WO2023148804A1 - 指定装置、ロボットシステム、指定方法、および記録媒体 - Google Patents

指定装置、ロボットシステム、指定方法、および記録媒体 Download PDF

Info

Publication number
WO2023148804A1
WO2023148804A1 PCT/JP2022/003781 JP2022003781W WO2023148804A1 WO 2023148804 A1 WO2023148804 A1 WO 2023148804A1 JP 2022003781 W JP2022003781 W JP 2022003781W WO 2023148804 A1 WO2023148804 A1 WO 2023148804A1
Authority
WO
WIPO (PCT)
Prior art keywords
moved
unit
robot system
plane
display
Prior art date
Application number
PCT/JP2022/003781
Other languages
English (en)
French (fr)
Inventor
雅嗣 小川
真澄 一圓
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to PCT/JP2022/003781 priority Critical patent/WO2023148804A1/ja
Priority to JP2023578209A priority patent/JPWO2023148804A5/ja
Publication of WO2023148804A1 publication Critical patent/WO2023148804A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the present disclosure relates to a designation device, a robot system, a designation method, and a recording medium.
  • Patent Literature 1 discloses, as a related technique, a technique relating to a robot system capable of easily teaching a desired motion.
  • the state (position and orientation) of the object before movement is automatically recognized using an expensive camera called an industrial camera. It is often recognized using the system.
  • an industrial camera an expensive camera
  • the object to be moved is in contact with a plurality of objects
  • the object to be moved is a mixture of solid and soft objects
  • the object to be moved is illuminated
  • the object to be moved is glossy, if the object to be moved is transparent, or if the object to be moved is wrapped in cushioning material, etc., even if an industrial camera is used, It can be difficult to properly recognize individual objects.
  • One object of each aspect of the present disclosure is to provide a designation device, a robot system, a designation method, and a recording medium that can solve the above problems.
  • a designation device receives an input designating at least part of an outer shape of an object to be moved in a robot system that moves the object to be moved according to a predetermined algorithm according to a work goal.
  • a robot system includes: the specifying device; a robot capable of gripping an object to be moved; and a control device for gripping an object to be moved.
  • a computer designates at least a part of the outer shape of the object to be moved. and causes the display device to display a two-dimensional image including the object to be moved and the received outline.
  • the recording medium receives an input specifying at least part of the outer shape of the object to be moved. It stores a program for causing a computer to receive, display a two-dimensional image including the object to be moved, and the received contour on a display device.
  • FIG. 1 is a diagram illustrating an example of installation of a measuring device according to a first embodiment of the present disclosure
  • FIG. It is a figure showing an example of composition of a measuring device by a 1st embodiment of this indication.
  • FIG. 4 shows an example of the area
  • FIG. 4 is a diagram showing an example of an image displayed by a display unit according to the first embodiment of the present disclosure;
  • FIG. 4 is a diagram showing an example of a data table stored by a storage unit according to the first embodiment of the present disclosure
  • FIG. It is a figure showing an example of composition of a robot by a 1st embodiment of this indication.
  • 1 is a diagram illustrating an example of a processing flow of a robot system according to a first embodiment of the present disclosure
  • FIG. 5 is a diagram showing an example of installation of a measuring device according to a modification of the first embodiment of the present disclosure
  • FIG. 5 is a diagram showing an example of an image displayed by a display unit according to a modification of the first embodiment of the present disclosure
  • FIG. 10 is a diagram showing an example of a configuration of a robot system according to a second embodiment of the present disclosure
  • FIG. FIG. 7 is a diagram showing an example of the configuration of an automatic recognition system according to the second embodiment of the present disclosure
  • FIG. FIG. 10 is a diagram illustrating an example of camera installation according to the second embodiment of the present disclosure
  • FIG. 10 is a diagram showing an example of an image displayed by a display unit according to the second embodiment of the present disclosure
  • FIG. FIG. 11 is a diagram showing an example of an image displayed by a display unit according to a modification of the second embodiment of the present disclosure
  • FIG. FIG. 11 is a diagram showing an example of a configuration of a robot system according to a third embodiment of the present disclosure
  • FIG. 13 is a diagram illustrating an example of a WMS configuration according to a third embodiment of the present disclosure
  • FIG. FIG. 12 is a diagram showing an example of a data table stored by a storage unit according to the third embodiment of the present disclosure
  • FIG. FIG. 11 is a diagram showing an example of an image displayed by a display unit according to the third embodiment of the present disclosure
  • FIG. 11 is a diagram showing an example of an image displayed by a display unit according to a modification of the third embodiment of the present disclosure
  • FIG. FIG. 13 is a diagram showing an example of a configuration of a robot system according to a fourth embodiment of the present disclosure
  • FIG. 14 is a diagram illustrating an example of a destination determined by a control device according to a fifth embodiment of the present disclosure
  • FIG. FIG. 3 is a diagram illustrating a minimum configuration specifying device according to an embodiment of the present disclosure
  • It is a figure which shows an example of the processing flow of the designation
  • 1 is a schematic block diagram showing a configuration of a computer according to at least one embodiment
  • a robot system 1 according to the first embodiment of the present disclosure is a system that allows a worker to specify the state of an object before movement.
  • the robot system 1 is, for example, a system introduced in a warehouse of a distribution center for the purpose of grasping an received object or an object to be shipped and moving it to a predetermined position at the time of receiving or shipping.
  • goal-oriented task planning that uses AI (Artificial Intelligence) technology to perform tasks that have been performed by humans.
  • the worker at the site using the robot only instructs the work goal, and the robot automatically performs the action to achieve the work goal (that is, the worker does not do anything).
  • the robot can be executed by Specifically, in the case where the robot grips an object to be moved and places it at the destination, for example, if the robot inputs information to "move three parts A to the tray" as a work goal, the robot will: According to a predetermined algorithm corresponding to the work target, the three parts A are gripped in order, and the object is moved from the position before movement to the movement destination.
  • the robot system 1 is a robot system that, when the state of an object before movement is input, moves that object according to a predetermined algorithm according to the work goal.
  • the robot system 1 may be a robot system using AI technology including temporal logic, reinforcement learning, and the like.
  • a substantially horizontal plane P a plane of a belt conveyor or a tray, which will be described later.
  • FIG. 1 is a diagram showing an example of the configuration of a robot system 1 according to the first embodiment of the present disclosure.
  • the robot system 1 includes a measuring device 10, a specifying device 20, a control device 30, and a robot 40, as shown in FIG.
  • each of the measuring device 10, the specifying device 20, the control device 30, and the robot 40 can be connected to each other via the network NW.
  • the network NW in the present disclosure is not limited to a communication network such as the Internet, and may be any network as long as necessary signals are transmitted and received.
  • some of the connections among the measurement device 10, the designation device 20, the control device 30, and the robot 40 may be directly connected by metal wiring, and the other connections may be made through a communication network.
  • FIG. 2 is a diagram showing an example of installation of the measuring device 10 according to the first embodiment of the present disclosure.
  • FIG. 3 is a diagram showing an example configuration of the measuring device 10 according to the first embodiment of the present disclosure.
  • the measuring device 10 is provided at a fixed position capable of photographing the plane P of the tray T on which the object M to be moved is placed from above. That is, the cameras 101 and 102, which will be described later, are provided at fixed positions capable of photographing the plane P on which the object M to be moved is placed from above.
  • the work of photographing the plane P from above and moving the object to be moved to the destination includes, at the time of arrival, the process of unpacking the received container and removing the packing material, and the unpacking process.
  • a human puts the bulk products by lot on a belt conveyor, and the robot system 1 picks up the individual products by lot.
  • This is the work performed in the process of sorting products into trays corresponding to each lot.
  • containers include boxes, trays, and the like, such as cardboard.
  • the bulk product is the object to be moved.
  • a plane P is the surface of the belt conveyor on which bulk products are placed. Also, the tray is the destination.
  • the work of photographing the plane P from above and moving the object to be moved to the destination is the work performed in the process of putting a plurality of products to be shipped to a certain place into one container or the like at the time of shipping.
  • received bulk products are stored in trays by lot.
  • Each bulk product stored in the warehouse is a product, and each tray containing products to be shipped (that is, bulk products corresponding to a plurality of products) is sequentially carried to the position of the robot system 1 at the time of shipment.
  • the object to be moved is the bulk product carried to the position of the robot system 1 by the tray.
  • the plane P is the surface on which the bulk products of the tray carried to the position of the robot system 1 are placed.
  • a container or the like is the destination.
  • FIG. 2 shows a plane P, an object M to be moved placed on the plane P, and a robot 40 that grasps the object M to be moved and moves it to a predetermined position.
  • FIG. 2 also shows a gripper 402a provided in the robot 40, which will be described later.
  • the measuring device 10 includes a camera 101 and a camera 102, as shown in FIG. Note that the cameras 101 and 102 may be accommodated in one housing as shown in FIG. Also, the camera 101 and the camera 102 may be housed in separate housings.
  • the camera 101 is a camera that captures a two-dimensional (2D; 2 Dimension) image including at least a portion of the plane P and an object M to be moved placed on the plane P.
  • the camera 101 transmits information of the captured image to the designated device 20 via the network NW.
  • the camera 102 is a camera capable of measuring the depth in the imaging direction of the moving object.
  • camera 102 is a depth camera.
  • the depth camera irradiates an object within the imaging region with light, and measures the time from the irradiation of the light to the reception of the reflected light from the object irradiated with the light (that is, equivalent to the phase difference) based on the camera 102 Measure the distance from to an object.
  • an area R including at least a part of the plane P and the object M to be moved placed on the plane P is set as the imaging area of the camera 102 .
  • FIG. FIG. 4 is a diagram showing an example of a region R photographed by the measuring device 10 according to the first embodiment of the present disclosure.
  • the area R includes a plane P and an area in which an object M to be moved exists.
  • the lower left corner of the region R is the origin O
  • the horizontal axis is the X axis
  • the vertical axis is the Y axis.
  • the axis perpendicular to the XY plane is the Z-axis. It should be noted that the X-axis is positive in the right direction on the paper surface from the origin. The Y-axis is positive in the upward direction on the paper surface from the origin. Also, the Z-axis is positive in the frontward direction of the paper surface from the origin.
  • the camera 102 is installed at a fixed position. Therefore, the camera 102 designates, as the plane P, the area that is the farthest from the camera 102 within the range of error that is equal to or more than the processing accuracy of the plane P and equal to or less than the size of the object M, and is specified as described later.
  • the Z Axial height can be measured. For example, the area where the object M exists is specified, and the camera 102 calculates the difference between the distance from the camera 102 to the object M and the distance from the camera 102 to the plane P, thereby moving the moving object based on the XY plane. , the height of the object M in the Z-axis direction is measured.
  • Examples of the method of specifying the area where the object M exists include a method of setting in advance the spatial area in which the object M is placed and excluding information on other areas, automatic recognition means (for example, the target object means for recognizing an object based on 3D CAD (Computer Aided Design) information), the position of the object M can be specified by the degree of conformity with the point cloud shape, and the object M can be arranged from the image of the object M. and a method of specifying a spatial region to be used.
  • examples of the camera 102 include a camera that estimates a distance using a stereo camera, a camera that irradiates an object with light and estimates the distance based on the time it takes for the reflected light to return. Camera 102 transmits information indicating the measurement result (that is, information indicating the height of object M) to control device 30 via network NW.
  • the difference between the distance from the LiDAR to the object M and the distance from the LiDAR to the plane P which is measured using LiDAR (Light Detection and Ranging) instead of the camera 102, is used to determine the height of the object M to be moved. It is also possible to calculate the degree of
  • FIG. 5 is a diagram showing an example of the configuration of the specifying device 20 according to the first embodiment of the present disclosure.
  • the designation device 20 includes a display unit 201 (an example of a display device), a generation unit 202, a control unit 203 (an example of control means), and a reception unit 204 (an example of reception means).
  • the designation device 20 is, for example, a tablet terminal having a touch panel function.
  • FIG. 6 is a diagram showing an example of an image displayed by the display unit 201 according to the first embodiment of the present disclosure.
  • objects M1 and M2 and an outline F of the object M1 are shown as the object M to be moved.
  • a region R is shown. Note that the hand shown in FIG. 6 is not displayed by the display unit 201, but is an image of a case where the operator performs an operation to indicate the outer shape F on the touch panel with a finger. .
  • the generation unit 202 generates a moving object M generated by the receiving unit 204 according to the information of the two-dimensional image captured by the camera 101 and the operation performed by the operator who generates the outline F of the moving object to be described later.
  • a control signal Cnt1 for displaying the contour F of the object M to be moved on the display unit 201 together with the two-dimensional image is generated based on the signal indicating the contour F.
  • FIG. in the present disclosure “to ZZ YY together with XX” includes performing ZZ processing on XX and YY at the same time and performing ZZ processing on XX and YY separately.
  • display YY with XX includes performing the process of displaying XX and YY simultaneously.
  • Display YY along with XX means to execute processing to display XX and then execute processing to display YY, and to execute processing to display YY and execute processing to display XX.
  • XX and YY are arbitrary elements (eg, arbitrary information).
  • ZZ is an arbitrary process. Also, here, two arbitrary elements “XX” and “YY” are exemplified, but for three or more arbitrary elements, the processing of ZZ can be performed simultaneously, separately, or It involves executing some elements at the same time and the rest of the elements separately.
  • the generation unit 202 corrects the line to a straight line. good.
  • the generating unit 202 corrects the line indicating the contour F to be a straight line
  • the generating unit 202 generates a control signal for displaying the corrected contour F as the control signal Cnt1.
  • the outer shape F of the object M to be moved which the control unit 203 causes the display unit 201 to display, is also displayed in straight lines.
  • the outer shape F displayed on the display unit 201 does not necessarily match the actual outer shape of the object M to be moved.
  • the operator changes the inclination of the line indicating the outer shape F displayed on the display unit 201 so that it matches the outer shape of the actual movement target object M displayed on the display unit 201. This may be performed for the reception unit 204 .
  • the reception unit 204 generates a signal according to the operation.
  • the generation unit 202 Based on the signal generated by the reception unit 204, the generation unit 202 generates a control signal Cnt1 that matches the outer shape F to the outer shape of the actual object M to be moved.
  • the control unit 203 Based on the control signal Cnt1 generated by the generation unit 202, the control unit 203 displays on the display unit 201 the two-dimensional image captured by the camera 101 and the outline F of the object M to be moved, which is input from the reception unit 204.
  • the generation unit 202 when the reception unit 204 does not generate a signal indicating the outline F of the object M to be moved and the camera 101 captures a two-dimensional image, the generation unit 202 generates a two-dimensional image captured by the camera 101.
  • a control signal Cnt1 is generated to cause the display unit 201 to display the image of .
  • the control unit 203 causes the display unit 201 to display the two-dimensional image captured by the camera 101 based on the control signal Cnt1 generated by the generation unit 202 .
  • the reception unit 204 receives an input by the operator specifying at least part of the outer shape of the object to be moved.
  • the receiving unit 204 is a touch panel, and receives an operation for generating an outline of an object to be moved by an operator's finger, a touch panel dedicated pen, or the like.
  • Examples of operations for generating the outline of the object to be moved include an operation of tracing the outline of the object to be moved with a finger or a pen, and an operation of specifying vertices of the object to be moved with a finger or a pen.
  • the generation unit 202 When the operator performs an operation of specifying the vertices of the object to be moved with a finger or a pen on the reception unit 204, the generation unit 202, for example, each time the operator specifies two vertices, A control signal Cnt1 for displaying a line connecting two vertices with a straight line may be generated, and the control unit 203 may control display on the display unit 201 based on the control signal Cnt1 generated by the generation unit 202 . With this control signal Cnt1, the control unit 203 can cause the display unit 201 to display the outline F of the object M to be moved.
  • the reception unit 204 receives input of work goals.
  • work targets include information including the type of object M to be moved, the quantity of the object, and the destination of the object.
  • the receiving unit 204 receives an input such as "move three parts A to the tray" as a work target. In this case, the receiving unit 204 may specify by determining that the type of the object M to be moved is the part A, the number of the objects is three, and the destination of the object is the tray.
  • the reception unit 204 transmits the received work target to the control device 30 .
  • FIG. 7 is a diagram showing an example of the configuration of the control device 30 according to the first embodiment of the present disclosure.
  • the control device 30 includes a storage unit 301, an acquisition unit 302, an identification unit 303, and a control unit 304, as shown in FIG.
  • the storage unit 301 stores various information necessary for processing performed by the control device 30 .
  • Examples of information stored in the storage unit 301 include a data table TBL1 indicating the correspondence relationship between work goals and algorithms used by the later-described specifying unit 303 to specify algorithms corresponding to work goals.
  • FIG. 8 is a diagram showing an example of the data table TBL1 stored by the storage unit 301 according to the first embodiment of the present disclosure. As shown in FIG. 8, the storage unit 301 associates work goals and algorithms and stores them as a data table TBL1.
  • the acquisition unit 302 acquires information indicating the state of the object to be moved before it is moved. Specifically, the acquisition unit 302 receives the measurement result obtained by the camera 102 , that is, the information indicating the height of the object M to be moved from the plane P from the measurement device 10 . The acquisition unit 302 also receives information indicating the outline F of the object M to be moved from the specifying device 20 . Note that the acquisition unit 302 obtains the shape of the object M to be moved from the received information indicating the height of the object M to be moved from the plane P and the received information indicating the outer shape F of the object M to be moved. can be specified.
  • the acquisition unit 302 also receives information indicating the work target (that is, information indicating the type of object to be moved, the quantity of the object, and the destination of the object) from the designation device 20 .
  • the specifying unit 303 specifies an algorithm used to move the object to be moved to the destination based on the work target received by the acquiring unit 302 . For example, when the work goal received by the acquisition unit 302 is the work goal 1, the identification unit 303 identifies the work goal 1 from among the work goals in the data table TBL1 stored in the storage unit 301. FIG. Then, the identifying unit 303 identifies Algorithm 1 associated with the identified work goal 1 in the data table TBL1.
  • the control unit 304 controls the robot 40 by transmitting a control signal Cnt2 corresponding to the algorithm specified by the specifying unit 303 to the robot 40 .
  • the control signal Cnt2 is a control signal for causing the robot 40 to grip the object M to be moved and to move the gripped object M to the destination specified by the operator.
  • the control signal Cnt2 may be prepared in advance for each algorithm in the data table TBL1, or may be generated by the control unit 304 according to the algorithm specified by the specifying unit 303 each time. There may be.
  • the robot 40 is a robot that grasps the object M to be moved based on the control signal Cnt2 received from the control device 30 and moves the object M to the destination input by the operator to the designation device 20 . The process of moving the object M to the destination by the robot 40 is continued until the number of objects designated by the work target is moved to the destination.
  • Examples of robot 40 include vertical articulated robots, horizontal articulated robots, and any other type of robot.
  • FIG. 9 is a diagram showing an example configuration of the robot 40 according to the first embodiment of the present disclosure.
  • the robot 40 includes a generator 401 and a movable device 402, as shown in FIG.
  • the generation unit 401 receives the control signal Cnt2 from the control device 30 . Based on the received control signal Cnt2, the generation unit 401 generates a drive signal for operating the movable device 402 (that is, causing the movable device 402 to grasp the object M to be moved and move the object M to the destination). Generate Drv.
  • the generating unit 401 When causing the gripping unit 402a (to be described later) to grip an object M to be moved, the generating unit 401, for example, generates a direction perpendicular to the position of the center of gravity of the surface representing the outer shape F of the object M to be moved (first embodiment). In the form, since the object M to be moved is placed parallel to the plane P, the control signal Cnt2 is generated so that the grasping part 402a approaches the object M from directly above the object M).
  • the movable device 402 includes a grip portion 402a, as shown in FIG.
  • the gripping part 402a has a mechanism for gripping the object M to be moved.
  • Examples of a mechanism for gripping the object M to be moved include a mechanism for pinching the object M with a plurality of (for example, two) fingers, a mechanism for sucking a predetermined surface of the object M, and the like.
  • Examples of the predetermined plane include the plane with the largest area among the plurality of planes of the object M to be moved included in the image captured by the camera 101, and the plane P among the planes of the object M to be moved. planes that are more parallel to each other.
  • the movable device 402 is a device that grips the object M to be moved by the gripping unit 402a based on the drive signal Drv generated by the generation unit 401 and moves the object M to the destination.
  • mobile device 402 is a robotic arm with a stepper motor.
  • the stepping motor operates according to the drive signal Drv generated by the generating unit 401, whereby the movable device 402 grips the object M to be moved by the gripping unit 402a. and move the object M to the destination.
  • FIG. 10 is a diagram showing an example of the processing flow of the robot system 1 according to the first embodiment of the present disclosure. Next, processing performed by the robot system 1 will be described with reference to FIG.
  • the camera 101 captures a two-dimensional image including a portion of the plane P and an object M to be moved placed on the plane P.
  • the camera 101 transmits information of the captured image to the designated device 20 via the network NW.
  • the reception unit 204 has not generated a signal indicating the outline F of the object M to be moved. Therefore, the generation unit 202 generates a control signal Cnt1 that causes the display unit 201 to display the two-dimensional image captured by the camera 101 (step S1). Then, the control unit 203 causes the display unit 201 to display the two-dimensional image captured by the camera 101 based on the control signal Cnt1 generated by the generation unit 202 (step S2). A display unit 201 displays a two-dimensional image captured by the camera 101 .
  • the camera 102 sets the plane P to the region that is the furthest from the camera 102 within the range of error that is equal to or more than the processing accuracy of the plane P and equal to or less than the size of the object M, and designates the object M to be moved as the plane P.
  • the height of the object to be moved M in the Z-axis direction with respect to the XY plane Measure is a measure of the measurement result.
  • the reception unit 204 has received an input from the operator specifying at least part of the outer shape of the object to be moved (step S3).
  • the receiving unit 204 is a touch panel, and receives an operation for generating an outline of an object to be moved by an operator's finger, a touch panel dedicated pen, or the like.
  • the generation unit 202 generates the outline F of the object M to be moved, which is generated by the reception unit 204 according to the information of the two-dimensional image captured by the camera 101 and the operation performed by the operator who generates the outline F of the object to be moved. , a control signal Cnt1 is generated to cause the display unit 201 to display the outline F of the object M to be moved together with the two-dimensional image (step S4).
  • the control unit 203 Based on the control signal Cnt1 generated by the generation unit 202, the control unit 203 displays on the display unit 201 the two-dimensional image captured by the camera 101 and the outline F of the object M to be moved, which is input from the reception unit 204. (step S5).
  • the display unit 201 displays the two-dimensional image captured by the camera 101 and the outline F of the object M to be moved, which is input from the reception unit 204 .
  • the generation unit 202 corrects the line to a straight line. good.
  • the generating unit 202 corrects the line indicating the contour F to be a straight line
  • the generating unit 202 generates a control signal Cnt1 for displaying the corrected contour F to the straight line.
  • the control unit 203 causes the display unit 201 to display the two-dimensional image captured by the camera 101 and the outline F of the object M to be moved that has been corrected to a straight line.
