electrode;
A first metal film layer disposed between the first electrode and the first glass layer, in contact with the first electrode immediately or via a conductive adhesive layer, and immediately with the first glass layer or contact via a conductive adhesive layer.
[2]
 前記第一電極と前記第一金属膜層との間に配置される第一電極側導電性粘着層と、前記第一ガラス層と前記第一金属膜層との間に配置される第一ガラス層側導電性粘着層と、を備える
 上記[1]に記載のプラズマ発生装置。
[2]
A first electrode-side conductive adhesive layer arranged between the first electrode and the first metal film layer, and a first glass arranged between the first glass layer and the first metal film layer The plasma generator according to the above [1], further comprising a layer-side conductive adhesive layer.
[3]
 前記第一金属膜層が、前記第一電極と前記第一電極側導電性粘着層を介して接する第一電極側金属膜と、前記第一ガラス層と前記第一ガラス層側導電性粘着層を介して接する第一ガラス層側金属膜と、の組み合わせからなる
 上記[2]に記載のプラズマ発生装置。
[3]
A first electrode-side metal film in which the first metal film layer is in contact with the first electrode via the first electrode-side conductive adhesive layer, and the first glass layer and the first glass layer-side conductive adhesive layer. and the first glass layer side metal film contacting via the plasma generator according to the above [2].
[4]
 前記第二電極との間に距離を隔てて配置される第三電極であって、前記第一電極との間に前記第二電極を挟んで配置されるものと、
 前記第二電極と前記第三電極との間に配置されるとともに、前記第二電極との間に空間を隔てて配置される第二ガラス層と、
 前記第三電極と前記第二ガラス層との間に配置される第二金属膜層であって、前記第三電極と直ちに又は導電性粘着層を介して接するとともに、前記第二ガラス層と直ちに又は導電性粘着層を介して接するものと、を備える
 上記[1]~[3]のいずれかに記載のプラズマ発生装置。
[4]
a third electrode spaced apart from the second electrode, wherein the second electrode is placed between the first electrode and the second electrode;
a second glass layer disposed between the second electrode and the third electrode and spaced apart from the second electrode;
a second metal film layer disposed between the third electrode and the second glass layer, in contact with the third electrode immediately or via a conductive adhesive layer, and immediately with the second glass layer; Or the plasma generator according to any one of the above [1] to [3], which is in contact via a conductive adhesive layer.
[5]
 前記第三電極と前記第二金属膜層との間に配置される第三電極側導電性粘着層と、前記第二ガラス層と前記第二金属膜層との間に配置される第二ガラス層側導電性粘着層と、を備える
 上記[4]に記載のプラズマ発生装置。
[5]
A third electrode-side conductive adhesive layer disposed between the third electrode and the second metal film layer, and a second glass disposed between the second glass layer and the second metal film layer The plasma generator according to the above [4], further comprising a layer-side conductive adhesive layer.
[6]
 前記第二金属膜層が、前記第三電極と前記第三電極側導電性粘着層を介して接する第三電極側金属膜と、前記第二ガラス層と前記第二ガラス層側導電性粘着層を介して接する第二ガラス層側金属膜と、の組み合わせからなる
 上記[5]に記載のプラズマ発生装置。
[6]
The second metal film layer comprises a third electrode-side metal film in contact with the third electrode via the third electrode-side conductive adhesive layer, the second glass layer, and the second glass layer-side conductive adhesive layer. and the second glass layer side metal film contacting via the plasma generator according to the above [5].
[7]
 前記第一電極と前記第三電極とが、それぞれ板状の銅からなるものであり、
 前記第二電極が、棒状、雄螺子状若しくは螺旋状のチタンからなるものであるか、又は棒状の金属からなり、線状の金属若しくはその酸化物であって、触媒として作用するものが螺旋状に巻き付けられたものであり、
 前記第一ガラス層と前記第二ガラス層とが、それぞれ板状の石英ガラス又はホウケイ酸ガラスからなるものであり、
 前記第一金属膜層と前記第二金属膜層とが、それぞれアルミニウム若しくは銀の箔からなるものであるか、又はそれぞれアルミニウム若しくは銀の蒸着膜からなるものである
 上記[4]~[6]のいずれかに記載のプラズマ発生装置。
[7]
wherein the first electrode and the third electrode are each made of plate-like copper,
The second electrode is made of rod-shaped, male-threaded or helical titanium, or is made of rod-shaped metal, and is made of a linear metal or its oxide that acts as a catalyst and is helical is wrapped around
wherein the first glass layer and the second glass layer are each made of plate-shaped quartz glass or borosilicate glass,
The first metal film layer and the second metal film layer are each made of aluminum or silver foil, or each made of evaporated aluminum or silver film above [4] to [6] The plasma generator according to any one of 1.
[8]
 前記第一ガラス層、前記第二電極及び前記第二ガラス層のそれぞれとの間に空間を隔てて配置される第四電極であって、前記第一ガラス層との間に前記第二電極を挟むことなく配置されるとともに、前記第三ガラス層との間に前記第二電極を挟むことなく配置されるものを更に備え、
 前記第四電極が、棒状、雄螺子状若しくは螺旋状のチタンからなるものであるか、又は棒状の金属からなり、線状の金属若しくはその酸化物であって、触媒として作用するものが螺旋状に巻き付けられたものである
 上記[4]~[7]のいずれかに記載のプラズマ発生装置。
[8]
a fourth electrode arranged with a space between each of the first glass layer, the second electrode, and the second glass layer, wherein the second electrode is positioned between the first glass layer and the fourth electrode; It is arranged without sandwiching and is arranged without sandwiching the second electrode between the third glass layer,
The fourth electrode is made of rod-shaped, male-threaded or helical titanium, or made of rod-shaped metal, and a linear metal or its oxide that acts as a catalyst is helical The plasma generator according to any one of [4] to [7] above.
[9]
 上記[1]~[8]のいずれかに記載のプラズマ発生装置と、
 浄化しようとする気体が流れるための流路と、を備える
 気体浄化装置。
[9]
The plasma generator according to any one of [1] to [8] above;
A gas purifier, comprising: a flow path through which a gas to be purified flows.
[10]
 前記第二電極の延びる方向と前記流路の延びる方向とが互いに交わるように配置される
上記[9]に記載の気体浄化装置。
[10]
The gas purifier according to [9] above, wherein the direction in which the second electrode extends and the direction in which the channel extends intersect each other.
[11]
 オゾンを分解する触媒及びこれを保持する担体からなる第一フィルタを備え、
 前記第一フィルタが、前記流路のうち、前記第二電極より下流側に配置され、前記第一電極と前記第三電極との間に配置され、かつ、前記第一電極と接するとともに、前記第三電極と接する
 上記[9]又は[10]に記載の気体浄化装置。
[11]
Equipped with a first filter consisting of a catalyst that decomposes ozone and a carrier that holds it,
The first filter is arranged downstream of the second electrode in the channel, is arranged between the first electrode and the third electrode, is in contact with the first electrode, and is in contact with the first electrode. The gas purification device according to the above [9] or [10], in contact with the third electrode.
[12]
 前記第一電極のうち前記第二電極と対向する側にある表面が、
  前記第一金属膜層と直ちに又は導電性粘着層を介して接する部分である第一部分と、
  前記第一フィルタと接する部分である第二部分と、
  前記第一部分と前記第二部分との間にあって、露出する部分である第三部分と、
 を備えるとともに、
 前記第三電極のうち前記第二電極と対向する側にある表面が、
  前記第二金属膜層と直ちに又は導電性粘着層を介して接する部分である第一部分と、
  前記第一フィルタと接する部分である第二部分と、
  前記第一部分と前記第二部分との間にあって、露出する部分である第三部分と、
を備える
 上記[11]に記載の気体浄化装置。
[12]
the surface of the first electrode facing the second electrode,
a first portion that is in contact with the first metal film layer immediately or via a conductive adhesive layer;
a second portion that is in contact with the first filter;
a third portion that is an exposed portion between the first portion and the second portion;
and
the surface of the third electrode facing the second electrode,
a first portion that is in contact with the second metal film layer immediately or via a conductive adhesive layer;
a second portion that is in contact with the first filter;
a third portion that is an exposed portion between the first portion and the second portion;
The gas purification device according to [11] above.
[13]
 カルシウム及びこれを保持する担体からなる第二フィルタを備え、
 前記第二フィルタが、前記流路のうち、前記第二電極より下流側に配置される
 上記[9]~[12]のいずれかに記載の気体浄化装置。
[13]
Equipped with a second filter made of calcium and a carrier that retains it,
The gas purification device according to any one of [9] to [12] above, wherein the second filter is arranged downstream of the second electrode in the channel.
[14]
 酸化第二鉄及びこれを保持する担体からなる第三フィルタを備え、
 前記第三フィルタが、前記流路のうち、前記第二電極より下流側に配置される
 上記[9]~[13]のいずれかに記載の気体浄化装置。
[14]
A third filter made of ferric oxide and a carrier that holds it,
The gas purification device according to any one of [9] to [13] above, wherein the third filter is arranged downstream of the second electrode in the channel.
[15]
 上記[9]~[14]のいずれかに記載の気体浄化装置と、
 上記[9]~[14]のいずれかに記載の他の気体浄化装置と、を備え、
 前記気体浄化装置の前記第一電極と前記他の気体浄化装置の前記第三電極とが電気的に接続されるか、又は前記気体浄化装置の前記第二電極と前記他の気体浄化装置の前記第二電極とが電気的に接続されることにより、前記気体浄化装置と前記他の気体浄化装置とが垂直的に又は水平的に結合した構造を有する
 気体浄化装置。
[15]
the gas purification device according to any one of [9] to [14] above;
and another gas purification device according to any one of [9] to [14] above,
The first electrode of the gas purification device and the third electrode of the other gas purification device are electrically connected, or the second electrode of the gas purification device and the second electrode of the other gas purification device are electrically connected. A gas purifying device having a structure in which the gas purifying device and the other gas purifying device are coupled vertically or horizontally by being electrically connected to a second electrode.
[16]
 上記[1]~[8]のいずれかに記載のプラズマ発生装置と、
 浄化しようとする気体が通過するための流路と、
 前記流路に沿って風を送るための送風装置と、を備える
 気体浄化装置。
[16]
The plasma generator according to any one of [1] to [8] above;
a flow path through which the gas to be purified passes;
and a blower for blowing air along the flow path.
[17]
 上記[1]~[3]のいずれかに記載のプラズマ発生装置と、
 浄化しようとする気体が流れるための流路と、を備え、
 前記第一電極と前記第一ガラス層とが、それぞれ環状のものであり、
 前記第二電極が、羽根状のものであって、回転軸に連結されるものである
 気体浄化装置。
[17]
The plasma generator according to any one of [1] to [3] above;
a channel for the gas to be purified to flow,
the first electrode and the first glass layer are each annular,
The gas purifier, wherein the second electrode has a blade shape and is connected to a rotating shaft.
[18]
 二以上の通風孔を有する有孔鏡を備え、
 前記有孔鏡が、前記流路のうち、前記第二電極より上流側に配置される
 上記[9]~[17]のいずれかに記載の気体浄化装置。
[18]
Equipped with a perforated mirror having two or more ventilation holes,
The gas purifier according to any one of [9] to [17] above, wherein the perforated mirror is arranged upstream of the second electrode in the channel.
[19]
 床面を走行するための走行手段と、
 前記走行手段を駆動するための駆動手段と、
 前記駆動手段を自動制御するための自動制御手段と、を備える
 上記[9]~[18]のいずれかに記載の気体浄化装置。
[19]
a running means for running on a floor;
a driving means for driving the traveling means;
The gas purifier according to any one of [9] to [18] above, further comprising automatic control means for automatically controlling the drive means.
[20]
 上記[1]~[8]のいずれかに記載のプラズマ発生装置と、活性化しようとする気体が流れるための流路と、を備える気体活性化装置と、
 前記気体活性化装置に向けて風を送るための送風装置と、を備える
 固体浄化装置。
[20]
a gas activating device comprising the plasma generating device according to any one of [1] to [8] above; and a flow path through which the gas to be activated flows;
a blower for blowing air toward the gas activation device.
[21]
 室内の空気を循環させながら調節する空気調節装置に上記[9]~[15]のいずれかに記載の気体浄化装置を取り付けることにより、室内の空気を循環させながら、これを調整するとともに浄化する空気調整浄化装置を製造する方法。
[21]
By attaching the gas purifying device according to any one of [9] to [15] to an air conditioning device that adjusts while circulating indoor air, the indoor air is circulated and adjusted and purified. A method of manufacturing an air conditioning purification device.
[22]
 第一電極と、
 前記第一電極との間に距離を隔てて配置される第二電極と、
 前記第二電極との間に距離を隔てて配置される第三電極であって、前記第一電極との間に前記第二電極を挟んで配置されるものと、
 前記第一電極と前記第二電極との間に配置されるとともに、前記第二電極との間に空間を隔てて配置される第一ガラス層と、
 前記第二電極と前記第三電極との間に配置されるとともに、前記第二電極との間に空間を隔てて配置される第二ガラス層と、を備え、
 前記第一電極と前記第一ガラス層とが、直ちに又は導電性粘着層を介して互いに接して紫外線を反射する第一反射鏡を構成し、
 前記第三電極と前記第二ガラス層とが、直ちに又は導電性粘着層を介して互いに接して紫外線を反射する第二反射鏡を構成する
 プラズマ発生装置。
[22]
a first electrode;
a second electrode spaced apart from the first electrode;
a third electrode spaced apart from the second electrode, wherein the second electrode is placed between the first electrode and the second electrode;
a first glass layer disposed between the first electrode and the second electrode and spaced apart from the second electrode;
a second glass layer disposed between the second electrode and the third electrode and spaced apart from the second electrode;
The first electrode and the first glass layer are in contact with each other immediately or via a conductive adhesive layer to form a first reflecting mirror that reflects ultraviolet rays,
The plasma generator, wherein the third electrode and the second glass layer are in contact with each other immediately or via a conductive adhesive layer to form a second reflecting mirror that reflects ultraviolet rays.
[23]
 上記[22]に記載のプラズマ発生装置と、
 浄化しようとする気体が流れるための流路と、を備える
 気体浄化装置
[23]
The plasma generator according to [22] above;
and a flow path through which gas to be purified flows.
[24]
 前記第二電極の延びる方向と前記流路の延びる方向とが互いに交わるように配置される上記[23]に記載の気体浄化装置。
[24]
The gas purifier according to [23] above, wherein the direction in which the second electrode extends and the direction in which the channel extends intersect each other.
 よって、本発明は、誘電体バリア放電によりプラズマを発生させるとともに、プラズマが発する紫外線その他の電磁波を効率的に利用することができる、との効果を奏するものである。 Therefore, the present invention has the effect of generating plasma by dielectric barrier discharge and efficiently utilizing ultraviolet rays and other electromagnetic waves generated by the plasma.
本発明の第一実施形態に係るプラズマ発生装置の正面図(a)及び同装置の部分拡大図(b)である。BRIEF DESCRIPTION OF THE DRAWINGS It is the front view (a) of the plasma generator which concerns on 1st embodiment of this invention, and the elements on larger scale (b) of the same apparatus. 本発明の第一実施形態に係るプラズマ発生装置の作用図(a)及び比較例に係るプラズマ発生装置の作用図(b)である。FIG. 3A is an operation diagram (a) of the plasma generator according to the first embodiment of the present invention, and (b) is an operation diagram (b) of the plasma generator according to the comparative example. 本発明の第一実施形態に係るプラズマ発生装置の側面図(a)及び同装置の作用図(b)である。BRIEF DESCRIPTION OF THE DRAWINGS It is the side view (a) of the plasma generator which concerns on 1st embodiment of this invention, and the operation|movement figure (b) of the same apparatus. 本発明の第一実施形態に係るプラズマ発生装置の斜視図である。1 is a perspective view of a plasma generator according to a first embodiment of the present invention; FIG. 本発明の第一実施形態に係るプラズマ発生装置の斜視部分断面図である。1 is a perspective partial cross-sectional view of a plasma generator according to a first embodiment of the present invention; FIG. 本発明の第一実施形態に係るプラズマ発生装置の作用図(a)及び比較例に係るプラズマ発生装置の作用図(b)である。FIG. 3A is an operation diagram (a) of the plasma generator according to the first embodiment of the present invention, and (b) is an operation diagram (b) of the plasma generator according to the comparative example. 本発明の第一実施形態に係るプラズマ発生装置の作用図である。1 is an action diagram of a plasma generator according to a first embodiment of the present invention; FIG. 本発明の第一実施形態に係るプラズマ発生装置の他の態様の斜視図(a1)及び斜視断面図(a2)の組み合わせ(a)、同装置の他の態様の斜視図(b1)及び斜視断面図(b2)の組み合わせ(b)並びに本発明の第七実施形態に係るプラズマ発生装置の斜視図(c1)及び斜視断面図(c2)の組み合わせ(c)である。Combination (a) of perspective view (a1) and perspective cross-sectional view (a2) of another aspect of the plasma generator according to the first embodiment of the present invention, perspective view (b1) and perspective cross-section of another aspect of the same device It is the combination (b) of the figure (b2) and the combination (c) of the perspective view (c1) and the perspective sectional view (c2) of the plasma generator according to the seventh embodiment of the present invention. 本発明の第一実施形態に係るプラズマ発生装置等と関係する第二電極の他の態様の正面図(a)、同(b)及び同(c)並びに同電極の他の態様の部分断面正面図(d)並びに同電極の他の態様の部分拡大部分断面正面図(e)である。Front views (a), (b) and (c) of other aspects of the second electrode related to the plasma generator etc. according to the first embodiment of the present invention, and partial cross-sectional front views of other aspects of the same electrode FIG. (d) and a partially enlarged partial cross-sectional front view (e) of another embodiment of the same electrode. 本発明の第一実施形態に係る気体浄化装置の正面図(a)及び同装置の部分拡大図(b)である。BRIEF DESCRIPTION OF THE DRAWINGS It is the front view (a) of the gas purification apparatus which concerns on 1st embodiment of this invention, and the elements on larger scale (b) of the same apparatus. 本発明の第一実施形態に係る気体浄化装置の背面図(a)及び同装置の部分拡大図(b)である。BRIEF DESCRIPTION OF THE DRAWINGS It is the rear view (a) of the gas purification apparatus which concerns on 1st embodiment of this invention, and the elements on larger scale (b) of the same apparatus. 本発明の第一実施形態に係る気体浄化装置の断面図(a)及び同装置の作用図(b)である。BRIEF DESCRIPTION OF THE DRAWINGS It is sectional drawing (a) of the gas purification apparatus which concerns on 1st embodiment of this invention, and operation|movement figure (b) of the same apparatus. 本発明の第一実施形態に係る気体浄化装置の他の態様の断面図(a)及び同装置の他の態様の断面図(b)である。It is sectional drawing (a) of other aspects of the gas purification apparatus which concerns on 1st embodiment of this invention, and sectional drawing (b) of other aspects of the same apparatus. 本発明の第一実施形態に係る気体浄化装置の他の態様の断面図(a)及び同装置の他の態様の断面図(b)である。It is sectional drawing (a) of other aspects of the gas purification apparatus which concerns on 1st embodiment of this invention, and sectional drawing (b) of other aspects of the same apparatus. 本発明の第一実施形態に係る気体浄化装置の斜視図である。1 is a perspective view of a gas purification device according to a first embodiment of the present invention; FIG. 本発明の第一実施形態に係る気体浄化装置の斜視図である。1 is a perspective view of a gas purification device according to a first embodiment of the present invention; FIG. 本発明の第一実施形態に係る気体浄化装置の斜視断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is perspective sectional drawing of the gas purification apparatus which concerns on 1st embodiment of this invention. 本発明の第一実施形態に係る気体浄化装置等と関係する第一フィルタの斜視図(a)並びに同フィルタの部分拡大図(b)及び同(c)である。It is the perspective view (a) of the 1st filter related to the gas purification apparatus etc. which concern on 1st embodiment of this invention, and the partial enlarged view (b) of the same filter, and the same (c). 本発明の第一実施形態に係る気体浄化装置の分解斜視図である。1 is an exploded perspective view of a gas purification device according to a first embodiment of the present invention; FIG. 本発明の第一実施形態に係る気体浄化装置の分解正面図(a)並びに同装置の分解断面図(b)及び同(c)である。It is the disassembled front view (a) of the gas purification apparatus which concerns on 1st embodiment of this invention, and the disassembled sectional drawing (b) and the same (c) of the same apparatus. 本発明の第一実施形態に係る気体浄化装置の分解平面図(a)、同(b)、同(c)及び同(d)である。It is an exploded plan view (a), the same (b), the same (c) and the same (d) of the gas purifier which concerns on 1st embodiment of this invention. 本発明の第一実施形態に係る気体浄化装置の分解底面図(a)、同(b)、同(c)及び同(d)である。It is an exploded bottom view (a), the same (b), the same (c) and the same (d) of the gas purifier which concerns on 1st embodiment of this invention. 本発明の第一実施形態に係る複数の気体浄化装置の組立過程図(a)、同装置の部分拡大図(b)及び同装置の組立完了図(c)である。It is the assembly-process figure (a) of the some gas purifier which concerns on 1st embodiment of this invention, the elements on larger scale (b) of the same apparatus, and the assembly completion figure (c) of the same apparatus. 本発明の第一実施形態に係る複数の気体浄化装置の正面図(a)並びに同装置の部分拡大図(b)及び同(c)である。It is the front view (a) of several gas purification apparatuses which concern on 1st embodiment of this invention, and the partial enlarged view (b) of the same apparatus, and the same (c). 本発明の第二実施形態に係る気体浄化装置の背面図である。It is a rear view of the gas purification apparatus which concerns on 2nd embodiment of this invention. 本発明の第二実施形態に係る気体浄化装置の断面図である。It is a cross-sectional view of a gas purification device according to a second embodiment of the present invention. 本発明の第二実施形態に係る気体浄化装置の作用図である。FIG. 4 is an action diagram of the gas purifier according to the second embodiment of the present invention; 本発明の第二実施形態に係る気体浄化装置の斜視図である。It is a perspective view of the gas purifier which concerns on 2nd embodiment of this invention. 本発明の第二実施形態に係る気体浄化装置の斜視部分断面図である。It is a perspective partial sectional view of the gas purifier which concerns on 2nd embodiment of this invention. 本発明の第二実施形態に係る気体浄化装置の斜視部分断面図である。It is a perspective partial sectional view of the gas purifier which concerns on 2nd embodiment of this invention. 本発明の第二実施形態に係る気体浄化装置を利用する本発明の第三実施形態に係る自走式気体浄化装置の斜視図である。It is a perspective view of the self-propelled gas purifier which concerns on 3rd embodiment of this invention using the gas purifier which concerns on 2nd embodiment of this invention. 本発明の第二実施形態に係る気体浄化装置を利用する本発明の第三実施形態に係る自走式気体浄化装置の斜視部分断面図である。It is a perspective partial sectional view of the self-propelled gas purifying apparatus based on 3rd embodiment of this invention using the gas purifying apparatus based on 2nd embodiment of this invention. 本発明の第四実施形態に係る気体活性化装置を利用する本発明の第五実施形態に係る固体浄化装置の正面図(a)及び同装置の背面図(b)である。It is the front view (a) and rear view (b) of the solid purification apparatus based on 5th embodiment of this invention using the gas activation apparatus based on 4th embodiment of this invention. 本発明の第四実施形態に係る気体活性化装置を利用する本発明の第五実施形態に係る固体浄化装置の斜視図(a)及び同(b)である。It is the perspective view (a) and the same (b) of the solid purification apparatus based on 5th embodiment of this invention using the gas activation apparatus based on 4th embodiment of this invention. 本発明の第四実施形態に係る気体活性化装置を利用する本発明の第五実施形態に係る固体浄化装置の分解斜視図である。FIG. 11 is an exploded perspective view of a fifth embodiment of a solids purification device utilizing a fourth embodiment of the gas activation device of the present invention; 本発明の第四実施形態に係る気体活性化装置を利用する本発明の第五実施形態に係る固体浄化装置の分解斜視図である。FIG. 11 is an exploded perspective view of a fifth embodiment of a solids purification device utilizing a fourth embodiment of the gas activation device of the present invention; 本発明の第四実施形態に係る気体活性化装置を利用する本発明の第五実施形態に係る固体浄化装置と密閉容器との組み合わせの斜視図である。FIG. 10 is a perspective view of a combination of a solids purification device and closed vessel according to a fifth embodiment of the present invention utilizing a gas activation device according to a fourth embodiment of the present invention; 本発明の第四実施形態に係る気体活性化装置を利用する本発明の第五実施形態に係る固体浄化装置と密閉容器との組み合わせの作用図である。FIG. 11 is a functional diagram of a combination of a solid purifying device according to a fifth embodiment of the present invention and a closed vessel utilizing a gas activation device according to the fourth embodiment of the present invention; 本発明の第一実施形態に係る気体浄化装置を利用する本発明の第六実施形態に係る空気調節浄化装置の斜視断面図(a)及び同空気調節浄化装置の部分拡大図(b)である。It is the perspective sectional view (a) of the air conditioning purification apparatus based on 6th embodiment of this invention using the gas purification apparatus based on 1st embodiment of this invention, and the partial enlarged view (b) of the same air conditioning purification apparatus. . 本発明の第八実施形態に係るプラズマ発生装置を利用する本発明の第一実施形態に係る気体浄化装置の斜視図(a)、同気体浄化装置の斜視断面図(b)及び同装置の断面図(c)である。The perspective view (a) of the gas purifying device according to the first embodiment of the present invention using the plasma generator according to the eighth embodiment of the present invention, the perspective cross-sectional view (b) of the same gas purifying device, and the cross section of the same device It is a figure (c). 本発明の第一実施形態に係るプラズマ発生装置の作用図(a)及び同(b)である。It is operation drawing (a) and the same (b) of the plasma generator which concerns on 1st embodiment of this invention. 本発明の第一実施形態に係るプラズマ発生装置の他の態様の部分拡大図(a)、同(b)、同(c)、同(d)及び同(e)である。They are partial enlarged views (a), (b), (c), (d) and (e) of other aspects of the plasma generator according to the first embodiment of the present invention. 本発明の第一実施形態に係るプラズマ発生装置の他の態様の部分拡大図(a)、同(b)、同(c)、同(d)及び同(e)である。They are partial enlarged views (a), (b), (c), (d) and (e) of other aspects of the plasma generator according to the first embodiment of the present invention.
 本発明を実施するための形態について、図面を参照しながら、説明する。本発明を実施するための形態として、例えば、第一実施形態と第二実施形態と第三実施形態と第四実施形態と第五実施形態と第六実施形態と第七実施形態と第八実施形態とがある。 A mode for carrying out the present invention will be described with reference to the drawings. As modes for carrying out the present invention, for example, the first embodiment, the second embodiment, the third embodiment, the fourth embodiment, the fifth embodiment, the sixth embodiment, the seventh embodiment, and the eighth embodiment There is a form.
[図面の詳細な説明]
 図面は、図1から図43まである。これらの詳細について説明すると、以下のとおりである。図1から図24(図8(c)を除く。)まで及び図41から図43までは、本発明の第一実施形態を示す図面であり、図25から図30までは本発明の第二実施形態を示す図面であり、図31及び図32は本発明の第三実施形態を示す図面であり、図33から図38までは本発明の第四実施形態及び第五実施形態を示す図面であり、図39は本発明の第六実施形態を示す図面であり、図8(c)は本発明の第七実施形態を示す図面であり、図40は本発明の第八実施形態を示す図面である。
[Detailed Description of Drawings]
The drawings are from FIG. 1 to FIG. The details of these are as follows. 1 to 24 (excluding FIG. 8(c)) and FIGS. 41 to 43 are drawings showing the first embodiment of the present invention, and FIGS. 25 to 30 are the second embodiment of the present invention. 31 and 32 are drawings showing the third embodiment of the present invention, and FIGS. 33 to 38 are drawings showing the fourth and fifth embodiments of the present invention. FIG. 39 is a drawing showing a sixth embodiment of the present invention, FIG. 8(c) is a drawing showing a seventh embodiment of the present invention, and FIG. 40 is a drawing showing an eighth embodiment of the present invention. is.
 図1は、本発明の第一実施形態に係るプラズマ発生装置の正面を示す正面図(a)と、(a)中の破線で囲んだ部分を拡大して示す部分拡大図(b)と、からなるものである。 FIG. 1 is a front view (a) showing the front of the plasma generator according to the first embodiment of the present invention, a partial enlarged view (b) showing an enlarged portion surrounded by a broken line in (a), It consists of
 図2は、本発明の第一実施形態に係るプラズマ発生装置の作用を示す作用図(a)と、比較例に係るプラズマ発生装置の作用を示す作用図(b)と、からなるものである。 FIG. 2 consists of an operation diagram (a) showing the operation of the plasma generator according to the first embodiment of the present invention and an operation diagram (b) showing the operation of the plasma generator according to the comparative example. .
 図3は、本発明の第一実施形態に係るプラズマ発生装置の側面を示す側面図(a)と、本発明の第一実施形態に係るプラズマ発生装置の作用を示す作用図(b)と、からなるものである。 FIG. 3 is a side view (a) showing the side surface of the plasma generator according to the first embodiment of the present invention, an action diagram (b) showing the action of the plasma generator according to the first embodiment of the present invention, It consists of
 図4は、本発明の第一実施形態に係るプラズマ発生装置の正面、平面及び右側面を示す斜視図(a)である。この図において、斜視部分断面図である図5のための切断線を一点鎖線によりa-a線として示す。 FIG. 4 is a perspective view (a) showing the front, top, and right side of the plasma generator according to the first embodiment of the present invention. In this figure, the cutting line for FIG. 5, which is a perspective partial cross-sectional view, is shown as line aa by a dashed line.
 図5は、本発明の第一実施形態に係るプラズマ発生装置を部分的に図4中のa-a線に沿って切断したものの正面、平面及び右側面を示す斜視部分断面図である。この図において、図6及び図7において省略する部分を示す省略線を波状の一点鎖線により示す。 FIG. 5 is a perspective partial cross-sectional view showing the front, top, and right side of the plasma generator according to the first embodiment of the present invention, partially cut along line aa in FIG. In this figure, omitted lines indicating portions omitted in FIGS. 6 and 7 are indicated by wavy dashed lines.
 図6は、本発明の第一実施形態に係るプラズマ発生装置の作用を示す作用図(a)と、比較例に係るプラズマ発生装置の作用を示す作用図(b)と、からなるものである。 FIG. 6 consists of an operation diagram (a) showing the operation of the plasma generator according to the first embodiment of the present invention and an operation diagram (b) showing the operation of the plasma generator according to the comparative example. .
 図7は、本発明の第一実施形態に係るプラズマ発生装置のうち、対向する一対の反射鏡を有するものの作用を示す作用図である。 FIG. 7 is an operation diagram showing the operation of the plasma generator according to the first embodiment of the present invention, which has a pair of opposing reflecting mirrors.
 図8は、本発明の第一実施形態に係るプラズマ発生装置の他の態様を示す斜視図(a1)及び斜視断面図(a2)の組み合わせ(a)、同装置の他の態様の斜視図(b1)及び斜視断面図(b2)の組み合わせ(b)並びに本発明の第七実施形態に係るプラズマ発生装置の斜視図(c1)及び斜視断面図(c2)の組み合わせ(c)からなるものである。(a)は、本発明の第一実施形態に係るプラズマ発生装置で環状の第一電極と棒状の第二電極とを備えるものを示す斜視図(a1)と、同装置を(a1)中のb-b線に沿って切断したものを示す斜視断面図(a2)と、の組み合わせである。(b)は、本発明の第一実施形態に係るプラズマ発生装置で板状の第一電極と棒状の第二電極とを備えるものを示す斜視図(b1)と、同装置を(b1)中のc-c線に沿って切断したものを示す斜視断面図(b2)と、の組み合わせである。(c)は、本発明の第七実施形態に係るプラズマ発生装置を示す斜視図(c1)と、同装置を(c1)中のd-d線に沿って切断したものを示す斜視断面図(c2)と、の組み合わせである。 FIG. 8 is a combination (a) of a perspective view (a1) and a perspective cross-sectional view (a2) showing another aspect of the plasma generator according to the first embodiment of the present invention, and a perspective view ( It consists of a combination (b) of b1) and a perspective cross-sectional view (b2) and a combination (c) of a perspective view (c1) and a perspective cross-sectional view (c2) of the plasma generator according to the seventh embodiment of the present invention. . (a) is a perspective view (a1) showing a plasma generator according to the first embodiment of the present invention, which includes an annular first electrode and a rod-shaped second electrode; and a perspective cross-sectional view (a2) taken along line bb. (b) is a perspective view (b1) showing a plasma generator according to the first embodiment of the present invention comprising a plate-shaped first electrode and a rod-shaped second electrode, and (b1) showing the device in the middle of (b1) and a perspective cross-sectional view (b2) taken along the line cc of FIG. (c) is a perspective view (c1) showing a plasma generation device according to a seventh embodiment of the present invention, and a perspective cross-sectional view showing the device cut along the dd line in (c1) ( and c2).
 図9は、本発明の第一実施形態に係るプラズマ発生装置等と関係する第二電極の他の態様を示す図面(a)、同(b)、同(c)、同(d)及び同(e)からなるものである。(a)は、棒状の第二電極を示す正面図である。(b)は、螺旋状の第二電極を示す正面図である。(c)は、棒状の第二電極と螺旋状の触媒層との組み合わせを示す正面図である。(d)は、棒状の第二電極と環状の触媒層との組み合わせを示す正面図であって、その一部分の断面を併せて示す部分断面図でもある。(e)は、雄螺子状の第二電極とその溝部に配置された触媒層との組み合せの一部分を拡大するとともに、他の部分を省略して示す部分拡大正面図であって、当該一部分のうち更にその一部分の断面を併せて示す部分断面図でもある。 FIG. 9 shows drawings (a), (b), (c), (d) and the (e). (a) is a front view showing a rod-shaped second electrode. (b) is a front view showing a spiral second electrode. (c) is a front view showing a combination of a rod-shaped second electrode and a spiral catalyst layer. (d) is a front view showing a combination of a rod-shaped second electrode and an annular catalyst layer, and is also a partial cross-sectional view showing a cross section of a part thereof. (e) is a partially enlarged front view showing a combination of the male screw-shaped second electrode and the catalyst layer arranged in the groove part thereof, while omitting the other part; It is also a partial cross-sectional view showing a cross-section of a part thereof.
 図10は、本発明の第一実施形態に係る気体浄化装置の正面を示す正面図(a)と、(a)中の破線で囲んだ部分を拡大して示す部分拡大図(b)と、からなるものである。この図において、断面図である図12及び斜視断面図である図17のための切断線を一点鎖線によりe-e線として示す。以下、図11、図15及び図16において同じ。 FIG. 10 is a front view (a) showing the front of the gas purifier according to the first embodiment of the present invention, a partial enlarged view (b) showing an enlarged portion surrounded by a broken line in (a), It consists of In this figure, the cutting line for the cross-sectional view of FIG. 12 and the perspective cross-sectional view of FIG. The same applies to FIGS. 11, 15 and 16 below.
 図11は、本発明の第一実施形態に係る気体浄化装置の背面を示す背面図(a)と、(a)中の破線で囲んだ部分を拡大して示す部分拡大図(b)と、からなるものである。 FIG. 11 is a rear view (a) showing the back of the gas purifier according to the first embodiment of the present invention, a partial enlarged view (b) showing an enlarged portion surrounded by a broken line in (a), It consists of
 図12は、本発明の第一実施形態に係る気体浄化装置を図10(a)中のe―e線に沿って切断したものを示す断面図(a)と、同装置の作用を示す作用図(b)と、からなるものである。この図において、浄化しようとする気体(本発明の第三実施形態に係る気体活性化装置において、「活性化しようとする気体」と読み替えて準用する場合を含む。)が流れる方向を黒矢印付きの破線により示す。以下、図13、図14、図15、図16、図17、図18、図26、図27、図28、図29、図30、図31、図32、図34、図35、図36、図38、図39及び図40において同じ。また、この図において、熱が伝わる方向を白矢印付きの破線により示す。以下、図21、図22及び図41において同じ。 FIG. 12 is a cross-sectional view (a) showing the gas purification device according to the first embodiment of the present invention cut along the line ee in FIG. It consists of FIG. In this figure, the direction in which the gas to be purified (including the case where it is applied mutatis mutandis by reading "the gas to be activated" in the gas activation device according to the third embodiment of the present invention) flows is indicated by a black arrow. is indicated by a dashed line. 13, 14, 15, 16, 17, 18, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, Same in FIGS. 38, 39 and 40. Also, in this figure, the direction of heat transfer is indicated by a dashed line with a white arrow. The same applies to FIGS. 21, 22 and 41 below.
 図13は、本発明の第一実施形態に係る気体浄化装置で二本の第二電極を備えるものを図10(a)中のe―e線に準ずる切断線に沿って切断したものを示す断面図(a)と、本発明の第一実施形態に係る気体浄化装置でフィルタを備えないものを図10(a)中のe―e線に準ずる切断線に沿って切断したものを示す断面図(b)と、からなるものである。 FIG. 13 shows a gas purifier according to the first embodiment of the present invention, which is provided with two second electrodes, cut along a cutting line corresponding to line ee in FIG. 10(a). Cross-sectional view (a) and a cross-section showing a gas purifier according to the first embodiment of the present invention without a filter cut along a cutting line corresponding to the line ee in FIG. 10(a) It consists of FIG.
 図14は、本発明の第一実施形態に係る気体浄化装置で第一フィルタと第二フィルタとを備えるものを図10(a)中のe―e線に準ずる切断線に沿って切断したものを示す断面図(a)と、本発明の第一実施形態に係る気体浄化装置で第一フィルタと第三フィルタとを備えるものを図10(a)中のe―e線に準ずる切断線に沿って切断したものを示す断面図(b)と、からなるものである。 FIG. 14 is a gas purifying device according to the first embodiment of the present invention, which is provided with a first filter and a second filter, cut along a cutting line corresponding to line ee in FIG. 10(a). and a gas purifier according to the first embodiment of the present invention, which includes a first filter and a third filter, along a cutting line corresponding to the ee line in FIG. 10 (a) and a cross-sectional view (b) taken along the line.
 図15は、本発明の第一実施形態に係る気体浄化装置の正面、平面及び右側面を示す斜視図である。この図において、斜視断面図である図17のための切断線を一点鎖線によりf-f線として示す。以下、図16において同じ。また、この図において、第二電極が延びる方向を白矢印付きの破線により示す。以下、図16、図17及び図40(b)において同じ。 FIG. 15 is a perspective view showing the front, top, and right side of the gas purification device according to the first embodiment of the present invention. In this figure, the cutting line for FIG. 17, which is a perspective cross-sectional view, is shown as the ff line by the dashed-dotted line. The same applies to FIG. 16 below. Also, in this figure, the direction in which the second electrode extends is indicated by a dashed line with a white arrow. The same applies to FIGS. 16, 17 and 40(b).
 図16は、本発明の第一実施形態に係る気体浄化装置の背面、左側面及び平面を示す斜視図である。 FIG. 16 is a perspective view showing the back, left side and top of the gas purification device according to the first embodiment of the present invention.
 図17は、本発明の第一実施形態に係る気体浄化装置を図15及び図16中のe―e線に沿って切断し、更に図15及び図16中のf―f線に沿って切断したものの正面、平面及び右側面を示す斜視断面図である。 FIG. 17 shows the gas purifier according to the first embodiment of the present invention cut along the ee line in FIGS. 15 and 16 and further cut along the ff line in FIGS. It is a perspective sectional view showing the front, the top, and the right side of what was done.
 図18は、本発明の第一実施形態に係る気体浄化装置等と関係する第一フィルタの正面、平面及び右側面を示す斜視図(a)と、(a)中の破線で囲んだ部分を拡大して示す部分拡大図(b)と、(b)図中の破線で囲んだ部分を拡大して示す部分拡大図(c)と、からなるものである。 FIG. 18 is a perspective view (a) showing the front, plane, and right side of the first filter related to the gas purifier etc. according to the first embodiment of the present invention, and the part surrounded by the broken line in (a) It consists of a partial enlarged view (b) showing an enlarged view and a partial enlarged view (c) showing an enlarged portion surrounded by a broken line in (b).
 図19は、本発明の第一実施形態に係る気体浄化装置を分解したものの正面、平面及び右側面を示す斜視図である。なお、図中の一点鎖線は、切断線を示す場合を除き、配置における要素間又は部分間の対応関係を示すものである。以下、図20から図22までにおいて同じ。また、図中のギリシャ文字α,β,γ,δも、配置における要素間又は部分間の対応関係を示すものである。 FIG. 19 is a perspective view showing the front, top, and right side of the disassembled gas purification device according to the first embodiment of the present invention. It should be noted that dashed-dotted lines in the drawings indicate correspondence relationships between elements or portions in the arrangement, except for the case of cutting lines. The same applies to FIGS. 20 to 22 below. The Greek letters α, β, γ, and δ in the figure also indicate correspondence between elements or portions in the arrangement.
 図20は、本発明の第一実施形態に係る気体浄化装置を分解したものの正面を示す正面図(a)と、同装置を(a)中のg―g線に沿って切断したものを示す断面図(b)と、同装置を(a)中のh―h線に沿って切断したものを示す断面図(c)と、からなるものである。 FIG. 20 shows a front view (a) showing the front of the disassembled gas purification device according to the first embodiment of the present invention, and a view of the same device cut along the line gg in (a). It consists of a cross-sectional view (b) and a cross-sectional view (c) showing the device cut along line hh in (a).
 図21は、本発明の第一実施形態に係る気体浄化装置を分解したものの底面を示す底面図であって、第一電極を示す部分(a)と、第一金属膜層を示す部分(b)と、第一ガラス層を示す部分(c)と、第二電極、第一スペーサ及び第二スペーサ並びに第一フィルタを示す部分(d)と、からなるものである。なお、(a)、(b)及び(c)は、透過図でもある。 FIG. 21 is a bottom view showing the bottom of the disassembled gas purifying device according to the first embodiment of the present invention, showing a portion (a) showing the first electrode and a portion (b) showing the first metal film layer. ), a portion (c) representing the first glass layer, and a portion (d) representing the second electrode, the first spacer, the second spacer and the first filter. Note that (a), (b) and (c) are also transparent views.
 図22は、本発明の第一実施形態に係る気体浄化装置を分解したものの底面を示す底面図であって、第二電極、第一スペーサ及び第二スペーサ並びに第一フィルタを示す部分(a)と、第二ガラス層を示す部分(b)と、第二金属膜層を示す部分(c)と、第三電極を示す部分(d)と、からなるものである。なお、(b)、(c)及び(d)は、透過図でもある。 FIG. 22 is a bottom view showing the bottom of the disassembled gas purifier according to the first embodiment of the present invention, showing the second electrode, the first spacer, the second spacer, and the first filter (a). , a portion (b) representing the second glass layer, a portion (c) representing the second metal film layer, and a portion (d) representing the third electrode. Note that (b), (c) and (d) are also transparent views.
 図23は、本発明の第一実施形態に係る複数の気体浄化装置を互いに組み合わせる過程にあるものの正面、平面及び右側面を示す斜視図(a)と、(a)中の破線で囲んだ部分を拡大して示す部分拡大図(b)と、本発明の第一実施形態に係る複数の気体浄化装置を互いに組み合わせたものの正面、平面及び右側面を示す斜視図(c)と、からなるものである。 FIG. 23 is a perspective view (a) showing the front, top, and right side of a plurality of gas purifiers according to the first embodiment of the present invention in the process of being combined with each other, and a portion surrounded by a broken line in (a). and a perspective view (c) showing the front, plane and right side of a combination of a plurality of gas purifiers according to the first embodiment of the present invention. is.
 図24は、本発明の第一実施形態に係る複数の気体浄化装置を互いに組み合わせたものの正面を示す正面図(a)と、(a)中の破線で囲んだ部分を拡大して示す部分拡大図であって、連結手段を強調するもの(b)と、(a)中の破線で囲んだ部分を拡大して示す部分拡大図であって、一部を透過させて第二電極を強調するもの(c)と、からなるものである。 FIG. 24 is a front view (a) showing the front of a combination of a plurality of gas purifiers according to the first embodiment of the present invention, and a partially enlarged view showing an enlarged portion surrounded by a broken line in (a). It is a diagram (b) emphasizing the connecting means, and a partial enlarged view showing an enlarged portion surrounded by a broken line in (a), partially transparent and emphasizing the second electrode. It consists of thing (c).
 図25は、本発明の第二実施形態に係る気体浄化装置の背面を示す背面図である。この図において、断面図である図26のための切断線を一点鎖線によりi-i1線として示すとともに、斜視部分断面図である図29及び図30のための切断線を一点鎖線によりi―i2線として示す。以下、図28において同じ。また、この図において、第二電極が回転する方向を白矢印付きの破線により示す。以下、図28及び図29において同じ。 FIG. 25 is a rear view showing the rear side of the gas purification device according to the second embodiment of the present invention. In this figure, the cutting line for the sectional view of FIG. 26 is indicated by a one-dot chain line as line i-i1, and the cutting line for the perspective partial sectional views of FIGS. Shown as a line. The same applies to FIG. 28 below. Also, in this figure, the direction in which the second electrode rotates is indicated by a dashed line with a white arrow. The same applies to FIGS. 28 and 29 below.
 図26は、本発明の第二実施形態に係る気体浄化装置を図25中のi-i1線に沿って切断したものを示す断面図である。 FIG. 26 is a cross-sectional view showing the gas purifying device according to the second embodiment of the present invention cut along line i-i1 in FIG.
 図27は、本発明の第二実施形態に係る気体浄化装置の作用を示す作用図である。この図において、紫外線が進む方向を白矢印付きの破線により示す。 FIG. 27 is an operation diagram showing the operation of the gas purification device according to the second embodiment of the present invention. In this figure, the direction in which ultraviolet rays travel is indicated by a dashed line with a white arrow.
 図28は、本発明の第二実施形態に係る気体浄化装置の背面、左側面及び平面を示す斜視図である。 FIG. 28 is a perspective view showing the back, left side and top of the gas purification device according to the second embodiment of the present invention.
 図29は、本発明の第二実施形態に係る気体浄化装置を図25及び図28中のi―i2線に沿って切断したものの背面、左側面及び平面を示す斜視部分断面図である。 FIG. 29 is a perspective partial cross-sectional view showing the back, left side and top of the gas purifier according to the second embodiment of the present invention cut along line i-i2 in FIGS. 25 and 28. FIG.
 図30は、本発明の第二実施形態に係る気体浄化装置を図25及び図28中のi―i2線に沿って切断したものの正面、左側面及び平面を示す斜視部分断面図である。 FIG. 30 is a perspective partial cross-sectional view showing the front, left side and top of the gas purifier according to the second embodiment of the present invention cut along line i-i2 in FIGS. 25 and 28. FIG.
 図31は、本発明の第二実施形態に係る気体浄化装置を利用する本発明の第三実施形態に係る自走式気体浄化装置の正面、右側面及び底面を示す斜視図である。この図において、斜視部分断面図である図32のための切断線を一点鎖線によりj-j線として示す。 Fig. 31 is a perspective view showing the front, right side and bottom of a self-propelled gas purifier according to the third embodiment of the present invention using the gas purifier according to the second embodiment of the present invention. In this figure, the cutting line for FIG. 32, which is a perspective partial cross-sectional view, is shown as the jj line by the dashed-dotted line.
 図32は、本発明の第二実施形態に係る気体浄化装置を利用する本発明の第三実施形態に係る自走式気体浄化装置を図31中のj-j線に沿って切断したものの正面、右側面及び底面を示す斜視部分断面図である。 FIG. 32 is a front view of the self-propelled gas purifying device according to the third embodiment of the present invention using the gas purifying device according to the second embodiment of the present invention, cut along the jj line in FIG. , a perspective partial cross-sectional view showing the right side and the bottom.
 図33は、本発明の第四実施形態に係る気体活性化装置を利用する本発明の第五実施形態に係る固体浄化装置の正面を示す正面図(a)と、同固体浄化装置の背面を示す背面図(b)と、からなるものである。 FIG. 33 shows a front view (a) showing the front of a solid purification device according to a fifth embodiment of the present invention using a gas activation device according to the fourth embodiment of the present invention, and a rear view of the same solid purification device. It consists of a rear view (b) shown.
 図34は、本発明の第四実施形態に係る気体活性化装置を利用する本発明の第五実施形態に係る固体浄化装置の背面、底面及び左側面を示す斜視図(a)と、同固体浄化装置の正面、平面及び右側面を示す斜視図(b)と、からなるものである。 FIG. 34 is a perspective view (a) showing the back, bottom and left side of a solid purifier according to the fifth embodiment of the present invention using the gas activator according to the fourth embodiment of the present invention, and and a perspective view (b) showing the front, top, and right side of the purifier.
 図35は、本発明の第四実施形態に係る気体活性化装置を利用する本発明の第五実施形態に係る固体浄化装置を分解したものの正面、平面及び右側面を示す斜視図である。 FIG. 35 is a perspective view showing the front, top and right side of an exploded solid purification device according to a fifth embodiment of the present invention that utilizes the gas activation device according to the fourth embodiment of the present invention.
 図36は、本発明の第四実施形態に係る気体活性化装置を利用する本発明の第五実施形態に係る固体浄化装置を分解したものの背面、右側面及び底面を示す斜視図である。 FIG. 36 is a perspective view showing the back, right side and bottom of an exploded solid purification device according to the fifth embodiment of the present invention that utilizes the gas activation device according to the fourth embodiment of the present invention.
 図37は、本発明の第四実施形態に係る気体活性化装置を利用する本発明の第五実施形態に係る固体浄化装置及び密閉容器の組み合わせの正面、右側面及び底面を示す斜視図である。なお、密閉容器の一部を透過させて、密閉容器の内部の状態を示している。以下、図38において同じ。また、この図において、密閉容器の扉が開閉することを白矢印付き破線により示す。 FIG. 37 is a front, right side and bottom perspective view of a combination of a solids purification device and a closed vessel according to a fifth embodiment of the present invention utilizing a gas activation device according to the fourth embodiment of the present invention; . A part of the sealed container is shown through to show the state of the inside of the sealed container. The same applies to FIG. 38 below. Also, in this figure, the opening and closing of the door of the sealed container is indicated by a dashed line with a white arrow.
 図38は、本発明の第四実施形態に係る気体活性化装置を利用する本発明の第五実施形態に係る固体浄化装置及び密閉容器の組み合わせの作用を示す作用図である。 FIG. 38 is an operation diagram showing the operation of the combination of the solid purifier and closed container according to the fifth embodiment of the present invention using the gas activation apparatus according to the fourth embodiment of the present invention.
 図39は、本発明の第一実施形態に係る気体浄化装置を利用する本発明の第六実施形態に係る空気調節浄化装置を水平面に対して垂直に交わる平面で切断したものの正面、右側面及び底面を示す斜視断面図(a)と、(a)中の破線で囲んだ部分を拡大して示す部分拡大図(b)と、からなるものである。 FIG. 39 shows the front, right side and right side of the air conditioning purification device according to the sixth embodiment of the present invention using the gas purification device according to the first embodiment of the present invention cut along a plane perpendicular to the horizontal plane. It consists of a perspective cross-sectional view (a) showing the bottom surface and a partially enlarged view (b) showing an enlarged portion surrounded by a broken line in (a).
 図40は、本発明の第一実施形態に係るプラズマ発生装置に代えて本発明の第八実施形態に係るプラズマ発生装置を利用する本発明の第一実施形態に係る気体浄化装置の正面、平面及び右側面を示す斜視図(a)で、斜視断面図である(b)及び断面図である(c)のための切断線を一点鎖線によりk-k線として示すものと、同気体浄化装置を(a)中のk-k線に沿って切断したものの正面、平面及び右側面を示す斜視断面図(b)と、同装置を(a)中のk-k線に沿って切断したものの断面図(c)である。 FIG. 40 is a front and plan view of a gas purifier according to the first embodiment of the present invention, which uses the plasma generator according to the eighth embodiment of the present invention instead of the plasma generator according to the first embodiment of the present invention. And in the perspective view (a) showing the right side, the cutting line for the perspective cross-sectional view (b) and the cross-sectional view (c) is indicated by a dashed dotted line as a kk line, and the same gas purification device A perspective cross-sectional view (b) showing the front, top and right side of the device cut along the kk line in (a), and the device cut along the kk line in (a) It is sectional drawing (c).
 図41は、本発明の第一実施形態に係るプラズマ発生装置でより好ましい態様のものの作用を示す作用図(a)と、同装置で当該より好ましい態様のものと対比するためのものの作用を示す作用図(b)と、からなるものである。(a)は、本発明の第一実施形態に係るプラズマ発生装置でより好ましい態様のものが熱を受けてある状態(a1)から他の状態(a2)へと変化することを示すものである。(b)は、同装置で当該より好ましい態様のものと対比するためのものが熱を受けてある状態(b1)から他の状態(b2)へと変化することを示すものである。なお、この図において、(a1)及び(a2)間並びに(b1)及び(b2)間の層と層との対応関係を破線により示す。 FIG. 41 is a working diagram (a) showing the action of the plasma generator according to the first embodiment of the present invention in a more preferred mode, and shows the action of the same device for comparison with the more preferred mode. Operation diagram (b) and. (a) shows that the more preferable aspect of the plasma generator according to the first embodiment of the present invention changes from a state (a1) to another state (a2) by receiving heat. . (b) shows that the object to be compared with the more preferred embodiment of the same device changes from a state (b1) to another state (b2) by receiving heat. In this figure, broken lines indicate correspondence between layers between (a1) and (a2) and between (b1) and (b2).
 図42は、本発明の第一実施形態に係るプラズマ発生装置の他の態様の一部を拡大して示す部分拡大図(a)と、同(b)と、同(c)と、同(d)と、同(e)と、からなるものである。(a)は、拡大されたある部分(a1)と拡大された他の部分(a2)との組み合わせであり、(b)から(e)もこの例による。 FIG. 42 is a partially enlarged view (a), (b), (c) and ( d) and (e). (a) is a combination of an enlarged part (a1) and another enlarged part (a2), and (b) to (e) are also according to this example.
 図43は、本発明の第一実施形態に係るプラズマ発生装置の他の態様の一部を拡大して示す部分拡大図(a)と、同(b)と、同(c)と、同(d)と、同(e)と、からなるものである。(a)は、拡大されたある部分(a1)と拡大された他の部分(a2)との組み合わせであり、(b)から(e)もこの例による。 FIG. 43 is a partial enlarged view (a), (b), (c) and ( d) and (e). (a) is a combination of an enlarged part (a1) and another enlarged part (a2), and (b) to (e) are also according to this example.
第一実施形態First embodiment
[気体浄化装置1]
 気体浄化装置1は、室内の空気その他の浄化しようとする気体Gを、内部に入れて浄化してから外部に出すことにより、浄化した気体を得るためのものである。すなわち、気体浄化装置1は、気体浄化機能を有するものである。
[Gas purification device 1]
The gas purifier 1 is for obtaining a purified gas by putting indoor air or other gas G to be purified into the inside, purifying it, and then letting it out. That is, the gas purification device 1 has a gas purification function.
 なお、この明細書にいう「浄化しようとする気体G」には、浄化しようとする気体そのもののほか、これを現に浄化した気体と、これらの間の状態にある気体と、を含むことがあるものとする。このことは、図面においても同様である。 In addition, the "gas G to be purified" referred to in this specification may include not only the gas itself to be purified, but also the gas that has actually been purified and the gas in the state between these. shall be This also applies to the drawings.
 浄化しようとする気体として、例えば、室内の空気のほか、酸素マスク又は人工呼吸器における感染症患者からの呼気、空気調節装置からの冷媒ガス、内燃機関からの排気ガスが挙げられる。 Gases to be purified include, for example, indoor air, exhaled air from infectious patients in oxygen masks or respirators, refrigerant gas from air conditioners, and exhaust gas from internal combustion engines.
 この明細書にいう「室内」には、住屋、病院、学校、店舗、事業所、工場、倉庫その他の土地に定着している建物の室内のほか、自動車、トロリーバス、路面電車、鉄道車両、船舶、航行機その他の人が乗ることができる機器の室内を含むものとする。なお、ここでいう「自動車」として、例えば、バス、タクシーその他の事業用自動車、自家用自動車が該当し、ここでいう「航空機」として、例えば、飛行機、回転翼航空機、滑空機、飛行船が該当する。また、ここでいう「鉄道車両」には、モノレール、自動案内軌条式旅客輸送システム、リニアモーターカーを含むものとする。 The "indoors" referred to in this specification include the indoors of houses, hospitals, schools, shops, offices, factories, warehouses and other buildings fixed on the land, as well as automobiles, trolleybuses, streetcars, and railway vehicles. , vessels, craft and other equipment occupied by persons. The term "automobile" as used herein includes, for example, buses, taxis, other commercial vehicles, and private automobiles, and the term "aircraft" as used herein includes, for example, airplanes, rotorcraft, gliders, and airships. . The term "railway vehicle" used herein includes monorails, automatic guide rail passenger transport systems, and linear motor cars.
 気体浄化装置1は、全体として、平板状のものであり、例えば、ハーモニカのように、人の掌に乗せることができる程度の大きさのものであることが好ましい。もっとも、気体浄化装置1は、全体として、円筒状のものであってもよい。 The gas purifier 1 is generally flat, and preferably has a size that can be placed on a person's palm, such as a harmonica. However, the gas purification device 1 may be cylindrical as a whole.
 気体浄化装置1が平板状のものである場合にあっては、気体浄化装置1の大きさ等は、次のとおりである。 When the gas purifying device 1 is flat, the size of the gas purifying device 1 is as follows.
 気体浄化装置1の幅は、40~160mmであることが好ましく、60~140mmであることがより好ましく、80~120mmであることが更により好ましい。 The width of the gas purification device 1 is preferably 40-160 mm, more preferably 60-140 mm, and even more preferably 80-120 mm.
 気体浄化装置1の高さは、4~16mmであることが好ましく、6~14mmであることがより好ましく、8~12mmであることが更により好ましい。 The height of the gas purification device 1 is preferably 4-16 mm, more preferably 6-14 mm, and even more preferably 8-12 mm.
 気体浄化装置1の奥行きは、20~80mmであることが好ましく、30~70mmであることがより好ましく、40~60mmであることが更により好ましい。 The depth of the gas purification device 1 is preferably 20-80 mm, more preferably 30-70 mm, and even more preferably 40-60 mm.
 気体浄化装置1の重さは、5~35gであることが好ましく、10~30gであることがより好ましく、15~25gであることが更により好ましい。 The weight of the gas purification device 1 is preferably 5-35 g, more preferably 10-30 g, and even more preferably 15-25 g.
 このように、気体浄化装置1は、小型かつ軽量のものであるため、例えば、室内の空気を循環させながら調整する空気調節装置に事前又は事後に容易に取り付けることができ、当該空気調節装置をして空気浄化機能を有するものとすることができる。さらに、自走式装置に取り付けて、その機能を拡大することもできる。もっとも、気体浄化装置1と流路に沿って風を送るための送風装置とを組み合わせて、気体浄化機能と送風機能とを併せて有する気体浄化装置とすることもできる。 As described above, since the gas purifying device 1 is small and lightweight, it can be easily attached to an air conditioner that adjusts the air in the room while circulating it, either before or after the installation. and have an air purification function. Furthermore, it can be attached to a self-propelled device to expand its functionality. However, the gas purifying device 1 and a blower for blowing air along the flow path can be combined to form a gas purifying device having both the gas purifying function and the blowing function.
 気体浄化装置1は、プラズマ発生装置10と、流路20と、を少なくとも備えるものである。これらのほか、気体浄化装置1は、例えば、フィルタ30を更に備えるものであることが好ましいが、フィルタ30を備えるものでなくてもよい。 The gas purifier 1 includes at least a plasma generator 10 and a flow path 20. In addition to these, the gas purifier 1 preferably further includes, for example, a filter 30 , but may not include the filter 30 .
[気体浄化装置1/プラズマ発生装置10]
 プラズマ発生装置10は、プラズマPを発生させるための装置として、気体浄化装置1の一部を構成するためのものである。
[Gas Purifier 1/Plasma Generator 10]
The plasma generator 10 is for forming a part of the gas purifier 1 as a device for generating plasma P. As shown in FIG.
 プラズマ発生装置10は、電極11とガラス層12と金属膜層13との組み合わせからなるものである。すなわち、プラズマ発生装置10は、例えば、一の電極11及びこれと対をなす他の電極11とからなる一対の電極Eと、ガラス層12と、金属膜層13と、を備えるものである。ここで、プラズマ発生装置10は、第一の一対の電極E1と、第二の一対の電極E2と、一対のガラス層12,12と、一対の金属膜層13,13とを備えるものであることが好ましい。 The plasma generator 10 consists of a combination of an electrode 11, a glass layer 12 and a metal film layer 13. That is, the plasma generator 10 includes, for example, a pair of electrodes E consisting of one electrode 11 and another electrode 11 paired therewith, a glass layer 12 and a metal film layer 13 . Here, the plasma generator 10 comprises a first pair of electrodes E1, a second pair of electrodes E2, a pair of glass layers 12, 12, and a pair of metal film layers 13, 13. is preferred.
[気体浄化装置1/プラズマ発生装置10/電極11]
 電極11は、電気伝導体からなり、互いの間に距離を隔てて配置され、これと対をなす他の電極11と併せて、一対の電極Eを構成するためのものである。
[Gas Purifier 1/Plasma Generator 10/Electrode 11]
The electrode 11 is made of an electric conductor, is arranged with a distance therebetween, and forms a pair of electrodes E together with another electrode 11 forming a pair therewith.
 一対の電極Eは、所定の電圧が加えられると放電し、これらの間にある空間SにおいてプラズマPを発生させる。 A pair of electrodes E discharges when a predetermined voltage is applied, generating plasma P in the space S between them.
 電極11は、電気伝導体のうち、例えば、金属からなるものが好ましいが、このほか、ステンレス(SUS)その他の合金からなるものであってもよい。 Among electrical conductors, the electrode 11 is preferably made of, for example, a metal, but may also be made of stainless steel (SUS) or other alloys.
 一対の電極Eにあっては、一の電極11と、これと対をなす他の電極11とが、互いの間にある空間Sにおいて、絶縁体である気体(以下単に「気体」ということがあるほか、特に「もとの気体」ということがある。)を挟んで配置される。すなわち、空間Sには、気体以外の物質(固体の粒子又は液体の粒子のいずれも除く。以下同じ。)が存在しないため、気体が存在することができる。 In the pair of electrodes E, one electrode 11 and the other electrode 11 paired therewith are filled with an insulating gas (hereinafter simply referred to as "gas") in a space S between them. In addition, it is sometimes called the "original gas".) is placed in between. That is, since there is no substance other than gas (excluding either solid particles or liquid particles; the same shall apply hereinafter) in the space S, gas can exist.
 一対の電極E間に電位差を与えて絶縁破壊を生じさせると放電が始まり、一対の電極E間の空間Sに存在する気体中を電流が流れるようになる。すなわち、当該気体を構成する原子又は分子が電離し、又は当該気体を構成する分子が解離を経て若しくは解離と同時に電離すること等によって、プラズマPが発生する。 When a potential difference is applied between the pair of electrodes E to cause dielectric breakdown, a discharge starts and current flows through the gas existing in the space S between the pair of electrodes E. That is, the plasma P is generated by ionizing atoms or molecules forming the gas, or by ionizing the molecules forming the gas through dissociation or simultaneously with the dissociation.
 なお、プラズマPは、電離した原子又は分子及び電離した電子のほか、当該気体を構成する分子から解離した原子であって、電離することなく中性のままであるもの、電離した電子が当該気体を構成する原子又は分子のうち電離することなく中性のままであるものと衝突することによって生じた陰イオン、同衝突等によって励起した原子又は分子その他の活性を有するものを含むものでもある。 In addition to the ionized atoms or molecules and the ionized electrons, the plasma P includes atoms dissociated from the molecules constituting the gas that remain neutral without being ionized. It also includes anions generated by colliding with atoms or molecules that remain neutral without ionization among the atoms or molecules that make up , atoms or molecules excited by the same collision, etc.
 プラズマPは、大気圧下において発生させたものであることが好ましく、かつ、常温下において発生させたものであることがより好ましい。もっとも、プラズマPは、減圧下において発生させたものであってもよく、高温下において発生させたものであってもよい。 The plasma P is preferably generated under atmospheric pressure, and more preferably under normal temperature. However, the plasma P may be generated under reduced pressure or under high temperature.
 プラズマPが発生すると、電離した電子が電離した原子又は分子と再結合する過程又は励起した電子がより低いエネルギー準位に遷移する過程において、電磁波を発するほか、もとの気体以外の他の気体であって、活性を有するもの(以下特に「新たな気体」ということがある。)が新たに生じる等の現象がみられる。 When plasma P is generated, in the process of recombination of ionized electrons with ionized atoms or molecules or the process of excited electrons transitioning to a lower energy level, in addition to emitting electromagnetic waves, gases other than the original gas are emitted. , and phenomena such as the generation of new active substances (hereinafter sometimes referred to as "new gases") are observed.
 プラズマPが発する電磁波は、例えば、次の場合に紫外線UVを含むものとなる。もとの気体が、窒素(N)であるか、又は窒素(N)を含むものである場合である。もとの気体が空気である場合にあっては、空気は窒素(N)を含む気体であるから、もとの気体が窒素(N)を含むものである場合に当たるため、紫外線UVが発生する。これをより詳しくみると、もとの気体が窒素(N)である場合又は窒素(N)を含むものである場合において、当該もとの気体が発する紫外線UVは、近紫外線のうち、その波長が300~380nmの範囲にあって、そのピーク波長が337nm付近にあるものを含むものとなる。また、このことは、他の気体、例えば、酸素(O)の存在にかかわらず、同様となる。以下もとの気体が窒素(N)である場合又はもとの気体が窒素(N)を含むものである場合(もとの気体が空気である場合を含む。)において「紫外線」というとき、特に近紫外線をいうことがあるものとする。なお、紫外線のうち、近紫外線を利用することによる利益は、プラズマ発生装置10の作用の項及び気体浄化装置1の作用の項において、それぞれ説明する。 The electromagnetic waves emitted by the plasma P include, for example, ultraviolet rays UV in the following cases. This is the case when the original gas is nitrogen (N 2 ) or contains nitrogen (N 2 ). When the original gas is air, the air is a gas containing nitrogen (N 2 ) . . Looking at this in more detail, when the original gas is nitrogen (N 2 ) or contains nitrogen (N 2 ), the ultraviolet ray UV emitted by the original gas is the wavelength of near ultraviolet rays is in the range of 300 to 380 nm and the peak wavelength is around 337 nm. Also, this is true regardless of the presence of other gases such as oxygen (O 2 ). Hereinafter, when the original gas is nitrogen (N 2 ) or contains nitrogen (N 2 ) (including the case where the original gas is air), the term "ultraviolet rays" In particular, it may be referred to as near-ultraviolet rays. The advantage of using near-ultraviolet rays among ultraviolet rays will be described in the section on the action of the plasma generator 10 and the section on the action of the gas purifier 1, respectively.
 これらのほか、もとの気体が、貴ガス、例えば、ヘリウム(He)、ネオン(Ne)、アルゴン(Ar)、クリプトン(Kr)若しくはキセノン(Xe)であるか、又はこれらのうちのいずれかを含むものである場合にあっても、紫外線が発生する。さらに、もとの気体が、ハロゲンガス、すなわち、フッ素(F)、塩素(Cl)又は臭素(Br)のうちのいずれかと貴ガスとを含むものである場合にあっても、紫外線UVが発生する。 In addition to these, the source gas is a noble gas such as helium (He), neon (Ne), argon (Ar), krypton (Kr) or xenon (Xe), or any of these Ultraviolet rays are generated even if it contains Furthermore, even when the original gas contains a halogen gas, i.e. one of fluorine ( F2 ), chlorine ( Cl2 ) or bromine ( Br2 ), and a noble gas, the ultraviolet UV Occur.
 新たな気体は、例えば、次の場合に生じる。第一の場合は、もとの気体の分子から解離した原子がもとの気体の分子と結合する場合であり、例えば、酸素原子(O)と酸素分子(O)とが結合してオゾン(O)が生じる。第二の場合は、もとの気体の原子のうち励起状態にあるものと基底状態にあるものとが結合する場合であり、例えば、励起状態にあるアルゴン原子(Ar)と基底状態にあるアルゴン原子(Ar)とが結合してアルゴンエキシマ(Ar)が生じる。第三に、もとの気体が一の気体と他の気体とを含む気体である場合において、一の気体の原子のうち励起状態にあるものと他の気体の分子から解離した原子とが結合するときであり、例えば、アルゴン原子(Ar)とフッ素原子(F)とが結合してフッ化アルゴンエキシプレックス(ArF)が生じる。 A new gas is generated, for example, in the following cases. In the first case, atoms dissociated from the original gas molecules combine with the original gas molecules. For example, oxygen atoms (O) and oxygen molecules (O 2 ) combine to form ozone (O 3 ) is produced. In the second case, among the atoms of the original gas, those in the excited state and those in the ground state are combined. Atoms (Ar) combine to form argon excimers (Ar 2 ). Third, when the original gas is a gas containing one gas and another gas, the atoms of the one gas in an excited state and the atoms dissociated from the molecules of the other gas are bonded. When, for example, an argon atom (Ar) and a fluorine atom (F) combine to form an argon fluoride exciplex (ArF).
 さらに、新たな気体がエキシマ又はエキシプレックスである場合にあっては、これらが再びもとの気体へと戻る過程において、更なる紫外線を発生する。 Furthermore, when the new gas is excimer or exciplex, further ultraviolet rays are generated in the process of returning to the original gas.
 以上のとおりであるから、もとの気体が空気である場合にあっては、プラズマPが発生すると、空気中の窒素のプラズマが紫外線UVを発するほか、空気中の酸素(O)からオゾン(O)が生じる等の現象がみられる。これらのほか、特に酸素(O)からは、各種の活性酸素、例えば、酸素原子、酸素の陰イオンであるスーパーオキシドアニオン、励起した酸素分子である一重項酸素等が発生する。 As described above, when the original gas is air, when the plasma P is generated, the nitrogen plasma in the air emits ultraviolet rays UV, and the oxygen (O 2 ) in the air emits ozone. Phenomena such as generation of (O 3 ) are observed. In addition to these, especially from oxygen (O 2 ), various active oxygens such as oxygen atoms, superoxide anions which are negative ions of oxygen, and singlet oxygen which is excited oxygen molecules are generated.
 一対の電極E間における放電は、誘電体を介して行う誘電体バリア放電である。誘電体バリア放電によって、プラズマPの発生を安定して行うことができるとともに、電極11の消耗を抑えることもできる。  The discharge between the pair of electrodes E is a dielectric barrier discharge performed through a dielectric. By dielectric barrier discharge, the plasma P can be generated stably, and consumption of the electrode 11 can be suppressed.
 誘電体バリア放電は、交流電圧によるものであることが好ましい。その交流電圧が示す波形は、正弦波、矩形波又は三角波のうち、正弦波であることが好ましい。その交流電圧の示す振幅、すなわち、電圧の最大値は、6~10KVであることが好ましい。その交流電圧の示す周波数は、5~25KHzであることが好ましい。  The dielectric barrier discharge is preferably by AC voltage. The waveform indicated by the AC voltage is preferably a sine wave among sine waves, rectangular waves and triangular waves. The amplitude of the AC voltage, that is, the maximum value of the voltage, is preferably 6-10 KV. The frequency indicated by the AC voltage is preferably 5 to 25 KHz.
 以上のような交流電圧を一対の電極Eに加えるための電源として、例えば、ロジー電子株式会社製の電源(型名:LHV-05AC、LHV-10AC、LHV-12AC、LHV-13AC)等を使用することができる。さらに、電源から得られる電圧を所定の電圧に変換するための変圧器を併せて使用することもできる。 As a power supply for applying the AC voltage as described above to the pair of electrodes E, for example, a power supply manufactured by Logy Electronics Co., Ltd. (model name: LHV-05AC, LHV-10AC, LHV-12AC, LHV-13AC) is used. can do. Furthermore, a transformer for converting the voltage obtained from the power supply into a predetermined voltage can also be used together.
 なお、誘電体層バリア放電を行うための交流電圧は、直流電源から得られた直流電圧を変換して得られたものであってもよく、直流電圧を交流電圧に変換してから一対の電極Eに加えるための電源として、例えば、ロジー電子株式会社製の電源(型名:LHV-05DC、LHV-09K-12)等を使用することができる。 The AC voltage for dielectric layer barrier discharge may be obtained by converting a DC voltage obtained from a DC power source. As a power source for adding to E, for example, a power source manufactured by Logy Electronics Co., Ltd. (type names: LHV-05DC, LHV-09K-12) can be used.
 電極11として、第一電極11aと第二電極11bとがあるほか、更に第三電極11cがあることが好ましい。これらのほか、電極11として、第四電極11d、第五電極(図示しない)、第六電極(図示しない)、第七電極(図示しない)……等があってもよい。 In addition to the first electrode 11a and the second electrode 11b, the electrode 11 preferably further includes the third electrode 11c. In addition to these, the electrode 11 may include a fourth electrode 11d, a fifth electrode (not shown), a sixth electrode (not shown), a seventh electrode (not shown), and so on.
 一対の電極Eは、例えば、第一電極11aと第二電極11bとから構成されるか、又は第二電極11bと第三電極11cとから構成される。 The pair of electrodes E is, for example, composed of a first electrode 11a and a second electrode 11b, or composed of a second electrode 11b and a third electrode 11c.
 一対の電極Eが二対ある場合にあっては、第一電極11aと第二電極11bとから第一の一対の電極E1が構成されるとともに、第三電極11cと第二電極11bとから第二の一対の電極E2が構成される。 When there are two pairs of electrodes E, the first pair of electrodes E1 is composed of the first electrode 11a and the second electrode 11b, and the third electrode 11c and the second electrode 11b are composed of the third electrode 11c and the second electrode 11b. Two pairs of electrodes E2 are configured.
[気体浄化装置1/プラズマ発生装置10/電極11/第一電極11a]
 第一電極11aは、電極11のうち、第二電極11bと併せて、第一の一対の電極E1を構成するためのものである。
[Gas purification device 1/plasma generator 10/electrode 11/first electrode 11a]
The first electrode 11a is for forming the first pair of electrodes E1 together with the second electrode 11b.
 第一電極11aは、熱伝導率が高い金属からなるものであることが好ましく、例えば、アルミニウム(Al)、銅(Cu)、銀(Ag)、タングステン(W)又は金(Au)のうちのいずれかからなるものであることがより好ましく、これらのうち、アルミニウム、銅又は銀のうちのいずれかからなるものであることが更により好ましい。 The first electrode 11a is preferably made of a metal with high thermal conductivity, such as aluminum (Al), copper (Cu), silver (Ag), tungsten (W), or gold (Au). It is more preferably made of any one, and among these, it is even more preferably made of aluminum, copper or silver.
 これらのほか、第一電極11aは、上記金属の中から選ばれる一つを主成分とする合金からなるものであってもよく、ステンレス(SUS)からなるものであってもよい。 In addition to these, the first electrode 11a may be made of an alloy containing one selected from the above metals as a main component, or may be made of stainless steel (SUS).
 第一電極11aの形状は、次のとおりである。ここで、説明のための例として、図1(a)、図3(a)、図4、図5、図8(a)、図8(b)、図20、図21(a)等を参照する。 The shape of the first electrode 11a is as follows. 1(a), 3(a), 4, 5, 8(a), 8(b), 20, 21(a), etc. refer.
 第一電極11aは、中身の詰まった立体であって、一対の平らな表面をその表側と裏側とにおいて有するものからなるか、又は一対の曲がった表面をその表側と裏側とにおいて若しくはその内側と外側とにおいて有するものからなる。 The first electrode 11a consists of a solid solid body having a pair of flat surfaces on its front and back sides, or a pair of curved surfaces on its front and back sides or on its inside. It consists of what it has on the outside.
 第一電極11aは、板状のものであるか、又は環状のものであることが好ましく、板状のものであることがより好ましい。 The first electrode 11a is preferably plate-shaped or annular, more preferably plate-shaped.
 第一電極11aが板状のものである場合にあっては、板状のもののうち、円形、多角形その他の自らと交わらない閉じた曲線からなる平面図形を、当該平面図形と交わる方向に平行に移動させて得られる中身の詰まった立体又はこれに類する立体からなるものであることが好ましく、短辺と長辺とを有する長方形である平面図形を、当該平面図形と垂直に交わる方向に平行移動させて得られる中身の詰まった立体又はこれに類する立体からなるものであることがより好ましい。ここで、このような板状の第一電極11aの例として、図1(a)、図3(a)、図4、図5、図8(b)、図20、図21(a)等を参照する。 In the case where the first electrode 11a is plate-shaped, the planar figure of the plate-shaped object consisting of a circle, polygon, or other closed curve that does not intersect with itself is arranged parallel to the direction intersecting with the planar figure. preferably consists of a solid solid or a similar solid that can be obtained by moving the It is more preferable that it consists of a solid solid body obtained by moving or a solid body similar thereto. Here, as an example of such a plate-like first electrode 11a, FIG. 1(a), FIG. 3(a), FIG. 4, FIG. 5, FIG. See
 第一電極11aが環状のものである場合にあっては、環状のもののうち、長方形である平面図形を、当該平面図形と同一平面上にあり、当該長方形が有する一辺と平行であり、かつ、当該平面図形と交わらない直線を軸として回転させて得られる中身の詰まった立体又はこれに類する立体からなるものであることが好ましく、長辺と短辺とを有する長方形である平面図形を、当該平面図形と同一平面上にあり、当該長方形が有する長辺と平行であり、かつ、当該平面図形と交わらない直線を軸として360度回転させて得られる中身の詰まった立体又はこれに類する立体からなるものであることがより好ましい。ここで、このような環状の第一電極11aの例として、図8(a)を参照する。 In the case where the first electrode 11a is ring-shaped, a rectangular plane figure among the ring-shaped ones is on the same plane as the plane figure, parallel to one side of the rectangle, and It is preferable that the plane figure is a solid solid or a similar solid obtained by rotating about a straight line that does not intersect the plane figure, and the plane figure is a rectangle having long and short sides. From solid or similar solids obtained by rotating 360 degrees around a straight line that is on the same plane as the plane figure, parallel to the long side of the rectangle, and does not intersect the plane figure It is more preferable to be Here, FIG. 8A is referred to as an example of such an annular first electrode 11a.
 第一電極11aの厚みは、0.2~0.8mmであることが好ましく、0.3~0.7mmであることがより好ましく、0.4~0.6mmであることが更により好ましい。 The thickness of the first electrode 11a is preferably 0.2-0.8 mm, more preferably 0.3-0.7 mm, and even more preferably 0.4-0.6 mm.
 また、第一電極11aが板状のものである場合にあっては、第一電極11aの厚み以外の大きさは、次のとおりである。 Also, when the first electrode 11a is plate-shaped, the dimensions of the first electrode 11a other than the thickness are as follows.
 第一電極11aの幅は、34~136mmであることが好ましく、51~119mmであることがより好ましく、68~102mmであることが更により好ましい。 The width of the first electrode 11a is preferably 34-136 mm, more preferably 51-119 mm, and even more preferably 68-102 mm.
