WO2023145975A1 - 半導体ナノ粒子複合膜、これを含む複合基材及びデバイス、並びに半導体ナノ粒子複合膜の製造方法 - Google Patents

半導体ナノ粒子複合膜、これを含む複合基材及びデバイス、並びに半導体ナノ粒子複合膜の製造方法 Download PDF

Info

Publication number
WO2023145975A1
WO2023145975A1 PCT/JP2023/003128 JP2023003128W WO2023145975A1 WO 2023145975 A1 WO2023145975 A1 WO 2023145975A1 JP 2023003128 W JP2023003128 W JP 2023003128W WO 2023145975 A1 WO2023145975 A1 WO 2023145975A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor
composite film
film
semiconductor nanoparticles
semiconductor nanoparticle
Prior art date
Application number
PCT/JP2023/003128
Other languages
English (en)
French (fr)
Inventor
雅典 坂本
Original Assignee
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学 filed Critical 国立大学法人京都大学
Priority to JP2023577094A priority Critical patent/JPWO2023145975A1/ja
Publication of WO2023145975A1 publication Critical patent/WO2023145975A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • C01G3/12Sulfides

Definitions

  • the present invention relates to a semiconductor nanoparticle composite film, more specifically to a film in which semiconductor nanoparticles are composited with other materials.
  • Patent Document 1 a conductive film containing semiconductor nanoparticles
  • the conductive film disclosed in Patent Document 1 contains a binder together with semiconductor nanoparticles.
  • nanoparticles such as semiconductor nanoparticles are sometimes used in combination with other materials in order to utilize their own functions in composite films.
  • Nanoparticles are also used as a material that adds another function to the membrane to use the function of other materials.
  • a nanoparticle-supported diamond-like carbon (hereinafter sometimes referred to as "DLC") film has been proposed as a film to which a function is added by nanoparticles (Patent Document 2).
  • DLC diamond-like carbon
  • Patent Document 2 a DLC film is formed by irradiating an ion beam to a polymer film.
  • Polymer films such as polyamide and polyvinylpyrrolidone are used as the polymer film.
  • the DLC film supporting nanoparticles maintains the excellent properties originally possessed by DLC such as high hardness, electrical insulation, and infrared transmittance (paragraph 0019).
  • the properties added to the DLC film by the supported nanoparticles are, for example, antimicrobial properties by Ag, fluorescence by nanodiamonds, magnetism by Co, catalytic properties by Pt, photocatalytic properties by titanium oxide, and cytophilic properties by hydroxyapatite. There is (paragraph 0037).
  • Patent Document 2 does not change the inherent properties of the DLC film, especially electrical insulation and infrared transmission, by adding nanoparticles.
  • the content of nanoparticles in the DLC film is limited to such an extent that the properties of the DLC film are not impaired.
  • the dots corresponding to Ag nanoparticles occupy much less than half the area of the film cross-section (Figs. 4-8).
  • the purpose of the present invention is to improve a film containing semiconductor nanoparticles.
  • the present invention includes semiconductor nanoparticles and diamond-like carbon (DLC), i) mainly comprising the semiconductor nanoparticles; and ii) at least a portion of the semiconductor nanoparticles are arranged in a line.
  • DLC diamond-like carbon
  • a semiconductor nanoparticle composite film in which at least one selected from the group consisting of
  • the present invention also provides a composite substrate comprising a substrate and the semiconductor nanoparticle composite film according to the present invention. Furthermore, the present invention provides a device comprising the semiconductor nanoparticle composite film according to the present invention and a conductive portion electrically connected to the semiconductor nanoparticle composite film.
  • the present invention provides a method for producing a semiconductor nanoparticle composite film according to the present invention, Depositing a semiconductor nanoparticle-containing film containing semiconductor nanoparticles and a carbon source; obtaining a semiconductor nanoparticle composite film containing the semiconductor nanoparticles and the DLC by irradiating the semiconductor nanoparticle-containing film with an ion beam to generate DLC; and Provided is a manufacturing method, wherein the carbon source includes an organic compound other than a polymer.
  • the present invention is suitable for improving films containing semiconductor nanoparticles.
  • FIG. 1 is a cross-sectional view showing an example of a composite membrane
  • FIG. FIG. 2 is a diagram showing an example of the shape and arrangement of semiconductor nanoparticles contained in a composite film
  • FIG. 4 is a diagram showing another example of the shape and arrangement of semiconductor nanoparticles contained in a composite film
  • FIG. 4 is a diagram showing yet another example of the shape and arrangement of semiconductor nanoparticles contained in a composite film
  • It is an example of an image obtained by observing a composite membrane with a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • FIG. 3 is a schematic diagram for explaining a bending test of a composite membrane
  • FIG. 2 shows an observation (left) of a composite particle in which a semiconductor nanoparticle, which is an infrared-absorbing particle, and an acceptor are bonded together, and a diagram (right) for explaining charge separation generated in the composite particle in response to irradiation with infrared rays.
  • . 1 is a cross-sectional view showing an example of a device with a composite membrane
  • FIG. 10 is a cross-sectional view showing another example of a device with a composite membrane
  • FIG. 11 shows a cross-section of another example of a device with a composite membrane, along with a schematic of a conductive portion
  • 13 is a diagram for explaining an example of charge carrier emission in the device shown in FIG. 12;
  • FIG. 4 is a diagram showing an example of X-ray diffraction results of a composite film irradiated with an ion beam;
  • FIG. 3 is a diagram showing an example of the relationship between ion beam irradiation time and surface resistivity of a composite film.
  • FIG. 4 shows the results of bending tests of composite membranes.
  • 1 is an example of an image obtained by observing an example of a composite film mainly containing semiconductor nanoparticles with a TEM.
  • 1 is an example of an image obtained by observing an example of a composite film mainly containing semiconductor nanoparticles with a TEM.
  • 1 is an example of a spectral absorbance curve of a composite membrane fabricated using a nitrogen ion beam.
  • 1 is an example of a spectral absorbance curve of a composite film produced using a carbon ion beam.
  • 1 is an example of a spectral absorbance curve of a composite membrane fabricated using an argon ion beam.
  • semiconductor is used to mean not only ordinary semiconductors but also semi-metals.
  • a semimetal is a substance having a band structure in which the lower portion of the conduction band and the upper portion of the valence band slightly overlap across the Fermi level due to distortion of the crystal structure, interaction between crystal layers, and the like.
  • degenerate semiconductor means a semiconductor having a band structure in which the conduction or valence band and the Fermi level overlap.
  • nanoparticles means particles having a smallest particle size of less than 1 ⁇ m, eg in the range of 0.1 nm to less than 1 ⁇ m. Nanoparticles typically refer to particles having a largest particle dimension of 5 ⁇ m or less, or even in the range of 3 nm to 2 ⁇ m.
  • the "minimum diameter” is determined by the minimum dimension passing through the center of gravity of the particle, and the “maximum dimension” is determined by the longest line segment that can be set within the particle. A simple average of the "maximum dimensions” is referred to as "average maximum particle size".
  • “Hydrophobic” is used as a term to refer to the property of a surface having a water contact angle of 60° or greater, especially 70° or greater. Also, the term “substantially parallel” is used to limit the difference in direction from each other to 10° or less, particularly 5° or less. The term “substantially perpendicular” is also used with the intention of limiting the deviation in direction from perpendicular to no more than 10°, especially no more than 5°.
  • the term “autonomously arranged” or “autonomous arrangement” is used to mean that semiconductor nanoparticles are arranged in a self-organizing manner using interaction between particles as a driving force. Moreover, the term “functional group” is used as a term including halogen atoms.
  • mainly containing semiconductor nanoparticles means that the ratio of semiconductor nanoparticles is 50% or more in at least one selected from the group consisting of mass basis, volume basis, and area basis. do. "Mainly containing” on an area basis means that it occupies 50% or more of the area in the cross section of the film. Moreover, the upper limit and lower limit of the numerical range in this specification can be combined arbitrarily to form a range.
  • a composite film containing mainly semiconductor nanoparticles and containing DLC can be produced.
  • the present inventors have found that ion beam irradiation produces DLC from low-molecular-weight compounds attached to semiconductor nanoparticles. That is, a polymer film is not essential as a raw material for DLC. Addition of polymer reduces the proportion of semiconductor nanoparticles in the film. The introduction of polymer between semiconductor nanoparticles is a factor that disturbs the arrangement of the particles. Using the method discovered by the present inventors, it becomes possible to generate DLC even in a narrow space near the semiconductor nanoparticles that are present close to each other.
  • DLC can contribute to the improvement of film properties, such as electrical conductivity, that are manifested by the involvement of multiple semiconductor nanoparticles.
  • film properties such as electrical conductivity
  • the details of this mechanism are unknown at this stage, it is possible that the enhancement of film rigidity by DLC affected the conductive paths extending through the film via multiple semiconductor nanoparticles.
  • the reinforcing effect of DLC can be remarkably exhibited in a film having a high ratio of semiconductor nanoparticles to the extent that it mainly contains semiconductor nanoparticles, and a film in which at least part of the semiconductor nanoparticles are arranged in a line.
  • DLC functions as an acceptor that receives charge carriers generated by irradiating semiconductor nanoparticles with light such as infrared rays, and can contribute to improving the heat shielding properties of the film. Further, for example, DLC can contribute to improving the folding endurance of the film.
  • at least part of the DLC is produced from a low-molecular-weight compound other than the polymer, but not all of the DLC is necessarily derived from a low-molecular-weight compound.
  • the semiconductor nanoparticle composite film of the present embodiment (hereinafter also simply referred to as "composite film”) is a composite film containing semiconductor nanoparticles and other materials. Other materials include at least DLC.
  • composite film is a composite film containing semiconductor nanoparticles and other materials. Other materials include at least DLC.
  • the following i) and/or ii) are established in the composite membrane of the present embodiment. i) mainly containing semiconductor nanoparticles; ii) at least a portion of the semiconductor nanoparticles are arranged in a line;
  • the semiconductor nanoparticles may be included such that i) above holds true.
  • "mainly containing” is satisfied if the semiconductor nanoparticles account for 50% or more in at least one criterion selected from the mass criterion, the volume criterion and the area criterion. Judgment based on the area standard can be carried out relatively easily by observing the cross section of the film using an electron microscope. At this time, the cross section is preferably substantially perpendicular to the planar direction of the composite membrane. Specifically, this judgment is performed on five arbitrarily selected cross sections.
  • a cross-section is found that is inconclusive as to whether it corresponds to "mainly containing”
  • measurements are carried out on five more cross-sections, and the ratio of the total area of the semiconductor nanoparticles to the total area of the total of 10 cross-sections is calculated. to decide.
  • the area of each film cross section to be observed is set to 2000 nm 2 or more, preferably 10000 nm 2 or more.
  • the semiconductor nanoparticles may be included so that the above ii) is established.
  • This composite film contains an array of semiconductor nanoparticles.
  • the semiconductor nanoparticles are arranged in a line.
  • the semiconductor nanoparticles may be arranged in a state in which the semiconductor nanoparticles are spaced apart from each other in the arrangement portion when a cross section including the arrangement portion is observed.