  • the display unit 201 displays the two-dimensional image captured by the camera 101 and the outer shape F of the object M to be moved that has been corrected to a straight line.
  • reception unit 204 has received an input of work goals.
  • the reception unit 204 transmits the received work target to the control device 30 .
  • the acquisition unit 302 acquires information indicating the state of the object to be moved before it is moved. Specifically, the acquisition unit 302 receives the measurement result obtained by the camera 102 , that is, the information indicating the height of the object M to be moved from the plane P from the measurement device 10 . The acquisition unit 302 receives information indicating the outer shape F of the object M to be moved from the specifying device 20 . The acquisition unit 302 receives information indicating the work target (that is, information indicating the type of object to be moved, the number of the object, and the destination of the object) from the designation device 20 .
  • the specifying unit 303 specifies an algorithm used to move the object to be moved to the destination based on the work target received by the acquiring unit 302 . For example, when the work goal received by the acquisition unit 302 is the work goal 1, the identification unit 303 identifies the work goal 1 from among the work goals in the data table TBL1 stored in the storage unit 301. FIG. Then, the identifying unit 303 identifies Algorithm 1 associated with the identified work goal 1 in the data table TBL1.
  • the control unit 304 controls the robot 40 by transmitting a control signal Cnt2 corresponding to the algorithm specified by the specifying unit 303 to the robot 40 .
  • the control signal Cnt2 is a control signal for causing the robot 40 to grip the object M to be moved and to move the gripped object M to the destination specified by the operator.
  • the control signal Cnt2 may be prepared in advance for each algorithm in the data table TBL1, or may be generated by the control unit 304 according to the algorithm specified by the specifying unit 303 each time. There may be. Even if a contact sensor is provided at the tip of the gripping portion 402a and the control portion 304 stops the movement of the gripping portion 402a to the object M when the contact sensor detects that the object M has come into contact with the contact sensor. good.
  • the robot system 1 according to the first embodiment of the present disclosure has been described above.
  • the reception unit 204 receives an input designating the outer shape F of the object M to be moved.
  • the control unit 203 causes the display unit 201 (an example of a display device) to display the designated outer shape F together with the two-dimensional image including the object M to be moved.
  • the specifying device 20 displays the outer shape F of the object M to be moved, which is specified by the operator via the reception unit 204, together with a two-dimensional image including the object M to be moved. Therefore, when the worker uses the designation device 20, the worker confirms the positional relationship between the two-dimensional image including the object M and the outer shape F of the object M to be moved, which is designated by the worker. It is possible to specify the position of the outline F of the object M in . In addition, since the image displayed by the specifying device 20 is two-dimensional and the operator only has to match the outline F to the object M in the image, the operation of specifying the outline F by the operator is easy.
  • a robot system that moves an object according to a predetermined algorithm according to the work goal when the state of the object before movement is input, the following are desired. That is, by specifying the state of the object before movement and the state of the object after movement determined according to the algorithm, the operator can input the correct state of the object before movement and the desired state of the object after movement to the robot. is desirable. It is also desirable that the operator can easily specify the state of the object before or after movement. In the robot system 1 according to the modified example of the first embodiment of the present disclosure, the operator can easily designate the state of the object. As a result, even if the robot system cannot correctly recognize the object, it can correctly recognize the object.
  • a robot system 1 according to a modification of the first embodiment of the present disclosure includes a measuring device 10, a specifying device 20, a control device 30, and a robot 40, like the robot system 1 according to the first embodiment shown in FIG.
  • FIG. 11 is a diagram showing an example of installation of the measuring device 10 according to the modified example of the first embodiment of the present disclosure.
  • the measuring device 10 is provided at a fixed position capable of photographing the plane P of the tray T on which the object M to be moved is placed from above.
  • the object to be moved is an object that is placed parallel to a plane P that is positioned substantially horizontally.
  • the processing performed by the designation device 20 is mainly different between the first embodiment and the modified example of the first embodiment.
  • the outer shape F displayed on the display unit 201 is the surface Qa and the axis Qb forming a predetermined angle with respect to the surface Qa, and the object M is placed parallel to the plane P. Considering that 1 is placed obliquely, the same considerations as in the first embodiment can be made.
  • the designation device 20 according to the modification of the first embodiment includes a display unit 201 (an example of a display device), a generation unit 202, a control unit 203, and a reception unit. 204.
  • the display unit 201 displays a two-dimensional image captured by the camera 101, a plane Qa assumed to be a predetermined plane of the object M to be moved, and a plane Qa of the plane Qa, which is input from the reception unit 204.
  • An image showing an axis Qb forming a predetermined angle with respect to Qa is displayed.
  • the plane Qa and the axis Qb forming a predetermined angle with respect to the plane Qa are displayed only for the object M to be gripped among the objects M to be moved.
  • FIG. 12 is a diagram showing an example of an image displayed by the display unit 201 according to the modified example of the first embodiment of the present disclosure. In the example shown in FIG.
  • an object M to be moved, a plane Qa, and an axis Qb forming a predetermined angle with respect to the plane Qa are shown. Also, in the example shown in FIG. 12, a region R is shown. Under the control performed by the control unit 203, the surface Qa displayed by the display unit 201 is deformed (as if using perspective) in accordance with the angle specifying the axis Qb (for example, a tilted rectangular shape).
  • a contour (for example, when a predetermined surface of the object M is a rectangle, a contour showing a parallelogram, a trapezoid, or the like according to the angle specifying the axis Qb) may be displayed on a two-dimensional screen). .
  • the generation unit 202 generates a plane Qa generated according to an operation performed by an operator to match a plane Qa, which will be described later, with a predetermined plane of the object M to be moved, and an axis Qb forming a predetermined angle with respect to the plane Qa.
  • a control signal Cnt1 is generated to cause the display unit 201 to display the plane Qa and the axis Qb forming a predetermined angle with respect to the plane Qa together with the two-dimensional image.
  • the control unit 203 controls the plane Qa input from the reception unit 204 together with the two-dimensional image captured by the camera 101 and forms a predetermined angle with respect to the plane Qa.
  • Axis Qb is displayed on the display unit 201 .
  • the receiving unit 204 recognizes the plane Qa and the axis Qb forming a predetermined angle with respect to the plane Qa.
  • the signal shown is generated. Therefore, based on the control signal Cnt1 generated by the generation unit 202, the control unit 203 displays the two-dimensional image captured by the camera 101 as well as the plane Qa and the axis Qb forming a predetermined angle with respect to the plane Qa. It will be displayed on the part 201 .
  • the reception unit 204 receives an input by the operator for operating the surface Qa that designates a predetermined surface of the object M. For example, when the angle formed by the surface Qa and the axis Qb is 90 degrees, the operator first moves the axis Qb to the touch panel using a finger or a pen dedicated to the touch panel so that the gripping portion 402a approaches the object M. Do an operation that matches the direction. The reception unit 204 receives this operation by the operator. It should be noted that the predetermined surface of the object M to be moved and the surface Qa are made parallel by the operator's operation of aligning the axis Qb with the direction in which the gripping portion 402a approaches the object M to be moved.
  • the reception unit 204 receives this operation by the operator. Note that, in practice, the reception unit 204 may receive operations by the operator from moment to moment.
  • the generation unit 202 generates the control signal Cnt1 each time the reception unit 204 receives an operation by the operator.
  • the control unit 203 controls display on the display unit 201 based on the control signal Cnt1 generated by the generation unit 202 .
  • the reception unit 204 receives an input of a plane Qa that designates a predetermined plane of the object M to be moved.
  • the control unit 203 causes the display device to display the plane Qa received by the reception unit 204 together with the two-dimensional image including the object M to be moved.
  • the designation device 20 displays a two-dimensional image including a predetermined surface of the object M to be moved, and a surface Qa that designates the predetermined surface. Therefore, when an operator uses the specifying device 20, the operator checks the positional relationship between a two-dimensional image including a predetermined surface of the object M and the surface Qa, and moves the surface Qa of the object M to be moved. It can conform to a given surface.
  • the image displayed by the designating device 20 is two-dimensional, and the operator should match the surface Qa with a predetermined surface of the object M in the image.
  • the axis Qb since the axis Qb forming a predetermined angle with the surface Qa is also displayed, the axis Qb serves as a reference for adjustment.
  • the operation performed by the operator on the surface Qa is easy. Therefore, in a robot system that moves an object according to a predetermined algorithm according to a work target when the state of the object before movement is input from the designation device 20, the operator can easily designate the state of the object. can. As a result, even if the robot system cannot correctly recognize the object, it can correctly recognize the object.
  • the control of the gripping section 402a by the control device 30 brings the gripping section 402a closer to that plane. Therefore, regardless of whether the gripping mechanism of the gripping portion 402a is a mechanism for pinching the object M with a plurality of (for example, two) fingers or a mechanism for sucking a predetermined surface of the object M, the gripping portion 402a can grasp the object M properly.
  • FIG. 13 is a diagram showing an example of the configuration of the robot system 1 according to the second embodiment of the present disclosure.
  • the robot system 1 according to the second embodiment includes a measuring device 10, a specifying device 20, a control device 30, and a robot 40, similar to the robot system 1 according to the first embodiment shown in FIG. , further comprising an automatic recognition system 50 .
  • the object M to be moved is assumed to be placed parallel to the plane P positioned substantially horizontally.
  • processing that differs between the robot system 1 according to the second embodiment and the robot system 1 according to the first embodiment will be mainly described.
  • the automatic recognition system 50 is a system capable of photographing a moving object M and identifying the state (that is, the position and orientation) of the moving object M.
  • FIG. 14 is a diagram showing an example configuration of an automatic recognition system 50 according to the second embodiment of the present disclosure.
  • the automatic recognition system 50 comprises a camera 501 as shown in FIG.
  • Camera 501 is an industrial camera.
  • the automatic recognition system 50 identifies the shape of the surface above the object M and the height of the object M from the plane P by photographing the object M with the camera 501 . That is, the automatic recognition system 50 can specify the shape of the upper surface of the object M and the height of the object M from the plane P, like the measuring device 10 .
  • FIG. 15 is a diagram showing an example of installation of the camera 501 according to the second embodiment of the present disclosure. As shown in FIG. 15 , the camera 501 photographs the moving object M from a different direction from the measuring device 10, for example. Note that this automatic recognition system 50 may be implemented using existing technology.
  • the control device 30 includes an acquisition unit 302, an identification unit 303, and a control unit 304, similar to the control device 30 according to the first embodiment shown in FIG. However, the control device 30 receives information on the shape of the upper surface of the object M and the height of the object M from the plane P. FIG. The received information is information equivalent to the outline of the object M and the height of the object M from the plane P received from the measuring device 10 and the specifying device 20 from the automatic recognition system 50 . Then, unlike the control device 30 according to the first embodiment, the control device 30 normally receives from the automatic recognition system 50 the shape of the surface above the object M and the height of the object M from the plane P. to generate the control signal Cnt2.
  • each process of the acquisition unit 302, the identification unit 303, and the control unit 304 is similar to the processing described for the acquisition unit 302, the identification unit 303, and the control unit 304 according to the first embodiment.
  • information on the height from the plane P of is replaced with information on the shape of the upper surface of the object M and the height from the plane P of the object M received from the automatic recognition system 50 .
  • the designation device 20 will be explained.
  • the control device 30 uses the information on the shape of the upper surface of the object M and the height of the object M from the plane P that the control device 30 receives from the automatic recognition system 50, the control device 30 appropriately This is a process performed by the designation device 20 when the robot 40 cannot be controlled.
  • the designation device 20 includes a display unit 201, a generation unit 202, a control unit 203, and a reception unit 204, like the designation device 20 according to the first embodiment shown in FIG.
  • the generation unit 202 combines the information of the two-dimensional image captured by the camera 101 with the information on the shape of the surface above the object M to be moved and the height of the object M from the plane P received from the automatic recognition system 50. Based on this, a control signal Cnt1 is generated to cause the display unit 201 to display the shape U of the upper surface of the object M to be moved (corresponding to the outer shape F in the first embodiment) together with the two-dimensional image.
  • the control unit 203 Based on the control signal Cnt1 generated by the generation unit 202, the control unit 203 causes the display unit 201 to display the two-dimensional image captured by the camera 101 and the shape U of the upper surface of the object M to be moved.
  • the reception unit 204 receives an input from the operator specifying (in this case, changing and specifying) the shape U of the upper surface of the object M to be moved.
  • the reception unit 204 is a touch panel, selects the shape U of the upper surface of the object M to be moved by an operator's finger or a pen dedicated to the touch panel, and moves the selected shape U to a desired position (that is, 2 Receives an operation to move to the position of the upper plane of the actual object M to be moved shown in the dimensional image).
  • FIG. 16 is a diagram showing an example of an image displayed by the display unit 201 according to the second embodiment of the present disclosure. In the example shown in FIG.
  • the objects M1 and M2 and the shape U of the upper surface of the object M1 are shown as the object M to be moved. Also, in the example shown in FIG. 16, a region R is shown. Note that the hand shown in FIG. 16 is not the one displayed by the display unit 201, but the case where the operator moves the shape U on the touch panel and instructs the position of the shape U with a finger. It is shown as an image.
  • the reception unit 204 displays the upper side of the object M to be moved displayed on the display unit 201 based on the state of the object M to be moved identified by the automatic recognition system 50 having the camera 501 .
  • An input is received to move the position of the shape U of the surface.
  • the generation unit 202 changes the control signal Cnt1 based on the input for moving the position of the shape U received by the reception unit 204 .
  • the control unit 203 causes the display unit 201 to display the two-dimensional image captured by the camera 101 and the shape U of the upper surface of the object M to be moved.
  • the specifying device 20 allows the operator to display the shape U of the upper surface of the object M to be moved through the reception unit 204 together with a two-dimensional image including the object M to be moved. Therefore, when the operator uses the specifying device 20, the operator confirms the positional relationship between the two-dimensional image including the object M and the shape U of the upper surface of the object M to be moved specified by the operator. However, the position of the shape U of the upper surface of the object M to be moved can be designated.
  • the image displayed by the specifying device 20 is two-dimensional, and the operator may move the shape U of the upper surface of the object M to be moved in the image to a desired position. Therefore, the operation of designating the shape U by the operator is easy.
  • a robot system 1 according to a modification of the second embodiment of the present disclosure includes a measuring device 10, a specifying device 20, a control device 30, a robot 40, and an automatic recognition system 50, similarly to the robot system 1 according to the second embodiment shown in FIG. Prepare.
  • the object M to be moved is placed obliquely with respect to the plane P, as in the modified example of the first embodiment.
  • the outer shape F of the object M to be moved in the robot system 1 according to the first embodiment is replaced with the shape U of the upper surface of the object M to be moved.
  • the plane Qa in the modified example of the second embodiment and the axis Qb forming a predetermined angle with respect to the plane Qa are the planes Va generated by the automatic recognition system 50.
  • Axis Vb forming a predetermined angle with respect to surface Va may be substituted for the modified example of the first embodiment and the second embodiment. It can be executed by combining the processing of the robot system 1 in the second embodiment.
  • the operator designates the surface Qa by performing an operation to indicate a predetermined surface of the object M on the touch panel with a finger, and By setting Qb, the axis Vb may be corrected.
  • the information of the two-dimensional image captured by the camera 101 and the data for displaying the plane Va generated by the automatic recognition system 50 and the axis Vb forming a predetermined angle with respect to the plane Va are prepared in advance.
  • the generation unit 202 generates a signal indicating the plane Va generated according to the operation performed by the operator to match the plane Va with a predetermined plane of the object M to be moved and the axis Vb forming a predetermined angle with respect to the plane Va.
  • the control signal Cnt1 is generated to cause the display unit 201 to display the two-dimensional image as well as the plane Va and the axis Vb forming a predetermined angle with respect to the plane Va.
  • the control unit 203 Based on the control signal Cnt1 generated by the generation unit 202, the control unit 203 displays the two-dimensional image captured by the camera 101 together with the plane Va and the axis Vb forming a predetermined angle with respect to the plane Va on the display unit 203. to display.
  • the receiving unit 204 is configured such that the operator performs the plane Va and the plane Qa described in the modified example of the first embodiment and the predetermined It receives the operations to be performed on the angled axis Qb.
  • the generation unit 202 generates the control signal Cnt1 according to the operation.
  • the control unit 203 displays the two-dimensional image captured by the camera 101 as well as the plane Va and the axis Vb forming a predetermined angle with respect to the plane Va. display on the unit 201 .
  • the display unit 201 displays the two-dimensional image captured by the camera 101 as well as the plane Va and the axis Vb forming a predetermined angle with respect to the plane Va.
  • FIG. 17 is a diagram showing an example of an image displayed by the display unit 201 according to the modified example of the second embodiment of the present disclosure.
  • an object M to be moved a plane Va, and an axis Vb forming a predetermined angle with respect to the plane Va are shown.
  • a region R is shown.
  • the receiving unit 204 is configured to allow the operator to perform the plane Qa described in the modification of the first embodiment with respect to the plane Va and the axis Vb forming a predetermined angle with respect to the plane Va. and an axis Qb at an angle to its plane Qa.
  • Generation unit 202 generates control signal Cnt1 according to the operation received by reception unit 204 .
  • the control unit 203 Based on the control signal Cnt1 generated by the generation unit 202, the control unit 203 displays the two-dimensional image captured by the camera 101 together with the plane Va and the axis Vb forming a predetermined angle with respect to the plane Va on the display unit 203. to display.
  • the specifying device 20 causes the operator to display a two-dimensional image including a predetermined surface of the object M to be moved via the receiving unit 204 and a surface Va for designating the predetermined surface. Therefore, when an operator uses the specifying device 20, the operator checks the positional relationship between a two-dimensional image including a predetermined surface of the object M and the surface Va, and moves the surface Va to the position of the object M to be moved. It can conform to a given surface.
  • the image displayed by the designating device 20 is two-dimensional, and the operator may match the plane Va with a predetermined plane of the object M in the image.
  • the axis Vb forming a predetermined angle with the plane Va is also displayed, the axis Vb serves as a reference for adjustment.
  • the operation performed by the operator on the surface Va is easy. Therefore, in a robot system that moves an object according to a predetermined algorithm according to a work target when the state of the object before movement is input from the designation device 20, the operator can easily designate the state of the object. can. As a result, even if the robot system cannot correctly recognize the object, it can correctly recognize the object.
  • FIG. 18 is a diagram showing an example configuration of the robot system 1 according to the third embodiment of the present disclosure.
  • the robot system 1 according to the third embodiment includes a measuring device 10, a specifying device 20, a control device 30, and a robot 40, similarly to the robot system 1 according to the first embodiment shown in FIG. .
  • the robot system 1 according to the third embodiment further includes a WMS (Ware House System) 60 (an example of an external system).
  • WMS Ware House System
  • the object M to be moved is placed parallel to the plane P positioned substantially horizontally.
  • the WMS 60 is a system that manages the storage status of each product stored in a warehouse or the like. Examples of the storage status include the quantity and shape (including dimensions) of each product.
  • the WMS 60 also has a transport mechanism that moves the product to the storage location when receiving the product, and moves the product from the storage location to the work area of the robot 40 when shipping the product.
  • FIG. 19 is a diagram showing an example configuration of the WMS 60 according to the third embodiment of the present disclosure.
  • WMS 60 includes storage unit 601 , transport mechanism 602 , and control unit 603 .
  • the storage unit 601 stores various information necessary for processing performed by the WMS 60 .
  • the storage unit 601 stores the storage status of each product.
  • FIG. 20 is a diagram showing an example of the data table TBL2 stored by the storage unit 601 according to the third embodiment of the present disclosure.
  • the storage unit 601 stores the types, quantities, and types of products (that is, objects M to be moved) stored in each tray T (#1, 2, 3, . . . ). Shapes are associated and stored.
  • the transport mechanism 602 moves the product to a desired position at the time of arrival and shipment.
  • the product has already been moved to the work area of the robot 40 under the control of the control unit 603 (i.e., what type of product is in the work area of the robot 40)?
  • the robot system 1 will be described assuming that it is known how many items have been transported.
  • a control unit 603 controls the operation of the transport mechanism 602 . Also, the control unit 603 transmits information on the type, quantity, and shape of the product moved to the work area of the robot 40 to the designation device 20 based on the control.
  • the designation device 20 will be explained. The following description is for the process of specifying the outer shape of the object M to be moved by the specifying device 20 using the storage status information of each product stored in the storage unit 601 of the WMS 60 .
  • the designation device 20 includes a display unit 201, a generation unit 202, a control unit 203, and a reception unit 204, like the designation device 20 according to the first embodiment shown in FIG.
  • Figures Fa that are candidates for the outline F of the object M to be moved are prepared in advance.
  • the generation unit 202 generates candidates along with the two-dimensional image based on information on the two-dimensional image captured by the camera 101 and information on the type, quantity, and shape of the object M to be moved received from the WMS 60.
  • a control signal Cnt1 is generated to cause the display unit 201 to display the figure Fa.
  • the control unit 203 Based on the control signal Cnt1 generated by the generation unit 202, the control unit 203 causes the display unit 201 to display the two-dimensional image captured by the camera 101 and the figure Fa that is a candidate for the outline F of the object M to be moved. .
  • the reception unit 204 receives input from the operator who designates (in this case, selects and designates) a figure Fa that is a candidate for the outline F.
  • the reception unit 204 is a touch panel.
  • the reception unit 204 selects a figure Fa by the operator's finger or a dedicated pen for a touch panel, and places the selected figure Fa at a desired position (that is, the position of the actual movement target object M shown in the two-dimensional image). Receives an operation to move to the position of the upper plane).
  • FIG. 21 is a diagram showing an example of an image displayed by the display unit 201 according to the third embodiment of the present disclosure. In the example shown in FIG. 21, objects M1 and M2 and a figure Fa are shown as objects M to be moved.
  • a region R is shown. Note that the hand shown in FIG. 21 is not displayed by the display unit 201, but is used when the operator moves the figure Fa on the touch panel and designates the position of the figure Fa with a finger. It is shown as an image.
  • the designating device 20 displays only one candidate figure Fa on the display unit 201, and when the operator performs an operation to select the candidate on the reception unit 204, the other figure Fa is displayed. It may be displayed on the unit 201 .
  • the generation unit 202 based on the information of the two-dimensional image captured by the camera 101 and the information of the type, quantity, and shape of the object M to be moved received from the WMS 60, A control signal Cnt1 is generated to cause the display unit 201 to display the figure Fa together with the two-dimensional image.