 第一電極11aの奥行きは、20~80mmであることが好ましく、30~70mmであることがより好ましく、40~60mmであることが更により好ましい。 The depth of the first electrode 11a is preferably 20-80 mm, more preferably 30-70 mm, and even more preferably 40-60 mm.
 第一電極11aと他の要素との関係は、次のとおりである。ここで、説明のための例として、図1(a)、図3(a)等を参照する。 The relationship between the first electrode 11a and other elements is as follows. Here, FIG. 1(a), FIG. 3(a), etc. will be referred to as an example for explanation.
 第一電極11aは、第二電極11bとの間に距離を隔てて配置される。第一電極11aと第二電極11bとの間に、第一ガラス層12aと第一金属膜層13aとがそれぞれ配置される。第一電極11aのうち第二電極11bと対向する側にある表面は、第一金属膜層13aと直ちに又は第一電極側導電性粘着層14a1を介して接する。第一電極11aのうち第二電極11bと対向する側とは反対側にある表面は、気体浄化装置1の外部からの電気的接続を容易なものにする観点から、その少なくとも一部又は全部が露出することが好ましい。 The first electrode 11a is arranged with a distance from the second electrode 11b. A first glass layer 12a and a first metal film layer 13a are respectively arranged between the first electrode 11a and the second electrode 11b. The surface of the first electrode 11a facing the second electrode 11b is in contact with the first metal film layer 13a immediately or via the first electrode-side conductive adhesive layer 14a1. From the viewpoint of facilitating electrical connection from the outside of the gas purifier 1, at least part or all of the surface of the first electrode 11a on the side opposite to the side facing the second electrode 11b is Exposure is preferred.
 ここでいう「ある物が、他の物に直ちに接する」とは、ある物の少なくとも一部と他の物の少なくとも一部との間において、互いの間に距離を隔てることなく配置される関係が成立するように、ある物が他の物に対して配置されることをいう。例えば、「ある物が、他の物と直ちに接する」という場合において、当該ある物の少なくとも一部以外の部分と当該他の物の少なくとも一部以外の部分との間に距離があることは妨げられない。また、同様の場合において、当該他の物が、当該ある物の少なくとも一部以外の部分に対応する部分を有しないことも妨げられない。以下同じ。 Here, "an object immediately touches another object" means a relationship in which at least a part of an object and at least a part of another object are arranged without a distance between them. An object is arranged with respect to another object so that For example, in the case of ``an object immediately touches another object,'' it is prohibited that there is a distance between a part other than at least a part of the object and a part other than at least a part of the other object. can't Also, in a similar case, it is not prohibited that the other object does not have a part corresponding to a part other than at least a part of the certain object. same as below.
 なお、ある物が、他の物と直ちに又は粘着層若しくは接着層を介して接することを単に「ある物が、他の物と接する」ということがある。以下同じ。 It should be noted that, when a certain object comes into contact with another object immediately or via an adhesive layer or adhesive layer, it is sometimes simply referred to as "a certain object contacts another object." same as below.
 第一電極11aと他の要素との更なる関係は、次のとおりである。ここで、説明のための例として、図12(a)、図17、図19、図20、図21等を参照する。 Further relationships between the first electrode 11a and other elements are as follows. Here, FIG. 12(a), FIG. 17, FIG. 19, FIG. 20, FIG.
 第一電極11aのうち第二電極11bと対向する側にある表面は、第一金属膜層13aと接する部分である第一部分11a1を備えるほか、第一フィルタ30aと接する部分である第二部分11a2を備えることが好ましく、第一部分11a1と第二部分11a2との間にあって、露出する部分である第三部分11a3を備えることがより好ましい。 The surface of the first electrode 11a facing the second electrode 11b has a first portion 11a1 that is in contact with the first metal film layer 13a, and a second portion 11a2 that is in contact with the first filter 30a. and more preferably a third portion 11a3, which is an exposed portion located between the first portion 11a1 and the second portion 11a2.
 また、第一電極11aが板状のものである場合にあっては、第一電極11aのうち第二電極11bと対向する側にある表面は、第一スペーサ40aと接する部分である第四部分11a4と第二スペーサ40bと接する部分である第五部分11a5とを更に備えていてもよい。このとき、第四部分11a4と第五部分11a5とが、互いの間に第一部分11a1と第二部分11a2と第三部分11a3とを挟んで配置されることが好ましく、第一電極11aの幅方向における両端に配置されることがより好ましい。 Further, when the first electrode 11a is plate-shaped, the surface of the first electrode 11a facing the second electrode 11b is the fourth portion which is the portion in contact with the first spacer 40a. A fifth portion 11a5, which is a portion in contact with 11a4 and the second spacer 40b, may be further provided. At this time, the fourth portion 11a4 and the fifth portion 11a5 are preferably arranged with the first portion 11a1, the second portion 11a2, and the third portion 11a3 interposed therebetween, and the width direction of the first electrode 11a It is more preferable to be arranged at both ends of.
[気体浄化装置1/プラズマ発生装置10/電極11/第二電極11b]
 第二電極11bは、電極11のうち、第一電極11aと併せて、第一の一対の電極E1を構成するためのものであるとともに、プラズマ発生装置10が第三電極11cを備える場合にあっては、第三電極11cと併せて、第二の一対の電極E2を構成するためのものでもある。
[Gas purification device 1/plasma generator 10/electrode 11/second electrode 11b]
The second electrode 11b, together with the first electrode 11a, constitutes the first pair of electrodes E1 of the electrodes 11, and is used when the plasma generator 10 includes the third electrode 11c. In addition, it is also for forming the second pair of electrodes E2 together with the third electrode 11c.
 第二電極11bは、そのままで又はその表面が酸化されることで触媒としても作用する金属(以下単に「触媒金属」ということがある。)からなるものであることが好ましく、触媒金属のうち、紫外線又は熱を受けて触媒として活性化するものがより好ましい。 The second electrode 11b is preferably made of a metal that acts as a catalyst as it is or when its surface is oxidized (hereinafter sometimes simply referred to as "catalyst metal"). Among the catalyst metals, More preferred are those that are activated as catalysts upon exposure to ultraviolet rays or heat.
 触媒金属として、周期表における第3族から第11族までに属する元素であって、周期表における第4周期から第6周期までに属するもの(以下「特定遷移金属」という。)が好ましく、チタン(Ti)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、ルテウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、タングステン(W)又は白金(Pt)がより好ましく、チタンが特に好ましい。 As the catalyst metal, an element belonging to Groups 3 to 11 in the periodic table and belonging to Period 4 to Period 6 in the periodic table (hereinafter referred to as "specific transition metal") is preferable, and titanium (Ti), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), rutheum (Ru), rhodium (Rh), palladium (Pd), tungsten (W) or platinum (Pt) is more preferred, and titanium is particularly preferred.
 第二電極11bがチタンからなるものである場合にあっては、第二電極11bの表面が酸化されることで酸化チタン(TiO)からなる表面となり、第二電極11bは紫外線を受けて光触媒としても作用するものとなる。 In the case where the second electrode 11b is made of titanium, the surface of the second electrode 11b is oxidized to become a surface made of titanium oxide (TiO 2 ), and the second electrode 11b receives ultraviolet rays and photocatalysts. It will also work as
 これらのほか、第二電極11bは、上記特定遷移金属の中から選ばれる一つを主成分とする合金からなるものであってもよい。 In addition to these, the second electrode 11b may be made of an alloy whose main component is one selected from the specific transition metals described above.
 第二電極11bの形状その他の態様は、次のとおりである。ここで、説明のための例として、図1(a)、図3(a)、図8(a)、図8(b)、図9等を参照する。 The shape and other aspects of the second electrode 11b are as follows. Here, FIGS. 1A, 3A, 8A, 8B, 9, etc. will be referred to as examples for explanation.
 第二電極11bは、棒状、雄螺子状又は螺旋状のものであり、これらのうち、雄螺子状のものであることが好ましい。ここで、第二電極11bのうち、棒状のものの例として、図9(a)、図8(a)、図8(b)等を参照し、雄螺子状のものの例として、図1(a)、図3(a)等を参照し、また、螺旋状のものの例として、図9(b)を参照する。 The second electrode 11b is rod-shaped, male-thread-shaped, or spiral-shaped, and among these, the male-thread-shaped one is preferable. 9(a), 8(a), 8(b), etc., as an example of a rod-shaped second electrode 11b, and an example of a male screw-shaped second electrode 11b is shown in FIG. ), FIG. 3(a), etc., and FIG. 9(b) as an example of a spiral shape.
 特に第二電極11bが雄螺子状のものである場合にあっては、その溝部と突部とが交互に形成される形状により、プラズマの発光量を増やすことができるとともに、圧力損失を減らすことができるほか、第二電極11bを第一スペーサ40a及び第二スペーサ40bに螺子止めすることができるため、組立てや交換、保守等が容易となる。 In particular, when the second electrode 11b has a male screw shape, the shape in which grooves and protrusions are alternately formed can increase the amount of plasma emission and reduce the pressure loss. In addition, the second electrode 11b can be screwed to the first spacer 40a and the second spacer 40b, which facilitates assembly, replacement, maintenance, and the like.
 また、第二電極11bが雄螺子状のものである場合にあっては、その螺子山と螺子山との間に存在する溝部において、金属又はその酸化物であって、触媒として作用するものを蒸着し、又は塗布することにより、触媒からなる層を形成することも好ましい。この場合において、第二電極11bは、雄螺子状の電極本体11b1と、その螺子山と螺子山との間に配置された触媒層11b2と、から構成される。ここで、このような第二電極11bの例として、図9(e)を参照する。 In the case where the second electrode 11b has a male screw shape, a metal or its oxide acting as a catalyst is added to the groove between the screw threads. It is also preferred to form a layer of the catalyst by vapor deposition or coating. In this case, the second electrode 11b is composed of a male-threaded electrode body 11b1 and a catalyst layer 11b2 disposed between the threads. Here, FIG. 9E is referred to as an example of such a second electrode 11b.
 ここで、金属又はその酸化物であって、触媒として作用するものとして、紫外線又は熱を受けて活性化するものが好ましく、例えば、特定遷移金属又はその酸化物の中から選択することができる。 Here, the metal or its oxide that acts as a catalyst is preferably activated by ultraviolet rays or heat, and can be selected, for example, from specific transition metals or oxides thereof.
 特定遷移金属が触媒として作用するに当たって、対象の分子結合を解離させてから吸着する場合(以下「解離吸着型の場合」ということがある。)と、対象の分子結合を解離させることなく吸着する場合(以下「非解離吸着型の場合」ということがある。)と、がある。 When a specific transition metal acts as a catalyst, it adsorbs after dissociating the target molecular bond (hereinafter sometimes referred to as "dissociative adsorption type case") and adsorbs without dissociating the target molecular bond. There is a case (hereinafter sometimes referred to as "case of non-dissociative adsorption type") and a.
 特定遷移金属のうち、第4周期に属し、第3族から第8族までのいずれかに該当するもの、すなわち、スカンジウム(Sc)、チタン(Ti)、バナジウム(V)、クロム(Cr)、マンガン(Mn)、鉄(Fe)、第5周期に属し、第3族から第7族までのいずれかに該当するもの、すなわち、イットリウム(Y)、ジルコニウム(Zr)、ニオブ(Nb)、モリブデン(Mo)、テクネチウム(Tc)、第6周期に属し、第3族から第7族までのいずれかに該当するもの、例えば、ランタン(La)、ハフニウム(Hf)、タンタル(Ta)、タングステン(W)は、触媒として作用するに当たって解離吸着型の場合を示す傾向がある。 Among the specific transition metals, those belonging to the 4th period and falling under any of Groups 3 to 8, namely scandium (Sc), titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), those belonging to period 5 and belonging to groups 3 to 7, i.e. yttrium (Y), zirconium (Zr), niobium (Nb), molybdenum (Mo), technetium (Tc), belonging to the 6th period and corresponding to any one of the 3rd to 7th groups, for example, lanthanum (La), hafnium (Hf), tantalum (Ta), tungsten ( W) tends to show the dissociative adsorption type case in acting as a catalyst.
 特定遷移金属のうち、第4周期に属し、第9族から第10族までのいずれかに該当するもの、すなわち、コバルト(Co)、ニッケル(Ni)、第5周期に属し、第8族から第11族までのいずれかに該当するもの、すなわち、ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Rd)、第6周期に属し、第7族から第11族までのいずれかに該当するもの、すなわち、レニウム(Re)、オスミウム(Os)、イリジウム(Ir)、白金(Pt)は、触媒として作用するに当たって非解離吸着型の場合を示す傾向がある。 Among the specific transition metals, those belonging to the 4th period and belonging to any of the 9th to 10th groups, that is, cobalt (Co), nickel (Ni), belonging to the 5th period, from the 8th group Those belonging to any of Groups 11 to 11, i.e., ruthenium (Ru), rhodium (Rh), palladium (Rd), belonging to Period 6 and belonging to any of Groups 7 to 11 That is, rhenium (Re), osmium (Os), iridium (Ir), and platinum (Pt) tend to exhibit non-dissociative adsorption type cases in acting as catalysts.
 ここで、例えば、第二電極11bが白金からなるものであり、分解しようとする気体が二酸化炭素ガス(CO)である場合を例として説明すると、以下のとおりである。 Here, for example, the case where the second electrode 11b is made of platinum and the gas to be decomposed is carbon dioxide gas (CO 2 ) will be described as follows.
 二酸化炭素ガス(CO)がプラズマPの発生している空間Sを通過すると、解離分子(CO)が発生する。触媒が解離吸着型を示す場合は、解離分子(CO)は、炭素(C)と酸素(O)とに解離されてから、それぞれ触媒表面に吸着された後、炭素(C)と酸素ガス(O)へと分解される。これに対し、触媒が非解離吸着型を示す場合は、解離分子(CO)は、触媒表面に炭素(C)側から吸着された後、炭素(C)と酸素ガス(O)へと分解される。 When carbon dioxide gas (CO 2 ) passes through space S where plasma P is generated, dissociated molecules (CO) are generated. When the catalyst exhibits a dissociation adsorption type, the dissociation molecule (CO) is dissociated into carbon (C) and oxygen (O), and after being adsorbed on the catalyst surface, carbon (C) and oxygen gas ( O 2 ). On the other hand, when the catalyst exhibits a non-dissociative adsorption type, the dissociated molecules (CO) are decomposed into carbon (C) and oxygen gas (O 2 ) after being adsorbed on the catalyst surface from the carbon (C) side. be done.
 なお、ある特定遷移金属が触媒として作用するに当たって解離吸着型又は非解離吸着型のいずれを示すかは、当該特定遷移金属の表面の状態、分解しようとするガスの種類及びその濃度、反応させようとする温度、プラズマを発生させようとする条件等により異なり得る。いずれにせよ、目的に応じて最も適当な特定遷移金属を触媒として選定することが必要であり、また、重要でもある。 Whether a specific transition metal exhibits a dissociative adsorption type or a non-dissociative adsorption type when acting as a catalyst depends on the state of the surface of the specific transition metal, the type and concentration of the gas to be decomposed, and the reaction. It may vary depending on the temperature to be used, the conditions for generating plasma, and the like. In any case, it is necessary and important to select the most suitable specific transition metal as a catalyst according to the purpose.
 第二電極11bは、棒状の金属からなり、線状の金属又はその酸化物であって、触媒として作用するものが螺旋状に巻き付けられたものであることも好ましい。このとき、第二電極11bは、棒状の電極本体11b1と、その周りに配置された螺旋状の触媒層11b2と、から構成される。ここで、このような第二電極11bの例として、図9(c)を参照する。 It is also preferable that the second electrode 11b is made of a rod-shaped metal, and that a wire-shaped metal or its oxide acting as a catalyst is spirally wound. At this time, the second electrode 11b is composed of a rod-shaped electrode main body 11b1 and a spiral catalyst layer 11b2 disposed therearound. Here, FIG. 9C is referred to as an example of such a second electrode 11b.
 また、第二電極11bは、棒状の金属からなり、環状の金属又はその酸化物であって、触媒として作用するもので覆われたものであってもよい。このとき、第二電極11bは、棒状の電極本体11b1と、その周りに配置された環状の触媒層11b2と、から構成される。ここで、このような第二電極11bの例として、図9(d)を参照する。 Also, the second electrode 11b may be made of a rod-shaped metal and covered with a ring-shaped metal or its oxide that acts as a catalyst. At this time, the second electrode 11b is composed of a rod-shaped electrode main body 11b1 and an annular catalyst layer 11b2 disposed therearound. Here, FIG. 9D is referred to as an example of such a second electrode 11b.
 第二電極11bの直径は、1~5mmであることが好ましく、2~4mmであることがより好ましい。 The diameter of the second electrode 11b is preferably 1-5 mm, more preferably 2-4 mm.
 第二電極11bの長さは、40~160mmであることが好ましく、60~140mmであることがより好ましく、80~120mmであることが更により好ましい。 The length of the second electrode 11b is preferably 40-160 mm, more preferably 60-140 mm, and even more preferably 80-120 mm.
 第二電極11bと他の要素との関係は、次のとおりである。ここで、説明のための例として、図1(a)、図3(a)等を参照する。 The relationship between the second electrode 11b and other elements is as follows. Here, FIG. 1(a), FIG. 3(a), etc. will be referred to as an example for explanation.
 第二電極11bは、第一電極11aとの間に距離を隔てて配置される。第二電極11bと第一電極11aとの間に、第一ガラス層12aと第一金属膜層13aとがそれぞれ配置される。第二電極11bは、第一ガラス層12aとの間に空間を隔てて配置される。 The second electrode 11b is arranged with a distance from the first electrode 11a. A first glass layer 12a and a first metal film layer 13a are respectively arranged between the second electrode 11b and the first electrode 11a. The second electrode 11b is arranged with a space between it and the first glass layer 12a.
 プラズマ発生装置10が第三電極11cを備える場合にあっては、第二電極11bと他の要素との関係は、次のとおりである。 When the plasma generator 10 includes the third electrode 11c, the relationship between the second electrode 11b and other elements is as follows.
 第二電極11bは、第三電極11cとの間に距離を隔てて配置される。第二電極11bと第三電極11cとの間に、第二ガラス層12bと第二金属膜層13bとがそれぞれ配置される。第二電極11bは、第二ガラス層12bとの間に空間を隔てて配置される。 The second electrode 11b is arranged with a distance from the third electrode 11c. A second glass layer 12b and a second metal film layer 13b are respectively arranged between the second electrode 11b and the third electrode 11c. The second electrode 11b is arranged with a space between it and the second glass layer 12b.
[気体浄化装置1/プラズマ発生装置10/電極11/第三電極11c]
 第三電極11cは、電極11のうち、第二電極11bと併せて、第二の一対の電極E2を構成するためのものである。
[Gas purification device 1/plasma generator 10/electrode 11/third electrode 11c]
The third electrode 11c is for constituting the second pair of electrodes E2 together with the second electrode 11b.
 プラズマ発生装置10は、第一の一対の電極E1のほか、第二の一対の電極E2を更に備えることによって、より多くの量のプラズマPを発生させることができるものとなり、例えば、気体浄化装置1において不活性化させることができるウイルスの量を更に増やすことができる。もっとも、プラズマ発生装置10は、第三電極11cを備えるものでなくてもよい。ここで、第三電極11cを備えないプラズマ発生装置10の例として、図8(a)、図8(b)を参照する。 The plasma generator 10 can generate a larger amount of plasma P by further including the second pair of electrodes E2 in addition to the first pair of electrodes E1. The amount of virus that can be inactivated in 1 can be further increased. However, the plasma generator 10 may not include the third electrode 11c. Here, FIGS. 8A and 8B will be referred to as an example of the plasma generator 10 without the third electrode 11c.
 第三電極11cは、熱伝導率が高い金属からなるものであることが好ましく、例えば、アルミニウム(Al)、銅(Cu)、銀(Ag)、タングステン(W)又は金(Au)のうちのいずれかからなるものであることがより好ましく、これらのうち、アルミニウム、銅又は銀のうちのいずれかからなるものであることが更により好ましい。 The third electrode 11c is preferably made of a metal with high thermal conductivity, such as aluminum (Al), copper (Cu), silver (Ag), tungsten (W), or gold (Au). It is more preferably made of any one, and among these, it is even more preferably made of aluminum, copper or silver.
 これらのほか、第三電極11cは、上記金属の中から選ばれる一つを主成分とする合金からなるものであってもよく、ステンレス(SUS)からなるものであってもよい。 In addition to these, the third electrode 11c may be made of an alloy containing one selected from the above metals as a main component, or may be made of stainless steel (SUS).
 第三電極11cの形状は、次のとおりである。ここで、説明のための例として、図1(a)、図3(a)、図4、図5、図20、図22(d)等を参照する。 The shape of the third electrode 11c is as follows. Here, FIGS. 1A, 3A, 4, 5, 20, 22D, etc. will be referred to as examples for explanation.
 第三電極11cは、板状のものである。このとき、第三電極11cは、六面のうち最も広い二面において、第一電極11aのそれと合同をなすものであることが好ましい。ここで、このような第三電極11cの例として、図1(a)、図3(a)、図4、図5、図20、図22(d)等を参照する。 The third electrode 11c is plate-shaped. At this time, it is preferable that the third electrode 11c is congruent with that of the first electrode 11a on the two widest surfaces among the six surfaces. Here, FIGS. 1A, 3A, 4, 5, 20, 22D and the like are referred to as examples of such a third electrode 11c.
 第三電極11cの厚みは、0.2~0.8mmであることが好ましく、0.3~0.7mmであることがより好ましく、0.4~0.6mmであることが更により好ましい。 The thickness of the third electrode 11c is preferably 0.2-0.8 mm, more preferably 0.3-0.7 mm, and even more preferably 0.4-0.6 mm.
 なお、第三電極11cの厚み以外の大きさは、次のとおりである。 The dimensions of the third electrode 11c other than the thickness are as follows.
 第三電極11cの幅は、34~136mmであることが好ましく、51~119mmであることがより好ましく、68~102mmであることが更により好ましい。 The width of the third electrode 11c is preferably 34-136 mm, more preferably 51-119 mm, and even more preferably 68-102 mm.
 第三電極11cの奥行きは、20~80mmであることが好ましく、30~70mmであることがより好ましく、40~60mmであることが更により好ましい。 The depth of the third electrode 11c is preferably 20-80 mm, more preferably 30-70 mm, and even more preferably 40-60 mm.
 第三電極11cと他の要素との関係は、次のとおりである。ここで、説明のための例として、図1(a)、図3(a)等を参照する。 The relationship between the third electrode 11c and other elements is as follows. Here, FIG. 1(a), FIG. 3(a), etc. will be referred to as an example for explanation.
 第三電極11cは、第二電極11bとの間に距離を隔てて配置される。第三電極11cと第二電極11bとの間に、第二ガラス層12bと第二金属膜層13bとがそれぞれ配置される。第三電極11cのうち第二電極11bと対向する側にある表面は、第二金属膜層13bと直ちに又は第三電極側導電性粘着層14a2を介して接する。なお、第三電極11cのうち第二電極11bと対向する側とは反対側にある表面は、気体浄化装置1の外部からの電気的接続を容易なものにする観点から、露出することが好ましい。 The third electrode 11c is arranged with a distance from the second electrode 11b. A second glass layer 12b and a second metal film layer 13b are respectively arranged between the third electrode 11c and the second electrode 11b. The surface of the third electrode 11c facing the second electrode 11b is in contact with the second metal film layer 13b immediately or via the third electrode-side conductive adhesive layer 14a2. The surface of the third electrode 11c on the side opposite to the side facing the second electrode 11b is preferably exposed from the viewpoint of facilitating electrical connection from the outside of the gas purifier 1. .
 第三電極11cと他の要素との更なる関係は、次のとおりである。ここで、説明のための例として、図12(a)、図17、図19、図20、図22等を参照する。 Further relationships between the third electrode 11c and other elements are as follows. Here, FIG. 12(a), FIG. 17, FIG. 19, FIG. 20, FIG.
 第三電極11cのうち第二電極11bと対向する側にある表面は、第二金属膜層13bと接する部分である第一部分11c1を備えるほか、第一フィルタ30aと接する部分である第二部分11c2を備えることが好ましく、第一部分11c1と第二部分11c2との間にあって、露出する部分である第三部分11c3を備えることがより好ましい。 The surface of the third electrode 11c facing the second electrode 11b has a first portion 11c1 that is in contact with the second metal film layer 13b, and a second portion 11c2 that is in contact with the first filter 30a. and more preferably a third portion 11c3, which is an exposed portion located between the first portion 11c1 and the second portion 11c2.
 また、第三電極11cが板状のものである場合にあっては、第三電極11cのうち第二電極11bと対向する側にある表面は、第一スペーサ40aと接する部分である第四部分11c4と第二スペーサ40bと接する部分である第五部分11c5とを更に備えていてもよい。このとき、第四部分11c4と第五部分11c5とが、互いの間に第一部分11c1と第二部分11c2と第三部分11c3とを挟んで配置されることが好ましく、第三電極11cの幅方向における両端に配置されることがより好ましい。 Further, when the third electrode 11c is plate-shaped, the surface of the third electrode 11c facing the second electrode 11b is the fourth portion which is the portion in contact with the first spacer 40a. A fifth portion 11c5, which is a portion in contact with 11c4 and the second spacer 40b, may be further provided. At this time, it is preferable that the fourth portion 11c4 and the fifth portion 11c5 are arranged with the first portion 11c1, the second portion 11c2 and the third portion 11c3 sandwiched therebetween, and the width direction of the third electrode 11c It is more preferable to be arranged at both ends of.
[気体浄化装置1/プラズマ発生装置10/電極11/第四電極11d等]
 第四電極11dは、電極11のうち、第一電極11aと併せて、第三の一対の電極E3を構成するためのものであるとともに、プラズマ発生装置10が第三電極11cを備える場合にあっては、第三電極11cと併せて、第四の一対の電極E4を構成するためのものでもある。
[Gas purification device 1/plasma generator 10/electrode 11/fourth electrode 11d, etc.]
The fourth electrode 11d is for forming a third pair of electrodes E3 together with the first electrode 11a among the electrodes 11, and is used when the plasma generator 10 includes the third electrode 11c. In addition, it is also for forming a fourth pair of electrodes E4 together with the third electrode 11c.
 第四電極11dと他の要素との更なる関係は、次のとおりである。ここで、説明のための例として、図13(a)を参照する。 Further relationships between the fourth electrode 11d and other elements are as follows. Here, FIG. 13(a) is referred to as an example for explanation.
 第四電極11dは、第一ガラス層12a、第二電極11b及び第二ガラス層12bのそれぞれとの間に空間を隔てて配置され、第一ガラス層12aとの間に第二電極11bを挟むことなく配置されるとともに、第二ガラス層12bとの間に第二電極11bを挟むことなく配置される。 The fourth electrode 11d is arranged with a space between each of the first glass layer 12a, the second electrode 11b, and the second glass layer 12b, and sandwiches the second electrode 11b between itself and the first glass layer 12a. It is arranged without sandwiching the second electrode 11b between the second glass layer 12b and the second glass layer 12b.
 第四電極11dのその余については第二電極11bと同様であるから、第二電極11bについてした説明を第四電極11dについて準用する。なお、第五電極(図示しない)、第六電極(図示しない)、第七電極(図示しない)・・・等についても、第四電極11dと同様である。 The remainder of the fourth electrode 11d is the same as that of the second electrode 11b, so the explanation given for the second electrode 11b applies mutatis mutandis to the fourth electrode 11d. A fifth electrode (not shown), a sixth electrode (not shown), a seventh electrode (not shown), etc. are the same as the fourth electrode 11d.
 気体浄化装置1が第四電極11dを備える場合にあっては、発生させるプラズマPの量を増やすことができる。 When the gas purifier 1 is equipped with the fourth electrode 11d, the amount of plasma P to be generated can be increased.
[気体浄化装置1/プラズマ発生装置10/ガラス層12]
 ガラス層12は、誘電体であるガラスからなる誘電体層として、一対の電極E間に配置されて、一対の電極Eのうちの一方の電極11と金属膜層13(導電性粘着層14を更に介する場合にあっては、金属膜層13のほか、導電性粘着層14)を介して接することによって、誘電体バリア放電を行うとともに、紫外線その他の電磁波を透過する層として、金属膜層13と併せて、紫外線その他の電磁波を反射する反射鏡Mを構成するためのものである。
[Gas Purifier 1/Plasma Generator 10/Glass Layer 12]
The glass layer 12 is disposed between the pair of electrodes E as a dielectric layer made of glass, which is a dielectric, and is arranged between one electrode 11 of the pair of electrodes E and the metal film layer 13 (the conductive adhesive layer 14). In the case of further intervening, in addition to the metal film layer 13, the conductive adhesive layer 14) is in contact with the metal film layer 13 to perform dielectric barrier discharge, and the metal film layer 13 is used as a layer that transmits ultraviolet rays and other electromagnetic waves. In addition, it is for constructing a reflecting mirror M that reflects ultraviolet rays and other electromagnetic waves.
 さらに、もとの気体が酸素(O)を含む場合にあっては、ガラス層12は、金属膜層13が気体中の酸素と接触しないようにし、金属膜層13の表面が酸化されることを防ぐことにより、金属膜層13が長期にわたって紫外線その他の電磁波を反射することできるように、その特性を維持するためのものでもある。 Furthermore, when the original gas contains oxygen (O 2 ), the glass layer 12 prevents the metal film layer 13 from coming into contact with oxygen in the gas, and the surface of the metal film layer 13 is oxidized. By preventing this, the metal film layer 13 maintains its characteristics so that it can reflect ultraviolet rays and other electromagnetic waves for a long period of time.
 ガラス層12は、ガラスのうち、紫外線を透過する特性を有するガラスからなることが好ましく、紫外線透過率の高いガラスからなることがより好ましく、例えば、石英ガラス又はホウケイ酸ガラスからなるものであることが更により好ましい。さらに、石英ガラス又はホウケイ酸ガラスのうち、紫外線透過率の高さ及び熱膨張率の低さの観点から、石英ガラスに次いでホウケイ酸ガラスが好ましく、これらの観点のほか、加工が容易であり、量産性にも優れることから、ホウケイ酸ガラスも好ましい。さらに、ホウケイ酸ガラスのうち、二酸化ケイ素(SiO)及び酸化ホウ素(B)を含むほか、酸化ナトリウム(NaO)及び酸化アルミウム(Al)を更に含むものがより好ましい。 Among glasses, the glass layer 12 is preferably made of glass having properties of transmitting ultraviolet rays, and more preferably made of glass having high ultraviolet transmittance, such as quartz glass or borosilicate glass. is even more preferred. Furthermore, among quartz glass and borosilicate glass, borosilicate glass is preferable next to quartz glass from the viewpoint of high ultraviolet transmittance and low coefficient of thermal expansion. Borosilicate glass is also preferable because it is excellent in mass productivity. Furthermore, among borosilicate glasses, in addition to containing silicon dioxide (SiO 2 ) and boron oxide (B 2 O 3 ), those further containing sodium oxide (Na 2 O) and aluminum oxide (Al 2 O 3 ) are more preferable. .
 ガラス層12の厚みは、0.4~1.6mmであることが好ましく、0.6~1.4mmであることがより好ましく、0.8~1.2mmであることが更により好ましく、特に1.0mmであることが最も好ましい。 The thickness of the glass layer 12 is preferably 0.4 to 1.6 mm, more preferably 0.6 to 1.4 mm, even more preferably 0.8 to 1.2 mm, particularly 1.0 mm is most preferred.
 ガラス層12として、例えば、光学顕微鏡とともに観察の用に供されるスライドガラスを使用することができる。スライドガラスから構成されるガラス層12は、紫外線透過性及び熱膨張率の点において優れるほか、市場から容易に取得することができるものであるため、プラズマ発生装置10、ひいては気体浄化装置1を、安価に、かつ、安定的に供給することを可能とする。 As the glass layer 12, for example, a slide glass used for observation together with an optical microscope can be used. The glass layer 12 made of a slide glass is excellent in terms of ultraviolet transmittance and coefficient of thermal expansion, and can be easily obtained from the market. To enable a stable supply at a low cost.
 ガラス層12として、第一ガラス層12aがあるほか、好ましくは第二ガラス層12bがある。 The glass layer 12 includes the first glass layer 12a and preferably the second glass layer 12b.
[気体浄化装置1/プラズマ発生装置10/ガラス層12/第一ガラス層12a]
 第一ガラス層12aは、ガラス層12のうち、第一金属膜層13aと併せて、第一反射鏡M1を構成するためのものである。
[Gas purification device 1/plasma generator 10/glass layer 12/first glass layer 12a]
Among the glass layers 12, the first glass layer 12a is for constituting the first reflecting mirror M1 together with the first metal film layer 13a.
 第一ガラス層12aの形状は、次のとおりである。ここで、説明のための例として、図1(a)、図3(a)、図4、図5、図8(a)、図8(b)、図20、図21(c)等を参照する。 The shape of the first glass layer 12a is as follows. 1(a), 3(a), 4, 5, 8(a), 8(b), 20, 21(c), etc. refer.
 第一ガラス層12aは、第一電極11aの形状に応じ、板状のものであるか、又は環状のものが選択される。ここで、第一ガラス層12aのうち、板状のものの例として、図1(a)、図3(a)、図4、図5、図8(b)、図20、図21(c)等を参照し、また、環状のものの例として、図8(a)を参照する。 The first glass layer 12a is selected to be plate-shaped or ring-shaped depending on the shape of the first electrode 11a. 1(a), 3(a), 4, 5, 8(b), 20 and 21(c) are examples of the first glass layer 12a having a plate shape. etc., and FIG. 8(a) as an example of an annular shape.
 なお、第一ガラス層12aが板状のものである場合にあっては、第一ガラス層12aの厚み以外の大きさは、次のとおりである。 In addition, when the first glass layer 12a is plate-shaped, the dimensions other than the thickness of the first glass layer 12a are as follows.
 第一ガラス層12aの幅は、32~128mmであることが好ましく、48~112mmであることがより好ましく、64~96mmであることが更により好ましい。 The width of the first glass layer 12a is preferably 32-128 mm, more preferably 48-112 mm, and even more preferably 64-96 mm.
 第一ガラス層12aの奥行きは、10~40mmであることが好ましく、15~35mmであることがより好ましく、20~30mmであることが更により好ましい。 The depth of the first glass layer 12a is preferably 10-40 mm, more preferably 15-35 mm, and even more preferably 20-30 mm.
 第一ガラス層12と他の要素との関係は、次のとおりである。ここで、説明のための例として、図1(a)、図3(a)等を参照する。 The relationship between the first glass layer 12 and other elements is as follows. Here, FIG. 1(a), FIG. 3(a), etc. will be referred to as an example for explanation.
 第一ガラス層12aは、第一電極11aと第二電極11bとの間に配置される。第一ガラス層12aは、第二電極11bとの間に空間を隔てて配置される。第一ガラス層12aのうち第一電極11aと対向する側にある表面は、第一金属膜層13aと直ちに又は第一ガラス層側導電性粘着層14b1を介して接する。第一ガラス層12aのうち第二電極11bと対向する側にある表面は、露出する。 The first glass layer 12a is arranged between the first electrode 11a and the second electrode 11b. The first glass layer 12a is arranged with a space between it and the second electrode 11b. The surface of the first glass layer 12a facing the first electrode 11a is in contact with the first metal film layer 13a immediately or via the first glass layer side conductive adhesive layer 14b1. A surface of the first glass layer 12a facing the second electrode 11b is exposed.
 第一ガラス層12aと第二電極11bとの間にある距離は、0.3~0.9mmであることが好ましく、0.4~0.8mmであることがより好ましく、0.5~0.7mmであることが更により好ましく、特に0.6mmであることが最も好ましい。 The distance between the first glass layer 12a and the second electrode 11b is preferably 0.3-0.9 mm, more preferably 0.4-0.8 mm, and more preferably 0.5-0. 0.7 mm is even more preferred, and 0.6 mm is most preferred.
 第一ガラス層12aと第二電極11bとの間には気体以外の物質が存在しない空間Sが存在し、空間Sには、絶縁体である気体、例えば、浄化しようとする気体Gを存在させることができる。なお、空間Sは、プラズマPが発生する空間となる。 Between the first glass layer 12a and the second electrode 11b, there is a space S in which no substance other than gas exists, and the space S is filled with a gas that is an insulator, for example, a gas G to be purified. be able to. Space S is a space in which plasma P is generated.
 第一ガラス層12aと他の要素との更なる関係は、次のとおりである。ここで、説明のための例として、図12(a)、図17、図19、図20、図21等を参照する。 Further relationships between the first glass layer 12a and other elements are as follows. Here, FIG. 12(a), FIG. 17, FIG. 19, FIG. 20, FIG.
 第一ガラス層12aは、第一金属膜層13aのうち第二電極11bと対向する側にある表面の全部を覆うことが好ましい。第一ガラス層12aのうち第二電極11bと対向する側にある表面は、露出する部分である第一部分12a1を備えるほか、第一スペーサ40aと接する部分である第二部分12a2と、第二スペーサ40bと接する部分である第三部分12a3と、を備えることが好ましい。 The first glass layer 12a preferably covers the entire surface of the first metal film layer 13a facing the second electrode 11b. The surface of the first glass layer 12a facing the second electrode 11b has a first portion 12a1 which is an exposed portion, a second portion 12a2 which is a portion in contact with the first spacer 40a, and a second spacer 40a. A third portion 12a3, which is a portion in contact with 40b, is preferably provided.
[気体浄化装置1/プラズマ発生装置10/ガラス層12/第二ガラス層12b]
 第二ガラス層12bは、ガラス層12のうち、第二金属膜層13bと併せて、第二反射鏡M2を構成するためのものである。
[Gas purification device 1/plasma generator 10/glass layer 12/second glass layer 12b]
Of the glass layers 12, the second glass layer 12b is for constituting the second reflecting mirror M2 together with the second metal film layer 13b.
 第二ガラス層12bの形状は、次のとおりである。ここで、説明のための例として、図1(a)、図3(a)、図4、図5、図20、図22(b)等を参照する。 The shape of the second glass layer 12b is as follows. Here, FIGS. 1A, 3A, 4, 5, 20, 22B, etc. will be referred to as examples for explanation.
 第二ガラス層12bは、板状のものである。このとき、第二ガラス層12bは、六面のうち最も広い二面において、第一ガラス層12aのそれと合同をなすものであることが好ましい。ここで、このような第二ガラス層12bの例として、図1(a)、図3(a)、図4、図5、図20、図22(b)等を参照する。 The second glass layer 12b is plate-shaped. At this time, it is preferable that the second glass layer 12b is congruent with that of the first glass layer 12a on the two widest surfaces among the six surfaces. Here, FIGS. 1A, 3A, 4, 5, 20, 22B and the like are referred to as examples of such a second glass layer 12b.
 なお、第二ガラス層12bの厚み以外の大きさは、次のとおりである。 The dimensions of the second glass layer 12b other than the thickness are as follows.
 第二ガラス層12bの幅は、32~128mmであることが好ましく、48~112mmであることがより好ましく、64~96mmであることが更により好ましい。 The width of the second glass layer 12b is preferably 32-128 mm, more preferably 48-112 mm, and even more preferably 64-96 mm.
 第二ガラス層12bの奥行きは、10~40mmであることが好ましく、15~35mmであることがより好ましく、20~30mmであることが更により好ましい。 The depth of the second glass layer 12b is preferably 10-40 mm, more preferably 15-35 mm, and even more preferably 20-30 mm.
 第二ガラス層12bと他の要素との関係は、次のとおりである。ここで、説明のための例として、図1(a)、図3(a)等を参照する。 The relationship between the second glass layer 12b and other elements is as follows. Here, FIG. 1(a), FIG. 3(a), etc. will be referred to as an example for explanation.
 第二ガラス層12bは、第三電極11cと第二電極11bとの間に配置される。第二ガラス層12bは、第二電極11bとの間に空間を隔てて配置される。第二ガラス層12bのうち第三電極11cと対向する側にある表面は、第二金属膜層13bと直ちに又は第二ガラス層側導電性粘着層14b2を介して接する。第二ガラス層12bのうち第二電極11bと対向する側にある表面は、露出する。 The second glass layer 12b is arranged between the third electrode 11c and the second electrode 11b. The second glass layer 12b is arranged with a space between it and the second electrode 11b. The surface of the second glass layer 12b facing the third electrode 11c is in contact with the second metal film layer 13b immediately or via the second glass layer side conductive adhesive layer 14b2. The surface of the second glass layer 12b facing the second electrode 11b is exposed.
 第二ガラス層12bと第二電極11bとの間にある距離は、0.3~0.9mmであることが好ましく、0.4~0.8mmであることがより好ましく、0.5~0.7mmであることが更により好ましく、特に0.6mmであることが最も好ましい。 The distance between the second glass layer 12b and the second electrode 11b is preferably 0.3 to 0.9 mm, more preferably 0.4 to 0.8 mm, and more preferably 0.5 to 0.5 mm. 0.7 mm is even more preferred, and 0.6 mm is most preferred.
 第二ガラス層12bと第二電極11bとの間には気体以外の物質が存在しない空間Sが存在し、空間Sには、絶縁体である気体、例えば、浄化しようとする気体Gを存在させることができる。なお、空間Sは、プラズマPが発生する空間となる。 Between the second glass layer 12b and the second electrode 11b, there is a space S in which no substance other than gas exists, and the space S is filled with a gas that is an insulator, for example, a gas G to be purified. be able to. Space S is a space in which plasma P is generated.
 第二ガラス層12bと他の要素との更なる関係は、次のとおりである。ここで、説明のための例として、図12(a)、図17、図19、図20、図22を参照する。 Further relationships between the second glass layer 12b and other elements are as follows. 12(a), 17, 19, 20 and 22 will be referred to as examples for explanation.
 第二ガラス層12bは、第二金属膜層13bのうち第二電極11bと対向する側にある表面の全部を覆うことが好ましい。第二ガラス層12bのうち第二電極11bと対向する側にある表面は、露出する部分である第一部分12b1を備えるほか、第一スペーサ40aと接する部分である第二部分12b2と、第二スペーサ40bと接する部分である第三部分12b3と、を備えることが好ましい。 The second glass layer 12b preferably covers the entire surface of the second metal film layer 13b facing the second electrode 11b. The surface of the second glass layer 12b facing the second electrode 11b has a first portion 12b1 which is an exposed portion, a second portion 12b2 which is a portion in contact with the first spacer 40a, and a second spacer 40a. A third portion 12b3, which is a portion in contact with 40b, is preferably provided.
[気体浄化装置1/プラズマ発生装置10/金属膜層13]
 金属膜層13は、金属の膜からなる層として、一対の電極Eのうちの一方の電極11とガラス層12との間に配置されて、これらと直ちに又は導電性粘着層14を介して接することによって、一対の電極Eのうちの一方の電極11からガラス層12までの電気伝導を行うとともに、ガラス層12と併せて、紫外線その他の電磁波を反射する反射鏡Mを構成するためのものである。
[Gas Purifier 1/Plasma Generator 10/Metal Film Layer 13]
The metal film layer 13 is arranged between one electrode 11 of the pair of electrodes E and the glass layer 12 as a layer made of a metal film, and is in contact with them directly or via the conductive adhesive layer 14. Thus, electric conduction is performed from one electrode 11 of the pair of electrodes E to the glass layer 12, and together with the glass layer 12, a reflecting mirror M that reflects ultraviolet rays and other electromagnetic waves is formed. be.
 金属膜層13は、紫外線を反射する特性を有する金属からなるものである。もっとも、金属膜層13は、紫外線を反射するほか、可視光線、赤外線その他の紫外線以外の電磁波を反射する特性を有する金属からなるものであってもよく、また、そのようなものであることが好ましい。 The metal film layer 13 is made of a metal that has the property of reflecting ultraviolet rays. However, the metal film layer 13 may be made of a metal having properties of reflecting not only ultraviolet rays but also visible rays, infrared rays and other electromagnetic waves other than ultraviolet rays, and such a thing may be used. preferable.
 金属膜層13は、紫外線を反射する特性を有する金属のうち、紫外線反射率が高い金属からなるものであることが好ましく、例えば、アルミニウム(Al)、クロム(Cr)、鉄(Fe)、ニッケル(Ni)、ロジウム(Rh)、銀(Ag)又は白金(Pt)のうちのいずれかからなるものであることがより好ましく、アルミニウム又は銀からなるものであることが更により好ましく、アルミニウムからなるものであることが最も好ましい。 The metal film layer 13 is preferably made of a metal having a high ultraviolet reflectance among metals having properties of reflecting ultraviolet rays, such as aluminum (Al), chromium (Cr), iron (Fe), and nickel. (Ni), rhodium (Rh), silver (Ag) or platinum (Pt), more preferably aluminum or silver, and aluminum is most preferred.
 近紫外線は、紫外線A波(UV-A。紫外線のうち波長が315~400nmの範囲にあるものをいう。)と、紫外線B波(UV-B。紫外線のうち波長が280~315nmの範囲にあるものをいう。)と、紫外線C波(UV-C。紫外線のうち波長が200~280nmにあるものをいう。)と、に更に分類される。ここで、例えば、窒素(N)のプラズマが発する近紫外線は、その波長が300~380nmの範囲にあるものとして、紫外線A波に属するものである。また、そのプラズマが発する近紫外線のピーク波長は、337nm付近にある。そして、銀は、紫外線A波の範囲のうちの一部の範囲、特に波長380nmにおいて高い反射率を示すものであり、アルミニウムは、紫外線A波の全部の範囲にわたって高い反射率を示すものである。 Near-ultraviolet rays include ultraviolet A waves (UV-A. Ultraviolet rays with a wavelength in the range of 315 to 400 nm) and ultraviolet B waves (UV-B. Ultraviolet rays with a wavelength in the range of 280 to 315 nm). It is further classified into ultraviolet C waves (UV-C, which refers to ultraviolet rays with a wavelength of 200 to 280 nm). Here, for example, the near-ultraviolet rays emitted by plasma of nitrogen (N 2 ) belong to the ultraviolet A wave assuming that the wavelength is in the range of 300 to 380 nm. Moreover, the peak wavelength of the near-ultraviolet rays emitted from the plasma is around 337 nm. Silver exhibits high reflectance in a part of the range of ultraviolet A waves, particularly in a wavelength of 380 nm, and aluminum exhibits high reflectance over the entire range of ultraviolet A waves. .
 したがって、もとの気体が窒素(N)であるか、又は窒素(N)を含むものである場合、例えば、もとの気体が空気である場合にあっては、金属膜層13は、アルミニウム又は銀からなるものであることがより好ましく、アルミニウムからなるものであることが最も好ましい。 Therefore, when the original gas is nitrogen (N 2 ) or contains nitrogen (N 2 ), for example, when the original gas is air, the metal film layer 13 is made of aluminum. or more preferably silver, and most preferably aluminum.
 これを一般化していうと、ある気体のプラズマを発生させたとした場合において、そのプラズマが発する紫外線その他の電磁波が有する固有の波長、特にピーク波長に応じて、当該波長を含む波長範囲において高い反射率を示す金属を選択し、当該金属をもって金属膜層13を構成することができ、また、そうすることが好ましい。 To generalize this, when a plasma of a certain gas is generated, according to the specific wavelength of ultraviolet rays and other electromagnetic waves emitted by the plasma, especially the peak wavelength, the wavelength range including the wavelength has a high reflectance. can be selected to constitute the metal film layer 13, and it is preferable to do so.
 金属膜層13は、紫外線を反射する特性を有する金属、好ましくは紫外線反射率が高い金属の箔からなるものであってもよく、紫外線を反射する特性を有する金属、好ましくは紫外線反射率が高い金属を一対の電極Eのうちの一方の電極11又はガラス層12に蒸着させて構成した蒸着膜からなるものであってもよい。ここで、蒸着法として、真空蒸着法のほか、スパッタリング、イオンプレーティングその他の物理気相成長法を使用することができる。また、金属膜層13は、紫外線を反射する特性を有する金属、好ましくは紫外線反射率が高い金属を電極11のうちの一方の電極11に電着させて構成した電着膜からなるものであってもよい。 The metal film layer 13 may be made of a foil of a metal having a property of reflecting ultraviolet rays, preferably a metal having a high ultraviolet reflectance. It may consist of a deposited film formed by depositing a metal on one electrode 11 of the pair of electrodes E or on the glass layer 12 . As the vapor deposition method, sputtering, ion plating, and other physical vapor deposition methods can be used in addition to the vacuum vapor deposition method. The metal film layer 13 is an electrodeposited film formed by electrodepositing a metal having a property of reflecting ultraviolet rays, preferably a metal having a high ultraviolet reflectance, onto one of the electrodes 11 . may
 すなわち、金属膜層13は、例えば、一対の電極Eのうちの一方の電極11又はガラス層12に対し、アルミニウム又は銀の箔を密着させることにより構成したものであってもよく、アルミニウム又は銀を蒸着させることにより構成したものであってもよい。 That is, the metal film layer 13 may be configured by adhering an aluminum or silver foil to one of the pair of electrodes E or the glass layer 12, for example. may be configured by vapor-depositing.
 金属膜層13は、0.2mm以下の厚みを有するものに限らず、一対の電極Eのうちの一方の電極11とガラス層12との間に配置されて、これらの両方と接触し、好ましくはこれらの両方と密着するために必要かつ十分な厚みを有するものであることが好ましい。すなわち、金属膜層13として、一対の電極Eのうちの一方の電極11とガラス層12との間の距離に応じて、適当な厚さのものが選択される。このとき、金属膜層13は、一の金属膜からなるもののほか、二以上の金属膜の組み合わせからなるものであってもよい。 The metal film layer 13 is not limited to having a thickness of 0.2 mm or less, and is arranged between one electrode 11 of the pair of electrodes E and the glass layer 12 to contact both of them, preferably preferably has a necessary and sufficient thickness to adhere to both of them. That is, the metal film layer 13 is selected to have an appropriate thickness according to the distance between the electrode 11 of the pair of electrodes E and the glass layer 12 . At this time, the metal film layer 13 may consist of one metal film, or may consist of a combination of two or more metal films.
 金属膜層13は、一対の電極Eのうちの一方の電極11及びガラス層12の両方と接触することが好ましく、これらの両方と密着することがより好ましい。この場合において、金属膜層13は、一対の電極Eのうちの一方の電極11からガラス層12までの電気伝導をより効率的に行うことができる。 The metal film layer 13 is preferably in contact with both the electrode 11 of the pair of electrodes E and the glass layer 12, and more preferably in close contact with both of them. In this case, the metal film layer 13 can conduct electricity more efficiently from one electrode 11 of the pair of electrodes E to the glass layer 12 .
 金属膜層13は、一方の電極Eのうちの一方の電極11と密着するものとして、一対の電極Eのうちの一方の電極11と導電性粘着層14を介して接するものであってもよく、金属膜層13は、ガラス層12と密着するものとして、ガラス層12と導電性粘着層14を介して接するものであってもよい。例えば、金属膜層13は、一方の電極Eのうちの一方の電極11と導電性粘着層14を介して接するとともに、ガラス層12と直ちに接するものであってもよく、一方の電極Eのうちの一方の電極11と導電性粘着層14を介して接するとともに、ガラス層12と導電性粘着層14を介して接するものであってもよい。 The metal film layer 13 may be in contact with one electrode 11 of the pair of electrodes E via the conductive adhesive layer 14, assuming that the metal film layer 13 is in close contact with one electrode 11 of the one electrode E. , the metal film layer 13 may be in contact with the glass layer 12 via the conductive adhesive layer 14 as a layer in close contact with the glass layer 12 . For example, the metal film layer 13 may be in contact with one electrode 11 of one electrode E via the conductive adhesive layer 14 and may be in immediate contact with the glass layer 12. While being in contact with one electrode 11 via the conductive adhesive layer 14 , the glass layer 12 and the conductive adhesive layer 14 may be in contact with each other.
 金属膜層13として、第一金属膜層13aがあるほか、好ましくは第二金属膜層13bがある。 In addition to the first metal film layer 13a, the metal film layer 13 preferably includes the second metal film layer 13b.
[気体浄化装置1/プラズマ発生装置10/金属膜層13/第一金属膜層13a]
 第一金属膜層13aは、金属膜層13のうち、第一ガラス層12aと併せて、第一反射鏡M1を構成するためのものである。
[Gas purification device 1/plasma generator 10/metal film layer 13/first metal film layer 13a]
Among the metal film layers 13, the first metal film layer 13a, together with the first glass layer 12a, constitutes the first reflecting mirror M1.
 第一金属膜層13aの形状は、次のとおりである。ここで、説明のための例として、図1(a)、図3(a)、図4、図5、図8(a)、図8(b)、図20、図21(b)等を参照する。 The shape of the first metal film layer 13a is as follows. 1(a), 3(a), 4, 5, 8(a), 8(b), 20, 21(b), etc. refer.
 第一金属膜層13aは、膜状のものであり、第一電極11aの形状に応じた形状のものとなる。ここで、第一金属膜層13aのうち、板状の第一電極11aに応じた形状のものの例として、図1(a)、図3(a)、図4、図5、図8(b)、図20、図21(b)等を参照し、また、環状の第一電極11aに応じた形状のものの例として、図8(a)を参照する。 The first metal film layer 13a is film-like and has a shape corresponding to the shape of the first electrode 11a. 1A, 3A, 4, 5, and 8B as examples of the shape of the first metal film layer 13a corresponding to the plate-like first electrode 11a. ), FIG. 20, FIG. 21(b), etc., and FIG. 8(a) as an example of a shape corresponding to the annular first electrode 11a.
 第一金属膜層13aと他の要素との関係は、次のとおりである。ここで、説明のための例として、図1(a)、図3(a)等を参照する。 The relationship between the first metal film layer 13a and other elements is as follows. Here, FIG. 1(a), FIG. 3(a), etc. will be referred to as an example for explanation.
 第一金属膜層13aは、第一電極11aと第一ガラス層12aとの間に配置され、第一電極11aと直ちに又は第一電極側導電性粘着層14a1を介して接するとともに、第一ガラス層12aと直ちに又は第一ガラス側導電性粘着層14b1を介して接する。 The first metal film layer 13a is arranged between the first electrode 11a and the first glass layer 12a, and is in contact with the first electrode 11a immediately or via the first electrode-side conductive adhesive layer 14a1. It comes into contact with the layer 12a immediately or via the first glass side conductive adhesive layer 14b1.
 第一金属膜層13aと他の要素との更なる関係は、次のとおりである。ここで、説明のための例として、図12(a)、図17、図19、図20、図21等を参照する。 Further relationships between the first metal film layer 13a and other elements are as follows. Here, FIG. 12(a), FIG. 17, FIG. 19, FIG. 20, FIG.
 第一金属膜層13aは、第一電極11aのうち第二電極11bと対向する側にある表面の一部を覆うことが好ましい。また、第一金属膜層13aのうち第二電極11b又は第三電極11cと対向する側の表面は、その全部が第一ガラス層12aによって覆われることが好ましい。 The first metal film layer 13a preferably covers part of the surface of the first electrode 11a facing the second electrode 11b. Moreover, it is preferable that the entire surface of the first metal film layer 13a facing the second electrode 11b or the third electrode 11c is covered with the first glass layer 12a.
 第一金属膜層13aは、二以上の金属膜の組み合わせからなるもの、例えば、第一電極側金属膜13a1と第一ガラス層側金属膜13a2との組み合わせからなるものであってもよい。第一電極側金属膜13a1は、第一電極11aと直ちに又は第一電極側導電性粘着層14a1を介して接するものであり、第一ガラス層側金属膜13a2は、第一ガラス層12aと直ちに又は第一ガラス層側導電性粘着層14b1を介して接するものである。 The first metal film layer 13a may be a combination of two or more metal films, for example, a combination of the first electrode-side metal film 13a1 and the first glass layer-side metal film 13a2. The first electrode-side metal film 13a1 is in contact with the first electrode 11a immediately or via the first electrode-side conductive adhesive layer 14a1, and the first glass layer-side metal film 13a2 is in contact with the first glass layer 12a immediately. Alternatively, they are in contact via the first glass layer side conductive adhesive layer 14b1.
[気体浄化装置1/プラズマ発生装置10/金属膜層13/第二金属膜層13b]
 第二金属膜層13bは、金属膜層13のうち、第二ガラス層12bと併せて、第二反射鏡M2を構成するためのものである。
[Gas Purifier 1/Plasma Generator 10/Metal Film Layer 13/Second Metal Film Layer 13b]
Among the metal film layers 13, the second metal film layer 13b is for forming the second reflecting mirror M2 together with the second glass layer 12b.
 第二金属膜層13bの形状は、次のとおりである。ここで、説明のための例として、図1(a)、図3(a)、図4、図5、図20、図22(c)等を参照する。 The shape of the second metal film layer 13b is as follows. Here, FIGS. 1A, 3A, 4, 5, 20, 22C, etc. will be referred to as examples for explanation.
 第二金属膜層13bは、膜状のものであり、第三電極11cの形状に応じた形状のものとなる。ここで、板状の第三電極11cに応じた形状の第二金属膜層13bの例として、図1(a)、図3(a)、図4、図5、図20、図22(c)を参照する。 The second metal film layer 13b is film-like and has a shape corresponding to the shape of the third electrode 11c. Here, as an example of the second metal film layer 13b having a shape corresponding to the plate-like third electrode 11c, FIGS. ).
 第二金属膜層13bと他の要素との関係は、次のとおりである。ここで、説明のための例として、図1(a)、図3(a)等を参照する。 The relationship between the second metal film layer 13b and other elements is as follows. Here, FIG. 1(a), FIG. 3(a), etc. will be referred to as an example for explanation.
 第二金属膜層13bは、第三電極11cと第二ガラス層12bとの間に配置され、第三電極11cと直ちに又は第三電極側導電性粘着層14a2を介して接するとともに、第二ガラス層12bと直ちに又は第二ガラス側導電性粘着層14b2を介して接する。 The second metal film layer 13b is disposed between the third electrode 11c and the second glass layer 12b, and is in contact with the third electrode 11c immediately or via the third electrode-side conductive adhesive layer 14a2. It is in contact with the layer 12b immediately or via the second glass side conductive adhesive layer 14b2.
 第二金属膜層13bと他の要素との更なる関係は、次のとおりである。ここで、説明のための例として、図12(a)、図17、図19、図20、図22等を参照する。 Further relationships between the second metal film layer 13b and other elements are as follows. Here, FIG. 12(a), FIG. 17, FIG. 19, FIG. 20, FIG.
 第二金属膜層13bは、第三電極11cのうち第二電極11bと対向する側にある表面の一部を覆うことが好ましい。また、第二金属膜層13bのうち第二電極11b又は第一電極11aと対向する側の表面は、その全部が第二ガラス層12bによって覆われることが好ましい。 The second metal film layer 13b preferably covers part of the surface of the third electrode 11c facing the second electrode 11b. Moreover, it is preferable that the entire surface of the second metal film layer 13b facing the second electrode 11b or the first electrode 11a is covered with the second glass layer 12b.
 第二金属膜層13bは、二以上の金属膜の組み合わせからなるもの、例えば、第三電極側金属膜13b1と第二ガラス層側金属膜13b2との組み合わせからなるものであってもよい。第三電極側金属膜13b1は、第三電極11cと直ちに又は第三電極側導電性粘着層14a2を介して接するものであり、第二ガラス層側金属膜13b2は、第二ガラス層12bと直ちに又は第二ガラス層側導電性粘着層14b2を介して接するものである。 The second metal film layer 13b may be a combination of two or more metal films, for example, a combination of the third electrode-side metal film 13b1 and the second glass layer-side metal film 13b2. The third electrode side metal film 13b1 is in contact with the third electrode 11c immediately or via the third electrode side conductive adhesive layer 14a2, and the second glass layer side metal film 13b2 is in contact with the second glass layer 12b. Alternatively, they are in contact via the second glass layer side conductive adhesive layer 14b2.
[気体浄化装置1/プラズマ発生装置10/導電性粘着層14]
 導電性粘着層14は、粘着性のほか、導電性を有する層として、一対の電極Eのうちの一方の電極11と金属膜層13との間に配置されて、これらを密着させることによって、一対の電極Eのうちの一方の電極11から金属膜層13までの電気伝導率を高めるためのものである。このほか、導電性粘着層14は、上記のとおりの層として、ガラス層12と金属膜層13との間に配置されて、これらを密着させることによって、ガラス層12から金属膜層13までの電気伝導率を高めるためのものでもある。
[Gas Purifier 1/Plasma Generator 10/Conductive Adhesive Layer 14]
The conductive adhesive layer 14 is disposed between one electrode 11 of the pair of electrodes E and the metal film layer 13 as a layer having conductivity in addition to adhesiveness. This is for increasing the electrical conductivity from one electrode 11 of the pair of electrodes E to the metal film layer 13 . In addition, the conductive adhesive layer 14 is arranged between the glass layer 12 and the metal film layer 13 as a layer as described above. It is also for increasing electrical conductivity.
 導電性粘着層14は、粘着性を有するものとして、粘弾性を有する粘着層と、導電性を有するものとして、当該粘着層に含有される多数の導電性粒子と、から構成されるものであることが好ましい。 The conductive adhesive layer 14 is composed of an adhesive layer having viscoelasticity as an adhesive layer and a large number of conductive particles contained in the adhesive layer as an electrically conductive adhesive layer. is preferred.
 導電性粘着層14にあっては、粘着層は、粘着性を有するほか、透明性を有する高分子化合物からなるものであることが好ましく、例えば、アクリル酸系共重合体からなるものであることがより好ましい。 In the conductive adhesive layer 14, the adhesive layer is preferably made of a polymeric compound having adhesiveness and transparency, for example, an acrylic acid-based copolymer. is more preferred.
 アクリル酸系共重合体は、例えば、アクリル酸エチル、アクリル酸ブチル、アクリル酸2-エチルヘキシルその他のアクリル酸エステルを主モノマーとして、アクリル酸メチル又はメタクリル酸メチルをコモノマーとして、アクリル酸又はメタクリル酸を官能基含有モノマーとして、共重合されるものであることが好ましい。この場合において、アクリル酸エステルを主モノマーとするものに代えて、メタクリル酸エステルを主モノマーとするものであってもよい。 Acrylic acid-based copolymers include, for example, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate and other acrylic acid esters as main monomers, methyl acrylate or methyl methacrylate as comonomers, and acrylic acid or methacrylic acid. The functional group-containing monomer is preferably copolymerized. In this case, instead of using acrylic acid ester as the main monomer, methacrylic acid ester may be used as the main monomer.
 導電性粘着層14にあっては、導電性粒子は、導電性を有するほか、紫外線を反射する特性を有する金属からなるものであることが好ましく、紫外線反射率が高い金属からなるものであることが更により好ましい。ここで、紫外線反射率が高い金属として、例えば、アルミニウム(Al)、クロム(Cr)、鉄(Fe)、ニッケル(Ni)、ロジウム(Rh)、銀(Ag)又は白金(Pt)のうちのいずれかが好ましく、アルミニウム又は銀が更により好ましく、アルミニウムが最も好ましい。 In the conductive adhesive layer 14, the conductive particles are preferably made of a metal having conductivity and a characteristic of reflecting ultraviolet rays, and are made of a metal having a high ultraviolet reflectance. is even more preferred. Here, the metal having a high ultraviolet reflectance is, for example, aluminum (Al), chromium (Cr), iron (Fe), nickel (Ni), rhodium (Rh), silver (Ag) or platinum (Pt). Either is preferred, aluminum or silver is even more preferred, and aluminum is most preferred.
 導電性粘着層14として、一対の電極Eのうちの一方の電極11と接する電極側導電性粘着層14aと、ガラス層12と接するガラス層側導電性粘着層14bと、がある。 As the conductive adhesive layer 14, there are an electrode-side conductive adhesive layer 14a in contact with one electrode 11 of the pair of electrodes E and a glass layer-side conductive adhesive layer 14b in contact with the glass layer 12.
 これらのほか、金属膜層13が二以上の金属膜から構成される場合にあっては、導電性粘着層14として、一の金属膜と他の金属膜との間に配置されて、これらと接する金属膜層間導電性粘着層14cがある。 In addition to these, when the metal film layer 13 is composed of two or more metal films, the conductive adhesive layer 14 is arranged between one metal film and the other metal film, and There is a conductive adhesive layer 14c between the metal films in contact.
[気体浄化装置1/プラズマ発生装置10/導電性粘着層14/電極側導電性粘着層14a]
 電極側導電性粘着層14aとして、第一電極側導電性粘着層14a1と、第三電極側導電性粘着層14a2と、がある。
[Gas purification device 1/plasma generator 10/conductive adhesive layer 14/electrode-side conductive adhesive layer 14a]
As the electrode-side conductive adhesive layer 14a, there are a first electrode-side conductive adhesive layer 14a1 and a third electrode-side conductive adhesive layer 14a2.
[気体浄化装置1/プラズマ発生装置10/導電性粘着層14/電極側導電性粘着層14a/第一電極側導電性粘着層14a1]
 第一電極側導電性粘着層14a1は、電極側導電性粘着層14aのうち、第一電極11aと接するものである。第一電極側導電性粘着層14a1は、第一電極11aと第一金属膜層13aとの間に配置されて、これらを密着させるためのものである。
[Gas purification device 1/plasma generator 10/conductive adhesive layer 14/electrode-side conductive adhesive layer 14a/first electrode-side conductive adhesive layer 14a1]
The first electrode-side conductive adhesive layer 14a1 is one of the electrode-side conductive adhesive layers 14a that is in contact with the first electrode 11a. The first electrode-side conductive adhesive layer 14a1 is arranged between the first electrode 11a and the first metal film layer 13a to adhere them together.
[気体浄化装置1/プラズマ発生装置10/導電性粘着層14/電極側導電性粘着層14a/第三電極側導電性粘着層14a2]
 第三電極側導電性粘着層14a2は、電極側導電性粘着層14aのうち、第三電極11cと接するものである。第三電極側導電性粘着層14a2は、第三電極11cと第二金属膜層13bとの間に配置されて、これらを密着させるためのものである。
[Gas purifier 1/plasma generator 10/conductive adhesive layer 14/electrode-side conductive adhesive layer 14a/third electrode-side conductive adhesive layer 14a2]
Of the electrode-side conductive adhesive layers 14a, the third electrode-side conductive adhesive layer 14a2 is in contact with the third electrode 11c. The third electrode-side conductive adhesive layer 14a2 is arranged between the third electrode 11c and the second metal film layer 13b to adhere them together.
[気体浄化装置1/プラズマ発生装置10/導電性粘着層14/ガラス層側導電性粘着層14b]
 ガラス層側導電性粘着層14bとして、第一ガラス層側導電性粘着層14b1と、第二ガラス層側導電性粘着層14b2と、がある。
[Gas Purifier 1/Plasma Generator 10/Conductive Adhesive Layer 14/Glass Layer Side Conductive Adhesive Layer 14b]
As the glass layer side conductive adhesive layer 14b, there are a first glass layer side conductive adhesive layer 14b1 and a second glass layer side conductive adhesive layer 14b2.
[気体浄化装置1/プラズマ発生装置10/導電性粘着層14/ガラス層側導電性粘着層14b/第一ガラス層側導電性粘着層14b1]
 第一ガラス層側導電性粘着層14b1は、ガラス層側導電性粘着層14bのうち、第一ガラス層12aと接するものである。第一ガラス層側導電性粘着層14b1は、第一ガラス層12aと第一金属膜層13aとの間に配置されて、これらを密着させるためのものである。
[Gas purifier 1/plasma generator 10/conductive adhesive layer 14/glass layer side conductive adhesive layer 14b/first glass layer side conductive adhesive layer 14b1]
The first glass layer-side conductive adhesive layer 14b1 is one of the glass layer-side conductive adhesive layers 14b that is in contact with the first glass layer 12a. The first glass layer side conductive adhesive layer 14b1 is arranged between the first glass layer 12a and the first metal film layer 13a to adhere them together.
[気体浄化装置1/プラズマ発生装置10/導電性粘着層14/ガラス層側導電性粘着層14b/第二ガラス層側導電性粘着層14b2]
 第二ガラス層側導電性粘着層14b2は、ガラス層側導電性粘着層14bのうち、第二ガラス層12bと接するものである。第二ガラス層側導電性粘着層14b2は、第二ガラス層12bと第二金属膜層13bとの間に配置されて、これらを密着させるためのものである。
[Gas purification device 1/plasma generator 10/conductive adhesive layer 14/glass layer side conductive adhesive layer 14b/second glass layer side conductive adhesive layer 14b2]
The second glass layer-side conductive adhesive layer 14b2 is one of the glass layer-side conductive adhesive layers 14b that is in contact with the second glass layer 12b. The second glass layer side conductive adhesive layer 14b2 is arranged between the second glass layer 12b and the second metal film layer 13b to adhere them together.
[気体浄化装置1/プラズマ発生装置10/導電性粘着層14/金属膜層間導電性粘着層14c]
 金属膜層間導電性粘着層14cとして、第一金属膜層間導電性粘着層14c1と、第二金属膜層間導電性粘着層14c2と、がある。
[Gas purification device 1/plasma generator 10/conductive adhesive layer 14/metal film interlayer conductive adhesive layer 14c]
As the inter-metal-film conductive adhesive layer 14c, there are a first inter-metal-film conductive adhesive layer 14c1 and a second inter-metal-film conductive adhesive layer 14c2.
 第一金属膜層間導電性粘着層14c1は、第一電極側金属膜13a1と第一ガラス層側金属膜13a2との間に配置されて、これらと接するものである。第一金属膜層間導電性粘着層14c1は、第一電極側金属膜13a1と第一ガラス層側金属膜13a2とを密着させるためのものである。 The first metal film interlayer conductive adhesive layer 14c1 is disposed between and in contact with the first electrode side metal film 13a1 and the first glass layer side metal film 13a2. The first metal film interlayer conductive adhesive layer 14c1 is for adhering the first electrode side metal film 13a1 and the first glass layer side metal film 13a2.
 第二金属膜層間導電性粘着層14c2は、第三電極側金属膜13b1と第二ガラス層側金属膜13b2との間に配置されて、これらと接するものである。第二金属膜層間導電性粘着層14c2は、第三電極側金属膜13b1と第二ガラス層側金属膜13b2とを密着させるためのものである。 The second metal film interlayer conductive adhesive layer 14c2 is disposed between and in contact with the third electrode side metal film 13b1 and the second glass layer side metal film 13b2. The second metal film interlayer conductive adhesive layer 14c2 is for adhering the third electrode side metal film 13b1 and the second glass layer side metal film 13b2.
[気体浄化装置1/プラズマ発生装置10/導電性粘着層14/金属膜層13と導電性粘着層14との積層体]
 ところで、金属箔からなる基材層の片面に導電性粘着剤からなる導電性粘着層を設けたもの(以下「導電性片面粘着テープ」ということがある。)や、金属箔からなる基材層の両面に導電性粘着剤からなる導電性粘着層を設けたもの(以下「導電性両面粘着テープ」ということがある。)があり(例えば、特開2013-245234号公報を参照。)、それぞれ市場を通じて得ることができる(例えば、DIC株式会社製の工業用粘着テープ「ダイタック」(登録商標)。品番:52050AD-2、#8530AD )。
[Gas Purifier 1/Plasma Generator 10/Conductive Adhesive Layer 14/Laminate of Metal Film Layer 13 and Conductive Adhesive Layer 14]
By the way, a substrate layer made of a metal foil provided with a conductive adhesive layer made of a conductive adhesive on one side (hereinafter sometimes referred to as a "conductive single-sided adhesive tape"), and a substrate layer made of a metal foil A conductive adhesive layer made of a conductive adhesive is provided on both sides of the (hereinafter sometimes referred to as "conductive double-sided adhesive tape".) (For example, see JP 2013-245234). It can be obtained through the market (for example, industrial adhesive tape "DaiTac" (registered trademark) manufactured by DIC Corporation, product numbers: 52050AD-2, #8530AD).
 そこで、金属膜層13と導電性粘着層14とが予め積み重ねられている積層体として、導電性片面粘着テープ又は導電性両面粘着テープを使用することができる。例えば、第一金属膜層13aと第一電極側導電性粘着層14a1とからなる積層体、第二金属膜層13bと第三電極側側導電性粘着層14a2とからなる積層体、第一金属膜層13aと第一ガラス層側導電性粘着層14b1とからなる積層体又は第二金属膜層13bと第二ガラス層側導電性粘着層14b2とからなる積層体として、導電性片面粘着テープを使用することができる。また、第一電極側導電性粘着層14a1と第一金属膜層13aと第一ガラス層側導電性粘着層14b1とからなる積層体又は第三電極側導電性粘着層14a2と第二金属膜層13bと第二ガラス層側導電性粘着層14b2とからなる積層体として、導電性両面粘着テープを使用することもできる。 Therefore, a conductive single-sided adhesive tape or a conductive double-sided adhesive tape can be used as a laminate in which the metal film layer 13 and the conductive adhesive layer 14 are laminated in advance. For example, a laminate consisting of the first metal film layer 13a and the first electrode side conductive adhesive layer 14a1, a laminate consisting of the second metal film layer 13b and the third electrode side conductive adhesive layer 14a2, the first metal A conductive single-sided adhesive tape is used as a laminate consisting of the film layer 13a and the first glass layer side conductive adhesive layer 14b1 or a laminate consisting of the second metal film layer 13b and the second glass layer side conductive adhesive layer 14b2. can be used. Also, a laminate composed of the first electrode-side conductive adhesive layer 14a1, the first metal film layer 13a, and the first glass layer-side conductive adhesive layer 14b1, or the third electrode-side conductive adhesive layer 14a2 and the second metal film layer A conductive double-sided adhesive tape can also be used as the laminate composed of 13b and the second glass layer side conductive adhesive layer 14b2.
[気体浄化装置1/プラズマ発生装置10/導電性粘着層14/作用]
 一対の電極Eのうちの一方の電極11とガラス層12との間に金属膜層13を配置し、一対の電極Eのうちの一方の電極11からガラス層12までの電気伝導を金属膜層13を介して行うに当たっては、次のような課題がある。
[Gas Purifier 1/Plasma Generator 10/Conductive Adhesive Layer 14/Action]
A metal film layer 13 is arranged between one electrode 11 of the pair of electrodes E and the glass layer 12, and electrical conduction from one electrode 11 of the pair of electrodes E to the glass layer 12 is controlled by the metal film layer. 13, there are the following problems.
 すなわち、金属とガラスとにあっては、それぞれの熱膨張率を互いに異にする。また、金属と金属とであっても、それぞれの元素その他の成分を異にする限り、同様である。 That is, metal and glass have different coefficients of thermal expansion. The same applies to metals as long as they have different elements and other components.
 したがって、プラズマ発生装置10を製造する過程又はこれを使用する過程において、一対の電極Eのうちの一方の電極11と金属膜層13とにそれぞれ熱が加わると、一対の電極Eのうちの一方の電極11と金属膜層13とにおいて、それぞれの熱膨張率に応じて反りが生じ、これらの間において隙間が生じるおそれがある。このとき、一対の電極Eのうちの一方の電極11と金属膜層13との間に生じた隙間において真空層V又は空気層Aが形成されることとなる。ここで、一対の電極Eのうちの一方の電極11と金属膜層13との間に真空層V又は空気層Aが形成されるおそれがあることに関して、図41(b)を参照する。 Therefore, when heat is applied to one electrode 11 of the pair of electrodes E and the metal film layer 13 in the process of manufacturing or using the plasma generator 10, one of the pair of electrodes E The electrode 11 and the metal film layer 13 may be warped according to their coefficients of thermal expansion, and a gap may be formed between them. At this time, a vacuum layer V or an air layer A is formed in a gap between one electrode 11 of the pair of electrodes E and the metal film layer 13 . Here, FIG. 41B will be referred to regarding the possibility that a vacuum layer V or an air layer A may be formed between one electrode 11 of the pair of electrodes E and the metal film layer 13 .
 ここで、真空又は空気の電気伝導率は、いずれも極めて低いものである。したがって、一対の電極Eのうちの一方の電極11と金属膜層13との間において真空層V又は空気層Aが形成された場合にあっては、プラズマ発生装置10が導電性粘着層14を備えるものであるときに比して、一対の電極Eのうちの一方の電極11から金属膜層13までの電気伝導率が低下するおそれがある。また、このことは、ガラス層12と金属膜層13との間についても同様に当てはまる。 Here, the electrical conductivity of either vacuum or air is extremely low. Therefore, when the vacuum layer V or the air layer A is formed between one electrode 11 of the pair of electrodes E and the metal film layer 13, the plasma generator 10 may cause the conductive adhesive layer 14 to There is a possibility that the electric conductivity from one electrode 11 of the pair of electrodes E to the metal film layer 13 may decrease compared to when the metal film layer 13 is provided. Moreover, this also applies similarly between the glass layer 12 and the metal film layer 13 .
 このような電気伝導率の低下が生じた場合にあっては、当該プラズマ発生装置10は、プラズマ発生装置10が導電性粘着層14を備えるものであるときに比して、プラズマPを安定して発生させることができなくなるおそれがある。 In the case where such a decrease in electrical conductivity occurs, the plasma generator 10 stabilizes the plasma P compared to when the plasma generator 10 includes the conductive adhesive layer 14. It may not be possible to generate
 これに対して、電極側導電性粘着層14aは、一対の電極Eのうちの一方の電極11と金属膜層13との間に配置されることによって、次のような作用を生じるものである。 On the other hand, the electrode-side conductive adhesive layer 14a is arranged between one electrode 11 of the pair of electrodes E and the metal film layer 13, thereby producing the following effects. .
 電極側導電性粘着層14aは、一対の電極Eのうちの一方の電極11と金属膜層13とにおいて反りが生じた場合であっても、粘着性を有するものとして、一対の電極Eのうちの一方の電極11と金属膜層13とそれぞれ密着しながら、粘弾性を有するものとして、一対の電極Eのうちの一方の電極11において生じた反りと金属膜層13において生じた反りとにそれぞれ従って、これらに応じる形状に自らの形状変えることができるものでもある。その結果として、電極側導電性粘着層14aは、一対の電極Eのうちの一方の電極11と金属膜層13との間において真空層又は空気層が形成されるおそれを低減させる。ここで、導電性粘着層14が一対の電極Eのうちの一方の電極11と金属膜層13との間に真空層又は空気層が形成されるおそれを低減させることに関して、図41(a)を参照する。 The electrode-side conductive adhesive layer 14a has adhesiveness even when one of the pair of electrodes E, the electrode 11 and the metal film layer 13 are warped. One electrode 11 and the metal film layer 13 of the pair of electrodes E are assumed to have viscoelasticity while being in close contact with each other. Therefore, it is also possible to change its own shape into a shape corresponding to these. As a result, the electrode-side conductive adhesive layer 14a reduces the risk of forming a vacuum layer or an air layer between one electrode 11 of the pair of electrodes E and the metal film layer 13 . Here, regarding reducing the possibility that the conductive adhesive layer 14 forms a vacuum layer or an air layer between one electrode 11 of the pair of electrodes E and the metal film layer 13, FIG. See
 ここで、電極側導電性粘着層14aは粘着層と導電性粒子とから構成されるものであるところ、導電性粒子は真空又は空気に比して高い電気伝導率を有するものであり、また、粘着層、例えば、アクリル酸系共重合体も真空又は空気に比して高い電気伝導率を有するものである。 Here, the electrode-side conductive adhesive layer 14a is composed of an adhesive layer and conductive particles, and the conductive particles have higher electrical conductivity than vacuum or air. Adhesive layers, such as acrylic copolymers, also have higher electrical conductivity than vacuum or air.
 以上のとおりであるから、電極側導電性粘着層14aは、一対の電極Eのうちの一方の電極11と金属膜層13との間に真空層又は空気層が形成されるおそれを低減させることにより、プラズマ発生装置10をしてプラズマPを安定して発生させるものとすることができる。 As described above, the electrode-side conductive adhesive layer 14a reduces the possibility that a vacuum layer or an air layer is formed between one electrode 11 of the pair of electrodes E and the metal film layer 13. Thus, the plasma generator 10 can stably generate the plasma P.
 さらに、ガラス層側導電性粘着層14bも、電極側導電性粘着層14aにおける場合と同様の作用により、ガラス層12と金属膜層13との間に真空層又は空気層が形成されるおそれを低減させることにより、プラズマ発生装置10をしてプラズマPを安定して発生させるものとすることができる。また、金属膜層間導電性粘着層14cについても、同様である。 Furthermore, the glass layer-side conductive adhesive layer 14b also prevents the formation of a vacuum layer or an air layer between the glass layer 12 and the metal film layer 13 due to the same action as in the electrode-side conductive adhesive layer 14a. By reducing it, the plasma generator 10 can be made to generate the plasma P stably. The same applies to the metal film interlayer conductive adhesive layer 14c.
[気体浄化装置1/プラズマ発生装置10/電極11とガラス層12と金属膜層13と導電性粘着層14との組み合わせ]
 プラズマ発生装置10にあっては、一対の電極Eのうちの一方の電極11と、ガラス層12と、金属膜層13と、導電性粘着層14との組み合わせの態様として、例えば、次のものが挙げられる。なお、(A1)から(F7)までにおいて、「α/β」は、αとβとが直ちに接することを示し、また、「α/(蒸着)/β」は、αがβに蒸着されてαとβとが直ちに接するか、又はβがαに蒸着されてαとβとが直ちに接することを示すものである。
[Combination of gas purifier 1/plasma generator 10/electrode 11, glass layer 12, metal film layer 13, and conductive adhesive layer 14]
In the plasma generator 10, examples of combinations of the electrode 11 of the pair of electrodes E, the glass layer 12, the metal film layer 13, and the conductive adhesive layer 14 include the following: is mentioned. In (A1) to (F7), "α/β" indicates that α and β are in immediate contact, and "α/(evaporation)/β" indicates that α is evaporated on β. It indicates that α and β are immediately in contact, or that β is vapor-deposited on α so that α and β are immediately in contact.
(A1)第一電極11a/第一金属膜層13a/第一ガラス層12a。
(A2)第一電極11a/(蒸着)/第一金属膜層13a/第一ガラス層12a。
(A3)第一電極11a/第一金属膜層13a/(蒸着)/第一ガラス層12a。
(A1) First electrode 11a/first metal film layer 13a/first glass layer 12a.
(A2) First electrode 11a/(evaporation)/first metal film layer 13a/first glass layer 12a.
(A3) First electrode 11a/first metal film layer 13a/(evaporation)/first glass layer 12a.
(B1)第一電極11a/第一電極側導電性粘着層14a1/第一金属膜層13a/第一ガラス層12a(図42(a)中の(a1)を参照)。
(B2)第一電極11a/第一電極側導電性粘着層14a1/第一金属膜層13a/(蒸着)/第一ガラス層12a(図42(a)中の(a1)を参照)。
(B1) First electrode 11a/first electrode-side conductive adhesive layer 14a1/first metal film layer 13a/first glass layer 12a (see (a1) in FIG. 42(a)).
