WO2023149145A1 - Scroll compressor - Google Patents

Scroll compressor Download PDF

Info

Publication number
WO2023149145A1
WO2023149145A1 PCT/JP2022/048422 JP2022048422W WO2023149145A1 WO 2023149145 A1 WO2023149145 A1 WO 2023149145A1 JP 2022048422 W JP2022048422 W JP 2022048422W WO 2023149145 A1 WO2023149145 A1 WO 2023149145A1
Authority
WO
WIPO (PCT)
Prior art keywords
back pressure
scroll
pressure chamber
orbiting scroll
drive shaft
Prior art date
Application number
PCT/JP2022/048422
Other languages
French (fr)
Japanese (ja)
Inventor
昌喜 小山
遼太 飯島
康輔 貞方
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Publication of WO2023149145A1 publication Critical patent/WO2023149145A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents

Definitions

  • the present invention relates to a scroll compressor that compresses gas.
  • the scroll compressor includes a fixed scroll having a spiral wrap, an orbiting scroll having a spiral wrap, a drive shaft for orbiting the orbiting scroll with respect to the fixed scroll, and between the wrap of the orbiting scroll and the wrap of the fixed scroll. and a plurality of compression chambers formed by As the orbiting scroll orbits, each compression chamber compresses gas while moving along the wrap of the orbiting scroll, and finally discharges the compressed gas.
  • the pressure in multiple compression chambers becomes a thrust force acting in the direction of separating the orbiting scroll from the fixed scroll.
  • a back pressure chamber is formed on the back side of the orbiting scroll (more specifically, on the side opposite to the wrap of the orbiting scroll and in the depression of the fixed case). Introduce the gas being compressed or the discharged gas. The pressure in the back pressure chamber supports the thrust force of the orbiting scroll.
  • the thrust force of the orbiting scroll changes as the orbiting scroll orbits. More specifically, as the orbiting scroll orbits, the plurality of compression chambers move and their cross-sectional areas change, so the center of gravity of the thrust force moves. In particular, the cross-sectional areas of the plurality of compression chambers change significantly at the timing when one of the plurality of compression chambers starts discharging the compressed gas, so the position of the center of gravity of the thrust force changes significantly. At this time, the change in the moment that tends to tilt the orbiting scroll also increases, increasing the possibility that the orbiting scroll will oscillate.
  • the pressure in the back pressure chamber may become insufficient at the timing described above, causing the orbiting scroll to oscillate.
  • the discharge gas is constantly introduced into the back pressure chamber, the pressure in the back pressure chamber becomes excessive at timings other than the timing described above, and the power loss, which is the friction loss between the orbiting scroll and the fixed scroll, increases. there is a possibility.
  • the present invention has been made in view of the above matters, and one of the objects of the present invention is to suppress the oscillation of the orbiting scroll and suppress the power loss.
  • the present invention includes a plurality of means for solving the above problems.
  • the fixed scroll having a spiral wrap
  • the orbiting scroll having a spiral wrap
  • the fixed scroll a drive shaft for orbiting the orbiting scroll
  • a plurality of compression chambers formed between the wrap of the orbiting scroll and the wrap of the fixed scroll
  • a back pressure chamber formed on the back side of the orbiting scroll.
  • a communication hole formed in the orbiting scroll and communicating between the back pressure chamber and the compression chamber, wherein the back pressure chamber has a crank angle of the drive shaft within a first range.
  • it communicates with the compression chamber in the discharge process through the communication hole, and communicates with the compression chamber in the compression process through the communication hole when the crank angle of the drive shaft is in the second range.
  • swinging of the orbiting scroll can be suppressed and power loss can be suppressed.
  • FIG. 1 is an axial cross-sectional view showing the structure of an orbiting scroll in a first embodiment to which the present invention is applied;
  • FIG. 3 is a plan view according to arrow III in FIG. 2;
  • FIG. 3 is a radial cross-sectional view taken along line IV-IV of FIG. 2;
  • FIG. 4 is a diagram showing changes in pressure in compression chambers and opening sections of communication holes in the first embodiment to which the present invention is applied.
  • FIG. 2 is a radial cross-sectional view taken along line VII-VII in FIG. 1, showing the structure of the back pressure chamber in the first embodiment to which the present invention is applied;
  • FIG. 4 is a diagram showing movement of the center of the orbiting scroll and movement of the center of gravity of the thrust force in the first embodiment to which the present invention is applied;
  • FIG. 5 is a radial cross-sectional view showing the structure of a back pressure chamber in a second embodiment to which the present invention is applied;
  • FIG. 10 is a plan view showing the structure of an orbiting scroll in a second embodiment to which the present invention is applied;
  • FIG. 6 is a radial cross-sectional view showing the structure of an orbiting scroll in a second embodiment to which the present invention is applied; It is a figure showing the opening section of a communicating hole while showing the change of the pressure of the compression chamber in 2nd Embodiment to which this invention is applied.
  • FIG. 11 is a radial cross-sectional view showing the structure of a back pressure chamber in a third embodiment to which the present invention is applied;
  • FIG. 1 is an axial cross-sectional view showing the structure of the scroll compressor in this embodiment.
  • FIG. 2 is an axial sectional view showing the structure of the orbiting scroll in this embodiment.
  • 3 is a plan view along arrow III in FIG. 2
  • FIG. 4 is a radial sectional view along arrow IV-IV in FIG. 5(a) and 5(b) are diagrams showing the compression chamber in this embodiment.
  • FIG. 6 is a diagram showing changes in the pressure of the compression chambers in the present embodiment, as well as opening sections of the communication holes.
  • FIG. 7 is a radial cross-sectional view taken along line VII-VII in FIG. 1, showing the structure of the back pressure chamber in this embodiment. Note that FIG. 1 shows the center O1 of the drive shaft and the center O2 of the crank portion of the drive shaft. 5A, 5B, and 7 show an XY coordinate system with the center O1 of the drive shaft as the origin.
  • the scroll compressor of this embodiment includes a casing 10, a fixed scroll 11, an orbiting scroll 12, and a drive shaft 13.
  • the fixed scroll 11 is connected to the opening side of the casing 10 (left side in FIG. 1).
  • the orbiting scroll 12 is housed inside the casing 10 and faces the fixed scroll 11 .
  • the drive shaft 13 is rotatably supported by bearings 14 inside the casing 10 .
  • the fixed scroll 11 includes a substantially circular end plate 15, a spiral wrap 16 standing on one side of the end plate 15 (on the right side in FIG. 1), and a spiral wrap 16 standing on the opposite side of the end plate 15 (on the left side in FIG. 1). and a plurality of radiation fins 17 provided.
  • a suction channel for sucking gas such as air is formed in the radially outer portion of the end plate 15 .
  • a discharge passage for discharging the compressed gas is formed in the radial center of the end plate 15, and a discharge pipe 18 is connected to this discharge passage.
  • the orbiting scroll 12 includes a substantially circular end plate 19, a spiral wrap 20 erected on one surface side (left side in FIG. 1) of the end plate 19, and an opposite surface side (right side in FIG. 1) of the end plate 19. and a plate 22 provided on the tip side of the plurality of heat radiation fins 21 (on the right side in FIG. 1).
  • the winding angle of the wrap 20 of the orbiting scroll 12 is different from the winding angle of the wrap 16 of the fixed scroll 11 (asymmetric wrap structure). This makes it possible to increase the compression volume or reduce the size of the machine compared to the case where the winding angle of the wrap 20 of the orbiting scroll 12 is the same as the winding angle of the wrap 16 of the fixed scroll 11 (symmetrical wrap structure). be.
  • a crank portion 23 is provided on one end side of the drive shaft 13 (left side in FIG. 1).
  • the center O2 of the crank portion 23 of the drive shaft 13 is eccentric from the center O1 of the drive shaft 13 and is connected to the boss portion of the plate 22 of the orbiting scroll 12 via the orbiting bearing 24 .
  • the crank angle of the drive shaft 13 is the rotation angle of the straight line connecting the centers O1 and O2 described above, and is based on the angle (0°) at which the outer peripheral side compression chamber described later starts compressing gas. Note that the center O ⁇ b>2 of the crank portion 23 of the drive shaft 13 corresponds to the center of the orbiting scroll 12 .
  • the other end side (right side in FIG. 1) of the drive shaft 13 protrudes outside the casing 10 and is provided with a pulley 25 .
  • a belt (not shown) is stretched between a pulley (not shown) provided on a rotary shaft (not shown) of the electric motor and the pulley 25 .
  • the rotational force of the electric motor is transmitted, the drive shaft 13 rotates, and the orbiting scroll 12 orbits with respect to the fixed scroll 11 .
  • a rotation prevention mechanism 26 for preventing rotation of the orbiting scroll 12 is provided in the casing 10 .
  • the anti-rotation mechanism 26 includes three auxiliary crankshafts that are spaced apart from each other in the circumferential direction of the drive shaft 13, and a plate 22 of the orbiting scroll 12 that supports one end sides of the three auxiliary crankshafts. and three bearings that are provided in the casing 10 and support the other end sides of the three auxiliary crankshafts, respectively.
  • a plurality of compression chambers are formed between the wraps 20 of the orbiting scroll 12 and the wraps 16 of the fixed scroll 11.
  • the plurality of compression chambers include a plurality of outer peripheral side compression chambers 27A formed between the outer peripheral side of the wrap 20 of the orbiting scroll 12 and the inner peripheral side of the wrap 16 of the fixed scroll 11, and the inner peripheral side of the wrap 20 of the orbiting scroll 12. and a plurality of inner peripheral side compression chambers 27B formed between the outer peripheral side of the wrap 16 of the fixed scroll 11 (see FIGS. 5(a) and 5(b)).
  • the outer compression chamber 27A moves along the wrap 20 of the orbiting scroll 12, compresses the gas (compression process), and finally discharges the compressed gas through the discharge pipe 18.
  • gas compression is started when the crank angle of the drive shaft 13 is 0°. Then, as the crank angle of the drive shaft 13 increases, the gas is compressed while moving along the wrap 20 of the orbiting scroll 12, so the pressure increases (see FIG. 6). Then, when the crank angle of the drive shaft 13 reaches 1310° (in other words, when the drive shaft 13 rotates three times and the crank angle of the drive shaft 13 reaches 230°), the discharge of the compressed gas is started. . During discharge of the compressed gas, the discharge pressure (maximum pressure) is reached.