  • the control unit 203 Based on the control signal Cnt1 generated by the generation unit 202, the control unit 203 causes the display unit 201 to display the two-dimensional image captured by the camera 101 and the figure Fa that is a candidate for the outline F of the object M to be moved. .
  • the receiving unit 204 receives input from the operator who designates (in this case, selects and designates) a figure Fa that is a candidate for the outline F.
  • the receiving unit 204 is a touch panel, and a figure Fa is selected by an operator's finger or a pen dedicated to the touch panel, and the selected figure Fa is placed at a desired position (that is, the actual image displayed on the two-dimensional image). Receives an operation to move to the position of the upper surface of the object M to be moved).
  • the specifying device 20 displays a two-dimensional image including the object M to be moved and the figure Fa corresponding to the object M to be moved. Therefore, when the operator uses the specifying device 20, the operator can specify the position of the figure Fa while confirming the positional relationship between the two-dimensional image including the object M and the figure Fa. Moreover, the image displayed by the designation device 20 is two-dimensional, and the operator may move the figure Fa in the image to a desired position. Therefore, the operation of designating the shape U by the operator is easy. Therefore, in a robot system that moves an object according to a predetermined algorithm according to a work target when the state of the object before movement is input from the designation device 20, the operator can easily designate the state of the object. can. As a result, even if the robot system cannot correctly recognize the object, it can correctly recognize the object.
  • a robot system 1 according to a modification of the third embodiment of the present disclosure includes a measuring device 10, a specifying device 20, a control device 30, a robot 40, and a WMS 60, like the robot system 1 according to the third embodiment shown in FIG.
  • the object M to be moved is placed obliquely with respect to the plane P, as in the modified example of the first embodiment.
  • the designation device 20 includes a display unit 201, a generation unit 202, a control unit 203, and a reception unit 204, like the designation device 20 according to the first embodiment shown in FIG.
  • a plane Qa that designates a predetermined plane of the object M to be moved and a figure Fa that is a candidate for an axis Qb forming a predetermined angle with respect to the plane Qa are prepared in advance.
  • the generating unit 202 generates candidates along with the two-dimensional image based on information on the two-dimensional image captured by the camera 101 and information on the type, quantity, and shape of the object M to be moved received from the WMS 60 .
  • a control signal Cnt1 is generated to cause the display unit 201 to display the figure Fa.
  • the control unit 203 Based on the control signal Cnt1 generated by the generation unit 202, the control unit 203 generates a plane Qa that designates a predetermined plane of the object M to be moved, along with the two-dimensional image captured by the camera 101, and The display unit 201 is caused to display a figure Fa which is a candidate for the axis Qb forming a predetermined angle.
  • the receiving unit 204 designates a plane Qa that designates a predetermined plane of the object M to be moved, and a figure Fa that is a candidate for the axis Qb that forms a predetermined angle with respect to the plane Qa (in this case, it is selected and designated). to receive input from the operator.
  • the receiving unit 204 is a touch panel, and a figure Fa is selected by an operator's finger or a pen dedicated to the touch panel, and the selected figure Fa is placed at a desired position (that is, the actual image displayed on the two-dimensional image). Receives an operation to move to the position of the upper surface of the object M to be moved).
  • FIG. 22 is a diagram showing an example of an image displayed by the display unit 201 according to the modified example of the third embodiment of the present disclosure. In the example shown in FIG. 22, an object M and a figure Fa are shown as the object M to be moved.
  • a region R is shown. Note that the hand shown in FIG. 22 is not displayed by the display unit 201, but is used when the operator moves the figure Fa on the touch panel and designates the position of the figure Fa with a finger. It is shown as an image.
  • the designating device 20 displays only one candidate figure Fa on the display unit 201, and when the operator performs an operation to select the candidate on the reception unit 204, the other figure Fa is displayed. It may be displayed on the unit 201 .
  • the generation unit 202 based on the information of the two-dimensional image captured by the camera 101 and the information of the type, quantity, and shape of the object M to be moved received from the WMS 60, A control signal Cnt1 is generated to cause the display unit 201 to display the figure Fa together with the two-dimensional image.
  • the control unit 203 Based on the control signal Cnt1 generated by the generation unit 202, the control unit 203 generates a two-dimensional image captured by the camera 101, a plane Qa, and a figure that is a candidate for the axis Qb forming a predetermined angle with respect to the plane Qa.
  • the receiving unit 204 receives input from the operator to specify (in this case, select and specify) a figure Fa that is a candidate for the plane Qa and the axis Qb that forms a predetermined angle with respect to the plane Qa.
  • the receiving unit 204 is a touch panel, and a figure Fa is selected by an operator's finger or a pen dedicated to the touch panel, and the selected figure Fa is placed at a desired position (that is, the actual image displayed on the two-dimensional image). Receives an operation to move to the position of the upper surface of the object M to be moved).
  • the specifying device 20 displays a figure Fa prepared in advance according to the object M to be moved, together with a two-dimensional image including the object M to be moved. Therefore, when the operator uses the specifying device 20, the operator can specify the position of the figure Fa while confirming the positional relationship between the two-dimensional image including the object M and the figure Fa. Moreover, the image displayed by the designation device 20 is two-dimensional, and the operator may move the figure Fa in the image to a desired position. Therefore, the operation of designating the shape U by the operator is easy. Therefore, in a robot system that moves an object according to a predetermined algorithm according to a work target when the state of the object before movement is input from the designation device 20, the operator can easily designate the state of the object. can. As a result, even if the robot system cannot correctly recognize the object, it can correctly recognize the object.
  • FIG. 23 is a diagram showing an example configuration of the robot system 1 according to the fourth embodiment of the present disclosure.
  • the robot system 1 according to the fourth embodiment includes a measurement device 10, a designation device 20, a control device 30, a robot 40, an automatic recognition system 50, and a WMS 60, as shown in FIG. Note that, in the fourth embodiment, as in the first embodiment, the object M to be moved is placed parallel to the plane P positioned substantially horizontally.
  • the robot system 1 according to the fourth embodiment is a system configured by combining the robot system 1 according to the second embodiment and the robot system 1 according to the third embodiment.
  • the designation device 20 Based on the information received from the automatic recognition system 50, the designation device 20 has generated a shape U indicating the upper surface of the object M to be moved, but with a desired position and size indicating the outer shape of the object M to be moved.
  • the shape U is not obtained, instead of correcting the shape U, the figure Fa described in the third embodiment is used to specify the outer shape of the object M to be moved.
  • the process of the specifying device 20 performs the process of executing display on the display unit 201 in the second embodiment, and when the shape U is deviated from the outer shape of the object M to be moved, the A process for causing the display unit 201 to perform display may be performed.
  • the robot system 1 according to the fourth embodiment of the present disclosure has been described above.
  • the configuration of the robot system 1 according to the second embodiment and the configuration of the robot system 1 according to the third embodiment, it is possible to perform processing for executing display on the display unit 201 in the second embodiment.
  • the shape U deviates from the outer shape of the object M to be moved
  • the outer shape of the object M to be moved is correctly displayed by executing the display on the display unit 201 in the third embodiment. can be specified. As a result, even if the robot system cannot correctly recognize the object, it can correctly recognize the object.
  • the robot system 1 according to the modification of the fourth embodiment includes a measuring device 10, a specifying device 20, a control device 30, a robot 40, an automatic recognition system 50, and A WMS 60 is provided.
  • the object M to be moved is placed obliquely with respect to the plane P, as in the modification of the first embodiment.
  • the robot system 1 according to the modified example of the fourth embodiment is a system configured by combining the robot system 1 according to the modified example of the second embodiment and the robot system 1 according to the modified example of the third embodiment.
  • the robot system 1 according to the fourth embodiment can be considered similar to the robot system 1 according to the fourth embodiment.
  • display on the display unit 201 in the modification of the second embodiment It is possible to perform the processing to be executed.
  • the figure Fa is deviated from the predetermined plane of the object M to be moved
  • the object M to be moved is displayed by performing a process of causing the display unit 201 in the modified example of the third embodiment to perform display.
  • a given plane of M can be correctly specified. As a result, even if the robot system cannot correctly recognize the object, it can correctly recognize the object.
  • a robot system 1 according to a fifth embodiment of the present disclosure includes a measuring device 10, a specifying device 20, a control device 30, and a robot 40, like the robot system 1 according to the first embodiment shown in FIG.
  • a robot system 1 according to the fifth embodiment is a system for changing the destination of a robot 40 .
  • the robot system 1 is a system that executes processing for changing the destination to a desired destination in such a case.
  • the destination is also determined at the stage when the control signal Cnt2 according to the algorithm is determined.
  • the control unit 304 outputs information indicating the destination to the designated device 20 .
  • the generation unit 202 generates information based on two-dimensional image information captured by the camera 101, information for designating the outer shape F described in the first embodiment, and information indicating the destination received from the control device 30. , a control signal Cnt1 for displaying on the display unit 201 a two-dimensional image, a movement destination, and an outline F designating the movement destination.
  • the control unit 203 Based on the control signal Cnt1 generated by the generation unit 202, the control unit 203 causes the display unit 201 to display the outline F together with the two-dimensional image captured by the camera 101 and the destination.
  • the reception unit 204 receives an operation by the worker to delete unnecessary destinations.
  • the reception unit 204 is a touch panel, and an operator selects a destination to be deleted with a finger or a pen dedicated to the touch panel. receives the operation.
  • the generation unit 202 generates a control signal Cnt1 that does not display the destination designated to be deleted. The destination is deleted by this control signal Cnt1.
  • the receiving unit 204 also receives an operation to move the outer shape F to a desired position (that is, a desired destination).
  • the receiving unit 204 also receives an input from the operator who designates (in this case, selects and designates) the outer shape F.
  • the reception unit 204 is a touch panel, and receives an operation to select the outer shape F by the operator's finger or a pen dedicated to the touch panel, and to move the selected outer shape F to a desired position (that is, a desired destination). .
  • the generation unit 202 generates the control signal Cnt1 according to the operation. Then, based on the control signal Cnt1 generated by the generation unit 202, the control unit 203 causes the display unit 201 to display the two-dimensional image captured by the camera 101 and the outline F that is the desired destination. As a result, under the control of the control unit 203, the display unit 201 displays the two-dimensional image captured by the camera 101 as well as the outline F, which is the desired destination.
  • FIG. 24 is a diagram showing an example of destinations determined by the control device 30 according to the fifth embodiment of the present disclosure. As shown in FIG. 24, there is a possibility that an area where the object M is in close contact and an area where the object M does not exist coexist as the movement destination. In this case as well, the destination can be changed to the destination desired by the worker by the above-described processing.
  • the technique for specifying the state of the object M to be moved can also be used for the technique for specifying the destination. Therefore, in a robot system that moves an object according to a predetermined algorithm according to a work target when the state of the object before movement is input from the designation device 20, the operator can easily designate the state of the object after movement. can do. As a result, even if the robot system cannot correctly recognize the object, it can correctly recognize the object.
  • a robot system 1 according to the sixth embodiment includes a measurement device 10, a designation device 20, a control device 30, a robot 40, and a WMS 60, like the robot system 1 according to the third embodiment shown in FIG.
  • a robot system 1 according to the sixth embodiment is a system for changing the destination of a robot 40 .
  • the robot system 1 is a system that executes processing for changing the destination to a desired destination in such a case.
  • the control device 30 changes the destination specified according to the algorithm.
  • the destination is also determined at the stage when the control signal Cnt2 according to the algorithm is determined.
  • the control unit 304 outputs information indicating the destination to the designated device 20 .
  • the generation unit 202 generates two-dimensional image information captured by the camera 101, information on the type, quantity, and shape of the object M to be moved received from the WMS 60, and information indicating the destination received from the control device 30. , a control signal Cnt1 for displaying the figure Fa on the display unit 201 together with the two-dimensional image and the destination is generated.
  • the control unit 203 Based on the control signal Cnt1 generated by the generation unit 202, the control unit 203 causes the display unit 201 to display the figure Fa together with the two-dimensional image captured by the camera 101 and the destination.
  • the reception unit 204 receives an operation by the worker to delete unnecessary destinations.
  • the reception unit 204 is a touch panel, and an operator selects a destination to be deleted with a finger or a pen dedicated to the touch panel. receives the operation.
  • the generation unit 202 generates a control signal Cnt1 that does not display the destination designated to be deleted. The destination is deleted by this control signal Cnt1.
  • the receiving unit 204 also receives an operation to move the figure Fa to a desired position (that is, a desired destination).
  • the receiving unit 204 also receives input from the operator who designates (in this case, selects and designates) the figure Fa.
  • the reception unit 204 is a touch panel, and receives an operation of selecting a figure Fa by an operator's finger or a pen dedicated to a touch panel and moving the selected figure Fa to a desired position (that is, a desired destination). .
  • the generation unit 202 generates the control signal Cnt1 according to the operation. Based on the control signal Cnt1 generated by the generation unit 202, the control unit 203 causes the display unit 201 to display the two-dimensional image captured by the camera 101 and the desired destination figure Fa. As a result, under the control of the control unit 203, the display unit 201 displays the two-dimensional image captured by the camera 101 as well as the desired destination figure Fa.
  • the technique for specifying the state of the object M to be moved can also be used for the technique for specifying the destination. Therefore, in a robot system that moves an object according to a predetermined algorithm according to a work target when the state of the object before movement is input from the designation device 20, the operator can easily designate the state of the object after movement. can do. As a result, even if the robot system cannot correctly recognize the object, it can correctly recognize the object.
  • the robot system 1 according to the seventh embodiment includes a measuring device 10, a specifying device 20, a control device 30, and a robot 40, similar to the robot system 1 according to the second embodiment shown in FIG. Prepare.
  • the robot system 1 includes an automatic recognition system 50, and when the robot 40 moves the object M to be moved to the destination determined by the control device 30 according to the algorithm under the control of the control device 30, automatic recognition is performed.
  • System 50 generates information indicating its destination.
  • the robot system 1 according to the seventh embodiment is a system that executes processing for changing the destination to a desired destination in such a case.
  • the automatic recognition system 50 outputs the generated information indicating the destination to the designation device 20 .
  • the generation unit 202 is based on the information of the two-dimensional image captured by the camera 101, the information for designating the outer shape F described in the first embodiment, and the information indicating the destination received from the automatic recognition system 50. Then, a control signal Cnt1 is generated to cause the display unit 201 to display the two-dimensional image, the destination, and the outline F designating the destination.
  • the control unit 203 Based on the control signal Cnt1 generated by the generation unit 202, the control unit 203 causes the display unit 201 to display the outline F together with the two-dimensional image captured by the camera 101 and the destination.
  • the reception unit 204 receives an operation by the worker to delete unnecessary destinations.
  • the reception unit 204 is a touch panel, and an operator selects a destination to be deleted with a finger or a pen dedicated to the touch panel. receives the operation.
  • the generation unit 202 generates a control signal Cnt1 that does not display the destination designated to be deleted. The destination is deleted by this control signal Cnt1.
  • the receiving unit 204 also receives an operation to move the outer shape F to a desired position (that is, a desired destination).
  • the receiving unit 204 also receives an input from the operator who designates (in this case, selects and designates) the outer shape F.
  • the reception unit 204 is a touch panel, and receives an operation to select the outer shape F by the operator's finger or a pen dedicated to the touch panel, and to move the selected outer shape F to a desired position (that is, a desired destination). .
  • the generation unit 202 generates the control signal Cnt1 according to the operation. Based on the control signal Cnt1 generated by the generation unit 202, the control unit 203 causes the display unit 201 to display the two-dimensional image captured by the camera 101 and the outline F that is the desired destination. As a result, under the control of the control unit 203, the display unit 201 displays the two-dimensional image captured by the camera 101 as well as the outline F, which is the desired destination.
  • the technique for specifying the state of the object M to be moved can also be used for the technique for specifying the destination. Therefore, in a robot system that moves an object according to a predetermined algorithm according to a work target when the state of the object before movement is input from the designation device 20, the operator can easily designate the state of the object after movement. can do. As a result, even if the robot system cannot correctly recognize the object, it can correctly recognize the object.
  • the robot system 1 according to the eighth embodiment includes a measurement device 10, a designation device 20, a control device 30, a robot 40, an automatic recognition system 50, and a WMS 60, similar to the robot system 1 of the fourth embodiment shown in FIG. .
  • the robot system 1 includes an automatic recognition system 50, and when the robot 40 moves the object M to be moved to the destination determined by the control device 30 according to the algorithm under the control of the control device 30, automatic recognition is performed.
  • System 50 generates information indicating its destination.
  • the robot system 1 according to the eighth embodiment is a system that executes processing for changing the destination to a desired destination in such a case.
  • the automatic recognition system 50 outputs the generated information indicating the destination to the designation device 20 .
  • the generating unit 202 generates information on the two-dimensional image captured by the camera 101, information on the type, quantity, and shape of the object M to be moved received from the WMS 60, and information indicating the destination received from the automatic recognition system 50. , a control signal Cnt1 for displaying the figure Fa on the display unit 201 together with the two-dimensional image and the destination is generated.
  • the control unit 203 Based on the control signal Cnt1 generated by the generation unit 202, the control unit 203 causes the display unit 201 to display the figure Fa together with the two-dimensional image captured by the camera 101 and the destination.
  • the reception unit 204 receives an operation by the worker to delete unnecessary destinations.
  • the reception unit 204 is a touch panel, and an operator selects a destination to be deleted with a finger or a pen dedicated to the touch panel. receives the operation.
  • the generation unit 202 generates a control signal Cnt1 that does not display the destination designated to be deleted. The destination is deleted by this control signal Cnt1.
  • the receiving unit 204 also receives an operation to move the figure Fa to a desired position (that is, a desired destination).
  • the receiving unit 204 also receives input from the operator who designates (in this case, selects and designates) the figure Fa.
  • the reception unit 204 is a touch panel, and receives an operation of selecting a figure Fa by an operator's finger or a pen dedicated to a touch panel and moving the selected figure Fa to a desired position (that is, a desired destination). .
  • the generation unit 202 generates the control signal Cnt1 according to the operation. Based on the control signal Cnt1 generated by the generation unit 202, the control unit 203 causes the display unit 201 to display the two-dimensional image captured by the camera 101 and the desired destination figure Fa. As a result, under the control of the control unit 203, the display unit 201 displays the two-dimensional image captured by the camera 101 as well as the desired destination figure Fa.
  • the technique for specifying the state of the object M to be moved can also be used for the technique for specifying the destination. Therefore, in a robot system that moves an object according to a predetermined algorithm according to a work target when the state of the object before movement is input from the designation device 20, the operator can easily designate the state of the object after movement. can do. As a result, even if the robot system cannot correctly recognize the object, it can correctly recognize the object.
  • FIG. 25 is a diagram showing a minimum configuration specifying device 20 according to an embodiment of the present disclosure.
  • the designation device 20 with the minimum configuration according to the embodiment of the present disclosure is a designation device included in a robot system that moves an object to be moved according to a predetermined algorithm according to a work goal. (an example of reception means), and a control unit 203 (an example of control means).
  • the receiving unit 204 receives an input designating at least part of the outline of the object to be moved.
  • the control unit 203 causes the display device to display the outline received by the reception unit together with the two-dimensional image including the object to be moved.
  • the reception unit 204 can be realized, for example, by using the function of the reception unit 204 included in the designation device 20 according to the modification of the first embodiment.
  • the control unit 203 can be implemented using, for example, the functions of the control unit 203 included in the designation device 20 according to the modification of the first embodiment.
  • FIG. 26 is a diagram showing an example of a processing flow of the minimum configuration designating device 20. As shown in FIG. Here, the processing of the minimum configuration specifying device 20 will be described with reference to FIG.
  • the reception unit 204 receives an input designating at least part of the outer shape of the object to be moved (step S11). ).
  • the control unit 203 causes the display device to display the outline received by the reception unit together with the two-dimensional image including the object to be moved (step S12).
  • the specifying device 20 can easily specify the state of the object in a robot system that moves the object according to a predetermined algorithm according to the work target when the state of the object before movement is input. can do. As a result, even if the robot system cannot correctly recognize the object, it can correctly recognize the object.
  • the robot system 1, the measurement device 10, the designation device 20, the control device 30, the robot 40, the automatic recognition system 50, the WMS 60, and other control devices have computer devices inside. You may have The process of the above-described processing is stored in a computer-readable recording medium in the form of a program, and the above-described processing is performed by reading and executing this program by a computer. Specific examples of computers are shown below.
  • FIG. 27 is a schematic block diagram showing the configuration of a computer according to at least one embodiment.
  • the computer 5 includes a CPU 6 (including a vector processor), a main memory 7, a storage 8, and an interface 9, as shown in FIG.
  • a CPU 6 including a vector processor
  • main memory 7 main memory 7
  • storage 8 main memory 7
  • an interface 9 for example, each of the robot system 1 , the measuring device 10 , the specifying device 20 , the control device 30 , the robot 40 , the automatic recognition system 50 , the WMS 60 and other control devices described above is implemented in the computer 5 .
  • the operation of each processing unit described above is stored in the storage 8 in the form of a program.
  • the CPU 6 reads out the program from the storage 8, develops it in the main memory 7, and executes the above process according to the program.
  • the CPU 6 secures storage areas corresponding to the storage units described above in the main memory 7 according to the program.
  • storage 8 examples include HDD (Hard Disk Drive), SSD (Solid State Drive), magnetic disk, magneto-optical disk, CD-ROM (Compact Disc Read Only Memory), DVD-ROM (Digital Versatile Disc Read Only Memory) , semiconductor memory, and the like.
  • the storage 8 may be an internal medium directly connected to the bus of the computer 5, or an external medium connected to the computer 5 via the interface 9 or communication line. Further, when this program is distributed to the computer 5 through a communication line, the computer 5 that receives the distribution may develop the program in the main memory 7 and execute the above process.
  • storage 8 is a non-transitory, tangible storage medium.
  • the above program may implement part of the functions described above.
  • the program may be a file capable of realizing the functions described above in combination with a program already recorded in the computer device, that is, a so-called difference file (difference program).
  • the worker in a robot system that moves an object according to a predetermined algorithm according to a work goal when the state of the object before movement is input, the worker can easily specify the state of the object. be able to.