(B2) First electrode 11a/first electrode-side conductive adhesive layer 14a1/first metal film layer 13a/(evaporation)/first glass layer 12a (see (a1) in FIG. 42(a)).
(C1)第一電極11a/第一金属膜層13a/第一ガラス層側導電性粘着層14b1/第一ガラス層12a(図42(b)中の(b1)を参照)。
(C2)第一電極11a/(蒸着)/第一金属膜層13a/第一ガラス層側導電性粘着層14b1/第一ガラス層12a(図42(b)中の(b1)を参照)。
(C1) First electrode 11a/first metal film layer 13a/first glass layer side conductive adhesive layer 14b1/first glass layer 12a (see (b1) in FIG. 42(b)).
(C2) First electrode 11a/(evaporation)/first metal film layer 13a/first glass layer side conductive adhesive layer 14b1/first glass layer 12a (see (b1) in FIG. 42(b)).
(D)第一電極11a/第一電極側導電性粘着層14a1/第一金属膜層13a/第一ガラス層側導電性粘着層14b1/第一ガラス層12a(図42(c)中の(c1)を参照)。 (D) First electrode 11a/first electrode side conductive adhesive layer 14a1/first metal film layer 13a/first glass layer side conductive adhesive layer 14b1/first glass layer 12a (( in FIG. 42(c) c1)).
(E1)第一電極11a/第一電極側金属膜13a1/第一ガラス層側金属膜13a2/第一ガラス層12a(図42(d)中の(d1)を参照)。
(E2)第一電極11a/(蒸着)/第一電極側金属膜13a1/第一ガラス層側金属膜13a2/第一ガラス層12a(図42(d)中の(d1)を参照)。
(E3)第一電極11a/第一電極側金属膜13a1/第一ガラス層側金属膜13a2//(蒸着)/第一ガラス層12a(図42(d)中の(d1)を参照)。
(E4)第一電極11a/(蒸着)/第一電極側金属膜13a1/第一ガラス層側金属膜13a2/(蒸着)/第一ガラス層12a(図42(d)中の(d1)を参照)。
(E5)第一電極11a/第一電極側導電性粘着層14a1/第一電極側金属膜13a1/第一ガラス層側金属膜13a2/(蒸着)/第一ガラス層12a(図42(e)中の(e1)を参照)。
(E6)第一電極11a/(蒸着)/第一電極側金属膜13a1/第一ガラス層側金属膜13a2/第一ガラス層側導電性粘着層14b1/第一ガラス層12a(図43(a)中の(a1)を参照)。
(E7)第一電極11a/第一電極側導電性粘着層14a1/第一電極側金属膜13a1/第一ガラス層側金属膜13a2/第一ガラス層側導電性粘着層14b1/第一ガラス層12a(図43(b)中の(b1)を参照)。
(E1) First electrode 11a/first electrode side metal film 13a1/first glass layer side metal film 13a2/first glass layer 12a (see (d1) in FIG. 42(d)).
(E2) First electrode 11a/(evaporation)/first electrode side metal film 13a1/first glass layer side metal film 13a2/first glass layer 12a (see (d1) in FIG. 42(d)).
(E3) First electrode 11a/first electrode side metal film 13a1/first glass layer side metal film 13a2//(vapor deposition)/first glass layer 12a (see (d1) in FIG. 42(d)).
(E4) First electrode 11a/(evaporation)/first electrode-side metal film 13a1/first glass layer-side metal film 13a2/(evaporation)/first glass layer 12a ((d1) in FIG. 42(d) reference).
(E5) First electrode 11a/first electrode side conductive adhesive layer 14a1/first electrode side metal film 13a1/first glass layer side metal film 13a2/(vapor deposition)/first glass layer 12a (FIG. 42(e) see (e1) in).
(E6) First electrode 11a/(evaporation)/first electrode side metal film 13a1/first glass layer side metal film 13a2/first glass layer side conductive adhesive layer 14b1/first glass layer 12a (Fig. 43(a) ) in (a1)).
(E7) First electrode 11a/first electrode side conductive adhesive layer 14a1/first electrode side metal film 13a1/first glass layer side metal film 13a2/first glass layer side conductive adhesive layer 14b1/first glass layer 12a (see (b1) in FIG. 43(b)).
(F1)第一電極11a/第一電極側金属膜13a1/第一金属膜層間導電性粘着層14c1/第一ガラス層側金属膜13a2/第一ガラス層12a(図43(c)中の(c1)を参照)。
(F2)第一電極11a/(蒸着)/第一電極側金属膜13a1/第一金属膜層間導電性粘着層14c1/第一ガラス層側金属膜13a2/第一ガラス層12a(図43(c)中の(c1)を参照)。
(F3)第一電極11a/第一電極側金属膜13a1/第一金属膜層間導電性粘着層14c1/第一ガラス層側金属膜13a2/(蒸着)/第一ガラス層12a(図43(c)中の(c1)を参照)。
(F4)第一電極11a/(蒸着)/第一電極側金属膜13a1/第一金属膜層間導電性粘着層14c1/第一ガラス層側金属膜13a2/(蒸着)/第一ガラス層12a(図43(c)中の(c1)を参照)。
(F5)第一電極11a/第一電極側導電性粘着層14a1/第一電極側金属膜13a1/第一金属膜層間導電性粘着層14c1/第一ガラス層側金属膜13a2/(蒸着)/第一ガラス層12a(図43(d)中の(d1)を参照)。
(F6)第一電極11a/(蒸着)/第一電極側金属膜13a1/第一金属膜層間導電性粘着層14c1/第一ガラス層側金属膜13a2/第一ガラス層側導電性粘着層14b1/第一ガラス層12a(図示しない)。
(F7)第一電極11a/第一電極側導電性粘着層14a1/第一金属膜層間導電性粘着層14c1/第一電極側金属膜13a1/第一ガラス層側金属膜13a2/第一ガラス層側導電性粘着層14b1/第一ガラス層12a(図43(e)中の(e1)を参照)。
(F1) First electrode 11a/first electrode side metal film 13a1/first metal film interlayer conductive adhesive layer 14c1/first glass layer side metal film 13a2/first glass layer 12a (( in FIG. 43(c) c1)).
(F2) First electrode 11a/(evaporation)/first electrode side metal film 13a1/first metal film interlayer conductive adhesive layer 14c1/first glass layer side metal film 13a2/first glass layer 12a (Fig. 43(c) ) in (c1)).
(F3) First electrode 11a/first electrode side metal film 13a1/first metal film interlayer conductive adhesive layer 14c1/first glass layer side metal film 13a2/(deposition)/first glass layer 12a (Fig. 43(c) ) in (c1)).
(F4) First electrode 11a/(Vapor deposition)/First electrode side metal film 13a1/First metal film interlayer conductive adhesive layer 14c1/First glass layer side metal film 13a2/(Vapor deposition)/First glass layer 12a ( See (c1) in FIG. 43(c)).
(F5) First electrode 11a/first electrode-side conductive adhesive layer 14a1/first electrode-side metal film 13a1/first metal film interlayer conductive adhesive layer 14c1/first glass layer-side metal film 13a2/(evaporation)/ The first glass layer 12a (see (d1) in FIG. 43(d)).
(F6) First electrode 11a/(evaporation)/first electrode side metal film 13a1/first metal film interlayer conductive adhesive layer 14c1/first glass layer side metal film 13a2/first glass layer side conductive adhesive layer 14b1 / First glass layer 12a (not shown).
(F7) First electrode 11a/first electrode side conductive adhesive layer 14a1/first metal film interlayer conductive adhesive layer 14c1/first electrode side metal film 13a1/first glass layer side metal film 13a2/first glass layer Side conductive adhesive layer 14b1/first glass layer 12a (see (e1) in FIG. 43(e)).
 以上の態様のうち、プラズマ発生装置10をしてプラズマPを安定して発生させるとの観点から、(B2)又は(D)が好ましく、これらのうち、長期的なプラズマ発生安定性の観点から、(B2)がより好ましく、また、短期的なプラズマ発生安定性の観点から、(D)もより好ましく、プラズマ発生装置10を使用する目的に応じて適当なものを選択することが更により好ましい。 Among the above aspects, (B2) or (D) is preferable from the viewpoint of stably generating the plasma P by the plasma generator 10, and among these, from the viewpoint of long-term plasma generation stability , (B2) are more preferable, and from the viewpoint of short-term plasma generation stability, (D) is also more preferable, and it is even more preferable to select an appropriate one according to the purpose of using the plasma generator 10 .
 また、(E5)、(E7)、(F5)又は(F7)も好ましく、これらのうち、長期的なプラズマ発生安定性の観点から、(E5)又は(F5)がより好ましく、また、短期的なプラズマ発生安定性の観点から、(E7)又は(F7)もより好ましく、プラズマ発生装置10を使用する目的に応じて適当なものを選択することが更により好ましい。 In addition, (E5), (E7), (F5) or (F7) is also preferable, and among these, from the viewpoint of long-term plasma generation stability, (E5) or (F5) is more preferable. From the viewpoint of stable plasma generation, (E7) or (F7) is also more preferable, and it is even more preferable to select an appropriate one according to the purpose of using the plasma generator 10 .
 また、プラズマ発生装置10をしてプラズマPを安定して発生させるとの観点のほか、量産性にも優れるとの観点も考慮すると、(F3)又は(F6)もまた好ましい。 In addition, (F3) or (F6) is also preferable from the viewpoint of generating the plasma P stably by the plasma generator 10 and also considering the viewpoint of being excellent in mass productivity.
 以上のことは、「第一電極11a」とあるのを「第三電極11c」と、「第一金属膜層13a」とあるのを「第二金属膜層13b」と、「第一ガラス層12a」とあるのを「第二ガラス層12b」と、「第一電極側導電性粘着層14a1」とあるのを「第三電極側導電性粘着層14a2」と、「第一ガラス層側導電性粘着層14b1」とあるのを「第二ガラス層側導電性粘着層14b2」と、「第一電極側金属膜13a1」とあるのを「第三電極側金属膜13b2」と、「第一ガラス層側金属膜13a2」とあるのを「第二ガラス層側金属膜13b2」と、「第一金属膜層間導電性粘着層14c1」とあるのを「第二金属膜層間導電性粘着層14c2」と、それぞれ読み替えた場合についても同様に当てはまるものである。この場合において、(B1)を上記のとおりに読み替えた態様については、(B1)について参照した「図42(a)中の(a1)」に代えて、「図42(a)中の(a2)」を参照するものとし、その余についてもこの例による。 In the above description, the “first electrode 11a” is replaced with the “third electrode 11c”, the “first metal film layer 13a” is replaced with the “second metal film layer 13b”, and the “first glass layer 12a" is replaced with "second glass layer 12b", "first electrode side conductive adhesive layer 14a1" is replaced with "third electrode side conductive adhesive layer 14a2", and "first glass layer side conductive "Electrical adhesive layer 14b1" is replaced with "second glass layer side conductive adhesive layer 14b2", and "first electrode side metal film 13a1" is replaced with "third electrode side metal film 13b2" and "first electrode side metal film 13b2". "Glass layer side metal film 13a2" is changed to "second glass layer side metal film 13b2", and "first metal film interlayer conductive adhesive layer 14c1" is changed to "second metal film interlayer conductive adhesive layer 14c2". ", and the same applies to the case where they are read in the same way. In this case, for the mode in which (B1) is read as above, instead of "(a1) in FIG. 42(a)" referred to (B1), "(a2 )”, and the rest are also based on this example.
[気体浄化装置1/プラズマ発生装置10/反射鏡M]
 プラズマ発生装置10にあっては、ガラス層12と金属膜層13とが、併せて反射鏡Mを構成する。反射鏡Mは、プラズマPが発する紫外線UVその他の電磁波を反射するためのものである。また、反射鏡Mは、発生させるプラズマPの量を増やすことができるものでもある。
[Gas Purifier 1/Plasma Generator 10/Reflector M]
In the plasma generator 10, the glass layer 12 and the metal film layer 13 together constitute a reflecting mirror M. As shown in FIG. The reflecting mirror M is for reflecting the ultraviolet rays UV emitted by the plasma P and other electromagnetic waves. Moreover, the reflecting mirror M can also increase the amount of plasma P to be generated.
 反射鏡Mにおいて、ガラス層12は紫外線を透過させ、金属膜層13はガラス層12を透過した紫外線を反射する。このとき、ガラス層12は、金属膜層13の紫外線反射率を低減させるおそれがある要因、例えば、酸化による損傷から金属膜層13を保護する。 In the reflector M, the glass layer 12 transmits ultraviolet rays, and the metal film layer 13 reflects the ultraviolet rays transmitted through the glass layer 12 . At this time, the glass layer 12 protects the metal film layer 13 from factors that may reduce the UV reflectance of the metal film layer 13, such as oxidation damage.
 反射鏡Mを構成するに当たって、金属膜層13を採用することは、第一電極11a又は第三電極11cの選択の幅を拡げるものとなる。すなわち、ガラス層12と金属膜層13とから反射鏡Mを構成することができるため、紫外線反射率の観点以外の観点、例えば、熱伝導率の観点から、第一電極11a又は第三電極11cを選択することができるようになる。例えば、アルミニウムは、紫外線反射率に優れるが、熱伝導率には劣るのに対し、銅は、熱伝導率に優れるが、紫外線反射率には劣る。ガラス層12と第一電極11a又は第三電極11cとから反射鏡Mを構成したときは、第一電極11a又は第三電極11cの選択において、高い紫外線反射率と高い熱伝導率とを共存させることはできない。これに対して、ガラス層12と金属膜層13とから反射鏡Mを構成するときは、金属膜層13により高い紫外線反射率がもたらされるため、仮に熱伝導率の観点から第一電極11a又は第三電極11cを選択したとしても、プラズマ発生装置10において、高い紫外線反射率と高い熱伝導率とを共存させることができる。以上をより具体的にいうと、次のとおりである。 The use of the metal film layer 13 in constructing the reflector M widens the range of selection of the first electrode 11a or the third electrode 11c. That is, since the reflecting mirror M can be configured from the glass layer 12 and the metal film layer 13, the first electrode 11a or the third electrode 11c can be formed from a viewpoint other than the UV reflectance, for example, the thermal conductivity. can be selected. For example, aluminum has excellent UV reflectance but poor thermal conductivity, while copper has excellent thermal conductivity but poor UV reflectance. When the reflecting mirror M is composed of the glass layer 12 and the first electrode 11a or the third electrode 11c, the first electrode 11a or the third electrode 11c should be selected so that both high ultraviolet reflectance and high thermal conductivity are achieved. It is not possible. On the other hand, when the reflecting mirror M is composed of the glass layer 12 and the metal film layer 13, the metal film layer 13 provides a higher ultraviolet reflectance. Even if the third electrode 11c is selected, in the plasma generator 10, high ultraviolet reflectance and high thermal conductivity can coexist. More specifically, the above is as follows.
 反射鏡Mを構成するガラス層12と金属膜層13との組み合わせとして、例えば、以下のものが好ましい。すなわち、石英ガラスからなるガラス層12とアルミニウムからなる金属膜層13との組み合わせ、石英ガラスからなるガラス層12と銀からなる金属膜層13との組み合わせ、ホウケイ酸ガラスからなるガラス層12とアルミニウムからなる金属膜層13との組み合わせ、ホウケイ酸ガラスからなるガラス層12と銀からなる金属膜層13との組み合わせが好ましく、これらのうち、ホウケイ酸ガラスからなるガラス層12とアルミニウムからなる金属膜層13との組み合わせがより好ましい。 As a combination of the glass layer 12 and the metal film layer 13 that constitute the reflecting mirror M, for example, the following are preferable. That is, a combination of a glass layer 12 made of quartz glass and a metal film layer 13 made of aluminum, a combination of a glass layer 12 made of quartz glass and a metal film layer 13 made of silver, a combination of a glass layer 12 made of borosilicate glass and aluminum and the combination of the glass layer 12 made of borosilicate glass and the metal film layer 13 made of silver are preferable. Among these, the glass layer 12 made of borosilicate glass and the metal film made of aluminum A combination with layer 13 is more preferred.
 また、これらのガラス層12と金属膜層13とから構成される反射鏡Mと組み合わせる第一電極11a又は第三電極11cとして好ましいものは、銅からなる第一電極11a又は第三電極11cである。 Moreover, the first electrode 11a or the third electrode 11c made of copper is preferable as the first electrode 11a or the third electrode 11c combined with the reflecting mirror M composed of the glass layer 12 and the metal film layer 13. .
 以上のような組み合わせとすることによって、反射鏡Mの紫外線反射率を高めたまま、第一電極11a又は第三電極11cの熱伝導率を高めることができる。 With the combination as described above, the thermal conductivity of the first electrode 11a or the third electrode 11c can be increased while the UV reflectance of the reflecting mirror M is increased.
 プラズマ発生装置10は、反射鏡Mとして、第一反射鏡M1と、第二反射鏡M2と、を備えることが好ましく、これらが互いに向き合うように配置されており、合わせ鏡の関係をなしていることがより好ましい。このとき、第一反射鏡M1と第二反射鏡M2との間で紫外線の反射が反復して行われることとなる。 The plasma generator 10 preferably includes a first reflecting mirror M1 and a second reflecting mirror M2 as the reflecting mirrors M, which are arranged to face each other and form a paired mirror relationship. is more preferable. At this time, the ultraviolet rays are repeatedly reflected between the first reflecting mirror M1 and the second reflecting mirror M2.
 すなわち、プラズマ発生装置10は、第一電極11aと第二電極11bと第一ガラス層12aと第一金属膜層13aとを備えるほか、第三電極11cと第二ガラス層12bと第二金属膜層13bとを備えることが好ましい。このとき、プラズマ発生装置10は、第一の一対の電極E1と第二の一対の電極E2と第一反射鏡M1と第二反射鏡M2とを備えることになる。さらに、このとき、第一反射鏡M1と第二反射鏡M2とが、互いに対向することがより好ましい。ここで、このような関係にある第一反射鏡M1及び第二反射鏡M2の例として、図1(a)、図3(a)、図12(a)等を参照する。 That is, the plasma generator 10 includes a first electrode 11a, a second electrode 11b, a first glass layer 12a, and a first metal film layer 13a, as well as a third electrode 11c, a second glass layer 12b, and a second metal film. layer 13b. At this time, the plasma generator 10 is provided with a first pair of electrodes E1, a second pair of electrodes E2, a first reflecting mirror M1, and a second reflecting mirror M2. Furthermore, at this time, it is more preferable that the first reflecting mirror M1 and the second reflecting mirror M2 face each other. Here, FIGS. 1A, 3A, 12A and the like are referred to as examples of the first reflecting mirror M1 and the second reflecting mirror M2 having such a relationship.
[気体浄化装置1/プラズマ発生装置10/作用]
 プラズマ発生装置10の作用は、例えば、次のとおりのものである。
[Gas Purifier 1/Plasma Generator 10/Action]
Actions of the plasma generator 10 are, for example, as follows.
[気体浄化装置1/プラズマ発生装置10/作用/紫外線UVを反射すること]
 一対の電極Eに所定の電圧を加えると、誘電体バリア放電によって、一対の電極E間の空間Sにおいて、プラズマPが発生する。これをより詳くみると、次のとおりである。
[Gas Purifier 1/Plasma Generator 10/Action/Reflecting Ultraviolet UV]
When a predetermined voltage is applied to the pair of electrodes E, plasma P is generated in the space S between the pair of electrodes E by dielectric barrier discharge. Looking at this in more detail, it is as follows.
 第一電極11aと第二電極11bとの間に所定の電位差を与えると、第一電極11aと第二電極11bとの間の空間SにプラズマPが発生する。また、プラズマ発生装置10が第三電極11cを更に備える場合にあっては、第三電極11cと第二電極11bとの間に所定の電位差を与えると、第三電極11cと第二電極11bとの間の空間SにプラズマPが発生する。さらに、第一電極11aと第三電極11cとにおける電位を等しくし、当該電位と第二電極11bにおける電位との間の差を所定のものとすると、第一電極11aと第二電極11bとの間の空間SにプラズマPが発生するとともに、第三電極11cと第二電極11bとの間の空間SにもプラズマPが発生する。このとき、第一電極11aと第三電極11cとにおける電位を等しくするためには、例えば、これらを接地させればよい。ここで、第一の一対の電極E1間の空間S若しくは第二の一対の電極E2の空間Sの一方又は両方にプラズマPが発生することに関して、図2(a)、図3(b)、図12(b)等を参照する。 When a predetermined potential difference is applied between the first electrode 11a and the second electrode 11b, plasma P is generated in the space S between the first electrode 11a and the second electrode 11b. Further, in the case where the plasma generator 10 further includes a third electrode 11c, when a predetermined potential difference is applied between the third electrode 11c and the second electrode 11b, the third electrode 11c and the second electrode 11b Plasma P is generated in the space S between. Further, if the potentials of the first electrode 11a and the third electrode 11c are made equal, and the difference between the potential and the potential of the second electrode 11b is a predetermined value, the potential of the first electrode 11a and the potential of the second electrode 11b is The plasma P is generated in the space S between them, and the plasma P is also generated in the space S between the third electrode 11c and the second electrode 11b. At this time, in order to equalize the potentials of the first electrode 11a and the third electrode 11c, for example, they may be grounded. Here, the generation of the plasma P in one or both of the space S between the first pair of electrodes E1 or the space S between the second pair of electrodes E2 will Refer to FIG. 12(b) and the like.
 この場合において、例えば、一対の電極E間の空間Sに窒素の気体(N)が存在するときは、窒素のプラズマが発生し、この窒素のプラズマが、紫外線UVを発する。また、一対の電極E間の空間Sに存在する気体が窒素以外の気体、例えば、貴ガスである場合にあっても、当該気体が窒素である場合と同様に、紫外線UVを発生させることができる。 In this case, for example, when nitrogen gas (N 2 ) exists in the space S between the pair of electrodes E, nitrogen plasma is generated, and this nitrogen plasma emits ultraviolet rays UV. Further, even if the gas existing in the space S between the pair of electrodes E is a gas other than nitrogen, such as a noble gas, it is possible to generate ultraviolet rays UV in the same manner as when the gas is nitrogen. can.
 紫外線UVが反射鏡Mに当たると、反射鏡Mは、紫外線UVを吸収することなく、これを反射する。ここで、反射鏡Mが紫外線UVを反射することに関して、図6(a)を参照する。 When the ultraviolet rays UV hit the reflecting mirror M, the reflecting mirror M reflects the ultraviolet rays UV without absorbing them. Here, FIG. 6(a) is referred to regarding the reflecting mirror M reflecting the ultraviolet rays UV.
 したがって、プラズマ発生装置10は、反射鏡Mを備えるものとして、一対の電極E間の空間Sに存在する気体のほか、その浮遊物に対して、紫外線UVの照射を反復して行うことができる。 Therefore, the plasma generator 10, provided with the reflecting mirror M, can repeatedly irradiate the gas existing in the space S between the pair of electrodes E and the suspended matter with the ultraviolet UV. .
 これに対して、従来のプラズマ発生装置CEXのように、一対の電極E間に配置された誘電体層が、ガラス層12ではなく、セラミックス層Cからなる場合にあっては、紫外線UVが反射鏡Mに当たると、セラミックス層Cは、紫外線UVを吸収してしまい、これを反射しないか、又は紫外線UVを反射するとしても、その紫外線反射率が十分なものではないおそれがある。ここで、セラミックス層Cが紫外線UVを吸収することに関し、図6(b)を参照する。 On the other hand, as in the conventional plasma generator CEX, when the dielectric layer disposed between the pair of electrodes E is not the glass layer 12 but the ceramic layer C, the ultraviolet rays UV are reflected. When it hits the mirror M, the ceramic layer C absorbs the ultraviolet rays UV and may not reflect the ultraviolet rays UV, or even if it does reflect the ultraviolet rays UV, the ultraviolet reflectance may not be sufficient. Here, FIG. 6B will be referred to regarding the ceramic layer C absorbing ultraviolet rays UV.
 また、プラズマ発生装置10は、反射鏡Mとして第一反射鏡M1と第二反射鏡M2とを備える場合にあっては、第一反射鏡M1と第二反射鏡M2との間において、紫外線UVの反射を反復して行うことができる。ここで、第一反射鏡M1と第二反射鏡M2との間において紫外線UVの反射を反復することに関して、図7を参照する。 Further, when the plasma generator 10 is provided with the first reflecting mirror M1 and the second reflecting mirror M2 as the reflecting mirrors M, ultraviolet rays UV are emitted between the first reflecting mirror M1 and the second reflecting mirror M2. can be performed repeatedly. Referring now to FIG. 7 with respect to repeating the reflection of ultraviolet UV between the first reflector M1 and the second reflector M2.
 以上のとおり、プラズマ発生装置10は、誘電体バリア放電によってプラズマPを発生させるとともに、プラズマPが発する紫外線UVを反射し、これを効率的に利用することができるものである。 As described above, the plasma generator 10 generates the plasma P by dielectric barrier discharge, reflects the ultraviolet rays UV emitted by the plasma P, and can efficiently use them.
 また、もとの気体が窒素(N)である場合又は窒素(N)を含むものである場合にあっては、当該もとの気体が発する紫外線UVは、近紫外線を含むものとなる。ここで、金属膜層13における近紫外線に対する紫外線反射率は、通常、近紫外線以外の紫外線に対する紫外線反射率に比して、高いものとなる。すなわち、金属膜層13における紫外線反射率は、紫外線A波から紫外線B波を経て紫外線C波までにわたって、紫外線の波長が短くなることに従って、低下する傾向にある。このような傾向は、紫外線を反射する特性を有する金属一般においてみられるものであるところ、金属膜層13が、例えば、銀からなるものである場合において急な低下がみられるほか、アルミニウムからなるものである場合においても銀からなるものである場合に比して緩やかな低下ながらも同様にみられるものである。 In addition, when the original gas is nitrogen (N 2 ) or contains nitrogen (N 2 ), the ultraviolet rays UV emitted by the original gas include near-ultraviolet rays. Here, the ultraviolet reflectance of the metal film layer 13 for near-ultraviolet rays is generally higher than the ultraviolet reflectance for ultraviolet rays other than near-ultraviolet rays. That is, the ultraviolet reflectance of the metal film layer 13 tends to decrease as the wavelength of ultraviolet rays becomes shorter, from ultraviolet A wave to ultraviolet B wave to ultraviolet C wave. Such a tendency is seen in general metals that have the property of reflecting ultraviolet rays. Even in the case of the material, the same phenomenon can be seen, albeit a gradual decrease compared to the case of the material made of silver.
 そこで、もとの気体として、窒素(N)又は窒素(N)を含むもの、例えば、空気を選択した場合にあっては、当該プラズマ発生装置10は、紫外線UVのうち近紫外線を発生させて、この発生させた近紫外線を金属膜層13によって高い紫外線反射率をもって反射し、もって紫外線UVをより効率的に利用することができるものとなる。 Therefore, when nitrogen (N 2 ) or a gas containing nitrogen (N 2 ), such as air, is selected as the original gas, the plasma generator 10 generates near-ultraviolet rays among ultraviolet rays UV. The generated near-ultraviolet rays are reflected by the metal film layer 13 with a high ultraviolet reflectance, thereby making it possible to use the ultraviolet rays UV more efficiently.
[気体浄化装置1/プラズマ発生装置10/作用/プラズマPの量を増やすこと]
 プラズマ発生装置10にあっては、一対の電極E間に反射鏡Mが存在することにより、当該一対の電極E間の空間Sにおいて発生するプラズマPの量を、一対の電極E間に反射鏡Mが存在しない場合に比して、増やすことができる。その機序は、次のとおりである。
[Gas purifier 1/Plasma generator 10/Action/Increase amount of plasma P]
In the plasma generator 10, since the reflecting mirror M is present between the pair of electrodes E, the amount of plasma P generated in the space S between the pair of electrodes E is controlled by the reflecting mirror M between the pair of electrodes E. It can be increased compared to the case where M is not present. The mechanism is as follows.
 一対の電極E間における誘電体バリア放電により発生させたプラズマ(以下単に「もとのプラズマ」という。)は、電離した電子が電離した原子又は分子と再結合する過程又は励起した電子がより低いエネルギー準位に遷移する過程において、電磁波を発する。 Plasma generated by dielectric barrier discharge between a pair of electrodes E (hereinafter simply referred to as "original plasma") is a process in which ionized electrons recombine with ionized atoms or molecules, or the number of excited electrons is lower. Electromagnetic waves are emitted in the process of transitioning to energy levels.
 もとのプラズマが発した電磁波は、反射鏡Mにより反射され、もとのプラズマの周囲に存在する気体を構成する原子又は分子と衝突し、これらを電離させ、あるいは励起させ、もとのプラズマの周囲において新たなプラズマを発生させる。その結果として、プラズマ発生装置10が発生させるプラズマPの量は、もとのプラズマに対して新たなプラズマを加えたものとなる。 The electromagnetic wave emitted by the original plasma is reflected by the reflecting mirror M, collides with atoms or molecules constituting the gas existing around the original plasma, ionizes or excites them, and returns the original plasma. generate a new plasma around As a result, the amount of plasma P generated by the plasma generator 10 is the sum of the original plasma and the new plasma.
 したがって、プラズマ発生装置10は、従来のプラズマ発生装置CEXのように、一対の電極E間に配置された誘電体層が、ガラス層12ではなく、セラミックス層Cからなる場合に比して、その発生させるプラズマPの量を増やすことができる。ここで、反射鏡Mが発生させるプラズマPの量を増やすことに関して、図2、図3(b)を参照する。 Therefore, in the plasma generator 10, the dielectric layer disposed between the pair of electrodes E is not the glass layer 12 but the ceramic layer C as in the conventional plasma generator CEX. The amount of plasma P to be generated can be increased. Here, FIG. 2 and FIG. 3(b) will be referred to regarding increasing the amount of plasma P generated by the reflecting mirror M. FIG.
 以上のとおり、プラズマ発生装置10は、誘電体バリア放電によってプラズマPを発生させるとともに、プラズマPが発する電磁波を反射し、その発生させるプラズマPの量を増やすことができるものである。 As described above, the plasma generator 10 can generate the plasma P by dielectric barrier discharge, reflect the electromagnetic waves generated by the plasma P, and increase the amount of plasma P generated.
 なお、プラズマ発生装置10を、気体を浄化しようとするものとして、すなわち、気体浄化装置1の一部を構成するものとして利用することは、固体を浄化しようとする場合に比して、取り分け有益なものとなる。この点については、特に後述する。 It should be noted that using the plasma generator 10 for purifying gas, that is, as a part of the gas purifier 1 is particularly beneficial compared to purifying solids. become something. This point will be particularly described later.
[気体浄化装置1/プラズマ発生装置10/作用/オゾン等の量を増やすこと]
 一対の電極E間の空間Sに酸素(O)が存在する場合にあっては、プラズマ発生装置10は、酸素(O)に対して、紫外線UVその他の電磁波の照射を反復して行うことのほか、その発生させたより多くの量のプラズマPと接触させることによって、より多くの量のオゾン(O)を発生させることもできる。
[Gas purifier 1/Plasma generator 10/Action/Increase amount of ozone, etc.]
When oxygen (O 2 ) exists in the space S between the pair of electrodes E, the plasma generator 10 repeatedly irradiates the oxygen (O 2 ) with ultraviolet rays UV or other electromagnetic waves. In addition, a larger amount of ozone (O 3 ) can be generated by contacting the generated plasma P in a larger amount.
 同様の場合において、プラズマ発生装置10は、電離した酸素分子、酸素分子から解離した酸素原子、酸素分子の陰イオン、励起した酸素分子その他の酸素から発生する活性を有するもの(以下「活性酸素」ということがある。)についても、より多くの量のものを発生させることができる。 In a similar case, the plasma generator 10 includes ionized oxygen molecules, oxygen atoms dissociated from oxygen molecules, anions of oxygen molecules, excited oxygen molecules, and other active substances generated from oxygen (hereinafter, “active oxygen”). ) can also be generated in greater amounts.
[気体浄化装置1/流路20]
 流路20は、気体浄化装置1において、室内の空気その他の浄化しようとする気体Gが流れるための部分である。気体浄化装置1にあっては、流路20のうちのいずれかの部分にプラズマ発生装置10が配置され、浄化しようとする気体Gは流路20を流れる過程において浄化される。
[Gas purifier 1/channel 20]
The flow path 20 is a portion of the gas purifier 1 through which the indoor air or other gas G to be purified flows. In the gas purifier 1 , the plasma generator 10 is arranged in any part of the flow path 20 , and the gas G to be purified is purified while flowing through the flow path 20 .
 流路20は、入口20aと、出口20bと、経路20cと、から少なくとも構成されるものである。入口20aは、浄化しようとする気体Gが気体浄化装置1の内部に入るための開口からなる部分である。出口20bは、浄化しようとする気体Gが気体浄化装置1の外部に出るための開口からなる部分である。また、経路20cは、浄化しようとする気体Gが入口20aから出口20bまで流れるための通路からなる部分である。 The channel 20 is composed of at least an inlet 20a, an outlet 20b, and a path 20c. The inlet 20a is an opening through which the gas G to be purified enters the inside of the gas purifier 1 . The outlet 20b is an opening through which the gas G to be purified exits the gas purifier 1 . Further, the path 20c is a portion formed by a passage for the gas G to be purified to flow from the inlet 20a to the outlet 20b.
 気体Gは、気体浄化装置1において、入口20aから入り、入口20aがある方向から出口20bがある方向に向けて経路20cを流れ、出口20bから出ることになる。 The gas G enters the gas purification device 1 from the inlet 20a, flows through the path 20c from the direction of the inlet 20a to the direction of the outlet 20b, and exits from the outlet 20b.
 気体浄化装置1を利用して室内の空気を浄化しようとする場合にあっては、入口20aと出口20bとを室内に向けて開放するか、又は導管を介して室内に接続する。気体浄化装置1を利用して室内の空気以外の気体を浄化しようとする場合にあっては、感染症患者の口及び鼻、空気調節装置の冷媒配管、内燃機関その他の当該気体の供給源と入口20aとを導管を介して接続するとともに、出口20bを室内に向けて開放するか、又は導管を介して屋外に開放する。 When trying to purify indoor air using the gas purifier 1, the inlet 20a and the outlet 20b are opened toward the room or connected to the room via conduits. When trying to purify gases other than indoor air using the gas purifier 1, the mouth and nose of an infectious disease patient, refrigerant pipes of air conditioners, internal combustion engines and other sources of the gas The inlet 20a is connected through a conduit, and the outlet 20b is opened toward the inside of the room or opened to the outside through the conduit.
 ここで、経路20cのうち、基準となるものより入口20a側にある部分を「流路20のうち、(基準となるもの)より上流側」といい、基準となる物より出口20b側にある部分を「流路20のうち、(基準となるもの)より下流側」という。また、入口20a側を気体浄化装置1の正面側とし、出口20b側を気体浄化装置1の背面側とする。 Here, the portion of the path 20c that is on the inlet 20a side of the reference is referred to as "the upstream side of the flow path 20 (of the reference)", and is on the outlet 20b side of the reference. The portion is referred to as "the downstream side of the flow path 20 (that which serves as a reference)". The inlet 20a side is the front side of the gas purification device 1, and the outlet 20b side is the rear side of the gas purification device 1. As shown in FIG.
[気体浄化装置1/流路20/入口20a、出口21b及び経路20c]
 流路20は、浄化しようとする気体Gが上記のとおりに流れることができるものである限りにおいて、その具体的態様は特に限られるものではないが、例えば、第一電極11aと第三電極11cと第一ガラス層12aと第二ガラス層12bと第一スペーサ40aと第二スペーサ40bとから構成されるものであることが好ましい。ここで、このような流路20の例として、図10、図11、図12(a)、図15、図16、図17等を参照する。
[Gas purification device 1/channel 20/inlet 20a, outlet 21b and path 20c]
As long as the gas G to be purified can flow as described above, the specific mode of the flow path 20 is not particularly limited. , the first glass layer 12a, the second glass layer 12b, the first spacer 40a, and the second spacer 40b. Here, FIGS. 10, 11, 12(a), 15, 16, 17 and the like are referred to as examples of such a flow path 20. FIG.
 入口20aは、第一ガラス層12aと第二ガラス層12bと第一スペーサ40aと第二スペーサ40bとに囲まれるものとして、構成されることが好ましい。ここで、このような入口20aの例として、図10、図12(a)、図15等を参照する。 The entrance 20a is preferably configured as being surrounded by the first glass layer 12a, the second glass layer 12b, the first spacer 40a and the second spacer 40b. Here, FIG. 10, FIG. 12(a), FIG. 15, etc. will be referred to as an example of such an inlet 20a.
 出口20bは、第一電極11aと第三電極11cと第一スペーサ40aと第二スペーサ40bとに囲まれるものとして、構成されることが好ましい。ここで、このような出口20bの例として、例えば、図11、図12(a)、図16等を参照する。 The outlet 20b is preferably configured as being surrounded by the first electrode 11a, the third electrode 11c, the first spacer 40a and the second spacer 40b. Here, for example, FIG. 11, FIG. 12(a), FIG.
 経路20cは、第一ガラス層12aと第二ガラス層12bと第一スペーサ40aと第二スペーサ40bとに囲まれる第一部分20c1と、第一電極11aと第三電極11cと第一スペーサ40aと第二スペーサ40bとに囲まれる第二部分20c2と、から構成されることが好ましい。また、第一部分20c1が、流路20のうち、第二部分20c2より上流側に配置されることがより好ましい。ここで、このような経路20cの例として、図12(a)、図17を参照する。 The path 20c includes a first portion 20c1 surrounded by the first glass layer 12a, the second glass layer 12b, the first spacers 40a and the second spacers 40b, the first electrode 11a, the third electrode 11c, the first spacer 40a and the second electrode 11c. and a second portion 20c2 surrounded by two spacers 40b. Further, it is more preferable that the first portion 20c1 is arranged upstream of the second portion 20c2 in the channel 20. As shown in FIG. Here, FIG. 12(a) and FIG. 17 are referred to as an example of such a path 20c.
 第一部分20c1にあっては、第二電極11bと第一ガラス層12aとの間において、好ましくは、更に第二電極11bと第二ガラス層12bとの間において、一対の電極E間の空間Sが構成され、この空間SにおいてプラズマPが発生する。浄化しようとする気体Gは、経路20cのうち空間S及び空間Sに後続する部分を通過しながら、浄化される。また、第二部分20c2にあっては、フィルタ30が配置されることが好ましい。 In the first portion 20c1, between the second electrode 11b and the first glass layer 12a, preferably further between the second electrode 11b and the second glass layer 12b, the space S between the pair of electrodes E is constructed, and plasma P is generated in this space S. The gas G to be purified is purified while passing through the space S and the portion subsequent to the space S in the path 20c. Moreover, it is preferable that the filter 30 is arranged in the second portion 20c2.
[気体浄化装置1/流路20/第二電極11bと流路20との関係]
 気体浄化装置1において第二電極11bを配置するに当たり、第二電極11bの延びる方向と流路20の延びる方向とが、互いに平行となるように配置されてもよいが、互いに交わるように配置されることが好ましく、互いに垂直となるように配置されることがより好ましい。第二電極11bの延びる方向と流路20の延びる方向とが互いに交わるように配置されることにより、第二電極11bの延びる方向と流路20の延びる方向とが互いに平行となるように配置される場合に比して、一対の電極E間の空間Sの体積を変えることなく、流路20の長さを短くすることができるため、圧力損失を小さくすることができ、浄化しようとする気体Gのうち単位時間当たりに浄化することができる気体Gの量を増加させることができる。さらに、第二電極11bの延びる方向と流路20の延びる方向とが互いに垂直となるように配置されることにより、圧力損失を最も小さくすることができ、浄化しようとする気体Gのうち単位時間当たりに浄化することができる気体Gの量を最も増加させることができる。ここで、このような関係にある第二電極11b及び流路20の例として、図15、図16、図17等を参照する。
[Relationship between gas purification device 1/channel 20/second electrode 11b and channel 20]
In arranging the second electrode 11b in the gas purifying device 1, the extending direction of the second electrode 11b and the extending direction of the flow path 20 may be arranged so as to be parallel to each other. and more preferably arranged perpendicular to each other. By arranging so that the extending direction of the second electrode 11b and the extending direction of the channel 20 intersect each other, the extending direction of the second electrode 11b and the extending direction of the channel 20 are arranged so as to be parallel to each other. Since the length of the flow path 20 can be shortened without changing the volume of the space S between the pair of electrodes E, the pressure loss can be reduced and the gas to be purified can be reduced. The amount of gas G that can be purified per unit time out of G can be increased. Furthermore, since the direction in which the second electrode 11b extends and the direction in which the flow path 20 extends are arranged so as to be perpendicular to each other, the pressure loss can be minimized. The amount of gas G that can be purified per unit can be increased most. Here, FIGS. 15, 16, 17 and the like are referred to as examples of the second electrode 11b and the channel 20 having such a relationship.
 第二電極11bの延びる方向と流路20の延びる方向とが交わる場合において、これらがなす角のうち鋭角の角度は、45°以上であることが好ましく、60以上であることがより好ましく、75°以上であることが更により好ましく、そして、90°であることが最も好ましい。 When the direction in which the second electrode 11b extends and the direction in which the channel 20 extends intersect, the acute angle among the angles formed by them is preferably 45° or more, more preferably 60° or more, and more preferably 75°. ° or more is even more preferred, and 90° is most preferred.
 ここで、流路20が、曲がりながら延びるものであるか、又は曲がりながら延びる部分を有するものである場合にあっては、「流路20の延びる方向」とは、流路20が曲がりながら延びる方向に沿って延びる仮想曲線と第二電極11bの延びる方向に沿って延びる仮想直線との交点における接線を求め、当該接線が延びる方向をいうものとする。 Here, in the case where the flow path 20 extends while bending or has a portion that extends while bending, the "direction in which the flow path 20 extends" means that the flow path 20 extends while bending. A tangent line at the intersection of a virtual curve extending along the direction and a virtual straight line extending along the direction in which the second electrode 11b extends is obtained, and the direction in which the tangent line extends is defined.
 さらに、気体浄化装置1の一部を構成するプラズマ発生装置10は、反射鏡Mを備えるものとして、発生させるプラズマPの量を増やし、浄化しようとする気体GがプラズマPと接触する確率を高めることができるものでもあるため、浄化しようとする気体Gの量の増加にかかわらず、これをその高められた確率をもって浄化することができる。 Further, the plasma generator 10, which constitutes a part of the gas purifier 1, is provided with a reflector M to increase the amount of plasma P to be generated and increase the probability that the gas G to be purified comes into contact with the plasma P. It is also possible to purify this with increased probability, regardless of the increase in the amount of gas G to be purified.
 これに対して、第二電極11bの延びる方向と流路20の延びる方向とが互いに平行となるように配置された場合にあっては、反射鏡Mを備えるものではないプラズマ発生装置CEXを利用したときであっても、流路20の延びる方向に沿って一対の電極E間の空間Sが配置されることになるため、浄化しようとする気体GがプラズマPと接触する確率を高めることができるものの、流路20も長くなるため、圧力損失が大きくなり、ひいては浄化しようとする気体Gの量も限られたものとなってしまう。 On the other hand, when the direction in which the second electrode 11b extends and the direction in which the flow path 20 extends are arranged to be parallel to each other, the plasma generator CEX that does not include the reflecting mirror M is used. Even in this case, since the space S between the pair of electrodes E is arranged along the direction in which the flow path 20 extends, the probability that the gas G to be purified comes into contact with the plasma P can be increased. Although it can be done, the flow path 20 is also lengthened, resulting in a large pressure loss and a limited amount of the gas G to be purified.
 以上のとおり、気体浄化装置1にあっては、第二電極11bの延びる方向と流路20の延びる方向とが垂直となるように配置することによって、プラズマ発生装置10が備える反射鏡Mの存在と相俟って、浄化することができる気体Gの量を増やすことができる。 As described above, in the gas purifying device 1, the direction in which the second electrode 11b extends and the direction in which the flow path 20 extends are arranged so as to be perpendicular to each other. Together with this, the amount of gas G that can be purified can be increased.
[気体浄化装置1/フィルタ30]
 フィルタ30は、ここを気体が通過した場合において、気体に占める特定の気体の濃度を減少させるためのものである。
[Gas purification device 1/filter 30]
The filter 30 is for reducing the concentration of a specific gas in the gas when the gas passes through it.
 フィルタ30は、網状のものからなる。ここでいう「網状」のものとは、二以上の要素が互いの間に隙間を介して細かく密に組み合わせられた骨格と、当該隙間からなり、空気が通過するための通路と、当該骨格のうち、当該通路を通過する空気と触れる部分となる表面と、を有するものをいう。さらに、ここでいう「網状」のものには、柵状、放射状、格子状、蜂の巣状、水玉状その他の二以上の要素が一定のきまりに従って組み合わされているもののほか、二以上の要素が一定のきまりに従うことなく組み合わされているもの、例えば、不織布状のものを含むものとする。以下同じ。 The filter 30 is made of mesh. The term "net-like" as used herein means a skeleton in which two or more elements are finely and densely combined with gaps between them, and a passage for air to pass through the gaps. Among them, it refers to the one that has a surface that is a part that comes into contact with the air passing through the passage. Furthermore, the "net-like" mentioned here includes fence-like, radial, grid-like, honeycomb-like, polka-dot-like, and other two or more elements combined according to a certain rule, as well as two or more elements being fixed. It includes those that are combined without complying with the rules of, for example, those in the form of non-woven fabrics. same as below.
 フィルタ30は、網状のもののうち、蜂の巣状のものからなることが好ましい。ここでいう「蜂の巣状」のものには、環状の骨格であって、その断面における輪郭が正六角形をなすものが互いに組み合わされて隙間なく配置されたもののほか、環状の骨格であって、その断面における輪郭が互いに組み合わせることができる多角形又はこれに近似する形状をなすものが互いに組み合わされて隙間なく配置されたものを含むものとする。 The filter 30 preferably has a honeycomb shape among net-like ones. The "honeycomb-shaped" referred to here includes, in addition to ring-shaped skeletons that have a regular hexagonal cross-section and are arranged without gaps, ring-shaped skeletons that are arranged without gaps. Polygons whose cross-sectional contours can be combined with each other or shapes similar thereto are combined with each other and arranged without gaps.
 ここで、多角形のうち、その断面における輪郭が互いに組み合わせることができるものとして、例えば、正六角形のほか、正三角形又は正四方形が好ましいが、直角三角形若しくは二等辺三角形(正三角形を除く。)又は台形若しくは平行四辺形(長方形及び菱形を含み、正四方形を除く。)であってもよく、ここでいう「二等辺三角形」に近似する形状として、二等辺三角形を構成する三辺のうち長さの等しい二辺に代えて一本の正弦曲線としたもの、いわゆるコルゲート状のものを含むものとする。 Here, among polygons, for example, in addition to regular hexagons, equilateral triangles or equilateral tetragons are preferable as polygons whose cross-sectional contours can be combined with each other, but right triangles or isosceles triangles (excluding equilateral triangles) Or it may be a trapezoid or parallelogram (including rectangles and rhombuses, but excluding regular quadrilaterals). A so-called corrugated shape, which is a sinusoidal curve instead of two sides of equal width, is included.
 フィルタ30は、その表面において、触媒として又は自らと反応させて、特定の気体を分解する物質が配置されるものからなることが好ましい。 The filter 30 preferably consists of one on which a substance that decomposes a specific gas, either as a catalyst or by reacting with itself, is arranged.
 もっとも、フィルタ30は、その骨格そのものが、触媒として又は自らと反応させて、特定の気体を分解する物質からなるものであってもよい。 However, the skeleton of the filter 30 itself may be made of a substance that acts as a catalyst or reacts with itself to decompose a specific gas.
 フィルタ30は、例えば、特定の気体を分解する触媒及びこれを保持する担体からなるもの、特定の気体を分解する触媒のみからなるもの、特定の気体と反応して分解する物質及びこれを保持する担体からなるもの、特定の気体と反応して分解する物質のみからなるもの、特定の気体を分解する触媒及び特定の気体と反応して分解する物質の組み合わせ並びにこれらを保持する担体からなるものの中から選ばれる。 The filter 30 is, for example, one consisting of a catalyst that decomposes a specific gas and a carrier that holds it, one that consists only of a catalyst that decomposes a specific gas, or a substance that reacts with and decomposes a specific gas and holds it. Among those consisting of carriers, those consisting only of substances that decompose by reacting with specific gases, and those consisting of a combination of catalysts that decompose specific gases and substances that react with specific gases and decomposing, and supports that hold them selected from
 フィルタ30は、分解しようとする特定の気体の別に応じ、流路20のうちのいずれかの部分に配置される。このとき、フィルタ30は、流路20のうち当該部分を塞ぐように配置されることが好ましい。 The filter 30 is arranged in any part of the channel 20 depending on the specific gas to be decomposed. At this time, it is preferable that the filter 30 be arranged so as to block the relevant portion of the channel 20 .
 フィルタ30として、例えば、第一フィルタ30aのほか、第二フィルタ30bと第三フィルタ30cとがある。 The filters 30 include, for example, a first filter 30a, a second filter 30b and a third filter 30c.
[気体浄化装置1/フィルタ30/第一フィルタ30a]
 第一フィルタ30aは、ここを気体が通過した場合において、当該気体に占めるオゾン(O)の濃度を減少させることにより、室内の空気に占めるオゾンの濃度が上がることを抑制するためのものである。
[Gas purification device 1/filter 30/first filter 30a]
The first filter 30a reduces the concentration of ozone (O 3 ) in the gas when gas passes through it, thereby suppressing an increase in the concentration of ozone in the air in the room. be.
 気体浄化装置1は、例えば、第一フィルタ30aを備えることによって、室内の空気に占めるオゾンの濃度を下げることができ、第一フィルタ30aを備えないことによって、室内の空気に占めるオゾンの濃度を上げることができるほか、密閉容器内の空気に占めるオゾンの濃度を上げることもできる。 For example, the gas purifier 1 can reduce the concentration of ozone in the indoor air by providing the first filter 30a, and can reduce the concentration of ozone in the indoor air by not including the first filter 30a. In addition to increasing the concentration of ozone in the air in the closed container, it is also possible to increase the ozone concentration.
 気体浄化装置1は、例えば、室内の空気を浄化する空気浄化装置としての用に供される場合にあっては、第一フィルタ30aを備えるものであることが好ましい。ここで、このような気体浄化装置1の例として、図10、図11、図12(a)、図13(a)、図14、図15、図16、図17等を参照する。 For example, when the gas purifying device 1 is used as an air purifying device for purifying indoor air, it is preferable that the gas purifying device 1 include a first filter 30a. Here, FIGS. 10, 11, 12(a), 13(a), 14, 15, 16, 17 and the like will be referred to as examples of such a gas purifier 1. FIG.
 ただし、気体浄化装置1は、室内の空気を浄化する空気浄化装置としての用に供される場合であっても、人が存在しない室内、例えば、夜間の室内において使用されるときは、第一フィルタ30aを備えるものではないことが好ましい。ここで、このような気体浄化装置1の例として、図13(b)を参照する。 However, even if the gas purifying device 1 is used as an air purifying device for purifying indoor air, when it is used in a room where there are no people, for example, at night, the first It is preferable not to include the filter 30a. Here, FIG. 13(b) is referred to as an example of such a gas purifier 1. As shown in FIG.
 第一フィルタ30aは、オゾンを分解する触媒及びこれを保持する担体からなるものが好ましく、蜂の巣状の骨格を有する担体の表面にオゾンを分解する触媒が保持されているものからなることがより好ましい。さらに、第一フィルタ30aは、二以上の正六角形状の筒が互いの間に隙間を介して細かく密に組み合わせてなる蜂の巣状の骨格30a1と、当該隙間からなり、空気Gが通過するための通路30a2と、当該骨格30a1のうち、当該通路30a2を通過する空気Gと触れる部分となる表面30a3と、を有するものであって、その表面30a3にオゾン分解する触媒が保持されているものであることが特に好ましい。ここで、このような第一フィルタ30aの例として、図17、図18等を参照する。 The first filter 30a preferably consists of a catalyst that decomposes ozone and a carrier that holds the same, and more preferably comprises a catalyst that decomposes ozone on the surface of a carrier having a honeycomb skeleton. . Further, the first filter 30a is composed of a honeycomb-shaped skeleton 30a1 formed by finely and densely combining two or more regular hexagonal cylinders with gaps between them, and the gaps, for the air G to pass through. It has a passageway 30a2 and a surface 30a3 of the skeleton 30a1 which is a portion that comes into contact with the air G passing through the passageway 30a2, and a catalyst that decomposes ozone is held on the surface 30a3. is particularly preferred. Here, FIG. 17, FIG. 18, etc. are referred as an example of such a first filter 30a.
 触媒としてオゾンを分解するものとして、例えば、酸化マンガンが好ましく、酸化マンガンのうち、Mn、Mn、MnO又はMnOがより好ましく、Mnが最も好ましい。もっとも、触媒としてオゾンを分解するものは、酸化ニッケル(NiO)その他の酸化マンガン以外の金属酸化物であってもよく、酸化マンガンと酸化マンガン以外の他の金属酸化物とを組み合わせたものであってもよい。 As a catalyst for decomposing ozone, for example, manganese oxide is preferable, among manganese oxides, Mn3O4 , Mn2O3 , MnO or MnO2 is more preferable, and Mn3O4 is most preferable. However, the catalyst that decomposes ozone may be nickel oxide (NiO) or other metal oxides other than manganese oxide, or a combination of manganese oxide and other metal oxides other than manganese oxide. may
 また、第一フィルタ30aの表面において、オゾンを自らと反応させて分解するものが配置されていてもよく、触媒としてオゾンを分解するものと、オゾンを自らと反応させて分解するものとが組み合わされて配置されていてもよい。オゾンを自らと反応させて分解するものとして、炭素が好ましく、活性炭がより好ましい。 Further, on the surface of the first filter 30a, a substance that decomposes ozone by reacting with itself may be arranged, and a catalyst that decomposes ozone and a catalyst that decomposes ozone by reacting with itself are combined. may be arranged as Carbon is preferred, and activated carbon is more preferred, as the substance that decomposes ozone by reacting with itself.
 オゾンを分解する触媒を保持する担体は、絶縁体からなるものであることが好ましく、例えば、シリカアルミナ繊維、シリカ繊維、アルミナ繊維、ムライト繊維、ガラス繊維、ロックウール繊維、炭素繊維その他の無機繊維からなるものであることがより好ましい。 The carrier that holds the catalyst that decomposes ozone is preferably made of an insulator, such as silica alumina fiber, silica fiber, alumina fiber, mullite fiber, glass fiber, rock wool fiber, carbon fiber and other inorganic fibers. It is more preferable to consist of
 なお、オゾンを分解する触媒を保持する担体は、金属からなるものであってもよいが、第一フィルタ30aが電極11と接する場合は、この限りでない。 The carrier holding the catalyst that decomposes ozone may be made of metal, but when the first filter 30a is in contact with the electrode 11, this is not the case.
 第一フィルタ30aの厚み及び幅は、流路20のうち第一フィルタ30aが配置される部分を塞ぐことができる程度の厚み及び幅であればよく、例えば、第一フィルタ30aの厚みは、4~10mmであることが好ましく、5~9mmであることがより好ましく、6~8mmであることが更により好ましく、第一フィルタ30aの幅は、30~120mmであることが好ましく、45~105mmであることがより好ましく、60~90mmであることが更により好ましい。 The thickness and width of the first filter 30a may be such that the portion of the flow path 20 where the first filter 30a is arranged can be blocked. The width of the first filter 30a is preferably 30 to 120 mm, preferably 45 to 105 mm. more preferably 60 to 90 mm.
 第一フィルタ30aの奥行きは、8~32mmであることが好ましく、12~16mmであることがより好ましく、16~24mmであることが更により好ましい。 The depth of the first filter 30a is preferably 8-32 mm, more preferably 12-16 mm, and even more preferably 16-24 mm.
 以上のような第一フィルタ30aとして、例えば、無機繊維不織布からなり、蜂の巣状の骨格を有する担体の表面に活性炭粉末と酸化マンガンとが保持されているものがあり(特開2006-231324号公報を参照)、ニチアス株式会社が製造販売する「ハニクル(登録商標)-ZV」を通じて取得することができる。 As the first filter 30a as described above, for example, there is one in which activated carbon powder and manganese oxide are held on the surface of a carrier made of an inorganic fiber nonwoven fabric and having a honeycomb-like skeleton (Japanese Patent Application Laid-Open No. 2006-231324). ), and can be obtained through “Hanicle (registered trademark)-ZV” manufactured and sold by Nichias Corporation.
 気体浄化装置1にあっては、第一フィルタ30aは、流路20のうち、第二電極11bより下流側に配置される。ここで、このような第一フィルタ30aの例として、図12(a)、図13(a)、図14、図17等を参照する。 In the gas purification device 1, the first filter 30a is arranged downstream of the second electrode 11b in the channel 20. Here, FIG. 12(a), FIG. 13(a), FIG. 14, FIG. 17, etc. will be referred to as an example of such a first filter 30a.
 このほか、第一フィルタ30aは、第一電極11aと接することが好ましい。さらに、第一フィルタ30aは、第一電極11aと第三電極11cとの間に配置されることがより好ましく、このとき、第一電極11aと接するとともに、第三電極11cと接することが特に好ましい。ここで、このような第一フィルタ30aの例として、図11、図12(a)、図13(a)、図14、図16、図17等を参照する。 In addition, the first filter 30a is preferably in contact with the first electrode 11a. Furthermore, it is more preferable that the first filter 30a is arranged between the first electrode 11a and the third electrode 11c. At this time, it is particularly preferable that the first filter 30a is in contact with the first electrode 11a and the third electrode 11c. . Here, FIGS. 11, 12(a), 13(a), 14, 16, 17 and the like are referred to as examples of such a first filter 30a.
 オゾンを含む気体が第一フィルタ30aを通過し、触媒としてオゾンを分解するものが配置された表面に触れると、オゾン(O)は、酸素(O)に変換され、分解される。 When the ozone-containing gas passes through the first filter 30a and touches the surface where the ozone-decomposing catalyst is placed, the ozone ( O3 ) is converted to oxygen ( O2 ) and decomposed.
 このため、オゾンを含む気体に第一フィルタ30aを通過させると、当該気体に占めるオゾンの濃度を減少させることができる。 Therefore, when the gas containing ozone is allowed to pass through the first filter 30a, the concentration of ozone in the gas can be reduced.
 なお、第一フィルタ30aは、容易に交換することができる態様で、配置されることが好ましい。 It should be noted that the first filter 30a is preferably arranged in such a manner that it can be easily replaced.
[気体浄化装置1/フィルタ30/第二フィルタ30b]
 第二フィルタ30bは、ここを気体が通過した場合において、当該気体に占めるフッ素(F)又はフッ素化合物の濃度を減少させるためのものである。ここで、フッ素化合物として、例えば、特定フロン、すなわち、クロロフルオロカーボン(CFC)類のほか、パーフルオロカーボン(PFC)類、ハイドロクロロフルオロカーボン(HCFC)類、ハイドロフルオロカーボン(HFC)類、六フッ化硫黄(SF)その他の代替フロンが挙げられる。
[Gas purification device 1/filter 30/second filter 30b]
The second filter 30b is for reducing the concentration of fluorine ( F2 ) or fluorine compounds in the gas when the gas passes through it. Here, as fluorine compounds, for example, specific Freons, that is, chlorofluorocarbons (CFCs), perfluorocarbons (PFCs), hydrochlorofluorocarbons (HCFCs), hydrofluorocarbons (HFCs), sulfur hexafluoride ( SF 6 ) and other CFC alternatives.
 プラズマ発生装置10及びこれを備える気体浄化装置1は、プラズマPのほか、これに伴って発生するオゾン及び紫外線UVを利用するものとして、気体中の揮発性有機化合物を効率的に分解することができるものの、気体中のフッ素及びフッ素化合物を効率的に分解することが難しい傾向にある。 The plasma generator 10 and the gas purifier 1 equipped with the plasma generator 10 utilize not only the plasma P, but also ozone and ultraviolet rays UV generated along with the plasma P, and are capable of efficiently decomposing volatile organic compounds in the gas. Although it can be done, it tends to be difficult to efficiently decompose fluorine and fluorine compounds in gases.
 そこで、気体浄化装置1をして、第二フィルタ30bを備えるものとすることにより、気体中のフッ素及びフッ素化合物を効率的に分解できるものとすることができる。 Therefore, by providing the gas purification device 1 with the second filter 30b, the fluorine and fluorine compounds in the gas can be efficiently decomposed.
 第二フィルタ30bは、触媒としてフッ素又はフッ素化合物を分解するもの及びこれを保持する担体からなるもの好ましい。 The second filter 30b is preferably composed of a catalyst that decomposes fluorine or a fluorine compound and a carrier that holds it.
 触媒としてフッ素又はフッ素化合物を分解するものとして、例えば、カルシウム(Ca)が好ましく、粉末状のカルシウムがより好ましい。 As a catalyst that decomposes fluorine or fluorine compounds, for example, calcium (Ca) is preferable, and powdered calcium is more preferable.
 気体浄化装置1にあっては、第二フィルタ30bは、流路20のうち、第二電極11bより下流側に、かつ、第一フィルタ30aより上流側に配置される。ここで、このような第二フィルタ30bの例として、図14(a)を参照する。 In the gas purifier 1, the second filter 30b is arranged downstream of the second electrode 11b and upstream of the first filter 30a in the channel 20. Here, FIG. 14A is referred to as an example of such a second filter 30b.
 フッ素又はフッ素化合物を含む気体が第二フィルタ30bを通過し、カルシウムが保持された表面に触れると、フッ素又はフッ素化合物が分解される。 When gas containing fluorine or a fluorine compound passes through the second filter 30b and touches the surface on which calcium is retained, the fluorine or fluorine compound is decomposed.
 このため、フッ素又はフッ素化合物を含む気体に第二フィルタ30bを通過させると、当該気体に占めるフッ素又はフッ素化合物の濃度を減少させることができる。 Therefore, when the gas containing fluorine or fluorine compounds is allowed to pass through the second filter 30b, the concentration of fluorine or fluorine compounds in the gas can be reduced.
[気体浄化装置1/フィルタ30/第三フィルタ30c]
 第三フィルタ30cは、ここを気体が通過した場合において、当該気体に占める硫化水素(HS)の濃度を減少させるためのものである。
[Gas purification device 1/filter 30/third filter 30c]
The third filter 30c is for reducing the concentration of hydrogen sulfide (H 2 S) in the gas when the gas passes through it.
 プラズマ発生装置10及びこれを備える気体浄化装置1は、プラズマPのほか、これに伴って発生するオゾン及び紫外線UVを組み合わせて利用するものとして、気体中の揮発性有機化合物を効率的に分解することができるものの、気体中の硫化水素を効率的に分解することが難しい傾向にある。 The plasma generator 10 and the gas purifying device 1 equipped with the plasma efficiently decompose volatile organic compounds in the gas by using the plasma P in combination with the ozone and ultraviolet rays UV generated along with the plasma P. However, it tends to be difficult to efficiently decompose hydrogen sulfide in the gas.
 そこで、気体浄化装置1をして、第三フィルタ30cを備えるものとすることにより、気体中の硫化水素を効率的に分解できるものとすることができる。 Therefore, by providing the gas purification device 1 with the third filter 30c, hydrogen sulfide in the gas can be efficiently decomposed.
 第二フィルタ30bは、触媒としてフッ素又はフッ素化合物を分解するもの及びこれを保持する担体からなるもの好ましい。 The second filter 30b is preferably composed of a catalyst that decomposes fluorine or a fluorine compound and a carrier that holds it.
 第三フィルタ30cは、自らと反応させて硫化水素を分解するもの及びこれを保持する担体からなるものが好ましい。 The third filter 30c preferably consists of a material that reacts with itself to decompose hydrogen sulfide and a carrier that holds it.
 自らと反応させて硫化水素を分解するものとして、例えば、酸化第二鉄(Fe)が好ましい。 Ferric oxide (Fe 2 O 3 ), for example, is preferable as a substance that reacts with itself to decompose hydrogen sulfide.
 気体浄化装置1にあっては、第三フィルタ30cは、流路20のうち、第二電極11bより上流側に配置される。ここで、このような第三フィルタ30cの例として、図14(b)を参照する。 In the gas purification device 1, the third filter 30c is arranged upstream of the second electrode 11b in the channel 20. Here, FIG. 14B is referred to as an example of such a third filter 30c.
 硫化水素を含む気体が第三フィルタ30cを通過し、酸化第二鉄が保持された表面に触れると、硫化水素が分解される。 When gas containing hydrogen sulfide passes through the third filter 30c and touches the surface on which ferric oxide is retained, the hydrogen sulfide is decomposed.
 このため、硫化水素を含む気体に第三フィルタ30cを通過させると、当該気体に占める硫化水素の濃度を減少させることができる。 Therefore, when the gas containing hydrogen sulfide is passed through the third filter 30c, the concentration of hydrogen sulfide in the gas can be reduced.
[気体浄化装置1/フィルタ30/電極11とフィルタ30との関係] [Relationship between gas purification device 1/filter 30/electrode 11 and filter 30]
[気体浄化装置1/フィルタ30/電極11とフィルタ30との関係/フィルタ30に関する課題]
 ところで、他の従来の空気浄化装置にあっては、発生させたオゾンが室内に出ることにより室内の空気に占めるオゾンの濃度が高くなると、人体に好ましくない影響があることから、室内の空気に占めるオゾンの濃度を低い値に制御するために、発生させるオゾンの量を抑制することが行われている(特開2018-130208号公報。特に段落[0015]及び[0040]等を参照)。
[Gas Purifier 1/Filter 30/Relationship Between Electrode 11 and Filter 30/Problems Concerning Filter 30]
By the way, in other conventional air purifiers, if the generated ozone goes out into the room and the concentration of ozone in the air in the room increases, it will have an undesirable effect on the human body. In order to control the concentration of ozone to a low value, the amount of generated ozone is suppressed (Japanese Patent Application Laid-Open No. 2018-130208, especially see paragraphs [0015] and [0040]).
 しかしながら、他の従来の空気浄化装置にあっては、室内の空気に占めるオゾンの濃度を低い値に制御するために、発生させるオゾンの量を抑制するものであることから、空気浄化装置内を通過する空気中を浮遊するウイルスを十分に不活性化させることができないおそれがある。 However, in other conventional air purifiers, the amount of ozone generated is suppressed in order to control the concentration of ozone in indoor air to a low value. Viruses floating in passing air may not be sufficiently inactivated.
 このため、発生させるオゾンの量を抑制することなく室内の空気に占めるオゾンの濃度を低い値に制御するためには、空気浄化装置において浄化した気体にオゾンの濃度を減少させるためのフィルタを通過させてから室内に再び出すことを要するほか、当該フィルタにおいてオゾンを分解する能力が十分なものであることを要する。 Therefore, in order to control the concentration of ozone in indoor air to a low value without suppressing the amount of ozone generated, it is necessary to pass the gas purified in an air purifier through a filter to reduce the concentration of ozone. The filter must have sufficient ability to decompose ozone.
 そこで、本発明は、気体に占めるオゾンの濃度を減少させるためのフィルタにおいて、そのオゾンを分解する能力を更に高めることを他の課題とするものでもある。 Therefore, another object of the present invention is to further enhance the ability to decompose ozone in a filter for reducing the concentration of ozone in gas.
 さらに、本発明は、オゾンのほか、オゾン以外の特定の気体の濃度を減少させるためのフィルタにおいて、当該特定の気体を分解する能力を更に高めることを課題とするものでもあってもよい。 Furthermore, in addition to ozone, the present invention may be directed to further enhancing the ability to decompose specific gases in a filter for reducing the concentration of specific gases other than ozone.
[気体浄化装置1/フィルタ30/電極11とフィルタ30との関係/フィルタ30に関する課題に対する解決手段]
 他の課題を解決するためには、気体浄化装置1は、次の構成を有することが好ましい。
[Gas Purifier 1/Filter 30/Relationship Between Electrode 11 and Filter 30/Means for Solving Problems Concerning Filter 30]
In order to solve other problems, the gas purification device 1 preferably has the following configuration.
 気体浄化装置1にあっては、第一電極11aと第一フィルタ30aとが、互いに接することが好ましい。この場合において、第一電極11aが第一フィルタ30aを覆うように配置されることがより好ましい。このとき、第一電極11aのうち第二電極11bと対向する側にある表面において、第二部分11a2が構成される。このほか、第一電極11aのうち第二電極11bと対向する側にある表面において、第二部分11a2と互いに隣接するものとして、第三部分11a3が構成されることが特に好ましい。ここで、このような関係にある第一電極11a及び第一フィルタ30aの例として、図12(a)、図13(a)、図14、図17、図19、図20、図21等を参照する。 In the gas purification device 1, it is preferable that the first electrode 11a and the first filter 30a are in contact with each other. In this case, it is more preferable that the first electrode 11a be arranged to cover the first filter 30a. At this time, a second portion 11a2 is formed on the surface of the first electrode 11a facing the second electrode 11b. In addition, it is particularly preferable that the third portion 11a3 be configured adjacent to the second portion 11a2 on the surface of the first electrode 11a facing the second electrode 11b. Here, as examples of the first electrode 11a and the first filter 30a having such a relationship, FIGS. refer.
 第三部分11a3は、露出して気体に接する部分として、第一金属膜層13aを介して第一ガラス層12aに覆われた第一部分11a1に比して、高い熱伝導率を有する部分となる。 The third portion 11a3, as a portion that is exposed and comes into contact with gas, has a higher thermal conductivity than the first portion 11a1 that is covered with the first glass layer 12a through the first metal film layer 13a. .
 気体浄化装置1にあっては、第三電極11cと第一フィルタ30aとが、互いに接することも好ましい。この場合において、第三電極11cが第一フィルタ30aを覆うように配置されることがより好ましい。このとき、第三電極11cのうち第二電極11bと対向する側にある表面において、第二部分11c2が構成される。このほか、第三電極11cのうち第二電極11bと対向する側にある表面において、第二部分11c2と互いに隣接するものとして、第三部分11c3が構成されることも特に好ましい。ここで、このような関係にある第一電極11a及び第一フィルタ30aの例として、図12(a)、図13(a)、図14、図17、図19、図20、図22等を参照する。 In the gas purification device 1, it is also preferable that the third electrode 11c and the first filter 30a are in contact with each other. In this case, it is more preferable that the third electrode 11c be arranged to cover the first filter 30a. At this time, the second portion 11c2 is formed on the surface of the third electrode 11c facing the second electrode 11b. In addition, it is particularly preferable that the third portion 11c3 is configured so as to be adjacent to the second portion 11c2 on the surface of the third electrode 11c facing the second electrode 11b. Here, as examples of the first electrode 11a and the first filter 30a having such a relationship, FIGS. refer.
 第三部分11c3も、露出して気体に接する部分として、第二金属膜層13bを介して第二ガラス層12bに覆われた第一部分11c1に比して、高い熱伝導率を有する部分となる。 The third portion 11c3 is also exposed and exposed to gas, and has a higher thermal conductivity than the first portion 11c1 covered with the second glass layer 12b through the second metal film layer 13b. .
 一対の電極Eに所定の電圧を加えると、一対の電極E間の空間Sにおいて、プラズマPが発生する。プラズマPが発生すると、一対の電極E間の空間Sに存在する気体の温度が上昇する。そのエネルギーは、熱Hとして、一対の電極Eに伝わり、一対の電極Eの温度が上昇する。 When a predetermined voltage is applied to the pair of electrodes E, plasma P is generated in the space S between the pair of electrodes E. When the plasma P is generated, the temperature of the gas existing in the space S between the pair of electrodes E rises. The energy is transmitted to the pair of electrodes E as heat H, and the temperature of the pair of electrodes E rises.
 一対の電極Eに伝わったエネルギーのうち、第一電極11aに伝わったエネルギーは、第一フィルタ30aに伝わり、第一フィルタ30aの温度が上昇する。さらに、第三電極11cに伝わったエネルギーもまた、第一フィルタ30aに伝わり、第一フィルタ30aの温度が更に上昇する。以上をより詳くみると、次のとおりである。 Of the energy transmitted to the pair of electrodes E, the energy transmitted to the first electrode 11a is transmitted to the first filter 30a, and the temperature of the first filter 30a rises. Furthermore, the energy transmitted to the third electrode 11c is also transmitted to the first filter 30a, further increasing the temperature of the first filter 30a. Looking at the above in more detail, it is as follows.
 第一の電極11aと第二電極11bとの間の空間Sを満たす気体の温度が上昇すると、そのエネルギーは、熱Hとして、第一電極11aのうち第三部分11a3に伝わり、第三部分11a3から第二部分11a2に伝わり、第二部分11a2から第一フィルタ30aに伝わる。 When the temperature of the gas filling the space S between the first electrode 11a and the second electrode 11b rises, the energy is transmitted as heat H to the third portion 11a3 of the first electrode 11a, and the third portion 11a3 from the second portion 11a2, and from the second portion 11a2 to the first filter 30a.
 第三の電極11cと第二電極11bとの間の空間Sを満たす気体の温度が上昇すると、そのエネルギーは、熱として、第三電極11cのうち、第三部分11c3に伝わり、第三部分11c3から第二部分11c2に伝わり、第二部分11c2から第一フィルタ30aに伝わる。 When the temperature of the gas that fills the space S between the third electrode 11c and the second electrode 11b rises, the energy is transferred as heat to the third portion 11c3 of the third electrode 11c. from the second portion 11c2 to the first filter 30a.
 ここで、プラズマPの発生に伴って発生した熱Hが第一フィルタ30aに伝わるまでに第一電極11a若しくは第三電極11cの一方又は両方を介することに関して、図12(b)、図21(a)、図22(d)を参照する。 12(b) and FIG. 21 ( a) and FIG. 22(d).
 第一フィルタ30aの温度が上昇すると、第一フィルタ30aの表面に配置された触媒が熱を受けて活性化し、そのオゾンを分解する能力が更に高まる。 When the temperature of the first filter 30a rises, the catalyst placed on the surface of the first filter 30a is heated and activated, further increasing its ability to decompose ozone.
 よって、本発明は、気体に占めるオゾンの濃度を減少させるためのフィルタにおいて、そのオゾンを分解する能力を更に高めることができる、との他の効果を奏する。 Therefore, the present invention has another effect of further enhancing the ability to decompose ozone in a filter for reducing the concentration of ozone in gas.
 また、以上のことは、第一フィルタ30aにおける場合と同様に、第二フィルタ30b及び第三フィルタ30cについても同様に当てはまる。 In addition, the above applies similarly to the second filter 30b and the third filter 30c as in the case of the first filter 30a.
 なお、使用を経て第一フィルタ30aがオゾンを分解する能力に逓減がみられる場合に際しては、新たな第一フィルタ30aに速やかに交換することが好ましい。 When the ability of the first filter 30a to decompose ozone gradually declines after use, it is preferable to promptly replace it with a new first filter 30a.
[気体浄化装置1/スペーサ40]
 スペーサ40は、一対の電極Eを構成する電極11と他の電極11とを支持し、これらを互いに距離を隔てて配置するとともに、ガラス層12を支持し、ガラス層12と一対の電極Eのうちの一方の電極11とを互いの間に空間を隔てて配置するための部材である。さらに、スペーサ40は、流路20の一部を構成するものでもあることが好ましい。
[Gas purification device 1/spacer 40]
The spacer 40 supports the electrode 11 constituting the pair of electrodes E and the other electrode 11 and arranges them with a distance from each other. It is a member for arranging one of the electrodes 11 with a space therebetween. Furthermore, the spacer 40 preferably constitutes part of the flow path 20 as well.
 スペーサ40は、絶縁体、すなわち、その電気伝導率がガラス層14を構成するガラスのそれに比して低いものからなり、例えば、エポキシ樹脂からなるものが好ましい。 The spacer 40 is made of an insulator, that is, a material whose electrical conductivity is lower than that of the glass forming the glass layer 14, and preferably made of epoxy resin, for example.
 スペーサ40は、一対の電極Eを構成する電極11及び他の電極11のほか、ガラス層12を上記のとおりに配置することができるものである限りにおいて、その具体的態様は特に限られるものではないが、一対の電極Eを構成する電極11及び他の電極11の形状並びにこれらの組み合わせの態様に応じ、適当なものが任意に選択される。 As long as the spacer 40 can arrange the glass layer 12 in addition to the electrode 11 and the other electrode 11 constituting the pair of electrodes E as described above, the specific aspect thereof is not particularly limited. However, an appropriate one is arbitrarily selected according to the shape of the electrode 11 and the other electrode 11 constituting the pair of electrodes E and the mode of combination thereof.
 スペーサ40は、単一の部材から構成されるものであってもよく、一対の部材から構成されるものであってもよい。また、スペーサ40は、他の部材の一部、例えば、ケースの一部から構成されるものであってもよい。さらに、スペーサ40は、連結手段41を兼ね備えるものであってもよい。 The spacer 40 may be composed of a single member or may be composed of a pair of members. Moreover, the spacer 40 may be configured by a part of another member, for example, a part of the case. Furthermore, the spacer 40 may also serve as the connecting means 41 .
 スペーサ40として、第一スペーサ40aと第二スペーサ40bとから構成されるものがある。 The spacer 40 includes a first spacer 40a and a second spacer 40b.
[気体浄化装置1/スペーサ40/第一スペーサ40a]
 第一スペーサ40aは、スペーサ40のうち、プラズマ発生装置10が第一電極11aと第二電極11bと第三電極11cとを備える場合において、適当なものとして、任意に選択されるものである。
[Gas purification device 1/spacer 40/first spacer 40a]
The first spacer 40a is arbitrarily selected from among the spacers 40 as suitable when the plasma generator 10 includes the first electrode 11a, the second electrode 11b, and the third electrode 11c.
 第一スペーサ40aは、例えば、角柱状のものからなり、上面、左側面、下面、右側面正面、背面をそれぞれ有する。 The first spacer 40a is, for example, prism-shaped and has an upper surface, a left side surface, a lower surface, a right side front surface, and a rear surface.
 第一スペーサ40aは、第一電極支持面40a1と第二電極支持孔40a2とを備えるほか、第三電極支持面40a3を更に備えるものであることが好ましい。このとき、第一スペーサ40aは、上下対称構造を有するものとなる。ここで、このような第一スペーサ40aの例として、図10(a)、図11(a)、図15、図16、図17、図19、図20、図21(d)、図22(a)等を参照する。 The first spacer 40a preferably has a first electrode support surface 40a1 and a second electrode support hole 40a2, and further includes a third electrode support surface 40a3. At this time, the first spacer 40a has a vertically symmetrical structure. 10(a), 11(a), 15, 16, 17, 19, 20, 21(d) and 22 ( a), etc.
 第一電極支持面40a1は、平らな表面であって、第一スペーサ40aの上面又は下面のうち、いずれか一方を構成する表面からなるものである。第一電極支持面40a1は、第一電極11aのうち第四部分11a4に対応する。ここで、このような対応関係の例として、図19、図20、図21等を参照する。 The first electrode support surface 40a1 is a flat surface, and consists of a surface that constitutes either the upper surface or the lower surface of the first spacer 40a. The first electrode support surface 40a1 corresponds to the fourth portion 11a4 of the first electrode 11a. Here, FIGS. 19, 20, 21, etc. will be referred to as examples of such a correspondence relationship.
 第二電極支持孔40a2は、第一スペーサ40aの左側面から右側面まで貫通する貫通孔からなる。第二電極支持孔40a2は、第二電極11bの形状に応じた形状のものからなる。例えば、第二電極11bが螺子状のものであるときは、第二電極支持孔40a2は螺子孔状のものとなる。ここで、このような第二電極支持孔40a2の例として、図17、図19、図20、図21(d)、図22(a)等を参照する。 The second electrode support hole 40a2 is a through hole penetrating from the left side to the right side of the first spacer 40a. The second electrode support hole 40a2 has a shape corresponding to the shape of the second electrode 11b. For example, when the second electrode 11b is screw-shaped, the second electrode support hole 40a2 is screw-shaped. Here, FIGS. 17, 19, 20, 21(d), 22(a), etc. will be referred to as examples of such second electrode support holes 40a2.
 第三電極支持面40a3は、平らな表面であって、第一スペーサ40aの上面又は下面のうち、第一電極支持面40a1がある側とは反対側にある他方を構成する表面からなるものである。第三電極支持面40a3は、第三電極11cのうち第四部分11c4に対応する。ここで、このような対応関係の例として、図19、図20、図22等を参照する。 The third electrode support surface 40a3 is a flat surface, and is a surface that constitutes the other of the top surface and the bottom surface of the first spacer 40a, which is opposite to the side on which the first electrode support surface 40a1 is located. be. The third electrode support surface 40a3 corresponds to the fourth portion 11c4 of the third electrode 11c. Here, FIGS. 19, 20, 22, etc. will be referred to as examples of such a correspondence relationship.
 もっとも、第一スペーサ40aは、第一電極支持面40a1に代えて、溝からなる第一電極支持溝(図示しない)を備えるものであってもよく、また、第三電極支持面40a3に代えて、溝からなる第三電極支持溝(図示しない)を備えるものであってもよい。この場合において、第一電極支持溝は第一電極11aを挿入することができるものとして構成され、第三電極支持溝は第三電極11cを挿入することができるものとして構成される。 However, the first spacer 40a may be provided with a first electrode support groove (not shown) consisting of grooves instead of the first electrode support surface 40a1, and a third electrode support surface 40a3 instead of the third electrode support surface 40a3. , a third electrode support groove (not shown) consisting of grooves. In this case, the first electrode support groove is configured to allow insertion of the first electrode 11a, and the third electrode support groove is configured to allow insertion of the third electrode 11c.
 これらのほか、第一スペーサ40aは、第一ガラス層支持面40a4と、第二ガラス層支持面40a5と、を更に備えるものであることが好ましい。ここで、このような第一スペーサ40aの例として、図19、図20、図21(d)、図22(a)等を参照する。 In addition to these, the first spacer 40a preferably further includes a first glass layer supporting surface 40a4 and a second glass layer supporting surface 40a5. Here, FIGS. 19, 20, 21(d), 22(a), etc. will be referred to as examples of such a first spacer 40a.
 第一ガラス層支持面40a4は、平らな表面であって、第一電極支持面40a1と段をなす表面からなるものであり、第一ガラス層12aのうち第二部分12a2に対応する。 The first glass layer support surface 40a4 is a flat surface that forms a step with the first electrode support surface 40a1, and corresponds to the second portion 12a2 of the first glass layer 12a.
 第二ガラス層支持面40a5は、平らな表面であって、第三電極支持面40a3と段をなす表面からなるものであり、第二ガラス層12bのうち第二部分12b2に対応する。 The second glass layer support surface 40a5 is a flat surface that forms a step with the third electrode support surface 40a3, and corresponds to the second portion 12b2 of the second glass layer 12b.
[気体浄化装置1/スペーサ40/第二スペーサ40b]
 第二スペーサ40bは、スペーサ40のうち、プラズマ発生装置10が第一電極11aと第二電極11bと第三電極11cとを備える場合において、適当なものとして、任意に選択されるものである。
[Gas purification device 1/spacer 40/second spacer 40b]