  • the inner peripheral compression chamber 27B compresses the gas (compression process) while moving along the wrap 20 of the orbiting scroll 12, and finally discharges the compressed gas through the discharge pipe 18.
  • discharge process gas compression is started when the crank angle of the drive shaft 13 is 180°. Then, as the crank angle of the drive shaft 13 increases, the gas is compressed while moving along the wrap 20 of the orbiting scroll 12, so the pressure increases (see FIG. 6). Then, when the crank angle of the drive shaft 13 reaches 1370° (in other words, when the drive shaft 13 rotates three times and the crank angle of the drive shaft 13 reaches 290°), discharge of the compressed gas is started. . During discharge of the compressed gas, the discharge pressure (maximum pressure) is reached.
  • the pressure in the plurality of compression chambers becomes a thrust force acting in the direction (rightward direction in FIG. 1) separating the orbiting scroll 12 from the fixed scroll 11.
  • the back pressure chamber 28 is formed on the back side of the orbiting scroll 12 (in other words, the side of the orbiting scroll 12 opposite to the wrap 20), and the back pressure chamber 28 and the outer compression chamber 27A are separated.
  • a communicating hole 29 is formed in the orbiting scroll 12 (specifically, the end plate 19, the radiation fins 21, and the plate 22), and the compressed gas is introduced from the outer peripheral side compression chamber 27A to the back pressure chamber 28 through the communicating hole 29. .
  • the pressure of the back pressure chamber 28 and the bearing of the anti-rotation mechanism 26 support the thrust force of the orbiting scroll 12 .
  • the back pressure chamber 28 of the present embodiment is formed by a depression in the support plate 30 fixed inside the casing 10 and is formed in an annular shape extending all the way around the drive shaft 13 in the circumferential direction.
  • a seal ring 31 is attached to the inner peripheral side and the outer peripheral side of the back pressure chamber 28 to suppress leakage of compressed gas from the back pressure chamber 28 .
  • FIG. 8 is a diagram showing the movement (trajectory) of the center of the orbiting scroll 12 and the movement (change in position) of the center of gravity of the thrust force.
  • the thrust force of the orbiting scroll 12 changes. More specifically, as the orbiting scroll 12 orbits, the plurality of compression chambers move and their cross-sectional areas change, so the center of gravity of the thrust force moves. In particular, when the crank angle of the drive shaft 13 reaches the first crank angle (230° in this embodiment) at which the outer compression chamber 27A starts discharging the compressed gas, the cross-sectional areas of the plurality of compression chambers change significantly. Therefore, the position of the center of gravity of the thrust force changes greatly.
  • crank angle of the drive shaft 13 reaches the second crank angle (290° in this embodiment) at which the inner compression chamber 27B starts discharging the compressed gas
  • the cross-sectional areas of the plurality of compression chambers are large. Since it changes, the position of the center of gravity of the thrust force changes greatly. Therefore, the change in the moment that tends to tilt the orbiting scroll 12 also increases, increasing the possibility that the orbiting scroll 12 swings.
  • the crank angle of the drive shaft 13 is in a first range including the above-described first crank angle and second crank angle (a range of 230° or more and 300° or less in this embodiment). , it communicates with the outer peripheral side compression chamber 27A in the discharge process (corresponding range of 1310° or more and 1380° or less as shown in FIG. 6) through the communication hole 29 . At this time, the pressure in the back pressure chamber 28 becomes the discharge pressure (maximum pressure). Therefore, swinging of the orbiting scroll 12 can be suppressed. As a result, leakage of compressed gas from the compression chamber can be suppressed.
  • the back pressure chamber 28 of the present embodiment has a crank angle of the drive shaft 13 in a second range (20° or more and less than 230° in this embodiment) that does not include the first crank angle and the second crank angle. At some point, it communicates with the outer peripheral side compression chamber 27A in the compression process (corresponding range of 1100° or more and less than 1310° as shown in FIG. 6) through the communication hole 29 . At this time, the pressure in the back pressure chamber 28 increases as the crank angle of the drive shaft 13 increases, but is lower than the discharge pressure. Therefore, the force that presses the orbiting scroll 12 against the fixed scroll 11 can be suppressed, and the power loss, which is the frictional loss between the orbiting scroll 12 and the fixed scroll 11, can be suppressed.
  • FIG. 9 A second embodiment to which the present invention is applied will be described with reference to FIGS. 9 to 12.
  • FIG. 9 the same code
  • FIG. 9 is a radial cross-sectional view showing the structure of the back pressure chamber in this embodiment, and corresponds to FIG. 7 described above.
  • FIG. 10 is a plan view showing the structure of the orbiting scroll in this embodiment, and corresponds to FIG. 3 described above.
  • FIG. 11 is a radial cross-sectional view showing the structure of the orbiting scroll in this embodiment, and corresponds to FIG. 4 described above.
  • FIG. 12 is a diagram showing changes in the pressure of the compression chambers and opening sections of the communication holes in this embodiment, and corresponds to FIG. 6 described above.
  • the back pressure chamber 28A of this embodiment corresponds to the third range of the crank angle of the drive shaft 13 (in this embodiment, the range of 230° to 350°) including the above-described first crank angle and second crank angle. It is formed in a part of the drive shaft 13 in the circumferential direction.
  • a seal ring 31 is attached to the outer peripheral side of the back pressure chamber 28A to suppress leakage of compressed gas from the back pressure chamber 28A.
  • the back pressure chamber 28A of the present embodiment communicates with the outer compression chamber 27A in the discharge process through the communication hole 29 when the crank angle of the drive shaft 13 is in the first range.
  • the crank angle of the drive shaft 13 is in the second range, it communicates with the outer peripheral side compression chamber 27A in the compression process via the communication hole 29 .
  • the scroll compressor of this embodiment includes other back pressure chambers 32A and 32B formed on the back side of the orbiting scroll 12, and another back pressure chamber 32A formed in the orbiting scroll 12 and inner peripheral side compression in the compression process.
  • Another communication hole 33A that communicates with the chamber 27B, and another communication hole 33B that is formed in the orbiting scroll 12 and communicates with the other back pressure chamber 32B and the outer peripheral side compression chamber 27A in the compression process.
  • the other back pressure chambers 32A, 32B are formed by depressions of the support plate 30, like the back pressure chamber 28A.
  • the other back pressure chambers 32A and 32B are formed in other ranges in the circumferential direction of the drive shaft 13 different from the back pressure chamber 28A.
  • a seal ring 31 is attached to the outer peripheral side of the other back pressure chambers 32A, 32B to suppress leakage of compressed gas from the other back pressure chambers 32A, 32B.
  • the other back pressure chamber 32A is compressed through another communication hole 33A when the crank angle of the drive shaft 13 is within a predetermined range (40° to 360° in this embodiment). , communicates with the corresponding inner peripheral side compression chamber 27B in the range of 580° to 900°.
  • the pressure in the other back pressure chamber 32A increases as the crank angle of the drive shaft 13 increases, but is lower than the pressure in the back pressure chamber 28A.
  • the other back pressure chamber 32B is compressed through another communication hole 33B when the crank angle of the drive shaft 13 is within a predetermined range (ranges of 120° to 360° and 0° to 50° in this embodiment). It communicates with the outer peripheral side compression chamber 27A in the process (corresponding range of 660° to 950° as shown in FIG. 12). The pressure in the other back pressure chamber 32B increases as the crank angle of the drive shaft 13 increases, but is lower than the pressure in the back pressure chamber 28A.
  • the back pressure chamber 28B of the present embodiment corresponds to the third crank angle range (220° to 300° range in the present embodiment) of the drive shaft 13 including the first crank angle and the second crank angle described above. It is formed in a part of the drive shaft 13 in the circumferential direction.
  • a seal ring 31 is attached to the outer peripheral side of the back pressure chamber 28B to suppress leakage of compressed gas from the back pressure chamber 28B.
  • the back pressure chamber 28B of the present embodiment is configured such that when the crank angle of the drive shaft 13 is within the first range, the pressure of the back pressure chamber 28B is increased through the communication hole 29 during the discharge process. 27A, and when the crank angle of the drive shaft 13 is in the second range, it communicates with the outer peripheral side compression chamber 27A in the compression process via the communication hole 29.
  • the scroll compressor of this embodiment includes another back pressure chamber 32C formed on the back side of the orbiting scroll 12, another back pressure chamber 32C formed in the orbiting scroll 12, and an inner peripheral side compression chamber 27B in the compression process.
  • another communication hole for example, the other communication hole 33A or 33B described above
  • communicates with the outer peripheral side compression chamber 27A in the compression process is provided.
  • the other back pressure chamber 32C is formed by a recess in the support plate 30, like the back pressure chamber 28B.
  • the other back pressure chamber 32C is formed so as to surround the back pressure chamber 28B and extend all around the drive shaft 13 in the circumferential direction.
  • a seal ring 31 is attached to the outer peripheral side of the other back pressure chamber 32C to suppress leakage of compressed gas from the other back pressure chamber 32C.
  • the other back pressure chamber 32C communicates with the inner compression chamber 27B in the compression process or the outer compression chamber 27A in the compression process through another communication hole when the crank angle of the drive shaft 13 is within a predetermined range. .
  • the pressure in the other back pressure chamber 32C increases as the crank angle of the drive shaft 13 increases, but is lower than the pressure in the back pressure chamber 28B.