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

指定装置は、作業目標に応じた所定のアルゴリズムに従って移動対象の物体を移動させるロボットシステムにおいて前記移動対象の物体の外形の少なくとも一部を指定する入力を受け取る受付手段と、前記移動対象の物体を含む2次元の画像と、前記受付手段が受け取った前記外形とを表示装置に表示させる制御手段と、を備える。

Description

指定装置、ロボットシステム、指定方法、および記録媒体
 本開示は、指定装置、ロボットシステム、指定方法、および記録媒体に関する。
 物流などさまざまな分野でロボットが利用されている。特許文献1には、関連する技術として、所望の動作の教示を容易に行うことが可能なロボットシステムに関する技術が開示されている。
特開2014-083610号公報
 ところで、一般的に、移動対象の物体を把持して移動先に置くようなロボットの場合、移動前の物体の状態(位置および姿勢)は、産業用カメラと呼ばれる高価なカメラを用いた自動認識システムを用いて認識されることが多い。しかしながら、例えば、移動対象の物体が複数の物体と接触している場合、移動対象の物体として固形物と軟体物とが混在している場合、移動対象の物体に照明が映り込んでいる場合、移動対象の物体に光沢がある場合、移動対象の物体が透明である場合、移動対象の物体が緩衝材などでラッピングされている場合などには、産業用カメラを用いた場合であっても、個々の物体を適切に認識することが困難な場合がある。
 本開示の各態様は、上記の課題を解決することのできる指定装置、ロボットシステム、指定方法、および記録媒体を提供することを目的の1つとしている。
 本開示の一態様によれば、指定装置は、作業目標に応じた所定のアルゴリズムに従って移動対象の物体を移動させるロボットシステムにおいて前記移動対象の物体の外形の少なくとも一部を指定する入力を受け取る受付手段と、前記移動対象の物体を含む2次元の画像と、前記受付手段が受け取った前記外形とを表示装置に表示させる制御手段と、を備える。
 本開示の別の態様によれば、ロボットシステムは、前記指定装置と、移動対象の物体を把持可能なロボットと、前記指定装置が受け取った移動対象の物体の外形に基づいて、前記ロボットに前記移動対象の物体を把持させる制御装置と、を備える。
 本開示の別の態様によれば、指定方法は、作業目標に応じた所定のアルゴリズムに従って移動対象の物体を移動させるロボットシステムにおいて、コンピュータが、前記移動対象の物体の外形の少なくとも一部を指定する入力を受け取り、前記移動対象の物体を含む2次元の画像と、受け取った前記外形とを表示装置に表示させる。
 本開示の別の態様によれば、記録媒体は、作業目標に応じた所定のアルゴリズムに従って移動対象の物体を移動させるロボットシステムにおいて、前記移動対象の物体の外形の少なくとも一部を指定する入力を受け取ることと、前記移動対象の物体を含む2次元の画像と、受け取った前記外形とを表示装置に表示させることと、をコンピュータに実行させるプログラムが格納している。
 本開示の各態様によれば、ロボットシステムが物体を正しく認識できない場合であっても、物体を正しく認識できるようになる。
本開示の第1実施形態によるロボットシステムの構成の一例を示す図である。 本開示の第1実施形態による測定装置の設置の一例を示す図である。 本開示の第1実施形態による測定装置の構成の一例を示す図である。 本開示の第1実施形態による測定装置が撮影する領域の一例を示す図である。 本開示の第1実施形態による指定装置の構成の一例を示す図である。 本開示の第1実施形態による表示部が表示する画像の一例を示す図である。 本開示の第1実施形態による制御装置の構成の一例を示す図である。 本開示の第1実施形態による記憶部が記憶するデータテーブルの一例を示す図である。 本開示の第1実施形態によるロボットの構成の一例を示す図である。 本開示の第1実施形態によるロボットシステムの処理フローの一例を示す図である。 本開示の第1実施形態の変形例による測定装置の設置の一例を示す図である。 本開示の第1実施形態の変形例による表示部が表示する画像の一例を示す図である。 本開示の第2実施形態によるロボットシステムの構成の一例を示す図である。 本開示の第2実施形態による自動認識システムの構成の一例を示す図である。 本開示の第2実施形態によるカメラの設置の一例を示す図である。 本開示の第2実施形態による表示部が表示する画像の一例を示す図である。 本開示の第2実施形態の変形例による表示部が表示する画像の一例を示す図である。 本開示の第3実施形態によるロボットシステムの構成の一例を示す図である。 本開示の第3実施形態によるWMSの構成の一例を示す図である。 本開示の第3実施形態による記憶部が記憶するデータテーブルの一例を示す図である。 本開示の第3実施形態による表示部が表示する画像の一例を示す図である。 本開示の第3実施形態の変形例による表示部が表示する画像の一例を示す図である。 本開示の第4実施形態によるロボットシステムの構成の一例を示す図である。 本開示の第5実施形態による制御装置が決定する移動先の一例を示す図である。 本開示の実施形態による最小構成の指定装置を示す図である。 最小構成の指定装置の処理フローの一例を示す図である。 少なくとも1つの実施形態に係るコンピュータの構成を示す概略ブロック図である。
 以下、図面を参照しながら実施形態について詳しく説明する。
<第1実施形態>
 本開示の第1実施形態によるロボットシステム1は、作業者が移動前の物体の状態を指定することのできるシステムである。ロボットシステム1は、例えば、入荷時または出荷時に、入荷した物体または出荷する物体を把持(grasp)して所定の位置に移動させる目的で物流センターの倉庫などに導入されるシステムである。例えば、人間が行っていた作業をAI(Artificial Intelligence)技術を用いて実行する「目標指向タスクプランニング」と呼ばれる技術がある。その「目標指向タスクプランニング」を用いた場合、ロボットを利用する現場の作業者が作業目標を指示するだけで、作業目標を達成する動作をロボットに自動的(すなわち、作業者は何もせず)に実行させることが可能になる。具体的には、移動対象の物体をロボットが把持して移動先に置くような場合、例えば作業目標として「部品Aを3個トレイに移動させる」という情報をロボットに入力すれば、ロボットは、その作業目標に応じた所定のアルゴリズムに従って、3個の部品Aを順に把持し、移動前の位置から移動先へと物体を移動させる。
 ロボットシステム1は、移動前の物体の状態が入力された場合に作業目標に応じた所定のアルゴリズムに従ってその物体を移動させるロボットシステムである。ロボットシステム1は、時相論理(temporal logic)、強化学習(Reinforcement learning)などを含むAI技術を用いるロボットシステムであってもよい。なお、第1実施形態では、移動対象の物体Mは、ほぼ水平に位置する平面P上(後述するベルトコンベアやトレイの平面上)に平行に置かれているものとする。
(ロボットシステムの構成)
 図1は、本開示の第1実施形態によるロボットシステム1の構成の一例を示す図である。ロボットシステム1は、図1に示すように、測定装置10、指定装置20、制御装置30、およびロボット40を備える。なお、測定装置10、指定装置20、制御装置30、およびロボット40のそれぞれは、ネットワークNWを介して互いに接続可能である。なお、本開示におけるネットワークNWは、インターネットのような通信ネットワークに限らず、必要な信号の送受信が行われるものであればどのようなものであってもよい。例えば、測定装置10、指定装置20、制御装置30、およびロボット40それぞれの接続の一部が金属配線で直接接続され、その他の接続は通信ネットワークを介して行われるものであってもよい。
(測定装置の構成)
 図2は、本開示の第1実施形態による測定装置10の設置の一例を示す図である。図3は、本開示の第1実施形態による測定装置10の構成の一例を示す図である。図2に示す例では、測定装置10は、移動対象の物体Mが置かれているトレイTの平面Pを上方から撮影可能な固定の位置に設けられる。すなわち、後述するカメラ101およびカメラ102は、移動対象の物体Mが置かれている平面Pを上方から撮影可能な固定の位置に設けられる。
 なお、平面Pを上方から撮影し、移動対象の物体を移動先へ移動させる作業は、入荷時であれば、人間が、入荷した容器などを開梱して梱包材を除去する処理と、開梱した容器などから個々の商品(以降、「バラ品」と記載)を取り出す処理とを行った後に、人間がベルトコンベア上にバラ品をロットごとに置き、ロボットシステム1がそのロットごとのバラ品を各ロットに対応するトレイに仕分けする処理において行われる作業である。容器の例としては、段ボールのような箱やトレイなどが挙げられる。この場合、バラ品が移動対象の物体である。また、ベルトコンベアのバラ品が置かれている面が平面Pである。また、トレイが移動先である。
 また、平面Pを上方から撮影し、移動対象の物体を移動先へ移動させる作業は、出荷時であれば、ある場所に出荷する複数の商品を1つの容器などに入れる処理において行われる作業である。倉庫では、入荷されたバラ品がロットごとにトレイに入れられた状態で保管されている。倉庫に保管されているそれぞれのバラ品が商品であり、出荷時には、出荷する商品(すなわち、複数の商品に対応するバラ品)が入れられた各トレイがロボットシステム1の位置まで順に運ばれる。この場合、トレイでロボットシステム1の位置まで運ばれたバラ品が移動対象の物体である。また、ロボットシステム1の位置まで運ばれたトレイのバラ品が置かれている面が平面Pである。また、容器などが移動先である。
 図2では、平面Pと、平面P上に置かれた移動対象の物体Mと、その移動対象の物体Mを把持し、所定の位置まで移動させるロボット40が示されている。また、図2では、後述するロボット40が備える把持部402aが示されている。測定装置10は、図3に示すように、カメラ101、およびカメラ102を備える。なお、カメラ101およびカメラ102は、図2に示すように、1つの筐体に収納されるものであってもよい。また、カメラ101およびカメラ102は、別々の筐体に収納されていてもよい。
 カメラ101は、平面Pの一部と、平面P上に置かれた移動対象の物体Mとを少なくとも含む2次元(2D;2 Dimension)の画像を撮影するカメラである。カメラ101は、撮影した画像の情報を、ネットワークNWを介して指定装置20に送信する。
 カメラ102は、移動対象の物体の撮影方向の奥行きを測定可能なカメラである。例えば、カメラ102は、デプスカメラである。デプスカメラは、撮影領域内の物体に光を照射し、その光の照射から光を照射した物体からの反射光を受光するまでの時間(つまりは、位相差に等価)に基づいて、カメラ102から物体までの距離を測定する。第1実施形態では、平面Pの一部と、平面P上に置かれた移動対象の物体Mとを少なくとも含む領域Rをカメラ102の撮影領域とする。なお、カメラ101が2次元の画像を撮影する撮影領域は、領域Rのうち少なくとも移動対象の物体Mを含む領域であればよく、領域Rであってもよい。以下の説明では、カメラ101が2次元の画像を撮影する撮影領域は、領域Rであるものとして説明する。図4は、本開示の第1実施形態による測定装置10が撮影する領域Rの一例を示す図である。図4に示すように、領域Rには、平面Pと移動対象の物体Mが存在する領域が含まれている。ここで、領域Rの左下の角を原点Oとし、横軸をX軸、縦軸をY軸とする。また、XY平面に垂直な軸をZ軸とする。なお、X軸は原点から紙面右方向が正である。また、Y軸は原点から紙面上方向が正である。また、Z軸は原点から紙面手前方向が正である。
 カメラ102は固定の位置に設置されている。そのため、カメラ102は、撮影領域のうち、平面Pの加工精度以上、物体Mの大きさ以下の誤差の範囲内で、カメラ102からの距離が最も遠い領域を平面Pとし、後述するように指定した移動対象の物体Mの領域におけるカメラ102から移動対象の物体までの距離と、カメラ102から平面Pまでの距離の差を算出することにより、XY平面を基準とした移動対象の物体MのZ軸方向の高さを測定することができる。例えば、物体Mが存在する領域を特定し、カメラ102は、カメラ102から物体Mまでの距離と、カメラ102から平面Pまでの距離の差を算出することにより、XY平面を基準とした移動対象の物体MのZ軸方向の高さを測定する。物体Mが存在する領域を特定する方法の例としては、物体Mが配置される空間領域を事前に設定しておき、それ以外の領域の情報を除外する方法、自動認識手段(例えば、対象物体の3DのCAD(Computer Aided Design)情報に基づいて物体を認識する手段)を用いて、点群形状との適合度によって物体Mの位置を特定したり、物体Mの画像から物体Mが配置される空間領域を特定したりする方法などが挙げられる。なお、カメラ102の例としては、ステレオカメラを用いて距離を推定するカメラ、物体に光を照射し、反射光が戻るまでの時間に基づいて距離を推定するカメラなどが挙げられる。カメラ102は、測定結果を示す情報(すなわち、物体Mの高さを示す情報)をネットワークNWを介して制御装置30に送信する。
 なお、カメラ102の代わりにLiDAR(Light Detection and Ranging)を用いて測定した、LiDARから物体Mまでの距離と、LiDARから平面Pまでの距離との差を用いて、移動対象の物体Mの高さを算出するものであってもよい。
(指定装置の構成)
 図5は、本開示の第1実施形態による指定装置20の構成の一例を示す図である。指定装置20は、図5に示すように、表示部201(表示装置の一例)、生成部202、制御部203(制御手段の一例)、および受付部204(受付手段の一例)を備える。指定装置20は、例えば、タッチパネルの機能を有するタブレット端末である。
 表示部201は、制御部203が行う制御の下、カメラ101が撮影した2次元の画像、および、受付部204から入力される後述する移動対象の物体Mの外形Fを示す画像を表示する。外形Fは、複数または1つの移動対象の物体Mのうち、把持する対象の物体Mに対してのみ表示される。図6は、本開示の第1実施形態による表示部201が表示する画像の一例を示す図である。図6に示す例では、移動対象の物体Mとして、物体M1およびM2と、物体M1の外形Fとが示されている。また、図6に示す例では、領域Rが示されている。なお、図6に示されている手は、表示部201が表示するものではなく、タッチパネルに対して作業者が外形Fを指示する操作を指で行った場合をイメージして示したものである。
 生成部202は、カメラ101が撮影した2次元の画像の情報と、後述する移動対象の物体の外形Fを生成する作業者が行う操作に応じて受付部204が生成した移動対象の物体Mの外形Fを示す信号とに基づいて、2次元の画像とともに、移動対象の物体Mの外形Fを表示部201に表示させる制御信号Cnt1を生成する。なお、本開示において、「XXとともにYYをZZする」とは、XXとYYとを同時にZZの処理を実行することと、XXとYYとを別々にZZの処理を実行することとを含む。例えば、「XXとともにYYを表示する」は、XXとYYとを同時に表示する処理を実行することを含む。また、「XXとともにYYを表示する」は、XXを表示する処理を実行し、YYを表示する処理を実行すること、および、YYを表示する処理を実行し、XXを表示する処理を実行することを含む。「XX」および「YY」は、任意の要素(例えば任意の情報)である。また、「ZZ」は任意の処理である。また、ここでは、「XX」と「YY」の2つの任意の要素について例示したが、3つ以上の任意の要素については、ZZの処理を、同時に実行すること、別々に実行すること、一部の要素どうしは同時に実行し残りの要素は別に実行することを含む。
 なお、作業者が行った移動対象の物体の外形Fを生成する操作により移動対象の物体の外形Fを示す線が直線とならない場合には、生成部202は、直線に補正するものであってよい。生成部202が外形Fを示す線を直線に補正した場合、生成部202は、制御信号Cnt1として直線に補正した外形Fを表示させる制御信号を生成する。その結果、制御部203が表示部201に表示させる移動対象の物体Mの外形Fも直線で表示される。ただし、直線に補正した場合、表示部201に表示される外形Fが必ずしも実際の移動対象の物体Mの外形に一致するとは限らない。一致しない場合には、作業者は、表示部201に表示された外形Fを示す線の傾きを変更し、表示部201に表示されている実際の移動対象の物体Mの外形に一致させる操作を受付部204に対して行えばよい。この操作により、受付部204は、その操作に応じた信号を生成する。生成部202は、受付部204が生成した信号に基づいて、外形Fを、実際の移動対象の物体Mの外形に一致させる制御信号Cnt1を生成する。
 制御部203は、生成部202が生成した制御信号Cnt1に基づいて、カメラ101が撮影した2次元の画像とともに、受付部204から入力される移動対象の物体Mの外形Fを表示部201に表示させる。
 なお、受付部204が移動対象の物体Mの外形Fを示す信号を生成しておらず、カメラ101が2次元の画像を撮影している場合、生成部202は、カメラ101が撮影した2次元の画像を表示部201に表示させる制御信号Cnt1を生成する。この場合、制御部203は、生成部202が生成した制御信号Cnt1に基づいて、カメラ101が撮影した2次元の画像を表示部201に表示させることになる。
 受付部204は、作業者による移動対象の物体の外形の少なくとも一部を指定する入力を受け取る。例えば、受付部204は、タッチパネルであり、作業者の指やタッチパネル専用のペンなどによる移動対象の物体の外形を生成する操作を受け取る。移動対象の物体の外形を生成する操作の例としては、移動対象の物体の外形を指やペンでなぞる操作、移動対象の物体の頂点を指やペンで指定する操作などが挙げられる。作業者が受付部204に対して移動対象の物体の頂点を指やペンで指定する操作を行った場合には、生成部202は、例えば、作業者が2つの頂点を指定する度に指定した2つの頂点を直線でつないだ線を表示させる制御信号Cnt1を生成し、制御部203は、生成部202が生成した制御信号Cnt1に基づいて表示部201の表示を制御すればよい。この制御信号Cnt1により、制御部203は、表示部201に移動対象の物体Mの外形Fを表示させることができる。
 また、受付部204は、作業目標の入力を受け取る。作業目標の例としては、移動対象の物体Mの種類、その物体の数量およびその物体の移動先を含む情報などが挙げられる。受付部204は、作業目標として、例えば「部品Aを3個トレイに移動させる」という入力を受け取る。この場合、受付部204は、移動対象の物体Mの種類が部品A、その物体の数量が3個、その物体の移動先がトレイであると判定することにより特定するものであってもよい。受付部204は、受け取った作業目標を制御装置30に送信する。
(制御装置の構成)
 制御装置30は、作業目標を示す情報と、移動対象の物体Mの移動前の状態(すなわち、位置および姿勢)を示す情報とを受信すると、受信した移動対象の物体Mの移動前の状態に応じてロボット40に物体Mを把持させ、受信した作業目標に応じた所定のアルゴリズムに基づいて、その所定のアルゴリズムに基づく処理(すなわち、把持した物体Mを所定の移動先まで移動させる処理)をロボット40に実行させる装置である。図7は、本開示の第1実施形態による制御装置30の構成の一例を示す図である。制御装置30は、図7に示すように、記憶部301、取得部302、特定部303、および制御部304を備える。
 記憶部301は、制御装置30が行う処理に必要な種々の情報を記憶する。記憶部301が記憶する情報の例としては、後述する特定部303が作業目標に応じたアルゴリズムを特定する際に使用する作業目標とアルゴリズムとの対応関係を示すデータテーブルTBL1などが挙げられる。図8は、本開示の第1実施形態による記憶部301が記憶するデータテーブルTBL1の一例を示す図である。記憶部301は、図8に示すように、作業目標とアルゴリズムとが関連付けられてデータテーブルTBL1として記憶する。
 取得部302は、移動対象の物体の移動前の状態を示す情報を取得する。具体的には、取得部302は、測定装置10から、カメラ102が測定した測定結果、すなわち移動対象の物体Mの平面Pからの高さを示す情報を受信する。また、取得部302は、指定装置20から移動対象の物体Mの外形Fを示す情報を受信する。なお、取得部302は、受信した移動対象の物体Mの平面Pからの高さを示す情報と、受信した移動対象の物体Mの外形Fを示す情報とから、移動対象の物体Mの形状を特定することができる。
 また、取得部302は、作業目標を示す情報(すなわち、移動対象の物体の種類、その物体の数量およびその物体の移動先を示す情報)を指定装置20から受信する。
 特定部303は、取得部302が受信した作業目標に基づいて、移動対象の物体を移動先に移動させるために用いるアルゴリズムを特定する。例えば、取得部302が受信した作業目標が作業目標1である場合、特定部303は、記憶部301が記憶するデータテーブルTBL1の作業目標の中から作業目標1を特定する。そして、特定部303は、データテーブルTBL1において、特定した作業目標1に関連付けられているアルゴリズム1を特定する。