The second spacer 40b is arbitrarily selected from among the spacers 40 as suitable when the plasma generator 10 includes the first electrode 11a, the second electrode 11b and the third electrode 11c.
 第二スペーサ40bは、例えば、角柱状のものからなり、上面、左側面、下面、右側面正面、背面をそれぞれ有するほか、第一スペーサ40aとの関係において、左右対称構造をとるものからなる。 The second spacer 40b has, for example, a prism shape, and has an upper surface, a left side surface, a lower surface, a right side front surface, and a rear surface, and has a bilaterally symmetrical structure in relation to the first spacer 40a.
 第二スペーサ40bは、第一電極支持面40b1と第二電極支持孔40b2とを備えるほか、第三電極支持面40b3を更に備えるものであることが好ましい。このとき、第二スペーサ40bは、上下対称構造を有するものとなる。ここで、このような第二スペーサ40bの例として、図10(a)、図11(a)、図15、図16、図19、図20(a)、図21(d)、図22(a)等を参照する。 The second spacer 40b preferably has a first electrode support surface 40b1 and a second electrode support hole 40b2, and further includes a third electrode support surface 40b3. At this time, the second spacer 40b has a vertically symmetrical structure. 10(a), 11(a), 15, 16, 19, 20(a), 21(d), and 22 ( a), etc.
 第一電極支持面40b1は、平らな表面であって、第二スペーサ40bの上面又は下面のうち、いずれか一方を構成する表面からなるものである。第一電極支持面40b1は、第一電極11aのうち第五部分11a5に対応する。ここで、このような対応関係の例として、図19、図20(a)、図21等を参照する。 The first electrode supporting surface 40b1 is a flat surface, and consists of a surface that constitutes either the upper surface or the lower surface of the second spacer 40b. The first electrode support surface 40b1 corresponds to the fifth portion 11a5 of the first electrode 11a. Here, FIG. 19, FIG. 20(a), FIG. 21, etc. will be referred to as examples of such a correspondence relationship.
 第二電極支持孔40b2は、第二スペーサ40bの左側面から右側面まで貫通する貫通孔からなる。第二電極支持孔40b2は、第二電極11bの形状に応じた形状のものからなる。例えば、第二電極11bが螺子状のものであるときは、第二電極支持孔40b2は螺子孔状のものとなる。ここで、このような第二電極支持孔40b2の例として、図19、図20(a)、図21(d)、図22(a)等を参照する。 The second electrode support hole 40b2 is a through hole penetrating from the left side to the right side of the second spacer 40b. The second electrode support hole 40b2 has a shape corresponding to the shape of the second electrode 11b. For example, when the second electrode 11b is screw-shaped, the second electrode support hole 40b2 is screw-shaped. Here, FIGS. 19, 20(a), 21(d), 22(a) and the like are referred to as examples of such second electrode support holes 40b2.
 第三電極支持面40b3は、平らな表面であって、第二スペーサ40bの上面又は下面のうち、第一電極支持面40b1がある側とは反対側にある他方を構成する表面からなるものである。第三電極支持面40b3は、第三電極11cのうち第五部分11c5に対応する。ここで、このような対応関係の例として、図19、図20(a)、図22等を参照する。 The third electrode support surface 40b3 is a flat surface, and is a surface that forms the other of the top surface and the bottom surface of the second spacer 40b, which is opposite to the side on which the first electrode support surface 40b1 is located. be. The third electrode support surface 40b3 corresponds to the fifth portion 11c5 of the third electrode 11c. Here, FIGS. 19, 20(a), 22, etc. will be referred to as examples of such a correspondence relationship.
 もっとも、第二スペーサ40bは、第一電極支持面40b1に代えて、溝からなる第一電極支持溝(図示しない)を備えるものであってもよく、また、第三電極支持面40b3に代えて、溝からなる第三電極支持溝(図示しない)を備えるものであってもよい。この場合において、第一電極支持溝は第一電極11aを挿入することができるものとして構成され、第三電極支持溝は第三電極11cを挿入することができるものとして構成される。 However, the second spacer 40b may be provided with a first electrode support groove (not shown) consisting of grooves instead of the first electrode support surface 40b1, and may be provided with a groove instead of the third electrode support surface 40b3. , a third electrode support groove (not shown) consisting of grooves. In this case, the first electrode support groove is configured to allow insertion of the first electrode 11a, and the third electrode support groove is configured to allow insertion of the third electrode 11c.
 これらのほか、第二スペーサ40bは、第一ガラス層支持面40b4と、第二ガラス層支持面40b5と、を更に備えるものであることが好ましい。ここで、このような第二スペーサ40bの例として、図19、図20(a)、図21(d)、図22(a)等を参照する。 In addition to these, the second spacer 40b preferably further includes a first glass layer supporting surface 40b4 and a second glass layer supporting surface 40b5. Here, FIGS. 19, 20(a), 21(d), 22(a), etc. will be referred to as examples of such a second spacer 40b.
 第一ガラス層支持面40b4は、平らな表面であって、第一電極支持面40b1と段をなす表面からなるものであり、第一ガラス層12aのうち第二部分12a2に対応する。 The first glass layer support surface 40b4 is a flat surface that forms a step with the first electrode support surface 40b1, and corresponds to the second portion 12a2 of the first glass layer 12a.
 第二ガラス層支持面40b5は、平らな表面であって、第三電極支持面40b3と段をなす表面からなるものであり、第二ガラス層12bのうち第二部分12b2に対応する。 The second glass layer support surface 40b5 is a flat surface that forms a step with the third electrode support surface 40b3, and corresponds to the second portion 12b2 of the second glass layer 12b.
[気体浄化装置1/スペーサ40/一対のスペーサ40a,40b]
 第一スペーサ40aと第二スペーサ40bとが、一対のスペーサ40a,40bを構成する。このとき、第一スペーサ40aと第二スペーサ40bとは、互いに対向し、かつ、互いの間に空間を隔てて配置される。なお、正面視において、第一スペーサ40aは左側に配置され、第二スペーサ40bは右側に配置される。
[Gas purification device 1/spacer 40/pair of spacers 40a, 40b]
The first spacer 40a and the second spacer 40b constitute a pair of spacers 40a and 40b. At this time, the first spacer 40a and the second spacer 40b are arranged facing each other with a space between them. In addition, in a front view, the first spacer 40a is arranged on the left side, and the second spacer 40b is arranged on the right side.
 一対のスペーサ40a,40bは、第一電極11aを、次のように支持する。ここで、説明のための例として、図19、図20、図21等を参照する。 A pair of spacers 40a and 40b support the first electrode 11a as follows. Here, FIGS. 19, 20, 21, etc. will be referred to as examples for explanation.
 第一スペーサ40aの第一電極支持面40a1と、第一電極11aの第四部分11a4とを一致させ、これらを接着する。ここで、スペーサ40と接着するための方法として、例えば、接着剤によるもののほか、溶接又は溶着であってもよい。以下同じ。 The first electrode supporting surface 40a1 of the first spacer 40a and the fourth portion 11a4 of the first electrode 11a are aligned and adhered. Here, as a method for bonding with the spacer 40, for example, welding or welding may be used in addition to using an adhesive. same as below.
 第二スペーサ40bの第一電極支持面40b1と、第一電極11aの第五部分11a5とを一致させ、これらを接着する。 The first electrode supporting surface 40b1 of the second spacer 40b and the fifth portion 11a5 of the first electrode 11a are aligned and adhered.
 一対のスペーサ40a,40bは、第二電極11bを、次のように支持する。ここで、説明のための例として、図19、図20、図21(d)、図22(a)等を参照する。 A pair of spacers 40a and 40b support the second electrode 11b as follows. Here, FIGS. 19, 20, 21(d), 22(a), etc. will be referred to as examples for explanation.
 第二電極11bの一端を、例えば、第二スペーサ40bの第二電極支持孔40b2から挿入させ、第二スペーサ40bを貫通させ、第一スペーサ40aと第二スペーサ40bとの間の空間を通過させ、第一スペーサ40aの第二電極支持孔40a2から挿入させ、第一スペーサ40aを貫通させる。このとき、第二電極11bの他端が第二スペーサ40bを通過してしまわないようにする。これにより、第二電極11bの一端が第一スペーサ40aの第二電極支持孔40a2から露出するとともに、第二電極11bの他端が第二スペーサ40bの第二電極支持孔40b2から露出することとなる。 For example, one end of the second electrode 11b is inserted through the second electrode support hole 40b2 of the second spacer 40b, penetrates the second spacer 40b, and passes through the space between the first spacer 40a and the second spacer 40b. , is inserted from the second electrode supporting hole 40a2 of the first spacer 40a, and penetrates the first spacer 40a. At this time, the other end of the second electrode 11b should not pass through the second spacer 40b. As a result, one end of the second electrode 11b is exposed from the second electrode support hole 40a2 of the first spacer 40a, and the other end of the second electrode 11b is exposed from the second electrode support hole 40b2 of the second spacer 40b. Become.
 一対のスペーサ40a,40bは、第三電極11cを、次のように支持する。ここで、説明のための例として、図19、図20、図22等を参照する。 A pair of spacers 40a and 40b support the third electrode 11c as follows. Here, FIGS. 19, 20, 22, etc. will be referred to as examples for explanation.
 第一スペーサ40aの第三電極支持面40a3と、第三電極11cの第四部分11c4とを一致させ、これらを接着する。 The third electrode supporting surface 40a3 of the first spacer 40a and the fourth portion 11c4 of the third electrode 11c are aligned and adhered.
 第二スペーサ40bの第三電極支持面40a3と、第三電極11cの第五部分11c5の他方とを一致させ、これらを接着する。 The third electrode supporting surface 40a3 of the second spacer 40b and the other of the fifth portion 11c5 of the third electrode 11c are aligned and adhered.
 以上のように行うことによって、一対のスペーサ40a,40bは、第一電極11aと第二電極11bと第三電極11cとを支持し、これらを所定の関係において配置することができる(以下「電極11の配置」ということがある。)。 By doing so, the pair of spacers 40a and 40b can support the first electrode 11a, the second electrode 11b, and the third electrode 11c and arrange them in a predetermined relationship (hereinafter referred to as "electrode 11 arrangement").
 なお、第一ガラス層12a、第二ガラス層12b、第一金属膜層13a、第二金属膜層13bの配置は、電極11の配置に続けて、また、好ましくはこれに先立って、例えば、次のように行う。ここで、説明のための例として、図19、図20、図21、図22等を参照する。 The arrangement of the first glass layer 12a, the second glass layer 12b, the first metal film layer 13a, and the second metal film layer 13b follows the arrangement of the electrode 11, and preferably prior to this, for example, Do as follows. Here, FIGS. 19, 20, 21, 22, etc. will be referred to as examples for explanation.
 第一ガラス層12aの片面に第一金属膜層13aが予め積層されてなる第一積層体L1を準備するとともに、第二ガラス層12bの片面に第二金属膜層13bが予め積層されてなる第二積層体L2を準備する(以下「積層体Lの準備」ということがある。)。積層体Lの準備は、ガラス層12の表面に金属膜層13を蒸着することによって行ってもよく、ガラス層12と金属膜層13とを互いの間にガラス層側導電性粘着層14bを介して予め積層することによって行ってもよい。いずれにせよ、積層体Lにおいて、ガラス層12と金属膜層13とが密着することが好ましい。 A first laminate L1 is prepared in which a first metal film layer 13a is laminated in advance on one side of a first glass layer 12a, and a second metal film layer 13b is laminated in advance on one side of a second glass layer 12b. A second laminate L2 is prepared (hereinafter sometimes referred to as "preparation of laminate L"). The laminate L may be prepared by vapor-depositing the metal film layer 13 on the surface of the glass layer 12, with the glass layer side conductive adhesive layer 14b between the glass layer 12 and the metal film layer 13. You may perform by laminating|stacking beforehand through. In any case, in the laminated body L, it is preferable that the glass layer 12 and the metal film layer 13 are in close contact with each other.
 第一積層体L1の表面のうち第一金属膜層13aがある側の表面を、第一電極11aの第一部分11a1に一致させ、これらを密着する。同様に、第二積層体L2の表面のうち第二金属膜層13bがある側の表面を、第三電極11cの第一部分11c1に一致させ、これらを密着する。一対の電極Eのうちの一方の電極11と金属膜層13とを密着するに当たっては、これらの間に電極側導電性粘着層14aを配置してもよく、また、そうすることが好ましい。 The surface of the first layered body L1 on which the first metal film layer 13a is located is aligned with the first portion 11a1 of the first electrode 11a, and these are brought into close contact. Similarly, the surface of the second layered body L2 on which the second metal film layer 13b is provided is aligned with the first portion 11c1 of the third electrode 11c, and they are brought into close contact with each other. When one electrode 11 of the pair of electrodes E and the metal film layer 13 are brought into close contact with each other, the electrode-side conductive adhesive layer 14a may or preferably be placed between them.
 なお、一対のスペーサ40a,40bが一対の第一ガラス層支持面40a4,40b4及び一対の第二ガラス支持面40a5,40b5を更に備える場合にあっては、第一ガラス層12a及び第二ガラス層12b並びに第一金属膜層13a及び第二金属膜層13bの配置は、例えば、次のように行う。ここで、説明のための例として、図19、図20、図21、図22等を参照する。 When the pair of spacers 40a and 40b further includes a pair of first glass layer support surfaces 40a4 and 40b4 and a pair of second glass support surfaces 40a5 and 40b5, the first glass layer 12a and the second glass layer 12a and 40b5 are provided. 12b, the first metal film layer 13a and the second metal film layer 13b are arranged, for example, as follows. Here, FIGS. 19, 20, 21, 22, etc. will be referred to as examples for explanation.
 第一積層体L1の表面のうち第一ガラス層12aがある側の表面を、一対の第一ガラス層支持面40a4,40b4に一致させ、これらを接着する。同様に、第二積層体L2の表面のうち第二ガラス層12bがある側の表面を、一対の第二ガラス支持面40a5,40b5に一致させ、これらを接着する。 The surface of the first laminated body L1 on which the first glass layer 12a is located is aligned with the pair of first glass layer support surfaces 40a4 and 40b4, and these are adhered. Similarly, the surface of the second laminated body L2 on which the second glass layer 12b is provided is aligned with the pair of second glass supporting surfaces 40a5 and 40b5, and these are adhered.
 電極11の配置を行う。電極11の配置に当たり、第一電極11aのうち第二電極11bと対向する側にある表面と第一金属膜層13aとを密着するとともに、第三電極11cのうち第二電極11bと対向する側にある表面と第二金属膜層13bとを密着することが好ましい。 Placement of the electrodes 11 is performed. In arranging the electrodes 11, the surface of the first electrode 11a on the side facing the second electrode 11b is brought into close contact with the first metal film layer 13a, and the side of the third electrode 11c facing the second electrode 11b is attached. It is preferable that the surface on the surface and the second metal film layer 13b are in close contact with each other.
 以上のように、一対のスペーサ40a,40bは、プラズマ発生装置10の組立て及び分解を容易なものとすることができるとともに、これを小型かつ軽量のものとすることができる。 As described above, the pair of spacers 40a and 40b can facilitate the assembly and disassembly of the plasma generator 10, and can make it small and lightweight.
 なお、積層体Lとして、ガラス層12の片面に金属膜層13が予め蒸着されてなるものを使用するほか、金属膜層13の片面又は両面に導電性粘着層14が予め積層されているもの、すなわち、導電性片面粘着テープ又は導電性両面粘着テープをガラス層12の片面に粘着させてなるものを使用することもできる。もっとも、積層体Lを使用することなく電極11の配置その他の要素の配置を行ってもよい。 As the laminated body L, in addition to using one in which the metal film layer 13 is previously vapor-deposited on one side of the glass layer 12, one in which the conductive adhesive layer 14 is laminated in advance on one or both sides of the metal film layer 13 is used. That is, a conductive single-sided adhesive tape or a conductive double-sided adhesive tape may be adhered to one side of the glass layer 12 . However, the electrodes 11 and other elements may be arranged without using the laminate L.
 また、一対のスペーサ40a,40b間に他のスペーサ(図示しない)を更に配置してもよい。他のスペーサは、第一電極11aと第三電極11cとの間に配置され、これらを支持することにより、第一電極11aと第二電極11bとの間の距離及び第三電極11cと第二電極11bとの間の距離をより均一なものとすることができる。 Further, another spacer (not shown) may be arranged between the pair of spacers 40a and 40b. Other spacers are placed between the first electrode 11a and the third electrode 11c to support them, thereby increasing the distance between the first electrode 11a and the second electrode 11b and the distance between the third electrode 11c and the second electrode 11c. The distance between the electrodes 11b can be made more uniform.
[気体浄化装置1/スペーサ40/連結手段41]
 連結手段41は、スペーサ40の一部を構成し、気体浄化装置1と他の気体浄化装置1とを連結するためのものである。
[Gas purification device 1/spacer 40/connecting means 41]
The connection means 41 constitutes a part of the spacer 40 and is for connecting the gas purifying device 1 and another gas purifying device 1 .
 連結手段41は、気体浄化装置1と他の気体浄化装置1とを連結することができる限りにおいて、その具体的態様は特に限られるものではないが、例えば、互いに嵌め合わせることできる一対の部分を備えるものであることが好ましく、畝部41aと溝部41bとを備えるものであることがより好ましい。ここで、畝部41aと溝部41bとを備える一対のスペーサ40,40の例として、図23、図24を参照する。 As long as the connecting means 41 can connect the gas purifying device 1 and another gas purifying device 1, the specific mode thereof is not particularly limited. It is preferable to include the ridge portion 41a and the groove portion 41b. Here, FIGS. 23 and 24 are referred to as an example of a pair of spacers 40, 40 having ridges 41a and grooves 41b.
 畝部41aは、一対のスペーサ40,40のそれぞれの上面に配置され、溝部41bは一対のスペーサ40,40のそれぞれの底面に配置される。 The ridge portion 41a is arranged on the upper surface of each of the pair of spacers 40, 40, and the groove portion 41b is arranged on the bottom surface of each of the pair of spacers 40,40.
 気体浄化装置1の畝部41aに対し、他の気体浄化装置1の溝部41bを背面方向から挿入して正面方向に滑らせるか、又は正面方向から挿入して背面方向に滑らせると、畝部41aと溝部41bとが互いに嵌め合わされ、気体浄化装置1と他の気体浄化装置1とが連結される。ここで、このような連結方法について、図23を参照する。 When the groove portion 41b of the other gas purification device 1 is inserted from the back side and slid in the front direction with respect to the ridge portion 41a of the gas purification device 1, or the groove portion 41b is inserted from the front direction and slid in the back direction, the ridge portion is formed. 41a and groove 41b are fitted to each other, and gas purifying device 1 and another gas purifying device 1 are connected. Reference is now made to FIG. 23 for such a connection method.
[気体浄化装置1/作用]
 気体浄化装置1の作用は、例えば、次のとおりのものである。
[Gas purification device 1/action]
Actions of the gas purifier 1 are, for example, as follows.
[気体浄化装置1/作用/紫外線UVを反射してウイルスを不活性化すること]
 気体浄化装置1は、その備えるプラズマ発生装置10が反射鏡Mを備えるものとして、一対の電極E間の空間Sに存在する気体のほか、当該気体中を浮遊する浮遊物に対して、紫外線UVの照射を反復して行うことができるものである。
[Gas purifying device 1/function/reflecting ultraviolet rays UV to inactivate viruses]
Assuming that the plasma generator 10 provided therein includes a reflecting mirror M, the gas purifying device 1 emits ultraviolet rays UV to the gas existing in the space S between the pair of electrodes E and the floating matter floating in the gas. can be repeatedly irradiated.
 ここで、気体浄化装置1が浄化しようする気体Gは、その浮遊物を伴いながら、一対の電極E間の空間Sを通過し、その通過する間、空間Sに存在する。 Here, the gas G to be purified by the gas purifying device 1 passes through the space S between the pair of electrodes E and exists in the space S while passing through, accompanied by the floating matter.
 したがって、浄化しようとする気体Gが浮遊物としてウイルスを含むものである場合にあっては、気体浄化装置1は、浄化しようとする気体G中を浮遊するウイルスに対して、紫外線UVの照射を反復して行うことができ、もってより多くの量のウイルスを不活性化させることができる。 Therefore, when the gas G to be purified contains viruses as suspended matter, the gas purifier 1 repeatedly irradiates the viruses floating in the gas G to be purified with ultraviolet rays UV. can be used to inactivate a greater amount of virus.
 また、気体浄化装置1は、その備えるプラズマ発生装置10が反射鏡Mとして第一反射鏡M1と第二反射鏡M2とを備える場合にあっては、第一反射鏡M1と第二反射鏡M2との間において、紫外線UVの反射を反復して行うことができ、もって更なるより多くの量のウイルスを不活性化させることができる。 Further, when the plasma generator 10 provided in the gas purifying device 1 includes a first reflecting mirror M1 and a second reflecting mirror M2 as reflecting mirrors M, the first reflecting mirror M1 and the second reflecting mirror M2 , repeated reflections of the ultraviolet UV can be performed, thus inactivating even greater amounts of virus.
 以上のとおりであるから、気体浄化装置1は、誘電体バリア放電によってプラズマPを発生させるとともに、プラズマPが発する紫外線UVを反射し、浄化しようとする気体G中のより多くの量のウイルスを不活性化させることができるものである。 As described above, the gas purifier 1 generates the plasma P by dielectric barrier discharge, reflects the ultraviolet rays UV emitted by the plasma P, and removes a larger amount of viruses in the gas G to be purified. It can be deactivated.
[気体浄化装置1/作用/プラズマPの量を増やしてウイルスを不活性化すること]
 気体浄化装置1は、その備えるプラズマ発生装置10が反射鏡Mを備えるものとして、その発生させるプラズマPの量を増やすことができるものである。
[Gas purifying device 1/action/increasing the amount of plasma P to inactivate viruses]
The gas purifier 1 can increase the amount of plasma P to be generated by assuming that the plasma generator 10 provided therein is provided with a reflecting mirror M.
 ここで、プラズマPの量を増やすことは、一対の電極E間の空間Sに占めるプラズマPの体積を増やし、浄化しようとする気体Gが流路20を通過するまでにプラズマPと接触する確率を高めることにつながる。浄化しようとする気体GがプラズマPと接触する確率を高めることは、浄化しようとする気体Gが浮遊物としてウイルスを含むものである場合において、浄化しようとする気体G中を浮遊するウイルスがプラズマPと接触する確率を高めることにつながり、ひいては気体浄化装置1が浄化しようとする気体G中を浮遊するウイルスを不活性化させることができる確率を高めることにもつながる。 Here, increasing the amount of the plasma P increases the volume of the plasma P occupying the space S between the pair of electrodes E, and the probability that the gas G to be purified comes into contact with the plasma P before passing through the flow path 20. lead to an increase in Increasing the probability that the gas G to be purified comes into contact with the plasma P is to prevent viruses floating in the gas G to be purified from contacting the plasma P when the gas G to be purified contains viruses as floating matter. This leads to an increase in the probability of contact, which in turn increases the probability of inactivating viruses floating in the gas G to be purified by the gas purifier 1 .
 すなわち、浄化しようとする対象が固体である場合にあっては、浄化しようとする固体を一対の電極E間に配置すれば、浄化しようとする固体は一対の電極E間に留まり続けるものであるため、プラズマPを発生させる時間を長くすることにより、浄化しようとする固体の表面がプラズマPと接触する確率を高めることができる。 That is, when the object to be purified is a solid, if the solid to be purified is placed between the pair of electrodes E, the solid to be purified will remain between the pair of electrodes E. Therefore, by lengthening the time for which the plasma P is generated, the probability that the surface of the solid to be cleaned comes into contact with the plasma P can be increased.
 これに対して、浄化しようとする対象が気体である場合にあっては、浄化しようとする気体Gは一対の電極E間を通過するものであるため、プラズマPを発生させる時間を長くしても、浄化しようとする気体GがプラズマPと接触する確率を高めることができない。 On the other hand, when the object to be purified is a gas, the gas G to be purified passes between the pair of electrodes E, so the time for generating the plasma P is lengthened. However, the probability that the gas G to be purified comes into contact with the plasma P cannot be increased.
 したがって、プラズマ発生装置10を気体浄化装置1の一部を構成するものとして利用することは、固体を浄化しようとする場合に比して、取り分け有益なものとなる。 Therefore, using the plasma generator 10 as part of the gas purifying device 1 is particularly beneficial compared to the case of trying to purify solids.
 以上のとおりであるから、気体浄化装置1は、誘電体バリア放電によってプラズマPを発生させるとともに、プラズマPが発する電磁波を反射し、その発生させるプラズマPの量を増やし、浄化しようとする気体G中のウイルスがプラズマPと接触する確率を高めることができるものとして、もって浄化しようとする気体G中のより多くの量のウイルスを不活性化させることができるである。 As described above, the gas purifier 1 generates the plasma P by dielectric barrier discharge, reflects the electromagnetic waves generated by the plasma P, increases the amount of the generated plasma P, and increases the amount of the gas G to be purified. By increasing the probability that the viruses inside come into contact with the plasma P, a greater amount of viruses in the gas G to be purified can be inactivated.
[気体浄化装置1/作用/オゾン等の量を増やしてウイルスを不活性化すること]
 気体浄化装置1は、その備えるプラズマ発生装置10が反射鏡Mを備えるものとして、その発生させるオゾンの量を増やすことができるものである。
[Gas purifying device 1/Action/Inactivating viruses by increasing the amount of ozone, etc.]
The gas purifying device 1 can increase the amount of ozone to be generated by assuming that the plasma generating device 10 provided therein has a reflecting mirror M.
 ここで、オゾンは、その有する強い酸化力によって、ウイルスを不活性化させる働きがある。 Here, ozone has the function of inactivating viruses due to its strong oxidizing power.
 以上のとおりであるから、気体浄化装置1は、誘電体バリア放電によってプラズマPを発生させるとともに、プラズマPが発する紫外線UVを反射し、浄化しようとする気体G中の酸素に対して紫外線UVの照射を反復して行い、その発生させるオゾンの量を増やすことができるものとして、もって浄化しようとする気体G中のより多くの量のウイルスを不活性化させることができるものである。 As described above, the gas purifier 1 generates the plasma P by dielectric barrier discharge, reflects the ultraviolet rays UV emitted by the plasma P, and emits the ultraviolet rays UV to the oxygen in the gas G to be purified. Assuming that irradiation can be repeated and the amount of ozone generated can be increased, a greater amount of viruses in the gas G to be purified can be inactivated.
 さらに、気体浄化装置1は、その発生させる活性酸素の量を増やすことができるものとして、もって浄化しようとする気体G中のより多くの量のウイルスを不活性化させることができるものでもある。 Furthermore, the gas purifier 1 can increase the amount of active oxygen generated, and can thereby inactivate a larger amount of viruses in the gas G to be purified.
[気体浄化装置1/作用/更なる作用]
 気体浄化装置1は、プラズマPのほか、これに伴って発生する紫外線UV及びオゾン等を組み合わせて利用することによって、ウイルスはもとよりとして、ウイルス以外の他の微生物、例えば、細菌類及び真菌類を不活性化させることができるとともに、窒素酸化物(NOx)、揮発性有機化合物(Volatile Organic Compounds,VOC)その他の人体に好ましくない影響を与える気体を分解することができるものでもある。このことは、削減が求められている二酸化炭素(CO)、臭気の原因となるアンモニア(NH)その他の特定の気体についても同様に当てはまる。
[Gas purification device 1/action/further action]
The gas purifying device 1 uses plasma P in combination with ultraviolet rays UV and ozone generated along with plasma P to eliminate viruses and other microorganisms other than viruses, such as bacteria and fungi. In addition to being able to be inactivated, it is also capable of decomposing nitrogen oxides (NOx), volatile organic compounds (VOCs) and other gases that adversely affect the human body. This is equally true for carbon dioxide (CO 2 ), odor-causing ammonia (NH 3 ), and other specific gases, which are sought to be reduced.
 したがって、気体浄化装置1は、大気圧下において空気のプラズマを発生させることによって、特定の気体を分解し、これを浄化するためのものとしても使用することができ、また、そうすることが特に好ましい。空気には窒素(N)と酸素(O)とが含まれるところ、窒素(N)のプラズマが発する電磁波は近紫外線を含み、これは酸素(O)との共存下でも変わらない。ここで、近紫外線は、そのエネルギーによって、浄化しようとする気体を励起し、当該気体を構成する原子間の結合、特に切断が困難とされるπ結合であっても、これを容易に切断することができるものである。このため、気体浄化装置1を上記のとおりに使用した場合にあっては、比較的低いエネルギーをもってして多種多様な気体を分解し、これを浄化することができる。さらに、同様の場合において、例えば、第二電極11bを触媒として作用するものから構成したときは、当該気体浄化装置1は、大気圧プラズマ励起と電極表面触媒活性とを時空間的に共存させたものとして、更により効率的に気体を分解し、これを浄化することができるものとなる。 Therefore, the gas purifier 1 can also be used to decompose and purify a specific gas by generating air plasma under atmospheric pressure, and it is particularly useful to do so. preferable. Air contains nitrogen (N 2 ) and oxygen (O 2 ), and electromagnetic waves emitted by nitrogen (N 2 ) plasma contain near-ultraviolet rays, which does not change even in the presence of oxygen (O 2 ). . Here, the energy of the near-ultraviolet rays excites the gas to be purified, and easily cuts even the bonds between the atoms that make up the gas, especially the π bonds, which are considered to be difficult to cut. It is possible. Therefore, when the gas purifier 1 is used as described above, it is possible to decompose and purify a wide variety of gases with relatively low energy. Furthermore, in a similar case, for example, when the second electrode 11b is composed of a material that acts as a catalyst, the gas purifier 1 allows the atmospheric pressure plasma excitation and the electrode surface catalytic activity to coexist spatio-temporally. As a result, the gas can be decomposed and purified even more efficiently.
 なお、分解しようとする気体において吸収することができる電磁波の波長が近紫外線の範囲内に存在しない場合であっても、共鳴励起関係が成立する限り、当該気体を励起し、これを分解することができる。 Even if the wavelength of the electromagnetic wave that can be absorbed by the gas to be decomposed does not exist within the near-ultraviolet range, the gas can be excited and decomposed as long as the resonance excitation relationship is established. can be done.
 さらに、第二電極11bが触媒金属のうち紫外線又は熱を受けて触媒として活性化するものからなる場合にあっては、第二電極11bが、プラズマPに伴って発生する熱又は光によって触媒としても活性化するため、プラズマ励起と触媒活性との相乗効果を得ることができ、微生物の不活性化及び特定の気体の分解をより効率的に行うことができる。 Furthermore, when the second electrode 11b is made of a catalyst metal that is activated as a catalyst by receiving ultraviolet light or heat, the second electrode 11b is activated as a catalyst by the heat or light generated with the plasma P. Therefore, a synergistic effect of plasma excitation and catalytic activity can be obtained, and the inactivation of microorganisms and the decomposition of specific gases can be performed more efficiently.
 取り分け第二電極11bが光触媒として作用するものからなる場合にあっては、窒素のプラズマが発する電磁波のうち波長が300~380nmの範囲にある近紫外線は光触媒を活性化させることができるものでもあることから、反射鏡Mが存在することによって、プラズマ励起と触媒活性との相乗効果を更に高めることもできる。 In particular, when the second electrode 11b is made of material that acts as a photocatalyst, the near-ultraviolet rays having a wavelength in the range of 300 to 380 nm among the electromagnetic waves emitted by the nitrogen plasma can also activate the photocatalyst. Therefore, the presence of the reflecting mirror M can further enhance the synergistic effect between plasma excitation and catalytic activity.
 さらに、気体浄化装置1は、微生物の不活性化及び特定の気体の分解に関して、これらの効率を高めることができるものである結果、装置としての十分な性能を維持したまま、これを小型化し、また、これを軽量化することもできる。 Furthermore, the gas purifier 1 can increase the efficiency of inactivation of microorganisms and decomposition of specific gases. It can also be made lighter.
[気体浄化装置1/作用/小括]
 気体浄化装置1は、その備えるプラズマ発生装置10が反射鏡Mを備えるものとして、誘電体バリア放電によってプラズマPを発生させるとともに、プラズマPが発する紫外線UVその他の電磁波を反射することに基づいて、例えば、以下の作用効果を奏するものである。
[Gas purification device 1/action/summary]
The gas purifier 1 has a plasma generator 10 with a reflecting mirror M, and generates plasma P by dielectric barrier discharge, and reflects ultraviolet UV and other electromagnetic waves generated by the plasma P, For example, it has the following effects.
 すなわち、気体浄化装置1は、
(1)浄化しようとする気体G中のウイルスに対して紫外線UVの照射を反復して行い、
(2)その発生させるプラズマPの量を増やし、浄化しようとする気体G中のウイルスがプラズマPと接触する確率を高め、あるいは、
(3)その発生させるオゾンの量を増やすことにより、
 もって、浄化しようとする気体G中のより多くの量のウイルスを不活性化させることができるものである。
That is, the gas purification device 1 is
(1) Repeatedly irradiating the virus in the gas G to be purified with ultraviolet UV,
(2) increasing the amount of generated plasma P to increase the probability that the virus in the gas G to be purified comes into contact with the plasma P;
(3) By increasing the amount of generated ozone,
As a result, a larger amount of viruses in the gas G to be purified can be inactivated.
 よって、気体浄化装置1は、プラズマ発生装置10を備えるものとして、誘電体バリア放電によってプラズマPを発生させるとともに、プラズマPが発する紫外線UVその他の電磁波を効率的に利用することができるものである。 Therefore, the gas purifier 1, which includes the plasma generator 10, can generate the plasma P by the dielectric barrier discharge and efficiently utilize the ultraviolet UV and other electromagnetic waves generated by the plasma P. .
 このほか、気体浄化装置1は、より多くの量のオゾンを発生させることができるものであるにもかかわらず、気体に占めるオゾンの濃度を減少させるためのフィルタにおいて、そのオゾンを分解する能力を更に高めることによって、その発生させるオゾンの量を抑制することなく、室内の空気に占めるオゾンの濃度を低い値に制御することができるものでもある。 In addition, although the gas purifier 1 can generate a larger amount of ozone, the filter for reducing the concentration of ozone in the gas does not have the ability to decompose the ozone. By further increasing the concentration, it is possible to control the concentration of ozone in the indoor air to a low value without suppressing the amount of generated ozone.
 気体浄化装置1は、以上のとおりのものとして、例えば、室内の空気を循環させながら浄化する空気調節装置に取り付けられた場合にあっては、その一対の電極E間の空間Sに室内の空気Gを通過させ、室内の空気Gのうち一対の電極E間の空間Sを通過した部分中のウイルスを不活性化させることを継続反復し、もって室内の空気G全体中のウイルスを不活性化させることができるものとなる。 When the gas purifier 1 is attached to an air conditioner that purifies indoor air by circulating it as described above, the space S between the pair of electrodes E is filled with the air in the room. Inactivate the virus in the portion of the indoor air G that has passed through the space S between the pair of electrodes E, thereby inactivating the virus in the entire indoor air G. It will be something that can be done.
[気体浄化装置1,1等]
 気体浄化装置1は、他の気体浄化装置1と組み合わせて使用することもでき、例えば、二以上の気体浄化装置1が垂直的に又は水平的に連結した構造とすることができる。これにより、気体浄化装置1を単独で使用する場合に比して、浄化することができる気体の量を増やすことができる。
[ Gas purification device 1, 1, etc.]
The gas purifier 1 can be used in combination with other gas purifiers 1. For example, two or more gas purifiers 1 can be connected vertically or horizontally. As a result, the amount of gas that can be purified can be increased compared to when the gas purifier 1 is used alone.
 例えば、気体浄化装置1と他の気体浄化装置1とが、それぞれが備える連結手段41を介して、垂直的に結合した構造を有する気体浄化装置1,1を構成することが好ましい。このとき、気体浄化装置1の第一電極11aと他の気体浄化装置1の第三電極11cとが電気的に接続されることがより好ましく、これらが互いに接することがより好ましい。 For example, it is preferable to configure the gas purifiers 1, 1 having a structure in which the gas purifier 1 and another gas purifier 1 are vertically coupled via connecting means 41 provided respectively. At this time, it is more preferable that the first electrode 11a of the gas purifier 1 and the third electrode 11c of the other gas purifier 1 are electrically connected, and that they are in contact with each other.
 また、気体浄化装置1と他の気体浄化装置1とが、それぞれが備える第二電極11bを通じて、水平的に結合した構造を有する気体浄化装置1,1を構成することも好ましい。このとき、気体浄化装置1の第二電極11bと他の気体浄化装置1の第二電極11bとが電気的に接続されることがより好ましく、気体浄化装置1と他の気体浄化装置1とが単一の第二電極11bを互いに共有する構造とすることが特に好ましい。 Further, it is also preferable to configure the gas purifying devices 1, 1 having a structure in which the gas purifying device 1 and another gas purifying device 1 are horizontally coupled through the second electrodes 11b respectively provided. At this time, it is more preferable that the second electrode 11b of the gas purifier 1 and the second electrode 11b of the other gas purifier 1 are electrically connected, and the gas purifier 1 and the other gas purifier 1 are connected. A structure in which a single second electrode 11b is shared with each other is particularly preferred.
 さらに、垂直的に結合した構造を有する気体浄化装置1,1と、垂直的に結合した構造を有する他の気体浄化装置1,1とが、更に水平的に結合した構造を有する気体浄化装置1,1,1,1を構成することもできる。また、水平的に結合した構造を有する気体浄化装置1,1と、水平的に結合した構造を有する他の気体浄化装置1,1とが、更に垂直的に結合した構造を有する気体浄化装置1,1,1,1を構成することもできる。 Furthermore, the gas purifying device 1 having a structure in which the gas purifiers 1, 1 having a vertically coupled structure and the other gas purifying devices 1, 1 having a vertically coupled structure are further horizontally coupled. , 1,1,1. In addition, the gas purifying device 1 having a structure in which the gas purifiers 1, 1 having a horizontally coupled structure and the other gas purifying devices 1, 1 having a horizontally coupled structure are further vertically coupled. , 1,1,1.
 以上のほか、垂直的に結合した構造を有する気体浄化装置1,1と気体浄化装置1とが更に垂直的に結合した構造を有する気体浄化装置1,1,1としてもよい。 In addition to the above, the gas purifying devices 1, 1 having a vertically coupled structure and the gas purifying device 1 may further have a vertically coupled structure.
 ここで、二以上の気体浄化装置1を組み合わせたもののの例として、図23、図24を参照する。 Here, FIGS. 23 and 24 are referred to as an example of a combination of two or more gas purifiers 1. FIG.
第二実施形態Second embodiment
[気体浄化装置101]
 気体浄化装置101は、室内の空気その他の浄化しようとする気体Gを、内部に入れて浄化してから外部に出すことにより、浄化した気体を得るためのものであって、自ら送風することにより、浄化しようとする気体Gを出し入れするためのものである。このほか、気体浄化装置101は、紫外線UVを外部に向けて照射するものであることが好ましい。すなわち、気体浄化装置101は、気体浄化機能を有するほか、送風機能を有し、好ましくは、紫外線照射機能を更に有するものである。
[Gas purification device 101]
The gas purifying device 101 is for obtaining a purified gas by putting indoor air or other gas G to be purified into the inside, purifying it, and then letting it out to the outside. , for the inflow and outflow of the gas G to be purified. In addition, it is preferable that the gas purification device 101 irradiate ultraviolet rays UV toward the outside. That is, the gas purifying device 101 has a gas purifying function, an air blowing function, and preferably an ultraviolet irradiation function.
 気体浄化装置101は、全体として、円筒状のものである。 The gas purification device 101 is cylindrical as a whole.
 気体浄化装置101の直径は、50~150mmであることが好ましく、75~125mmであることがより好ましく、100mmであることが特に好ましい。 The diameter of the gas purification device 101 is preferably 50-150 mm, more preferably 75-125 mm, and particularly preferably 100 mm.
 気体浄化装置101の奥行きは、170~200mmであることが好ましく、180~190mmであることがより好ましく、185mmであることが特に好ましい。 The depth of the gas purification device 101 is preferably 170-200 mm, more preferably 180-190 mm, and particularly preferably 185 mm.
 気体浄化装置101は、プラズマ発生装置110と、流路120と、を少なくとも備えるものである。これらのほか、気体浄化装置101は、送風装置150を更に備えるものである。ただし、気体浄化装置101は、第一フィルタ130aを備えるものではなく、また、第二フィルタ130bを備えるものでもない。 The gas purifier 101 includes at least a plasma generator 110 and a flow path 120 . In addition to these, the gas purification device 101 further includes a blower device 150 . However, the gas purification device 101 does not include the first filter 130a, nor does it include the second filter 130b.
 また、気体浄化装置101は、有孔鏡160を更に備えるものであることが好ましい。 In addition, it is preferable that the gas purification device 101 further includes a perforated mirror 160 .
[気体浄化装置101/プラズマ発生装置110]
 プラズマ発生装置110は、プラズマPを発生させるための装置として、気体浄化装置101の一部を構成するためのものである。
[Gas Purifier 101/Plasma Generator 110]
The plasma generator 110 is a device for generating plasma P, and constitutes a part of the gas purification device 101 .
 プラズマ発生装置110は、電極111とガラス層112と金属膜層113との組み合わせからなるものである。すなわち、プラズマ発生装置110は、例えば、第一電極111aと第二電極111bとからなる一対の電極Eと、第一ガラス層112aと、第一金属膜層113aと、を備えるものである。 The plasma generator 110 consists of a combination of an electrode 111, a glass layer 112 and a metal film layer 113. That is, the plasma generator 110 includes, for example, a pair of electrodes E consisting of a first electrode 111a and a second electrode 111b, a first glass layer 112a, and a first metal film layer 113a.
[気体浄化装置101/プラズマ発生装置110/電極111]
 電極111として、第一電極111aがあるほか、第二電極111bがある。
[Gas purification device 101/plasma generator 110/electrode 111]
The electrodes 111 include a first electrode 111a and a second electrode 111b.
 一対の電極Eは、第一電極111aと第二電極111bとから構成される。 A pair of electrodes E is composed of a first electrode 111a and a second electrode 111b.
 電極111のその余については、「電極11」と同様のものであるから、「電極11」についてした説明([気体浄化装置1/プラズマ発生装置10/電極11]においてした説明をいう。ただし、「第三電極11c」に関する部分を除く。)を準用する。 The rest of the electrode 111 is the same as the "electrode 11", so the explanation given for the "electrode 11" ([gas purifier 1/plasma generator 10/electrode 11]) is referred to. ) shall apply mutatis mutandis, excluding the part relating to the “third electrode 11c”.
 なお、準用に当たり、「電極11」とあるのは「電極111」と、「第一電極11a」とあるのは「第一電極111a」と読み替えるものとし、その余の要素についても、この例による。以下この明細書において同じ。 In addition, in applying mutatis mutandis, "electrode 11" shall be read as "electrode 111" and "first electrode 11a" shall be read as "first electrode 111a". . The same shall apply hereinafter in this specification.
[気体浄化装置101/プラズマ発生装置110/電極111/第一電極111a]
 第一電極111aは、電極111のうち、第二電極111bと併せて、一対の電極Eを構成するためのものである。
[Gas purification device 101/plasma generator 110/electrode 111/first electrode 111a]
The first electrode 111a is for forming a pair of electrodes E together with the second electrode 111b.
 第一電極111aは、環状のものである。ここで、第一電極111aの例として、図25、図26、図28、図29、図30等を参照する。 The first electrode 111a is ring-shaped. Here, FIGS. 25, 26, 28, 29, 30 and the like are referred to as examples of the first electrode 111a.
 なお、第一電極111aのうち第二電極111bと対向する側とは反対側にある表面は、気体浄化装置101の外部からの電気的接続を容易なものとする観点から、その一部が径方向に板状に突出し、ケース140を貫通して外部に露出することが好ましい。 Note that the surface of the first electrode 111a on the side opposite to the side facing the second electrode 111b has a diameter of 1.5 mm from the viewpoint of facilitating electrical connection from the outside of the gas purifier 101. It is preferable that it protrudes in a plate shape in the direction and penetrates the case 140 to be exposed to the outside.
 第一電極111aのその余については、「第一電極11a」と同様のものであるから、「第一電極11a」についてした説明([気体浄化装置1/プラズマ発生装置10/電極11/第一電極11a]においてした説明をいう。ただし、「第一フィルタ30a」、「第一スペーサ40a」又は「第二スペーサ40b」のそれぞれに関する部分を除く。)を準用する。この場合において、同説明中において参照する図面に代えて、図25、図26、図28、図29、図30等を参照するものとする。 Since the rest of the first electrode 111a is the same as the "first electrode 11a", the explanation of the "first electrode 11a" ([gas purifier 1/plasma generator 10/electrode 11/first electrode 11a], except for the portions related to the "first filter 30a", "first spacer 40a" or "second spacer 40b"). In this case, FIGS. 25, 26, 28, 29, 30, etc. shall be referred to instead of the drawings referred to in the same description.
[気体浄化装置101/プラズマ発生装置110/電極111/第二電極111b]
 第二電極111bは、電極111のうち、第一電極111aと併せて、一対の電極Eを構成するとともに、送風装置150の一部を構成するためのものである。
[Gas purification device 101/plasma generator 110/electrode 111/second electrode 111b]
Among the electrodes 111, the second electrode 111b forms a pair of electrodes E together with the first electrode 111a, and also forms a part of the blower device 150. As shown in FIG.
 第二電極111bの形状その他の態様は、次のとおりである。ここで、説明のための例として、図25、図26、図28、図29、図30等を参照する。 The shape and other aspects of the second electrode 111b are as follows. Here, FIGS. 25, 26, 28, 29, 30, etc. will be referred to as examples for explanation.
 第二電極111bは、羽根状のものである。すなわち、第二電極111bは、回転軸に直接的に又は間接的に連結され、回転軸の中心線を中心に公転することにより、風を送ることができる形状のものである。第二電極111bは、例えば、原動機151から延びる駆動軸152にかたく嵌め合わされた轂153aから径方向に延び、この駆動軸152の中心線を中心に公転することにより風を起こすことができるものであることが好ましい。 The second electrode 111b is wing-shaped. That is, the second electrode 111b is directly or indirectly connected to the rotating shaft, and has a shape capable of blowing air by revolving around the center line of the rotating shaft. The second electrode 111b, for example, extends radially from a joint 153a tightly fitted to a drive shaft 152 extending from the prime mover 151, and revolves around the center line of the drive shaft 152 to generate wind. Preferably.
 第二電極111bの厚みは、0.2~0.8mmであることが好ましく、0.3~0.7mmであることがより好ましく、0.4~0.6mmであることが更により好ましい。 The thickness of the second electrode 111b is preferably 0.2-0.8 mm, more preferably 0.3-0.7 mm, and even more preferably 0.4-0.6 mm.
 第二電極111bの長さ(径方向に延びる長さをいう。)は、10~30mmであることが好ましく、15~25mmであることがより好ましい。 The length of the second electrode 111b (meaning the length extending in the radial direction) is preferably 10 to 30 mm, more preferably 15 to 25 mm.
 第二電極111bは、その先端部分111b1において、触媒層が配置されているものであることが好ましい。また、触媒層に代えて、誘電体層が配置されているものであってもよい。さらに、二以上の第二電極111bとして、触媒層を先端部分111b1に配置した第二電極111bと誘電体層を先端部分111b1に配置した第二電極111bとを組み合わせてもよい。第二電極111bの先端部分111bに配置される触媒層又は誘電体層の厚みは、20μm以上であることが好ましい。 It is preferable that the second electrode 111b has a catalyst layer disposed at its tip portion 111b1. Also, instead of the catalyst layer, a dielectric layer may be arranged. Furthermore, as the two or more second electrodes 111b, the second electrode 111b having the catalyst layer disposed on the tip portion 111b1 and the second electrode 111b having the dielectric layer disposed on the tip portion 111b1 may be combined. The thickness of the catalyst layer or dielectric layer disposed on the tip portion 111b of the second electrode 111b is preferably 20 μm or more.
 第二電極111bのその余については、「第二電極11b」と同様のものであるから、「第二電極11b」についてした説明([気体浄化装置1/プラズマ発生装置10/電極11/第二電極11b]においてした説明をいう。ただし、「第三電極11c」、「第一スペーサ40a」又は「第二スペーサ40b」のそれぞれに関する部分を除く。)を準用する。この場合において、同説明中において参照する図面に代えて、図25、図26、図28、図29、図30等を参照するものとする。 Since the remainder of the second electrode 111b is the same as the "second electrode 11b", the explanation of the "second electrode 11b" ([gas purifier 1/plasma generator 10/electrode 11/second electrode 11b], except for the portions related to the "third electrode 11c", the "first spacer 40a", or the "second spacer 40b"). In this case, FIGS. 25, 26, 28, 29, 30, etc. shall be referred to instead of the drawings referred to in the same description.
[気体浄化装置101/プラズマ発生装置110/ガラス層112]
 ガラス層112として、第一ガラス層112aがある。
[Gas Purifier 101/Plasma Generator 110/Glass Layer 112]
As the glass layer 112, there is a first glass layer 112a.
 ガラス層112のその余については、「ガラス層12」と同様のものであるから、「ガラス層12」についてした説明([気体浄化装置1/プラズマ発生装置10/ガラス層12]においてした説明をいう。)を準用する。 The rest of the glass layer 112 is the same as the "glass layer 12", so the explanation of the "glass layer 12" ([gas purification device 1/plasma generator 10/glass layer 12]) ) shall apply mutatis mutandis.
[気体浄化装置101/プラズマ発生装置110/ガラス層112/第一ガラス層112a]
 第一ガラス層112aは、第一電極111aの形状に応じ、環状のものが選択される。
[Gas Purifier 101/Plasma Generator 110/Glass Layer 112/First Glass Layer 112a]
A ring-shaped first glass layer 112a is selected according to the shape of the first electrode 111a.
 第一ガラス層112aのその余については、「第一ガラス層12a」と同様のものであるから、「第一ガラス層12a」についてした説明([気体浄化装置1/プラズマ発生装置10/ガラス層12/第一ガラス層12a]においてした説明をいう。ただし、「第一スペーサ40a」又は「第二スペーサ40b」のそれぞれに関する部分を除く。)を準用する。この場合において、同説明中において参照する図面に代えて、図25、図26、図28、図29、図30等を参照するものとする。 Since the remainder of the first glass layer 112a is the same as the "first glass layer 12a", the explanation of the "first glass layer 12a" ([gas purifier 1/plasma generator 10/glass layer 12/first glass layer 12a], except for the portions related to the "first spacer 40a" or the "second spacer 40b"). In this case, FIGS. 25, 26, 28, 29, 30, etc. shall be referred to instead of the drawings referred to in the same description.
[気体浄化装置101/プラズマ発生装置110/金属膜層113]
 金属膜層113として、第一金属膜層113aがある。
[Gas Purifier 101/Plasma Generator 110/Metal Film Layer 113]
As the metal film layer 113, there is a first metal film layer 113a.
 金属膜層113のその余については、「金属膜層13」と同様のものであるから、「金属膜層13」についてした説明([気体浄化装置1/プラズマ発生装置10/金属膜層13]においてした説明をいう。)を準用する。 The rest of the metal film layer 113 is the same as the "metal film layer 13", so the explanation of the "metal film layer 13" ([gas purification device 1/plasma generator 10/metal film layer 13] ) shall apply mutatis mutandis.
[気体浄化装置101/プラズマ発生装置110/金属膜層113/第一金属膜層113a]
 第一金属膜層113aについては、「第一金属膜層13a」と同様のものであるから、「第一金属膜層13a」についてした説明([気体浄化装置1/プラズマ発生装置10/金属膜層13/第一金属膜層13a]においてした説明をいう。)を準用する。この場合において、同説明中において参照する図面に代えて、図25、図26、図28、図29、図30等を参照するものとする。
[Gas purification device 101/plasma generator 110/metal film layer 113/first metal film layer 113a]
Since the first metal film layer 113a is the same as the "first metal film layer 13a", the explanation of the "first metal film layer 13a" ([gas purifier 1/plasma generator 10/metal film layer 13/first metal film layer 13a]) apply mutatis mutandis. In this case, FIGS. 25, 26, 28, 29, 30, etc. shall be referred to instead of the drawings referred to in the same description.
[気体浄化装置101/プラズマ発生装置110/導電性粘着層114]
 導電性粘着層114として、第一電極111aと接する第一電極側導電性粘着層114a1と、第一ガラス層112aと接するガラス層側導電性粘着層114b1と、がある。
[Gas Purifier 101/Plasma Generator 110/Conductive Adhesive Layer 114]
As the conductive adhesive layer 114, there are a first electrode side conductive adhesive layer 114a1 in contact with the first electrode 111a and a glass layer side conductive adhesive layer 114b1 in contact with the first glass layer 112a.
 これらのほか、第一金属膜層113aが二以上の金属膜から構成される場合にあっては、導電性粘着層114として、一の金属膜と他の金属膜との間に配置されて、これらと接する第一金属膜層間導電性粘着層114c1がある。 In addition to these, when the first metal film layer 113a is composed of two or more metal films, the conductive adhesive layer 114 is arranged between one metal film and the other metal film, There is a first metal film interlayer conductive adhesive layer 114c1 in contact with these.
 導電性粘着層114のその余については、「導電性粘着層14」と同様のものであるから、「導電性粘着層14」についてした説明([気体浄化装置1/プラズマ発生装置10/導電性粘着層14]から[気体浄化装置1/プラズマ発生装置10/導電性粘着層14/作用]までにおいてした説明をいう。ただし、「第三電極側導電性粘着層14a2」、「第二ガラス層側導電性粘着層14b2」又は「第二金属膜層間導電性粘着層14c2」のそれぞれに関する部分を除く。)を準用する。 The rest of the conductive adhesive layer 114 is the same as the "conductive adhesive layer 14", so the explanation of the "conductive adhesive layer 14" ([gas purifier 1/plasma generator 10/conductive Adhesive layer 14] to [gas purifier 1/plasma generator 10/conductive adhesive layer 14/function], provided that "third electrode side conductive adhesive layer 14a2", "second glass layer except for the portions related to the "side conductive adhesive layer 14b2" or "second metal film interlayer conductive adhesive layer 14c2").
[気体浄化装置101/プラズマ発生装置110/電極111とガラス層112と金属膜層113と導電性粘着層114との組み合わせ]
 プラズマ発生装置110にあっては、第一電極111aと、第一ガラス層112aと、第一金属膜層113aと、導電性粘着層114との組み合わせの態様として、例えば、「プラズマ発生装置10」について挙げたものと同様のものが挙げられる。
[Combination of gas purifier 101/plasma generator 110/electrode 111, glass layer 112, metal film layer 113, and conductive adhesive layer 114]
In the plasma generator 110, as a mode of combination of the first electrode 111a, the first glass layer 112a, the first metal film layer 113a, and the conductive adhesive layer 114, for example, "plasma generator 10" Examples are the same as those mentioned above.
 そこで、第一電極111aと、第一ガラス層112aと、第一金属膜層113aと、導電性粘着層114との組み合わせについて、「プラズマ発生装置10」についてした説明([気体浄化装置1/プラズマ発生装置10/電極11とガラス層12と金属膜層13と導電性粘着層14との組み合わせ]においてした説明をいう。)を準用する。 Therefore, the combination of the first electrode 111a, the first glass layer 112a, the first metal film layer 113a, and the conductive adhesive layer 114 was described with respect to the "plasma generator 10" ([gas purification device 1/plasma Combination of Generator 10/Electrode 11, Glass Layer 12, Metal Film Layer 13, and Conductive Adhesive Layer 14]) applies mutatis mutandis.
[気体浄化装置101/プラズマ発生装置110/反射鏡M]
 プラズマ発生装置110にあっては、第一ガラス層112aと第一金属膜層113aとが、併せて反射鏡Mを構成する。反射鏡Mは、プラズマPが発する紫外線UVを反射するためのものである。さらに、反射鏡Mは、発生させるプラズマPの量を増やすことができるものでもある。
[Gas Purifier 101/Plasma Generator 110/Reflector M]
In the plasma generator 110, the first glass layer 112a and the first metal film layer 113a constitute a reflecting mirror M together. The reflecting mirror M is for reflecting the ultraviolet rays UV emitted by the plasma P. Furthermore, the reflecting mirror M can also increase the amount of plasma P to be generated.
 反射鏡Mにおいて、第一ガラス層112aは紫外線を透過させ、第一金属膜層113aは第一ガラス層112aを透過した紫外線を反射する。このとき、第一ガラス層112aは、第一金属膜層113aの紫外線反射率を低減させるおそれがある要因、例えば、プラズマ、紫外線、酸化による損傷から第一金属膜層113aを保護する。 In the reflector M, the first glass layer 112a transmits ultraviolet rays, and the first metal film layer 113a reflects the ultraviolet rays transmitted through the first glass layer 112a. At this time, the first glass layer 112a protects the first metal film layer 113a from damage caused by factors that may reduce the UV reflectance of the first metal film layer 113a, such as plasma, UV light, and oxidation.
 もっとも、第一電極111aを紫外線を反射する特性を有する金属からなるものとし、当該第一電極111aと第一ガラス層112aとを、互いの間に第一金属膜層113aを介することなく、互いに接するものとすることによって、反射鏡Mを、第一ガラス層112aと第一金属膜層113aとから構成することに代えて、第一電極111aと第一金属膜層113aとから構成することもできる。 However, the first electrode 111a is made of a metal having a property of reflecting ultraviolet rays, and the first electrode 111a and the first glass layer 112a are separated from each other without the first metal film layer 113a interposed therebetween. By contacting each other, the reflecting mirror M can be composed of the first electrode 111a and the first metal film layer 113a instead of being composed of the first glass layer 112a and the first metal film layer 113a. can.
 プラズマ発生装置110にあっては、第一電極111aが環状のものであり、このことに応じて第一ガラス層112aと第一金属膜層113aとがいずれも環状のものとなり、これらから構成される反射鏡Mもまた環状のものとなる。このため、反射鏡Mの内表面のうち互いに対向する部分と部分との間に合わせ鏡の関係が成り立ち、これらの間で、又はこれらと有孔鏡160との間で、紫外線の反射が反復して行われることになる。ここで、このような反射鏡Mの例として、図25、図26、図27、図28、図29、図30等を参照する。 In the plasma generator 110, the first electrode 111a is ring-shaped, and accordingly the first glass layer 112a and the first metal film layer 113a are both ring-shaped. The reflecting mirror M is also annular. For this reason, a pair of mirrors are formed between the portions of the inner surface of the reflecting mirror M that face each other, and the ultraviolet rays are repeatedly reflected between them or between them and the perforated mirror 160 . will be done. Here, FIGS. 25, 26, 27, 28, 29, 30 and the like will be referred to as examples of such a reflecting mirror M.
[気体浄化装置101/プラズマ発生装置110/作用]
 一対の電極Eに所定の電圧を加えると、誘電体バリア放電によって、一対の電極E間の空間Sにおいて、プラズマPが発生する。すなわち、第一電極111aと第二電極111bとの間に所定の電位差を与えると、第一電極111aと第二電極111bとの間の空間SにプラズマPが発生する。このとき、プラズマPは、第二電極111bが公転する方向に沿って環状に発生するものとなる。
[Gas Purifier 101/Plasma Generator 110/Action]
When a predetermined voltage is applied to the pair of electrodes E, plasma P is generated in the space S between the pair of electrodes E by dielectric barrier discharge. That is, when a predetermined potential difference is applied between the first electrode 111a and the second electrode 111b, plasma P is generated in the space S between the first electrode 111a and the second electrode 111b. At this time, the plasma P is generated annularly along the direction in which the second electrode 111b revolves.
 この場合において、例えば、一対の電極E間の空間Sに窒素の気体(N)が存在するときは、窒素のプラズマが発生し、この窒素のプラズマが、紫外線UVを発する。 In this case, for example, when nitrogen gas (N 2 ) exists in the space S between the pair of electrodes E, nitrogen plasma is generated, and this nitrogen plasma emits ultraviolet rays UV.
 紫外線UVが反射鏡Mに当たると、反射鏡Mは、紫外線UVを吸収することなく、これを反射する。ここで、反射鏡Mが紫外線UVを反射することに関して、図27を参照する。 When the ultraviolet rays UV hit the reflecting mirror M, the reflecting mirror M reflects the ultraviolet rays UV without absorbing them. Here, reference is made to FIG. 27 regarding the reflecting mirror M reflecting ultraviolet rays UV.
 プラズマ発生装置110が、紫外線UVを反射することのその余のほか、プラズマPの量を増やすこと、オゾン等の量を増やすことのそれぞれについては、「プラズマ発生装置10」における場合と同様であるから、「プラズマ発生装置10」についてした説明([気体浄化装置1/プラズマ発生装置10/作用]から[気体浄化装置1/作用/オゾン等の量を増やすこと]までにおいてした説明をいう。ただし、「第三電極11c」に関する部分を除く。)を準用する。 In addition to the fact that the plasma generator 110 reflects the ultraviolet rays UV, the increase in the amount of the plasma P and the increase in the amount of ozone etc. are the same as in the case of the "plasma generator 10". , the description of the "plasma generator 10" (from [gas purifier 1/plasma generator 10/action] to [gas purifier 1/action/increasing the amount of ozone, etc.). However, , excluding the part related to the “third electrode 11c”) shall apply mutatis mutandis.
[気体浄化装置101/流路120]
 流路120は、気体浄化装置101において、室内の空気その他の浄化しようとする気体Gが流れるための部分である。気体浄化装置101にあっては、流路120のうちのいずれかの部分にプラズマ発生装置110が配置され、浄化しようとする気体Gは流路120を流れる過程において浄化される。
[Gas purification device 101/channel 120]
The flow path 120 is a portion through which the indoor air or other gas G to be purified flows in the gas purifier 101 . In the gas purifier 101 , the plasma generator 110 is arranged in any part of the flow path 120 , and the gas G to be purified is purified while flowing through the flow path 120 .
 流路120は、入口120aと、出口120bと、経路120cと、から少なくとも構成されるものである。 The channel 120 is composed of at least an inlet 120a, an outlet 120b, and a path 120c.
 入口120aは、浄化しようとする気体Gが気体浄化装置101の内部に入るための開口からなる部分である。出口120bは、浄化しようとする気体Gが気体浄化装置101の外部に出るための開口からなる部分である。また、経路120cは、浄化しようとする気体Gが入口120aから出口120bまで流れるための通路からなる部分である。 The inlet 120a is an opening through which the gas G to be purified enters the inside of the gas purifier 101 . The outlet 120b is an opening through which the gas G to be purified exits the gas purifier 101 . In addition, the path 120c is a passage for the gas G to be purified to flow from the inlet 120a to the outlet 120b.
 浄化しようとする気体Gは、気体浄化装置101において、入口120aから入り、入口120aがある方向から出口120bがある方向に向けて経路120cを流れ、出口120bから出ることになる。 The gas G to be purified enters from the inlet 120a in the gas purification device 101, flows through the path 120c from the direction of the inlet 120a to the direction of the outlet 120b, and exits from the outlet 120b.
 気体浄化装置101を利用して室内の空気を浄化しようとする場合にあっては、入口120aと出口120bとを室内に向けて開放するか、又は導管を介して室内に接続する。気体浄化装置101を利用して室内の空気以外の気体を浄化しようとする場合にあっては、感染症患者の口及び鼻、空気調節装置の冷媒配管、内燃機関その他の当該気体の供給源と入口120aとを導管を介して接続するとともに、出口120bを室内に向けて開放するか、又は導管を介して屋外に開放する。 When trying to purify indoor air using the gas purifying device 101, the inlet 120a and the outlet 120b are opened toward the room or connected to the room via conduits. When trying to purify gases other than indoor air using the gas purifying device 101, the mouth and nose of an infectious disease patient, the refrigerant pipe of an air conditioner, the internal combustion engine, and other sources of the gas The inlet 120a is connected via a conduit, and the outlet 120b is opened indoors or opened outdoors via a conduit.
 ここで、経路120cのうち、基準となるものより入口120a側にある部分を「流路120のうち、(基準となるもの)より上流側」といい、基準となる物より出口120b側にある部分を「流路120のうち、(基準となるもの)より下流側」という。また、入口120a側を気体浄化装置101の正面側とし、出口120b側を気体浄化装置101の背面側とする。 Here, the portion of the path 120c that is on the inlet 120a side of the reference is referred to as the "upstream side of the flow path 120 (of the reference)", and is on the outlet 120b side of the reference. The portion is referred to as "the downstream side of the flow path 120 (that which serves as a reference)". The inlet 120a side is the front side of the gas purification device 101, and the outlet 120b side is the rear side of the gas purification device 101. As shown in FIG.
 流路120は、浄化しようとする気体Gが上記のとおりに流れることができるものである限りにおいて、その具体的態様は特に限られるものではないが、例えば、第一ガラス層112aとケース140とから構成されるものであることが好ましい。ここで、このような流路120の例として、図25、図26、図28、図29、図30等を参照する。 The specific mode of the channel 120 is not particularly limited as long as the gas G to be purified can flow as described above. It is preferably composed of Here, FIGS. 25, 26, 28, 29, 30, etc. will be referred to as examples of such a channel 120. FIG.
 入口120aは、ケース140に囲まれた貫通孔であって、ケース140の側部のうち一端側に配置されたものから構成されることが好ましい。また、入口120aは、左右に一対のものとして構成されることがより好ましい。ここで、このような入口120aの例として、図26、図28、図29、図30等を参照する。 The inlet 120a is preferably a through-hole surrounded by the case 140 and arranged at one end of the side portions of the case 140 . More preferably, the inlets 120a are configured as a pair on the left and right. Here, FIGS. 26, 28, 29, 30 and the like are referred to as examples of such an inlet 120a.
 出口120bは、ケース140に囲まれた開口であって、ケース140の他端側に配置されたものから構成されることが好ましい。ここで、このような出口120bの例として、図25、図26、図28、図29、図30等を参照する。 The outlet 120b is preferably an opening surrounded by the case 140 and arranged on the other end side of the case 140 . 25, 26, 28, 29, 30, etc. will be referred to as examples of such an outlet 120b.
 経路120cは、第一ガラス層112aに囲まれる第一部分120c1と、ケース140の内面に囲まれる第二部分120c2と、から構成されることが好ましい。また、第一部分120c1が、流路120のうち、第二部分120c2より下流側に配置されることがより好ましい。ここで、このような経路120cの例として、図26、図29、図30等を参照する。 The path 120c is preferably composed of a first portion 120c1 surrounded by the first glass layer 112a and a second portion 120c2 surrounded by the inner surface of the case 140. Further, it is more preferable that the first portion 120c1 is arranged downstream of the second portion 120c2 in the channel 120. As shown in FIG. Here, FIG. 26, FIG. 29, FIG. 30, etc. will be referred to as an example of such a path 120c.
 第一部分120c1にあっては、第二電極111bと第一ガラス層112aとの間において、一対の電極E間の空間Sが構成され、この空間SにおいてプラズマPが発生する。浄化しようとする気体Gは、経路120cのうち空間S及び空間Sに後続する部分を通過しながら、浄化される。また、第二部分120c2にあっては、有孔鏡160が配置されることが好ましい。この場合において、気体浄化装置101が第三フィルタ130cを備えるときにあっては、第三フィルタ130cは、流路120cのうち、有孔鏡160より上流側に配置されることが好ましい。 In the first portion 120c1, a space S between the pair of electrodes E is formed between the second electrode 111b and the first glass layer 112a, and plasma P is generated in this space S. The gas G to be purified is purified while passing through the space S and the portion subsequent to the space S in the path 120c. Moreover, it is preferable that the perforated mirror 160 is arranged in the second portion 120c2. In this case, when the gas purifier 101 is provided with the third filter 130c, the third filter 130c is preferably arranged upstream of the perforated mirror 160 in the channel 120c.
[気体浄化装置101/フィルタ130]
 フィルタ130は、ここを気体が通過した場合において、当該気体に占める特定の気体の濃度を減少させるためのものである。
[Gas purification device 101/filter 130]
The filter 130 is for reducing the concentration of a specific gas in the gas when the gas passes through it.
 ただし、気体浄化装置101は、フィルタ130のうち、第一フィルタ130aを備えるものではなく、第二フィルタ130bを備えるものでもない。もっとも、気体浄化装置101は、第三フィルタ130cを備えるものであってもよい。 However, of the filters 130, the gas purifying device 101 does not include the first filter 130a nor the second filter 130b. However, the gas purification device 101 may be provided with the third filter 130c.
 気体浄化装置101は、第一フィルタ130aを備えるものではないため、流路120のうち、第二電極111bより下流側において、オゾンを含む気体Gが出口120bから外部に向けて放出されることを妨げるものが存在しない。 Since the gas purifier 101 does not include the first filter 130a, it is possible to prevent the ozone-containing gas G from being discharged to the outside from the outlet 120b on the downstream side of the second electrode 111b in the channel 120. There are no obstacles.
 さらに、気体浄化装置101は、第一フィルタ130aを備えるものではなく、また、第二フィルタ130bを備えるものでもないため、流路120のうち、第二電極111bより下流側において、紫外線UVが出口120bから外部に向けて照射されることを妨げるものが存在しない。 Furthermore, since the gas purification device 101 does not include the first filter 130a nor the second filter 130b, the ultraviolet rays UV exit at the downstream side of the second electrode 111b in the channel 120. There is nothing to prevent the external irradiation from 120b.
 以上のとおりであるから、気体浄化装置101は、オゾンを含む気体Gを出口120bから外部に向けて放出することができるとともに、紫外線UVを出口120bから外部に向けて照射することができるものとなる。 As described above, the gas purifier 101 can emit the ozone-containing gas G to the outside from the outlet 120b, and can irradiate the ultraviolet rays UV to the outside from the outlet 120b. Become.
 気体浄化装置101にあっては、第三フィルタ130cは、流路120のうち、第二電極111bより上流側に配置される。また、気体浄化装置101が有孔鏡160を備える場合にあっては、第三フィルタ130cは、流路120のうち、有孔鏡160より上流側に配置される。 In the gas purification device 101, the third filter 130c is arranged upstream of the second electrode 111b in the channel 120. Further, when the gas purifier 101 is provided with the perforated mirror 160 , the third filter 130 c is arranged upstream of the perforated mirror 160 in the channel 120 .
 フィルタ130(第一フィルタ130a、第二フィルタ130b及び第三フィルタ130cを含む。)のその余については、「フィルタ30」(「第一フィルタ30a」、「第二フィルタ30b」及び「第三フィルタ30c」を含む。)と同様のものであるから、「フィルタ30」についてした説明([気体浄化装置1/フィルタ30]から[気体浄化装置1/フィルタ30/電極11とフィルタ30との関係/フィルタ30に関する課題に対する解決手段]までにおいてした説明をいう。ただし、「第三電極11c」に関する部分を除く。)を準用する。 The rest of the filters 130 (including the first filter 130a, the second filter 130b and the third filter 130c) are referred to as "filter 30" ("first filter 30a", "second filter 30b" and "third filter 30c"), so the description of the "filter 30" (from [gas purification device 1/filter 30] to [gas purification device 1/filter 30/relationship between electrode 11 and filter 30/ Means for Solving Problems Concerning Filter 30], except for the part relating to the “third electrode 11c”).
[気体浄化装置101/ケース140]
 ケース140は、気体浄化装置101を構成する各要素を内部に収納し、これらを所定の関係において配置するとともに、これらを保護するためのものである。
[Gas purification device 101/case 140]
The case 140 accommodates each element that constitutes the gas purifier 101, arranges them in a predetermined relationship, and protects them.
 ケース140は、上記を満たす限りことができるものである限りにおいて、その具体的態様は特に限られるものではないが、気体浄化装置101を構成する各要素の態様に応じ、適当なものが任意に選択される。 The specific mode of the case 140 is not particularly limited as long as it satisfies the above requirements. selected.
 ケース140は、絶縁体からなるか、又は強度があり、かつ、電磁シールド可能な金属からなるものであることが好ましい。なお、ケース140が金属からなるときは、ケース140と第一電極111aとの間に絶縁体を介在させる。 The case 140 is preferably made of an insulator, or made of a metal that is strong and capable of electromagnetic shielding. When the case 140 is made of metal, an insulator is interposed between the case 140 and the first electrode 111a.
 ケース140は、第一電極111aの形状に応じ、環状のものであり、例えば、環状のもののうち、円形状のものが好ましく、一端が閉じ、他端が開いた円筒状のものからなることがより好ましいが、両端が開いたものであってもよい。 The case 140 has an annular shape according to the shape of the first electrode 111a. For example, the case 140 preferably has a circular shape, and may have a cylindrical shape with one end closed and the other end open. More preferably, it may be open at both ends.
 ケース140にあっては、その一端側に入口120aが構成され、その他端側には出口120bが構成される。このとき、入口120aは、ケース140の側部のうち一端側に配置された貫通孔から構成されることが好ましく、出口120bは、ケース140の他端側に配置された開口から構成されることが好ましい。また、入口120aは、二以上あることが好ましい。ここで、このようなケース140の例として、図25、図26、図28、図29、図30等を参照する。 The case 140 has an inlet 120a at one end and an outlet 120b at the other end. At this time, the inlet 120a is preferably configured as a through hole arranged at one end of the side portion of the case 140, and the outlet 120b is configured as an opening arranged at the other end of the case 140. is preferred. Moreover, it is preferable that there are two or more inlets 120a. Here, FIGS. 25, 26, 28, 29, 30 and the like are referred to as examples of such a case 140. FIG.
 なお、ケース140は、単一の部材から構成されるものであってもよく、また、二以上の部材から構成されるものであってもよい。 The case 140 may be composed of a single member, or may be composed of two or more members.
[気体浄化装置101/送風装置150]
 送風装置150は、風を送ることによって、浄化しようとする気体Gを、入口120aから入れて出口120bから出すためのものであって、その一部として第二電極111bを備えるものである。
[Gas Purifier 101/Blower 150]
The blower 150 blows air to let the gas G to be purified enter through the inlet 120a and exit through the outlet 120b, and includes the second electrode 111b as a part thereof.
 送風装置150は、例えば、原動機151と、原動機151から軸方向に延びる駆動軸152と、駆動軸152にかたく嵌め合わされた羽根車153のほか、原動機151から径方向に延びる取付部材154と、からなるものである。 The blower device 150 includes, for example, a prime mover 151, a drive shaft 152 extending axially from the prime mover 151, an impeller 153 tightly fitted to the drive shaft 152, and a mounting member 154 radially extending from the prime mover 151. It will be.
 羽根車153は、轂153aと、二以上の第二電極111bと、を備えるものである。二以上の第二電極111bは、轂153aの周方向に沿って互いに間隔をおいて配置されており、かつ、それぞれ轂153aの径方向に沿って延びている。 The impeller 153 includes a stem 153a and two or more second electrodes 111b. The two or more second electrodes 111b are spaced apart from each other along the circumferential direction of the lobe 153a, and each extend along the radial direction of the lobe 153a.
 送風装置150は、例えば、取付部材154を介して、ケース140に取り付けられ、ケース140の内部に配置される。このとき、羽根車153の一部として送風装置150の一部を構成する第二電極111bは、第一電極111aとの間に距離を隔てて配置されることになる。すなわち、取付部材154は、送風装置150を所定の位置に配することを介して、スペーサとしての機能を果たしている。ここで、このような送風装置150の例として、図25、図26、図28、図29、図30等を参照する。 The blower device 150 is attached to the case 140 via, for example, an attachment member 154 and arranged inside the case 140 . At this time, the second electrode 111b, which constitutes a part of the blower device 150 as a part of the impeller 153, is arranged with a distance from the first electrode 111a. That is, the mounting member 154 functions as a spacer by arranging the blower device 150 at a predetermined position. Here, FIGS. 25, 26, 28, 29, 30 and the like are referred to as examples of such a blower device 150. FIG.
 原動機151を動かすと、駆動軸152がその中心線を中心に自転する。駆動軸152が自転すると、これとかたく嵌め合わされている轂153aが羽根車153ごと駆動軸152の中心線を中心に公転する。その結果、第二電極111bが駆動軸152の中心線を中心に公転し、入口120aから出口120bに向けて流れる風が生じ、送風が始まる。 When the prime mover 151 is moved, the drive shaft 152 rotates around its center line. When the drive shaft 152 rotates, the joint 153 a tightly fitted to it revolves around the center line of the drive shaft 152 together with the impeller 153 . As a result, the second electrode 111b revolves around the center line of the drive shaft 152, and air flows from the inlet 120a toward the outlet 120b, and blowing starts.
 さらに、一対の電極Eを構成する第一電極111aと第二電極111bとに所定の電圧を加えると、誘電体バリア放電によって、これらの間にある空間SにおいてプラズマPが発生し、プラズマPが発生すると、紫外線UVが発生するほか、オゾンが発生する。 Further, when a predetermined voltage is applied to the first electrode 111a and the second electrode 111b that constitute the pair of electrodes E, plasma P is generated in the space S between them by dielectric barrier discharge. When generated, not only ultraviolet rays UV are generated but also ozone is generated.
 以上のとおり、気体浄化装置101にあっては、原動機151を動かしながら第一電極111aと第二電極111bとから構成される一対の電極Eに所定の電圧を加えることによって、プラズマPを発生させながら、オゾンを含む気体Gを風として送ることができるとともに、一対の電極E間の空間Sにおいて紫外線UVを発生させることができる。ここで、送風装置150がオゾンを含む気体Gと紫外線UVとを発生させる点に関して、図27を参照する。 As described above, in the gas purification device 101, the plasma P is generated by applying a predetermined voltage to the pair of electrodes E composed of the first electrode 111a and the second electrode 111b while moving the prime mover 151. However, the gas G containing ozone can be sent as wind, and ultraviolet rays UV can be generated in the space S between the pair of electrodes E. Here, FIG. 27 will be referred to regarding the fact that the air blower 150 generates the gas G containing ozone and the ultraviolet rays UV.
[気体浄化装置101/有孔鏡160]
 有孔鏡160は、一対の電極E間の空間Sにおいて発生した紫外線UVを反射することによって、出口120bから気体浄化装置101の外部に向けて、効率的に紫外線UVを照射するためのものである。
[Gas purification device 101/perforated mirror 160]
The perforated mirror 160 reflects the ultraviolet rays UV generated in the space S between the pair of electrodes E, thereby efficiently irradiating the ultraviolet rays UV from the exit 120b toward the outside of the gas purifier 101. be.
 有孔鏡160は、円環状の平面鏡からなるものであることが好ましい。もっとも、平面鏡に代えて、凸面鏡又は凹面鏡からなるものであってもよい。 The perforated mirror 160 is preferably made of an annular flat mirror. However, instead of the flat mirror, a convex mirror or a concave mirror may be used.
 有孔鏡160の態様は、次のとおりである。ここで、説明のための例として、図25、図26、図29、図30等を参照する。 The aspect of the perforated mirror 160 is as follows. Here, FIGS. 25, 26, 29, 30, etc. will be referred to as examples for explanation.
 有孔鏡160は、二以上の通風孔161を有するほか、中心孔162を更に有するものであることが好ましい。 The perforated mirror 160 preferably has two or more ventilation holes 161 and further has a central hole 162 .
 通風孔161は、有孔鏡160を貫通する貫通孔からなるものであり、例えば、円形状の貫通孔が有孔鏡160の周方向に沿って互いに間隔をおいて配置されているものであることが好ましい。通風孔161は、風を通すことができるものである限りにおいて、その具体的態様は特に限られるものではない。 The ventilation hole 161 is a through hole penetrating the perforated mirror 160. For example, circular through holes are arranged at intervals along the circumferential direction of the perforated mirror 160. is preferred. The specific aspect of the ventilation hole 161 is not particularly limited as long as it can pass air.
 中心孔162は、有孔鏡160の中心を貫通する孔であって、ここに送風装置150の一部又は全部を通すためのものである。有孔鏡160が中心孔162を更に有する場合にあっては、送風装置150が存在するにもかかわらず、一対の電極Eと有孔鏡160とを互いに接近させることにより、紫外線UVの反射を効率的に行うことができる。例えば、中心孔162に原動機151を通らせることによって、有孔鏡160と一対の電極Eとを互いに接近させるとともに、第二電極111bの回転を妨げないことが好ましい。 A central hole 162 is a hole passing through the center of the perforated mirror 160, and is for passing part or all of the air blower 150 therethrough. In the case where the perforated mirror 160 further has a center hole 162, the pair of electrodes E and the perforated mirror 160 are brought closer to each other to reduce the reflection of the ultraviolet rays UV. can be done efficiently. For example, by allowing the motor 151 to pass through the center hole 162, it is preferable that the perforated mirror 160 and the pair of electrodes E are brought close to each other and the rotation of the second electrode 111b is not hindered.