Abstract

Provided is a scroll compressor in which the swinging of an orbiting scroll can be suppressed and the power loss can be suppressed. The scroll compressor comprises a fixed scroll 11 having a spiral wrap 16, an orbiting scroll 12 having a spiral wrap 20, a drive shaft 13 that causes the orbiting scroll 12 to revolve with respect to the fixed scroll 11, a plurality of compression chambers formed between the wrap 20 of the orbiting scroll 12 and the wrap 16 of the fixed scroll 11, a back pressure chamber 28 formed on the back surface side of the orbiting scroll 12, and a communication hole 29 formed in the orbiting scroll 12 such that the back pressure chamber 28 and the compression chamber communicate with each other therethrough. The back pressure chamber 28 communicates with the compression chamber during a discharge process via the communication hole 29 when the crank angle of the drive shaft 13 is within a first range and communicates with the compression chamber during a compression process via the communication hole 29 when the crank angle of the drive shaft 13 is within a second range.

Description

スクロール圧縮機scroll compressor
 本発明は、気体を圧縮するスクロール圧縮機に関する。 The present invention relates to a scroll compressor that compresses gas.
 スクロール圧縮機は、渦巻き状のラップを有する固定スクロールと、渦巻き状のラップを有する旋回スクロールと、固定スクロールに対して旋回スクロールを旋回させる駆動軸と、旋回スクロールのラップと固定スクロールのラップの間で形成された複数の圧縮室とを備える。各圧縮室は、旋回スクロールの旋回に伴い、旋回スクロールのラップに沿って移動しつつ、気体を圧縮し、最終的に圧縮気体を吐出する。 The scroll compressor includes a fixed scroll having a spiral wrap, an orbiting scroll having a spiral wrap, a drive shaft for orbiting the orbiting scroll with respect to the fixed scroll, and between the wrap of the orbiting scroll and the wrap of the fixed scroll. and a plurality of compression chambers formed by As the orbiting scroll orbits, each compression chamber compresses gas while moving along the wrap of the orbiting scroll, and finally discharges the compressed gas.
 複数の圧縮室の圧力は、旋回スクロールを固定スクロールから離す方向に作用するスラスト力となる。特許文献1のスクロール圧縮機では、旋回スクロールの背面側に(詳細には、旋回スクロールのラップとは反対側であって、固定ケースの窪みに)背圧室を形成し、この背圧室に圧縮途中のガス又は吐出ガスを導入する。背圧室の圧力により、旋回スクロールのスラスト力を支持する。 The pressure in multiple compression chambers becomes a thrust force acting in the direction of separating the orbiting scroll from the fixed scroll. In the scroll compressor of Patent Document 1, a back pressure chamber is formed on the back side of the orbiting scroll (more specifically, on the side opposite to the wrap of the orbiting scroll and in the depression of the fixed case). Introduce the gas being compressed or the discharged gas. The pressure in the back pressure chamber supports the thrust force of the orbiting scroll.
特許第2824338号公報Japanese Patent No. 2824338
 旋回スクロールの旋回に伴い、旋回スクロールのスラスト力が変化する。詳しく説明すると、旋回スクロールの旋回に伴い、複数の圧縮室が移動すると共にそれらの断面積が変化するので、スラスト力の重心が移動する。特に、複数の圧縮室のうちのいずれかの圧縮室が圧縮気体の吐出を開始するタイミングにて、複数の圧縮室の断面積が大きく変化するから、スラスト力の重心の位置が大きく変化する。このとき、旋回スクロールを傾かせようとするモーメントの変化も大きくなり、旋回スクロールが揺動する可能性が高くなる。 The thrust force of the orbiting scroll changes as the orbiting scroll orbits. More specifically, as the orbiting scroll orbits, the plurality of compression chambers move and their cross-sectional areas change, so the center of gravity of the thrust force moves. In particular, the cross-sectional areas of the plurality of compression chambers change significantly at the timing when one of the plurality of compression chambers starts discharging the compressed gas, so the position of the center of gravity of the thrust force changes significantly. At this time, the change in the moment that tends to tilt the orbiting scroll also increases, increasing the possibility that the orbiting scroll will oscillate.
 背圧室に圧縮途中のガスを常に導入した場合は、上述したタイミングにて、背圧室の圧力が不十分となり、旋回スクロールが揺動する可能性がある。一方、背圧室に吐出ガスを常に導入した場合は、上述したタイミング以外の他のタイミングにて、背圧室の圧力が過剰となり、旋回スクロールと固定スクロールの摩擦損失である動力損失が大きくなる可能性がある。 If gas that is in the process of being compressed is constantly introduced into the back pressure chamber, the pressure in the back pressure chamber may become insufficient at the timing described above, causing the orbiting scroll to oscillate. On the other hand, if the discharge gas is constantly introduced into the back pressure chamber, the pressure in the back pressure chamber becomes excessive at timings other than the timing described above, and the power loss, which is the friction loss between the orbiting scroll and the fixed scroll, increases. there is a possibility.
 本発明は、上記事柄に鑑みてなされたものであり、旋回スクロールの揺動を抑え、且つ、動力損失を抑えることを課題の一つとする。 The present invention has been made in view of the above matters, and one of the objects of the present invention is to suppress the oscillation of the orbiting scroll and suppress the power loss.
 上記課題を解決するために、特許請求の範囲に記載の構成を適用する。本発明は、上記課題を解決するための手段を複数含んでいるが、その一例を挙げるならば、渦巻き状のラップを有する固定スクロールと、渦巻き状のラップを有する旋回スクロールと、前記固定スクロールに対して前記旋回スクロールを旋回させる駆動軸と、前記旋回スクロールの前記ラップと前記固定スクロールの前記ラップの間で形成された複数の圧縮室と、前記旋回スクロールの背面側に形成された背圧室と、前記旋回スクロールに形成され、前記背圧室と前記圧縮室を連通する連通孔と、を備えたスクロール圧縮機において、前記背圧室は、前記駆動軸のクランク角が第1範囲であるときに、前記連通孔を介し吐出過程の前記圧縮室と連通し、前記駆動軸のクランク角が第2範囲であるときに、前記連通孔を介し圧縮過程の前記圧縮室と連通する。 In order to solve the above problems, the configuration described in the claims is applied. The present invention includes a plurality of means for solving the above problems. To give an example, the fixed scroll having a spiral wrap, the orbiting scroll having a spiral wrap, and the fixed scroll a drive shaft for orbiting the orbiting scroll; a plurality of compression chambers formed between the wrap of the orbiting scroll and the wrap of the fixed scroll; and a back pressure chamber formed on the back side of the orbiting scroll. and a communication hole formed in the orbiting scroll and communicating between the back pressure chamber and the compression chamber, wherein the back pressure chamber has a crank angle of the drive shaft within a first range. Sometimes, it communicates with the compression chamber in the discharge process through the communication hole, and communicates with the compression chamber in the compression process through the communication hole when the crank angle of the drive shaft is in the second range.
 本発明によれば、旋回スクロールの揺動を抑え、且つ、動力損失を抑えることができる。 According to the present invention, swinging of the orbiting scroll can be suppressed and power loss can be suppressed.
 なお、上記以外の課題、構成及び効果は、以下の説明により明らかにされる。 In addition, problems, configurations and effects other than the above will be clarified by the following explanation.
本発明を適用した第1の実施形態におけるスクロール圧縮機の構造を表す軸方向断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is an axial sectional view showing the structure of the scroll compressor in 1st Embodiment to which this invention is applied. 本発明を適用した第1の実施形態における旋回スクロールの構造を表す軸方向断面図である。1 is an axial cross-sectional view showing the structure of an orbiting scroll in a first embodiment to which the present invention is applied; FIG. 図2の矢視IIIによる平面図である。3 is a plan view according to arrow III in FIG. 2; FIG. 図2の矢視IV-IVによる径方向断面図である。FIG. 3 is a radial cross-sectional view taken along line IV-IV of FIG. 2; 本発明を適用した第1の実施形態における圧縮室を表す図である。It is a figure showing the compression chamber in 1st Embodiment to which this invention is applied. 本発明を適用した第1の実施形態における圧縮室の圧力の変化を表すと共に、連通孔の開口区間を表す図である。FIG. 4 is a diagram showing changes in pressure in compression chambers and opening sections of communication holes in the first embodiment to which the present invention is applied. 図1の矢視VII-VIIによる径方向断面図であり、本発明を適用した第1の実施形態における背圧室の構造を表す。FIG. 2 is a radial cross-sectional view taken along line VII-VII in FIG. 1, showing the structure of the back pressure chamber in the first embodiment to which the present invention is applied; 本発明を適用した第1の実施形態における旋回スクロールの中心の移動やスラスト力の重心の移動を表す図である。FIG. 4 is a diagram showing movement of the center of the orbiting scroll and movement of the center of gravity of the thrust force in the first embodiment to which the present invention is applied; 本発明を適用した第2の実施形態における背圧室の構造を表す径方向断面図である。FIG. 5 is a radial cross-sectional view showing the structure of a back pressure chamber in a second embodiment to which the present invention is applied; 本発明を適用した第2の実施形態における旋回スクロールの構造を表す平面図である。FIG. 10 is a plan view showing the structure of an orbiting scroll in a second embodiment to which the present invention is applied; 本発明を適用した第2の実施形態における旋回スクロールの構造を表す径方向断面図である。FIG. 6 is a radial cross-sectional view showing the structure of an orbiting scroll in a second embodiment to which the present invention is applied; 本発明を適用した第2の実施形態における圧縮室の圧力の変化を表すと共に、連通孔の開口区間を表す図である。It is a figure showing the opening section of a communicating hole while showing the change of the pressure of the compression chamber in 2nd Embodiment to which this invention is applied. 本発明を適用した第3の実施形態における背圧室の構造を表す径方向断面図である。FIG. 11 is a radial cross-sectional view showing the structure of a back pressure chamber in a third embodiment to which the present invention is applied;