 制御部304は、特定部303が特定したアルゴリズムに応じた制御信号Cnt2をロボット40に送信することにより、ロボット40を制御する。制御信号Cnt2は、ロボット40に移動対象の物体Mを把持させ、把持した物体Mを作業者が指定した移動先に移動させる制御信号である。なお、制御信号Cnt2は、データテーブルTBL1におけるアルゴリズムそれぞれに対して予め用意されているものであってもよいし、特定部303が特定したアルゴリズムに応じて制御部304によってその都度生成されるものであってもよい。
(ロボットの構成)
 ロボット40は、制御装置30から受信する制御信号Cnt2に基づいて、移動対象の物体Mを把持し、作業者が指定装置20に入力した移動先に物体Mを移動させるロボットである。ロボット40による物体Mを移動先まで移動させる処理は、作業目標により指定された数量の物体が移動先に移動されるまで続けられる。ロボット40の例としては、垂直多関節型ロボット、水平多関節型ロボット、その他の任意の種類のロボットが挙げられる。図9は、本開示の第1実施形態によるロボット40の構成の一例を示す図である。ロボット40は、図9に示すように、生成部401、および可動装置402を備える。
 生成部401は、制御装置30から、制御信号Cnt2を受信する。生成部401は、受信した制御信号Cnt2に基づいて、可動装置402を動作させる(すなわち、可動装置402に移動対象の物体Mを把持させ、その物体Mを移動先まで移動させる)ための駆動信号Drvを生成する。なお、生成部401は、後述する把持部402aに移動対象の物体Mを把持させる場合、例えば、移動対象の物体Mの外形Fを示す面の重心の位置に対して垂直な方向(第1実施形態では、移動対象の物体Mが平面Pに平行に置かれているため、物体Mの真上)から、把持部402aが物体Mに近づくような制御信号Cnt2を生成する。
 可動装置402は、図9に示すように、把持部402aを備える。把持部402aは、移動対象の物体Mを把持する機構を有する。移動対象の物体Mを把持する機構の例としては、複数(例えば、2つ)の指で物体Mを挟む機構、物体Mの所定の面を吸引する機構などが挙げられる。所定の面の例としては、カメラ101が撮影した画像に含まれる移動対象の物体Mの複数の面のうち最も面積の広い面や、移動対象の物体Mの複数の面のうち平面Pに対してより平行に近い面などが挙げられる。可動装置402は、生成部401が生成した駆動信号Drvに基づいて、移動対象の物体Mを把持部402aにより把持し、その物体Mを移動先まで移動させる装置である。例えば、可動装置402は、ステッピングモータを有するロボットアームである。可動装置402がステッピングモータを有するロボットアームである場合、生成部401が生成した駆動信号Drvに応じてステッピングモータが動作することにより、可動装置402は、把持部402aにより移動対象の物体Mを把持し、その物体Mを移動先まで移動させる。
(ロボットシステムが行う処理)
 図10は、本開示の第1実施形態によるロボットシステム1の処理フローの一例を示す図である。次に、図10を参照してロボットシステム1が行う処理について説明する。
 カメラ101は、平面Pの一部と、平面P上に置かれた移動対象の物体Mとを含む2次元の画像を撮影する。カメラ101は、撮影した画像の情報を、ネットワークNWを介して指定装置20に送信する。
 この時点では、受付部204は、移動対象の物体Mの外形Fを示す信号を生成していない。そのため、生成部202は、カメラ101が撮影した2次元の画像を表示部201に表示させる制御信号Cnt1を生成する(ステップS1)。そして、制御部203は、生成部202が生成した制御信号Cnt1に基づいて、カメラ101が撮影した2次元の画像を表示部201に表示させる(ステップS2)。表示部201は、カメラ101が撮影した2次元の画像を表示する。
 カメラ102は、撮影領域のうち、平面Pの加工精度以上、物体Mの大きさ以下の誤差の範囲内で、カメラ102からの距離が最も遠い領域を平面Pとし、指定した移動対象の物体Mの領域におけるカメラ102から移動対象の物体までの距離と、カメラ102から平面Pまでの距離の差を算出することにより、XY平面を基準とした移動対象の物体MのZ軸方向の高さを測定する。カメラ102は、測定結果を示す情報(すなわち、物体Mの高さを示す情報)を、ネットワークNWを介して制御装置30に送信する。
 ここで、受付部204は、作業者による移動対象の物体の外形の少なくとも一部を指定する入力を受け取ったとする(ステップS3)。例えば、受付部204は、タッチパネルであり、作業者の指やタッチパネル専用のペンなどによる移動対象の物体の外形を生成する操作を受け取る。
 生成部202は、カメラ101が撮影した2次元の画像の情報と、移動対象の物体の外形Fを生成する作業者が行う操作に応じて受付部204が生成した移動対象の物体Mの外形Fを示す信号とに基づいて、2次元の画像とともに、移動対象の物体Mの外形Fを表示部201に表示させる制御信号Cnt1を生成する(ステップS4)。
 制御部203は、生成部202が生成した制御信号Cnt1に基づいて、カメラ101が撮影した2次元の画像とともに、受付部204から入力される移動対象の物体Mの外形Fを表示部201に表示させる(ステップS5)。表示部201は、カメラ101が撮影した2次元の画像とともに、受付部204から入力される移動対象の物体Mの外形Fを表示する。
 なお、作業者が行った移動対象の物体の外形Fを生成する操作により移動対象の物体の外形Fを示す線が直線とならない場合には、生成部202は、直線に補正するものであってよい。生成部202が外形Fを示す線を直線に補正した場合、生成部202は、直線に補正した外形Fを表示させる制御信号Cnt1を生成する。制御部203は、生成部202が生成した制御信号Cnt1に基づいて、カメラ101が撮影した2次元の画像とともに、直線に補正された移動対象の物体Mの外形Fを表示部201に表示させる。表示部201は、カメラ101が撮影した2次元の画像とともに、直線に補正された移動対象の物体Mの外形Fを表示する。
 ここで、受付部204は、作業目標の入力を受け取ったとする。受付部204は、受け取った作業目標を制御装置30に送信する。
 取得部302は、移動対象の物体の移動前の状態を示す情報を取得する。具体的には、取得部302は、測定装置10から、カメラ102が測定した測定結果、すなわち移動対象の物体Mの平面Pからの高さを示す情報を受信する。取得部302は、指定装置20から移動対象の物体Mの外形Fを示す情報を受信する。取得部302は、作業目標を示す情報(すなわち、移動対象の物体の種類、その物体の数量およびその物体の移動先を示す情報)を指定装置20から受信する。
 特定部303は、取得部302が受信した作業目標に基づいて、移動対象の物体を移動先に移動させるために用いるアルゴリズムを特定する。例えば、取得部302が受信した作業目標が作業目標1である場合、特定部303は、記憶部301が記憶するデータテーブルTBL1の作業目標の中から作業目標1を特定する。そして、特定部303は、データテーブルTBL1において、特定した作業目標1に関連付けられているアルゴリズム1を特定する。
 制御部304は、特定部303が特定したアルゴリズムに応じた制御信号Cnt2をロボット40に送信することにより、ロボット40を制御する。制御信号Cnt2は、ロボット40に移動対象の物体Mを把持させ、把持した物体Mを作業者が指定した移動先に移動させる制御信号である。なお、制御信号Cnt2は、データテーブルTBL1におけるアルゴリズムそれぞれに対して予め用意されているものであってもよいし、特定部303が特定したアルゴリズムに応じて制御部304によってその都度生成されるものであってもよい。なお、把持部402aの先端に接触センサを備え、制御部304は、接触センサが物体Mに接触したことを検出した場合に、把持部402aの物体Mへの移動を停止させるものであってもよい。
(利点)
 以上、本開示の第1実施形態によるロボットシステム1について説明した。ロボットシステム1の指定装置20において、受付部204は、移動対象の物体Mの外形Fを指定する入力を受け取る。制御部203は、前記移動対象の物体Mを含む2次元の画像とともに、指定された前記外形Fを表示部201(表示装置の一例)に表示させる。
 こうすることにより、指定装置20は、作業者が受付部204を介して指定する移動対象の物体Mの外形Fを、移動対象の物体Mを含む2次元の画像とともに表示させる。したがって、作業者が指定装置20を用いる場合、作業者は、物体Mを含む2次元の画像と、作業者が指定する移動対象の物体Mの外形Fとの位置関係を確認しながら、移動対象の物体Mの外形Fの位置を指定することができる。また、指定装置20が表示する画像は2次元であり、作業者は、その画像における物体Mに外形Fを一致させればよいため、作業者が外形Fを指定する操作は容易である。よって、指定装置20より、移動前の物体の状態が入力された場合に作業目標に応じた所定のアルゴリズムに従ってその物体を移動させるロボットシステムにおいて、作業者は物体の状態を容易に指定することができる。その結果、ロボットシステムが物体を正しく認識できない場合であっても、物体を正しく認識できるようになる。
 移動前の物体の状態が入力された場合に作業目標に応じた所定のアルゴリズムに従ってその物体を移動させるロボットシステムでは、次のことが望まれている。すなわち、作業者が移動前の物体の状態やアルゴリズムに応じて定まる移動後の物体の状態を指定することにより、移動前の物体の正しい状態や移動後の物体の所望の状態をロボットに入力できることが望ましい。また、作業者は、その移動前または移動後の物体の状態を容易に指定できることが望ましい。本開示の第1実施形態の変形例によるロボットシステム1では、作業者が物体の状態を容易に指定することができる。その結果、ロボットシステムが物体を正しく認識できない場合であっても、物体を正しく認識できるようになる。
<第1実施形態の変形例>
 次に、本開示の第1実施形態の変形例によるロボットシステム1について説明する。第1実施形態の変形例によるロボットシステム1は、図1に示す第1実施形態によるロボットシステム1と同様に、測定装置10、指定装置20、制御装置30、およびロボット40を備える。
 図11は、本開示の第1実施形態の変形例による測定装置10の設置の一例を示す図である。図11に示すように、測定装置10は、移動対象の物体Mが置かれているトレイTの平面Pを上方から撮影可能な固定の位置に設けられる。ただし、第1実施形態では、移動対象の物体は、ほぼ水平に位置する平面P上に平行に置かれている物体を前提としているが、第1実施形態の変形例では、移動対象の物体は、ほぼ水平に位置する平面P上に対して斜めに(すなわち、傾斜を有して)置かれている物体を前提としている。よって、第1実施形態と第1実施形態の変形例とでは、指定装置20が行う処理が主に異なる。ここでは、第1実施形態の変形例による指定装置20と第1実施形態による指定装置20とで異なる処理について主に説明する。なお、特に説明しない処理については、表示部201に表示させる外形Fが面Qaとその面Qaに対して所定の角度を成す軸Qbとなり、物体Mが平面Pに対して平行に置かれていたのが斜めに置かれていることを考慮して、第1実施形態と同様に考えればよい。
 第1実施形態の変形例による指定装置20は、図5に示す第1実施形態による指定装置20と同様に、表示部201(表示装置の一例)、生成部202、制御部203、および受付部204を備える。
 表示部201は、制御部203が行う制御の下、カメラ101が撮影した2次元の画像、および、受付部204から入力される移動対象の物体Mの所定の面を想定した面Qaとその面Qaに対して所定の角度を成す軸Qbとを示す画像を表示する。面Qaとその面Qaに対して所定の角度を成す軸Qbとは、移動対象の物体Mのうち、把持する対象の物体Mに対してのみ表示される。図12は、本開示の第1実施形態の変形例による表示部201が表示する画像の一例を示す図である。図12に示す例では、移動対象の物体Mと、面Qaと、その面Qaに対して所定の角度を成す軸Qbとが示されている。また、図12に示す例では、領域Rが示されている。なお、制御部203が行う制御の下、表示部201が表示する面Qaは、軸Qbを指定する角度に合わせて(遠近法を用いたように)形状が変形する(例えば、傾いた長方形の輪郭(例えば、物体Mの所定の面が長方形である場合、軸Qbを指定する角度に応じて平行四辺形や台形などを示す輪郭)を二次元画面上で表示する)ものであってもよい。これにより、物体Mを上方(すなわち、Z軸の正の方向)から俯瞰した場合であっても、平面Qaを物体Mの所定の面に一致させることが容易になる。その結果、ロボットシステムが物体を正しく認識できない場合であっても、物体を正しく認識できるようになる。
 カメラ101が撮影した2次元の画像の情報と、面Qaとその面Qaに対して所定の角度を成す軸Qbとを表示させるためのデータは予め用意される。生成部202は、後述する面Qaを移動対象の物体Mの所定の面に一致させる作業者が行う操作に応じて生成された、面Qaとその面Qaに対して所定の角度を成す軸Qbを示す信号とに基づいて、2次元の画像とともに、面Qaとその面Qaに対して所定の角度を成す軸Qbとを表示部201に表示させる制御信号Cnt1を生成する。
 制御部203は、生成部202が生成した制御信号Cnt1に基づいて、カメラ101が撮影した2次元の画像とともに、受付部204から入力される面Qaとその面Qaに対して所定の角度を成す軸Qbとを表示部201に表示させる。
 なお、受付部204は、移動対象の物体Mの外形Fを示す信号を生成しない状態がある第1実施形態とは異なり、面Qaとその面Qaに対して所定の角度を成す軸Qbとを示す信号は生成する。そのため、制御部203は、生成部202が生成した制御信号Cnt1に基づいて、カメラ101が撮影した2次元の画像とともに、面Qaとその面Qaに対して所定の角度を成す軸Qbとを表示部201に表示させることになる。
 受付部204は、物体Mの所定の面を指定する面Qaを操作するための作業者による入力を受け取る。例えば、面Qaと軸Qbとの成す角度が90度である場合、作業者は、まず、指やタッチパネル専用のペンなどを用いてタッチパネルに対して軸Qbを把持部402aが対象物Mに近づく方向に一致させる操作を行う。受付部204は、作業者によるこの操作を受け取る。なお、この作業者による軸Qbを把持部402aが移動対象の物体Mに近づく方向に一致させる操作により、移動対象の物体Mの所定の面と面Qaとが平行になる。次に、作業者は、軸Qbに沿って面Qaを平行移動させることにより、面Qaを移動対象の物体Mの所定の面と一致させる操作を行う。受付部204は、作業者によるこの操作を受け取る。なお、実際には、受付部204は、時々刻々と作業者による操作を受け取ってもよい。受付部204が作業者による操作を受け取る度に、生成部202は、制御信号Cnt1を生成する。そして、制御部203は、生成部202が生成した制御信号Cnt1に基づいて表示部201の表示を制御する。
(利点)
 以上、本開示の第1実施形態の変形例によるロボットシステム1について説明した。ロボットシステム1の指定装置20において、受付部204は、移動対象の物体Mの所定の面を指定する面Qaの入力を受け取る。制御部203は、移動対象の物体Mを含む2次元の画像とともに、受付部204が受け取った面Qaを表示装置に表示させる。
 こうすることにより、指定装置20は、移動対象の物体Mの所定の面を含む2次元の画像とともに、その所定の面を指定する面Qaを表示させる。したがって、作業者が指定装置20を用いる場合、作業者は、物体Mの所定の面を含む2次元の画像と、面Qaとの位置関係を確認しながら、面Qaを移動対象の物体Mの所定の面に一致させることができる。指定装置20が表示する画像は2次元であり、作業者は、その画像における物体Mの所定の面に面Qaを一致させればよい。また、面Qaに所定の角度を成す軸Qbも表示されるため、その軸Qbが調整の目安となる。そのため、作業者が面Qaに対して行う操作は容易である。よって、指定装置20より、移動前の物体の状態が入力された場合に作業目標に応じた所定のアルゴリズムに従ってその物体を移動させるロボットシステムにおいて、作業者は物体の状態を容易に指定することができる。その結果、ロボットシステムが物体を正しく認識できない場合であっても、物体を正しく認識できるようになる。
 なお、移動対象の物体Mの所定の面が定まれば、制御装置30による把持部402aへの制御は、把持部402aをその面に正対して近づけることになる。そのため、把持部402aが有する把持する機構が、複数(例えば、2つ)の指で物体Mを挟む機構であっても、物体Mの所定の面を吸引する機構であっても、把持部402aは、物体Mを適切に把持することができる。
<第2実施形態>
 次に、本開示の第2実施形態によるロボットシステム1について説明する。図13は、本開示の第2実施形態によるロボットシステム1の構成の一例を示す図である。第2実施形態によるロボットシステム1は、図13に示すように、図1に示す第1実施形態によるロボットシステム1と同様に、測定装置10、指定装置20、制御装置30、およびロボット40を備え、更に、自動認識システム50を備える。なお、第2実施形態では、第1実施形態と同様に、移動対象の物体Mは、ほぼ水平に位置する平面P上に平行に置かれているものとする。ここでは、第2実施形態によるロボットシステム1と第1実施形態によるロボットシステム1とで異なる処理について主に説明する。
 自動認識システム50は、移動対象の物体Mを撮影し、移動対象の物体Mの状態(すなわち、位置および姿勢)を特定することのできるシステムである。図14は、本開示の第2実施形態による自動認識システム50の構成の一例を示す図である。自動認識システム50は、図14に示すように、カメラ501を備える。カメラ501は、産業用カメラである。自動認識システム50は、カメラ501によって物体Mを撮影することにより、物体Mの上方の面の形状および物体Mの平面Pからの高さを特定する。つまり、自動認識システム50は、測定装置10と同様に、物体Mの上方の面の形状および物体Mの平面Pからの高さを特定することができる。自動認識システム50は、特定した物体Mの上方の面の形状および物体Mの平面Pからの高さの情報を指定装置20および制御装置30に送信する。図15は、本開示の第2実施形態によるカメラ501の設置の一例を示す図である。図15に示すように、カメラ501は、例えば、測定装置10とは別の方向から移動対象の物体Mを撮影する。なお、この自動認識システム50は、既存の技術を用いて実現するものであってもよい。
 制御装置30は、図7に示す第1実施形態による制御装置30と同様に、取得部302、特定部303、および制御部304を備える。ただし、制御装置30は、物体Mの上方の面の形状および物体Mの平面Pからの高さの情報を受信する。受信する情報は、自動認識システム50から、測定装置10および指定装置20から受信する物体Mの外形および物体Mの平面Pからの高さと同等の情報である。そして、制御装置30は、第1実施形態による制御装置30とは異なり、通常、自動認識システム50から受信する物体Mの上方の面の形状および物体Mの平面Pからの高さの情報に基づいて、制御信号Cnt2を生成する。なお、取得部302、特定部303、および制御部304のそれぞれの処理は、第1実施形態による取得部302、特定部303、および制御部304について説明した処理において、物体Mの外形および物体Mの平面Pからの高さの情報を、自動認識システム50から受信する物体Mの上方の面の形状および物体Mの平面Pからの高さの情報に置き換えて考えればよい。
 次に、指定装置20について説明する。なお、以下の説明は、制御装置30が自動認識システム50から受信する物体Mの上方の面の形状および物体Mの平面Pからの高さの情報を用いた場合に、制御装置30が適切にロボット40を制御できなかった場合に、指定装置20が行う処理である。
 指定装置20は、図5に示す第1実施形態による指定装置20と同様に、表示部201、生成部202、制御部203、および受付部204を備える。
 生成部202は、カメラ101が撮影した2次元の画像の情報と、自動認識システム50から受信した移動対象の物体Mの上方の面の形状および物体Mの平面Pからの高さの情報とに基づいて、2次元の画像とともに、移動対象の物体Mの上方の面の形状U(第1実施形態における外形Fに相当)を表示部201に表示させる制御信号Cnt1を生成する。
 制御部203は、生成部202が生成した制御信号Cnt1に基づいて、カメラ101が撮影した2次元の画像とともに、移動対象の物体Mの上方の面の形状Uを表示部201に表示させる。
 受付部204は、作業者による移動対象の物体Mの上方の面の形状Uを指定する(この場合、変更して指定する)入力を受け取る。例えば、受付部204は、タッチパネルであり、作業者の指やタッチパネル専用のペンなどによる移動対象の物体Mの上方の面の形状Uを選択し、選択した形状Uを所望の位置(すなわち、2次元の画像に映されている実際の移動対象の物体Mの上方の面の位置)まで移動させる操作を受け取る。