 有孔鏡160は、鏡面側が出口120b側を向くように配置される。有孔鏡160は、経路120cと交わうとともに、流路120のうち、第二電極111bより上流側に配置される。このほか、有孔鏡160は、第一電極111aより入口120a側に配置されることが好ましく、さらに、第一電極111aに接近することが特に好ましい。このとき、有孔鏡160は、更により効率的に紫外線UVを反射することができるものとなる。 The perforated mirror 160 is arranged so that the mirror surface side faces the exit 120b side. The perforated mirror 160 intersects the path 120c and is arranged upstream of the second electrode 111b in the flow path 120. As shown in FIG. In addition, the perforated mirror 160 is preferably arranged closer to the inlet 120a than the first electrode 111a, and is particularly preferably close to the first electrode 111a. At this time, the perforated mirror 160 can reflect the ultraviolet rays UV more efficiently.
 気体浄化装置101は、反射鏡Mのほか、有孔鏡160を更に備えるものとして、出口120bから外部に向けて、効率的に紫外線UVを照射することができるものともなる。なお、有孔鏡160は、経路120cと交わるものであるにもかかわらず、通風孔161を有するものであるから、風が通ることの妨げとならない。 The gas purifying device 101 further includes a perforated mirror 160 in addition to the reflecting mirror M, so that it can efficiently irradiate ultraviolet rays UV from the exit 120b toward the outside. Although the perforated mirror 160 intersects with the path 120c, it has the ventilation holes 161, so it does not interfere with the passage of air.
[気体浄化装置101/作用]
 気体浄化装置101は、その備えるプラズマ発生装置110が反射鏡Mを備えるものとして、誘電体バリア放電によってプラズマPを発生させるとともに、プラズマPが発する紫外線UVその他の電磁波を反射することに基づいて、例えば、以下の作用効果を奏するものである。
[Gas purification device 101/action]
The gas purifier 101 has a plasma generator 110 with a reflecting mirror M, and generates plasma P by dielectric barrier discharge. For example, it has the following effects.
 すなわち、気体浄化装置101は、
(1)浄化しようとする気体G中のウイルスに対して紫外線UVの照射を反復して行い、
(2)その発生させるプラズマPの量を増やし、浄化しようとする気体G中のウイルスがプラズマPと接触する確率を高め、あるいは、
(3)その発生させるオゾンその他の活性化した気体の量を増やすことにより、
 もって、浄化しようとする気体G中のより多くの量のウイルスを不活性化させることができるものである。
That is, the gas purification device 101
(1) Repeatedly irradiating the virus in the gas G to be purified with ultraviolet UV,
(2) increasing the amount of generated plasma P to increase the probability that the virus in the gas G to be purified comes into contact with the plasma P;
(3) By increasing the amount of ozone or other activated gas it generates,
As a result, a larger amount of viruses in the gas G to be purified can be inactivated.
 なお、これらの作用の詳細については、「気体浄化装置1」における場合と同様であるから、「気体浄化装置1」についてした説明([気体浄化装置1/作用]から[気体浄化装置1/作用/更なる作用]までにおいてした説明をいう。ただし、「第二反射鏡M2」に関する部分を除く。)を準用する。 The details of these actions are the same as in the case of the "gas purifier 1", so the explanation of the "gas purifier 1" (from [gas purifier 1/action] to [gas purifier 1/action /Further action], except for the part related to the "second reflecting mirror M2").
 これらのほか、気体浄化装置101は、送風装置150を備えるものとして、その発生させたより多くの量のオゾンを含む気体Gを気体浄化装置101の外部に向けて放出することができるものであり、例えば、室内の空気中を浮遊するウイルスのほか、室内の床、壁その他の表面に付着したウイルスを不活性化させることができるものでもある。 In addition to these, the gas purifying device 101 is provided with a blower 150, which can discharge the generated gas G containing a larger amount of ozone to the outside of the gas purifying device 101, For example, it can inactivate viruses floating in the indoor air as well as viruses adhering to indoor floors, walls and other surfaces.
 以上のほか、気体浄化装置101が有孔鏡160を更に備える場合にあっては、紫外線UVを気体浄化装置101の外部に向けて照射することができるものとして、例えば、室内の空気中を浮遊するウイルスのほか、室内の床、壁その他の表面に付着したウイルスを不活性化させることができるものともなる。 In addition to the above, when the gas purifying device 101 further includes a perforated mirror 160, ultraviolet rays UV can be irradiated toward the outside of the gas purifying device 101, for example, It can also inactivate viruses attached to indoor floors, walls and other surfaces.
 ここで、気体浄化装置101が、プラズマPを発生させるほか、外部に向けて、オゾンを含む気体Gを放出するとともに、紫外線UVを照射することに関して、図27等を参照する。 Here, in addition to generating plasma P, the gas purifier 101 emits ozone-containing gas G to the outside and irradiates ultraviolet rays UV, with reference to FIG. 27 and the like.
 なお、オゾンを含む気体G及び紫外線UVは、人体に好ましくない影響を与えるものでもあるから、これを室内に向けて放出し、又は照射するに当たっては、夜間その他の室内に人が存在しない時機を選んで行うことが好ましい。 Since ozone-containing gas G and ultraviolet rays UV have an undesirable effect on the human body, when releasing or irradiating them indoors, avoid nights or other times when there are no people in the room. It is preferable to choose.
[他の気体浄化装置201]
 他の気体浄化装置201は、室内の空気その他の浄化しようとする気体Gを、内部に入れて浄化してから外部に出すことにより、浄化した気体を得るためのものであって、自ら送風することにより、浄化しようとする気体Gを出し入れするためのものである。すなわち、他の気体浄化装置201は、気体浄化機能を有するほか、送風機能を有するものである。
[Another gas purification device 201]
Another gas purifier 201 is for obtaining a purified gas by putting indoor air or other gas G to be purified inside, purifying it, and then letting it out to the outside. This is for taking in and out the gas G to be purified. That is, the other gas purifier 201 has a function of blowing air in addition to the function of purifying gas.
 他の気体浄化装置201は、プラズマ発生装置210と、流路220と、を少なくとも備えるものである。これらのほか、他の気体浄化装置201は、送風装置250を更に備えるものである。以上のほか、他の気体浄化装置201は、第一フィルタ230aを更に備えるものである。さらに、他の気体浄化装置201は、第二フィルタ230bを備えるものであってもよく、また、第三フィルタ230cを備えるものであってもよい。 Another gas purifier 201 includes at least a plasma generator 210 and a flow path 220 . In addition to these, another gas purification device 201 further includes a blower device 250 . In addition to the above, another gas purification device 201 further includes a first filter 230a. Furthermore, another gas purifying device 201 may be provided with the second filter 230b, or may be provided with the third filter 230c.
 第一フィルタ230aは、第一電極211aの間に配置され、その内周面と接するものであることが好ましい。同様に、第二フィルタ230bも、第一電極211aの間に配置され、その内周面と接するものであることが好ましい。 The first filter 230a is preferably arranged between the first electrodes 211a and is in contact with the inner peripheral surface thereof. Similarly, the second filter 230b is preferably arranged between the first electrodes 211a and is in contact with the inner peripheral surface thereof.
 ここで、他の気体浄化装置201と気体浄化装置101とを対比すると、他の気体浄化装置201は少なくとも第一フィルタ230aを備えるものであるのに対して、気体浄化装置101は第一フィルタ130aを備えるものではなく、また、第二フィルタ130bを備えるものでもない点において相違し、その余の点において共通する。 Here, when comparing the other gas purifying device 201 and the gas purifying device 101, the other gas purifying device 201 has at least the first filter 230a, whereas the gas purifying device 101 has the first filter 130a. and does not include the second filter 130b, and the rest are common.
 そこで、他の気体浄化装置201のその余については、「気体浄化装置101」と同様のものであるから、「気体浄化装置101」についてした説明([気体浄化装置101]から[気体浄化装置101/有孔鏡160]までにおいてした説明をいい、[気体浄化装置101/作用]においてした説明を除く。)を準用する。この場合において、[気体浄化装置101/有孔鏡160]においてした説明中「気体浄化装置101は、有孔鏡160を備えることによって、出口120bから外部に向けて、紫外線UVを照射することができるものともなる。」とあるのは「他の気体浄化装置201は、有孔鏡260を備えることによって、その内部において、紫外線UVの反射を反復することができるものともなる。」と読み替えるものとする。 Therefore, since the rest of the other gas purifier 201 is the same as the "gas purifier 101", the explanation of the "gas purifier 101" (from [gas purifier 101] to [gas purifier 101 / perforated mirror 160], excluding the explanation given in [gas purifier 101 / operation]) shall apply mutatis mutandis. In this case, in the description of [gas purification device 101/perforated mirror 160], “the gas purification device 101 is provided with the perforated mirror 160, so that it can irradiate ultraviolet rays UV from the outlet 120b toward the outside. ' can be read as 'the other gas purifying device 201 can repeat the reflection of ultraviolet rays UV inside it by providing the perforated mirror 260 '. and
[他の気体浄化装置201/作用]
 他の気体浄化装置201は、その備えるプラズマ発生装置210が反射鏡Mを備えるものとして、誘電体バリア放電によってプラズマPを発生させるとともに、プラズマPが発する紫外線UVその他の電磁波を反射することに基づいて、例えば、以下の作用効果を奏するものである。
[Other gas purification device 201/action]
Another gas purifier 201 has a plasma generator 210 with a reflecting mirror M, and generates plasma P by dielectric barrier discharge, and reflects ultraviolet UV and other electromagnetic waves generated by the plasma P. Thus, for example, the following effects can be obtained.
 すなわち、気体浄化装置201は、
(1)浄化しようとする気体G中のウイルスに対して紫外線UVの照射を反復して行い、
(2)その発生させるプラズマPの量を増やし、浄化しようとする気体G中のウイルスがプラズマPと接触する確率を高め、あるいは、
(3)その発生させるオゾンその他の活性化した気体の量を増やすことにより、
 もって、浄化しようとする気体G中のより多くの量のウイルスを不活性化させることができるものである。
That is, the gas purification device 201
(1) Repeatedly irradiating the virus in the gas G to be purified with ultraviolet UV,
(2) increasing the amount of generated plasma P to increase the probability that the virus in the gas G to be purified comes into contact with the plasma P;
(3) By increasing the amount of ozone or other activated gas it generates,
As a result, a larger amount of viruses in the gas G to be purified can be inactivated.
 なお、これらの作用の詳細については、「気体浄化装置1」における場合と同様であるから、「気体浄化装置1」についてした説明([気体浄化装置1/作用]から[気体浄化装置1/作用/更なる作用]までにおいてした説明をいう。)を準用する。 The details of these actions are the same as in the case of the "gas purifier 1", so the explanation of the "gas purifier 1" (from [gas purifier 1/action] to [gas purifier 1/action /Further action].) shall apply mutatis mutandis.
 このほか、他の気体浄化装置201が有孔鏡260を更に備える場合にあっては、他の気体浄化装置201は、その内部において、紫外線UVの反射を反復することによって、更により多くの量のウイルスを不活性化させることができる。 In addition, if the other gas purifying device 201 further comprises a perforated mirror 260, the other gas purifying device 201 will repeat the reflection of the ultraviolet rays UV inside it to produce an even greater amount of of viruses can be inactivated.
第三実施形態Third embodiment
[自走式気体浄化装置1001]
 自走式気体浄化装置1001は、気体浄化装置のうち、室内の空気その他の浄化しようとする気体Gを、内部に入れて浄化してから外部に出すことにより、浄化した気体を得るためのものであって、自ら送風することにより、浄化しようとする気体Gを出し入れするとともに、自ら走行することができるものである。
[Self-propelled gas purification device 1001]
The self-propelled gas purifying device 1001, among gas purifying devices, puts indoor air or other gas G to be purified into the interior, purifies it, and then discharges it to the outside to obtain the purified gas. By blowing air by itself, it is possible to take in and out the gas G to be purified and to run by itself.
 自走式気体浄化装置1001は、気体浄化装置101のほか、例えば、床面を走行するための走行手段1010と、走行手段1010を駆動するための駆動手段(図示しない)と、駆動手段を自動制御するための自動制御手段(図示しない)と、を備えるものであることが好ましく、これらのほか、他の気体浄化装置201を更に備えるものであることがより好ましい。 In addition to the gas purification device 101, the self-propelled gas purification device 1001 includes, for example, a traveling means 1010 for traveling on the floor surface, a driving means (not shown) for driving the traveling means 1010, and a driving means. and automatic control means (not shown) for control, and more preferably, another gas purifying device 201 in addition to these.
 走行手段1010は、自走式気体浄化装置1001の底面に配置され、例えば、二以上の車輪からなる。また、走行手段1010は、自動制御手段により制御されるものであることが好ましい。 The traveling means 1010 is arranged on the bottom surface of the self-propelled gas purifier 1001, and consists of, for example, two or more wheels. Further, the traveling means 1010 is preferably controlled by automatic control means.
 ところで、気体浄化装置101は、送風機能を併せて有するものとして、空気調節装置以外の装置に取り付けることによって、当該装置に気体浄化機能と送風機能とを付与することができるものでもある。 By the way, the gas purifying device 101 also has a blowing function, and by attaching it to a device other than an air conditioner, it is possible to give the device a gas purifying function and a blowing function.
 そこで、気体浄化装置101を、例えば、自動走行する装置(以下単に「自走式装置」という。)1000に取り付けることによって更に自走機能を有する自走式気体浄化装置1001とすることが好ましい。ここで、自走式装置として、例えば、自走式ロボットのほか、自走式掃除機が挙げられる。 Therefore, it is preferable to attach the gas purifier 101 to a device 1000 that runs automatically (hereinafter simply referred to as a "self-propelled device") 1000, so that the self-propelled gas purifier 1001 further has a self-propelled function. Examples of self-propelled devices include self-propelled robots and self-propelled vacuum cleaners.
 気体浄化装置101を自走式装置1000に取り付けて自走式気体浄化装置1001とするに当たっては、気体浄化装置101の出口120bを下方に向けることが好ましい。このとき、自走式気体浄化装置1001は、出口120bから床面に向けてオゾンを含む気体Gを送風するとともに、出口120bから床面に向けて紫外線UVを照射するものとなる。 When the gas purification device 101 is attached to the self-propelled device 1000 to form the self-propelled gas purification device 1001, the outlet 120b of the gas purification device 101 is preferably directed downward. At this time, the self-propelled gas purifier 1001 blows the gas G containing ozone toward the floor from the outlet 120b and irradiates the floor with ultraviolet rays UV from the outlet 120b.
 他の気体浄化装置201を自走式装置1000に取り付けるに当たっては、その取付け位置の具体的態様は、特に限られるものではないが、例えば、他の気体浄化装置201の出口220bが前方に向けられることが好ましい。 When the other gas purifying device 201 is attached to the self-propelled device 1000, the specific aspect of the mounting position is not particularly limited, but for example, the outlet 220b of the other gas purifying device 201 is directed forward. is preferred.
 ここで、以上のような自走式気体浄化装置1001の例として、図31、図32を参照する。 Here, FIGS. 31 and 32 are referred to as an example of the self-propelled gas purifier 1001 as described above.
 以上のように、自走式気体浄化装置1001は、自動走行しながらオゾンを含む気体G及び紫外線UVを外部に出すことによって、空気中又は床面のウイルスを不活性化させることができるものとなる。また、このことは、ウイルス以外の他の微生物についても同様である。 As described above, the self-propelled gas purifier 1001 can inactivate viruses in the air or on the floor by discharging the ozone-containing gas G and ultraviolet rays UV while automatically traveling. Become. Moreover, this also applies to microorganisms other than viruses.
第四実施形態Fourth embodiment
[気体活性化装置301]
 気体活性化装置301は、活性化しようとする気体Gを、内部に入れて活性化してから外部に出すことにより、活性化した気体を得るためのものである。すなわち、気体活性化装置301は、気体活性化機能を有するものである。
[Gas activation device 301]
The gas activation device 301 is for obtaining an activated gas by putting the gas G to be activated inside, activating it, and then letting it out. That is, the gas activation device 301 has a gas activation function.
 なお、この明細書にいう「活性化しようとする気体G」には、活性化しようとする気体そのもののほか、これを現に活性化した気体と、これらの間の状態にある気体と、を含むことがあるものとする。このことは、図面においても同様である。 In addition, the "gas G to be activated" as used in this specification includes not only the gas itself to be activated, but also the gas that is actually activated and the gas in the state between these. It is assumed that there is This also applies to the drawings.
 活性化しようとする気体として、例えば、空気のほか、酸素(O)、窒素(N)、水素(H)が挙げられる。ここで、空気として、密閉容器内の空気のほか、室内の空気が挙げられる。これらのほか、活性化しようとする気体として、貴ガス、ハロゲンガスと貴ガスとの混合気体も挙げられるが、特に以上のものに限定されない。 Gases to be activated include, for example, air, oxygen (O 2 ), nitrogen (N 2 ), and hydrogen (H 2 ). Here, the air includes the air in the airtight container as well as the air in the room. In addition to these, gases to be activated include noble gases and mixed gases of halogen gases and noble gases, but are not particularly limited to the above.
 活性化した気体として、例えば、活性化しようとする気体が酸素(O)を含むものである場合にあっては、オゾン(O)のほか、活性酸素が挙げられ、窒素(N)を含むものである場合にあっては、窒素の励起分子(N)又は励起原子(N)が挙げられる。 Examples of the activated gas include, when the gas to be activated contains oxygen (O 2 ), active oxygen in addition to ozone (O 3 ), and nitrogen (N 2 ). Excited molecules (N 2 ) or excited atoms (N) of nitrogen may be mentioned.
 なお、活性化した気体を気体活性化装置301の外部に放出し、当該活性化した気体と浄化しようとする気体とを互いに接触させることによって、当該浄化しようとする気体を励起させて分解し、もってこれを浄化することもできる。すなわち、ある気体を励起することは、すなわち、これを活性化することであり、場合によっては、これを浄化することでもある。このとき、気体を浄化する過程において有害な中間体を生じさせないように、例えば、電圧、周波数その他のプラズマを発生させるための条件を最適化することにより発生させるプラズマの放電形態の在り方を最適化し、更に第二電極311bを触媒として作用するものから構成した場合にあっては、特定遷移金属の選定、設定位置その他の触媒を作用させるための条件を併せて最適化することによりプラズマ励起と電極表面触媒活性とを時空間的に共存させ、もって浄化しようとする気体中に含まれる有害な物質を可能な限り無害なものすることも必要であり、また、重要でもある。 The activated gas is released to the outside of the gas activation device 301, and the activated gas and the gas to be purified are brought into contact with each other, thereby exciting and decomposing the gas to be purified, You can also purify it. That is, to excite a gas is to activate it, and possibly to purify it. At this time, in order not to produce harmful intermediates in the process of purifying the gas, for example, the voltage, frequency, and other conditions for generating plasma are optimized, thereby optimizing the discharge form of the generated plasma. Furthermore, when the second electrode 311b is composed of a material that acts as a catalyst, plasma excitation and electrode It is also necessary and important to coexist with the surface catalytic activity spatio-temporally, thereby rendering harmful substances contained in the gas to be purified as harmless as possible.
 気体活性化装置301は、密閉容器2000の内部において配置されて使用され、又は室内において配置されて使用されることによって、固体浄化装置2001を構成する。 The gas activation device 301 constitutes the solid purification device 2001 by being arranged and used inside the sealed container 2000 or being arranged and used indoors.
 気体活性化装置301は、プラズマ発生装置310と、流路320と、を少なくとも備えるものである。ただし、気体活性化装置301は、フィルタ330を備えるものではない。 The gas activation device 301 includes at least a plasma generator 310 and a flow path 320. However, gas activation device 301 does not include filter 330 .
 気体活性化装置301の奥行きは、10~40mmであることが好ましく、15~35mmであることがより好ましく、20~30mmであることが更により好ましい。 The depth of the gas activation device 301 is preferably 10-40 mm, more preferably 15-35 mm, and even more preferably 20-30 mm.
 気体活性化装置301の大きさ(奥行きを除く。)及び重さは、「気体浄化装置1」における場合と同様のものであるから、「気体浄化装置1」についてした説明を準用する。 The size (excluding the depth) and weight of the gas activation device 301 are the same as in the "gas purification device 1", so the explanation given for the "gas purification device 1" applies mutatis mutandis.
[気体活性化装置301/プラズマ発生装置310]
 プラズマ発生装置310は、プラズマPを発生させるための装置として、気体活性化装置301の一部を構成するためのものである。
[Gas activation device 301/plasma generator 310]
The plasma generator 310 is for forming a part of the gas activation device 301 as a device for generating plasma P. As shown in FIG.
 プラズマ発生装置310のその余については、「プラズマ発生装置10」と同様のものであるから、「プラズマ発生装置10」についてした説明([気体浄化装置1/プラズマ発生装置10]から[気体浄化装置1/プラズマ発生装置10/作用/オゾン等の量を増やすこと]までにおいてした説明をいう。ただし、「第一フィルタ30a」に関する部分を除く。)を準用する。この場合において、同説明中「気体浄化装置1」とあるのは「気体活性化装置301」と、「浄化」とあるのは「活性化」と、読み替えるものとする。このとき、同説明中において参照する図12(a)に代えて図13(b)を準用して参照するものとする。 Since the rest of the plasma generator 310 is the same as the "plasma generator 10", the description of the "plasma generator 10" (from [gas purification device 1/plasma generator 10] to [gas purification device 1/Plasma generator 10/Action/Increasing the amount of ozone, etc.], except for the part related to the "first filter 30a"). In this case, "gas purifying device 1" in the same description should be read as "gas activation device 301", and "purification" should be read as "activation". At this time, instead of FIG. 12(a) referred to in the same description, FIG. 13(b) shall be applied mutatis mutandis for reference.
 また、同様の場合において、[気体浄化装置1/プラズマ発生装置10/電極11/第三電極11c]においてした説明中「例えば、気体浄化装置1において不活性化させることができるウイルスの量を更に増やすことができる。」とあるのは、「例えば、気体活性化装置301において活性化させることができる気体の量を更に増やすことができる。」と読み替えるものとする。 In a similar case, in the explanation given in [Gas purifier 1/Plasma generator 10/Electrode 11/Third electrode 11c], "For example, the amount of virus that can be inactivated in the gas purifier 1 is further increased. can be increased" should be read as "for example, the amount of gas that can be activated in the gas activation device 301 can be further increased."
[気体活性化装置301/流路320]
 流路320は、気体活性化装置301において、活性化しようとする気体Gが流れるための部分である。気体活性化装置301にあっては、流路320のうちのいずれかの部分にプラズマ発生装置310が配置され、活性化しようとする気体Gは流路320を流れる過程において活性化される。
[Gas activation device 301/channel 320]
The flow path 320 is a portion through which the gas G to be activated flows in the gas activation device 301 . In the gas activating device 301 , the plasma generator 310 is arranged in any part of the channel 320 , and the gas G to be activated is activated while flowing through the channel 320 .
 気体活性化装置301を利用して密閉容器内の空気を活性化しようとする場合にあっては、入口320aと出口320bとを密閉容器内に向けて開放するか、又は導管を介して密閉容器内に接続する。気体活性化装置301を利用して室内の空気を活性化しようとする場合にあっては、入口320aと出口320bとを室内に向けて開放するか、又は導管を介して室内に接続する。 When the gas activation device 301 is used to activate the air in the closed container, the inlet 320a and the outlet 320b are opened toward the inside of the closed container, or the closed container is opened through a conduit. connect within. When using the gas activation device 301 to activate the air in the room, the inlet 320a and the outlet 320b are opened toward the room or connected to the room via conduits.
 流路320のその余については、「流路20」と同様のものであるから、「流路20」についてした説明([気体浄化装置1/流路20]から[気体浄化装置1/流路20/第二電極11bと流路20との関係]までにおいてした説明をいう。)を準用する。この場合において、同説明中「気体浄化装置1」とあるのは「気体活性化装置301」と、「浄化」とあるのは「活性化」と、読み替えるものとする。このとき、同説明中において参照する図面に代えて図13(b)を準用して参照するものとする。 Since the rest of the flow path 320 is the same as the "flow path 20", the explanation of the "flow path 20" (from [gas purifier 1/flow path 20] to [gas purifier 1/flow path 20/relationship between the second electrode 11b and the flow path 20]) shall be applied mutatis mutandis. In this case, "gas purifying device 1" in the same description should be read as "gas activation device 301", and "purification" should be read as "activation". At this time, FIG. 13(b) shall be applied mutatis mutandis in place of the drawings referred to in the same description.
[気体活性化装置301/フィルタ330]
 フィルタ330は、ここを気体が通過した場合において、当該気体に占める特定の気体の濃度を減少させるためのものである。
[Gas activation device 301/filter 330]
The filter 330 is for reducing the concentration of a specific gas in the gas when the gas passes through it.
 ただし、気体活性化装置301は、フィルタ330を備えるものではない。すなわち、気体活性化装置301は、第一フィルタ330aを備えるものではなく、第二フィルタ330bを備えるものでもなく、第三フィルタ330cを備えるものでもない。ここで、このような気体活性装置301の例として、図13(b)を準用して参照する。 However, the gas activation device 301 does not include the filter 330 . That is, the gas activation device 301 does not include the first filter 330a, the second filter 330b, or the third filter 330c. Here, as an example of such a gas activation device 301, FIG. 13B will be applied and referred to.
 気体活性化装置301は、第一フィルタ330aその他のフィルタ330を備えるものではないため、流路320のうち、第二電極311bより下流側において、オゾンその他の活性化した気体Gが出口320bから外部に向けて放出されることを妨げるものが存在しない。 Since the gas activation device 301 does not include the first filter 330a and other filters 330, the activated gas G such as ozone is discharged from the outlet 320b to the outside in the flow path 320 downstream of the second electrode 311b. There is nothing to prevent it from being emitted towards
 このとおりであるから、気体活性化装置301は、オゾンその他の活性化した気体Gを出口320bから外部に向けて放出することができる。 As described above, the gas activation device 301 can release ozone or other activated gas G to the outside from the outlet 320b.
 フィルタ330(第一フィルタ330a、第二フィルタ330b及び第三フィルタ330cを含む。)のその余については、「フィルタ30」(「第一フィルタ30a」、「第二フィルタ30b」及び「第三フィルタ30c」を含む。)と同様のものであるから、「フィルタ30」についてした説明([気体浄化装置1/フィルタ30]から[気体浄化装置1/フィルタ30/第三フィルタ30c]までにおいてした説明をいう。)を準用する。この場合において、「気体浄化装置1」とあるのは「気体活性化装置301」と読み替えるものとする。 The rest of the filters 330 (including the first filter 330a, the second filter 330b and the third filter 330c) are referred to as "filter 30" ("first filter 30a", "second filter 30b" and "third filter 30c"), so the description of the "filter 30" (from [gas purification device 1/filter 30] to [gas purification device 1/filter 30/third filter 30c] ) shall apply mutatis mutandis. In this case, "gas purifier 1" is read as "gas activator 301".
[気体活性化装置301/スペーサ340]
 スペーサ340は、「スペーサ40」と同様のものであるから、「スペーサ40」についてした説明(「気体浄化装置1/スペーサ40」から「気体浄化装置1/連結手段41」までにおいてした説明をいう。)を準用する。この場合において、同説明中「気体浄化装置1」とあるのは「気体活性化装置301」と読み替えるものとする。
[Gas activation device 301/spacer 340]
Since the spacer 340 is similar to the "spacer 40", the explanation given for the "spacer 40" (from "gas purifier 1/spacer 40" to "gas purifier 1/connecting means 41") ) shall apply mutatis mutandis. In this case, the term "gas purification device 1" in the same description shall be read as "gas activation device 301".
[気体活性化装置301/作用]
 気体浄化装置301は、その備えるプラズマ発生装置310が反射鏡Mを備えるものとして、誘電体バリア放電によってプラズマPを発生させるとともに、プラズマPが発する紫外線UVその他の電磁波を反射することに基づいて、例えば、以下の作用効果を奏するものである。
[Gas activation device 301/action]
The gas purifying device 301 is provided with a plasma generator 310 having a reflecting mirror M, and generates plasma P by dielectric barrier discharge. For example, it has the following effects.
 すなわち、気体浄化装置301は、活性化しようとする気体Gに対して紫外線UVその他の電磁波の照射を反復して行い、あるいは、その発生させたプラズマPの量を増やし、活性化しようとする気体GがプラズマPと接触する確率を高めることにより、もってその発生させる活性化した気体の量を増やすことができるものである。 That is, the gas purifying device 301 repeatedly irradiates the gas G to be activated with ultraviolet rays UV or other electromagnetic waves, or increases the amount of the generated plasma P, thereby increasing the amount of the gas to be activated. By increasing the probability that G contacts the plasma P, the amount of activated gas generated can be increased.
 したがって、気体浄化装置301は、活性化しようとする気体Gが酸素(O)を含むものである場合にあっては、より多くの量のオゾン(O)のほか、より多くの量の活性酸素を発生させることができる。 Therefore, when the gas G to be activated contains oxygen (O 2 ), the gas purifier 301 uses a larger amount of ozone (O 3 ) as well as a larger amount of active oxygen. can be generated.
第五実施形態Fifth embodiment
[密閉容器2000]
 密閉容器2000は、その内部において気体活性化装置301を使用することにより、気体活性化装置301を固体浄化装置2001として使用するための前提を構成するものである。すなわち、密閉容器2000は、常に、固体浄化装置2001を構成する要素となるものではない。もっとも、固体浄化装置2001が、予め密閉容器2000を備えることは妨げられない。
[Sealed container 2000]
The sealed container 2000 constitutes a premise for using the gas activation device 301 as the solid purification device 2001 by using the gas activation device 301 inside it. That is, the closed vessel 2000 does not always constitute the solid purification device 2001 . However, the solid purification device 2001 may be provided with the sealed container 2000 in advance.
 密閉容器2000は、その内部に気体活性化装置301と浄化しようとする固体Oとを収めた状態で密閉して、その内部を気体活性化装置301が放出する活性化した気体Gで満たすことによって、活性化した気体Gと浄化しようとする固体Oの表面とが触れ続けるようにするためのものである。 The sealed container 2000 is sealed with the gas activator 301 and the solid O to be purified inside, and is filled with the activated gas G emitted by the gas activator 301. , to keep the activated gas G in contact with the surface of the solid O to be purified.
 密閉容器2000は、例えば、金属からなるものであることが好ましく、例えば、屋内施設に備えられているロッカーをそのまま使用することもできる。 For example, the closed container 2000 is preferably made of metal, and for example, lockers provided in indoor facilities can be used as they are.
 密閉容器2000は、例えば、密閉容器本体2000aと、蝶番2000bと、扉2000cと、を備えるものである。扉2000cは、密閉容器本体2000aに対して蝶番2000bを介して開閉可能に連結されている。 The sealed container 2000 includes, for example, a sealed container main body 2000a, a hinge 2000b, and a door 2000c. The door 2000c is connected to the sealed container main body 2000a via a hinge 2000b so as to be openable and closable.
 密閉容器2000を使用しようとする者は、扉2000cを開き、収めようとする固体Oを密閉容器本体2000の内部に収めた後、扉2000cを閉じて密閉する。 A person who intends to use the sealed container 2000 opens the door 2000c, stores the solid O to be stored inside the sealed container main body 2000, and then closes the door 2000c to seal it.
 ここで、以上のような密閉容器2000の例として、図37、図38を参照する。 Here, FIGS. 37 and 38 are referred to as an example of the closed container 2000 as described above.
[固体浄化装置2001]
 固体浄化装置2001は、浄化しようとする固体Oとともに密閉容器2000の内部に配置され、密閉容器2000の内部を活性化した気体Gをもって満たすことにより、浄化した固体を得るためのものである。すなわち、固体浄化装置2001は、固体浄化機能を有するものである。
[Solid purification device 2001]
The solid purifier 2001 is arranged inside the closed container 2000 together with the solid O to be purified, and fills the inside of the closed container 2000 with the activated gas G to obtain the purified solid. That is, the solid purification device 2001 has a solid purification function.
 浄化しようとする固体Oとして、例えば、医療機器、医療用衣服その他の医療行為及びこれに準ずる行為の提供の用に供する物(医療行為及びこれに準ずる行為の提供に当たりその提供を受ける者(貸し渡す物を含む。)の利用に供する物を含む。)のほか、野菜、果物、その他の生鮮食品が挙げられる。 Solids O to be purified include, for example, medical equipment, medical clothing, and other items used for providing medical care and equivalent actions (persons receiving the provision of medical care and equivalent actions (Including things to be handed out.) Including things to be used.), vegetables, fruits, and other perishable foods.
 固体浄化装置2001は、気体活性化装置301を少なくとも備えるものである。すなわち、気体活性化装置301が密閉容器2000の内部において使用されることによって固体浄化装置2001が構成される。このほか、密閉容器2000であって、その内部に気体活性化装置301が予め設置されたものをもってして、固体浄化装置2001が構成されてもよい。 The solid purification device 2001 includes at least the gas activation device 301. That is, the gas activation device 301 is used inside the sealed container 2000 to configure the solid purification device 2001 . In addition, the solid purifier 2001 may be constituted by a sealed container 2000 in which the gas activation device 301 is installed in advance.
 固体浄化装置2001は、気体活性化装置301のほか、例えば、送風装置2010を備えるものであることが好ましく、また、ボックス2020と、電源2030と、制御手段2040と、検知手段2050と、設置手段2060と、を更に備えるものであることが好ましい。 The solid purifier 2001 preferably includes, for example, a blower 2010 in addition to the gas activation device 301, and also includes a box 2020, a power supply 2030, a control means 2040, a detection means 2050, and an installation means. 2060, and is preferably further provided.
 ここで、以上のような固体浄化装置2001の例として、図33、図34、図35、図36等を参照する。 Here, FIGS. 33, 34, 35, 36 and the like are referred to as examples of the solid purification device 2001 as described above.
 もっとも、固体浄化装置2001は、上記にかかわらず、気体活性化装置301と送風装置2010とを備えることに代えて気体浄化装置101を気体活性化装置として備えるものであってもよい。気体浄化装置101は、フィルタ130を備えるものでないため、気体活性化装置として使用することもできることによる。 However, regardless of the above, the solid purifier 2001 may include the gas purifier 101 as a gas activator instead of including the gas activator 301 and the blower 2010 . This is because the gas purifying device 101 does not include the filter 130 and thus can be used as a gas activating device.
[固体浄化装置2001/気体活性化装置301]
 気体活性化装置301は、活性化しようとする気体Gを、内部に入れて活性化してから外部に出すことにより、活性化した気体を得て、これをもって密閉容器2000の内部を満たすためのものである。すなわち、気体活性化装置301は、気体活性化機能を有するものである。
[Solid purification device 2001/gas activation device 301]
The gas activating device 301 puts the gas G to be activated inside, activates it, and then lets it out to obtain the activated gas, which fills the inside of the sealed container 2000. is. That is, the gas activation device 301 has a gas activation function.
 気体活性化装置301の数は、一であってもよく、二以上であってもよく、例えば、三の気体活性化装置301,301,301としてもよい。ここで、固体浄化装置2001を構成する三の気体活性化装置301,301,301の例として、図35、図36等を参照する。 The number of gas activation devices 301 may be one, or two or more, for example, three gas activation devices 301, 301, and 301 may be used. Here, FIGS. 35, 36, etc. will be referred to as examples of the three gas activation devices 301, 301, 301 constituting the solid purification device 2001. FIG.
 なお、気体活性化装置301のその余については、「気体活性化装置301」と同一のものであるから、「気体活性化装置301」についてした説明([気体活性化装置301]から[気体活性化装置301/作用]までにおいてした説明をいう。)を援用する。 The rest of the gas activating device 301 is the same as the "gas activating device 301". 301/operation]) is referred to.
[固体浄化装置2001/送風装置2010]
 送風装置2010は、気体活性化装置301に向けて風を送ることによって、活性化しようとする気体Gを、気体活性化装置301の入口320aから入れて出口320bから出すためのものであるとともに、ボックス2020の入口2020aから入れて出口2020bから出すためのものでもある。
[Solid Purifier 2001/Blower 2010]
The blower 2010 is for blowing air toward the gas activating device 301 so that the gas G to be activated is introduced from the inlet 320a of the gas activating device 301 and discharged from the outlet 320b. It is also for entering from the entrance 2020a of the box 2020 and leaving from the exit 2020b.
 送風装置2010は、例えば、原動機と、原動機から軸方向に延びる駆動軸と、駆動軸にかたく嵌め合わされた羽根車のほか、原動機から径方向に延びる取付部材と、取付部材と連結された枠体と、からなるものである。 The blower device 2010 includes, for example, a motor, a drive shaft extending axially from the motor, an impeller tightly fitted to the drive shaft, a mounting member extending radially from the motor, and a frame connected to the mounting member. and consists of
 送風装置2010は、気体活性化装置301に対して入口320a側に配置されることが好ましい。これにより、活性化した気体Gをその活性が失われてしまう前に気体活性化装置301の外部に放出することができる。もっとも、送風装置2010が出口320b側に配置されることも妨げられない。 The blower device 2010 is preferably arranged on the side of the inlet 320 a with respect to the gas activation device 301 . As a result, the activated gas G can be released to the outside of the gas activation device 301 before it loses its activity. However, the arrangement of the air blower 2010 on the side of the outlet 320b is not prevented.
 送風装置2010の数は、一であってもよく、また、二以上であってもよく、例えば、三の送風装置2010,2010,2010とすることもできる。 The number of blowers 2010 may be one, or two or more, for example, three blowers 2010, 2010, 2010.
 ここで、気体活性化装置301に対して入口320a側に配置され、固体浄化装置2001の一部を構成する三の送風装置2010,2010,2010の例として、図35、図36等を参照する。 35, 36, etc. will be referred to as an example of the three blowers 2010, 2010, 2010 that are arranged on the inlet 320a side of the gas activation device 301 and constitute a part of the solid purification device 2001. .
[固体浄化装置2001/ボックス2020]
 ボックス2020は、その内部において気体活性化装置301及び送風装置2010を収めることにより、これらを互いに適当な関係をなすように配置するためのものである。
[Solid Purifier 2001/Box 2020]
Box 2020 is for enclosing gas activation device 301 and blower device 2010 therein so as to place them in proper relation to each other.
 これらのほか、ボックス2020は、例えば、電源2030を更に収めることができるものであることが好ましく、制御手段2040、検知手段2050及び設置手段2060を設けることができるものであることがより好ましい。 In addition to these, the box 2020 is preferably capable of containing, for example, a power source 2030, and more preferably capable of being provided with control means 2040, detection means 2050 and installation means 2060.
 ボックス2020は、その内部に気体活性化装置301及び送風装置2010を収めることができる程度の大きさの空間を少なくとも有するとともに、活性化しようとする気体Gが入るための入口2020aと、活性化した気体Gが出るための出口2020bと、を有する。また、ボックス2020は、ボックス本体2020cと、蓋2020dと、から構成されることが好ましい。 The box 2020 has at least a space large enough to accommodate the gas activation device 301 and the blower device 2010 therein, an inlet 2020a for entering the gas G to be activated, and an activated and an outlet 2020b for the gas G to exit. Also, the box 2020 preferably comprises a box body 2020c and a lid 2020d.
 ここで、以上のようなボックス2020の例として、図33、図34、図35、図36等を参照する。 Here, FIGS. 33, 34, 35, 36 and the like are referred to as examples of the box 2020 as described above.
[固体浄化装置2001/電源2030]
 電源2030は、気体活性化装置301が備えるプラズマ発生装置310に対して電圧を加えるためのものである。このほか、電源2030は、送風装置2010と、制御手段2040と、検知手段2050とに対し、それぞれ電圧を加えることができるものであることが好ましい。
[Solid Purifier 2001/Power Source 2030]
The power supply 2030 is for applying voltage to the plasma generator 310 included in the gas activation device 301 . In addition, it is preferable that the power source 2030 can apply voltages to the air blower 2010, the control means 2040, and the detection means 2050, respectively.
 電源2030は、ボックス2020の内部に配置され、気体活性化装置301その他の電圧を加えようとする装置等に対して電線(図示しない)を通じて電気的に接続される。ここで、このような電源2030の例として、図35、図36を参照する。 The power supply 2030 is placed inside the box 2020 and electrically connected to the gas activator 301 and other devices to which voltage is to be applied through electric wires (not shown). Reference is now made to FIGS. 35 and 36 as examples of such a power supply 2030. FIG.
 なお、電源2030は、気体活性化装置その他の電圧を加えようとする装置等に対して所定の電圧を加えることができるものであれば、その具体的態様は特に限られるものではないが、予め蓄電された蓄電池と、これから得られる電圧を所定の電圧に変換するための変圧器とからなるものであってもよく、また、外部の他の電源に接続するための電線と、これから得られる電圧を所定の電圧に変換するための変圧器と、からなるものであってもよい。 The power source 2030 is not particularly limited as long as it can apply a predetermined voltage to a gas activation device or other device to which a voltage is to be applied. It may consist of a storage battery that stores electricity and a transformer for converting the voltage obtained from this to a predetermined voltage, or a wire for connecting to another external power supply and the voltage obtained from this and a transformer for converting to a predetermined voltage.
[固体浄化装置2001/制御手段2040]
 制御手段2040は、気体活性化装置301が備えるプラズマ発生装置310に対して電源2030が電圧を加えるか否かのほか、例えば、電圧を加えるとした場合において、電圧をどの程度の大きさのものとするか等、固体浄化装置2001がその目的を達成するために必要な事項その他の事項について、固体浄化装置2001を使用しようとする者の求めに応じて、あるいは予め定められたところに従って、制御するためのものである。
[Solid purification device 2001/control means 2040]
The control means 2040 determines whether or not the power supply 2030 applies voltage to the plasma generator 310 provided in the gas activation device 301, and, for example, what level of voltage is applied when the voltage is applied. and other matters necessary for the solid purification device 2001 to achieve its purpose, are controlled according to the request of the person who intends to use the solid purification device 2001 or according to a predetermined place. It is for
 制御手段2040は、操作手段2040aと、表示手段2040bと、を備えるほか、記憶手段(図示しない)と、演算手段(図示しない)と、を備えることが好ましい。 The control means 2040 preferably comprises an operation means 2040a and a display means 2040b, as well as storage means (not shown) and calculation means (not shown).
 操作手段2040aは、気体活性化装置301が備えるプラズマ発生装置310に対して電源2030が電圧を加えるか否かのほか、電圧を加えるとした場合において、電圧をどの程度の大きさのものとするかについて、固体浄化装置2001を使用しようとする者が操作するためのものである。 The operating means 2040a determines whether or not the power source 2030 applies voltage to the plasma generator 310 provided in the gas activation device 301, and if voltage is to be applied, what level of voltage to apply. It is for a person who intends to use the solid purification device 2001 to operate it.
 これらのほか、制御手段2040は、所定の処理を行うことを定めた後、所定の時間の経過を待って、当該処理を開始する機能のほか、所定の処理を開始した後、所定の時間の経過を待って、当該処理を終了する機能を更に備えるものであることが好ましい。 In addition to these, the control means 2040 has a function of waiting for a predetermined period of time after determining to perform a predetermined process and starting the process, and a function of waiting a predetermined period of time after starting the predetermined process. It is preferable to further have a function of waiting for progress and ending the processing.
 表示手段2040bは、操作の結果又は状態を表示するためのものである。このほか、表示手段2040bは、検知手段2050が検知した情報を表示することができるものであることが好ましく、液晶ディスプレイを利用するものであることがより好ましい。 The display means 2040b is for displaying the result or state of the operation. In addition, the display means 2040b is preferably capable of displaying information detected by the detection means 2050, and more preferably uses a liquid crystal display.
 ここで、操作手段2040aと表示手段2040bとを備える制御手段2040の例として、図33(a)、図34(b)、図35等を参照する。 Here, FIG. 33(a), FIG. 34(b), FIG. 35, etc. will be referred to as an example of the control means 2040 including the operation means 2040a and the display means 2040b.
 もっとも、操作手段2040aと表示手段2040bとがタッチパネルを利用するものであってもよい。 However, the operation means 2040a and the display means 2040b may use touch panels.
[固体浄化装置2001/検知手段2050]
 検知手段2050は、気体活性化装置301が設置された密閉容器2000の内部又は近傍において、オゾンその他の特定の気体の濃度を検知するか、又はヒトの存在若しくはその接近を検知するためのものである。
[Solid purification device 2001/Detection means 2050]
The detection means 2050 is for detecting the concentration of ozone or other specific gas, or detecting the presence or approach of a human inside or near the sealed container 2000 in which the gas activation device 301 is installed. be.
 検知手段2050は、例えば、ボックス2020の表面に配置されることが好ましく、ボックス2020の表面のうち底面側にある表面に配置されることが好ましい。ここで、このような検知手段2050の例として、図33、図34(a)、図35、図36等を参照する。 For example, the detection means 2050 is preferably arranged on the surface of the box 2020, and is preferably arranged on the surface of the box 2020 on the bottom side. Here, FIGS. 33, 34(a), 35, 36 and the like are referred to as examples of such detection means 2050. FIG.
 検知手段2050は、例えば、密閉容器2000の内部を占める気体中のオゾンの濃度が所定の範囲を超えたことを検知したときは、制御手段2040を通じて、電源2030が気体活性化装置301に対して電圧を加えることを停止する処理を行う。 For example, when the detection means 2050 detects that the concentration of ozone in the gas occupying the inside of the sealed container 2000 exceeds a predetermined range, the power supply 2030 is directed to the gas activation device 301 through the control means 2040. Perform processing to stop applying voltage.
 また、検知手段2050は、例えば、密閉容器2000の密閉が解除されている場合において、密閉容器2000の近傍へのヒトの接近を検知したときも、同様の処理を行う。 Also, the detection means 2050 performs similar processing when it detects a person approaching the vicinity of the closed container 2000 when, for example, the closed container 2000 is unsealed.
[固体浄化装置2001/設置手段2060]
 設置手段2060は、気体活性化装置301を密閉容器2000の内表面に取り付けることによって、固体浄化装置2001を密閉容器2000の内部に設置するためのものである。
[Solid Purifier 2001/Installation Means 2060]
The installation means 2060 is for installing the solid purification device 2001 inside the closed container 2000 by attaching the gas activation device 301 to the inner surface of the closed container 2000 .
 設置手段2060は、例えば、固体浄化装置2001を密閉容器2000の天井に設置する場合にあっては、ボックス2020の上面側に配置すればよく、また、固体浄化装置2001を密閉容器2000の壁面に設置する場合にあっては、ボックス2020の側面側に配置すればよい。 For example, when the solid purification device 2001 is installed on the ceiling of the closed container 2000, the installation means 2060 may be arranged on the upper surface side of the box 2020, and the solid purification device 2001 may be placed on the wall surface of the closed container 2000. When installed, it may be placed on the side of the box 2020 .
 設置手段2060は、例えば、密閉容器2000の内表面が金属のものからなる場合にあっては、磁石からなるものであることが好ましい。 For example, if the inner surface of the sealed container 2000 is made of metal, the installation means 2060 is preferably made of a magnet.
 設置手段2060の数は、一であってもよいが、二以上であることが好ましい。 The number of installation means 2060 may be one, but preferably two or more.
[固体浄化装置2001/使用方法]
 固体浄化装置2001の使用する方法は、以下のとおりである。ここで、説明のための例として、図37、図38を参照する。
[Solid purification device 2001/Method of use]
A method of using the solid purification device 2001 is as follows. Here, reference is made to FIGS. 37 and 38 as examples for explanation.
 固体浄化装置2001を使用しようとする者は、例えば、以下の操作を行う。
(A)密閉容器2000の密閉を解除し、その内部に浄化しようとする固体Oを収める。
(B)操作手段2040aを介して、制御手段2040に対して、所定の時間が経過した後に所定の電圧を気体活性化装置301のプラズマ発生装置310に加える処理を行い、他の所定の時間が経過した後に当該処理を停止することを定める。
(C)密閉容器2000を再び密閉する。
A person who intends to use the solid purification apparatus 2001 performs, for example, the following operations.
(A) The sealed container 2000 is unsealed and the solid O to be purified is placed therein.
(B) Applying a predetermined voltage to the plasma generator 310 of the gas activation device 301 after a predetermined period of time has elapsed for the control means 2040 via the operation means 2040a, and performing another predetermined period of time. It is stipulated that the processing will be stopped after the time has elapsed.
(C) Seal the closed container 2000 again.
 以上の操作を受けて、固体浄化装置2001は、以下の処理を行う。
(a)制御手段2040は、所定の時間の経過を待って、電源2030に対して気体活性化装置301のプラズマ発生装置310に所定の電圧を加えるように指令するとともに、送風装置2010に対して気体活性化装置301に風を送るように指令する。
(b)気体活性化装置301及び送風装置2010は、制御手段2040からの当該指令に従って、密閉容器2000の内部の空気Gを入口320aから入れて活性化させてから出口320bから出す。このとき、例えば、空気G中に含まれる酸素(O)からオゾン(O)のほか、活性酸素が生じる。
(c)密閉容器2000の内部は密閉された状態にあるため、密閉容器2000の内部の気体Gが密閉容器2000の内部と固体浄化装置2001との間を循環して流れ続けて、密閉容器2000の内部の気体G中のオゾンその他の活性化した気体Gの濃度が高くなる結果、密閉容器2000の内部はオゾンその他の活性化した気体Gによって満たされる。
(d)オゾンその他の活性化した気体Gが浄化しようとする固体Oの表面に付着しているウイルスに触れることにより、当該ウイルスが不活性化される。
(e)制御手段2040は、他の所定の時間の経過を待って、電源2030に対して気体活性化装置301のプラズマ発生装置310に所定の電圧を加えることを停止するように指令するとともに、送風装置2010に対して気体活性化装置301に風を送ることを停止するように指令し、電源2030及び送風装置2010は、当該指令に従う。
(f)密閉容器2000の内部を満たしていたオゾンその他の活性化した気体Gは、時間の経過に伴い、その活性を失う。
In response to the above operation, the solid purification device 2001 performs the following processing.
(a) The control means 2040 waits for a predetermined time to pass, and instructs the power source 2030 to apply a predetermined voltage to the plasma generator 310 of the gas activation device 301, and the blower 2010 Command the gas activation device 301 to blow air.
(b) The gas activation device 301 and the blower device 2010, according to the command from the control means 2040, introduce the air G inside the sealed container 2000 from the inlet 320a, activate it, and then let it out from the outlet 320b. At this time, for example, oxygen (O 2 ) contained in the air G produces not only ozone (O 3 ) but also active oxygen.
(c) Since the inside of the closed container 2000 is in a sealed state, the gas G inside the closed container 2000 continues to circulate between the inside of the closed container 2000 and the solid purification device 2001, and the closed container 2000 As a result, the inside of the sealed container 2000 is filled with the activated gas G such as ozone.
(d) Ozone or other activated gas G comes into contact with viruses adhering to the surface of the solid O to be purified, thereby inactivating the viruses.
(e) The control means 2040 waits for another predetermined time to pass, and instructs the power source 2030 to stop applying a predetermined voltage to the plasma generator 310 of the gas activation device 301, and The blower 2010 is commanded to stop blowing the gas activation device 301, and the power source 2030 and the blower 2010 follow the command.
(f) Ozone or other activated gas G filling the inside of the sealed container 2000 loses its activity over time.
 ただし、上記の処理の途中であっても、密閉容器2000の密閉が解除されている場合において、密閉容器2000の近傍へのヒトの接近を検知したときは、処理を中止する。 However, even in the middle of the above process, if the closed container 2000 is unsealed and a person's approach to the vicinity of the closed container 2000 is detected, the process is stopped.
 その後、固体浄化装置2001を使用した者は、例えば、以下の操作を行う。
(D)密閉容器2000の密閉を解除し、その内部から浄化した固体Oを得る。
After that, the person who used the solid purification device 2001 performs, for example, the following operations.
(D) The sealed container 2000 is unsealed, and the purified solid O is obtained from its interior.
[固体浄化装置2001/作用]
 以上のとおりであるから、固体浄化装置2001は、誘電体バリア放電によりプラズマPを発生させるとともに、プラズマPが発する紫外線UVその他の電磁波を反射し、より多くの量の活性化した気体Gを発生させ、浄化しようとする固体Oの表面に付着したより多くの量のウイルスを不活性化させることができるものである。
[Solid purification device 2001/action]
As described above, the solid purification apparatus 2001 generates plasma P by dielectric barrier discharge, reflects ultraviolet rays UV and other electromagnetic waves generated by plasma P, and generates a greater amount of activated gas G. and inactivate a greater amount of viruses adhering to the surface of the solid O to be purified.
 また、浄化しようとする固体Oが生鮮食品である場合にあっては、密閉容器2000の内部に浄化しようとする固体Oを収めるとともに、固体浄化装置2001を動かし続けることによって、浄化しようとする固体Oの表面に付着している黴を不活性化させ、これが増殖することを予防し、浄化しようとする固体Oの鮮度を維持しながら保管をすることができる。 Further, when the solid O to be purified is perishable food, the solid O to be purified is stored in the closed container 2000 and the solid purification device 2001 is continuously operated to hold the solid O to be purified. It is possible to inactivate the mold adhering to the surface of O, prevent it from multiplying, and keep the solid O to be purified while maintaining its freshness.
第六実施形態Sixth embodiment
[空気調整浄化装置401]
 空気調整浄化装置401は、室内の空気Gを、内部に入れて調整するとともに浄化してから外部に出すためのものである。すなわち、空気調整浄化装置401は、空気調節機能のほか、空気浄化機能を更に有するものである。
[Air conditioning purification device 401]
The air conditioning and purifying device 401 is for taking indoor air G inside, regulating it, purifying it, and then letting it out. That is, the air conditioning and purification device 401 has an air purification function in addition to the air conditioning function.
 空気調節浄化装置401は、例えば、次のとおりのものである。ここで、説明のための例として、図39を参照する。 The air conditioning purification device 401 is, for example, as follows. Reference is now made to FIG. 39 as an illustrative example.
 空気調節浄化装置401は、例えば、気体浄化装置1を空気調節装置の室内機400に取り付けることによって製造することができる。 The air conditioning purification device 401 can be manufactured, for example, by attaching the gas purification device 1 to the indoor unit 400 of the air conditioning device.
 ここで、空気調節装置は、室内の空気Gを循環しながら調節するための装置であって、例えば、室内機400と、室外機(図示しない)と、室内機400と室外機との間を連結する冷媒配管(図示しない)と、から少なくともなるものである。 Here, the air conditioning device is a device for adjusting while circulating indoor air G, and for example, an indoor unit 400, an outdoor unit (not shown), and between the indoor unit 400 and the outdoor unit. and a refrigerant pipe (not shown) to be connected.
 室内機400は、室内に設置されるものであって、通常、ケース410と、流路420と、送風機430と、熱交換器440と、ドレンパン(Drain Pan)450と、を備えるものである。 The indoor unit 400 is installed indoors, and generally includes a case 410, a flow path 420, a blower 430, a heat exchanger 440, and a drain pan 450.
 流路420は、室内機400において、調整しようとする室内の空気Gが流れるための部分であって、入口420aと、出口420bと、経路420cと、から少なくとも構成されるものである。室内機400において、通常、入口420aはケース410の上面側に配置され、出口420bはケース410の前面側に配置される。室内の空気Gは、室内機400において、入口420aから入り、入口420aがある方向から出口420bがある方向に向けて経路420cを流れ、出口420bから出ることになる。この間、調整しようとする室内の空気Gは、送風機430による送風に導かれて、経路420間に配置された熱交換器440の近傍を通過する過程において、冷却その他の調整が行われることになる。 The flow path 420 is a portion of the indoor unit 400 through which the indoor air G to be adjusted flows, and is composed of at least an inlet 420a, an outlet 420b, and a path 420c. In the indoor unit 400 , the inlet 420 a is normally arranged on the upper surface side of the case 410 and the outlet 420 b is arranged on the front side of the case 410 . In the indoor unit 400, the indoor air G enters from the inlet 420a, flows through the path 420c from the direction of the inlet 420a to the direction of the outlet 420b, and exits from the outlet 420b. During this time, the room air G to be adjusted is guided by the blower 430, and is cooled and otherwise adjusted in the process of passing near the heat exchanger 440 arranged between the paths 420. .
 室内の空気Gは、その熱が熱交換器440において冷媒に吸収されることによって冷却されるところ、このとき、室内の空気Gに含まれていた水蒸気が凝集して液体となって、熱交換器440の表面に結露する。ドレンパン450は、この結露を受けるための受け皿として、熱交換器440の下方に配置される。また、ドレンパン450の下方には、出口420bが配置される。 The indoor air G is cooled by the heat being absorbed by the refrigerant in the heat exchanger 440. At this time, the water vapor contained in the indoor air G is condensed and becomes a liquid, and the heat is exchanged. Dew condensation forms on the surface of the container 440 . Drain pan 450 is arranged below heat exchanger 440 as a receiver for receiving this condensation. An outlet 420 b is arranged below the drain pan 450 .
 気体浄化装置1は、室内機400における室内の空気Gの流れとの関係において、気体浄化装置1の入口20aが上流側に配置されるとともに、気体浄化装置1の出口11bが下流側に配置されるように、室内機400に取り付けられる。 In relation to the flow of indoor air G in the indoor unit 400, the gas purifier 1 has an inlet 20a arranged on the upstream side and an outlet 11b arranged on the downstream side. It is attached to the indoor unit 400 as follows.
 気体浄化装置1を室内機400に取り付けるに当たって、気体浄化装置1が配置される空間は、例えば、室内機400の入口420aの近傍又は室内機400の出口420bの近傍が好ましく、これらのうち、室内機400の出口420bの近傍がより好ましい。 When attaching the gas purification device 1 to the indoor unit 400, the space in which the gas purification device 1 is arranged is preferably, for example, the vicinity of the entrance 420a of the indoor unit 400 or the vicinity of the exit 420b of the indoor unit 400. Proximity to exit 420b of machine 400 is more preferred.
 気体浄化装置1を室内機400の出口420bの近傍に配置するに当たって、気体浄化装置1は、例えば、ドレンパン450の下側に取り付けられることが好ましい。 When arranging the gas purification device 1 near the outlet 420b of the indoor unit 400, the gas purification device 1 is preferably attached to the lower side of the drain pan 450, for example.
 気体浄化装置1は、室内機400に取り付けて空気調整浄化装置401を構成するためのものとして、例えば、ケース50と、電源(図示しない)と、制御手段60と、取付手段(図示しない)と、を更に備えるものであることが好ましい。 The gas purification device 1 is attached to the indoor unit 400 to constitute the air conditioning and purification device 401. For example, the gas purification device 1 includes a case 50, a power supply (not shown), a control means 60, and an attachment means (not shown). , is preferably further provided.
 ケース50は、その内部において、気体浄化装置1を構成する装置等のうちケース50以外のもの、例えば、プラズマ発生装置10と、流路20と、フィルタ30と、スペーサ40と、を収めることができるほか、更に電源を収めることができるとともに、その表面において、制御手段60を配置することができるものであることが好ましい。 The case 50 can accommodate, in its interior, devices other than the case 50 among devices constituting the gas purification device 1, such as the plasma generator 10, the flow path 20, the filter 30, and the spacer 40. In addition, it is preferable that the power supply can be accommodated and the control means 60 can be arranged on the surface thereof.
 電源は、気体浄化装置1が備えるプラズマ発生装置10に対して、電圧を加えるためのものである。このほか、電源は、制御手段60に対しても電圧を加えることができるものであることが好ましい。 The power supply is for applying voltage to the plasma generator 10 provided in the gas purifier 1. In addition, the power supply is preferably capable of applying voltage to the control means 60 as well.
 電源は、ケース50の内部に配置され、プラズマ発生装置10その他の電圧を加えようとする装置等に対して電線(図示しない)を通じて電気的に接続される。 The power supply is placed inside the case 50 and electrically connected to the plasma generator 10 and other devices to which voltage is to be applied through electric wires (not shown).
 電源は、室内機400用の電源に接続するための電線と、これから得られる電圧を所定の電圧に変換するための変圧器と、からなるものであることが好ましい。 The power supply preferably consists of a wire for connecting to the power supply for the indoor unit 400 and a transformer for converting the voltage obtained from this to a predetermined voltage.
 制御手段60は、気体浄化装置1が備えるプラズマ発生装置10に対して電源が電圧を加えるか否かのほか、例えば、電圧を加えるとした場合において、電圧をどの程度の大きさのものとするか等、気体浄化装置1が、空気調節浄化装置401において、その目的を達成するために必要な事項その他の事項について、空気調節浄化装置401を使用しようとする者の求めに応じて、あるいは予め定められたところに従って、制御するためのものである。 The control means 60 determines whether or not the power source applies voltage to the plasma generator 10 provided in the gas purifier 1, and, if voltage is to be applied, for example, what magnitude the voltage should be. The gas purifying device 1, in the air conditioning purification device 401, in response to the request of the person who intends to use the air conditioning purification device 401, or in advance It is for controlling according to the prescribed place.
 制御手段60は、操作手段60aと、表示手段60bと、を備えるほか、記憶手段(図示しない)と、演算手段(図示しない)と、を備えることが好ましい。 The control means 60 preferably comprises an operation means 60a and a display means 60b, as well as storage means (not shown) and calculation means (not shown).
 操作手段60aは、気体浄化装置1が備えるプラズマ発生装置10に対して電源が電圧を加えるか否かのほか、電圧を加えるとした場合において、電圧をどの程度の大きさのものとするかについて、空気調節浄化装置401を使用しようとする者が操作するためのものである。 The operation means 60a determines whether or not the power source applies voltage to the plasma generator 10 provided in the gas purifying device 1, and if voltage is applied, how large the voltage should be. , to be operated by a person who intends to use the air conditioning purification device 401 .
 表示手段60bは、操作の結果又は状態を表示するためのものであって、例えば、液晶ディスプレイを利用するものであることがより好ましい。 The display means 60b is for displaying the result or state of the operation, and more preferably uses a liquid crystal display, for example.
 もっとも、操作手段60aと表示手段60bとがタッチパネルを利用するものであってもよい。 However, the operation means 60a and the display means 60b may use touch panels.
 設置手段は、気体浄化装置1を室内機400に取り付けるためのものであり、例えば、気体浄化装置1の上面に配置されることが好ましく、ケース50の上面に配置されることがより好ましい。 The installation means is for attaching the gas purification device 1 to the indoor unit 400 , and is preferably arranged on the upper surface of the gas purification device 1 , more preferably on the upper surface of the case 50 .
 空気調節装置に電圧を加えるとともに、気体浄化装置1に電圧を加えることによって、空気調節浄化装置401が動き始める。空気調節浄化装置401が動き始めると、室内の空気Gを調整しながら浄化する。これをより詳しくみると、例えば、次のとおりである。 By applying voltage to the air conditioner and also to the gas purification device 1, the air conditioning purification device 401 starts to operate. When the air conditioning purification device 401 starts to operate, it purifies the indoor air G while adjusting it. Looking at this in more detail, for example, it is as follows.
 室内の空気Gは、送風機430による送風に導かれ、空調機400の入口420aから室内機400の内部へと入り、経路420cを通過する過程において、熱交換器440の近くを通過する間に冷却、加熱等の調整が行われた後、気体浄化装置1の入口20aから気体浄化装置1の内部へと入り、経路20cを通過する過程において、一対の電極E間の空間Sを通過する間にウイルスその他の微生物の不活性化が行われた後、気体浄化装置1の出口20bから気体浄化装置1の外部へと出て、更に室内機400の出口420bから室内機400の外部へと出て、再び室内に至ることになる。 The indoor air G is guided by the blower 430, enters the interior of the indoor unit 400 from the inlet 420a of the air conditioner 400, and is cooled while passing near the heat exchanger 440 in the process of passing through the path 420c. , after adjustment such as heating, enters the interior of the gas purifier 1 from the inlet 20a of the gas purifier 1, and in the process of passing through the path 20c, while passing through the space S between the pair of electrodes E After the viruses and other microorganisms are inactivated, they exit from the outlet 20b of the gas purifier 1 to the outside of the gas purifier 1, and then exit from the outlet 420b of the indoor unit 400 to the outside of the indoor unit 400. , will reach the room again.
 さらに、空気調節浄化装置401は、室内の空気Gを循環させながら、上記のとおりの調整と浄化とを反復して行い、もって室内の空気Gを調整するとともに、これを浄化することができるものである。 Furthermore, the air conditioning and purifying device 401 repeats the adjustment and purification as described above while circulating the indoor air G, thereby adjusting and purifying the indoor air G. is.
第七実施形態Seventh embodiment
[第二プラズマ発生装置10]
 プラズマ発生装置10は、第一電極11aと第二電極11bとから構成される一対の電極Eに代えて、第一板状電極11eと第二板状電極11fとから構成される一対の電極Eを備えるもの(以下「第二プラズマ発生装置10」という。)であってもよい。
[Second plasma generator 10]
In place of the pair of electrodes E composed of the first electrode 11a and the second electrode 11b, the plasma generator 10 includes a pair of electrodes E composed of a first plate-like electrode 11e and a second plate-like electrode 11f. (hereinafter referred to as "second plasma generator 10").
 すなわち、第二プラズマ発生装置10は、第一板状電極11eと、第一板状電極11eとの間に距離を隔てて配置された第二板状電極11fと、第一板状電極11eと第二板状電極11fとの間に配置された第一ガラス層12aと、第一ガラス層12aと第二板状電極11fとの間に配置されるとともに、第一ガラス層12aとの間に空間を隔てて配置された第二ガラス層12bと、第一板状電極11eと第一ガラス層12aとの間に配置され、第一板状電極11eと接するとともに、第一ガラス層12aと接する第一金属膜層13aと、第二板状電極11fと第二ガラス層12bとの間に配置され、第二板状電極11fと接するとともに、第二ガラス層12bと接する第二金属膜層13bと、を備えるものである。ここで、第二プラズマ発生装置10の例として、図8(c)を参照する。 That is, the second plasma generator 10 includes the first plate-like electrode 11e and the second plate-like electrode 11f arranged with a distance between the first plate-like electrode 11e and the first plate-like electrode 11e. A first glass layer 12a arranged between the second plate-like electrode 11f and a The second glass layer 12b, which is spaced apart, is arranged between the first plate-like electrode 11e and the first glass layer 12a, and is in contact with the first plate-like electrode 11e and the first glass layer 12a. A second metal film layer 13b disposed between the first metal film layer 13a, the second plate-like electrode 11f, and the second glass layer 12b, in contact with the second plate-like electrode 11f, and in contact with the second glass layer 12b. and Here, as an example of the second plasma generator 10, refer to FIG. 8(c).
 第二プラズマ発生装置10にあっては、第一板状電極11eと第二板状電極11fとが併せて一対の電極Eを構成し、第一ガラス層12aと第二ガラス層12bとの間の空間SにおいてプラズマPが発生する。 In the second plasma generator 10, the first plate-like electrode 11e and the second plate-like electrode 11f together constitute a pair of electrodes E, and between the first glass layer 12a and the second glass layer 12b A plasma P is generated in the space S of .
 ここで、第一板状電極11eのその余については、「第一電極11a」と同様のものであるから、「第一電極11a」についてした説明を準用する。また、第二板状電極11fのその余についても、「第三電極11c」と同様のものであるから、「第三電極11c」についてした説明を準用する。 Here, the rest of the first plate-like electrode 11e is the same as the "first electrode 11a", so the explanation given for the "first electrode 11a" applies mutatis mutandis. Further, the remainder of the second plate-like electrode 11f is also the same as the "third electrode 11c", so the explanation given for the "third electrode 11c" applies mutatis mutandis.
 なお、第二プラズマ発生装置10において、第一ガラス層12aと第一金属膜層13aとが第一反射鏡M1を構成するとともに、第二ガラス層12bと第二金属膜層13bとが第二反射鏡M2を構成する点は、「プラズマ発生装置10」における場合と同様である。 In the second plasma generator 10, the first glass layer 12a and the first metal film layer 13a constitute the first reflecting mirror M1, and the second glass layer 12b and the second metal film layer 13b constitute the second mirror M1. The configuration of the reflecting mirror M2 is the same as in the "plasma generator 10".
 さらに、第二プラズマ発生装置10のその余についても、「プラズマ発生装置10」と同様のものであるから、「プラズマ発生装置10」についてした説明を準用する。 Furthermore, since the rest of the second plasma generator 10 is also similar to the "plasma generator 10", the explanation given for the "plasma generator 10" applies mutatis mutandis.
 第二プラズマ発生装置10は、例えば、気体浄化装置1においてプラズマ発生装置10に代わるものとして使用することができるほか、気体活性化装置301においてプラズマ発生装置310に代わるものとして使用することもできる。すなわち、第二プラズマ発生装置10は、二以上の気体浄化装置1を組み合わせて使用する場合、特にこれらを垂直に連結して使用する場合において、特に有益である。 For example, the second plasma generator 10 can be used as a substitute for the plasma generator 10 in the gas purification apparatus 1, and can also be used as a substitute for the plasma generator 310 in the gas activation apparatus 301. That is, the second plasma generator 10 is particularly useful when two or more gas purifiers 1 are used in combination, especially when they are vertically connected and used.
第八実施形態Eighth embodiment
[第三プラズマ発生装置10]
 プラズマ発生装置10は、第一ガラス層12aと第一金属膜層13aとから構成される第一の反射鏡M1に代えて、第一電極11aと第一ガラス層12aとから構成される第一の反射鏡M1を備えるとともに、第二ガラス層12bと第二金属膜層13bとから構成される第二の反射鏡M2に代えて、第三電極11cと第二ガラス層12bとから構成される第二の反射鏡M2を備えるもの(以下「第三プラズマ発生装置10」という。)であってもよい。
[Third plasma generator 10]
The plasma generator 10 has a first electrode 11a and a first glass layer 12a instead of the first reflecting mirror M1 made up of the first glass layer 12a and the first metal film layer 13a. and a third electrode 11c and a second glass layer 12b instead of the second reflecting mirror M2 made up of the second glass layer 12b and the second metal film layer 13b. It may be provided with a second reflecting mirror M2 (hereinafter referred to as "third plasma generator 10").
 すなわち、第三プラズマ発生装置10は、第一電極11aと、第一電極11aとの間に距離を隔てて配置される第二電極11bと、第二電極11bとの間に距離を隔てて配置される第三電極11cであって、第一電極11aとの間に第二電極11bを挟んで配置されるものと、第一電極11aと第二電極11bとの間に配置されるとともに、第二電極11bとの間に空間を隔てて配置される第一ガラス層12aと、第二電極11bと第三電極11cとの間に配置されるとともに、第二電極11bとの間に空間を隔てて配置される第二ガラス層12bと、を備え、第一電極11aと第一ガラス層12aとが紫外線UVを反射する第一反射鏡M1を構成し、第三電極11cと第二ガラス層12bとが紫外線UVを反射する第二反射鏡M2を構成するものである。ここで、第三プラズマ発生装置10の例として、図40を参照する。 That is, the third plasma generator 10 is arranged with a distance between the first electrode 11a and the second electrode 11b arranged with a distance between the first electrode 11a and the second electrode 11b. The third electrode 11c is arranged between the first electrode 11a and the second electrode 11b, and the third electrode 11c is arranged between the first electrode 11a and the second electrode 11b. A first glass layer 12a arranged with a space between the two electrodes 11b, and a glass layer 12a arranged between the second electrode 11b and the third electrode 11c and with a space between the second electrode 11b. and a second glass layer 12b arranged in the same direction, the first electrode 11a and the first glass layer 12a constitute a first reflecting mirror M1 that reflects ultraviolet rays UV, and the third electrode 11c and the second glass layer 12b and constitute the second reflecting mirror M2 that reflects the ultraviolet rays UV. Here, FIG. 40 is referred to as an example of the third plasma generator 10. FIG.
 第三プラズマ発生装置10にあっては、第一電極11a及び第三電極11cは、いずれも紫外線を反射する特性を有する金属からなるものである。もっとも、第一電極11a及び第三電極11cは、紫外線を反射するほか、可視光線、赤外線その他の紫外線以外の電磁波を反射する特性を有する金属からなるものであってもよく、また、そのようなものであることが好ましい。  In the third plasma generator 10, both the first electrode 11a and the third electrode 11c are made of a metal having a property of reflecting ultraviolet rays. However, the first electrode 11a and the third electrode 11c may be made of a metal having characteristics of reflecting not only ultraviolet rays but also visible rays, infrared rays and other electromagnetic waves other than ultraviolet rays. It is preferable to be
 第三プラズマ発生装置10にあっては、第一電極11a及び第三電極11cは、紫外線を反射する特性を有する金属のうち、紫外線反射率が高い金属からなるものであることが好ましく、例えば、アルミニウム(Al)、クロム(Cr)、鉄(Fe)、ニッケル(Ni)、ロジウム(Rh)、銀(Ag)又は白金(Pt)のうちのいずれかからなるものであることがより好ましく、アルミニウム又は銀からなるものであることが更により好ましく、アルミニウムからなるものであることが最も好ましい。 In the third plasma generator 10, the first electrode 11a and the third electrode 11c are preferably made of a metal having a high ultraviolet reflectance, among metals that reflect ultraviolet rays. It is more preferably made of any one of aluminum (Al), chromium (Cr), iron (Fe), nickel (Ni), rhodium (Rh), silver (Ag) or platinum (Pt), and aluminum or silver, and most preferably aluminum.
 第三プラズマ発生装置10にあっては、第一電極11a及び第三電極11cは、膜状のものであってもよい。すなわち、第一電極11aは、第一ガラス層12aに対し、金属の箔、例えば、アルミニウム又は銀の箔を導電性粘着層14を介して密着させることにより構成したものであってもよく、金属、例えば、アルミニウム又は銀を蒸着させることにより構成したものであってもよい。また、第三電極11cも、第二ガラス層12bに対し、金属の箔、例えば、アルミニウム又は銀の箔を導電性粘着層14を介して密着させることにより構成したものであってもよく、金属、例えば、アルミニウム又は銀を蒸着させることにより構成したものであってもよい。 In the third plasma generator 10, the first electrode 11a and the third electrode 11c may be film-like. That is, the first electrode 11a may be configured by adhering a metal foil, for example, an aluminum or silver foil to the first glass layer 12a via the conductive adhesive layer 14. For example, it may be constructed by vapor-depositing aluminum or silver. The third electrode 11c may also be configured by adhering a metal foil, for example, an aluminum or silver foil to the second glass layer 12b via the conductive adhesive layer 14. For example, it may be constructed by vapor-depositing aluminum or silver.
 第三プラズマ発生装置10にあっては、第一電極11aと第一ガラス層12aとが併せて第一反射鏡M1を構成するとともに、第三電極11cと第二ガラス層12bとが併せて第二反射鏡M2を構成し、第一反射鏡M1と第二反射鏡M2との間で紫外線UVの反射が反復して行われる。 In the third plasma generator 10, the first electrode 11a and the first glass layer 12a together constitute the first reflecting mirror M1, and the third electrode 11c and the second glass layer 12b together constitute the first mirror M1. A two-reflecting mirror M2 is configured, and reflection of ultraviolet rays UV is repeatedly performed between the first reflecting mirror M1 and the second reflecting mirror M2.
 ここで、第三プラズマ発生装置10のその余については、「プラズマ発生装置10」と同様のものであるから、「プラズマ発生装置10」についてした説明を準用する。 Here, the remainder of the third plasma generator 10 is the same as the "plasma generator 10", so the explanation given for the "plasma generator 10" applies mutatis mutandis.
 第三プラズマ発生装置10は、例えば、気体浄化装置1においてプラズマ発生装置10に代わるものとして使用することができるほか、気体活性化装置301においてプラズマ発生装置310に代わるものとして使用することもできる。すなわち、第三プラズマ発生装置10は、第一電極11a及び第三電極11cに対して高い熱伝導率を求めない場合において、特に有益である。 For example, the third plasma generator 10 can be used as a substitute for the plasma generator 10 in the gas purification apparatus 1, and can also be used as a substitute for the plasma generator 310 in the gas activation apparatus 301. That is, the third plasma generator 10 is particularly useful when high thermal conductivity is not required for the first electrode 11a and the third electrode 11c.
・1 気体浄化装置
・・10 プラズマ発生装置
・・・11 電極
・・・・11a 第一電極
・・・・・11a1 第一部分(第一金属膜層と接する部分)
・・・・・11a2 第二部分(第一フィルタと接する部分)
・・・・・11a3 第三部分(露出する部分)
・・・・・11a4 第四部分(第一スペーサと接する部分)
・・・・・11a5 第五部分(第二スペーサと接する部分)
・・・・11b 第二電極
・・・・・11b1 電極本体
・・・・・11b2 触媒層
・・・・11c 第三電極
・・・・・11c1 第一部分(第一金属膜層と接する部分)
・・・・・11c2 第二部分(第一フィルタと接する部分)
・・・・・11c3 第三部分(露出する部分)
・・・・・11c4 第四部分(第一スペーサと接する部分)
・・・・・11a5 第五部分(第二スペーサと接する部分)
・・・・11d 第四電極
・・・・11e 第一板状電極
・・・・11f 第二板状電極
・・・12 ガラス層
・・・・12a 第一ガラス層
・・・・・12a1 第一部分(露出する部分)
・・・・・12a2 第二部分(第一スペーサと接する部分)
・・・・・12a3 第三部分(第二スペーサと接する部分)
・・・・12b 第二ガラス層
・・・・・12b1 第一部分(露出する部分)
・・・・・12b2 第二部分(第一スペーサと接する部分)
・・・・・12b3 第三部分(第二スペーサと接する部分)
・・・13 金属膜層
・・・・13a 第一金属膜層
・・・・・13a1 第一電極側金属膜
・・・・・13a2 第一ガラス層側金属膜
・・・・13b 第二金属膜層
・・・・・13b1 第三電極側金属膜
・・・・・13b2 第二ガラス層側金属膜
・・・14 導電性粘着層
・・・・14a 電極側導電性粘着層
・・・・・14a1 第一電極側導電性粘着層
・・・・・14a2 第三電極側導電性粘着層
・・・・14b ガラス層側導電性粘着層
・・・・・14b1 第一ガラス層側導電性粘着層
・・・・・14b2 第二ガラス層側導電性粘着層
・・・・14c 金属膜層間導電性粘着層
・・・・・14c1 第一金属膜層間導電性粘着層
・・・・・14c2 第二金属膜層間導電性粘着層
・・20 流路
・・・20a 入口
・・・20b 出口
・・・20c 経路
・・・・20c1 第一部分
・・・・20c2 第二部分
・・30 フィルタ
・・・30a 第一フィルタ
・・・30b 第二フィルタ
・・・30c 第三フィルタ
・・40 スペーサ
・・・40a 第一スペーサ
・・・・40a1 第一電極支持面
・・・・40a2 第二電極支持孔
・・・・40a3 第三電極支持面
・・・・40a4 第一ガラス層支持面
・・・・40a5 第二ガラス層支持面
・・・40b 第二スペーサ
・・・・40b1 第一電極支持面
・・・・40b2 第二電極支持孔
・・・・40b3 第三電極支持面
・・・・40b4 第一ガラス層支持面
・・・・40b5 第二ガラス層支持面
・・・41 連結手段
・・・・41a 畝部
・・・・41b 溝部
・101 気体浄化装置
・・110 プラズマ発生装置
・・・111 電極
・・・・111a 第一電極
・・・・111b 第二電極
・・・・・111b1 先端部分
・・・112 ガラス層
・・・・112a 第一ガラス層
・・・113 金属膜層
・・・・113a 第一金属膜層
・・120 流路
・・・120a 入口
・・・120b 出口
・・・120c 経路
・・140 ケース
・・150 送風装置
・・・151 原動機
・・・152 駆動軸
・・・153 羽根車
・・・・153a 轂
・・・・111b 第二電極
・・・154 取付部材
・・160 有孔鏡
・・・161 通風孔
・・・162 中心孔
・201 他の気体浄化装置
・・・220a 入口
・・・220b 出口
・・・230a 第一フィルタ
・1000 自走式装置
・1001 自走式気体浄化装置
・・101  気体浄化装置
・・201  他の気体浄化装置
・・1010 走行手段
・301 気体活性化装置
・・・320a 入口
・・・320b 出口
・2000 密閉容器
・・2000a 密閉容器本体
・・2000b 蝶番
・・2000c 扉
・2001 固体浄化装置
・・301  気体活性化装置
・・2010 送風装置
・・2020 ボックス
・・・2020a 入口
・・・2020b 出口
・・・2020c ボックス本体
・・・2020d 蓋
・・2030 電源
・・2040 制御手段
・・・2040a 操作手段
・・・2040b 表示手段
・・2050 検知手段
・・2060 設置手段
・401 空気調整浄化装置
・・1   気体浄化装置
・・・50  ケース
・・・60  制御手段
・・・・60a 操作手段
・・・・60b 表示手段
・・400 室内機
・・・410 ケース
・・・420 流路
・・・・420a 入口
・・・・420b 出口
・・・・420c 経路
・・・430 送風機
・・・440 熱交換器
・・・450 ドレンパン
・A 空気層
・CEX 比較例
・・C セラミックス層
・D 第二電極が延びる方向
・E 一対の電極
・・E1 第一の一対の電極
・・E2 第二の一対の電極
・・E3 第三の一対の電極
・・E4 第四の一対の電極
・G 浄化しようとする気体又は活性化しようとする気体
・H 熱
・L 積層体
・・L1 第一積層体
・・L2 第二積層体
・M 反射鏡
・・M1 第一反射鏡
・・M2 第二反射鏡
・O 浄化しようとする固体
・P プラズマ
・S 一対の電極間の空間
・UV 紫外線(近紫外線)
・V 真空層
 