 本発明を適用した第1の実施形態を、図面を参照しつつ説明する。 A first embodiment to which the present invention is applied will be described with reference to the drawings.
 図1は、本実施形態におけるスクロール圧縮機の構造を表す軸方向断面図である。図2は、本実施形態における旋回スクロールの構造を表す軸方向断面図である。図3は、図2の矢視IIIによる平面図であり、図4は、図2の矢視IV-IVによる径方向断面図である。図5(a)及び図5(b)は、本実施形態における圧縮室を表す図である。図6は、本実施形態における圧縮室の圧力の変化を表すと共に、連通孔の開口区間を表す図である。図7は、図1の矢視VII-VIIによる径方向断面図であり、本実施形態における背圧室の構造を表す。なお、図1においては、駆動軸の中心O1と駆動軸のクランク部の中心O2を示す。また、図5(a)、図5(b)、及び図7においては、駆動軸の中心O1を原点としたXY座標系を示す。 FIG. 1 is an axial cross-sectional view showing the structure of the scroll compressor in this embodiment. FIG. 2 is an axial sectional view showing the structure of the orbiting scroll in this embodiment. 3 is a plan view along arrow III in FIG. 2, and FIG. 4 is a radial sectional view along arrow IV-IV in FIG. 5(a) and 5(b) are diagrams showing the compression chamber in this embodiment. FIG. 6 is a diagram showing changes in the pressure of the compression chambers in the present embodiment, as well as opening sections of the communication holes. FIG. 7 is a radial cross-sectional view taken along line VII-VII in FIG. 1, showing the structure of the back pressure chamber in this embodiment. Note that FIG. 1 shows the center O1 of the drive shaft and the center O2 of the crank portion of the drive shaft. 5A, 5B, and 7 show an XY coordinate system with the center O1 of the drive shaft as the origin.
 本実施形態のスクロール圧縮機は、ケーシング10、固定スクロール11、旋回スクロール12、及び駆動軸13を備える。固定スクロール11は、ケーシング10の開口側(図1の左側)に連結されている。旋回スクロール12は、ケーシング10内に収納され、固定スクロール11に対向している。駆動軸13は、ケーシング10内の軸受14で回転可能に支持されている。 The scroll compressor of this embodiment includes a casing 10, a fixed scroll 11, an orbiting scroll 12, and a drive shaft 13. The fixed scroll 11 is connected to the opening side of the casing 10 (left side in FIG. 1). The orbiting scroll 12 is housed inside the casing 10 and faces the fixed scroll 11 . The drive shaft 13 is rotatably supported by bearings 14 inside the casing 10 .
 固定スクロール11は、略円形状の鏡板15と、鏡板15の一面側(図1の右側)に立設された渦巻き状のラップ16と、鏡板15の反対面側(図1の左側)に立設された複数の放熱フィン17とを有する。鏡板15の径方向外側部分には、空気等の気体を吸入するための吸入流路が形成されている。鏡板15の径方向中心部には、圧縮気体を吐出するための吐出流路が形成され、この吐出流路に吐出管18が接続されている。 The fixed scroll 11 includes a substantially circular end plate 15, a spiral wrap 16 standing on one side of the end plate 15 (on the right side in FIG. 1), and a spiral wrap 16 standing on the opposite side of the end plate 15 (on the left side in FIG. 1). and a plurality of radiation fins 17 provided. A suction channel for sucking gas such as air is formed in the radially outer portion of the end plate 15 . A discharge passage for discharging the compressed gas is formed in the radial center of the end plate 15, and a discharge pipe 18 is connected to this discharge passage.
 旋回スクロール12は、略円形状の鏡板19と、鏡板19の一面側(図1の左側)に立設された渦巻き状のラップ20と、鏡板19の反対面側(図1の右側)に立設された複数の放熱フィン21と、複数の放熱フィン21の先端側(図1の右側)に設けられたプレート22とを有する。 The orbiting scroll 12 includes a substantially circular end plate 19, a spiral wrap 20 erected on one surface side (left side in FIG. 1) of the end plate 19, and an opposite surface side (right side in FIG. 1) of the end plate 19. and a plate 22 provided on the tip side of the plurality of heat radiation fins 21 (on the right side in FIG. 1).
 なお、本実施形態では、旋回スクロール12のラップ20の巻角が固定スクロール11のラップ16の巻角と異なっている(非対称ラップ構造)。これにより、旋回スクロール12のラップ20の巻角が固定スクロール11のラップ16の巻角と同じである場合(対称ラップ構造)と比べ、圧縮容積の拡大又は機械の小型化を図ることが可能である。 In this embodiment, the winding angle of the wrap 20 of the orbiting scroll 12 is different from the winding angle of the wrap 16 of the fixed scroll 11 (asymmetric wrap structure). This makes it possible to increase the compression volume or reduce the size of the machine compared to the case where the winding angle of the wrap 20 of the orbiting scroll 12 is the same as the winding angle of the wrap 16 of the fixed scroll 11 (symmetrical wrap structure). be.
 駆動軸13の一端側(図1の左側)には、クランク部23が設けられている。駆動軸13のクランク部23の中心O2は、駆動軸13の中心O1から偏心しており、旋回軸受24を介し旋回スクロール12のプレート22のボス部に接続されている。駆動軸13のクランク角とは、前述した中心O1,O2を結ぶ直線の回転角であり、後述の外周側圧縮室が気体の圧縮を開始する角度を基準(0°)とする。なお、駆動軸13のクランク部23の中心O2は、旋回スクロール12の中心に相当する。 A crank portion 23 is provided on one end side of the drive shaft 13 (left side in FIG. 1). The center O2 of the crank portion 23 of the drive shaft 13 is eccentric from the center O1 of the drive shaft 13 and is connected to the boss portion of the plate 22 of the orbiting scroll 12 via the orbiting bearing 24 . The crank angle of the drive shaft 13 is the rotation angle of the straight line connecting the centers O1 and O2 described above, and is based on the angle (0°) at which the outer peripheral side compression chamber described later starts compressing gas. Note that the center O<b>2 of the crank portion 23 of the drive shaft 13 corresponds to the center of the orbiting scroll 12 .
 駆動軸13の他端側(図1の右側)は、ケーシング10の外部に突出しており、プーリ25が設けられている。電動機の回転軸(図示せず)に設けられたプーリ(図示せず)とプーリ25との間でベルト(図示せず)が架け渡されている。これにより、電動機の回転力が伝達されて駆動軸13が回転し、旋回スクロール12が固定スクロール11に対して旋回する。 The other end side (right side in FIG. 1) of the drive shaft 13 protrudes outside the casing 10 and is provided with a pulley 25 . A belt (not shown) is stretched between a pulley (not shown) provided on a rotary shaft (not shown) of the electric motor and the pulley 25 . As a result, the rotational force of the electric motor is transmitted, the drive shaft 13 rotates, and the orbiting scroll 12 orbits with respect to the fixed scroll 11 .
 ケーシング10内には、旋回スクロール12の自転を防止するための自転防止機構26が設けられている。自転防止機構26は、駆動軸13の周方向に互いに離間して配置された3つの補助クランク軸と、旋回スクロール12のプレート22に設けられて3つの補助クランク軸の一端側をそれぞれ支持する3つの軸受と、ケーシング10に設けられて3つの補助クランク軸の他端側をそれぞれ支持する3つの軸受とで構成されている。 A rotation prevention mechanism 26 for preventing rotation of the orbiting scroll 12 is provided in the casing 10 . The anti-rotation mechanism 26 includes three auxiliary crankshafts that are spaced apart from each other in the circumferential direction of the drive shaft 13, and a plate 22 of the orbiting scroll 12 that supports one end sides of the three auxiliary crankshafts. and three bearings that are provided in the casing 10 and support the other end sides of the three auxiliary crankshafts, respectively.
 複数の圧縮室は、旋回スクロール12のラップ20と固定スクロール11のラップ16の間で形成されている。複数の圧縮室は、旋回スクロール12のラップ20の外周側と固定スクロール11のラップ16の内周側の間で形成された複数の外周側圧縮室27Aと、旋回スクロール12のラップ20の内周側と固定スクロール11のラップ16の外周側の間で形成された複数の内周側圧縮室27Bとで構成されている(図5(a)及び図5(b)参照)。 A plurality of compression chambers are formed between the wraps 20 of the orbiting scroll 12 and the wraps 16 of the fixed scroll 11. The plurality of compression chambers include a plurality of outer peripheral side compression chambers 27A formed between the outer peripheral side of the wrap 20 of the orbiting scroll 12 and the inner peripheral side of the wrap 16 of the fixed scroll 11, and the inner peripheral side of the wrap 20 of the orbiting scroll 12. and a plurality of inner peripheral side compression chambers 27B formed between the outer peripheral side of the wrap 16 of the fixed scroll 11 (see FIGS. 5(a) and 5(b)).
 外周側圧縮室27Aは、旋回スクロール12の旋回に伴い、旋回スクロール12のラップ20に沿って移動しつつ、気体を圧縮し(圧縮過程)、最終的に吐出管18を介し圧縮気体を吐出する(吐出過程)。詳細には、図5(a)で示すように、駆動軸13のクランク角が0°であるときに、気体の圧縮を開始する。そして、駆動軸13のクランク角が増加したぶん、旋回スクロール12のラップ20に沿って移動しつつ、気体を圧縮するので、圧力が増加する(図6参照)。そして、駆動軸13のクランク角が1310°となるときに(言い換えれば、駆動軸13が3回転して、駆動軸13のクランク角が230°となるときに)、圧縮気体の吐出を開始する。圧縮気体の吐出中、吐出圧(最高圧)となる。 As the orbiting scroll 12 orbits, the outer compression chamber 27A moves along the wrap 20 of the orbiting scroll 12, compresses the gas (compression process), and finally discharges the compressed gas through the discharge pipe 18. (Ejection process). Specifically, as shown in FIG. 5(a), gas compression is started when the crank angle of the drive shaft 13 is 0°. Then, as the crank angle of the drive shaft 13 increases, the gas is compressed while moving along the wrap 20 of the orbiting scroll 12, so the pressure increases (see FIG. 6). Then, when the crank angle of the drive shaft 13 reaches 1310° (in other words, when the drive shaft 13 rotates three times and the crank angle of the drive shaft 13 reaches 230°), the discharge of the compressed gas is started. . During discharge of the compressed gas, the discharge pressure (maximum pressure) is reached.