 なお、作業者が選択した形状Uを所望の位置まで移動させる操作を行っている間も、生成部202は、その操作に応じた制御信号Cnt1を生成している。そして、その間に、制御部203は、生成部202が生成した制御信号Cnt1に基づいて、カメラ101が撮影した2次元の画像とともに、移動対象の物体Mの上方の面の形状Uを表示部201に表示させる。その結果、表示部201は、制御部203が行う制御の下、カメラ101が撮影した2次元の画像とともに、形状Uを表示する。図16は、本開示の第2実施形態による表示部201が表示する画像の一例を示す図である。図16に示す例では、動対象の物体Mとして、物体M1およびM2と、物体M1の上方の面の形状Uとが示されている。また、図16に示す例では、領域Rが示されている。なお、図16に示されている手は、表示部201が表示するものではなく、タッチパネルに対して作業者が形状Uを移動させて形状Uの位置を指示する操作を指で行った場合をイメージして示したものである。
(利点)
 以上、本開示の第2実施形態によるロボットシステム1について説明した。ロボットシステム1の指定装置20において、受付部204は、カメラ501を備える自動認識システム50が特定した移動対象の物体Mの状態に基づいて表示部201に表示される移動対象の物体Mの上方の面の形状Uの位置を移動させる入力を受け取る。生成部202は、受付部204が受け取った形状Uの位置を移動させる入力に基づいて、制御信号Cnt1を変更する。制御部203は、制御信号Cnt1に基づいて、カメラ101が撮影した2次元の画像とともに、移動対象の物体Mの上方の面の形状Uを表示部201に表示させる。
 こうすることにより、指定装置20は、作業者が受付部204を介して移動対象の物体Mの上方の面の形状Uを、移動対象の物体Mを含む2次元の画像とともに表示させる。したがって、作業者が指定装置20を用いる場合、作業者は、物体Mを含む2次元の画像と、作業者が指定する移動対象の物体Mの上方の面の形状Uとの位置関係を確認しながら、移動対象の物体Mの上方の面の形状Uの位置を指定することができる。また、指定装置20が表示する画像は2次元であり、作業者は、その画像における移動対象の物体Mの上方の面の形状Uを所望の位置まで移動させればよい。そのため、作業者が形状Uを指定する操作は容易である。よって、指定装置20より、移動前の物体の状態が入力された場合に作業目標に応じた所定のアルゴリズムに従ってその物体を移動させるロボットシステムにおいて、作業者は物体の状態を容易に指定することができる。その結果、ロボットシステムが物体を正しく認識できない場合であっても、物体を正しく認識できるようになる。
<第2実施形態の変形例>
 次に、本開示の第2実施形態の変形例によるロボットシステム1について説明する。第2実施形態の変形例によるロボットシステム1は、図13に示す第2実施形態によるロボットシステム1と同様に、測定装置10、指定装置20、制御装置30、ロボット40、および自動認識システム50を備える。第2実施形態の変形例では、第1実施形態の変形例と同様に、移動対象の物体Mは、平面Pに対して斜めに置かれているものとする。
 なお、第2実施形態によるロボットシステム1において、第1実施形態1によるロボットシステム1における移動対象の物体Mの外形Fを、移動対象の物体Mの上方の面の形状Uに置き換えたように、第2実施形態の変形例によるロボットシステム1では、第2実施形態の変形例における面Qaとその面Qaに対して所定の角度を成す軸Qbとを、自動認識システム50が生成する面Vaとその面Vaに対して所定の角度を成す軸Vb(面Qaとその面Qaに対して所定の角度を成す軸Qbに対応)とに置き換えて考えればよく、第1実施形態の変形例と第2実施形態におけるロボットシステム1の処理とを組み合わせることにより実行できる。例えば、自動認識システム50が生成した面Vaが想定する面と異なる場合、面Qaについて、タッチパネルに対して作業者が物体Mの所定の面を指示する操作を指で行うことにより指定し、軸Qbを設定することにより、軸Vbを補正するものであってもよい。
 カメラ101が撮影した2次元の画像の情報と、自動認識システム50が生成する面Vaとその面Vaに対して所定の角度を成す軸Vbとを表示させるためのデータは、予め用意される。生成部202は、面Vaを移動対象の物体Mの所定の面に一致させる作業者が行う操作に応じて生成された面Vaとその面Vaに対して所定の角度を成す軸Vbを示す信号とに基づいて、2次元の画像とともに、面Vaとその面Vaに対して所定の角度を成す軸Vbとを表示部201に表示させる制御信号Cnt1を生成する。
 制御部203は、生成部202が生成した制御信号Cnt1に基づいて、カメラ101が撮影した2次元の画像とともに、面Vaとその面Vaに対して所定の角度を成す軸Vbとを表示部201に表示させる。
 受付部204は、面Vaとその面Vaに対して所定の角度を成す軸Vbに対して作業者が行う、第1実施形態の変形例において説明した面Qaとその面Qaに対して所定の角度を成す軸Qbに対して行う処理を、受け取る。
 なお、作業者が面Vaを所望の位置まで移動させる操作を行っている間も、生成部202は、その操作に応じた制御信号Cnt1を生成している。その間、制御部203は、生成部202が生成した制御信号Cnt1に基づいて、カメラ101が撮影した2次元の画像とともに、面Vaとその面Vaに対して所定の角度を成す軸Vbとを表示部201に表示させる。その結果、表示部201は、制御部203が行う制御の下、カメラ101が撮影した2次元の画像とともに、面Vaとその面Vaに対して所定の角度を成す軸Vbとを表示する。図17は、本開示の第2実施形態の変形例による表示部201が表示する画像の一例を示す図である。図17に示す例では、移動対象の物体Mと、面Vaとその面Vaに対して所定の角度を成す軸Vbとが示されている。また、図17に示す例では、領域Rが示されている。
(利点)
 以上、本開示の第2実施形態の変形例によるロボットシステム1について説明した。ロボットシステム1の指定装置20において、受付部204は、面Vaとその面Vaに対して所定の角度を成す軸Vbに対して作業者が行う、第1実施形態の変形例において説明した面Qaとその面Qaに対して所定の角度を成す軸Qbに対して行う処理を、受け取る。生成部202は、受付部204が受け取った操作に応じた制御信号Cnt1を生成する。制御部203は、生成部202が生成した制御信号Cnt1に基づいて、カメラ101が撮影した2次元の画像とともに、面Vaとその面Vaに対して所定の角度を成す軸Vbとを表示部201に表示させる。
 こうすることにより、指定装置20は、作業者が受付部204を介して移動対象の物体Mの所定の面を含む2次元の画像とともに、その所定の面を指定する面Vaを表示させる。したがって、作業者が指定装置20を用いる場合、作業者は、物体Mの所定の面を含む2次元の画像と、面Vaとの位置関係を確認しながら、面Vaを移動対象の物体Mの所定の面に一致させることができる。指定装置20が表示する画像は2次元であり、作業者は、その画像における物体Mの所定の面に面Vaを一致させればよい。また、面Vaに所定の角度を成す軸Vbも表示されるため、その軸Vbが調整の目安となる。そのため、作業者が面Vaに対して行う操作は容易である。よって、指定装置20より、移動前の物体の状態が入力された場合に作業目標に応じた所定のアルゴリズムに従ってその物体を移動させるロボットシステムにおいて、作業者は物体の状態を容易に指定することができる。その結果、ロボットシステムが物体を正しく認識できない場合であっても、物体を正しく認識できるようになる。
<第3実施形態>
 次に、本開示の第3実施形態によるロボットシステム1について説明する。図18は、本開示の第3実施形態によるロボットシステム1の構成の一例を示す図である。第3実施形態によるロボットシステム1は、図18に示すように、図1に示す第1実施形態によるロボットシステム1と同様に、測定装置10、指定装置20、制御装置30、およびロボット40を備える。第3実施形態によるロボットシステム1は、更に、WMS(Ware House System)60(外部システムの一例)を備える。なお、第3実施形態では、第1実施形態と同様に、移動対象の物体Mは、ほぼ水平に位置する平面P上に平行に置かれているものとする。
 WMS60は、倉庫などに保管されている各商品の保管状況を管理するシステムである。保管状況の例としては、各商品の数量、形状(寸法を含む)などが挙げられる。また、WMS60は、入荷時に商品を保管場所に移動させ、出荷時に保管場所から商品をロボット40の作業領域に移動させる搬送機構を有する。図19は、本開示の第3実施形態によるWMS60の構成の一例を示す図である。WMS60は、記憶部601、搬送機構602、および制御部603を備える。
 記憶部601は、WMS60が行う処理に必要な種々の情報を記憶する。例えば、記憶部601は、各商品の保管状況を記憶する。図20は、本開示の第3実施形態による記憶部601が記憶するデータテーブルTBL2の一例を示す図である。記憶部601は、例えば、図20に示すように、各トレイT(#1、2、3、・・・)において保管されている商品(すなわち、移動対象の物体M)の種類、数量、および形状が関連付けて記憶している。
 搬送機構602は、制御部603による制御の下、入荷時および出荷時に商品を所望の位置に移動させる。なお、WMS60を備える本開示の実施形態によるロボットシステム1では、制御部603による制御の下、商品はすでにロボット40の作業領域に移動させられている(つまり、ロボット40の作業領域にどのような商品がいくつ運ばれたかがわかっている)ものとして、ロボットシステム1について説明する。
 制御部603は、搬送機構602の動作を制御する。また、制御部603は、その制御に基づいて、ロボット40の作業領域に移動させた商品の種類、数量、および形状の情報を、指定装置20に送信する。
 次に、指定装置20について説明する。なお、以下の説明は、指定装置20が、WMS60の記憶部601が記憶する各商品の保管状況の情報を用いて、移動対象の物体Mの外形を指定する処理である。
 指定装置20は、図5に示す第1実施形態による指定装置20と同様に、表示部201、生成部202、制御部203、および受付部204を備える。
 移動対象の物体Mの外形Fの候補となる図形Faは予め用意される。生成部202は、カメラ101が撮影した2次元の画像の情報と、WMS60から受信した移動対象の物体Mの種類、数量、および形状の情報とに基づいて、2次元の画像とともに、候補となる図形Faを表示部201に表示させる制御信号Cnt1を生成する。
 制御部203は、生成部202が生成した制御信号Cnt1に基づいて、カメラ101が撮影した2次元の画像とともに、移動対象の物体Mの外形Fの候補となる図形Faを表示部201に表示させる。
 受付部204は、外形Fの候補となる図形Faを指定する(この場合、選択して指定する)作業者による入力を受け取る。例えば、受付部204は、タッチパネルである。受付部204は、作業者の指やタッチパネル専用のペンなどによる図形Faを選択し、選択した図形Faを所望の位置(すなわち、2次元の画像に映されている実際の移動対象の物体Mの上方の面の位置)まで移動させる操作を受け取る。
 なお、作業者が選択した図形Faを所望の位置まで移動させる操作を行っている間も、生成部202は、その操作に応じた制御信号Cnt1を生成している。その間に、制御部203は、生成部202が生成した制御信号Cnt1に基づいて、カメラ101が撮影した2次元の画像とともに、図形Faを表示部201に表示させる。その結果、表示部201は、制御部203が行う制御の下、カメラ101が撮影した2次元の画像とともに、図形Faを表示する。図21は、本開示の第3実施形態による表示部201が表示する画像の一例を示す図である。図21に示す例では、動対象の物体Mとして、物体M1およびM2と、図形Faとが示されている。また、図21に示す例では、領域Rが示されている。なお、図21に示されている手は、表示部201が表示するものではなく、タッチパネルに対して作業者が図形Faを移動させて図形Faの位置を指示する操作を指で行った場合をイメージして示したものである。
 なお、指定装置20は、候補となる図形Faを1つのみ表示部201に表示させ、作業者がその候補を選択する操作を受付部204に対して行った場合に、その他の図形Faを表示部201に表示させるものであってもよい。
(利点)
 以上、本開示の第3実施形態によるロボットシステム1について説明した。ロボットシステム1の指定装置20において、生成部202は、カメラ101が撮影した2次元の画像の情報と、WMS60から受信した移動対象の物体Mの種類、数量、および形状の情報とに基づいて、2次元の画像とともに、図形Faを表示部201に表示させる制御信号Cnt1を生成する。制御部203は、生成部202が生成した制御信号Cnt1に基づいて、カメラ101が撮影した2次元の画像とともに、移動対象の物体Mの外形Fの候補となる図形Faを表示部201に表示させる。受付部204は、外形Fの候補となる図形Faを指定する(この場合、選択して指定する)作業者による入力を受け取る。例えば、受付部204は、タッチパネルであり、作業者の指やタッチパネル専用のペンなどによる図形Faを選択し、選択した図形Faを所望の位置(すなわち、2次元の画像に映されている実際の移動対象の物体Mの上方の面の位置)まで移動させる操作を受け取る。
 こうすることにより、指定装置20は、移動対象の物体Mを含む2次元の画像とともに、移動対象の物体Mに応じた図形Faを表示させる。したがって、作業者が指定装置20を用いる場合、作業者は、物体Mを含む2次元の画像と、図形Faとの位置関係を確認しながら、図形Faの位置を指定することができる。また、指定装置20が表示する画像は2次元であり、作業者は、その画像における図形Faを所望の位置まで移動させればよい。そのため、作業者が形状Uを指定する操作は容易である。よって、指定装置20より、移動前の物体の状態が入力された場合に作業目標に応じた所定のアルゴリズムに従ってその物体を移動させるロボットシステムにおいて、作業者は物体の状態を容易に指定することができる。その結果、ロボットシステムが物体を正しく認識できない場合であっても、物体を正しく認識できるようになる。
<第3実施形態の変形例>
 次に、本開示の第3実施形態の変形例によるロボットシステム1について説明する。第3実施形態の変形例によるロボットシステム1は、図18に示す第3実施形態によるロボットシステム1と同様に、測定装置10、指定装置20、制御装置30、ロボット40、およびWMS60を備える。第3実施形態の変形例では、第1実施形態の変形例と同様に、移動対象の物体Mは、平面Pに対して斜めに置かれているものとする。
 指定装置20は、図5に示す第1実施形態による指定装置20と同様に、表示部201、生成部202、制御部203、および受付部204を備える。
 移動対象の物体Mの所定の面を指定する面Qaとその面Qaに対して所定の角度を成す軸Qbの候補となる図形Faは、予め用意される。生成部202は、カメラ101が撮影した2次元の画像の情報と、WMS60から受信した移動対象の物体Mの種類、数量、および形状の情報とに基づいて、2次元の画像とともに、候補となる図形Faを表示部201に表示させる制御信号Cnt1を生成する。
 制御部203は、生成部202が生成した制御信号Cnt1に基づいて、カメラ101が撮影した2次元の画像とともに、移動対象の物体Mの所定の面を指定する面Qaとその面Qaに対して所定の角度を成す軸Qbの候補となる図形Faとを表示部201に表示させる。
 受付部204は、移動対象の物体Mの所定の面を指定する面Qaとその面Qaに対して所定の角度を成す軸Qbの候補となる図形Faを指定する(この場合、選択して指定する)作業者による入力を受け取る。例えば、受付部204は、タッチパネルであり、作業者の指やタッチパネル専用のペンなどによる図形Faを選択し、選択した図形Faを所望の位置(すなわち、2次元の画像に映されている実際の移動対象の物体Mの上方の面の位置)まで移動させる操作を受け取る。
 なお、作業者が選択した図形Faを所望の位置まで移動させる操作を行っている間も、生成部202は、その操作に応じた制御信号Cnt1を生成している。そして、制御部203は、生成部202が生成した制御信号Cnt1に基づいて、カメラ101が撮影した2次元の画像とともに、図形Faを表示部201に表示させる。その結果、表示部201は、制御部203が行う制御の下、カメラ101が撮影した2次元の画像とともに、図形Faを表示する。図22は、本開示の第3実施形態の変形例による表示部201が表示する画像の一例を示す図である。図22に示す例では、動対象の物体Mとして、物体Mと、図形Faとが示されている。また、図22に示す例では、領域Rが示されている。なお、図22に示されている手は、表示部201が表示するものではなく、タッチパネルに対して作業者が図形Faを移動させて図形Faの位置を指示する操作を指で行った場合をイメージして示したものである。
 なお、指定装置20は、候補となる図形Faを1つのみ表示部201に表示させ、作業者がその候補を選択する操作を受付部204に対して行った場合に、その他の図形Faを表示部201に表示させるものであってもよい。
(利点)
 以上、本開示の第3実施形態によるロボットシステム1について説明した。ロボットシステム1の指定装置20において、生成部202は、カメラ101が撮影した2次元の画像の情報と、WMS60から受信した移動対象の物体Mの種類、数量、および形状の情報とに基づいて、2次元の画像とともに、図形Faを表示部201に表示させる制御信号Cnt1を生成する。制御部203は、生成部202が生成した制御信号Cnt1に基づいて、カメラ101が撮影した2次元の画像とともに、面Qaとその面Qaに対して所定の角度を成す軸Qbの候補となる図形Faとを表示部201に表示させる。受付部204は、作業者による面Qaとその面Qaに対して所定の角度を成す軸Qbの候補となる図形Faを指定する(この場合、選択して指定する)入力を受け取る。例えば、受付部204は、タッチパネルであり、作業者の指やタッチパネル専用のペンなどによる図形Faを選択し、選択した図形Faを所望の位置(すなわち、2次元の画像に映されている実際の移動対象の物体Mの上方の面の位置)まで移動させる操作を受け取る。
 こうすることにより、指定装置20は、移動対象の物体Mを含む2次元の画像とともに、移動対象の物体Mに応じて予め用意された図形Faを表示させる。したがって、作業者が指定装置20を用いる場合、作業者は、物体Mを含む2次元の画像と、図形Faとの位置関係を確認しながら、図形Faの位置を指定することができる。また、指定装置20が表示する画像は2次元であり、作業者は、その画像における図形Faを所望の位置まで移動させればよい。そのため、作業者が形状Uを指定する操作は容易である。よって、指定装置20より、移動前の物体の状態が入力された場合に作業目標に応じた所定のアルゴリズムに従ってその物体を移動させるロボットシステムにおいて、作業者は物体の状態を容易に指定することができる。その結果、ロボットシステムが物体を正しく認識できない場合であっても、物体を正しく認識できるようになる。
<第4実施形態>
 次に、本開示の第4実施形態によるロボットシステム1について説明する。図23は、本開示の第4実施形態によるロボットシステム1の構成の一例を示す図である。第4実施形態によるロボットシステム1は、図23に示すように、測定装置10、指定装置20、制御装置30、ロボット40、自動認識システム50、およびWMS60を備える。なお、第4実施形態では、第1実施形態と同様に、移動対象の物体Mは、ほぼ水平に位置する平面P上に平行に置かれているものとする。
 第4実施形態によるロボットシステム1は、第2実施形態によるロボットシステム1と、第3実施形態によるロボットシステム1とを組み合わせた構成のシステムである。
 自動認識システム50から受信した情報に基づいて、指定装置20が移動対象の物体Mの上方の面を示す形状Uを生成したが、移動対象の物体Mの外形を示す所望の位置と大きさの形状Uとならなかった場合に、その形状Uを修正するのではなく、第3実施形態で説明した図形Faを用いて移動対象の物体Mの外形を指定するものである。
 よって、指定装置20の処理は、第2実施形態における表示部201に対して表示を実行させる処理を行い、形状Uが移動対象の物体Mの外形からずれている場合に、第3実施形態における表示部201に対して表示を実行させる処理を行えばよい。
(利点)
 以上、本開示の第4実施形態によるロボットシステム1について説明した。第2実施形態によるロボットシステム1の構成と、第3実施形態によるロボットシステム1の構成とを組み合わせることにより、第2実施形態における表示部201に対して表示を実行させる処理を行うことができる。また、形状Uが移動対象の物体Mの外形からずれている場合には、第3実施形態における表示部201に対して表示を実行させる処理を行うことにより、移動対象の物体Mの外形を正しく指定することができる。その結果、ロボットシステムが物体を正しく認識できない場合であっても、物体を正しく認識できるようになる。
<第4実施形態の変形例>
 次に、本開示の第4実施形態の変形例によるロボットシステム1について説明する。第4実施形態の変形例によるロボットシステム1は、図23に示す第4実施形態によるロボットシステム1と同様に、測定装置10、指定装置20、制御装置30、ロボット40、自動認識システム50、およびWMS60を備える。第4実施形態の変形例では、第1実施形態の変形例と同様に、移動対象の物体Mは、平面Pに対して斜めに置かれているものとする。