  • the composite membrane may include multiple arrays that extend substantially parallel to each other, may include multiple arrays that cross each other or connect to each other at their ends.
  • the average distance between adjacent semiconductor nanoparticles is preferably 10 nm or less.
  • the "average distance" of the semiconductor nanoparticles is determined by measuring the shortest distance between two particles that are adjacent to each other while being separated from each other in the arrangement part of the semiconductor nanoparticles that appear in the film cross section, and determining the arithmetic average of the distances. .
  • the average distance can be determined by measuring the shortest distance between two particles that are adjacent to each other while being separated from each other at 10 points along the part where the two particles face each other, and calculating the arithmetic average (so-called 10-point average).
  • the semiconductor nanoparticles adjacent to each other in the arrangement portion in the cross section are spaced apart so that the sides facing each other are substantially parallel.
  • the arrangement portion may be formed by autonomously arranging the semiconductor nanoparticles during film formation.
  • the composite film may contain a compound attached to the semiconductor nanoparticles, that is, an attached compound.
  • Attachment compounds are compounds different from the semiconductors that make up the semiconductor nanoparticles, typically organic or inorganic compounds that do not correspond to semiconductors.
  • the attachment compound may be a compound that does not correspond to a macromolecule.
  • the attachment compound may be a compound that does not correspond to a polymer.
  • the attachment compound may be a different compound than the attachment to protect the semiconductor nanoparticles from agglomeration in the ink for forming the composite film.
  • the molecular weight of the attachment compound is preferably 300 or less, 200 or less, 150 or less, more preferably less than 110, especially less than 60.
  • the attachment compound may have functional groups suitable for bonding with the semiconductor nanoparticles, such as ligands that can bond to the metal atom via coordinate bonds.
  • adhesion compounds is not essential. Depending on the type of semiconductor nanoparticles, the properties required for the composite film, and other factors, a composite film that does not contain an attachment compound can exhibit properties sufficient for practical use. In addition, even if the attached compound is contained before the ion beam irradiation, part of it is lost from the film due to changes to DLC after the ion beam irradiation, the content in the film decreases, or the compound is removed from the film. removed.
  • the composite membrane may be one that does not contain a polymer.
  • the composite membrane may be polymer-free.
  • the composite film may not contain macromolecules and/or polymers in the layer containing the semiconductor nanoparticles.
  • this multilayer film may contain a polymer or the like in another layer.
  • the three-dimensional shape of the semiconductor nanoparticles may be a columnar body and/or a polyhedron.
  • the bottom surface of the columnar body is not particularly limited, and may be circular, elliptical, or polygonal, for example.
  • the columnar body is typically a columnar body having the same bottom surface and parallel to each other, but is not limited to this.
  • the polyhedron may be a regular polyhedron such as a regular hexahedron, but is not limited to this.
  • One of the preferred three-dimensional shapes is a disk-shaped columnar body having a height of 1/2 or less, further 1/3 or less, particularly 1/4 or less (hereafter, such a shape is simply referred to as "disk (referred to as “statement”).
  • the columnar body is not limited to this, and the columnar body is a rod-shaped columnar body having a height of two times or more, further three times or more, especially four times or more the diameter of a circle when the bottom surface is regarded as a circle with the same area. (Such a shape is hereinafter simply referred to as a “rod shape”).
  • the three-dimensional shape of the semiconductor nanoparticles may be rod-shaped and/or disk-shaped.
  • FIG. 1 An example of a composite membrane is shown in Figure 1.
  • the composite film 1 is formed on the surface 7a of the substrate 7.
  • FIG. 1 is a membrane cross section when the composite membrane 1 is cut along a direction perpendicular to the surface 7a.
  • FIG. 2 shows semiconductor nanoparticles 11 and 12 contained in composite film 1 .
  • the shape and arrangement of the semiconductor nanoparticles 11 and 12 as shown in FIG. 2 can be observed using, for example, a TEM.
  • the minimum diameter of the semiconductor nanoparticles 11 and 12 is less than 1 ⁇ m, for example 500 nm or less, preferably 100 nm or less.
  • the matrix 40 without the semiconductor nanoparticles 11 and 12 contains at least DLC.
  • Semiconductor nanoparticles 11 and 12 appear in the film cross section of the composite film 1 shown in FIG.
  • the semiconductor nanoparticles 11 in the film cross section are substantially polygonal with five or more vertices, specifically pentagons or hexagons.
  • the semiconductor nanoparticles 12 in the film cross section are substantially square.
  • the semiconductor nanoparticles 12 in the cross section of the film are, more specifically, rectangular, more specifically rectangular with the long side corresponding to the bottom being twice or more the short side corresponding to the height.
  • the semiconductor nanoparticles 11 and 12 observed in this way are disk-shaped, for example.
  • the shape of the semiconductor nanoparticles in the film cross section is not limited to the above, and may be a circle, an ellipse, a triangle, or a square other than a rectangle, such as a square.
  • the length of the long side of the rectangle is, for example, 3 to 2000 nm, further 5 to 900 nm, furthermore 20 to 50 nm.
  • the short side length of the semiconductor nanoparticles 12 is, for example, 2 to 100 nm, further 3 to 20 nm.
  • the ratio of the long side to the short side of the semiconductor nanoparticles 12 may be, for example, 2 or more.
  • the composite film 1 includes arrayed portions 21, 22, 23 and 24 in which the semiconductor nanoparticles 11 and 12 are arrayed.
  • the semiconductor nanoparticles are arranged in a line without contacting adjacent particles.
  • Substantially pentagonal or hexagonal semiconductor nanoparticles 11 are arranged in the array portions 21 and 22
  • substantially rectangular semiconductor nanoparticles 12 are arrayed in the array portions 23 and 24 .
  • the number of semiconductor nanoparticles arranged in the arrangement portion is not particularly limited, and 3 or more, 7 or more, in some cases 10 or more, and further 20 or more semiconductor nanoparticles may be arranged.
  • each arrangement section In the arrangement sections 21 to 24, a straight line passing through the semiconductor nanoparticles contained in each arrangement section can be drawn. In other words, the array portions are arranged in a line along the linear array direction.
  • FIG. 2 only the arranging directions 33 and 34 of the arranging portions 23 and 24 are shown, and illustration of the other arranging directions is omitted.
  • arrangement portions of semiconductor nanoparticles appear in addition to those shown, but the display is omitted for the sake of simplification.
  • the adjacent semiconductor nanoparticles 12 are spaced apart so that the sides facing each other are substantially parallel. In such an arrangement portion, the average distance between adjacent semiconductor nanoparticles 12 is likely to be kept small.
  • An arrangement of semiconductor nanoparticles with small spacing is advantageous for achieving high electrical conductivity.
  • the sides of the adjacent semiconductor nanoparticles 12 facing each other are rectangular long sides. In the arrangement structure in which the opposing sides are relatively long, even if the arrangement of the semiconductor nanoparticles 12 is partially disturbed, the portions where the semiconductor nanoparticles 12 are close to each other are likely to be retained, and the arrangement is maintained over a long distance. easy to maintain. This feature is also advantageous for achieving high electrical conductivity.
  • the average spacing of the semiconductor nanoparticles is, for example, 10 nm or less, further 7 nm or less, optionally 5 nm or less, 3 nm or less, further 2 nm or less, and particularly preferably 1.8 nm or less.
  • the average spacing may be, for example, 0.3 nm or more, or even 0.5 nm or more.
  • Figures 3 and 4 show a cross section of another example of a composite membrane. Only substantially pentagonal or hexagonal semiconductor nanoparticles 13 appear in the film cross section of the composite film 2 . Only the rectangular semiconductor nanoparticles 14 appear in the cross section of the composite film 3 .
  • rectangular semiconductor nanoparticles 14 are arranged in arrangement portions 25, 26, 27, 28 and 29 extending along arrangement directions 35, 36, 37, 38 and 39 substantially parallel to each other. .
  • the arrangement portions 61, 62, 63 and 64 extending along the arrangement directions 71, 72, 73 and 74 which are not substantially parallel to the arrangement directions 35 to 39 but are substantially parallel to each other are also substantially rectangular. of semiconductor nanoparticles 14 are arranged. In the cross-section of the film in FIG.
  • a different film cross section for example, in the direction perpendicular to the paper surface of FIG.
  • arrays in which nanoparticles are aligned can be observed.
  • a film in which the three-dimensional shape of the semiconductor nanoparticles 13 is disk-shaped, and the particles adjacent in the height direction are spaced apart from each other and arranged so that their bottom surfaces face each other, depending on the cutting direction It may have a membrane cross-section as shown in FIG.
  • FIGS. 2 to 4 show the mode in which all the semiconductor nanoparticles 11 to 14 are separated from each other, some of the semiconductor nanoparticles may be in contact with each other in another portion. It should also be noted that semiconductor nanoparticles may be observed in contact or overlap depending on the direction of observation, the resolution of the instrument used for observation, and the like, even if they are actually separated from each other.
  • FIGS. 5 and 6 The arrangement state of semiconductor nanoparticles in a region wider than that of FIGS. 2-4 is illustrated in FIGS. 5 and 6. As shown in these figures, the arrangement portions of the semiconductor nanoparticles need not extend in the same direction. Paths composed of a plurality of arrays may be curved, bent, crossed with each other, or partially overlapped. A path composed of a plurality of arrays forms a conductive path.
  • Matrix 40 includes DLC and optionally a binder such as an adhesion compound.
  • the binder When DLC is produced by ion beam irradiation, the binder preferably contains a carbon source that serves as a source of carbon atoms constituting DLC before ion beam irradiation, so that the binder does not change or decompose due to ion beam irradiation. However, they may remain in the film after ion beam irradiation.
  • the binder can be an organic compound other than a polymer (e.g., a monomer or oligomer) or an inorganic compound that does not contain carbon atoms, but when the DLC is prepared by irradiation with an ion beam, the binder is an organic compound other than the polymer. is preferred.
  • a material such as DLC or a binder may be interposed between the semiconductor nanoparticles adjacent to each other in the array portion. Also, the DLC may be formed to connect different arrangement sections.
  • the matrix 40 may constitute an element that allows autonomous alignment of the semiconductor nanoparticles 11-14. Proper alignment of the semiconductor nanoparticles 11-14 may create anisotropy in the conductivity of the composite films 1-3.
  • the matrix 40 can also be an element that contributes to improving the light transmittance of the composite films 1-3.
  • the matrix 40 can also serve as an element that suppresses a decrease in the electrical conductivity of the composite membranes 1 to 3 due to bending. In the cross section where the arrangement portion where the semiconductor nanoparticles are arranged is observed, the matrix 40 where the semiconductor nanoparticles do not exist occupies 10% or more, 20% or more, 30% or more, or even 40% or more of the entire area. may be This makes it possible to sufficiently suppress the decrease in conductivity due to bending.