 内周側圧縮室27Bは、旋回スクロール12の旋回に伴い、旋回スクロール12のラップ20に沿って移動しつつ、気体を圧縮し(圧縮過程)、最終的に吐出管18を介し圧縮気体を吐出する(吐出過程)。詳細には、図5(b)で示すように、駆動軸13のクランク角が180°であるときに、気体の圧縮を開始する。そして、駆動軸13のクランク角が増加したぶん、旋回スクロール12のラップ20に沿って移動しつつ、気体を圧縮するので、圧力が増加する(図6参照)。そして、駆動軸13のクランク角が1370°となるときに(言い換えれば、駆動軸13が3回転して、駆動軸13のクランク角が290°となるときに)、圧縮気体の吐出を開始する。圧縮気体の吐出中、吐出圧(最高圧)となる。 As the orbiting scroll 12 orbits, the inner peripheral compression chamber 27B compresses the gas (compression process) while moving along the wrap 20 of the orbiting scroll 12, and finally discharges the compressed gas through the discharge pipe 18. (discharge process). Specifically, as shown in FIG. 5(b), gas compression is started when the crank angle of the drive shaft 13 is 180°. Then, as the crank angle of the drive shaft 13 increases, the gas is compressed while moving along the wrap 20 of the orbiting scroll 12, so the pressure increases (see FIG. 6). Then, when the crank angle of the drive shaft 13 reaches 1370° (in other words, when the drive shaft 13 rotates three times and the crank angle of the drive shaft 13 reaches 290°), discharge of the compressed gas is started. . During discharge of the compressed gas, the discharge pressure (maximum pressure) is reached.
 複数の圧縮室の圧力は、旋回スクロール12を固定スクロール11から離す方向(図1の右方向)に作用するスラスト力となる。本実施形態のスクロール圧縮機では、旋回スクロール12の背面側(言い換えれば、旋回スクロール12のラップ20とは反対側)に背圧室28を形成し、背圧室28と外周側圧縮室27Aを連通する連通孔29を旋回スクロール12(詳細には、鏡板19、放熱フィン21、及びプレート22)に形成し、連通孔29を介し外周側圧縮室27Aから背圧室28に圧縮気体を導入する。背圧室28の圧力と自転防止機構26の軸受により、旋回スクロール12のスラスト力を支持する。 The pressure in the plurality of compression chambers becomes a thrust force acting in the direction (rightward direction in FIG. 1) separating the orbiting scroll 12 from the fixed scroll 11. In the scroll compressor of this embodiment, the back pressure chamber 28 is formed on the back side of the orbiting scroll 12 (in other words, the side of the orbiting scroll 12 opposite to the wrap 20), and the back pressure chamber 28 and the outer compression chamber 27A are separated. A communicating hole 29 is formed in the orbiting scroll 12 (specifically, the end plate 19, the radiation fins 21, and the plate 22), and the compressed gas is introduced from the outer peripheral side compression chamber 27A to the back pressure chamber 28 through the communicating hole 29. . The pressure of the back pressure chamber 28 and the bearing of the anti-rotation mechanism 26 support the thrust force of the orbiting scroll 12 .
 本実施形態の背圧室28は、ケーシング10内に固定された支持プレート30の窪みで形成され、駆動軸13の周方向の全体に延在するように円環状に形成されている。背圧室28の内周側及び外周側にはシールリング31が取付けられ、背圧室28からの圧縮気体の漏れを抑えるようになっている。 The back pressure chamber 28 of the present embodiment is formed by a depression in the support plate 30 fixed inside the casing 10 and is formed in an annular shape extending all the way around the drive shaft 13 in the circumferential direction. A seal ring 31 is attached to the inner peripheral side and the outer peripheral side of the back pressure chamber 28 to suppress leakage of compressed gas from the back pressure chamber 28 .
 旋回スクロール12のスラスト力について、図8を用いて説明する。図8は、旋回スクロール12の中心の移動(軌跡)やスラスト力の重心の移動(位置の変化)を示す図である。 The thrust force of the orbiting scroll 12 will be explained using FIG. FIG. 8 is a diagram showing the movement (trajectory) of the center of the orbiting scroll 12 and the movement (change in position) of the center of gravity of the thrust force.
 旋回スクロール12の旋回に伴い(言い換えれば、駆動軸13のクランク角の変化に伴い)、旋回スクロール12のスラスト力が変化する。詳しく説明すると、旋回スクロール12の旋回に伴い、複数の圧縮室が移動すると共にそれらの断面積が変化するので、スラスト力の重心が移動する。特に、駆動軸13のクランク角が、外周側圧縮室27Aが圧縮気体の吐出を開始する第1クランク角(本実施形態では230°)となるときに、複数の圧縮室の断面積が大きく変化するから、スラスト力の重心の位置が大きく変化する。また、駆動軸13のクランク角が、内周側圧縮室27Bが圧縮気体の吐出を開始する第2クランク角(本実施形態では290°)となるときに、複数の圧縮室の断面積が大きく変化するから、スラスト力の重心の位置が大きく変化する。そのため、旋回スクロール12を傾かせようとするモーメントの変化も大きくなり、旋回スクロール12が揺動する可能性が高くなる。 As the orbiting scroll 12 orbits (in other words, as the crank angle of the drive shaft 13 changes), the thrust force of the orbiting scroll 12 changes. More specifically, as the orbiting scroll 12 orbits, the plurality of compression chambers move and their cross-sectional areas change, so the center of gravity of the thrust force moves. In particular, when the crank angle of the drive shaft 13 reaches the first crank angle (230° in this embodiment) at which the outer compression chamber 27A starts discharging the compressed gas, the cross-sectional areas of the plurality of compression chambers change significantly. Therefore, the position of the center of gravity of the thrust force changes greatly. Further, when the crank angle of the drive shaft 13 reaches the second crank angle (290° in this embodiment) at which the inner compression chamber 27B starts discharging the compressed gas, the cross-sectional areas of the plurality of compression chambers are large. Since it changes, the position of the center of gravity of the thrust force changes greatly. Therefore, the change in the moment that tends to tilt the orbiting scroll 12 also increases, increasing the possibility that the orbiting scroll 12 swings.
 そこで、本実施形態の背圧室28は、駆動軸13のクランク角が、上述した第1クランク角及び第2クランク角を含む第1範囲(本実施形態では230°以上300°以下の範囲)であるときに、連通孔29を介し吐出過程(上述の図6で示すように、対応する1310°以上1380°以下の範囲)の外周側圧縮室27Aと連通する。このとき、背圧室28の圧力は、吐出圧(最高圧)となる。そのため、旋回スクロール12の揺動を抑えることができる。その結果、圧縮室からの圧縮気体の漏れを抑えることができる。 Therefore, in the back pressure chamber 28 of the present embodiment, the crank angle of the drive shaft 13 is in a first range including the above-described first crank angle and second crank angle (a range of 230° or more and 300° or less in this embodiment). , it communicates with the outer peripheral side compression chamber 27A in the discharge process (corresponding range of 1310° or more and 1380° or less as shown in FIG. 6) through the communication hole 29 . At this time, the pressure in the back pressure chamber 28 becomes the discharge pressure (maximum pressure). Therefore, swinging of the orbiting scroll 12 can be suppressed. As a result, leakage of compressed gas from the compression chamber can be suppressed.
 また、本実施形態の背圧室28は、駆動軸13のクランク角が、第1クランク角及び第2クランク角を含まない第2範囲(本実施形態では20°以上230°未満の範囲)であるときに、連通孔29を介し圧縮過程(上述の図6で示すように、対応する1100°以上1310°未満の範囲)の外周側圧縮室27Aと連通する。このとき、背圧室28の圧力は、駆動軸13のクランク角の増加に応じて増加するものの、吐出圧より低い。そのため、旋回スクロール12を固定スクロール11に押付ける力を抑え、旋回スクロール12と固定スクロール11の摩擦損失である動力損失を抑えることができる。 Further, the back pressure chamber 28 of the present embodiment has a crank angle of the drive shaft 13 in a second range (20° or more and less than 230° in this embodiment) that does not include the first crank angle and the second crank angle. At some point, it communicates with the outer peripheral side compression chamber 27A in the compression process (corresponding range of 1100° or more and less than 1310° as shown in FIG. 6) through the communication hole 29 . At this time, the pressure in the back pressure chamber 28 increases as the crank angle of the drive shaft 13 increases, but is lower than the discharge pressure. Therefore, the force that presses the orbiting scroll 12 against the fixed scroll 11 can be suppressed, and the power loss, which is the frictional loss between the orbiting scroll 12 and the fixed scroll 11, can be suppressed.
 本発明を適用した第2の実施形態を、図9~図12を用いて説明する。なお、本実施形態において、第1の実施形態と同等の部分は同一の符号を付し、適宜、説明を省略する。 A second embodiment to which the present invention is applied will be described with reference to FIGS. 9 to 12. FIG. In addition, in this embodiment, the same code|symbol is attached|subjected to the part equivalent to 1st Embodiment, and description is abbreviate|omitted suitably.
 図9は、本実施形態における背圧室の構造を表す径方向断面図であり、上述の図7に対応する。図10は、本実施形態における旋回スクロールの構造を表す平面図であり、上述の図3に対応する。図11は、本実施形態における旋回スクロールの構造を表す径方向断面図であり、上述の図4に対応する。図12は、本実施形態における圧縮室の圧力の変化を表すと共に、連通孔の開口区間を表す図であり、上述の図6に対応する。 FIG. 9 is a radial cross-sectional view showing the structure of the back pressure chamber in this embodiment, and corresponds to FIG. 7 described above. FIG. 10 is a plan view showing the structure of the orbiting scroll in this embodiment, and corresponds to FIG. 3 described above. FIG. 11 is a radial cross-sectional view showing the structure of the orbiting scroll in this embodiment, and corresponds to FIG. 4 described above. FIG. 12 is a diagram showing changes in the pressure of the compression chambers and opening sections of the communication holes in this embodiment, and corresponds to FIG. 6 described above.
 本実施形態の背圧室28Aは、上述した第1クランク角及び第2クランク角を含む駆動軸13のクランク角の第3範囲(本実施形態では230°~350°の範囲)に相当する、駆動軸13の周方向の一部にて形成されている。背圧室28Aの外周側にはシールリング31が取付けられ、背圧室28Aからの圧縮気体の漏れを抑えるようになっている。 The back pressure chamber 28A of this embodiment corresponds to the third range of the crank angle of the drive shaft 13 (in this embodiment, the range of 230° to 350°) including the above-described first crank angle and second crank angle. It is formed in a part of the drive shaft 13 in the circumferential direction. A seal ring 31 is attached to the outer peripheral side of the back pressure chamber 28A to suppress leakage of compressed gas from the back pressure chamber 28A.