 第4実施形態の変形例によるロボットシステム1は、第2実施形態の変形例によるロボットシステム1と、第3実施形態の変形例によるロボットシステム1とを組み合わせた構成のシステムである。
(利点)
 よって、第4実施形態によるロボットシステム1は、第4実施形態によるロボットシステム1と同様に考えることができる。第2実施形態の変形例によるロボットシステム1の構成と、第3実施形態の変形例によるロボットシステム1の構成とを組み合わせることにより、第2実施形態の変形例における表示部201に対して表示を実行させる処理を行うことができる。また、図形Faが移動対象の物体Mの所定の平面からずれている場合には、第3実施形態の変形例における表示部201に対して表示を実行させる処理を行うことにより、移動対象の物体Mの所定の平面を正しく指定することができる。その結果、ロボットシステムが物体を正しく認識できない場合であっても、物体を正しく認識できるようになる。
<第5実施形態>
 次に、本開示の第5実施形態によるロボットシステム1について説明する。第5実施形態によるロボットシステム1は、図1に示す第1実施形態によるロボットシステム1と同様に、測定装置10、指定装置20、制御装置30、およびロボット40を備える。第5実施形態によるロボットシステム1は、ロボット40の移動先を変更するためのシステムである。
 制御装置30による制御の下、ロボット40が移動対象の物体Mを制御装置30がアルゴリズムに則って決定した移動先に移動させた場合には、その移動先が作業者の所望の移動先にならない可能性がある。第5実施形態によるロボットシステム1は、そのような場合に、移動先を所望の移動先に変更する処理を実行するシステムである。
 なお、以下の説明は、上述の第1実施形態およびその変形例のロボットシステム1において、移動前の移動対象の物体Mの状態を指定した後に、アルゴリズムに則って制御装置30が特定した移動先を変更する処理である。
 ロボットシステム1では、アルゴリズムに応じた制御信号Cnt2が決定した段階で移動先も決定されることになる。制御部304は、その移動先を示す情報を、指定装置20に出力する。
 生成部202は、カメラ101が撮影した2次元の画像の情報と、第1実施形態で説明した外形Fを指定するための情報と、制御装置30から受信した移動先を示す情報とに基づいて、2次元の画像と、移動先とともに、移動先を指定する外形Fを表示部201に表示させる制御信号Cnt1を生成する。
 制御部203は、生成部202が生成した制御信号Cnt1に基づいて、カメラ101が撮影した2次元の画像と、移動先とともに、外形Fを表示部201に表示させる。
 受付部204は、作業者による不要な移動先を削除する操作を受け取る。例えば、受付部204は、タッチパネルであり、作業者の指やタッチパネル専用のペンなどによる削除する移動先を選択し、選択した移動先に対して削除を決定する操作を行うことにより、受付部204がその操作を受け取る。受付部204がその操作を受け取ると、生成部202は、削除を指定された移動先を表示させない制御信号Cnt1を生成する。この制御信号Cnt1により移動先が削除されることになる。
 また、受付部204は、外形Fを所望の位置(すなわち、所望の移動先)まで移動させる操作を受け取る。また、受付部204は、外形Fを指定する(この場合、選択して指定する)作業者による入力を受け取る。例えば、受付部204は、タッチパネルであり、作業者の指やタッチパネル専用のペンなどによる外形Fを選択し、選択した外形Fを所望の位置(すなわち、所望の移動先)まで移動させる操作を受け取る。
 なお、作業者が選択した外形Fを所望の位置まで移動させる操作や移動先を削除する操作を行っている間も、生成部202は、その操作に応じた制御信号Cnt1を生成している。そして、制御部203は、生成部202が生成した制御信号Cnt1に基づいて、カメラ101が撮影した2次元の画像と、所望の移動先である外形Fとを表示部201に表示させる。その結果、表示部201は、制御部203が行う制御の下、カメラ101が撮影した2次元の画像とともに、所望の移動先である外形Fを表示する。
 図24は、本開示の第5実施形態による制御装置30が決定する移動先の一例を示す図である。移動先としては、図24に示すように、物体Mが密着した領域と、物体Mが存在しない領域とが混在するものとなる可能性がある。この場合にも、上述の処理により移動先を作業者の所望の移動先に変更することができる。
(利点)
 以上、本開示の第5実施形態によるロボットシステム1について説明した。上述したように、移動対象の物体Mの状態を指定する技術を、移動先を指定する技術にも用いることができる。よって、指定装置20より、移動前の物体の状態が入力された場合に作業目標に応じた所定のアルゴリズムに従ってその物体を移動させるロボットシステムにおいて、作業者は移動後の物体の状態を容易に指定することができる。その結果、ロボットシステムが物体を正しく認識できない場合であっても、物体を正しく認識できるようになる。
<第6実施形態>
 次に、本開示の第6実施形態によるロボットシステム1について説明する。第6実施形態によるロボットシステム1は、図18に示す第3実施形態によるロボットシステム1と同様に、測定装置10、指定装置20、制御装置30、ロボット40、およびWMS60を備える。第6実施形態によるロボットシステム1は、ロボット40の移動先を変更するためのシステムである。
 制御装置30による制御の下、ロボット40が移動対象の物体Mを制御装置30がアルゴリズムに則って決定した移動先に移動させた場合には、その移動先が作業者の所望の移動先にならない可能性がある。第6実施形態によるロボットシステム1は、そのような場合に、移動先を所望の移動先に変更する処理を実行するシステムである。
 なお、以下の説明は、上述の第1~第4実施形態およびそれらの変形例のロボットシステム1のうちWMS60を備えるロボットシステム1における処理である。具体的には、移動前の移動対象の物体Mの状態を指定した後に、制御装置30がアルゴリズムに則って特定した移動先を変更する処理である。
 ロボットシステム1では、アルゴリズムに応じた制御信号Cnt2が決定した段階で移動先も決定されることになる。制御部304は、その移動先を示す情報を、指定装置20に出力する。
 生成部202は、カメラ101が撮影した2次元の画像の情報と、WMS60から受信した移動対象の物体Mの種類、数量、および形状の情報と、制御装置30から受信する移動先を示す情報とに基づいて、2次元の画像と、移動先とともに、図形Faを表示部201に表示させる制御信号Cnt1を生成する。
 制御部203は、生成部202が生成した制御信号Cnt1に基づいて、カメラ101が撮影した2次元の画像と、移動先とともに、図形Faを表示部201に表示させる。
 受付部204は、作業者による不要な移動先を削除する操作を受け取る。例えば、受付部204は、タッチパネルであり、作業者の指やタッチパネル専用のペンなどによる削除する移動先を選択し、選択した移動先に対して削除を決定する操作を行うことにより、受付部204がその操作を受け取る。受付部204がその操作を受け取ると、生成部202は、削除を指定された移動先を表示させない制御信号Cnt1を生成する。この制御信号Cnt1により移動先が削除されることになる。
 また、受付部204は、図形Faを所望の位置(すなわち、所望の移動先)まで移動させる操作を受け取る。また、受付部204は、図形Faを指定する(この場合、選択して指定する)作業者による入力を受け取る。例えば、受付部204は、タッチパネルであり、作業者の指やタッチパネル専用のペンなどによる図形Faを選択し、選択した図形Faを所望の位置(すなわち、所望の移動先)まで移動させる操作を受け取る。
 なお、作業者が選択した図形Faを所望の位置まで移動させる操作や移動先を削除する操作を行っている間も、生成部202は、その操作に応じた制御信号Cnt1を生成しており、制御部203は、生成部202が生成した制御信号Cnt1に基づいて、カメラ101が撮影した2次元の画像と、所望の移動先である図形Faとが表示部201に表示させる。その結果、表示部201は、制御部203が行う制御の下、カメラ101が撮影した2次元の画像とともに、所望の移動先である図形Faを表示する。
 本開示の第6実施形態でも、移動先としては、図24に示すように、物体Mが密着した領域と、物体Mが存在しない領域とが混在するものとなる可能性がある。この場合にも、上述の処理により移動先を作業者の所望の移動先に変更することができる。
(利点)
 以上、本開示の第6実施形態によるロボットシステム1について説明した。上述したように、移動対象の物体Mの状態を指定する技術を、移動先を指定する技術にも用いることができる。よって、指定装置20より、移動前の物体の状態が入力された場合に作業目標に応じた所定のアルゴリズムに従ってその物体を移動させるロボットシステムにおいて、作業者は移動後の物体の状態を容易に指定することができる。その結果、ロボットシステムが物体を正しく認識できない場合であっても、物体を正しく認識できるようになる。
<第7実施形態>
 次に、本開示の第7実施形態によるロボットシステム1について説明する。第7実施形態によるロボットシステム1は、図13に示す第2実施形態によるロボットシステム1と同様に、測定装置10、指定装置20、制御装置30、およびロボット40を備え、更に、自動認識システム50を備える。
 ロボットシステム1が自動認識システム50を備え、制御装置30による制御の下、ロボット40が移動対象の物体Mを制御装置30がアルゴリズムに則って決定した移動先に移動させた場合には、自動認識システム50がその移動先を示す情報を生成する。第7実施形態によるロボットシステム1は、そのような場合に、移動先を所望の移動先に変更する処理を実行するシステムである。
 自動認識システム50は、生成した移動先を示す情報を、指定装置20に出力する。生成部202は、カメラ101が撮影した2次元の画像の情報と、第1実施形態で説明した外形Fを指定するための情報と、自動認識システム50から受信した移動先を示す情報とに基づいて、2次元の画像と、移動先とともに、移動先を指定する外形Fを表示部201に表示させる制御信号Cnt1を生成する。
 制御部203は、生成部202が生成した制御信号Cnt1に基づいて、カメラ101が撮影した2次元の画像と、移動先とともに、外形Fを表示部201に表示させる。
 受付部204は、作業者による不要な移動先を削除する操作を受け取る。例えば、受付部204は、タッチパネルであり、作業者の指やタッチパネル専用のペンなどによる削除する移動先を選択し、選択した移動先に対して削除を決定する操作を行うことにより、受付部204がその操作を受け取る。受付部204がその操作を受け取ると、生成部202は、削除を指定された移動先を表示させない制御信号Cnt1を生成する。この制御信号Cnt1により移動先が削除されることになる。
 また、受付部204は、外形Fを所望の位置(すなわち、所望の移動先)まで移動させる操作を受け取る。また、受付部204は、外形Fを指定する(この場合、選択して指定する)作業者による入力を受け取る。例えば、受付部204は、タッチパネルであり、作業者の指やタッチパネル専用のペンなどによる外形Fを選択し、選択した外形Fを所望の位置(すなわち、所望の移動先)まで移動させる操作を受け取る。
 なお、作業者が選択した外形Fを所望の位置まで移動させる操作や移動先を削除する操作を行っている間も、生成部202は、その操作に応じた制御信号Cnt1を生成しており、制御部203は、生成部202が生成した制御信号Cnt1に基づいて、カメラ101が撮影した2次元の画像と、所望の移動先である外形Fとを表示部201に表示させる。その結果、表示部201は、制御部203が行う制御の下、カメラ101が撮影した2次元の画像とともに、所望の移動先である外形Fを表示する。
(利点)
 以上、本開示の第7実施形態によるロボットシステム1について説明した。上述したように、移動対象の物体Mの状態を指定する技術を、移動先を指定する技術にも用いることができる。よって、指定装置20より、移動前の物体の状態が入力された場合に作業目標に応じた所定のアルゴリズムに従ってその物体を移動させるロボットシステムにおいて、作業者は移動後の物体の状態を容易に指定することができる。その結果、ロボットシステムが物体を正しく認識できない場合であっても、物体を正しく認識できるようになる。
<第8実施形態>
 次に、本開示の第8実施形態によるロボットシステム1について説明する。第8実施形態によるロボットシステム1は、図23に示す第4実施形態のロボットシステム1と同様に、測定装置10、指定装置20、制御装置30、ロボット40、自動認識システム50、およびWMS60を備える。
 ロボットシステム1が自動認識システム50を備え、制御装置30による制御の下、ロボット40が移動対象の物体Mを制御装置30がアルゴリズムに則って決定した移動先に移動させた場合には、自動認識システム50がその移動先を示す情報を生成する。第8実施形態によるロボットシステム1は、そのような場合に、移動先を所望の移動先に変更する処理を実行するシステムである。
 自動認識システム50は、生成した移動先を示す情報を、指定装置20に出力する。生成部202は、カメラ101が撮影した2次元の画像の情報と、WMS60から受信した移動対象の物体Mの種類、数量、および形状の情報と、自動認識システム50から受信する移動先を示す情報とに基づいて、2次元の画像と、移動先とともに、図形Faを表示部201に表示させる制御信号Cnt1を生成する。
 制御部203は、生成部202が生成した制御信号Cnt1に基づいて、カメラ101が撮影した2次元の画像と、移動先とともに、図形Faを表示部201に表示させる。
 受付部204は、作業者による不要な移動先を削除する操作を受け取る。例えば、受付部204は、タッチパネルであり、作業者の指やタッチパネル専用のペンなどによる削除する移動先を選択し、選択した移動先に対して削除を決定する操作を行うことにより、受付部204がその操作を受け取る。受付部204がその操作を受け取ると、生成部202は、削除を指定された移動先を表示させない制御信号Cnt1を生成する。この制御信号Cnt1により移動先が削除されることになる。
 また、受付部204は、図形Faを所望の位置(すなわち、所望の移動先)まで移動させる操作を受け取る。また、受付部204は、図形Faを指定する(この場合、選択して指定する)作業者による入力を受け取る。例えば、受付部204は、タッチパネルであり、作業者の指やタッチパネル専用のペンなどによる図形Faを選択し、選択した図形Faを所望の位置(すなわち、所望の移動先)まで移動させる操作を受け取る。
 なお、作業者が選択した図形Faを所望の位置まで移動させる操作や移動先を削除する操作を行っている間も、生成部202は、その操作に応じた制御信号Cnt1を生成しており、制御部203は、生成部202が生成した制御信号Cnt1に基づいて、カメラ101が撮影した2次元の画像と、所望の移動先である図形Faとが表示部201に表示させる。その結果、表示部201は、制御部203が行う制御の下、カメラ101が撮影した2次元の画像とともに、所望の移動先である図形Faを表示する。
(利点)
 以上、本開示の第8実施形態によるロボットシステム1について説明した。上述したように、移動対象の物体Mの状態を指定する技術を、移動先を指定する技術にも用いることができる。よって、指定装置20より、移動前の物体の状態が入力された場合に作業目標に応じた所定のアルゴリズムに従ってその物体を移動させるロボットシステムにおいて、作業者は移動後の物体の状態を容易に指定することができる。その結果、ロボットシステムが物体を正しく認識できない場合であっても、物体を正しく認識できるようになる。
 本開示の実施形態による最小構成の指定装置20について説明する。図25は、本開示の実施形態による最小構成の指定装置20を示す図である。本開示の実施形態による最小構成の指定装置20は、作業目標に応じた所定のアルゴリズムに従って移動対象の物体を移動させるロボットシステムが有する指定装置であって、図25に示すように、受付部204(受付手段の一例)、および制御部203(制御手段の一例)を備える。受付部204は、前記移動対象の物体の外形の少なくとも一部を指定する入力を受け取る。制御部203は、前記移動対象の物体を含む2次元の画像とともに、前記受付部が受け取った前記外形を表示装置に表示させる。受付部204は、例えば、第1実施形態の変形例による指定装置20が備える受付部204が有する機能を用いて実現することができる。また、制御部203は、例えば、第1実施形態の変形例による指定装置20が備える制御部203が有する機能を用いて実現することができる。
 次に、最小構成の指定装置20の処理を説明する。図26は、最小構成の指定装置20の処理フローの一例を示す図である。ここでは、図26を参照して最小構成の指定装置20の処理について説明する。
 作業目標に応じた所定のアルゴリズムに従って移動対象の物体を移動させるロボットシステムが有する指定装置20において、受付部204は、前記移動対象の物体の外形の少なくとも一部を指定する入力を受け取る(ステップS11)。制御部203は、前記移動対象の物体を含む2次元の画像とともに、前記受付部が受け取った前記外形を表示装置に表示させる(ステップS12)。こうすることにより、指定装置20は、移動前の物体の状態が入力された場合に作業目標に応じた所定のアルゴリズムに従ってその物体を移動させるロボットシステムにおいて、作業者は物体の状態を容易に指定することができる。その結果、ロボットシステムが物体を正しく認識できない場合であっても、物体を正しく認識できるようになる。
 なお、本開示の実施形態における処理は、適切な処理が行われる範囲において、処理の順番が入れ替わってもよい。
 本開示の実施形態について説明したが、上述のロボットシステム1、測定装置10、指定装置20、制御装置30、ロボット40、自動認識システム50、WMS60、その他の制御装置は内部に、コンピュータ装置を有していてもよい。そして、上述した処理の過程は、プログラムの形式でコンピュータ読み取り可能な記録媒体に記憶されており、このプログラムをコンピュータが読み出して実行することによって、上記処理が行われる。コンピュータの具体例を以下に示す。
 図27は、少なくとも1つの実施形態に係るコンピュータの構成を示す概略ブロック図である。コンピュータ5は、図27に示すように、CPU6(ベクトルプロセッサを含む)、メインメモリ7、ストレージ8、インターフェース9を備える。例えば、上述のロボットシステム1、測定装置10、指定装置20、制御装置30、ロボット40、自動認識システム50、WMS60、その他の制御装置のそれぞれは、コンピュータ5に実装される。そして、上述した各処理部の動作は、プログラムの形式でストレージ8に記憶されている。CPU6は、プログラムをストレージ8から読み出してメインメモリ7に展開し、当該プログラムに従って上記処理を実行する。また、CPU6は、プログラムに従って、上述した各記憶部に対応する記憶領域をメインメモリ7に確保する。
 ストレージ8の例としては、HDD(Hard Disk Drive)、SSD(Solid State Drive)、磁気ディスク、光磁気ディスク、CD-ROM(Compact Disc Read Only Memory)、DVD-ROM(Digital Versatile Disc Read Only Memory)、半導体メモリ等が挙げられる。ストレージ8は、コンピュータ5のバスに直接接続された内部メディアであってもよいし、インターフェース9または通信回線を介してコンピュータ5に接続される外部メディアであってもよい。また、このプログラムが通信回線によってコンピュータ5に配信される場合、配信を受けたコンピュータ5が当該プログラムをメインメモリ7に展開し、上記処理を実行してもよい。少なくとも1つの実施形態において、ストレージ8は、一時的でない有形の記憶媒体である。
 また、上記プログラムは、前述した機能の一部を実現してもよい。さらに、上記プログラムは、前述した機能をコンピュータ装置にすでに記録されているプログラムとの組み合わせで実現できるファイル、いわゆる差分ファイル(差分プログラム)であってもよい。
 本開示のいくつかの実施形態を説明したが、これらの実施形態は、例であり、開示の範囲を限定しない。これらの実施形態は、開示の要旨を逸脱しない範囲で、種々の追加、省略、置き換え、変更を行ってよい。
 本開示の各態様によれば、移動前の物体の状態が入力された場合に作業目標に応じた所定のアルゴリズムに従ってその物体を移動させるロボットシステムにおいて、作業者は物体の状態を容易に指定することができる。
1・・・ロボットシステム
5・・・コンピュータ
6・・・CPU
7・・・メインメモリ
8・・・ストレージ
9・・・インターフェース
10・・・測定装置
20・・・指定装置
30・・・制御装置
40・・・ロボット
50・・・自動認識システム
60・・・WMS
101、102、501・・・カメラ
201・・・表示部
202、401・・・生成部
203、304、603・・・制御部
204・・・受付部
301、601・・・記憶部
302・・・取得部
303・・・特定部
402・・・可動装置
402a・・・把持部
F・・・外形
M、M1、M2・・・移動対象の物体
NW・・・ネットワーク
P・・・平面
R・・・撮影領域
T・・・トレイ