  • the matrix 40 may occupy less than 50%, 40% or less, 30% or less, or even 20% or less of the total area. This makes it possible to sufficiently ensure electrical conductivity through the semiconductor nanoparticles. As described above, these upper limits and lower limits can form numerical ranges in arbitrary combinations, and the area ratio of the matrix is, for example, 10% or more and less than 50%. However, in a film that mainly contains semiconductor nanoparticles on a basis other than the area basis, the area ratio of the matrix may be 50% or more, for example, 50% or more and 90% or less.
  • the composite films 1-3 preferably contain compounds attached to the semiconductor nanoparticles 11-14 at least during the manufacturing process.
  • This compound is interposed between the semiconductor nanoparticles adjacent to each other in the arrangement part and can contribute to keeping the distance between the semiconductor nanoparticles narrow.
  • the smaller the molecular weight of the compound the better.
  • Compounds attached to semiconductor nanoparticles tend to disappear when irradiated with an ion beam, and even if they remain after irradiation, they are removed from the film or their content in the film is reduced, for example, by subsequent heating.
  • a compound with a small molecular weight such as hydrazine tends to disappear from the composite film over time due to so-called volatilization even without intentional heating.
  • the conductivity C1 of the composite membrane is 7 S/cm or more, further 10 S/cm or more, preferably 20 S/cm or more, more preferably 50 S/cm or more, still more preferably 100 S/cm or more, and particularly preferably 150 S/cm or more. , in some cases 200 S/cm or more, in particular 500 S/cm or more, even 1000 S/cm or more.
  • Conductivity C1 may be obtained by measuring along at least one direction. This direction may be the film plane direction parallel to the film surface or the film thickness direction perpendicular to the film surface. High electrical conductivity of composite membranes is often required in a specific direction in practice.
  • the length in the film surface direction is much larger than the film thickness, so practical problems can often be substantially solved by improving the conductivity in the film surface direction.
  • the electrical conductivity converted from the surface resistivity may be in the range described as C1.
  • a composite membrane according to this embodiment may be a membrane having a conductivity C1 measured along a first direction and a conductivity C2 measured along a second direction that is lower than the conductivity C1.
  • the second direction may be the film thickness direction.
  • the first direction is the film thickness direction
  • the second direction may be the film surface direction.
  • Conductivity C2 may be, for example, less than 80%, less than 50%, or even less than 1% of conductivity C1. However, by appropriately arranging the semiconductor nanoparticles, it is possible to improve not only the conductivity C1 but also the conductivity C2.
  • the conductivity C2 is, for example, 1 ⁇ 10 ⁇ 3 S/cm or more, and may be 1 ⁇ 10 ⁇ 1 S/cm or more, further 1 S/cm or more, particularly 100 S/cm or more.
  • the composite membrane of this embodiment does not necessarily require the anisotropy of electrical conductivity.
  • the disorder in the arrangement of the semiconductor nanoparticles is a factor that prevents the achievement of the above-mentioned high conductivity, but the presence of DLC can suppress the decrease in conductivity.
  • the directional dependence of the conductivity of the composite film is affected at least by the affinity of the semiconductor nanoparticles for the surface of the substrate and the three-dimensional shape of the semiconductor nanoparticles.
  • semiconductor nanoparticles having a disk-like three-dimensional shape are arranged so that the disk surface is substantially perpendicular to the surface of the substrate on the surface of the substrate having low affinity for the semiconductor nanoparticles.
  • the semiconductor nanoparticles are arranged so that the disk surface is substantially parallel to the surface of the base material on the surface of the base material, which has a high affinity for the semiconductor nanoparticles.
  • semiconductor nanoparticles having a rod-shaped three-dimensional shape are arranged so that the axial direction (major axis direction) of the rod is substantially perpendicular to the surface of the substrate on the surface of the substrate that has low affinity for the semiconductor nanoparticles. , in other words so that the rods stand against the surface.
  • the semiconductor nanoparticles are arranged so that the axial direction of the rods is substantially parallel to the surface of the substrate, in other words, the rods lie flat on the surface of the substrate that has a high affinity for the semiconductor nanoparticles.
  • the substrate In order to control the directional dependence of the conductivity of the composite film through the arrangement of the semiconductor nanoparticles, it is advisable to appropriately select the substrate to be used or adjust the affinity of the surface of the substrate.
  • a semiconductor In order to arrange rod-shaped semiconductor nanoparticles on the surface of a base material having a low affinity for the semiconductor nanoparticles so that the long axis direction of the rods is substantially parallel to the surface, a semiconductor It is preferable to apply a material that has a high affinity for the nanoparticles in advance. This arrangement is suitable for forming composite membranes with relatively high electrical conductivity C1 in the thickness direction.
  • DLC can improve the functions such as conductivity that are exhibited by the semiconductor nanoparticles by imparting appropriate rigidity to the film.
  • the reinforcing effect of the DLC tends to be remarkably exhibited, as in the arrangement portion.
  • the electrical insulation and infrared transmittance which are the characteristics of DLC itself, tend to dominate.
  • the light transmittance of the composite film at a wavelength of 650 nm is, for example, 30% or more, 40% or more, 50% or more, 60% or more, 70% or more, 80% or more, further 85% or more, preferably 90% or more, more preferably 92% or more.
  • a composite film having a high light transmittance of 80% or more is sometimes called a transparent conductive film.
  • the light transmittance of the composite film at the same wavelength may be 40% or more, or even 50% or more, but depending on the application, 30% or more may be sufficient.
  • the upper limit of the light transmittance of the composite film at the same wavelength is not particularly limited, it is, for example, 95% or less, and in some cases 80% or less.
  • the light transmittance of the composite film in the visible light region may be, for example, 40% or more, or even 50% or more.
  • the light transmittance of the composite film at a wavelength of 560 nm is, for example, 30% or more, 40% or more, 50% or more, 60% or more, 70% or more, 80% or more, further 85% or more, preferably 90% or more, More preferably, it is 92% or more.
  • the light transmittance of the composite film at the same wavelength may be 40% or more, or even 50% or more, but depending on the application, 30% or more may be sufficient.
  • the upper limit of the light transmittance of the composite film at the same wavelength is not particularly limited, it is, for example, 95% or less, and in some cases 80% or less.
  • the film thickness of the composite film is not particularly limited and may be appropriately set according to the application.
  • the surface resistivity of the composite membrane may be 10000 ⁇ / ⁇ or less, 5000 ⁇ / ⁇ or less, 1000 ⁇ / ⁇ or less, 300 ⁇ / ⁇ or less, 200 ⁇ / ⁇ or less, or 100 ⁇ / ⁇ or less.
  • the lower limit of the surface resistivity is not particularly limited, it is, for example, 10 ⁇ / ⁇ or more.
  • the composite membrane can have functions depending on the properties of the semiconductor nanoparticles.
  • the composite film of the present embodiment can have particularly excellent folding resistance due to the combination of semiconductor nanoparticles and DLC.
  • the resistance change rate of a composite film containing semiconductor nanoparticles and a binder and not containing DLC, that is, the composite film before introducing DLC increases after about 2000 bending tests, and may exceed 70%, for example.
  • the rate of change in resistance of the composite membrane of the present embodiment can be 50% or less, 30% or less, or even 20% or less even after 2000 bending tests.
  • the rate of change in resistance of the composite membrane can be suppressed to 50% or less, 30% or less, or even 20% or less even after 5000 times or even 10000 times of bending tests. .
  • the resistance change rate can be calculated by the following formula. (R2-R1)/R1) ⁇ 100
  • R1 is the surface resistivity ( ⁇ / ⁇ ) before the bending test
  • R2 is the surface resistivity ( ⁇ / ⁇ ) after the predetermined number of bending tests.
  • the bending test is performed using a rectangular test piece with a size of 20 mm x 5 mm on which the composite membrane is formed.
  • the specimen is curved along a side of 20 mm with the composite membrane on the inside and placed between a pair of members with a distance of 5 mm from each other.
  • the test is started from this state, the pair of members are brought closer together until the separation is 2.5 mm, and then they are separated from each other until the separation is 5 mm. This one cycle is counted as one flexion, and flexion is performed 5 times per second.
  • the surface resistivity is measured.
  • Surface resistivity can be measured by a four-probe method. The measurement by the four-probe method should be performed on the center of the sample. If it is difficult to measure at the center of the sample, measurements may be taken at a plurality of positions (for example, four positions) including a position near the center, and the average of the measurements may be taken.
  • Fig. 7 is shown as a reference diagram for the bending test.
  • a pair of members 501 and 502 of the tester have flat, mutually parallel surfaces 505 and 506, respectively, which are repeatedly brought together and separated as shown while maintaining the parallelism of the surfaces 505 and 506.
  • FIG. The spacing of surfaces 505 and 506 is indicated by arrows.
  • a polyethylene terephthalate (PET) substrate can be used as the substrate 503 forming the composite film 504, for example.
  • the members 501 and 502 are rigid members made of stainless steel, for example.
  • the composite membrane of this embodiment can have excellent weather resistance.
  • a composite film containing silver nanowires as a conductive element unless the composite film is covered with an overcoat, oxidation and migration proceed in a hot and humid environment, and the conductivity rapidly decreases.
  • the composite film of the present embodiment contains semiconductor nanoparticles as a conductive element as well as DLC that has a chemically stable diamond structure, so that the surface of the film is exposed to a high-temperature and high-humidity atmosphere. Also, functions such as conductivity are not easily affected.
  • the semiconductor nanoparticles may contain, as a semiconductor material, at least one selected from compound semiconductors, specifically oxides, sulfides, selenides and tellurides.
  • Preferred oxides include tin oxide, indium oxide, zinc oxide, tungsten oxide, molybdenum oxide, cadmium oxide, copper oxide, vanadium oxide and gallium copper oxide.
  • Preferred sulfides include copper sulfide and copper indium sulfide.
  • As a preferable selenide copper selenide can be exemplified.
  • a preferred telluride is copper telluride.
  • the semiconductor nanoparticles may contain semiconductor materials other than titanium oxide. Titanium oxide is an n-type semiconductor material.
  • the semiconductor nanoparticles may contain a p-type semiconductor material.
  • P-type semiconductor materials such as copper sulfide, are more suitable than n-type semiconductor materials for inclusion in films that undergo modification involving irradiation with a positive ion beam, ie, a positively charged ion beam.
  • Positive ion beams such as helium ions, nitrogen ions, carbon ions, argon ions, etc., can be applied more easily than negative ion beams.
  • the p-type semiconductor material may be produced from a semiconductor material other than the p-type, such as an intrinsic semiconductor, by irradiation with an ion beam.
  • semiconductor nanoparticles are not limited to p-type semiconductor materials, and may include intrinsic semiconductors, n-type semiconductor materials, and the like. Even on the assumption that the n-type semiconductor material is irradiated with a positive ion beam, it is possible to improve the properties of the composite film, such as the folding endurance.
  • the ion beam with which the semiconductor nanoparticles are irradiated may be a negative ion beam, that is, an ion beam having a negative charge.
  • the semiconductor nanoparticles in the film irradiated with the negative ion beam may comprise n-type semiconductor material.
  • This n-type semiconductor material may be produced from a semiconductor material other than the n-type, such as an intrinsic semiconductor, by irradiation with an ion beam, or may be an impurity semiconductor material described below. good.