 本実施形態の背圧室28Aは、上記実施形態の背圧室28と同様、駆動軸13のクランク角が第1範囲であるときに、連通孔29を介し吐出過程の外周側圧縮室27Aと連通し、駆動軸13のクランク角が第2範囲であるときに、連通孔29を介し圧縮過程の外周側圧縮室27Aと連通する。 As with the back pressure chamber 28 of the above-described embodiment, the back pressure chamber 28A of the present embodiment communicates with the outer compression chamber 27A in the discharge process through the communication hole 29 when the crank angle of the drive shaft 13 is in the first range. When the crank angle of the drive shaft 13 is in the second range, it communicates with the outer peripheral side compression chamber 27A in the compression process via the communication hole 29 .
 本実施形態のスクロール圧縮機は、旋回スクロール12の背面側に形成された他の背圧室32A,32Bと、旋回スクロール12に形成され、他の背圧室32Aと圧縮過程の内周側圧縮室27Bを連通する他の連通孔33Aと、旋回スクロール12に形成され、他の背圧室32Bと圧縮過程の外周側圧縮室27Aを連通する他の連通孔33Bとを備える。 The scroll compressor of this embodiment includes other back pressure chambers 32A and 32B formed on the back side of the orbiting scroll 12, and another back pressure chamber 32A formed in the orbiting scroll 12 and inner peripheral side compression in the compression process. Another communication hole 33A that communicates with the chamber 27B, and another communication hole 33B that is formed in the orbiting scroll 12 and communicates with the other back pressure chamber 32B and the outer peripheral side compression chamber 27A in the compression process.
 他の背圧室32A,32Bは、背圧室28Aと同様、支持プレート30の窪みで形成されている。他の背圧室32A,32Bは、駆動軸13の周方向のうち、背圧室28Aとは異なる他の範囲にて形成されている。他の背圧室32A,32Bの外周側にはシールリング31が取付けられ、他の背圧室32A,32Bからの圧縮気体の漏れを抑えるようになっている。 The other back pressure chambers 32A, 32B are formed by depressions of the support plate 30, like the back pressure chamber 28A. The other back pressure chambers 32A and 32B are formed in other ranges in the circumferential direction of the drive shaft 13 different from the back pressure chamber 28A. A seal ring 31 is attached to the outer peripheral side of the other back pressure chambers 32A, 32B to suppress leakage of compressed gas from the other back pressure chambers 32A, 32B.
 他の背圧室32Aは、駆動軸13のクランク角が所定の範囲(本実施形態では40°~360°の範囲)であるときに、他の連通孔33Aを介し圧縮過程(図12で示すように、対応する580°~900°の範囲)の内周側圧縮室27Bと連通する。他の背圧室32Aの圧力は、駆動軸13のクランク角の増加に応じて増加するものの、背圧室28Aの圧力より低い。 The other back pressure chamber 32A is compressed through another communication hole 33A when the crank angle of the drive shaft 13 is within a predetermined range (40° to 360° in this embodiment). , communicates with the corresponding inner peripheral side compression chamber 27B in the range of 580° to 900°. The pressure in the other back pressure chamber 32A increases as the crank angle of the drive shaft 13 increases, but is lower than the pressure in the back pressure chamber 28A.
 他の背圧室32Bは、駆動軸13のクランク角が所定の範囲(本実施形態では120°~360°及び0°~50°の範囲)であるときに、他の連通孔33Bを介し圧縮過程(図12で示すように、対応する660°~950°の範囲)の外周側圧縮室27Aと連通する。他の背圧室32Bの圧力は、駆動軸13のクランク角の増加に応じて増加するものの、背圧室28Aの圧力より低い。 The other back pressure chamber 32B is compressed through another communication hole 33B when the crank angle of the drive shaft 13 is within a predetermined range (ranges of 120° to 360° and 0° to 50° in this embodiment). It communicates with the outer peripheral side compression chamber 27A in the process (corresponding range of 660° to 950° as shown in FIG. 12). The pressure in the other back pressure chamber 32B increases as the crank angle of the drive shaft 13 increases, but is lower than the pressure in the back pressure chamber 28A.
 以上のように構成された本実施形態においても、第1の実施形態と同様、旋回スクロール12の揺動を抑え、且つ、動力損失を抑えることができる。また、スクロール圧縮機の仕様による旋回スクロール12のスラスト力に応じ、他の連通孔33A,33Bの位置を変更して他の背圧室32A,32Bの圧力を調整することが可能であるから、動力損失を更に抑えることができる。 Also in this embodiment configured as described above, it is possible to suppress swinging of the orbiting scroll 12 and power loss, as in the first embodiment. Further, according to the thrust force of the orbiting scroll 12 according to the specifications of the scroll compressor, it is possible to change the positions of the communication holes 33A and 33B to adjust the pressures of the other back pressure chambers 32A and 32B. Power loss can be further suppressed.
 本発明を適用した第3の実施形態を、図13を用いて説明する。なお、本実施形態において、第1及び第2の実施形態と同等の部分は同一の符号を付し、適宜、説明を省略する。 A third embodiment to which the present invention is applied will be described using FIG. In addition, in this embodiment, the same code|symbol is attached|subjected to the part equivalent to 1st and 2nd embodiment, and description is abbreviate|omitted suitably.
 本実施形態の背圧室28Bは、上述した第1クランク角及び第2クランク角を含む駆動軸13のクランク角の第3範囲(本実施形態では220°~300°の範囲)に相当する、駆動軸13の周方向の一部にて形成されている。背圧室28Bの外周側にはシールリング31が取付けられ、背圧室28Bからの圧縮気体の漏れを抑えるようになっている。 The back pressure chamber 28B of the present embodiment corresponds to the third crank angle range (220° to 300° range in the present embodiment) of the drive shaft 13 including the first crank angle and the second crank angle described above. It is formed in a part of the drive shaft 13 in the circumferential direction. A seal ring 31 is attached to the outer peripheral side of the back pressure chamber 28B to suppress leakage of compressed gas from the back pressure chamber 28B.
 本実施形態の背圧室28Bは、上記実施形態の背圧室28,28Aと同様、駆動軸13のクランク角が第1範囲であるときに、連通孔29を介し吐出過程の外周側圧縮室27Aと連通し、駆動軸13のクランク角が第2範囲であるときに、連通孔29を介し圧縮過程の外周側圧縮室27Aと連通する。 Like the back pressure chambers 28 and 28A of the above-described embodiment, the back pressure chamber 28B of the present embodiment is configured such that when the crank angle of the drive shaft 13 is within the first range, the pressure of the back pressure chamber 28B is increased through the communication hole 29 during the discharge process. 27A, and when the crank angle of the drive shaft 13 is in the second range, it communicates with the outer peripheral side compression chamber 27A in the compression process via the communication hole 29.
 本実施形態のスクロール圧縮機は、旋回スクロール12の背面側に形成された他の背圧室32Cと、旋回スクロール12に形成され、他の背圧室32Cと圧縮過程の内周側圧縮室27B又は圧縮過程の外周側圧縮室27Aを連通する他の連通孔(例えば、上述した他の連通孔33A又は33B)とを備える。 The scroll compressor of this embodiment includes another back pressure chamber 32C formed on the back side of the orbiting scroll 12, another back pressure chamber 32C formed in the orbiting scroll 12, and an inner peripheral side compression chamber 27B in the compression process. Alternatively, another communication hole (for example, the other communication hole 33A or 33B described above) that communicates with the outer peripheral side compression chamber 27A in the compression process is provided.
 他の背圧室32Cは、背圧室28Bと同様、支持プレート30の窪みで形成されている。他の背圧室32Cは、背圧室28Bを囲みつつ、駆動軸13の周方向の全体に延在するように形成されている。他の背圧室32Cの外周側にはシールリング31が取付けられ、他の背圧室32Cからの圧縮気体の漏れを抑えるようになっている。 The other back pressure chamber 32C is formed by a recess in the support plate 30, like the back pressure chamber 28B. The other back pressure chamber 32C is formed so as to surround the back pressure chamber 28B and extend all around the drive shaft 13 in the circumferential direction. A seal ring 31 is attached to the outer peripheral side of the other back pressure chamber 32C to suppress leakage of compressed gas from the other back pressure chamber 32C.
 他の背圧室32Cは、駆動軸13のクランク角が所定の範囲であるときに、他の連通孔を介し圧縮過程の内周側圧縮室27B又は圧縮過程の外周側圧縮室27Aと連通する。他の背圧室32Cの圧力は、駆動軸13のクランク角の増加に応じて増加するものの、背圧室28Bの圧力より低い。 The other back pressure chamber 32C communicates with the inner compression chamber 27B in the compression process or the outer compression chamber 27A in the compression process through another communication hole when the crank angle of the drive shaft 13 is within a predetermined range. . The pressure in the other back pressure chamber 32C increases as the crank angle of the drive shaft 13 increases, but is lower than the pressure in the back pressure chamber 28B.
 以上のように構成された本実施形態においても、第1及び第2の実施形態と同様、旋回スクロール12の揺動を抑え、且つ、動力損失を抑えることができる。また、第2の実施形態と同様、スクロール圧縮機の仕様による旋回スクロール12のスラスト力に応じ、他の連通孔の位置を変更して他の背圧室32Cの圧力を調整することが可能であるから、動力損失を更に抑えることができる。また、背圧室28Bとその周囲との差圧を低減し、背圧室28Bからの圧縮気体の漏れを更に抑えることができる。 Also in this embodiment configured as described above, it is possible to suppress the swinging of the orbiting scroll 12 and to suppress the power loss, as in the first and second embodiments. Further, as in the second embodiment, it is possible to adjust the pressure of the other back pressure chamber 32C by changing the positions of the other communication holes according to the thrust force of the orbiting scroll 12 according to the specifications of the scroll compressor. Therefore, power loss can be further reduced. Moreover, the differential pressure between the back pressure chamber 28B and its surroundings can be reduced, and leakage of the compressed gas from the back pressure chamber 28B can be further suppressed.
 11…固定スクロール、12…旋回スクロール、13…駆動軸、16…ラップ、20…ラップ、27A…外周側圧縮室、27B…内周側圧縮室、28,28A,28B…背圧室、29…連通孔、32A,32B,32C…他の背圧室、33A,33B…他の連通孔 REFERENCE SIGNS LIST 11 fixed scroll 12 orbiting scroll 13 drive shaft 16 wrap 20 wrap 27A outer compression chamber 27B inner compression chamber 28, 28A, 28B back pressure chamber 29 Communicating holes, 32A, 32B, 32C... other back pressure chambers, 33A, 33B... other communicating holes