 
1 gas purification device 10 plasma generator 11 electrode 11a first electrode 11a1 first portion (portion in contact with the first metal film layer)
... 11a2 Second part (part in contact with the first filter)
・・・・11a3 Third part (exposed part)
・・・・11a4 Fourth portion (portion in contact with the first spacer)
・・・・11a5 Fifth portion (portion in contact with the second spacer)
11b Second electrode 11b1 Electrode main body 11b2 Catalyst layer 11c Third electrode 11c1 First portion (portion in contact with the first metal film layer)
... 11c2 Second part (part in contact with the first filter)
・・・・11c3 Third part (exposed part)
・・・・11c4 Fourth portion (portion in contact with the first spacer)
・・・・11a5 Fifth portion (portion in contact with the second spacer)
11d Fourth electrode 11e First plate electrode 11f Second plate electrode 12 Glass layer 12a First glass layer 12a1 part (exposed part)
・・・・12a2 Second portion (portion in contact with the first spacer)
・・・・12a3 Third portion (portion in contact with the second spacer)
12b Second glass layer 12b1 First portion (exposed portion)
・・・・12b2 Second portion (portion in contact with the first spacer)
・・・・12b3 Third portion (portion in contact with the second spacer)
13 Metal film layer 13a First metal film layer 13a1 First electrode side metal film 13a2 First glass layer side metal film 13b Second metal Film layer 13b1 Third electrode side metal film 13b2 Second glass layer side metal film 14 Conductive adhesive layer 14a Electrode side conductive adhesive layer .・14a1 First electrode side conductive adhesive layer 14a2 Third electrode side conductive adhesive layer 14b Glass layer side conductive adhesive layer 14b1 First glass layer side conductive adhesive Layer 14b2 Second glass layer side conductive adhesive layer 14c Metal film interlayer conductive adhesive layer 14c1 First metal film interlayer conductive adhesive layer 14c2 Conductive adhesive layer between two metal films...20 Flow path...20a Inlet...20b Outlet...20c Path...20c1 First part...20c2 Second part...30 Filter... 30a First filter...30b Second filter...30c Third filter...40 Spacer...40a First spacer...40a1 First electrode supporting surface...40a2 Second electrode supporting hole... 40a3 Third electrode supporting surface 40a4 First glass layer supporting surface 40a5 Second glass layer supporting surface 40b Second spacer 40b1 First electrode supporting surface 40b2 Second electrode support hole 40b3 Third electrode support surface 40b4 First glass layer support surface 40b5 Second glass layer support surface 41 Connecting means 41a Ridge 41b Groove 101 Gas purification device 110 Plasma generator 111 Electrode 111a First electrode 111b Second electrode 111b1 Tip portion 112 Glass layer 112a First glass layer 113 Metal film layer 113a First metal film layer 120 Channel 120a Inlet 120b Outlet 120c Route 140 Case 150 Blower 151 Motor 152 Drive shaft 153 Impeller 153a Wheel 111b Second electrode 154 Mounting member 160 Perforated mirror 161 Ventilation hole 162 Center hole 201 Other gas purification device 220a Inlet 220b Outlet 230a First filter 1000 Self-propelled device 1001 Self-propelled Gas purifying device 101 Gas purifying device 201 Other gas purifying device 1010 Traveling means 301 Gas activating device 320a Inlet 320b Outlet 2000 Closed container 2000a Main body of closed container 2000b Hinge 2000c Door 2001 Solid purification device 301 Gas activation device 2010 Air blower 2020 Box 2020a Entrance 2020b Exit 2020c Box main body 2020d Lid 2030 Power source 2040 Control means 2040a Operation means 2040b Display means 2050 Detection means 2060 Installation means 401 Air conditioning purification device 1 Gas purification device 50 Case 60 Control means...60a Operation means...60b Display means...400 Indoor unit...410 Case...420 Flow path...420a Inlet...420b Outlet...420c Route 430 Blower 440 Heat exchanger 450 Drain pan A Air layer CEX Comparative example C Ceramic layer D Second electrode extending direction E Pair of electrodes E1 First pair E2 Second pair of electrodes E3 Third pair of electrodes E4 Fourth pair of electrodes G Gas to be purified or activated H Heat L Laminate .L1 First laminate .L2 Second laminate .M Reflector .M1 First reflector .M2 Second reflector .O Solid to be purified .P Plasma .S Space between a pair of electrodes・UV Ultraviolet rays (near ultraviolet rays)
・V vacuum layer