  • tin-doped indium oxide (ITO) is both an n-type semiconductor material and an impurity semiconductor material.
  • the semiconductor nanoparticles may contain trace components, especially impurity semiconductor materials to which a component called a dopant is added to improve conductivity.
  • the impurity semiconductor is, for example, tin-doped indium oxide (ITO), aluminum-doped indium oxide, cerium-doped indium oxide, aluminum-doped zinc oxide, gallium-doped zinc oxide, indium-doped zinc oxide, indium-doped cadmium oxide, fluorine They are indium-doped cadmium oxide, fluorine-doped cadmium oxide, chlorine-doped cadmium oxide, bromine-doped cadmium oxide, cesium-doped molybdenum oxide, cesium-doped tungsten oxide, antimony-doped tin oxide (ATO), and fluorine-doped tin oxide (FTO).
  • Impurity semiconductors may contain dopants, defects, etc. to the extent that they are called degenerate semiconductor
  • the semiconductor nanoparticles may contain a semiconductor material suitable for absorbing infrared rays.
  • Semiconductor materials suitable for absorbing infrared rays include semiconductor materials capable of absorbing infrared rays by local surface plasmon resonance (hereinafter sometimes referred to as "LSPR-IR absorbing semiconductors").
  • LSPR-IR absorbing semiconductors semiconductor materials capable of absorbing infrared rays by local surface plasmon resonance (hereinafter sometimes referred to as "LSPR-IR absorbing semiconductors").
  • LSPR-IR absorbing semiconductors semiconductor materials capable of absorbing infrared rays by local surface plasmon resonance
  • a composite film containing this semiconductor is suitable for applications where absorption of infrared rays is emphasized, such as heat shielding applications.
  • the presence of LSPR in an LSPR-IR absorbing semiconductor can be confirmed, for example, by a method of clarifying the linearity of the wavelength change of the absorption peak when the refractive index of the surrounding medium
  • the LSPR-IR absorbing semiconductor may be a material whose relaxation time from local surface plasmon excitation can be 1 ns or longer.
  • a material having this property is, for example, at least one selected from the group consisting of copper sulfide, copper selenide, and cesium tungsten oxide (CWO).
  • CWO cesium tungsten oxide
  • the material is not limited to these materials, and an appropriate material may be selected by measuring the relaxation time from local surface plasmon excitation by time-resolved transient absorption spectroscopy.
  • FIG. 8 shows an example of the result of measuring the relaxation time from local surface plasmon excitation by time-resolved transient absorption spectroscopy.
  • FIG. 8 shows the absorption spectra 2.5 nanoseconds (ns), 6 ns and 12.5 ns after local surface plasmon excitation.
  • bleaching (negative signal) due to local surface plasmon excitation can be confirmed in the near-infrared region.
  • the relaxation time is at least 10 ns because the negative signal does not disappear after 2.5 ns, 6 ns, and even after 12.5 ns.
  • LSPR-IR absorbing semiconductors Materials that can exhibit such a long active carrier relaxation time after LSPR excitation regardless of the wavelength and intensity of the pump light are suitable as LSPR-IR absorbing semiconductors.
  • LSPR-IR absorbing semiconductors Materials that can exhibit such a long active carrier relaxation time after LSPR excitation regardless of the wavelength and intensity of the pump light are suitable as LSPR-IR absorbing semiconductors.
  • a direct method for directly measuring the entire time of the phenomenon may be applied.
  • FIG. 8 shows the measurement results for copper sulfide. This measurement was carried out by a pump-probe method using a chloroform solution of copper sulfide as a sample, a picosecond laser with a wavelength of 1064 nm as pump light, and a supercontinuum light source as probe light. Details of the laser light and the probe light are as follows.
  • Picosecond laser (“PL2210A” manufactured by EKSPLA, repetition frequency 1 kHz, pulse width 25 ps, pulse energy 0.9 mJ (wavelength 1064 nm))
  • SC450 Supercontinuum light source manufactured by Fianium, repetition frequency 20 MHz, pulse width 50 to 100 ps
  • this condition is only an example, and appropriate conditions can be set according to the target material for the measurement of relaxation time from local surface plasmon excitation.
  • DLC can function as a so-called acceptor.
  • the composite film may further contain acceptors other than DLC.
  • Acceptors other than DLC may be included as particles, in particular nanoparticles.
  • the acceptor is a material that receives electrons or holes generated in the semiconductor nanoparticles by infrared irradiation from the semiconductor nanoparticles.
  • Acceptors other than DLC are not particularly limited in type as long as they can receive electrons or holes from semiconductor nanoparticles.
  • the acceptor material contained in the acceptor is appropriately selected according to the semiconductor material contained in the semiconductor nanoparticles, preferably the LSPR-IR absorbing semiconductor.
  • the acceptor may include cadmium sulfide.
  • the acceptor may include, for example, at least one selected from zinc oxide, titanium oxide, tin oxide, and gallium oxide. If the LSPR-IR absorbing semiconductor is ITO, the acceptor may include tin oxide.
  • the acceptor may be contained as particles or may be contained in a manner that forms a layer. The acceptor may be contained in the same layer as the semiconductor nanoparticles, or may be contained in an adjacent layer.
  • the acceptor may also be a conductive organic material, such as graphene, carbon nanotubes, or graphite.
  • the semiconductor nanoparticles and the acceptor may be combined composite particles that are bonded together.
  • An example of composite particles is shown in FIG.
  • This composite particle is a composite particle in which tin oxide (SnO 2 ) particles are attached around ITO particles. Both particles may be physically or chemically bound.
  • the holes and electrons generated by infrared rays (“radiant heat” in the figure) are separated from the holes that remain in the ITO particles after the electrons move to the SnO2 particles as acceptors. .
  • the acceptor may itself be a nanoparticle of semiconductor material.
  • the composite film contains acceptors corresponding to nanoparticles of a semiconductor material, the ratio of the semiconductor nanoparticles in the composite film is calculated by including the acceptors as part of the semiconductor nanoparticles.
  • the semiconductor nanoparticles may comprise a p-type semiconductor material
  • the semiconductor nanoparticles may comprise an impurity semiconductor material
  • the semiconductor nanoparticles may comprise It may comprise an LSPR-IR absorbing semiconductor
  • the composite film may further comprise a material that accepts from the semiconductor nanoparticles electrons or holes generated in the semiconductor nanoparticles upon irradiation with infrared radiation.
  • at least one selected from the group consisting of iii) to vi) may hold.
  • a semiconductor nanoparticle composite film containing semiconductor nanoparticles and DLC iii) said semiconductor nanoparticles comprise a p-type semiconductor material; iv) said semiconductor nanoparticles comprise an impurity semiconductor material, v) the semiconductor nanoparticles comprise an LSPR-IR absorbing semiconductor; and vi) the composite film further comprises an acceptor material that accepts from the semiconductor nanoparticles electrons or holes generated in the semiconductor nanoparticles upon irradiation with infrared light.
  • a semiconductor nanoparticle composite film in which at least one selected from the group consisting of This composite film includes semiconductor nanoparticles and DLC, wherein the semiconductor nanoparticles are a p-type semiconductor material, an impurity semiconductor material, an LSPR-IR absorbing semiconductor material, and electrons generated in the semiconductor nanoparticles by irradiation with infrared rays or A semiconductor nanoparticle composite film containing a semiconductor material corresponding to at least one selected from the group consisting of an acceptor material other than DLC that accepts holes from the semiconductor nanoparticles.
  • the DLC can function as a charge carrier acceptor. That is, in the composite film, at least some of the electrons or holes generated in the semiconductor nanoparticles by infrared irradiation move to the DLC. This migration is suitable for releasing charge carriers from the composite membrane.
  • the semiconductor nanoparticles and the DLC are preferably selected according to their mutual properties (HOMO level, LUMO level, etc.).
  • a heat shielding device that shields at least part of the irradiated infrared rays, a composite film containing semiconductor nanoparticles that absorb the infrared rays to generate electrons and holes, and DLC that is an acceptor that receives the electrons or the holes from the particles; At least a portion of the charge carriers selected from the electrons and the holes are emitted from the composite film to the exterior of the thermal barrier device to provide the thermal barrier device.
  • the average maximum particle size of the semiconductor nanoparticles is not particularly limited, and is, for example, 1 nm to 2000 nm, further 3 nm to 1000 nm.
  • relatively large semiconductor nanoparticles with an average maximum particle size in the range of 20 nm to 2000 nm greatly contribute to the improvement of the electrical conductivity of the composite film. This effect is remarkably obtained in a composite film formed on a resin substrate such as a PET substrate. It is considered that the improvement in conductivity due to the size expansion of the semiconductor nanoparticles is related to the fact that the surface of the resin substrate is hydrophobic. For particles having a shape whose particle size is difficult to determine, the above range is applied by replacing the average maximum particle size with the maximum size.
  • a semiconductor nanoparticle composite film containing semiconductor nanoparticles and DLC Provided is a semiconductor nanoparticle composite film, wherein the semiconductor nanoparticles have an average maximum particle size of 20 nm to 2000 nm.
  • a composite film in which the average maximum particle diameter of semiconductor nanoparticles is within the above range is preferably formed on a hydrophobic surface, for example, on a substrate having a hydrophobic surface.
  • the composite film in which the average maximum particle size of the semiconductor nanoparticles is within the above range is preferably formed on a resin substrate to form a composite substrate.
  • Semiconductor nanoparticles may be crystalline or amorphous, but if they contain crystals, the crystal structure may affect their conductivity. Also, the type of crystal can affect the three-dimensional shape of the semiconductor nanoparticles. Suitable crystal structures differ depending on the type of semiconductor nanoparticles. It is preferable to include at least one selected from the group consisting of, particularly covelite and/or roxyvite.
  • the nanoparticles containing copper sulfide may contain only at least one crystal selected from the above.
  • the semiconductor nanoparticles may contain a 2D material, specifically, a nanoparticle containing a carbide and / or nitride of a 2D material that has semiconducting properties and extends in the plane direction. good.
  • M2CT2 M is at least one selected from the group consisting of Sc, Y and Lu; T is at least one selected from the group consisting of O, F and OH), M2CO2 (M is at least one selected from the group consisting of Hf, Zr and Ti).
  • the 2D material may be called MXene.
  • the semiconductor nanoparticles preferably have a three-dimensional shape that brings about a local ordered structure due to autonomous arrangement.
  • this three-dimensional shape is a shape having a cross section in which substantially parallel opposing sides appear, and is typically a columnar body and/or a polyhedron.
  • An example of a three-dimensional shape is a columnar body whose base is a circle, an ellipse, or a polygon, or which can be approximated to any of these. This shape may be the rod-like shape described above, or may be the disk-like shape.
  • DLC Diamond-like carbon
  • DLC is an amorphous film having a skeleton structure of carbon atoms bonded by both SP3 and SP2 bonds.
  • DLC is known as a material having properties such as high wear resistance and low friction. For this reason, DLCs are usually formed as coatings, ie films, composed of themselves.