Claims (8)

  1.  作業目標に応じた所定のアルゴリズムに従って移動対象の物体を移動させるロボットシステムにおいて前記移動対象の物体の外形の少なくとも一部を指定する入力を受け取る受付手段と、
     前記移動対象の物体を含む2次元の画像と、前記受付手段が受け取った前記外形とを表示装置に表示させる制御手段と、
     を備える指定装置。
  2.  前記受付手段は、
     前記移動対象の物体の外形をなぞることにより定まる形状の外形の入力を受け取る、
     請求項1に記載の指定装置。
  3.  前記受付手段は、
     前記移動対象の物体の頂点を指定することにより定まる形状の外形の入力を受け取る、
     請求項1に記載の指定装置。
  4.  前記受付手段は、
     前記移動対象の物体を管理する外部システムが有するデータに基づいて生成された形状を変更する入力を受け取る、
     請求項1に記載の指定装置。
  5.  前記受付手段は、
     前記移動対象の物体を撮影する外部システムが生成した形状を変更する入力を受け取る、
     請求項1に記載の指定装置。
  6.  請求項1から請求項5の何れか一項に記載の指定装置と、
     移動対象の物体を把持可能なロボットと、
     前記指定装置が受け取った移動対象の物体の外形に基づいて、前記ロボットに前記移動対象の物体を把持させる制御装置と、
     を備えるロボットシステム。
  7.  作業目標に応じた所定のアルゴリズムに従って移動対象の物体を移動させるロボットシステムにおいて、コンピュータが、前記移動対象の物体の外形の少なくとも一部を指定する入力を受け取り、
     前記移動対象の物体を含む2次元の画像と、受け取った前記外形とを表示装置に表示させる
     指定方法。
  8.  作業目標に応じた所定のアルゴリズムに従って移動対象の物体を移動させるロボットシステムにおいて、前記移動対象の物体の外形の少なくとも一部を指定する入力を受け取ることと、
     前記移動対象の物体を含む2次元の画像と、受け取った前記外形とを表示装置に表示させることと、
     をコンピュータに実行させるプログラムが格納されている記録媒体。
PCT/JP2022/003781 2022-02-01 2022-02-01 指定装置、ロボットシステム、指定方法、および記録媒体 WO2023148804A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/003781 WO2023148804A1 (ja) 2022-02-01 2022-02-01 指定装置、ロボットシステム、指定方法、および記録媒体
JP2023578209A JPWO2023148804A5 (ja) 2022-02-01 指定装置、ロボットシステム、指定方法、およびプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/003781 WO2023148804A1 (ja) 2022-02-01 2022-02-01 指定装置、ロボットシステム、指定方法、および記録媒体

Publications (1)

Publication Number Publication Date
WO2023148804A1 true WO2023148804A1 (ja) 2023-08-10

Family

ID=87553313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/003781 WO2023148804A1 (ja) 2022-02-01 2022-02-01 指定装置、ロボットシステム、指定方法、および記録媒体

Country Status (1)

Country Link
WO (1) WO2023148804A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6416337A (en) * 1987-07-09 1989-01-19 Mitsubishi Electric Corp Robot device
JPH1058363A (ja) * 1996-08-21 1998-03-03 Toshiba Corp ロボットのオフライン教示装置
JPH1185240A (ja) * 1997-09-04 1999-03-30 Nippon Telegr & Teleph Corp <Ntt> ロボットプログラミング方法とその装置及び生成プログラムを記録した記録媒体

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6416337A (en) * 1987-07-09 1989-01-19 Mitsubishi Electric Corp Robot device
JPH1058363A (ja) * 1996-08-21 1998-03-03 Toshiba Corp ロボットのオフライン教示装置
JPH1185240A (ja) * 1997-09-04 1999-03-30 Nippon Telegr & Teleph Corp <Ntt> ロボットプログラミング方法とその装置及び生成プログラムを記録した記録媒体

Also Published As

Publication number Publication date
JPWO2023148804A1 (ja) 2023-08-10

Similar Documents

Publication Publication Date Title
CN110116406B (zh) 具有增强的扫描机制的机器人系统
JP6771799B1 (ja) 壁に基づくパッキング機構を有するロボットシステム及びその動作方法
KR102720481B1 (ko) 패킹 메커니즘을 구비한 로봇 시스템
KR102723371B1 (ko) 비순서적으로 도착하는 패키지를 처리하기 위한 로봇 시스템
JP5788460B2 (ja) バラ積みされた物品をロボットで取出す装置及び方法
JP6540472B2 (ja) シミュレーション装置、シミュレーション方法、およびシミュレーションプログラム
JP2020196127A (ja) エラー検出および動的パッキング機構を有するロボットシステム
JP2020196124A (ja) 動的パッキング機構を有するロボットシステム
JP2021507857A (ja) 自動パッケージ登録メカニズムを備えたロボットシステム、および、その動作方法
JP6879238B2 (ja) ワークピッキング装置及びワークピッキング方法
Holz et al. Real-time object detection, localization and verification for fast robotic depalletizing
JPWO2019009350A1 (ja) 経路出力方法、経路出力システム及び経路出力プログラム
JP2004090183A (ja) 物品の位置姿勢検出装置及び物品取出し装置
JP2014161965A (ja) 物品取り出し装置
US20210023718A1 (en) Three-dimensional data generation device and robot control system
CN111483750A (zh) 机器人系统的控制方法以及控制装置
JP2018153874A (ja) 提示装置、提示方法およびプログラム、ならびに作業システム
WO2023148804A1 (ja) 指定装置、ロボットシステム、指定方法、および記録媒体
WO2023148798A1 (ja) 指定装置、ロボットシステム、指定方法、および記録媒体
JP2019063953A (ja) 作業システム、作業システムの制御方法及びプログラム
JP7519222B2 (ja) 画像処理装置
JP7535400B2 (ja) 画像処理装置
CN111470244B (zh) 机器人系统的控制方法以及控制装置
JP2021091056A (ja) 測定装置
CN111498213A (zh) 具有动态打包机制的机器人系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22924717

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023578209

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE