WO2023149142A1 - Control information generating device, control information generating method, welding control device, and control information generating program - Google Patents

Control information generating device, control information generating method, welding control device, and control information generating program Download PDF

Info

Publication number
WO2023149142A1
WO2023149142A1 PCT/JP2022/048294 JP2022048294W WO2023149142A1 WO 2023149142 A1 WO2023149142 A1 WO 2023149142A1 JP 2022048294 W JP2022048294 W JP 2022048294W WO 2023149142 A1 WO2023149142 A1 WO 2023149142A1
Authority
WO
WIPO (PCT)
Prior art keywords
control information
shape
control
information generation
welding
Prior art date
Application number
PCT/JP2022/048294
Other languages
French (fr)
Japanese (ja)
Inventor
旭則 吉川
貴宏 篠崎
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Publication of WO2023149142A1 publication Critical patent/WO2023149142A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • B23K9/032Seam welding; Backing means; Inserts for three-dimensional seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/04Welding for other purposes than joining, e.g. built-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/095Monitoring or automatic control of welding parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a control information generation device, a control information generation method, a welding control device, and a control information generation program.
  • a known technique is to build a three-dimensional structure by laminating weld beads obtained by melting and solidifying a filler material.
  • US Pat. No. 6,200,000 discloses a system and method for providing positional feedback for additive manufacturing in such technology.
  • One or both of output current, output voltage, output power, output circuit impedance, and wire feed speed are sampled during the additive manufacturing process in producing the current layer.
  • a plurality of instantaneous contact tip-to-work distances (CTWD) are determined based on at least one or both of output current, output voltage, output power, output circuit impedance, and wire feed speed.
  • An average CTWD is determined based on multiple instantaneous CTWDs.
  • a correction factor that is used to compensate for any error in current bed height is generated based at least on the average CTWD.
  • an object of the present invention is to provide a control information generation device, a control information generation method, a welding control device, and a control information generation program capable of approximating the shape of a laminated weld bead to a simulated shape based on a welding plan. do.
  • the present invention consists of the following configurations. (1) shaping a layer shape using a weld bead formed by adding a molten processing material to the surface to be processed while moving the processing position along a predetermined path based on designated control conditions; A control information generating device for generating control information for controlling a layered manufacturing device for manufacturing a three-dimensional structure in which the layer shape is stacked, a data acquisition unit that acquires a characteristic profile of a shape change of the weld bead that occurs when the control condition is changed for a pseudo block body obtained by laminating a plurality of bead models simulating the shape of the weld bead; a measurement unit that measures an actual shape including at least the height or width of the three-dimensional structure that has been formed; A computing unit that compares a simulated shape obtained by simulating the shape of the three-dimensional structure by laminating the bead models and the actual shape, and extracts a difference between the two shapes; a control information output unit that obtains a correction value for the
  • the welding control device according to (3); the laminate molding apparatus; Welding equipment comprising: (5) forming a layer shape using a weld bead formed by adding a molten processing material to the surface to be processed while moving the processing position along a predetermined path based on designated control conditions; A control information generation program for generating control information for controlling a layered manufacturing apparatus for manufacturing a three-dimensional structure in which the layer shape is stacked, a data acquisition step of acquiring a characteristic profile of a shape change of the weld bead that occurs when the control condition is changed for a pseudo block body obtained by laminating a plurality of bead models simulating the shape of the weld bead; a measuring step of measuring an actual shape including at least the height or width of the three-dimensional structure that has been shaped; A calculation step of comparing a simulated shape obtained by simulating the shape of the three-dimensional structure by laminating the bead model and the actual shape, and extracting a difference between the two shapes; a
  • the control information generating device can approximate the shape of the laminated weld bead to the simulated shape based on the welding plan while considering the properties of the weld bead.
  • FIG. 1 is an overall configuration diagram of a welding device according to an embodiment.
  • FIG. 2 is a block diagram of the control information generation device according to the embodiment.
  • FIG. 3A is an explanatory diagram schematically showing the shape of a single weld bead formed by the layered manufacturing apparatus.
  • FIG. 3B is a graph schematically showing the relationship between the condition value of the control condition and the bead height H of the formed weld bead.
  • FIG. 4 is a prediction model for predicting the bead height, and is an explanatory diagram showing a pseudo-block body obtained by laminating a plurality of bead models.
  • FIG. 5 is a graph showing a characteristic profile of shape change of a weld bead.
  • FIG. 6 is a prediction model for predicting the bead height, and is an explanatory diagram showing a pseudo-block body obtained by stacking a plurality of bead models.
  • FIG. 7 is a flow chart showing steps of a three-dimensional structure modeling method performed by the layered modeling apparatus.
  • FIG. 8 is a graph illustrating a method for eliminating height differences as the number of layers in which weld beads are laminated increases.
  • FIG. 9 is a graph illustrating another method for eliminating the difference in height as the number of layers in which weld beads are laminated increases.
  • FIG. 1 is an overall configuration diagram of a welding device that manufactures a modeled object.
  • a welding device 100 having this configuration includes a laminate molding device 11 and a welding control device 30 that controls the laminate molding device 11 .
  • the layered manufacturing apparatus 11 includes a welding robot 17 provided with a welding head having a welding torch 15 on its tip axis, a robot controller 21 for driving the welding robot 17, and a filler material (welding wire) M supplied to the welding torch 15. and a welding power source 25 for supplying a welding current.
  • the welding robot 17 is an articulated robot, and a continuously supplied filler material M is supported at the tip of the welding torch 15 attached to the tip shaft of the robot arm.
  • the position and orientation of the welding torch 15 can be arbitrarily three-dimensionally set within the range of degrees of freedom of the robot arm according to commands from the robot controller 21 .
  • a shape sensor 32 and a temperature sensor 26 that move integrally with the welding torch 15 are provided on the tip axis of the welding robot 17 .
  • the shape sensor 32 is a non-contact sensor that measures the shape of the weld bead 28 to be formed and, if necessary, the shape around the bead forming position.
  • the measurement by the shape sensor 32 may be performed at the same time as the weld bead is formed, or may be performed at different timings before and after the bead is formed.
  • a laser sensor that detects the three-dimensional shape from the position of the reflected light of the irradiated laser light or the time from the irradiation timing to the detection of the reflected light can be used.
  • the shape sensor 32 is not limited to a laser, and may be a sensor of another detection method.
  • the temperature sensor 26 is a contact sensor such as a radiation thermometer or thermography, and detects the temperature (temperature distribution) at any position of the modeled object.
  • the welding torch 15 is a gas metal arc welding torch that has a shield nozzle (not shown) and is supplied with a shield gas from the shield nozzle.
  • the arc welding method may be a consumable electrode type such as coated arc welding or carbon dioxide gas arc welding, or a non-consumable electrode type such as TIG welding or plasma arc welding, and is appropriately selected according to the layered product to be manufactured. be.
  • a contact tip is arranged inside the shield nozzle, and the contact tip holds the filler material M to which the melting current is supplied.
  • the welding torch 15 holds the filler material M and generates an arc from the tip of the filler material M in a shield gas atmosphere.
  • the filler material supply unit 23 includes a reel 29 around which the filler material M is wound.
  • the filler material M is sent from the filler material supply unit 23 to a delivery mechanism (not shown) attached to a robot arm or the like, and is sent to the welding torch 15 while being fed in the forward and reverse directions by the delivery mechanism as necessary. be paid.
  • any commercially available welding wire can be used as the filler material M.
  • MAG welding and MIG welding solid wire JIS Z 3312
  • high-strength steel and low-temperature steel arc welding flux-cored wire (JIS Z 3313) for mild steel, high-strength steel and low-temperature steel, etc. welding wire is available.
  • filler metals M such as aluminum, aluminum alloys, nickel, nickel-based alloys, etc. can be used depending on the desired properties.
  • a weld bead 28 that is a melted and solidified body of the filler material M is formed on the base plate 27 .
  • the base plate 27 is a metal plate such as a steel plate, it is not limited to a plate shape, and may have other shapes such as a block, rod, and columnar shape.
  • the layered manufacturing apparatus 11 moves the processing position along a predetermined path based on designated control conditions, and adds the filler material M, which is a molten processing material, to the surface to be processed.
  • the filler material M which is a molten processing material
  • a layered shape as shown in FIG. 1 is formed to form a three-dimensional structure in which the layered shape is laminated.
  • the welding control device 30 is a computer device similar to the robot controller 21, and includes hardware such as a processor for main control, a storage device, an input/output interface, an input section, and an output section.
  • Welding control device 30 includes a control unit 31 and a control information generation device 33 .
  • the control unit 31 controls the layered manufacturing apparatus 11 according to the results output by the control information generation device 33 .
  • the control information generation device 33 generates control information for controlling the layered manufacturing device 11 .
  • the control information generation device 33 includes a data acquisition unit 331 , a measurement unit 332 , a calculation unit 333 and a control information output unit 334 .
  • the data acquisition unit 331 acquires the characteristic profile of the shape change of the weld bead 28 that occurs when the control conditions are changed for the pseudo block body obtained by laminating a plurality of bead models simulating the shape of the weld bead 28.
  • the measurement unit 332 measures the actual shape including at least the height or width of the molded three-dimensional structure.
  • the calculation unit 333 compares the simulated shape obtained by simulating the shape of the three-dimensional structure by laminating bead models and the actual shape, and extracts the difference between the two shapes.
  • the control information output unit 334 obtains a correction value for the control condition that eliminates the difference from the characteristic profile, and outputs the control information corrected according to the correction value.
  • FIG. 3A is an explanatory diagram schematically showing the shape (cross-sectional shape) of a single weld bead 28 formed on the base plate 27 by the layered manufacturing apparatus 11.
  • FIG. A bead height H which is the height of the weld bead 28, is the distance from the bottom of the weld bead 28 to the top (upper surface).
  • the welding conditions include a welding current, a welding voltage, a feeding speed for sending out the filler metal (welding wire) M as a processing material, a welding speed, and the like.
  • FIG. 3B is a graph schematically showing the relationship between the condition value of the welding condition (control condition) and the bead height H of the weld bead 28 to be formed.
  • the conditional values include values such as the welding current, the welding voltage, the feeding speed for feeding the filler material M, the welding speed, and the like.
  • the graph shows that the bead height H decreases as the welding speed increases.
  • FIG. 4 is an explanatory diagram conceptually showing a predictive model for predicting the bead height H in order to cope with the situation described above.
  • a computer previously simulates the shape of the weld bead 28, particularly the cross-sectional shape, using a trapezoidal bead model, and stacks a plurality of bead models B0 , B1 , B2 , . . . Obtain the obtained pseudo block body X.
  • Such a pseudo-block body X is a predicted shape of a laminate obtained by laminating the weld beads 28 based on the welding plan.
  • the computer also considers factors such as the overlap of the bead model and the portion of the filler material M that has melted and flowed down, and the pseudo-block body X and its The final bead height H can be predicted.
  • the bead height H of the multiple-layer weld bead 28 (the height corresponding to the bead height H of the quasi-block body X) obtained in actual molding depends on the welding conditions. As a result, it may deviate from the predicted pseudo-block body X, resulting in a difference. Therefore, a more accurate prediction method is required.
  • characteristic profiles of shape changes of the weld bead 28 that occur under various welding conditions, ie, control conditions, are obtained in advance. That is, the control information generation device 33 of this configuration acquires the characteristic profile of the change in shape of the weld bead 28 that occurs when the control conditions for the pseudo block X described above are changed, using the prediction model described above.
  • the layered manufacturing apparatus 11 actually models a three-dimensional structure corresponding to the above-described pseudo block body X under various control conditions, and the control information generation device 33 determines the height Measure the actual shape including (may be width).
  • the method of measuring the actual shape is not particularly limited, for example, the surface of the weld bead 28 is scanned and measured by a measuring means using a light cutting method provided in the measuring unit 332, a measuring means such as a laser sensor, or the like. method.
  • control information generation device 33 compares the measured actual shape of the three-dimensional structure with a simulated shape obtained by simulating the shape of this three-dimensional structure by laminating bead models (pseudo block body X) in FIG. Thereby, the control information generating device 33 can extract the difference between the actual shape and the simulated shape.
  • the actual shape for comparison may be generated using the average height of the measurement results of certain welded sections.
  • the simulated shape may be a shape obtained by adding excess thickness to the simulated block body X of FIG.
  • control information generation device 33 obtains the correction value of the control condition that eliminates this difference from the characteristic profile described above, and outputs control information corrected according to the correction value.
  • FIG. 5 is a graph showing the characteristic profile of shape change of the weld bead 28 when the control condition is the welding speed.
  • the horizontal axis is the welding speed (cpm), and the vertical axis is the height difference (mm) that occurs when the welding speed is changed from the planned welding speed.
  • the welding speed is 25 cpm
  • the build height can be increased by 0.3 mm compared to welding at the planned welding speed.
  • FIG. 5 is a graph showing how the welding speed should be changed according to the deviation of the height of the three-dimensional modeled object (the height of the pseudo block X) from the plan.
  • the difference extracted by the control information generation device 33 is -0.3 mm. That is, this is a case in which the height of the three-dimensional structure actually formed is 0.3 mm smaller than the planned height (the height of the pseudo block body X). It is preferable to set the difference between the actual shape and the simulated shape to 0 as much as possible.
  • the welding speed should be set to 25 cpm in order to weld 0.3 mm higher than the welding under the planned welding conditions. In other words, by setting the welding speed to 25 cpm by the layered manufacturing apparatus 11, the difference can be set to 0 or brought closer to 0.
  • control information generating device 33 With such control, the control information generating device 33 generates a simulated shape based on the welding plan (planned shape).
  • FIG. 5 shows the profile of the shape change characteristics of a weld bead that is newly laminated by one layer on the pseudo block body X.
  • the profiles are collectively integrated so as to correspond to the difference when the weld beads for a plurality of layers are newly laminated. That is, in this case, the data acquisition unit 331 updates the characteristic profile of shape change by integrating the characteristic profiles of shape change in multiple layers.
  • the control conditions such as the welding speed can be changed using the characteristic profile of the shape change that can cope with the case where the difference is larger than 0.6 mm or smaller than -0.4 mm.
  • control information generator 33 can be provided with a plurality of types of characteristic profiles that represent the shape change characteristics of the weld bead 28, such as lamination width and lamination cross-sectional area.
  • the control information generating device 33 considers a plurality of types of profiles, comprehensively considers various characteristics of the weld bead 28, and determines the shape of the laminated weld bead 28, that is, the shape of the three-dimensional structure. , can be approximated to the planned shape (simulated shape) based on the welding plan.
  • the pseudo block body X shown in FIG. 4 is an example in which a plurality of weld beads 28 are laminated only in a single row. However, many of the actual three-dimensional structures are not formed only by such a single row, but are formed by forming a plurality of pseudo block bodies X adjacent to each other in the bead width direction (horizontal direction).
  • FIG. 6 is a prediction model for predicting the bead height, and is an explanatory diagram showing a pseudo-block body obtained by stacking a plurality of bead models.
  • FIG. 6 shows a pseudo block body W corresponding to the above three-dimensional structure, in which pseudo block bodies X 0 , X 1 , X 2 and X 3 are arranged in the width direction and shaped.
  • the height of each pseudo block X 0 , X 1 , X 2 , X 3 may change due to the influence of other (particularly adjacent) pseudo blocks.
  • the control information generation device 33 acquires the characteristic profile of the shape change of the weld bead 28 that occurs when the control conditions for the pseudo block body W are changed.
  • the characteristic profile of this example shows the shape change characteristic of the quasi-block body W in which a plurality of weld beads 28 adjacent to each other in the bead width direction are stacked.
  • the layered modeling apparatus 11 actually models a three-dimensional structure corresponding to the pseudo block W under various control conditions, and the control information generating device 33 generates the actual results including the height (or width). Measure the shape.
  • control information generating device 33 compares the measured actual shape of the three-dimensional structure with a simulated shape obtained by simulating the shape of this three-dimensional structure by laminating bead models (pseudo blocks W) in FIG. Thereby, the control information generation device 33 can extract the difference between the actual shape and the simulated shape that are more suitable for the actual three-dimensional structure.
  • FIG. 7 is a flow chart showing steps of a three-dimensional structure modeling method performed by the layered modeling apparatus 11 of the embodiment.
  • steps S1 to S5 also correspond to steps of a control information generating method performed by the control information generating device 33.
  • FIG. 7 is a flow chart showing steps of a three-dimensional structure modeling method performed by the layered modeling apparatus 11 of the embodiment.
  • steps S1 to S5 also correspond to steps of a control information generating method performed by the control information generating device 33.
  • the data acquisition unit 331 of the control information generation device 33 acquires the characteristic profile of the predicted shape of the laminate when a plurality of weld beads are laminated based on the welding plan including the pseudo block (S1).
  • the measurement unit 332 of the control information generation device 33 measures the shape (actual shape) of the actually formed laminate (S2).
  • the calculation unit 333 of the control information generation device 33 compares the simulated shape obtained by bead lamination and the actual shape, and calculates the difference between the two (S3).
  • the control information output unit 334 of the control information generation device 33 extracts a correction value that eliminates the difference (S4), and corrects the control information using the extracted correction value (S5).
  • the control unit 31 of the welding control device 30 controls the layered manufacturing device 11 according to the corrected control information, that is, the control information as a result output by the control information output unit 334, and the welding device 100 receives this control information.
  • Arc welding is performed by the operation of the lamination modeling apparatus 11 based on , and a three-dimensional structure is modeled (S6).
  • the welding control device 30 can appropriately control the layered manufacturing device 11 based on the corrected control information.
  • the welding device 100 can perform appropriate arc welding using the layered manufacturing device 11 to form a three-dimensional structure close to a simulated shape.
  • FIG. 8 is a graph illustrating a method for eliminating height differences as the number of layers in which the weld bead 28 is laminated increases.
  • the straight line L1 is the target planned height in the simulated shape, and the heights H 1 , H 2 , H 3 , H 4 . . . are the planned heights.
  • the control information generator 33 extracts the difference ⁇ h1 between the planned height H1 and the actual height H11 , which is the actual shape.
  • the control information generation device 33 found by measurement that the actual height H21 of the second layer is lower than the originally planned planned height H2 by ⁇ h2 .
  • the control information output unit 334 of the control information generation device 33 outputs the target height H32 , which is raised by ⁇ h2 from the originally planned planned height H3 for the third layer. That is, the control information output unit 334 sets a correction target value larger than the difference, and outputs control information corrected according to the correction target value. As a result, the control information generating device 33 sets a value larger than the difference as the target value, and can obtain a correction value that sufficiently contributes to correcting the height. This method can be applied not only to correcting the stacking height, but also to stacking width, stacking cross-sectional area, and the like.
  • FIG. 9 is a graph illustrating another method for eliminating the difference in height as the number of layers in which the weld bead 28 is laminated increases.
  • the straight line L2 is the target planned height in the simulated shape, and the heights H1 , H2 , H3 , H4 , H5 , H6, ... are the planned heights.
  • control information generator 33 extracts the difference ⁇ h1 between the planned height H1 and the actual height H11 , which is the actual shape.
  • the control information generation device 33 found by measurement that the actual height H21 of the second layer is lower than the originally planned planned height H2 by ⁇ h2 .
  • control information output unit 334 of the control information generation device 33 sets the target height H32 , which is raised by ⁇ h1 + ⁇ h2 from the initially planned planned height H3 , in the third layer, as in the example of FIG. Output.
  • the control information generating device 33 found by measurement that the actual height H31 of the third layer is also lower than the originally planned planned height H3 by ⁇ h3 . Therefore, the control information output unit 334 of the control information generation device 33 outputs the target height H42 , which is raised by ⁇ h1 + ⁇ h2 + ⁇ h3 from the initially planned planned height H4 for the fourth layer. As a result, the control information generating device 33 sets a value larger than the difference as the target value, and can obtain a correction value that sufficiently contributes to correcting the height.
  • the method shown in FIG. 9 can suppress accumulation of differences more than the method shown in FIG. This method can be applied not only to correcting the stacking height, but also to stacking width, stacking cross-sectional area, and the like.
  • a control information generating device for generating control information for controlling a layered manufacturing device for manufacturing a three-dimensional structure in which the layer shape is stacked, a data acquisition unit that acquires a characteristic profile of a shape change of the weld bead that occurs when the control condition is changed for a pseudo block body obtained by laminating a plurality of bead models simulating the shape of the weld bead; a measurement unit that measures an actual shape including at least the height or width of the three-dimensional structure that has been formed; A computing unit that compares a simulated shape obtained by simulating the shape of the three-dimensional structure by laminating the bead models and the actual shape, and extracts a difference between the two shapes; a control information output unit that obtains a correction value for the
  • this control information generation device it is possible to extract the difference between the actual shape and the simulated shape that are more suitable for the actual three-dimensional structure.
  • control information generating device (4) The control information generating device according to any one of (1) to (3), wherein the data acquisition unit updates the characteristic profile of the shape change by accumulating a plurality of layers of the characteristic profile of the shape change. .
  • the control conditions can be changed using the characteristic profile of the shape change that can cope with the case where the difference between the actual shape and the simulated shape exceeds a predetermined range.
  • the control information generation device according to 1.
  • the shape of the laminated weld bead that is, the shape of the three-dimensional structure is determined by taking into account multiple types of profiles and comprehensively considering various characteristics of the weld bead. It is possible to approximate the simulated shape (planned shape) based on the plan.
  • a control information generation method for generating control information for controlling a layered manufacturing apparatus for manufacturing a three-dimensional structure in which the layer shape is stacked, a data acquisition step of acquiring a characteristic profile of a shape change of the weld bead that occurs when the control condition is changed for a pseudo block body obtained by laminating a plurality of bead models simulating the shape of the weld bead; a measuring step of measuring an actual shape including at least the height or width of the three-dimensional structure that has been shaped; A calculation step of comparing a simulated shape obtained by simulating the shape of the three-dimensional structure by laminating the bead model and the actual shape, and extracting a difference between the two shapes; a control information output step of obtaining a correction value for the control condition that eliminates the difference from the characteristic
  • a welding control device comprising a control unit that controls the layered manufacturing device according to a result output by the control information generation device. According to this welding control device, it is possible to appropriately control the layered manufacturing apparatus based on the corrected control information.
  • the welding control device according to (7); the laminate molding apparatus; Welding equipment comprising: According to this welding device, it is possible to perform appropriate arc welding and form a three-dimensional structure close to a simulated shape using the layered manufacturing device.
  • a control information generation program for generating control information for controlling a layered manufacturing apparatus for manufacturing a three-dimensional structure in which the layer shape is stacked, a data acquisition step of acquiring a characteristic profile of a shape change of the weld bead that occurs when the control condition is changed for a pseudo block body obtained by laminating a plurality of bead models simulating the shape of the weld bead; a measuring step of measuring an actual shape including at least the height or width of the three-dimensional structure that has been shaped; A calculation step of comparing a simulated shape obtained by simulating the shape of the three-dimensional structure by laminating the bead model and the actual shape, and extracting a difference between the two shapes; a control information output step of obtaining a correction value for the control condition that eliminates the difference from the characteristic