  • a method for forming a DLC film in addition to deposition by a vapor phase synthesis method such as a plasma CVD method, a method of irradiating a polymer film with an ion beam to transform the polymer into DLC is known.
  • a method using an organic compound other than a polymer as a carbon source is appropriate for introducing DLC into a semiconductor nanoparticle composite film that satisfies i) and/or ii) above.
  • a semiconductor nanoparticle composite film can be formed by irradiating an ion beam to a semiconductor nanoparticle-containing film containing semiconductor nanoparticles and an organic compound other than a polymer as a binder for the semiconductor nanoparticles.
  • the binder may be composed only of organic compounds other than polymers.
  • the presence of DLC can be confirmed by measuring both SP 3 and SP 2 bonds as bonds between carbon atoms. Specifically, the presence of both bonds can be confirmed when peaks are confirmed in the Raman spectrum at predetermined wavenumbers, that is, near 1330 cm ⁇ 1 for the SP 3 bond and near 1550 cm ⁇ 1 for the SP 2 bond.
  • the presence of DLC can be confirmed not only by Raman spectroscopy, but also by electron energy loss spectroscopy (EELS), X-ray diffraction (XRD), infrared spectroscopy (IR), and the like.
  • the composite film may contain a binder along with the semiconductor nanoparticles and DLC.
  • DLC is also a binder component in the sense that it intervenes between semiconductor nanoparticles to form a film, but here the binder is treated as a component other than DLC.
  • a binder, together with DLC, is a preferred component that can intervene between the semiconductor nanoparticles and impart flexibility to the composite film.
  • the binder can also contribute to the improvement of the film-forming properties of the semiconductor nanoparticle-containing film to be irradiated with the ion beam, the proper arrangement of the nanoparticles, and the like.
  • the binder may include an attachment compound that adheres to the semiconductor nanoparticles.
  • Attachment compounds include functional groups that can bind to semiconductor nanoparticles, such as fluoride (F), chloride (Cl), bromide (Br), iodide (I), cyanide (CN), thiocyanato (SCN), isothiocyanato (NCS). , hydroxide (OH), mercapto (SH), carbonyl (CO), amino ( NR3 ), nitrosyl (NO), nitrite ( NO2 ), phosphane ( PR3 ), carbene ( R2C ) and pyridine (NC 5 H 5 ).
  • each R is independently an organic residue or a hydrogen atom.
  • the functional groups that can bind to the semiconductor nanoparticles can be metal atoms or other functional groups that can function as ligands to anions.
  • the attachment compound may be an inorganic compound or an organic compound.
  • the attachment compound may also be a salt composed of an ion containing or consisting of the functional group exemplified above and a counterion thereof.
  • Attachment compounds include hydrazine ( H2NNH2 ) , ethylenediamine ( H2NCH2CH2NH2 ) , ethylenedithiol ( HSCH2CH2SH ) , mercaptopropionic acid ( HSCH2CH2COOH ), acetylacetonate ( H 3 CCOCHCOCH 3 ), aminobenzonitrile (NH 2 C 6 H 4 CN), and the like, may be compounds having a plurality of the above functional groups.
  • the molecular weight of the adhesion compound is, for example, 300 or less, preferably 200 or less, more preferably 100 or less, still more preferably 80 or less, and in some cases less than 60.
  • the lower limit of the molecular weight is not particularly limited, it is, for example, 20 or more, further 30 or more.
  • the use of attachment compounds whose molecular weight is not too high is suitable for controlling the spacing of the semiconductor nanoparticles to be narrow.
  • the content of the adhesion compound in the composite film may be appropriately adjusted depending on the type thereof, and is expressed by the ratio of the mass of the adhesion compound to the total amount of the semiconductor nanoparticles and the adhesion compound, for example, 1% or more, further 2%. 3% or more, in some cases 5% or more, preferably 8% or more.
  • the upper limit of this content is not particularly limited, but is 30% or less, further 20% or less.
  • the binder may contain materials other than the adhesion compound, such as various resins.
  • resins include polyvinyl alcohol, polyvinyl acetal, polyvinylpyrrolidone, carboxymethyl cellulose, acrylic resins, polyvinyl acetate, polyethylene terephthalate, polystyrene, and polyethylene.
  • these polymer materials may be contained in, for example, a layer other than the layer containing the semiconductor nanoparticles, such as a covering layer or an underlying layer of the layer containing the semiconductor nanoparticles.
  • the binder may contain a pH adjuster, a colorant, a thickener, a surfactant, etc., depending on the necessity for film formation of the composite film, the application, and the like.
  • the composite substrate of this embodiment includes a substrate and a composite film containing semiconductor nanoparticles and DLC.
  • the substrate is not particularly limited, and a substrate made of a material such as resin, glass, fiber, or metal may be used depending on the application.
  • the substrate may be a flexible material such as woven fabric, non-woven fabric, paper, or film.
  • a transparent substrate may be used.
  • Composite substrates can be used for composite films such as electrode films, antistatic films, heat generating films, heat shielding films, light shielding films, antennas, heaters, spectral filters, wear-resistant films, chemical-resistant films, anti-refractive films, and coloring materials.
  • film photocatalyst film, catalyst film, photorefractive film, water-repellent film, hydrophilic film, slippery film, anti-adhesion film, bio-affinity film, gas barrier film, anti-corrosion film, low-aggressive film, and electromagnetic wave shielding film It may be used as at least one functional film selected from.
  • the substrate may also contain a material that can form part of the composite film, such as an organic compound such as a resin.
  • a material that can form part of the composite film such as an organic compound such as a resin.
  • a portion of a resin substrate may be converted to DLC by ion beam irradiation to form a portion of the composite film.
  • at least a portion of the DLC carbon source may comprise a polymer.
  • the carbon source contained in the semiconductor nanoparticle-containing film may be an organic compound other than the polymer.
  • the composite membranes of the present embodiments can be used in various devices, such as devices containing light-transmitting membranes.
  • Such devices include photovoltaic devices typified by solar cells, image display devices typified by liquid crystal displays and organic EL displays, heat generating devices typified by heated windshields, electromagnetic wave shielding windows and heat ray shielding windows.
  • Electromagnetic wave shielding devices and the like are typical examples.
  • the device corresponds to, for example, at least one selected from the group consisting of photovoltaic devices, image display devices, heat generating devices, and electromagnetic shielding devices.
  • composite films are used as electrode films, antistatic films, heat-generating films, electromagnetic shielding films, and the like.
  • At least one electrode may be placed in contact with the composite membrane for energization or charge ejection. Examples of electrode placement are shown in FIGS.
  • a pair of electrodes 51 and 52 are spaced apart in the membrane surface direction of the composite membrane 4 .
  • a current flows in the membrane surface direction of the composite membrane 4.
  • FIG. 10 This composite membrane can function, for example, as a heating membrane.
  • the electrodes 51 and 52 need not be formed on the surface 7a of the substrate 7 and may be formed on the surface 4a of the composite membrane 4.
  • FIG. It should be noted that only one electrode is sufficient to discharge electric charges from the composite film for antistatic purposes instead of for heat generation.
  • the composite film 4 in contact with the electrode 53 is used as the light-transmissive electrode.
  • the substrate 7 can be a transparent substrate such as a glass plate or a transparent resin plate
  • the electrode 54 can be a metal film such as aluminum.
  • the substrate 7 and the electrodes 54 are not limited to these.
  • the substrate 7 may be a substrate having a thin film on its surface.
  • the electrodes 53 extend along the direction perpendicular to the paper surface (the y direction in FIG. 11).
  • the composite membrane 4 in order to reduce the potential difference in the composite membrane 4 depending on the distance from the electrode 53, the composite membrane 4 must have a high electrical conductivity at least in the film plane direction (x direction) perpendicular to the direction in which the electrodes extend. It is preferred to have C1.
  • the area S1 of the region where the electrode 53 and the composite membrane 4 overlap when observed from the z direction perpendicular to the film surface of the composite membrane 4 is the area S2 of the composite membrane 4. Less than 1/2, ie less than 50%.
  • the ratio of the area S1 to the area S2 may be, for example, 30% or less, further 20% or less, and in some cases 10% or less.
  • the shape and arrangement of the electrodes in the device are not limited to those illustrated in FIGS.
  • the heat shielding device 301 includes a base material 105 and a composite film formed on the base material 105 (hereinafter sometimes referred to as a "heat shielding film” in the description of the heat shielding device). ) 110.
  • a composite film formed on the base material 105 hereinafter sometimes referred to as a "heat shielding film” in the description of the heat shielding device).
  • One of the main surfaces of the heat shield film 110 is an exposed surface and is in contact with the external gas.
  • the heat shielding film 110 is composed of semiconductor nanoparticles (hereinafter sometimes referred to as “infrared absorbing particles” in the description of the heat shielding device) that absorb incident infrared rays to generate electrons and holes, and infrared absorbing particles.
  • the heat shielding device 301 has an electrode 108 arranged so as to be in contact with a portion of the heat shielding film 110 .
  • the electrode 108 is formed on the peripheral portion of the surface of the heat shield film 110 .
  • the electrode 108 is, for example, a metal film, which is substantially non-light-transmitting, but may be a film having light-transmitting properties.
  • One end of the conductive portion 111 is connected to the electrode 108 .
  • the other end of the conductive portion 111 is connected to a charge carrier emission destination 119 . Destination 119 is a charge receiver that exists outside the device.
  • Conductive portion 111 has switch element 112 between electrode 108 and emission destination 119 .
  • the electrons generated in the heat shield film 110 reduce the external chemical species 170 on the main surface of the heat shield film 110 and are consequently emitted from the heat shield device 301 .
  • the heat shield film 110 functions as a photocatalyst and promotes the reaction of chemical species 170 .
  • holes pass through the electrode 108 and the conductive portion 111 and are guided to the emission destination 119 .
  • the charge carrier emission shown in FIG. 13 is only one example of the forms of emission.
  • the release of charge carriers may proceed through a chemical reaction involving the redox of external species by the charge carriers, the release of the charge carriers to the outside, or a combination thereof. Reactions such as oxidation of external species may involve decomposition or modification of that species.
  • the heat shielding device 301 has a light receiving area capable of receiving incident light 150 containing infrared rays.
  • the light-receiving region includes a light-transmitting region 141 through which at least part of the visible light contained in the incident light 150 is transmitted, and a non-light-transmitting region 142 through which the visible light contained in the incident light 150 is substantially not transmitted.
  • the two main surfaces of the power generation layer (photoelectric conversion layer) in the photoelectric conversion device are entirely covered with adjacent layers and are not exposed to the outside, unlike the heat shield film 110 in the heat shield device 301 . do not have. 12 and 13, the photoelectric conversion device supplies electric charge to a circuit including at least one of an inverter, a storage device, a voltmeter, and an ammeter.
  • the heat shielding device 301 has a heat shielding film 110 which is an infrared absorbing film, and may be connected to the outside of the device so as to satisfy at least one selected from the group consisting of a) to c) below. a) At least part of the charge carriers selected from electrons and holes generated in the composite film (infrared absorbing film) by irradiation with infrared rays is in contact with the main surface of the infrared absorbing film and is in the gas phase or liquid phase outside the device.