Claims (24)

  1.  第一電極と、
     前記第一電極との間に距離を隔てて配置される第二電極と、
     前記第一電極と前記第二電極との間に配置されるとともに、前記第二電極との間に空間を隔てて配置される第一ガラス層と、
     前記第一電極と前記第一ガラス層との間に配置される第一金属膜層であって、前記第一電極と直ちに又は導電性粘着層を介して接するとともに、前記第一ガラス層と直ちに又は導電性粘着層を介して接するものと、を備える
     プラズマ発生装置。
    a first electrode;
    a second electrode spaced apart from the first electrode;
    a first glass layer disposed between the first electrode and the second electrode and spaced apart from the second electrode;
    A first metal film layer disposed between the first electrode and the first glass layer, in contact with the first electrode immediately or via a conductive adhesive layer, and immediately with the first glass layer or contact via a conductive adhesive layer.
  2.  前記第一電極と前記第一金属膜層との間に配置される第一電極側導電性粘着層と、前記第一ガラス層と前記第一金属膜層との間に配置される第一ガラス層側導電性粘着層と、を備える
     請求項1に記載のプラズマ発生装置。
    A first electrode-side conductive adhesive layer arranged between the first electrode and the first metal film layer, and a first glass arranged between the first glass layer and the first metal film layer The plasma generator according to claim 1, further comprising a layer-side conductive adhesive layer.
  3.  前記第一金属膜層が、前記第一電極と前記第一電極側導電性粘着層を介して接する第一電極側金属膜と、前記第一ガラス層と前記第一ガラス層側導電性粘着層を介して接する第一ガラス層側金属膜と、の組み合わせからなる
     請求項2に記載のプラズマ発生装置。
    A first electrode-side metal film in which the first metal film layer is in contact with the first electrode via the first electrode-side conductive adhesive layer, and the first glass layer and the first glass layer-side conductive adhesive layer. 3. The plasma generator according to claim 2, comprising a combination of a first glass layer side metal film that is in contact with the via.
  4.  前記第二電極との間に距離を隔てて配置される第三電極であって、前記第一電極との間に前記第二電極を挟んで配置されるものと、
     前記第二電極と前記第三電極との間に配置されるとともに、前記第二電極との間に空間を隔てて配置される第二ガラス層と、
     前記第三電極と前記第二ガラス層との間に配置される第二金属膜層であって、前記第三電極と直ちに又は導電性粘着層を介して接するとともに、前記第二ガラス層と直ちに又は導電性粘着層を介して接するものと、を備える
     請求項1~3のいずれか1項に記載のプラズマ発生装置。
    a third electrode spaced apart from the second electrode, wherein the second electrode is placed between the first electrode and the second electrode;
    a second glass layer disposed between the second electrode and the third electrode and spaced apart from the second electrode;
    a second metal film layer disposed between the third electrode and the second glass layer, in contact with the third electrode immediately or via a conductive adhesive layer, and immediately with the second glass layer; 4. The plasma generator according to any one of claims 1 to 3, further comprising a contact via a conductive adhesive layer.
  5.  前記第三電極と前記第二金属膜層との間に配置される第三電極側導電性粘着層と、前記第二ガラス層と前記第二金属膜層との間に配置される第二ガラス層側導電性粘着層と、を備える
     請求項4に記載のプラズマ発生装置。
    A third electrode-side conductive adhesive layer disposed between the third electrode and the second metal film layer, and a second glass disposed between the second glass layer and the second metal film layer The plasma generator according to claim 4, further comprising a layer-side conductive adhesive layer.
  6.  前記第二金属膜層が、前記第三電極と前記第三電極側導電性粘着層を介して接する第三電極側金属膜と、前記第二ガラス層と前記第二ガラス層側導電性粘着層を介して接する第二ガラス層側金属膜と、の組み合わせからなる
     請求項5に記載のプラズマ発生装置。
    The second metal film layer comprises a third electrode-side metal film in contact with the third electrode via the third electrode-side conductive adhesive layer, the second glass layer, and the second glass layer-side conductive adhesive layer. 6. The plasma generator according to claim 5, comprising a combination of the second glass layer side metal film in contact with the via.
  7.  前記第一電極と前記第三電極とが、それぞれ板状の銅からなるものであり、
     前記第二電極が、棒状、雄螺子状若しくは螺旋状のチタンからなるものであるか、又は棒状の金属からなり、線状の金属若しくはその酸化物であって、触媒として作用するものが螺旋状に巻き付けられたものであり、
     前記第一ガラス層と前記第二ガラス層とが、それぞれ板状の石英ガラス又はホウケイ酸ガラスからなるものであり、
     前記第一金属膜層と前記第二金属膜層とが、それぞれアルミニウム若しくは銀の箔からなるものであるか、又はそれぞれアルミニウム若しくは銀の蒸着膜からなるものである
     請求項4~6のいずれか1項に記載のプラズマ発生装置。
    wherein the first electrode and the third electrode are each made of plate-like copper,
    The second electrode is made of rod-shaped, male-threaded or helical titanium, or is made of rod-shaped metal, and is made of a linear metal or its oxide that acts as a catalyst and is helical is wrapped around
    wherein the first glass layer and the second glass layer are each made of plate-shaped quartz glass or borosilicate glass,
    7. Any one of claims 4 to 6, wherein the first metal film layer and the second metal film layer are made of aluminum or silver foil, respectively, or are made of vapor-deposited aluminum or silver films, respectively. 2. The plasma generator according to item 1.
  8.  前記第一ガラス層、前記第二電極及び前記第二ガラス層のそれぞれとの間に空間を隔てて配置される第四電極であって、前記第一ガラス層との間に前記第二電極を挟むことなく配置されるとともに、前記第三ガラス層との間に前記第二電極を挟むことなく配置されるものを更に備え、
     前記第四電極が、棒状、雄螺子状若しくは螺旋状のチタンからなるものであるか、又は棒状の金属からなり、線状の金属若しくはその酸化物であって、触媒として作用するものが螺旋状に巻き付けられたものである
     請求項4~7のいずれか1項に記載のプラズマ発生装置。
    a fourth electrode arranged with a space between each of the first glass layer, the second electrode, and the second glass layer, wherein the second electrode is positioned between the first glass layer and the fourth electrode; It is arranged without sandwiching and is arranged without sandwiching the second electrode between the third glass layer,
    The fourth electrode is made of rod-shaped, male-threaded or helical titanium, or made of rod-shaped metal, and a linear metal or its oxide that acts as a catalyst is helical The plasma generator according to any one of claims 4 to 7, wherein the plasma generator is wound around the
  9.  請求項1~8のいずれか1項に記載のプラズマ発生装置と、
     浄化しようとする気体が流れるための流路と、を備える
     気体浄化装置。
    A plasma generator according to any one of claims 1 to 8,
    A gas purifier, comprising: a flow path through which a gas to be purified flows.
  10.  前記第二電極の延びる方向と前記流路の延びる方向とが互いに交わるように配置される
    請求項9に記載の気体浄化装置。
    10. The gas purifying device according to claim 9, wherein the extending direction of the second electrode and the extending direction of the channel are arranged so as to intersect with each other.
  11.  オゾンを分解する触媒及びこれを保持する担体からなる第一フィルタを備え、
     前記第一フィルタが、前記流路のうち、前記第二電極より下流側に配置され、前記第一電極と前記第三電極との間に配置され、かつ、前記第一電極と接するとともに、前記第三電極と接する
     請求項9又は10に記載の気体浄化装置。
    Equipped with a first filter consisting of a catalyst that decomposes ozone and a carrier that holds it,
    The first filter is arranged downstream of the second electrode in the channel, is arranged between the first electrode and the third electrode, is in contact with the first electrode, and is in contact with the first electrode. The gas purification device according to claim 9 or 10, which is in contact with the third electrode.
  12.  前記第一電極のうち前記第二電極と対向する側にある表面が、
      前記第一金属膜層と直ちに又は導電性粘着層を介して接する部分である第一部分と、
      前記第一フィルタと接する部分である第二部分と、
      前記第一部分と前記第二部分との間にあって、露出する部分である第三部分と、
     を備えるとともに、
     前記第三電極のうち前記第二電極と対向する側にある表面が、
      前記第二金属膜層と直ちに又は導電性粘着層を介して接する部分である第一部分と、
      前記第一フィルタと接する部分である第二部分と、
      前記第一部分と前記第二部分との間にあって、露出する部分である第三部分と、
    を備える
     請求項11に記載の気体浄化装置。
    the surface of the first electrode facing the second electrode,
    a first portion that is in contact with the first metal film layer immediately or via a conductive adhesive layer;
    a second portion that is in contact with the first filter;
    a third portion that is an exposed portion between the first portion and the second portion;
    and
    the surface of the third electrode facing the second electrode,
    a first portion that is in contact with the second metal film layer immediately or via a conductive adhesive layer;
    a second portion that is in contact with the first filter;
    a third portion that is an exposed portion between the first portion and the second portion;
    The gas purification device according to claim 11, comprising:
  13.  カルシウム及びこれを保持する担体からなる第二フィルタを備え、
     前記第二フィルタが、前記流路のうち、前記第二電極より下流側に配置される
     請求項9~12のいずれか1項に記載の気体浄化装置。
    Equipped with a second filter made of calcium and a carrier that retains it,
    The gas purification device according to any one of claims 9 to 12, wherein the second filter is arranged downstream of the second electrode in the channel.
  14.  酸化第二鉄及びこれを保持する担体からなる第三フィルタを備え、
     前記第三フィルタが、前記流路のうち、前記第二電極より下流側に配置される
     請求項9~13のいずれか1項に記載の気体浄化装置。
    A third filter made of ferric oxide and a carrier that holds it,
    The gas purification device according to any one of claims 9 to 13, wherein the third filter is arranged downstream of the second electrode in the channel.
  15.  請求項9~14のいずれか1項に記載の気体浄化装置と、
     請求項9~14のいずれか1項に記載の他の気体浄化装置と、を備え、
     前記気体浄化装置の前記第一電極と前記他の気体浄化装置の前記第三電極とが電気的に接続されるか、又は前記気体浄化装置の前記第二電極と前記他の気体浄化装置の前記第二電極とが電気的に接続されることにより、前記気体浄化装置と前記他の気体浄化装置とが垂直的に又は水平的に結合した構造を有する
     気体浄化装置。
    a gas purification device according to any one of claims 9 to 14;
    and another gas purification device according to any one of claims 9 to 14,
    The first electrode of the gas purification device and the third electrode of the other gas purification device are electrically connected, or the second electrode of the gas purification device and the second electrode of the other gas purification device are electrically connected. A gas purifying device having a structure in which the gas purifying device and the other gas purifying device are coupled vertically or horizontally by being electrically connected to a second electrode.
  16.  請求項1~8のいずれか1項に記載のプラズマ発生装置と、
     浄化しようとする気体が通過するための流路と、
     前記流路に沿って風を送るための送風装置と、を備える
     気体浄化装置。
    A plasma generator according to any one of claims 1 to 8,
    a flow path through which the gas to be purified passes;
    and a blower for blowing air along the flow path.
  17.  請求項1~3のいずれか1項に記載のプラズマ発生装置と、
     浄化しようとする気体が流れるための流路と、を備え、
     前記第一電極と前記第一ガラス層とが、それぞれ環状のものであり、
     前記第二電極が、羽根状のものであって、回転軸に連結されるものである
     気体浄化装置。
    A plasma generator according to any one of claims 1 to 3;
    a channel for the gas to be purified to flow,
    the first electrode and the first glass layer are each annular,
    The gas purifier, wherein the second electrode has a blade shape and is connected to a rotating shaft.
  18.  二以上の通風孔を有する有孔鏡を備え、
     前記有孔鏡が、前記流路のうち、前記第二電極より上流側に配置される
     請求項9~17のいずれか1項に記載の気体浄化装置。
    Equipped with a perforated mirror having two or more ventilation holes,
    The gas purification device according to any one of claims 9 to 17, wherein the perforated mirror is arranged upstream of the second electrode in the channel.
  19.  床面を走行するための走行手段と、
     前記走行手段を駆動するための駆動手段と、
     前記駆動手段を自動制御するための自動制御手段と、を備える
     請求項9~18のいずれか1項に記載の気体浄化装置。
    a running means for running on a floor;
    a driving means for driving the traveling means;
    The gas purifier according to any one of claims 9 to 18, further comprising automatic control means for automatically controlling said driving means.
  20.  請求項1~8のいずれか1項に記載のプラズマ発生装置と、活性化しようとする気体が流れるための流路と、を備える気体活性化装置と、
     前記気体活性化装置に向けて風を送るための送風装置と、を備える
     固体浄化装置。
    a gas activating device comprising the plasma generating device according to any one of claims 1 to 8 and a channel through which the gas to be activated flows;
    a blower for blowing air toward the gas activation device.
  21.  室内の空気を循環させながら調節する空気調節装置に請求項9~15のいずれか1項に記載の気体浄化装置を取り付けることにより、室内の空気を循環させながら、これを調整するとともに浄化する空気調整浄化装置を製造する方法。 By attaching the gas purifying device according to any one of claims 9 to 15 to an air conditioner that adjusts while circulating indoor air, the indoor air is circulated, adjusted and purified. A method of manufacturing a conditioning purification device.
  22.  第一電極と、
     前記第一電極との間に距離を隔てて配置される第二電極と、
     前記第二電極との間に距離を隔てて配置される第三電極であって、前記第一電極との間に前記第二電極を挟んで配置されるものと、
     前記第一電極と前記第二電極との間に配置されるとともに、前記第二電極との間に空間を隔てて配置される第一ガラス層と、
     前記第二電極と前記第三電極との間に配置されるとともに、前記第二電極との間に空間を隔てて配置される第二ガラス層と、を備え、
     前記第一電極と前記第一ガラス層とが、直ちに又は導電性粘着層を介して互いに接して紫外線を反射する第一反射鏡を構成し、
     前記第三電極と前記第二ガラス層とが、直ちに又は導電性粘着層を介して互いに接して紫外線を反射する第二反射鏡を構成する
     プラズマ発生装置。
    a first electrode;
    a second electrode spaced apart from the first electrode;
    a third electrode spaced apart from the second electrode, wherein the second electrode is placed between the first electrode and the second electrode;
    a first glass layer disposed between the first electrode and the second electrode and spaced apart from the second electrode;
    a second glass layer disposed between the second electrode and the third electrode and spaced apart from the second electrode;
    The first electrode and the first glass layer are in contact with each other immediately or via a conductive adhesive layer to form a first reflecting mirror that reflects ultraviolet rays,
    The plasma generator, wherein the third electrode and the second glass layer are in contact with each other immediately or via a conductive adhesive layer to form a second reflecting mirror that reflects ultraviolet rays.
  23.  請求項22に記載のプラズマ発生装置と、
     浄化しようとする気体が流れるための流路と、を備える
     気体浄化装置
    A plasma generator according to claim 22;
    and a flow path through which gas to be purified flows.
  24.  前記第二電極の延びる方向と前記流路の延びる方向とが互いに交わるように配置される請求項23に記載の気体浄化装置。