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

This control information generating device comprises: a data acquiring unit for acquiring a characteristic profile of shape changes of a welding bead that occur when a control condition is varied for a pseudo block body obtained by stacking a plurality of bead models simulating the shape of the welding bead; a measuring unit for measuring an actual shape including at least a height or a width of a molded three-dimensional structure; a calculating unit for comparing a simulated shape simulating the shape of the three-dimensional structure by stacking the bead models, and the actual shape, and extracting a difference between the two shapes; and a control information output unit for obtaining from the characteristic profile a corrected value of the control condition that eliminates the difference, and outputting control information that has been corrected in accordance with the corrected value.

Description

制御情報生成装置、制御情報生成方法、溶接制御装置及び制御情報生成プログラムControl information generation device, control information generation method, welding control device and control information generation program
 本発明は、制御情報生成装置、制御情報生成方法、溶接制御装置及び制御情報生成プログラムに関する。 The present invention relates to a control information generation device, a control information generation method, a welding control device, and a control information generation program.
 溶加材を溶融及び凝固させた溶接ビードを積層して、三次元構造物を造形する技術が知られている。特許文献1は、このような技術において、付加製造のための位置フィードバックを提供するシステム及び方法を開示している。出力電流、出力電圧、出力電力、出力回路インピーダンス、及びワイヤ送り速度のうちの一方又は両方が、現在層を生成する際の付加製造プロセス中にサンプリングされる。複数の瞬間的コンタクトチップ ツー ワーク距離(CTWD)が、出力電流、出力電圧、出力電力、出力回路インピーダンス、及びワイヤ送り速度のうちの少なくとも一方又は両方に基づき判断される。平均CTWDは、複数の瞬間的CTWDに基づき判断される。現在層の高さのいかなる誤差も補償するために使用される補正係数が、少なくとも平均CTWDに基づき生成される。 A known technique is to build a three-dimensional structure by laminating weld beads obtained by melting and solidifying a filler material. US Pat. No. 6,200,000 discloses a system and method for providing positional feedback for additive manufacturing in such technology. One or both of output current, output voltage, output power, output circuit impedance, and wire feed speed are sampled during the additive manufacturing process in producing the current layer. A plurality of instantaneous contact tip-to-work distances (CTWD) are determined based on at least one or both of output current, output voltage, output power, output circuit impedance, and wire feed speed. An average CTWD is determined based on multiple instantaneous CTWDs. A correction factor that is used to compensate for any error in current bed height is generated based at least on the average CTWD.
日本国特開2019-107698号公報Japanese Patent Application Laid-Open No. 2019-107698
 しかしながら、層の高さ誤差を認識することができても、その誤差を補正する条件については周囲の溶接ビード形状、部位、基準となる溶接条件などを考慮すると、適正な条件の選択は困難である。各場合において、条件を変えた際に、溶接ビードの高さ又は幅の変化量を予め記録しておく方法も考えられるが、実験数が非常に膨大となるため現実的ではない。 However, even if the layer height error can be recognized, it is difficult to select appropriate conditions for correcting the error when considering the surrounding weld bead shape, location, and standard welding conditions. be. In each case, it is conceivable to record in advance the amount of change in the height or width of the weld bead when the conditions are changed.
 そこで本発明は、積層された溶接ビードの形状を、溶接計画に基づく模擬形状に近づけることができる制御情報生成装置、制御情報生成方法、溶接制御装置及び制御情報生成プログラムを提供することを目的とする。 Accordingly, an object of the present invention is to provide a control information generation device, a control information generation method, a welding control device, and a control information generation program capable of approximating the shape of a laminated weld bead to a simulated shape based on a welding plan. do.
 本発明は、下記の構成からなる。
(1) 指定の制御条件に基づいて加工位置を予め定めた経路に沿って移動させつつ、溶融した加工材料を加工対象面に付加して形成される溶接ビードを用いて層形状を造形し、前記層形状を積層した三次元構造体を造形する積層造形装置を制御する、制御情報を生成する制御情報生成装置であって、
 前記溶接ビードの形状を模擬したビードモデルを複数積層して得られる疑似ブロック体に対する、前記制御条件を変更した場合に生じる前記溶接ビードの形状変化の特性プロファイルを取得するデータ取得部と、
 造形した前記三次元構造体の高さ又は幅を少なくとも含む実績形状を計測する計測部と、
 前記三次元構造体の形状を前記ビードモデルの積層により模擬した模擬形状と前記実績形状とを比較して、双方の形状の差分を抽出する演算部と、
 前記差分を解消する前記制御条件の補正値を前記特性プロファイルから求め、前記補正値に応じて補正した前記制御情報を出力する制御情報出力部と、
を備える制御情報生成装置。
(2) 指定の制御条件に基づいて加工位置を予め定めた経路に沿って移動させつつ、溶融した加工材料を加工対象面に付加して形成される溶接ビードを用いて層形状を造形し、前記層形状を積層した三次元構造体を造形する積層造形装置を制御する、制御情報を生成する制御情報生成方法であって、
 前記溶接ビードの形状を模擬したビードモデルを複数積層して得られる疑似ブロック体に対する、前記制御条件を変更した場合に生じる前記溶接ビードの形状変化の特性プロファイルを取得するデータ取得工程と、
 造形した前記三次元構造体の高さ又は幅を少なくとも含む実績形状を計測する計測部と、
 前記三次元構造体の形状を前記ビードモデルの積層により模擬した模擬形状と前記実績形状とを比較して、双方の形状の差分を抽出する演算工程と、
 前記差分を解消する前記制御条件の補正値を前記特性プロファイルから求め、前記補正値に応じて補正した前記制御情報を出力する制御情報出力工程と、
を備える制御情報生成方法。
(3) (1)に記載の制御情報生成装置と、
 前記制御情報生成装置により出力された結果に応じて前記積層造形装置を制御する制御部を備える、溶接制御装置。
(4) (3)に記載の溶接制御装置と、
 前記積層造形装置と、
を備える溶接装置。
(5) 指定の制御条件に基づいて加工位置を予め定めた経路に沿って移動させつつ、溶融した加工材料を加工対象面に付加して形成される溶接ビードを用いて層形状を造形し、前記層形状を積層した三次元構造体を造形する積層造形装置を制御する、制御情報を生成する制御情報生成プログラムであって、
 前記溶接ビードの形状を模擬したビードモデルを複数積層して得られる疑似ブロック体に対する、前記制御条件を変更した場合に生じる前記溶接ビードの形状変化の特性プロファイルを取得するデータ取得工程と、
 造形した前記三次元構造体の高さ又は幅を少なくとも含む実績形状を計測する計測工程と、
 前記三次元構造体の形状を前記ビードモデルの積層により模擬した模擬形状と前記実績形状とを比較して、双方の形状の差分を抽出する演算工程と、
 前記差分を解消する前記制御条件の補正値を前記特性プロファイルから求め、前記補正値に応じて補正した前記制御情報を出力する制御情報出力工程と、
をコンピュータに実行させる制御情報生成プログラム。
The present invention consists of the following configurations.
(1) shaping a layer shape using a weld bead formed by adding a molten processing material to the surface to be processed while moving the processing position along a predetermined path based on designated control conditions; A control information generating device for generating control information for controlling a layered manufacturing device for manufacturing a three-dimensional structure in which the layer shape is stacked,
a data acquisition unit that acquires a characteristic profile of a shape change of the weld bead that occurs when the control condition is changed for a pseudo block body obtained by laminating a plurality of bead models simulating the shape of the weld bead;
a measurement unit that measures an actual shape including at least the height or width of the three-dimensional structure that has been formed;
A computing unit that compares a simulated shape obtained by simulating the shape of the three-dimensional structure by laminating the bead models and the actual shape, and extracts a difference between the two shapes;
a control information output unit that obtains a correction value for the control condition that eliminates the difference from the characteristic profile, and outputs the control information corrected according to the correction value;
A control information generation device comprising:
(2) forming a layer shape using a weld bead formed by adding a molten processing material to the surface to be processed while moving the processing position along a predetermined path based on designated control conditions; A control information generation method for generating control information for controlling a layered manufacturing apparatus for manufacturing a three-dimensional structure in which the layer shape is stacked,
a data acquisition step of acquiring a characteristic profile of a shape change of the weld bead that occurs when the control condition is changed for a pseudo block body obtained by laminating a plurality of bead models simulating the shape of the weld bead;
a measurement unit that measures an actual shape including at least the height or width of the three-dimensional structure that has been formed;
A calculation step of comparing a simulated shape obtained by simulating the shape of the three-dimensional structure by laminating the bead model and the actual shape, and extracting a difference between the two shapes;
a control information output step of obtaining a correction value for the control condition that eliminates the difference from the characteristic profile, and outputting the control information corrected according to the correction value;
A control information generation method comprising:
(3) The control information generation device according to (1);
A welding control device comprising a control unit that controls the layered manufacturing device according to a result output by the control information generation device.
(4) The welding control device according to (3);
the laminate molding apparatus;
Welding equipment comprising:
(5) forming a layer shape using a weld bead formed by adding a molten processing material to the surface to be processed while moving the processing position along a predetermined path based on designated control conditions; A control information generation program for generating control information for controlling a layered manufacturing apparatus for manufacturing a three-dimensional structure in which the layer shape is stacked,
a data acquisition step of acquiring a characteristic profile of a shape change of the weld bead that occurs when the control condition is changed for a pseudo block body obtained by laminating a plurality of bead models simulating the shape of the weld bead;
a measuring step of measuring an actual shape including at least the height or width of the three-dimensional structure that has been shaped;
A calculation step of comparing a simulated shape obtained by simulating the shape of the three-dimensional structure by laminating the bead model and the actual shape, and extracting a difference between the two shapes;
a control information output step of obtaining a correction value for the control condition that eliminates the difference from the characteristic profile, and outputting the control information corrected according to the correction value;
A control information generation program that causes a computer to execute
 本発明によれば、溶接計画に沿ったビードモデルの積層による模擬形状と、溶接ビードの積層による実績形状を比較して、その差分に応じて制御情報を補正できる。これにより、制御情報生成装置は、溶接ビードの特性を考慮しながら、積層された溶接ビードの形状を、溶接計画に基づく模擬形状に近づけることができる。 According to the present invention, it is possible to compare the simulated shape obtained by laminating the bead model according to the welding plan and the actual shape obtained by laminating the weld bead, and correct the control information according to the difference. As a result, the control information generating device can approximate the shape of the laminated weld bead to the simulated shape based on the welding plan while considering the properties of the weld bead.