  • At least part of the electrons and holes generated in the composite film (infrared absorption film) by irradiation with infrared rays is outside the device other than the circuit including at least one of the inverter, the storage device, the voltmeter and the ammeter. Recombine.
  • At least part of the charge carriers selected from electrons and holes generated in the composite film (infrared absorbing film) by irradiation with infrared rays is emitted to the outside of the infrared device having a ground potential.
  • a device that utilizes the optical transparency of the film and a heat shielding device were exemplified, but the device is not limited to these.
  • all of the exemplified devices have a conductive portion such as an electrode electrically connected to the composite membrane, but depending on the type of device using a composite membrane, the conductive portion is not required.
  • the manufacturing method of the present embodiment includes a first step of forming a semiconductor nanoparticle-containing film containing semiconductor nanoparticles and a carbon source, and irradiating the semiconductor nanoparticle-containing film with an ion beam to generate DLC, a second step of obtaining a semiconductor nanoparticle composite film containing semiconductor nanoparticles and DLC, wherein the carbon source includes an organic compound other than a polymer.
  • the semiconductor nanoparticle-containing film may be polymer-free.
  • the carbon source may be an organic compound contained in the binder described above. Carbon sources may include attachment compounds that attach to the semiconductor nanoparticles.
  • the carbon source may consist only of low-molecular-weight compounds.
  • the first step may be, for example, a step of forming a semiconductor nanoparticle-containing film containing semiconductor nanoparticles and a binder. This step may be performed based on the description of Patent Document 1. However, the first step is not limited to the contents described in Patent Document 1. For example, in the semiconductor nanoparticle-containing film, at least part of the semiconductor nanoparticles may not be arranged in a line.
  • the DLC produced in the second step may contain carbon atoms derived from the carbon source in the semiconductor nanoparticle-containing film.
  • the DLC may also contain carbon atoms derived from another carbon source, such as a carbon source supplied from the substrate.
  • the type of ion beam, dose amount, etc. are not particularly limited as long as DLC is generated on the film.
  • Ion species constituting the ion beam are not particularly limited, but examples include helium, argon, nitrogen, and carbon.
  • the composite membrane can contain, for example, inert elements and/or nitrogen, depending on the ion beam irradiated.
  • the second step may involve modification of the semiconductor nanoparticles along with the generation of DLC.
  • This modification may be, for example, alteration of the semiconductor material contained in the semiconductor nanoparticles, or an increase in carrier density in the semiconductor material.
  • Alteration of the semiconductor material may be, for example, the production of p-type semiconductor material from an intrinsic semiconductor.
  • the composite film of the present invention can also be produced by a method of forming DLC into a film on which semiconductor nanoparticles are formed by a vapor phase synthesis method such as plasma CVD.
  • Example 1 Formation of film containing semiconductor nanoparticles
  • Copper sulfide nanoparticles were synthesized with reference to an existing method (Chemistry of Materials, 2017, 29, 4783-4791).
  • the synthesized copper sulfide nanoparticle ink was dispersed in octane and used as the first ink.
  • the copper sulfide nanoparticles contained in the first ink were disc-shaped and had an average maximum particle size of 30 nm.
  • a spin coater was used to apply 50 ⁇ l of the first ink onto a polyethylene terephthalate (PET) substrate to obtain a coating film.
  • the concentration of the first ink was adjusted to 50 mg/ml when applied.
  • an additional coating film was formed by film formation using the first ink in the same manner as described above, and then the compound was replaced in the same manner as described above using the second ink.
  • a PET substrate on which a thick semiconductor nanoparticle-containing composite film was formed was obtained.
  • the film thickness of the obtained semiconductor nanoparticle composite film was 100 nm.
  • FIG. 1 An example of the analysis results of the semiconductor nanoparticle composite film by the X-ray diffraction method (XRD) is shown in FIG. A peak derived from the diamond structure can be confirmed.
  • the semiconductor nanoparticle composite film was measured by Fourier transform infrared spectroscopy (FT-IR), and a peak derived from the sp 3 carbon structure near 2900 cm -1 and a peak derived from the sp 2 carbon structure near 1600 cm -1 confirmed the peak.
  • FT-IR Fourier transform infrared spectroscopy
  • the surface resistivity of the semiconductor nanoparticle-containing film (ion beam irradiation time: 0 minutes) and the semiconductor nanoparticle composite film (irradiation time: 5 minutes, 10 minutes, 20 minutes or 40 minutes) was measured by the four-probe method. The results are shown in FIG. It can be confirmed that the surface resistivity significantly decreases according to the dose of the ion beam. The ion beam irradiation reduced the surface resistivity to about 50%.
  • a surface resistivity of 100 ⁇ / ⁇ corresponds to 1000 S/cm.
  • the electrical conductivity of the semiconductor nanoparticle composite film according to this example corresponds to a surface resistivity of less than 100 ⁇ /square, ie electrical conductivity of greater than 1000 S/cm.
  • the PET substrate on which the semiconductor nanoparticle-containing film (ion beam irradiation time: 0 minutes) and the PET substrate on which the semiconductor nanoparticle composite film (time: 30 minutes) was formed were irradiated with infrared light and the temperature rise was measured. .
  • These film-coated substrates were irradiated with light from an AM1.5 pseudo-sunlight source (100 mW) that was passed through a band-pass filter to filter out only light with a wavelength of 600 nm or longer.
  • the temperature rise of the semiconductor nanoparticle-containing film was 2.7°C.
  • the temperature rise of the semiconductor nanoparticle composite film was 1.8°C.
  • the transmittance of visible light and infrared light was measured using a spectrophotometer (Shimadzu UV3600).
  • the light transmittance at a wavelength of 560 nm was 84%.
  • a high transmittance in the visible range was confirmed, but the transmittance was slightly lower than 94% before the ion beam irradiation. This is because helium, which has high permeability, was used as the ion species of the ion beam, so that the PET of the substrate reacted and changed color.
  • the transmittance in the infrared region was sufficiently low, and the transmittance at wavelengths from 1000 nm to 2500 nm was less than 40%.
  • Example 2 In the same manner as in Example 1, an ink containing disc-shaped copper sulfide nanoparticles with an average height of 5 nm and an average diameter (average maximum particle diameter) of 30 nm was obtained.
  • a PET substrate and a glass substrate were coated with this ink in the same manner as in Example 1, except that this ink was used instead of the first ink, to obtain a semiconductor nanoparticle-containing film.
  • the film thickness was formed thicker than that of the first embodiment.
  • the semiconductor nanoparticle-containing film on the glass substrate had a surface resistivity of 41 ⁇ / ⁇ , and the semiconductor nanoparticle-containing film on the PET substrate had a surface resistivity of 70 ⁇ / ⁇ .
  • FIGS. 1 and 2 TEM images of the semiconductor nanoparticle composite films obtained in the same manner as in Examples 1 and 2 are shown in FIGS. In this observed surface, the proportion of semiconductor nanoparticles exceeded 50%. It can also be confirmed that some semiconductor nanoparticles are arranged in a line while keeping a small distance from each other.
  • Example 3 A PET substrate on which a semiconductor nanoparticle composite film was formed was obtained in the same manner as in Example 2. The composite film thus formed had a surface resistivity of 243 ⁇ / ⁇ .
  • the PET substrate on which the semiconductor nanoparticle-containing film was formed was irradiated with an ion beam under the conditions shown in Table 2.
  • Table 2 also shows the surface resistivity after ion beam irradiation.
  • Example 4 A PET substrate on which a semiconductor nanoparticle composite film was formed was obtained in the same manner as in Example 3. Subsequently, the PET substrate on which the semiconductor nanoparticle-containing film was formed was irradiated with an ion beam under the conditions shown in Table 3. Table 3 also shows the surface resistivity after ion beam irradiation.
  • Example 5 A PET substrate on which a semiconductor nanoparticle composite film was formed was obtained in the same manner as in Example 2. The surface resistivity of the formed composite film was 134.9 ⁇ / ⁇ .
  • the PET substrate on which the semiconductor nanoparticle-containing film was formed was irradiated with an ion beam under the conditions shown in Table 4.
  • Table 4 also shows the surface resistivity after ion beam irradiation.
  • the properties of the semiconductor nanoparticle composite film can be adjusted by selecting the ion species and controlling the ion irradiation dose.
  • Example 6 An organic thin-film solar cell containing a semiconductor nanoparticle composite film as a conductive layer was fabricated.
  • a CuS film having a thickness of 200 to 400 nm and a thickness of 30 to 60 layers was formed on a UV ozone-treated PET substrate by spin coating.
  • helium or carbon ion beam irradiation was performed under the conditions shown in Table 5 to produce DLC.
  • the surface of the film was subjected to UV ozone treatment.
  • PEDOT/PSS was applied by spin coating (2000 rpm, 45 seconds), and baking treatment was performed using a hot plate at 120° C. for 15 minutes.
  • the thickness of the PEDOT/PSS layer, which is a hole transport layer was about 30 nm.
  • P3HT poly(3-hexylthiophene-2,5-diyl)
  • PCBM (6,6)-phenyl C61 methyl butyrate
  • This power generation layer forming liquid was applied onto the hole transport layer by spin coating (800 rpm, 30 seconds). The coating liquid was allowed to stand in a glass petri dish for 1 hour to gradually evaporate 1,2-dichlorobenzene, thereby forming a power generation layer having a thickness of about 100 nm.
  • an electron transport layer was formed.
  • a ZnO nanoparticle layer forming liquid was prepared by the method described above. This forming liquid was applied onto the power generation layer by spin coating (2000 rpm, 30 seconds). The thickness of the ZnO nanoparticle layer was about 140 nm.
  • an Ag electrode with a thickness of 100 nm was formed on the electron transport layer using a resistance heating deposition apparatus.
  • Table 6 shows the characteristics of the obtained thin-film solar cells.