     
    24. The gas purifier according to claim 23, arranged so that the extending direction of the second electrode and the extending direction of the channel intersect with each other.

PCT/JP2023/002262 2022-02-01 2023-01-25 Plasma generation device, air purification device, etc. WO2023149305A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022014265A JP2023112462A (en) 2022-02-01 2022-02-01 Plasma generation device, gas purification device and the like
JP2022-014265 2022-02-01

Publications (1)

Publication Number Publication Date
WO2023149305A1 true WO2023149305A1 (en) 2023-08-10

Family

ID=87552231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/002262 WO2023149305A1 (en) 2022-02-01 2023-01-25 Plasma generation device, air purification device, etc.

Country Status (2)

Country Link
JP (1) JP2023112462A (en)
WO (1) WO2023149305A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018230689A1 (en) * 2017-06-16 2018-12-20 積水化学工業株式会社 Medical treatment tool, method for using medical treatment tool, and method for irradiating reactive gas
JP2020175258A (en) * 2020-05-19 2020-10-29 裕 道脇 Reducing apparatus of toxic object

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018230689A1 (en) * 2017-06-16 2018-12-20 積水化学工業株式会社 Medical treatment tool, method for using medical treatment tool, and method for irradiating reactive gas
JP2020175258A (en) * 2020-05-19 2020-10-29 裕 道脇 Reducing apparatus of toxic object

Also Published As

Publication number Publication date
JP2023112462A (en) 2023-08-14

Similar Documents

Publication Publication Date Title
JP4371607B2 (en) Photocatalytic reactor
US9138504B2 (en) Plasma driven catalyst system for disinfection and purification of gases
US7763206B2 (en) Air decontamination method
US20070253860A1 (en) Process and device for sterilising ambient air
US5790934A (en) Apparatus for photocatalytic fluid purification
US20050069464A1 (en) Photocatalytic oxidation of contaminants through selective desorption of water utilizing microwaves
US20160030622A1 (en) Multiple Plasma Driven Catalyst (PDC) Reactors
KR20220045006A (en) Photocatalytic oxidation device for air treatment
US20210228762A1 (en) Air purification and sterilization unit
WO2023149305A1 (en) Plasma generation device, air purification device, etc.
WO1999019052A1 (en) Air cleaner
JP2001170453A (en) Waste gas treating device
JP2000051712A (en) Photocatalyst body
JPH11179118A (en) Air cleaning filter and air cleaner using that
JP2004016832A (en) Photocatalyst filter
JP2005312768A (en) Ultraviolet lamp unit and air conditioner equipped with the same
WO2021188744A1 (en) Atmospheric plasma filter
JP2006043550A (en) Air cleaner
JP4125819B2 (en) Photocatalyst
JP2005199874A (en) On-vehicle type air cleaning device
JP3714149B2 (en) Air cleaner
US20210221200A1 (en) Air purification device for vehicle ventilation systems
JP2000033270A (en) Photocatalytic body
JP2001104753A (en) Exhaust gas cleaning method
JPH11155943A (en) Ultraviolet ray emitting panel, and purifying device using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23749621

Country of ref document: EP

Kind code of ref document: A1