図1は、実施形態に係る溶接装置の全体構成図である。FIG. 1 is an overall configuration diagram of a welding device according to an embodiment. 図2は、実施形態に係る制御情報生成装置のブロック図である。FIG. 2 is a block diagram of the control information generation device according to the embodiment. 図3Aは、積層造形装置によって形成された単一の溶接ビードの形状を模式的に示す説明図である。FIG. 3A is an explanatory diagram schematically showing the shape of a single weld bead formed by the layered manufacturing apparatus. 図3Bは、制御条件の条件値と形成される溶接ビードのビード高さHとの関係を模式的に示すグラフである。FIG. 3B is a graph schematically showing the relationship between the condition value of the control condition and the bead height H of the formed weld bead. 図4は、ビード高さを予測する予測モデルであって、複数のビードモデルを積層して得られる疑似ブロック体を示す説明図である。FIG. 4 is a prediction model for predicting the bead height, and is an explanatory diagram showing a pseudo-block body obtained by laminating a plurality of bead models. 図5は、溶接ビードの形状変化の特性プロファイルを示すグラフである。FIG. 5 is a graph showing a characteristic profile of shape change of a weld bead. 図6は、ビード高さを予測する予測モデルであって、複数のビードモデルを積層して得られる疑似ブロック体を示す説明図である。FIG. 6 is a prediction model for predicting the bead height, and is an explanatory diagram showing a pseudo-block body obtained by stacking a plurality of bead models. 図7は積層造形装置が実施する三次元構造体の造形方法の工程を示すフローチャートである。FIG. 7 is a flow chart showing steps of a three-dimensional structure modeling method performed by the layered modeling apparatus. 図8は、溶接ビードを積層する層数の増加に応じて、高さの差分を解消するための方法を説明するグラフである。FIG. 8 is a graph illustrating a method for eliminating height differences as the number of layers in which weld beads are laminated increases. 図9は、溶接ビードを積層する層数の増加に応じて、高さの差分を解消するための他の方法を説明するグラフである。FIG. 9 is a graph illustrating another method for eliminating the difference in height as the number of layers in which weld beads are laminated increases.
 以下、本発明の実施形態について、図面を参照して詳細に説明する。
 ここでは、溶接ヘッドから供給される溶加材を溶融及び凝固させて形成する溶接ビードを、積層造形装置により所望の形状に積層造形する場合を例に説明するが、造形方式及び積層造形装置の構成はこれに限らない。例えば、隅肉溶接、突き合わせ溶接を行う一般的な溶接装置であってもよい。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
Here, a case in which a weld bead formed by melting and solidifying a filler material supplied from a welding head is laminated into a desired shape by a laminate molding apparatus will be described as an example. The configuration is not limited to this. For example, it may be a general welding device that performs fillet welding and butt welding.
(溶接装置)
 図1は、造形物を製造する溶接装置の全体構成図である。本構成の溶接装置100は、積層造形装置11と、積層造形装置11を制御する溶接制御装置30とを備える。積層造形装置11は、先端軸に溶接トーチ15を有する溶接ヘッドが設けられた溶接ロボット17と、溶接ロボット17を駆動するロボットコントローラ21と、溶接トーチ15へ溶加材(溶接ワイヤ)Mを供給する溶加材供給部23と、溶接電流を供給する溶接電源25と、を備える。
(welding equipment)
FIG. 1 is an overall configuration diagram of a welding device that manufactures a modeled object. A welding device 100 having this configuration includes a laminate molding device 11 and a welding control device 30 that controls the laminate molding device 11 . The layered manufacturing apparatus 11 includes a welding robot 17 provided with a welding head having a welding torch 15 on its tip axis, a robot controller 21 for driving the welding robot 17, and a filler material (welding wire) M supplied to the welding torch 15. and a welding power source 25 for supplying a welding current.
(積層造形装置)
 溶接ロボット17は、多関節ロボットであり、ロボットアームの先端軸に取り付けた溶接トーチ15の先端には、連続供給される溶加材Mが支持される。溶接トーチ15の位置及び姿勢は、ロボットコントローラ21からの指令により、ロボットアームの自由度の範囲で三次元的に任意に設定可能になっている。溶接ロボット17の先端軸には、溶接トーチ15と一体に移動する形状センサ32と温度センサ26が設けられる。形状センサ32は、形成される溶接ビード28の形状、必要に応じてビード形成位置周囲の形状を測定する非接触式のセンサである。形状センサ32による測定は、溶接ビードの形成と同時に行ってもよく、ビード形成前後の異なるタイミングで行ってもよい。形状センサ32としては、照射したレーザ光の反射光の位置、又は照射タイミングから反射光が検出されるまでの時間により三次元形状を検出するレーザセンサを利用できる。形状センサ32は、レーザに限らず他の検出方式のセンサであってもよい。
(Laminate manufacturing equipment)
The welding robot 17 is an articulated robot, and a continuously supplied filler material M is supported at the tip of the welding torch 15 attached to the tip shaft of the robot arm. The position and orientation of the welding torch 15 can be arbitrarily three-dimensionally set within the range of degrees of freedom of the robot arm according to commands from the robot controller 21 . A shape sensor 32 and a temperature sensor 26 that move integrally with the welding torch 15 are provided on the tip axis of the welding robot 17 . The shape sensor 32 is a non-contact sensor that measures the shape of the weld bead 28 to be formed and, if necessary, the shape around the bead forming position. The measurement by the shape sensor 32 may be performed at the same time as the weld bead is formed, or may be performed at different timings before and after the bead is formed. As the shape sensor 32, a laser sensor that detects the three-dimensional shape from the position of the reflected light of the irradiated laser light or the time from the irradiation timing to the detection of the reflected light can be used. The shape sensor 32 is not limited to a laser, and may be a sensor of another detection method.
 温度センサ26は、放射温度計、サーモグラフィ等の接触式のセンサであり、造形物の任意の位置の温度(温度分布)を検出する。溶接トーチ15は、不図示のシールドノズルを有し、シールドノズルからシールドガスが供給されるガスメタルアーク溶接用のトーチである。アーク溶接法としては、被覆アーク溶接又は炭酸ガスアーク溶接等の消耗電極式、TIG溶接又はプラズマアーク溶接等の非消耗電極式のいずれであってもよく、作製する積層造形物に応じて適宜選定される。例えば、消耗電極式の場合、シールドノズルの内部にはコンタクトチップが配置され、溶融電流が給電される溶加材Mがコンタクトチップに保持される。溶接トーチ15は、溶加材Mを保持しつつ、シールドガス雰囲気で溶加材Mの先端からアークを発生する。 The temperature sensor 26 is a contact sensor such as a radiation thermometer or thermography, and detects the temperature (temperature distribution) at any position of the modeled object. The welding torch 15 is a gas metal arc welding torch that has a shield nozzle (not shown) and is supplied with a shield gas from the shield nozzle. The arc welding method may be a consumable electrode type such as coated arc welding or carbon dioxide gas arc welding, or a non-consumable electrode type such as TIG welding or plasma arc welding, and is appropriately selected according to the layered product to be manufactured. be. For example, in the case of the consumable electrode type, a contact tip is arranged inside the shield nozzle, and the contact tip holds the filler material M to which the melting current is supplied. The welding torch 15 holds the filler material M and generates an arc from the tip of the filler material M in a shield gas atmosphere.
 溶加材供給部23は、溶加材Mが巻回されたリール29を備える。溶加材Mは、溶加材供給部23からロボットアーム等に取り付けられた繰り出し機構(不図示)に送られ、必要に応じて繰り出し機構により正逆方向に送給されながら溶接トーチ15へ送給される。 The filler material supply unit 23 includes a reel 29 around which the filler material M is wound. The filler material M is sent from the filler material supply unit 23 to a delivery mechanism (not shown) attached to a robot arm or the like, and is sent to the welding torch 15 while being fed in the forward and reverse directions by the delivery mechanism as necessary. be paid.
 溶加材Mとしては、あらゆる市販の溶接ワイヤを用いることができる。例えば、軟鋼、高張力鋼及び低温用鋼用のマグ溶接及びミグ溶接ソリッドワイヤ(JIS Z 3312)、軟鋼、高張力鋼及び低温用鋼用アーク溶接フラックス入りワイヤ(JIS Z 3313)等で規定される溶接ワイヤが利用可能である。さらに、アルミニウム、アルミニウム合金、ニッケル、ニッケル基合金等の溶加材Mを、求められる特性に応じて使用できる。そして、上記のように連続送給される溶加材Mをアークにより溶融及び凝固させると、ベースプレート27上に溶加材Mの溶融凝固体である溶接ビード28が形成される。ベースプレート27は、鋼板等の金属板であるが、板状に限らず、ブロック体、棒状、円柱状等、他の形状であってもよい。 Any commercially available welding wire can be used as the filler material M. For example, MAG welding and MIG welding solid wire (JIS Z 3312) for mild steel, high-strength steel and low-temperature steel, arc welding flux-cored wire (JIS Z 3313) for mild steel, high-strength steel and low-temperature steel, etc. welding wire is available. Additionally, filler metals M such as aluminum, aluminum alloys, nickel, nickel-based alloys, etc. can be used depending on the desired properties. When the filler material M that is continuously fed as described above is melted and solidified by the arc, a weld bead 28 that is a melted and solidified body of the filler material M is formed on the base plate 27 . Although the base plate 27 is a metal plate such as a steel plate, it is not limited to a plate shape, and may have other shapes such as a block, rod, and columnar shape.
 即ち、積層造形装置11は、指定の制御条件に基づいて加工位置を予め定めた経路に沿って移動させつつ、溶融した加工材料である溶加材Mを加工対象面に付加して形成される溶接ビード28を用いて、図1に示すような層形状を造形し、層形状を積層した三次元構造体を造形する。 That is, the layered manufacturing apparatus 11 moves the processing position along a predetermined path based on designated control conditions, and adds the filler material M, which is a molten processing material, to the surface to be processed. Using the weld bead 28, a layered shape as shown in FIG. 1 is formed to form a three-dimensional structure in which the layered shape is laminated.
(溶接制御装置及び制御情報生成装置)
 次に、溶接制御装置30の構成を説明する。溶接制御装置30は、ロボットコントローラ21と同様のコンピュータ装置であって、主たる制御を司るプロセッサ、記憶装置、入出力インターフェース、入力部、出力部などのハードウェアを含んで構成される。溶接制御装置30は、制御部31と制御情報生成装置33とを含む。制御部31は、制御情報生成装置33により出力された結果に応じて、積層造形装置11を制御する。
(Welding control device and control information generation device)
Next, the configuration of the welding control device 30 will be described. The welding control device 30 is a computer device similar to the robot controller 21, and includes hardware such as a processor for main control, a storage device, an input/output interface, an input section, and an output section. Welding control device 30 includes a control unit 31 and a control information generation device 33 . The control unit 31 controls the layered manufacturing apparatus 11 according to the results output by the control information generation device 33 .
 次に、制御情報生成装置33の構成を説明する。
 図2に示すように、制御情報生成装置33は、積層造形装置11を制御する制御情報を生成する。制御情報生成装置33は、データ取得部331と、計測部332と、演算部333と、制御情報出力部334と、を備える。
Next, the configuration of the control information generation device 33 will be described.
As shown in FIG. 2 , the control information generation device 33 generates control information for controlling the layered manufacturing device 11 . The control information generation device 33 includes a data acquisition unit 331 , a measurement unit 332 , a calculation unit 333 and a control information output unit 334 .
 データ取得部331は、溶接ビード28の形状を模擬したビードモデルを複数積層して得られる疑似ブロック体に対する、制御条件を変更した場合に生じる溶接ビード28の形状変化の特性プロファイルを取得する。 The data acquisition unit 331 acquires the characteristic profile of the shape change of the weld bead 28 that occurs when the control conditions are changed for the pseudo block body obtained by laminating a plurality of bead models simulating the shape of the weld bead 28.
 計測部332は、造形した三次元構造体の高さ又は幅を少なくとも含む実績形状を計測する。 The measurement unit 332 measures the actual shape including at least the height or width of the molded three-dimensional structure.
 演算部333は、三次元構造体の形状をビードモデルの積層により模擬した模擬形状と、実績形状とを比較して、双方の形状の差分を抽出する。 The calculation unit 333 compares the simulated shape obtained by simulating the shape of the three-dimensional structure by laminating bead models and the actual shape, and extracts the difference between the two shapes.
 制御情報出力部334は、差分を解消する制御条件の補正値を特性プロファイルから求め、補正値に応じて補正した前記制御情報を出力する。 The control information output unit 334 obtains a correction value for the control condition that eliminates the difference from the characteristic profile, and outputs the control information corrected according to the correction value.
(制御情報生成装置による制御)
 図3Aは、積層造形装置11によってベースプレート27上に形成された単一の溶接ビード28の形状(断面形状)を模式的に示す説明図である。
 溶接ビード28の高さであるビード高さHは、溶接ビード28の底面から頂点(上面)までの距離である。一般的に、単一の溶接ビード28の形状は、溶接条件によって変化する。溶接条件は、溶接電流、溶接電圧、加工材料である溶加材(溶接ワイヤ)Mを送り出す送給速度、溶接速度などを含む。
(Control by control information generation device)
FIG. 3A is an explanatory diagram schematically showing the shape (cross-sectional shape) of a single weld bead 28 formed on the base plate 27 by the layered manufacturing apparatus 11. FIG.
A bead height H, which is the height of the weld bead 28, is the distance from the bottom of the weld bead 28 to the top (upper surface). Generally, the shape of a single weld bead 28 will vary depending on the welding conditions. The welding conditions include a welding current, a welding voltage, a feeding speed for sending out the filler metal (welding wire) M as a processing material, a welding speed, and the like.
 図3Bは、溶接条件(制御条件)の条件値と形成される溶接ビード28のビード高さHとの関係を模式的に示すグラフである。
 上述した通り、条件値は、溶接電流、溶接電圧、溶加材Mを送り出す送給速度、溶接速度などの値を含む。条件値が溶接速度である場合、このグラフは、溶接速度が高いほどビード高さHが減少することを示している。
FIG. 3B is a graph schematically showing the relationship between the condition value of the welding condition (control condition) and the bead height H of the weld bead 28 to be formed.
As described above, the conditional values include values such as the welding current, the welding voltage, the feeding speed for feeding the filler material M, the welding speed, and the like. When the conditional value is welding speed, the graph shows that the bead height H decreases as the welding speed increases.
 従来の溶接は、必要な溶接ビード28の形状を把握したうえで、図3Bに示すような経験則上の特性に則り、溶接を進める溶接計画を立案している。 In conventional welding, after grasping the necessary shape of the weld bead 28, a welding plan for proceeding with welding is drawn up according to empirical characteristics as shown in FIG. 3B.
 しかしながら、複数層の溶接ビード28を積層することにより、これまで得られた特性からは予想し難い形状変化が生じてしまう。例えば、溶融した溶加材Mが下方に流れ落ち、結果的に得られるビード高さH(複数の溶接ビード28による積層高さ)が、計画で予定していたビード高さHより低くなってしまうような事態が生じ得る。 However, lamination of multiple layers of weld beads 28 causes a shape change that is difficult to predict from the characteristics obtained so far. For example, the melted filler material M flows downward, and the resulting bead height H (stacked height of the plurality of weld beads 28) becomes lower than the planned bead height H. A situation like this can occur.
 図4は、上述したような事態に対応するために、ビード高さHを予測する予測モデルを概念的に示す説明図である。
 この予測モデルにおいては、予め、コンピュータが、溶接ビード28の形状、特に断面形状を台形のビードモデルによって模擬し、複数のビードモデルB、B、B・・・Bを積層して得られる疑似ブロック体Xを取得しておく。
FIG. 4 is an explanatory diagram conceptually showing a predictive model for predicting the bead height H in order to cope with the situation described above.
In this predictive model, a computer previously simulates the shape of the weld bead 28, particularly the cross-sectional shape, using a trapezoidal bead model, and stacks a plurality of bead models B0 , B1 , B2 , . . . Obtain the obtained pseudo block body X.
 このような疑似ブロック体Xは、溶接計画に基づいて、溶接ビード28を積層することにより得られる積層物の予測形状である。疑似ブロック体Xの取得にあたって、コンピュータは、ビードモデルの重なり、溶融して流れ落ちた溶加材Mの分などの要素をも考慮しており、このような要素を考慮した疑似ブロック体Xとその最終的なビード高さHを予測できる。 Such a pseudo-block body X is a predicted shape of a laminate obtained by laminating the weld beads 28 based on the welding plan. In obtaining the pseudo-block body X, the computer also considers factors such as the overlap of the bead model and the portion of the filler material M that has melted and flowed down, and the pseudo-block body X and its The final bead height H can be predicted.
 しかしながら、たとえ上述した予測モデルを用いても、実際の造形で得られる複数層の溶接ビード28のビード高さH(疑似ブロック体Xのビード高さHに対応する高さ)は、溶接条件次第で、予測した疑似ブロック体Xから外れてしまったものになってしまうことがあり、差分が生じてしまう。このため、より正確な予測方法が求められている。 However, even if the prediction model described above is used, the bead height H of the multiple-layer weld bead 28 (the height corresponding to the bead height H of the quasi-block body X) obtained in actual molding depends on the welding conditions. As a result, it may deviate from the predicted pseudo-block body X, resulting in a difference. Therefore, a more accurate prediction method is required.
 そこで本実施形態においては、予め種々の溶接条件、即ち、制御条件において生じる溶接ビード28の形状変化の特性プロファイルを取得しておく。即ち、本構成の制御情報生成装置33は、上述した疑似ブロック体Xに対する、制御条件を変更した場合に生じる溶接ビード28の形状変化の特性プロファイルを上述した予測モデルを用いて取得する。 Therefore, in the present embodiment, characteristic profiles of shape changes of the weld bead 28 that occur under various welding conditions, ie, control conditions, are obtained in advance. That is, the control information generation device 33 of this configuration acquires the characteristic profile of the change in shape of the weld bead 28 that occurs when the control conditions for the pseudo block X described above are changed, using the prediction model described above.
 さらに特性プロファイルの取得とは別に、積層造形装置11が、種々の制御条件において、上述した疑似ブロック体Xに対応した三次元構造体を実際に造形し、制御情報生成装置33は、その高さ(幅であってもよい)を含む実績形状を計測する。実績形状の計測の方法は特に限定されないが、例えば、計測部332に設けた光切断法を用いた計測手段、レーザセンサのような計測手段などにより、溶接ビード28の表面を走査して計測する方法が挙げられる。 Furthermore, apart from acquisition of the characteristic profile, the layered manufacturing apparatus 11 actually models a three-dimensional structure corresponding to the above-described pseudo block body X under various control conditions, and the control information generation device 33 determines the height Measure the actual shape including (may be width). Although the method of measuring the actual shape is not particularly limited, for example, the surface of the weld bead 28 is scanned and measured by a measuring means using a light cutting method provided in the measuring unit 332, a measuring means such as a laser sensor, or the like. method.
 さらに制御情報生成装置33は、計測した三次元構造物の実績形状と、この三次元構造物の形状を図4のビードモデルの積層(疑似ブロック体X)により模擬した模擬形状とを比較する。これにより、制御情報生成装置33は、実績形状と模擬形状との差分を抽出できる。 Furthermore, the control information generation device 33 compares the measured actual shape of the three-dimensional structure with a simulated shape obtained by simulating the shape of this three-dimensional structure by laminating bead models (pseudo block body X) in FIG. Thereby, the control information generating device 33 can extract the difference between the actual shape and the simulated shape.
 なお、比較にあたっての実績形状は、計測結果に計測誤差が含まれ得ることを考慮し、一定の溶接区間の計測結果を平均した高さなどを用いて実績形状を生成してもよい。また、模擬形状は、図4の疑似ブロック体Xに余肉量を追加した形状であってもよい。 Considering that the measurement results may contain measurement errors, the actual shape for comparison may be generated using the average height of the measurement results of certain welded sections. Moreover, the simulated shape may be a shape obtained by adding excess thickness to the simulated block body X of FIG.
 最後に制御情報生成装置33は、この差分を解消する制御条件の補正値を、上述した特性プロファイルから求め、補正値に応じて補正した制御情報を出力する。 Finally, the control information generation device 33 obtains the correction value of the control condition that eliminates this difference from the characteristic profile described above, and outputs control information corrected according to the correction value.
 図5は、制御条件が溶接速度である場合の溶接ビード28の形状変化の特性プロファイルを示すグラフである。横軸は溶接速度(cpm)であり、縦軸は計画していた溶接速度から速度を変更した場合に生じる高さの差分(mm)である。例えば、溶接速度を25cpmにすると、計画していた溶接速度のまま溶接する場合より、造形高さを0.3mm大きくすることが出来る。つまり、図5は、実際に造形した3次元造形物高さの計画(疑似ブロック体Xの高さ)からのズレに応じて、どのように溶接速度を変更すべきかを示したグラフである。 FIG. 5 is a graph showing the characteristic profile of shape change of the weld bead 28 when the control condition is the welding speed. The horizontal axis is the welding speed (cpm), and the vertical axis is the height difference (mm) that occurs when the welding speed is changed from the planned welding speed. For example, if the welding speed is 25 cpm, the build height can be increased by 0.3 mm compared to welding at the planned welding speed. In other words, FIG. 5 is a graph showing how the welding speed should be changed according to the deviation of the height of the three-dimensional modeled object (the height of the pseudo block X) from the plan.
 制御情報生成装置33が抽出した差分が-0.3mmである事例を想定する。つまり、実際に造形した三次元構造物の高さが、計画していた高さ(疑似ブロック体Xの高さ)より0.3mm小さい事例である。実績形状と模擬形状との差分は、できるだけ0にすることが好ましい。図5の特性プロファイルによれば、計画していた溶接条件での溶接よりも0.3mm高く溶接するためには、溶接速度を25cpmに設定すればよい。言い換えると、積層造形装置11が溶接速度を25cpmに設定することにより、差分を0にする、又は0に近づけることができる。 Assume a case where the difference extracted by the control information generation device 33 is -0.3 mm. That is, this is a case in which the height of the three-dimensional structure actually formed is 0.3 mm smaller than the planned height (the height of the pseudo block body X). It is preferable to set the difference between the actual shape and the simulated shape to 0 as much as possible. According to the characteristic profile of FIG. 5, the welding speed should be set to 25 cpm in order to weld 0.3 mm higher than the welding under the planned welding conditions. In other words, by setting the welding speed to 25 cpm by the layered manufacturing apparatus 11, the difference can be set to 0 or brought closer to 0.
 このような制御により、制御情報生成装置33は、溶接ビード28の特性を考慮しながら、積層された溶接ビード28の形状、即ち、三次元構造体の形状を、溶接計画に基づく模擬形状(計画形状)に近似できる。 With such control, the control information generating device 33 generates a simulated shape based on the welding plan (planned shape).
 なお、図5は疑似ブロック体Xに対して新たに1層積層する溶接ビードの形状変化特性のプロファイルを示すものであるので、例えば実績形状と模擬形状との差分が0.6mmより大のデータと、差分が-0.4mmより小のデータは必ずしも得られない。このような場合は、複数層分の溶接ビードを新たに積層したときの差分に対応するようプロファイルをまとめて積算する。つまり、この場合には、データ取得部331が、形状変化の特性プロファイルを複数層積算して形状変化の特性プロファイルを更新する。これにより、差分が0.6mmより大きい又は-0.4mmより小さい場合にも対応できる形状変化の特性プロファイルを用いて、溶接速度等の制御条件を変更できる。 Note that FIG. 5 shows the profile of the shape change characteristics of a weld bead that is newly laminated by one layer on the pseudo block body X. , data with a difference of less than -0.4 mm cannot necessarily be obtained. In such a case, the profiles are collectively integrated so as to correspond to the difference when the weld beads for a plurality of layers are newly laminated. That is, in this case, the data acquisition unit 331 updates the characteristic profile of shape change by integrating the characteristic profiles of shape change in multiple layers. As a result, the control conditions such as the welding speed can be changed using the characteristic profile of the shape change that can cope with the case where the difference is larger than 0.6 mm or smaller than -0.4 mm.
 図5の特性プロファイルは、溶接ビード28の積層高さの形状変化の特性を表すものである。しかしながら、制御情報生成装置33は、溶接ビード28の、積層幅、積層断面積などの形状変化の特性を表す、複数種の特性プロファイルを備えることができる。これにより、制御情報生成装置33が複数種のプロファイルを考慮し、溶接ビード28の種々の特性を総合的に考慮しながら、積層された溶接ビード28の形状、即ち、三次元構造体の形状を、溶接計画に基づく計画形状(模擬形状)に近似できる。  The characteristic profile in FIG. However, the control information generator 33 can be provided with a plurality of types of characteristic profiles that represent the shape change characteristics of the weld bead 28, such as lamination width and lamination cross-sectional area. As a result, the control information generating device 33 considers a plurality of types of profiles, comprehensively considers various characteristics of the weld bead 28, and determines the shape of the laminated weld bead 28, that is, the shape of the three-dimensional structure. , can be approximated to the planned shape (simulated shape) based on the welding plan.
 図4で示した疑似ブロック体Xは、複数の溶接ビード28を単列上でのみ積層した例である。しかしながら、実際の三次元構造体の多くは、このような単列のみによって造形されるのではなく、ビード幅方向(横方向)にも複数の疑似ブロック体Xが隣接して造形される。 The pseudo block body X shown in FIG. 4 is an example in which a plurality of weld beads 28 are laminated only in a single row. However, many of the actual three-dimensional structures are not formed only by such a single row, but are formed by forming a plurality of pseudo block bodies X adjacent to each other in the bead width direction (horizontal direction).
 図6は、ビード高さを予測する予測モデルであって、複数のビードモデルを積層して得られる疑似ブロック体を示す説明図である。
 図6は、上記の三次元構造体に対応した疑似ブロック体Wであり、疑似ブロック体X、X、X、Xが、幅方向に並べられて造形される。各疑似ブロック体X、X、X、Xは、他の(特に隣の)疑似ブロック体の影響により、その高さが変化することが起こり得る。
FIG. 6 is a prediction model for predicting the bead height, and is an explanatory diagram showing a pseudo-block body obtained by stacking a plurality of bead models.
FIG. 6 shows a pseudo block body W corresponding to the above three-dimensional structure, in which pseudo block bodies X 0 , X 1 , X 2 and X 3 are arranged in the width direction and shaped. The height of each pseudo block X 0 , X 1 , X 2 , X 3 may change due to the influence of other (particularly adjacent) pseudo blocks.
 そこで制御情報生成装置33は、疑似ブロック体Wに対する、制御条件を変更した場合に生じる溶接ビード28の形状変化の特性プロファイルを取得する。本事例の特性プロファイルは、ビード幅方向に互いに隣接する複数の溶接ビード28を積み重ねた疑似ブロック体Wの形状変化の特性を示すものである。積層造形装置11が、種々の制御条件において、疑似ブロック体Wに対応した三次元構造体を実際に造形し、制御情報生成装置33は、その高さ(幅であってもよい)を含む実績形状を計測する。さらに制御情報生成装置33は、計測した三次元構造物の実績形状と、この三次元構造物の形状を図6のビードモデルの積層(疑似ブロック体W)により模擬した模擬形状とを比較する。これにより、制御情報生成装置33は、実際の三次元構造により適合した実績形状と模擬形状との差分を抽出できる。 Therefore, the control information generation device 33 acquires the characteristic profile of the shape change of the weld bead 28 that occurs when the control conditions for the pseudo block body W are changed. The characteristic profile of this example shows the shape change characteristic of the quasi-block body W in which a plurality of weld beads 28 adjacent to each other in the bead width direction are stacked. The layered modeling apparatus 11 actually models a three-dimensional structure corresponding to the pseudo block W under various control conditions, and the control information generating device 33 generates the actual results including the height (or width). Measure the shape. Further, the control information generating device 33 compares the measured actual shape of the three-dimensional structure with a simulated shape obtained by simulating the shape of this three-dimensional structure by laminating bead models (pseudo blocks W) in FIG. Thereby, the control information generation device 33 can extract the difference between the actual shape and the simulated shape that are more suitable for the actual three-dimensional structure.
 図7は、実施形態の積層造形装置11が実施する三次元構造体の造形方法の工程を示すフローチャートである。
 本フローチャートにおいて、ステップS1~S5は、制御情報生成装置33が実施する制御情報生成方法の工程にも相当する。
FIG. 7 is a flow chart showing steps of a three-dimensional structure modeling method performed by the layered modeling apparatus 11 of the embodiment.
In this flowchart, steps S1 to S5 also correspond to steps of a control information generating method performed by the control information generating device 33. FIG.
 まず、制御情報生成装置33のデータ取得部331が、疑似ブロック体を含む溶接計画に基づいて、複数の溶接ビードを積層した場合の積層物の予測形状の特性プロファイルを取得する(S1)。次に、制御情報生成装置33の計測部332が、実際に形成した積層物の形状(実績形状)を計測する(S2)。 First, the data acquisition unit 331 of the control information generation device 33 acquires the characteristic profile of the predicted shape of the laminate when a plurality of weld beads are laminated based on the welding plan including the pseudo block (S1). Next, the measurement unit 332 of the control information generation device 33 measures the shape (actual shape) of the actually formed laminate (S2).
 次に、制御情報生成装置33の演算部333が、ビードの積層による模擬形状と実績形状とを比較し、双方の差分を算出する(S3)。次に、制御情報生成装置33の制御情報出力部334が、差分を解消する補正値を抽出し(S4)、抽出した補正値を用いて制御情報を修正する(S5)。 Next, the calculation unit 333 of the control information generation device 33 compares the simulated shape obtained by bead lamination and the actual shape, and calculates the difference between the two (S3). Next, the control information output unit 334 of the control information generation device 33 extracts a correction value that eliminates the difference (S4), and corrects the control information using the extracted correction value (S5).
 溶接制御装置30の制御部31は、修正した制御情報、即ち、制御情報出力部334により出力された結果の制御情報に応じて、積層造形装置11を制御し、溶接装置100は、この制御情報に基づく積層造形装置11の動作により、アーク溶接を実行して、三次元構造体を造形する(S6)。 The control unit 31 of the welding control device 30 controls the layered manufacturing device 11 according to the corrected control information, that is, the control information as a result output by the control information output unit 334, and the welding device 100 receives this control information. Arc welding is performed by the operation of the lamination modeling apparatus 11 based on , and a three-dimensional structure is modeled (S6).
 溶接制御装置30は、修正した制御情報に基づき、適切に積層造形装置11を制御できる。また、溶接装置100は、積層造形装置11を用いて適切なアーク溶接を実行し、模擬形状に近い三次元構造体を造形できる。 The welding control device 30 can appropriately control the layered manufacturing device 11 based on the corrected control information. In addition, the welding device 100 can perform appropriate arc welding using the layered manufacturing device 11 to form a three-dimensional structure close to a simulated shape.
 本実施形態によれば、特性プロファイルに基づく形状予測を活用することにより、別途、実験で、条件補正量のテーブルを用意するよりも、はるかに手間を削減できる。また、ビードオンプレート(BOP)試験の結果をそのまま利用するよりも差分を正確に補正できる。また、様々な積層のパターン及び溶接条件においても、適切な補正量を算出できる。 According to the present embodiment, by utilizing the shape prediction based on the characteristic profile, it is possible to significantly reduce labor compared to preparing a conditional correction amount table separately in an experiment. Moreover, the difference can be corrected more accurately than using the results of the bead-on-plate (BOP) test as they are. In addition, appropriate correction amounts can be calculated for various lamination patterns and welding conditions.
 図8は、溶接ビード28を積層する層数の増加に応じて、高さの差分を解消するための方法を説明するグラフである。直線L1が、模擬形状において目標とする計画高さであり、高さH、H、H、H・・・が、計画高さである。 FIG. 8 is a graph illustrating a method for eliminating height differences as the number of layers in which the weld bead 28 is laminated increases. The straight line L1 is the target planned height in the simulated shape, and the heights H 1 , H 2 , H 3 , H 4 . . . are the planned heights.
 最初に制御情報生成装置33は、計画高さHに対し、実績形状である実際の高さH11との差分Δhを抽出する。次に制御情報生成装置33は、当初予定の計画高さHでは低いため、1層目で低かった分である差分Δhを加算することにより、次の狙い高さH22=当初予定の計画高さH+Δhを出力する。しかしながら、制御情報生成装置33は、計測により、2層目の実際の高さH21が、当初予定の計画高さHよりΔhだけ低いことを見出した。 First, the control information generator 33 extracts the difference Δh1 between the planned height H1 and the actual height H11 , which is the actual shape. Next, the control information generation device 33 adds the difference Δh 1 , which is the lower height in the first layer, because the initially planned planned height H 2 is low, so that the next target height H 22 = Output the planned height H 2 +Δh 1 . However, the control information generation device 33 found by measurement that the actual height H21 of the second layer is lower than the originally planned planned height H2 by Δh2 .
 このように、溶接計画と実績形状の高さの差分が生じた場合に、高さの差分に対応した補正値より制御情報を制御しても、差分が十分に解消されないことがある。即ち、定常的な高さの誤差が残ってしまう事象が起こり得る。 In this way, when there is a height difference between the welding plan and the actual shape, even if the control information is controlled using the correction value corresponding to the height difference, the difference may not be sufficiently eliminated. That is, an event may occur in which a steady height error remains.
 そこで制御情報生成装置33の制御情報出力部334は、3層目において、当初予定の計画高さHよりΔhだけかさ上げした狙い高さH32を出力する。即ち、制御情報出力部334は、差分よりも大きい値の補正目標値を設定して、補正目標値に応じて補正した制御情報を出力する。これにより、制御情報生成装置33は、差分よりも大きい値を目標値に設定することになり、高さの修正に十分寄与する補正値を得ることができる。この方法は、積層高さの補正のみならず、積層幅、積層断面積などにも適用可能である。 Therefore, the control information output unit 334 of the control information generation device 33 outputs the target height H32 , which is raised by Δh2 from the originally planned planned height H3 for the third layer. That is, the control information output unit 334 sets a correction target value larger than the difference, and outputs control information corrected according to the correction target value. As a result, the control information generating device 33 sets a value larger than the difference as the target value, and can obtain a correction value that sufficiently contributes to correcting the height. This method can be applied not only to correcting the stacking height, but also to stacking width, stacking cross-sectional area, and the like.
 図9は、溶接ビード28を積層する層数の増加に応じて、高さの差分を解消するための他の方法を説明するグラフである。直線L2が、模擬形状において目標とする計画高さであり、高さH、H、H、H、H、H・・・が、計画高さである。 FIG. 9 is a graph illustrating another method for eliminating the difference in height as the number of layers in which the weld bead 28 is laminated increases. The straight line L2 is the target planned height in the simulated shape, and the heights H1 , H2 , H3 , H4 , H5 , H6, ... are the planned heights.
 最初に制御情報生成装置33は、計画高さHに対し、実績形状である実際の高さH11との差分Δhを抽出する。 First, the control information generator 33 extracts the difference Δh1 between the planned height H1 and the actual height H11 , which is the actual shape.
 次に制御情報生成装置33は、当初予定の計画高さHでは低いため、1層目で低かった分である差分Δhを加算することにより、次の狙い高さH22=当初予定の計画高さH+Δhを出力する。しかしながら、制御情報生成装置33は、計測により、2層目の実際の高さH21が、当初予定の計画高さHよりΔhだけ低いことを見出した。 Next, the control information generation device 33 adds the difference Δh 1 , which is the lower height in the first layer, because the initially planned planned height H 2 is low, so that the next target height H 22 = Output the planned height H 2 +Δh 1 . However, the control information generation device 33 found by measurement that the actual height H21 of the second layer is lower than the originally planned planned height H2 by Δh2 .
 そこで制御情報生成装置33の制御情報出力部334は、図8の例と同様に、3層目において、当初予定の計画高さHよりΔh+Δhだけかさ上げした狙い高さH32を出力する。 Therefore, the control information output unit 334 of the control information generation device 33 sets the target height H32 , which is raised by Δh1 + Δh2 from the initially planned planned height H3 , in the third layer, as in the example of FIG. Output.
 しかしながら、制御情報生成装置33は、計測により、3層目の実際の高さH31も、当初予定の計画高さHよりΔhだけ低いことを見出した。そこで制御情報生成装置33の制御情報出力部334は、4層目において、当初予定の計画高さHよりΔh+Δh+Δhだけかさ上げした狙い高さH42を出力する。これにより、制御情報生成装置33は、差分よりも大きい値を目標値に設定することになり、高さの修正に十分寄与する補正値を得ることができる。特に図9に示す方法は、図8に示す方法に比べて、より差分の累積を抑制できる。この方法は、積層高さの補正のみならず、積層幅、積層断面積などにも適用可能である。 However, the control information generating device 33 found by measurement that the actual height H31 of the third layer is also lower than the originally planned planned height H3 by Δh3 . Therefore, the control information output unit 334 of the control information generation device 33 outputs the target height H42 , which is raised by Δh1 + Δh2 + Δh3 from the initially planned planned height H4 for the fourth layer. As a result, the control information generating device 33 sets a value larger than the difference as the target value, and can obtain a correction value that sufficiently contributes to correcting the height. In particular, the method shown in FIG. 9 can suppress accumulation of differences more than the method shown in FIG. This method can be applied not only to correcting the stacking height, but also to stacking width, stacking cross-sectional area, and the like.
 このように、本発明は上記の実施形態に限定されるものではなく、実施形態の各構成を相互に組み合わせること、及び明細書の記載、並びに周知の技術に基づいて、当業者が変更、応用することも本発明の予定するところであり、保護を求める範囲に含まれる。 Thus, the present invention is not limited to the above-described embodiments, and modifications and applications can be made by those skilled in the art by combining each configuration of the embodiments with each other, and based on the description of the specification and well-known techniques. It is also contemplated by the present invention that it falls within the scope of protection sought.
 以上の通り、本明細書には次の事項が開示されている。
(1)指定の制御条件に基づいて加工位置を予め定めた経路に沿って移動させつつ、溶融した加工材料を加工対象面に付加して形成される溶接ビードを用いて層形状を造形し、前記層形状を積層した三次元構造体を造形する積層造形装置を制御する、制御情報を生成する制御情報生成装置であって、
 前記溶接ビードの形状を模擬したビードモデルを複数積層して得られる疑似ブロック体に対する、前記制御条件を変更した場合に生じる前記溶接ビードの形状変化の特性プロファイルを取得するデータ取得部と、
 造形した前記三次元構造体の高さ又は幅を少なくとも含む実績形状を計測する計測部と、
 前記三次元構造体の形状を前記ビードモデルの積層により模擬した模擬形状と前記実績形状とを比較して、双方の形状の差分を抽出する演算部と、
 前記差分を解消する前記制御条件の補正値を前記特性プロファイルから求め、前記補正値に応じて補正した前記制御情報を出力する制御情報出力部と、
を備える制御情報生成装置。
 この制御情報生成装置によれば、溶接ビードの特性を考慮しながら、積層された溶接ビードの形状、即ち、三次元構造体の形状を、溶接計画に基づく模擬形状(計画形状)に近づけることができる。
As described above, this specification discloses the following matters.
(1) shaping a layer shape using a weld bead formed by adding a molten processing material to the surface to be processed while moving the processing position along a predetermined path based on designated control conditions; A control information generating device for generating control information for controlling a layered manufacturing device for manufacturing a three-dimensional structure in which the layer shape is stacked,
a data acquisition unit that acquires a characteristic profile of a shape change of the weld bead that occurs when the control condition is changed for a pseudo block body obtained by laminating a plurality of bead models simulating the shape of the weld bead;
a measurement unit that measures an actual shape including at least the height or width of the three-dimensional structure that has been formed;
A computing unit that compares a simulated shape obtained by simulating the shape of the three-dimensional structure by laminating the bead models and the actual shape, and extracts a difference between the two shapes;
a control information output unit that obtains a correction value for the control condition that eliminates the difference from the characteristic profile, and outputs the control information corrected according to the correction value;
A control information generation device comprising:
According to this control information generation device, the shape of the laminated weld bead, that is, the shape of the three-dimensional structure can be approximated to the simulated shape (planned shape) based on the welding plan while considering the characteristics of the weld bead. can.
(2)前記制御情報出力部は、前記差分よりも大きい値の補正目標値を設定して、前記補正目標値に応じて補正した前記制御情報を出力する、(1)に記載の制御情報生成装置。
 この制御情報生成装置によれば、差分よりも大きい値を目標値に設定することになり、高さの修正に十分寄与する補正値を得ることができる。
(2) The control information generation according to (1), wherein the control information output unit sets a correction target value larger than the difference, and outputs the control information corrected according to the correction target value. Device.
According to this control information generation device, a value larger than the difference is set as the target value, and a correction value that sufficiently contributes to correcting the height can be obtained.
(3)前記特性プロファイルは、ビード幅方向に互いに隣接する複数の溶接ビードを積み重ねた前記疑似ブロック体の形状変化の特性を示すものである、(1)又は(2)に記載の制御情報生成装置。
 この制御情報生成装置によれば、実際の三次元構造により適合した実績形状と模擬形状との差分を抽出できる。
(3) The control information generation according to (1) or (2), wherein the characteristic profile indicates a shape change characteristic of the pseudo block body in which a plurality of weld beads adjacent to each other in the bead width direction are stacked. Device.
According to this control information generation device, it is possible to extract the difference between the actual shape and the simulated shape that are more suitable for the actual three-dimensional structure.
(4) 前記データ取得部は、前記形状変化の特性プロファイルを複数層積算して前記形状変化の特性プロファイルを更新する、(1)~(3)のいずれか1つに記載の制御情報生成装置。
 この制御上法生成装置によれば、実績形状と模擬形状との差分が所定範囲を超える場合にも対応できる形状変化の特性プロファイルを用いて、制御条件を変更できる。
(4) The control information generating device according to any one of (1) to (3), wherein the data acquisition unit updates the characteristic profile of the shape change by accumulating a plurality of layers of the characteristic profile of the shape change. .
According to this control method generation device, the control conditions can be changed using the characteristic profile of the shape change that can cope with the case where the difference between the actual shape and the simulated shape exceeds a predetermined range.
(5)少なくとも前記溶接ビードの積層高さ、積層幅、積層断面積のいずれかを含む形状変化の特性を表す、複数種の前記特性プロファイルを備える、(1)~(4)のいずれか1つに記載の制御情報生成装置。
 この制御情報生成装置によれば、複数種のプロファイルを考慮し、溶接ビードの種々の特性を総合的に考慮しながら、積層された溶接ビードの形状、即ち、三次元構造体の形状を、溶接計画に基づく模擬形状(計画形状)に近づけることができる。
(5) Any one of (1) to (4), comprising a plurality of types of characteristic profiles representing shape change characteristics including at least any one of lamination height, lamination width, and lamination cross-sectional area of the weld bead. The control information generation device according to 1.
According to this control information generation device, the shape of the laminated weld bead, that is, the shape of the three-dimensional structure is determined by taking into account multiple types of profiles and comprehensively considering various characteristics of the weld bead. It is possible to approximate the simulated shape (planned shape) based on the plan.
(6)指定の制御条件に基づいて加工位置を予め定めた経路に沿って移動させつつ、溶融した加工材料を加工対象面に付加して形成される溶接ビードを用いて層形状を造形し、前記層形状を積層した三次元構造体を造形する積層造形装置を制御する、制御情報を生成する制御情報生成方法であって、
 前記溶接ビードの形状を模擬したビードモデルを複数積層して得られる疑似ブロック体に対する、前記制御条件を変更した場合に生じる前記溶接ビードの形状変化の特性プロファイルを取得するデータ取得工程と、
 造形した前記三次元構造体の高さ又は幅を少なくとも含む実績形状を計測する計測工程と、
 前記三次元構造体の形状を前記ビードモデルの積層により模擬した模擬形状と前記実績形状とを比較して、双方の形状の差分を抽出する演算工程と、
 前記差分を解消する前記制御条件の補正値を前記特性プロファイルから求め、前記補正値に応じて補正した前記制御情報を出力する制御情報出力工程と、
を備える制御情報生成方法。
 この制御情報生成方法によれば、溶接ビードの特性を考慮しながら、積層された溶接ビードの形状、即ち、三次元構造体の形状を、溶接計画に基づく模擬形状(計画形状)に近づけることができる。
(6) forming a layer shape using a weld bead formed by adding a molten processing material to the surface to be processed while moving the processing position along a predetermined path based on designated control conditions; A control information generation method for generating control information for controlling a layered manufacturing apparatus for manufacturing a three-dimensional structure in which the layer shape is stacked,
a data acquisition step of acquiring a characteristic profile of a shape change of the weld bead that occurs when the control condition is changed for a pseudo block body obtained by laminating a plurality of bead models simulating the shape of the weld bead;
a measuring step of measuring an actual shape including at least the height or width of the three-dimensional structure that has been shaped;
A calculation step of comparing a simulated shape obtained by simulating the shape of the three-dimensional structure by laminating the bead model and the actual shape, and extracting a difference between the two shapes;
a control information output step of obtaining a correction value for the control condition that eliminates the difference from the characteristic profile, and outputting the control information corrected according to the correction value;
A control information generation method comprising:
According to this control information generation method, the shape of the laminated weld bead, that is, the shape of the three-dimensional structure can be approximated to the simulated shape (planned shape) based on the welding plan while considering the characteristics of the weld bead. can.
(7) (1)~(5)のいずれか1つに記載の制御情報生成装置と、
 前記制御情報生成装置により出力された結果に応じて前記積層造形装置を制御する制御部を備える、溶接制御装置。
 この溶接制御装置によれば、修正した制御情報に基づき、適切に積層造形装置を制御できる。
(7) the control information generation device according to any one of (1) to (5);
A welding control device comprising a control unit that controls the layered manufacturing device according to a result output by the control information generation device.
According to this welding control device, it is possible to appropriately control the layered manufacturing apparatus based on the corrected control information.
(8) (7)に記載の溶接制御装置と、
 前記積層造形装置と、
を備える溶接装置。
 この溶接装置によれば、積層造形装置を用いて、適切なアーク溶接を実行し、模擬形状に近い三次元構造体を造形できる。
(8) The welding control device according to (7);
the laminate molding apparatus;
Welding equipment comprising:
According to this welding device, it is possible to perform appropriate arc welding and form a three-dimensional structure close to a simulated shape using the layered manufacturing device.
(9)指定の制御条件に基づいて加工位置を予め定めた経路に沿って移動させつつ、溶融した加工材料を加工対象面に付加して形成される溶接ビードを用いて層形状を造形し、前記層形状を積層した三次元構造体を造形する積層造形装置を制御する、制御情報を生成する制御情報生成プログラムであって、
 前記溶接ビードの形状を模擬したビードモデルを複数積層して得られる疑似ブロック体に対する、前記制御条件を変更した場合に生じる前記溶接ビードの形状変化の特性プロファイルを取得するデータ取得工程と、
 造形した前記三次元構造体の高さ又は幅を少なくとも含む実績形状を計測する計測工程と、
 前記三次元構造体の形状を前記ビードモデルの積層により模擬した模擬形状と前記実績形状とを比較して、双方の形状の差分を抽出する演算工程と、
 前記差分を解消する前記制御条件の補正値を前記特性プロファイルから求め、前記補正値に応じて補正した前記制御情報を出力する制御情報出力工程と、
をコンピュータに実行させる制御情報生成プログラム。
 この制御情報生成プログラムによれば、溶接ビードの特性を考慮しながら、積層された溶接ビードの形状、即ち、三次元構造体の形状を、溶接計画に基づく模擬形状(計画形状)に近似できる。
(9) forming a layer shape using a weld bead formed by adding a molten processing material to the surface to be processed while moving the processing position along a predetermined path based on designated control conditions; A control information generation program for generating control information for controlling a layered manufacturing apparatus for manufacturing a three-dimensional structure in which the layer shape is stacked,
a data acquisition step of acquiring a characteristic profile of a shape change of the weld bead that occurs when the control condition is changed for a pseudo block body obtained by laminating a plurality of bead models simulating the shape of the weld bead;
a measuring step of measuring an actual shape including at least the height or width of the three-dimensional structure that has been shaped;
A calculation step of comparing a simulated shape obtained by simulating the shape of the three-dimensional structure by laminating the bead model and the actual shape, and extracting a difference between the two shapes;
a control information output step of obtaining a correction value for the control condition that eliminates the difference from the characteristic profile, and outputting the control information corrected according to the correction value;
A control information generation program that causes a computer to execute
According to this control information generation program, the shape of the laminated weld bead, that is, the shape of the three-dimensional structure can be approximated to the simulated shape (planned shape) based on the welding plan while considering the properties of the weld bead.
 なお、本出願は、2022年2月4日出願の日本特許出願(特願2022-016343)に基づくものであり、その内容は本出願の中に参照として援用される。 This application is based on a Japanese patent application (Japanese Patent Application No. 2022-016343) filed on February 4, 2022, the contents of which are incorporated herein by reference.
 11 積層造形装置
 15 溶接トーチ
 17 溶接ロボット
 21 ロボットコントローラ
 23 溶加材供給部
 25 溶接電源
 30 溶接制御装置
 31 制御部
 32 形状センサ
 33 制御情報生成装置
100 溶接装置
331 データ取得部
332 計測部
333 演算部
334 制御情報出力部
 M  溶加材(加工材料、溶接ワイヤ)
REFERENCE SIGNS LIST 11 layered manufacturing device 15 welding torch 17 welding robot 21 robot controller 23 filler material supply unit 25 welding power source 30 welding control device 31 control unit 32 shape sensor 33 control information generation device 100 welding device 331 data acquisition unit 332 measurement unit 333 calculation unit 334 Control information output unit M filler material (processing material, welding wire)

Claims (17)

  1.  指定の制御条件に基づいて加工位置を予め定めた経路に沿って移動させつつ、溶融した加工材料を加工対象面に付加して形成される溶接ビードを用いて層形状を造形し、前記層形状を積層した三次元構造体を造形する積層造形装置を制御する、制御情報を生成する制御情報生成装置であって、
     前記溶接ビードの形状を模擬したビードモデルを複数積層して得られる疑似ブロック体に対する、前記制御条件を変更した場合に生じる前記溶接ビードの形状変化の特性プロファイルを取得するデータ取得部と、
     造形した前記三次元構造体の高さ又は幅を少なくとも含む実績形状を計測する計測部と、
     前記三次元構造体の形状を前記ビードモデルの積層により模擬した模擬形状と前記実績形状とを比較して、双方の形状の差分を抽出する演算部と、
     前記差分を解消する前記制御条件の補正値を前記特性プロファイルから求め、前記補正値に応じて補正した前記制御情報を出力する制御情報出力部と、
    を備える制御情報生成装置。
    While moving the processing position along a predetermined path based on designated control conditions, a layer shape is formed using a weld bead formed by adding a molten processing material to the surface to be processed, and the layer shape is formed. A control information generation device that generates control information for controlling a layered manufacturing device that models a three-dimensional structure in which
    a data acquisition unit that acquires a characteristic profile of a shape change of the weld bead that occurs when the control condition is changed for a pseudo block body obtained by laminating a plurality of bead models simulating the shape of the weld bead;
    a measurement unit that measures an actual shape including at least the height or width of the three-dimensional structure that has been formed;
    A computing unit that compares a simulated shape obtained by simulating the shape of the three-dimensional structure by laminating the bead models and the actual shape, and extracts a difference between the two shapes;
    a control information output unit that obtains a correction value for the control condition that eliminates the difference from the characteristic profile, and outputs the control information corrected according to the correction value;
    A control information generation device comprising:
  2.  前記制御情報出力部は、前記差分よりも大きい値の補正目標値を設定して、前記補正目標値に応じて補正した前記制御情報を出力する、
    請求項1に記載の制御情報生成装置。
    The control information output unit sets a correction target value larger than the difference, and outputs the control information corrected according to the correction target value.
    The control information generation device according to claim 1.
  3.  前記特性プロファイルは、ビード幅方向に互いに隣接する複数の溶接ビードを積み重ねた前記疑似ブロック体の形状変化の特性を示すものである、
    請求項1に記載の制御情報生成装置。
    The characteristic profile indicates the characteristics of the shape change of the pseudo block body in which a plurality of weld beads adjacent to each other in the bead width direction are stacked.
    The control information generation device according to claim 1.
  4.  前記特性プロファイルは、ビード幅方向に互いに隣接する複数の溶接ビードを積み重ねた前記疑似ブロック体の形状変化の特性を示すものである、
    請求項2に記載の制御情報生成装置。
    The characteristic profile indicates the characteristics of the shape change of the pseudo block body in which a plurality of weld beads adjacent to each other in the bead width direction are stacked.
    3. The control information generation device according to claim 2.
  5.  前記データ取得部は、前記形状変化の特性プロファイルを複数層積算して前記形状変化の特性プロファイルを更新する、
    請求項1~4のいずれか1項に記載の制御情報生成装置。
    The data acquisition unit updates the characteristic profile of the shape change by accumulating a plurality of layers of the characteristic profile of the shape change.
    The control information generation device according to any one of claims 1 to 4.
  6.  少なくとも前記溶接ビードの積層高さ、積層幅、積層断面積のいずれかを含む形状変化の特性を表す、複数種の前記特性プロファイルを備える、
    請求項1~4のいずれか1項に記載の制御情報生成装置。
    a plurality of the characteristic profiles representing shape change characteristics including at least one of the lamination height, lamination width, and lamination cross-sectional area of the weld bead;
    The control information generation device according to any one of claims 1 to 4.
  7.  少なくとも前記溶接ビードの積層高さ、積層幅、積層断面積のいずれかを含む形状変化の特性を表す、複数種の前記特性プロファイルを備える、
    請求項5に記載の制御情報生成装置。
    a plurality of the characteristic profiles representing shape change characteristics including at least one of the lamination height, lamination width, and lamination cross-sectional area of the weld bead;
    6. The control information generation device according to claim 5.
  8.  指定の制御条件に基づいて加工位置を予め定めた経路に沿って移動させつつ、溶融した加工材料を加工対象面に付加して形成される溶接ビードを用いて層形状を造形し、前記層形状を積層した三次元構造体を造形する積層造形装置を制御する、制御情報を生成する制御情報生成方法であって、
     前記溶接ビードの形状を模擬したビードモデルを複数積層して得られる疑似ブロック体に対する、前記制御条件を変更した場合に生じる前記溶接ビードの形状変化の特性プロファイルを取得するデータ取得工程と、
     造形した前記三次元構造体の高さ又は幅を少なくとも含む実績形状を計測する計測工程と、
     前記三次元構造体の形状を前記ビードモデルの積層により模擬した模擬形状と前記実績形状とを比較して、双方の形状の差分を抽出する演算工程と、
     前記差分を解消する前記制御条件の補正値を前記特性プロファイルから求め、前記補正値に応じて補正した前記制御情報を出力する制御情報出力工程と、
    を備える制御情報生成方法。
    While moving the processing position along a predetermined path based on designated control conditions, a layer shape is formed using a weld bead formed by adding a molten processing material to the surface to be processed, and the layer shape is formed. A control information generation method for generating control information for controlling a layered manufacturing apparatus for manufacturing a three-dimensional structure in which
    a data acquisition step of acquiring a characteristic profile of a shape change of the weld bead that occurs when the control condition is changed for a pseudo block body obtained by laminating a plurality of bead models simulating the shape of the weld bead;
    a measuring step of measuring an actual shape including at least the height or width of the three-dimensional structure that has been shaped;
    A calculation step of comparing a simulated shape obtained by simulating the shape of the three-dimensional structure by laminating the bead model and the actual shape, and extracting a difference between the two shapes;
    a control information output step of obtaining a correction value for the control condition that eliminates the difference from the characteristic profile, and outputting the control information corrected according to the correction value;
    A control information generation method comprising:
  9.  請求項1~4いずれか1項に記載の制御情報生成装置と、
     前記制御情報生成装置により出力された結果に応じて前記積層造形装置を制御する制御部を備える、溶接制御装置。
    A control information generation device according to any one of claims 1 to 4;
    A welding control device comprising a control unit that controls the layered manufacturing device according to a result output by the control information generation device.
  10.  請求項5に記載の制御情報生成装置と、
     前記制御情報生成装置により出力された結果に応じて前記積層造形装置を制御する制御部を備える、溶接制御装置。
    A control information generation device according to claim 5;
    A welding control device comprising a control unit that controls the layered manufacturing device according to a result output by the control information generation device.
  11.  請求項6に記載の制御情報生成装置と、
     前記制御情報生成装置により出力された結果に応じて前記積層造形装置を制御する制御部を備える、溶接制御装置。
    A control information generation device according to claim 6;
    A welding control device comprising a control unit that controls the layered manufacturing device according to a result output by the control information generation device.
  12.  請求項7に記載の制御情報生成装置と、
     前記制御情報生成装置により出力された結果に応じて前記積層造形装置を制御する制御部を備える、溶接制御装置。
    A control information generation device according to claim 7;
    A welding control device comprising a control unit that controls the layered manufacturing device according to a result output by the control information generation device.
  13.  請求項9に記載の溶接制御装置と、
     前記積層造形装置と、
    を備える溶接装置。
    A welding control device according to claim 9;
    the laminate molding apparatus;
    Welding equipment comprising:
  14.  請求項10に記載の溶接制御装置と、
     前記積層造形装置と、
    を備える溶接装置。
    A welding control device according to claim 10;
    the laminate molding apparatus;
    Welding equipment comprising:
  15.  請求項11に記載の溶接制御装置と、
     前記積層造形装置と、
    を備える溶接装置。
    a welding control device according to claim 11;
    the laminate molding apparatus;
    Welding equipment comprising:
  16.  請求項12に記載の溶接制御装置と、
     前記積層造形装置と、
    を備える溶接装置。
    A welding control device according to claim 12;
    the laminate molding apparatus;
    Welding equipment comprising:
  17.  指定の制御条件に基づいて加工位置を予め定めた経路に沿って移動させつつ、溶融した加工材料を加工対象面に付加して形成される溶接ビードを用いて層形状を造形し、前記層形状を積層した三次元構造体を造形する積層造形装置を制御する、制御情報を生成する制御情報生成プログラムであって、
     前記溶接ビードの形状を模擬したビードモデルを複数積層して得られる疑似ブロック体に対する、前記制御条件を変更した場合に生じる前記溶接ビードの形状変化の特性プロファイルを取得するデータ取得工程と、
     造形した前記三次元構造体の高さ又は幅を少なくとも含む実績形状を計測する計測工程と、
     前記三次元構造体の形状を前記ビードモデルの積層により模擬した模擬形状と前記実績形状とを比較して、双方の形状の差分を抽出する演算工程と、
     前記差分を解消する前記制御条件の補正値を前記特性プロファイルから求め、前記補正値に応じて補正した前記制御情報を出力する制御情報出力工程と、
    をコンピュータに実行させる制御情報生成プログラム。
    While moving the processing position along a predetermined path based on designated control conditions, a layer shape is formed using a weld bead formed by adding a molten processing material to the surface to be processed, and the layer shape is formed. A control information generation program for generating control information for controlling a layered manufacturing apparatus for manufacturing a three-dimensional structure in which
    a data acquisition step of acquiring a characteristic profile of a shape change of the weld bead that occurs when the control condition is changed for a pseudo block body obtained by laminating a plurality of bead models simulating the shape of the weld bead;
    a measuring step of measuring an actual shape including at least the height or width of the three-dimensional structure that has been shaped;
    A calculation step of comparing a simulated shape obtained by simulating the shape of the three-dimensional structure by laminating the bead model and the actual shape, and extracting a difference between the two shapes;
    a control information output step of obtaining a correction value for the control condition that eliminates the difference from the characteristic profile, and outputting the control information corrected according to the correction value;
    A control information generation program that causes a computer to execute
PCT/JP2022/048294 2022-02-04 2022-12-27 Control information generating device, control information generating method, welding control device, and control information generating program WO2023149142A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022016343A JP2023114157A (en) 2022-02-04 2022-02-04 Control information generating device, control information generating method, welding control device, and control information generating program
JP2022-016343 2022-02-04

Publications (1)

Publication Number Publication Date
WO2023149142A1 true WO2023149142A1 (en) 2023-08-10

Family

ID=87552286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/048294 WO2023149142A1 (en) 2022-02-04 2022-12-27 Control information generating device, control information generating method, welding control device, and control information generating program

Country Status (2)

Country Link
JP (1) JP2023114157A (en)
WO (1) WO2023149142A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021074981A (en) * 2019-11-11 2021-05-20 株式会社神戸製鋼所 Manufacturing method of molded product, manufacturing apparatus of molded product, and program
WO2021129671A1 (en) * 2019-12-24 2021-07-01 华中科技大学 Weld bead modeling method, device and system for wire-arc additive manufacture
WO2022014240A1 (en) * 2020-07-15 2022-01-20 株式会社神戸製鋼所 Machine-learning device, laminate molding system, machine-learning method for welding condition, adjustment method for welding condition, and program
WO2022019013A1 (en) * 2020-07-20 2022-01-27 株式会社神戸製鋼所 Machine learning device, laminate molding system, machine learning method for welding condition, welding condition determination method, and program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021074981A (en) * 2019-11-11 2021-05-20 株式会社神戸製鋼所 Manufacturing method of molded product, manufacturing apparatus of molded product, and program
WO2021129671A1 (en) * 2019-12-24 2021-07-01 华中科技大学 Weld bead modeling method, device and system for wire-arc additive manufacture
WO2022014240A1 (en) * 2020-07-15 2022-01-20 株式会社神戸製鋼所 Machine-learning device, laminate molding system, machine-learning method for welding condition, adjustment method for welding condition, and program
WO2022019013A1 (en) * 2020-07-20 2022-01-27 株式会社神戸製鋼所 Machine learning device, laminate molding system, machine learning method for welding condition, welding condition determination method, and program

Also Published As

Publication number Publication date
JP2023114157A (en) 2023-08-17

Similar Documents

Publication Publication Date Title
CN112368099B (en) Method and apparatus for manufacturing layered structure
EP3711887B1 (en) Method and apparatus for manufacturing layered model
WO2019098097A1 (en) Method and device for manufacturing shaped objects
JP6797244B1 (en) Laminated modeling method
WO2021235369A1 (en) Laminate molding method
JP6978350B2 (en) Work posture adjustment method, model manufacturing method and manufacturing equipment
JP6912636B1 (en) Laminated model manufacturing system, laminated model manufacturing method, and laminated model manufacturing program
EP4177002A1 (en) Method for manufacturing multi-layer molded article
WO2023149142A1 (en) Control information generating device, control information generating method, welding control device, and control information generating program
JP6859471B1 (en) Manufacturing method of laminated model
CN115867407A (en) Machine learning device, laminate modeling system, machine learning method for welding conditions, adjustment method for welding conditions, and program
JP7553400B2 (en) Layered manufacturing method, layered manufacturing device, and program for manufacturing layered object
JP7303162B2 (en) Laminate-molded article manufacturing method
WO2022091762A1 (en) Stacking plan creating method
JP7505999B2 (en) Method for predicting deformation of additively manufactured objects
WO2024029276A1 (en) Control information correction method, control information correction device, and program
JP2024049859A (en) Aiming position setting method, aiming position setting apparatus, and program
JP2024089144A (en) Manufacturing method and manufacturing device for molded object

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22925044

Country of ref document: EP

Kind code of ref document: A1