  • the characteristics of the thin-film solar cell were measured using an OTENTO-SUNVI-OP high approximation solar simulator manufactured by Spectroscopy Instruments Co., Ltd. as a light source and a Keithley model 2400 as a source meter.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本開示は、半導体ナノ粒子とダイヤモンドライクカーボン(DLC)とを含み、i)前記半導体ナノ粒子を主として含む、及びii)前記半導体ナノ粒子の少なくとも一部が一列に配列している、からなる群より選択される少なくとも1つが成立する、半導体ナノ粒子複合膜とする。この複合膜は、例えば、半導体ナノ粒子と炭素源とを含む半導体ナノ粒子含有膜にイオンビームを照射してDLCを生成させることにより、得ることができる。炭素源は、ポリマー以外の有機化合物を含んでいる。

Description

半導体ナノ粒子複合膜、これを含む複合基材及びデバイス、並びに半導体ナノ粒子複合膜の製造方法
 本発明は、半導体ナノ粒子複合膜、より具体的には半導体ナノ粒子がその他の材料と複合化した膜に関する。
 本発明者は先に、半導体ナノ粒子を含む導電膜を開発した(特許文献1)。特許文献1に開示されている導電膜は、半導体ナノ粒子と共にバインダーを含む。この導電膜のように、半導体ナノ粒子等のナノ粒子は、複合膜においてそれ自体の機能を利用するためにその他の材料と複合化して使用されることがある。
 ナノ粒子は、その他の材料による機能を利用するための膜に別の機能を付加する材料としても使用される。ナノ粒子により機能を付加した膜として、ナノ粒子を担持したダイヤモンドライクカーボン(以下「DLC」と記載することがある)膜が提案されている(特許文献2)。特許文献2において、DLC膜は、高分子膜にイオンビームを照射して形成される。高分子膜としては、ポリアミド、ポリビニルピロリドン等のポリマーフィルムが使用される。特許文献2によると、ナノ粒子を担持したDLC膜は、高硬度、電気絶縁性、赤外線透過性等といったDLCが本来有する優れた特性を維持している(段落0019)。担持されたナノ粒子によってDLC膜に付加される特性は、例えば、Agによる抗菌性、ナノダイヤモンドによる蛍光性、Coによる磁性、Ptによる触媒性、酸化チタンによる光触媒性、ヒドロキシアパタイトによる細胞親和性である(段落0037)。
 上記から理解できるとおり、特許文献2に開示されている技術は、DLC膜が本来有する特性、特に電気絶縁性及び赤外線透過性、をナノ粒子の添加により変更するものではない。実際に、特許文献2では、DLC膜におけるナノ粒子の含有量はDLC膜の特性を損なわない程度に制限されている。例えば、Agナノ粒子が分散したDLC膜の元素マッピングにおいて、Agナノ粒子に相当するドットは、膜断面の面積の半分を大幅に下回る範囲を占めているに過ぎない(図4~8)。
国際公開第2021/75495号 国際公開第2014/175432号
 本発明は、半導体ナノ粒子を含む膜の改良を目的とする。
 本発明は、半導体ナノ粒子とダイヤモンドライクカーボン(DLC)とを含み、
 i)前記半導体ナノ粒子を主として含む、及び
 ii)前記半導体ナノ粒子の少なくとも一部が一列に配列している、
からなる群より選択される少なくとも1つが成立する、半導体ナノ粒子複合膜、を提供する。
 また本発明は、基板と、本発明による半導体ナノ粒子複合膜とを含む、複合基材、を提供する。さらに本発明は、本発明による半導体ナノ粒子複合膜と、前記半導体ナノ粒子複合膜に電気的に接続した導電部と、を備えたデバイス、を提供する。
 また本発明は、本発明による半導体ナノ粒子複合膜の製造方法として、
 半導体ナノ粒子と炭素源とを含む半導体ナノ粒子含有膜を成膜することと、
 前記半導体ナノ粒子含有膜にイオンビームを照射してDLCを生成することにより、前記半導体ナノ粒子と前記DLCとを含む半導体ナノ粒子複合膜を得ることと、
 を具備し、
 前記炭素源は、ポリマー以外の有機化合物を含む、製造方法、を提供する。
 本発明は、半導体ナノ粒子を含む膜の改良に適している。
複合膜の一例を示す断面図である。 複合膜に含まれる半導体ナノ粒子の形状及び配列の一例を示す図である。 複合膜に含まれる半導体ナノ粒子の形状及び配列の別の一例を示す図である。 複合膜に含まれる半導体ナノ粒子の形状及び配列のまた別の一例を示す図である。 複合膜を透過型電子顕微鏡(TEM)により観察して得た像の一例である。 複合膜をTEMにより観察して得た像の別の一例である。 複合膜の屈曲試験を説明するための模式図である。 局所表面プラズモン励起からの緩和時間を測定した結果の一例である。 赤外線吸収粒子である半導体ナノ粒子とアクセプタとが結合した複合粒子を観察した図(左)と、複合粒子において赤外線の照射に応じて発生する電荷の分離を説明するための図(右)である。 複合膜を備えたデバイスの一例を示す断面図である。 複合膜を備えたデバイスの別の一例を示す断面図である。 複合膜を備えたデバイスの別の一例の断面を導電部の概略と共に示す図である。 図12に示したデバイスにおける電荷担体の放出の例を説明するための図である。 イオンビームを照射した複合膜のX線回折の結果の一例を示す図である。 イオンビームの照射時間と複合膜の表面抵抗率との関係の一例を示す図である。 複合膜の屈曲試験の結果を示す図である。 半導体ナノ粒子を主として含む複合膜の一例をTEMにより観察して得た像の一例である。 半導体ナノ粒子を主として含む複合膜の一例をTEMにより観察して得た像の一例である。 窒素イオンビームを用いて作製した複合膜の分光吸光度曲線の例である。 炭素イオンビームを用いて作製した複合膜の分光吸光度曲線の例である。 アルゴンイオンビームを用いて作製した複合膜の分光吸光度曲線の例である。
 以下、適宜図面を参照しながら本発明の実施形態について説明するが、以下の説明は、本発明を特定の実施形態に制限する趣旨ではない。本明細書において、用語「半導体」は、通常の半導体のみならず、セミメタルも含む意味で使用する。セミメタルは、結晶構造の歪みや結晶の層間の相互作用等により、伝導帯の下部と価電子帯の上部とがフェルミ準位を跨いでわずかに重なり合ったバンド構造を有する物質である。用語「縮退半導体」は、伝導帯もしくは価電子帯とフェルミ準位が重なり合ったバンド構造を有する半導体を意味する。ここでは、用語「ヘビードープ半導体」は、1018/cm3以上の自由キャリア密度を有する半導体と定義する。用語「ナノ粒子」は、粒子の最小径が1μm未満、例えば0.1nm以上1μm未満の範囲にある粒子を意味する。ナノ粒子は、典型的には、粒子の最大寸法が5μm以下、さらは3nm~2μmの範囲にある粒子を意味する。なお、「最小径」はその粒子の重心を通過する最小寸法により定まり、「最大寸法」はその粒子内に設定しうる最も長い線分により定まる。また、「最大寸法」の単純平均を「平均最大粒径」と記載する。「疎水性」は、水の接触角が60°以上、特に70°以上、となる表面の特性を指す用語として使用する。また、用語「実質的に平行」は、互いの方向の相違を10°以下、特に5°以下に制限する趣旨で使用する。用語「実質的に垂直」も、垂直からの方向の相違を10°以下、特に5°以下に制限する趣旨で使用する。用語「自律的に配列する」又は「自律的な配列」は、半導体ナノ粒子が粒子間の相互作用を推進力として自己組織的に配列することを意味で使用する。また、用語「官能基」は、ハロゲン原子も含む用語として用いる。
 本明細書において、「半導体ナノ粒子を主として含む」は、質量基準、体積基準、及び面積基準からなる群より選択される少なくとも1つにおいて、半導体ナノ粒子の比率が50%以上であることを意味する。面積基準による「主として含む」は、膜の断面において50%以上の面積を占めることを意味する。また、本明細書における数値範囲の上限及び下限は、任意に組み合わせて範囲を構成し得る。
 本発明者の検討により、半導体ナノ粒子を主に含み、DLCが含まれた複合膜が作成できることが見出された。特に、本発明者の検討により、イオンビームの照射により、半導体ナノ粒子に付着した低分子化合物からDLCが生成することが見出された。すなわち、DLCの原料としてポリマーフィルムは必須でない。ポリマーの追加配合は、膜における半導体ナノ粒子の比率を低下させる。半導体ナノ粒子間へのポリマーの導入は粒子の配列を乱す要因となる。本発明者が見い出した手法を利用すると、互いに近接して存在する半導体ナノ粒子近傍の狭小なスペースにもDLCを生成させることが可能になる。
 意外なことに、DLCは、複数の半導体ナノ粒子が関与して発現する膜の特性、例えば導電性、の向上に寄与し得ることが見い出された。このメカニズムの詳細は現段階では不明であるが、DLCによる膜の剛直性の向上が、複数の半導体ナノ粒子を経由して膜中に延びる導電パスに影響を与えた可能性がある。DLCによる補強効果は、半導体ナノ粒子を主として含む程度に半導体ナノ粒子の比率が高い膜、及び半導体ナノ粒子の少なくとも一部が一列に配列している膜、において顕著に発現し得る。上記では導電性を例に挙げたが、言うまでもなく、半導体ナノ粒子複合膜へのDLCの導入は、導電性以外の膜の特性の向上にも寄与し得る。例えば、DLCは、半導体ナノ粒子への赤外線等の光照射により生成した電荷担体を受け取るアクセプタとして機能し、膜の遮熱性の向上に寄与し得る。また例えば、DLCは、膜の耐折性の向上に寄与し得る。なお、本実施形態の好ましい一例ではDLCの少なくとも一部がポリマー以外の低分子化合物から生成するが、DLCのすべてが低分子化合物に由来するものである必要はない。
<半導体ナノ粒子複合膜>
 本実施形態の半導体ナノ粒子複合膜(以下、単に「複合膜」とも記載する)は、半導体ナノ粒子とその他の材料とを含む複合膜である。その他の材料には、少なくともDLCが含まれる。本実施形態の複合膜では、下記のi)及び/又はii)が成立する。
i)半導体ナノ粒子を主として含む。
ii)半導体ナノ粒子の少なくとも一部が一列に配列している。
 複合膜において、半導体ナノ粒子は、上記i)が成立するように含まれていてもよい。上述のとおり、「主として含む」は、質量基準、体積基準及び面積基準から選択される少なくとも1つの基準において半導体ナノ粒子が50%以上を占めれば充足する。面積基準による判断は、電子顕微鏡を用いて膜断面を観察することにより、比較的簡便に実施できる。この際、複合膜の平面方向に対して実質的に垂直な断面であるのが好ましい。この判断は、具体的には、任意に選択した5つの断面において実施する。「主として含む」に該当するかについて結論が分かれる断面が見い出された場合には、さらに5つの断面で測定を実施し、合計10の断面の総面積における半導体ナノ粒子の総面積の比率に基づいて判断する。観察する各膜断面の面積は、2000nm2以上、可能であれば10000nm2以上に設定する。
 複合膜において、半導体ナノ粒子は、上記ii)が成立するように含まれていてもよい。この複合膜は、半導体ナノ粒子の配列部を含んでいる。配列部において、半導体ナノ粒子は一列に配列している。配列部を含む断面を観察したときに、配列部では半導体ナノ粒子が互いに離間した状態で配列していてもよい。複合膜は、互いに実質的に平行に伸びる複数の配列部を含んでいてもよく、互いに交差し、又は端部で互いに接続する複数の配列部を含んでいてもよい。