Claims (5)

  1.  渦巻き状のラップを有する固定スクロールと、
     渦巻き状のラップを有する旋回スクロールと、
     前記固定スクロールに対して前記旋回スクロールを旋回させる駆動軸と、
     前記旋回スクロールの前記ラップと前記固定スクロールの前記ラップの間で形成された複数の圧縮室と、
     前記旋回スクロールの背面側に形成された背圧室と、
     前記旋回スクロールに形成され、前記背圧室と前記圧縮室を連通する連通孔と、を備えたスクロール圧縮機において、
     前記背圧室は、前記駆動軸のクランク角が第1範囲であるときに、前記連通孔を介し吐出過程の前記圧縮室と連通し、前記駆動軸のクランク角が第2範囲であるときに、前記連通孔を介し圧縮過程の前記圧縮室と連通することを特徴とするスクロール圧縮機。
    a fixed scroll having a spiral wrap;
    an orbiting scroll having a spiral wrap;
    a drive shaft for orbiting the orbiting scroll with respect to the fixed scroll;
    a plurality of compression chambers formed between the wraps of the orbiting scroll and the wraps of the fixed scroll;
    a back pressure chamber formed on the back side of the orbiting scroll;
    A scroll compressor comprising a communication hole formed in the orbiting scroll and communicating between the back pressure chamber and the compression chamber,
    The back pressure chamber communicates with the compression chamber in the discharge process through the communicating hole when the crank angle of the drive shaft is in the first range, and when the crank angle of the drive shaft is in the second range. A scroll compressor, characterized in that it communicates with said compression chamber in a compression process through said communication hole.
  2.  請求項1に記載のスクロール圧縮機において、
     前記複数の圧縮室は、前記旋回スクロールの前記ラップの外周側と前記固定スクロールの前記ラップの内周側の間で形成された外周側圧縮室と、前記旋回スクロールの前記ラップの内周側と前記固定スクロールの前記ラップの外周側の間で形成された内周側圧縮室とで構成されており、
     前記連通孔は、前記背圧室と前記外周側圧縮室を連通しており、
     前記駆動軸のクランク角の前記第1範囲は、前記外周側圧縮室が圧縮気体の吐出を開始する第1クランク角と、前記内周側圧縮室が圧縮気体の吐出を開始する第2クランク角とを含み、
     前記駆動軸のクランク角の前記第2範囲は、前記第1クランク角及び前記第2クランク角を含まないことを特徴とするスクロール圧縮機。
    The scroll compressor according to claim 1,
    The plurality of compression chambers include an outer peripheral side compression chamber formed between an outer peripheral side of the wrap of the orbiting scroll and an inner peripheral side of the wrap of the fixed scroll, and an inner peripheral side of the wrap of the orbiting scroll. and an inner peripheral side compression chamber formed between the outer peripheral sides of the wraps of the fixed scroll,
    The communication hole communicates the back pressure chamber and the outer peripheral compression chamber,
    The first crank angle range of the drive shaft includes a first crank angle at which the outer compression chamber starts to discharge compressed gas and a second crank angle at which the inner compression chamber starts to discharge compressed gas. and
    A scroll compressor, wherein the second range of crank angles of the drive shaft does not include the first crank angle and the second crank angle.
  3.  請求項2に記載のスクロール圧縮機において、
     前記背圧室は、前記第1クランク角及び前記第2クランク角を含む前記駆動軸のクランク角の第3範囲に相当する、前記駆動軸の周方向の一部にて形成されたことを特徴とするスクロール圧縮機。
    The scroll compressor according to claim 2,
    The back pressure chamber is formed in a portion of the drive shaft in the circumferential direction corresponding to a third range of crank angles of the drive shaft including the first crank angle and the second crank angle. scroll compressor.
  4.  請求項3に記載のスクロール圧縮機において、
     前記旋回スクロールの背面側に形成された他の背圧室と、
     前記旋回スクロールに形成され、前記他の背圧室と圧縮過程の前記外周側圧縮室又は圧縮過程の前記内周側圧縮室を連通する他の連通孔と、を更に備え、
     前記他の背圧室は、前記背圧室より圧力が低くなるように構成されたことを特徴とするスクロール圧縮機。
    In the scroll compressor according to claim 3,
    another back pressure chamber formed on the back side of the orbiting scroll;
    Another communication hole formed in the orbiting scroll and communicating with the other back pressure chamber and the outer peripheral side compression chamber in a compression process or the inner peripheral side compression chamber in a compression process,
    A scroll compressor, wherein the other back pressure chamber is configured to have a pressure lower than that of the back pressure chamber.
  5.  請求項4に記載のスクロール圧縮機において、
     前記他の背圧室は、前記背圧室を囲みつつ、前記駆動軸の周方向の全体にて形成されたことを特徴とするスクロール圧縮機。
    The scroll compressor according to claim 4,
    A scroll compressor, wherein the other back pressure chamber surrounds the back pressure chamber and is formed in the entire circumferential direction of the drive shaft.
PCT/JP2022/048422 2022-02-03 2022-12-27 Scroll compressor WO2023149145A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022015340A JP2023113179A (en) 2022-02-03 2022-02-03 scroll compressor
JP2022-015340 2022-02-03

Publications (1)

Publication Number Publication Date
WO2023149145A1 true WO2023149145A1 (en) 2023-08-10

Family

ID=87552308

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/048422 WO2023149145A1 (en) 2022-02-03 2022-12-27 Scroll compressor

Country Status (2)

Country Link
JP (1) JP2023113179A (en)
WO (1) WO2023149145A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63106388A (en) * 1986-10-23 1988-05-11 Daikin Ind Ltd Scroll type fluid device
JPH08121366A (en) * 1994-10-24 1996-05-14 Hitachi Ltd Scroll compressor
JP2011052603A (en) * 2009-09-02 2011-03-17 Daikin Industries Ltd Scroll compressor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63106388A (en) * 1986-10-23 1988-05-11 Daikin Ind Ltd Scroll type fluid device
JPH08121366A (en) * 1994-10-24 1996-05-14 Hitachi Ltd Scroll compressor
JP2011052603A (en) * 2009-09-02 2011-03-17 Daikin Industries Ltd Scroll compressor

Also Published As

Publication number Publication date
JP2023113179A (en) 2023-08-16

Similar Documents

Publication Publication Date Title
EP1835180B1 (en) Scroll fluid machine
JP5386219B2 (en) Scroll compressor
JPH04365902A (en) Scroll type fluid machine
US20130121866A1 (en) Scroll compressor
US20130121864A1 (en) Scroll compressor
KR20140142046A (en) Scroll compressor
JP3338886B2 (en) Hermetic electric scroll compressor
US4815951A (en) Scroll compressor with super-charging tube
US4756675A (en) Scroll type fluid transferring machine with separate motor driving each scroll
WO2023149145A1 (en) Scroll compressor
US6884047B1 (en) Compact scroll pump
JP2754037B2 (en) Scroll compressor
JP7212926B2 (en) scroll vacuum pump
US7144233B2 (en) Scroll fluid machine with a silencer
KR102522647B1 (en) Sliding bush of scroll compressor
EP1707814A1 (en) Scroll fluid machine with a silencer
JPS60166782A (en) Scroll type fluid machinery
US5368456A (en) Fluid compressor with bearing means disposed inside a rotary rod
JP4237516B2 (en) Scroll type fluid machine
KR100343727B1 (en) Structure for supporting crankshaft of scroll compressor
JPS62210276A (en) Scroll compressor
JP2007162602A (en) Scroll compressor
WO2019102748A1 (en) Rotary compressor
JP5274398B2 (en) Scroll fluid machinery
JPH04234591A (en) Scroll compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22925047

Country of ref document: EP

Kind code of ref document: A1