 半導体ナノ粒子の配列部が観察される断面において、隣接する半導体ナノ粒子の平均間隔は10nm以下であることが好ましい。半導体ナノ粒子の「平均間隔」は、膜断面に現れた半導体ナノ粒子の配列部において、離間しつつ隣り合っている2つの粒子の最短距離を個々に測定し、その算術平均により定めることとする。一例として、平均距離は、離間しつつ隣り合っている2つの粒子の最短距離を2つの粒子が向かい合う部分に沿って10か所測定し、その算術平均(いわゆる10点平均)により定めることができる。上記断面における配列部において隣接している半導体ナノ粒子は、互いに向かい合う辺が実質的に平行となるように離間していることが好ましい。配列部は、成膜時に半導体ナノ粒子が自律的に配列することにより形成されたものであってもよい。
 複合膜は、半導体ナノ粒子に付着した化合物、すなわち付着化合物、を含んでいてもよい。付着化合物は、半導体ナノ粒子を構成する半導体とは異なる化合物、典型的には半導体に相当しない有機又は無機化合物である。付着化合物は、高分子に相当しない化合物であってもよい。付着化合物は、ポリマーに相当しない化合物であってもよい。付着化合物は、複合膜を形成するためのインクにおいて、半導体ナノ粒子を凝集から保護するための付着物とは異なる化合物であってもよい。付着化合物の分子量は、300以下、200以下、150以下、さらに110未満、特に60未満、が好適である。付着化合物は、半導体ナノ粒子との結合に適した官能基、例えば配位結合により金属原子に結合しうる配位子、を有するものであってもよい。
 ただし、付着化合物の使用は必須ではない。半導体ナノ粒子の種類、複合膜への要求特性その他によっては、付着化合物を含まない複合膜も実用に足りる特性を発揮し得る。また、付着化合物は、イオンビームの照射前に含まれていても、イオンビームの照射後にはDLCへの変化等によって膜からその一部が失われ、膜における含有量が低下し、又は膜から除去される。
 複合膜は、高分子を含まないものであってもよい。複合膜は、ポリマーを含まないものであってもよい。複合膜が多層膜である場合、複合膜は、半導体ナノ粒子を含む層において高分子及び/又はポリマーを含まないものであってもよい。ただし、この多層膜は、別の層にポリマー等を含んでいてもよい。
 半導体ナノ粒子の立体形状は、柱状体及び/又は多面体であってもよい。柱状体の底面は、特に限定されず、例えば円、楕円、多角形である。柱状体は、典型的には、両底面が同一で平行な柱体であるが、これに限らず、例えば、両底面を通過する面に沿って切断した縦断面が四角形又は四角形にみなし得る立体である。多面体は、正六面体等の正多面体であってもよいが、これに限らない。好ましい立体形状の一つは、1/2倍以下、さらに1/3倍以下、特に1/4倍以下の高さを有するディスク状の柱状体である(以下、このような形状を単に「ディスク状」という)。ただしこれに限らず、柱状体は、底面を同面積の円とみなしたときの円の直径に対して2倍以上、さらに3倍以上、特に4倍以上の高さを有するロッド状の柱状体であってもよい(以下、このような形状を単に「ロッド状」という)。半導体ナノ粒子の立体形状は、ロッド状及び/又はディスク状であってもよい。
 図1に複合膜の一例を示す。複合膜1は基材7の表面7aに形成されている。図1は、表面7aに垂直な方向に沿って複合膜1を切断したときの膜断面である。図2に、複合膜1中に含まれている半導体ナノ粒子11及び12を示す。図2に示したような半導体ナノ粒子11及び12の形状及び配置の態様は、例えばTEMを用いて観察することができる。半導体ナノ粒子11及び12の最小径は、1μm未満、例えば500nm以下、好ましくは100nm以下である。本実施形態において、半導体ナノ粒子11及び12が存在しないマトリックス40には、少なくともDLCが含まれている。
 図2に示した複合膜1の膜断面には半導体ナノ粒子11及び12が現れている。膜断面における半導体ナノ粒子11は、実質的に、頂点の数が5以上の多角形、具体的には五角形又は六角形である。膜断面における半導体ナノ粒子12は、実質的に四角形である。膜断面における半導体ナノ粒子12は、より詳しくは、矩形、より詳細には底面に該当する長辺が高さに該当する短辺の2倍以上の矩形である。このように観察される半導体ナノ粒子11及び12は、例えばディスク状である。ただし、膜断面における半導体ナノ粒子の形状は、上記に限定されず、円、楕円、三角形、又は矩形以外の四角形等、例えば正方形であってもよい。
 膜断面に現れた半導体ナノ粒子12が矩形である場合、矩形の長辺の長さは、例えば3~2000nm、さらに5~900nm、さらには20~50nmである。半導体ナノ粒子12の短辺の長さは、例えば2~100nm、さらには3~20nmである。半導体ナノ粒子12の短辺の長さに対する長辺の比は、例えば2以上であってもよい。
 複合膜1には、半導体ナノ粒子11及び12が配列した配列部21、22、23及び24が含まれている。配列部21~24では、半導体ナノ粒子が隣接する粒子と接触することなく一列に並んでいる。配列部21及び22では、実質的に五角形又は六角形の半導体ナノ粒子11が配列し、配列部23及び24では、実質的に矩形の半導体ナノ粒子12が配列している。配列部において配列している半導体ナノ粒子の数に特段の制限はなく、3以上、7以上、場合によっては10以上、さらに20以上の半導体ナノ粒子が並んでいてもよい。
 配列部21~24では、各配列部に含まれる半導体ナノ粒子を通過する直線を引くことができる。言い換えると、各配列部は直線である配列方向に沿って一列に配列している。ただし図2では、配列部23及び24の配列方向33及び34のみを示し、その他の配列方向については図示を省略している。なお、図2の膜断面には、図示した以外にも半導体ナノ粒子の配列部が現れているが、簡略化のため表示は省略する。
 配列部23及び24では、隣接する半導体ナノ粒子12が、互いに向かい合う辺が実質的に平行となるように離間している。このような配列部では、隣接する半導体ナノ粒子12の平均間隔が小さく保持されやすい。半導体ナノ粒子の間隔が小さい配列は、高い導電率の実現に有利である。また、配列部23及び24では、隣接する半導体ナノ粒子12の向かい合う辺が矩形の長辺となっている。対向する辺が相対的に長い配列構造では、半導体ナノ粒子12の配列に部分的な乱れがあった場合にも、半導体ナノ粒子12が近接している部分が保持されやすく、長い距離にわたって配列が維持されやすい。この特徴も高い導電率の実現には有利である。
 半導体ナノ粒子の平均間隔は、例えば10nm以下、さらに7nm以下、場合によっては5nm以下であり、3nm以下、さらには2nm以下であり、特に1.8nm以下が好適である。平均間隔は、例えば0.3nm以上、さらに0.5nm以上であってもよい。
 図3及び4に複合膜の別の例の断面を示す。複合膜2の膜断面には実質的に五角形又は六角形の半導体ナノ粒子13のみが現れている。複合膜3の膜断面に現れている半導体ナノ粒子は矩形の半導体ナノ粒子14のみである。図4では、互いに実質的に平行な配列方向35、36、37、38及び39に沿って延びる配列部25、26、27、28及び29において、矩形状の半導体ナノ粒子14が配列している。また、配列方向35~39と実質的に平行ではなく、互いに実質的に平行な配列方向71、72、73及び74に沿って延びる配列部61、62、63及び64においても、実質的に矩形の半導体ナノ粒子14が配列している。図4の膜断面には、実質的に矩形の半導体ナノ粒子が配列した配列部が多数存在する。これらの配列部では、半導体ナノ粒子14が、向かい合う辺が互いに実質的に平行になるように離間しつつ隣接しながら、長い距離にわたって一列に並んでいる。このような膜断面は、面内方向についての導電率を十分に高くする上で有利である。
 ただし、矩形の半導体ナノ粒子が配列した配列部が観察されない膜断面(図3)が観察された複合膜2も、異なる膜断面、例えば図3の紙面に垂直な方向には、矩形状の半導体ナノ粒子が配列した配列部が観察され得ることには注意を要する。例えば、半導体ナノ粒子13の立体形状がディスク状であって、その高さ方向に隣接する粒子が互いに離間しながらその底面同士が互いに対向するように配列している膜は、切断する方向によって、図4に示したような膜断面を有し得る。
 なお、図2~4にはすべての半導体ナノ粒子11~14が互いに離間した態様を示したが、別の部分において半導体ナノ粒子の一部は互いに接触していても構わない。実際には離間していても、観察の方向、観察に用いた機器の分解能その他により、半導体ナノ粒子が接触又は重複して観察され得ることにも注意が必要である。
 図2~4よりも広い領域における半導体ナノ粒子の配列状態は、図5及び6に例示されている。これらの図に示されているように、半導体ナノ粒子の配列部は、同一の方向に伸びている必要はない。複数の配列部により構成される経路は、湾曲したり、屈曲したり、互いに交差したり、部分的に重複したりしていてもよい。複数の配列部により構成される経路が導電パスを形成する。
 複合膜1~3には、半導体ナノ粒子11~14が存在しないマトリックス40が存在する。マトリックス40には、DLCが含まれ、場合によっては、付着化合物等のバインダーが含まれている。イオンビームの照射によりDLCを作成する場合、バインダーは、イオンビームの照射前にはDLCを構成する炭素原子の供給源となる炭素源を含むのがよく、イオンビームの照射によって変質したり分解したりするが、イオンビームの照射後に膜に残存していてもよい。バインダーは、ポリマー以外の有機化合物(例えばモノマー又はオリゴマー)又は炭素原子を含まない無機化合物であってもよいが、イオンビームの照射によりDLCを作成する場合、バインダーは、ポリマー以外の有機化合物であるのが好ましい。DLC、バインダー等の材料は、配列部において互いに隣接する半導体ナノ粒子の間に介在していてもよい。また、DLCは、異なる配列部同士を接続するように形成されていてもよい。
 マトリックス40は、半導体ナノ粒子11~14の自律的な配列を許容する要素を構成してもよい。半導体ナノ粒子11~14の適切な配列は、複合膜1~3の導電性に異方性を生じさせてもよい。マトリックス40は、複合膜1~3の光透過率の向上に寄与する要素にもなり得る。マトリックス40は、複合膜1~3の導電率の折り曲げによる低下を抑制する要素にもなり得る。半導体ナノ粒子が配列した配列部が観察される断面において、半導体ナノ粒子が存在しないマトリックス40は、面積比において、全体の10%以上、20%以上、30%以上、さらには40%以上を占めていてもよい。これにより、導電率の折り曲げによる低下を十分に抑制可能となる。また、マトリックス40は、面積比において、全体の50%未満、40%以下、30%以下、さらには20%以下を占めていてもよい。これにより、半導体ナノ粒子を介した導電性を十分に確保することが可能となる。これらの上限及び下限が任意に組み合わせた数値範囲を構成し得ることは上述したとおりであり、マトリックスの面積比率は例えば10%以上50%未満である。ただし、面積基準以外の基準で半導体ナノ粒子が主として含まれる膜では、マトリックスの面積比率は50%以上、例えば50%以上90%以下であってもよい。
 複合膜1~3には、少なくともその製造過程において、半導体ナノ粒子11~14に付着した化合物が含まれていることが好ましい。この化合物は、配列部において互いに隣接する半導体ナノ粒子の間に介在し、半導体ナノ粒子の間隔を狭く保つことに寄与し得る。当該化合物の分子量は小さいほうが好ましい。半導体ナノ粒子に付着した化合物は、イオンビームを照射した場合は消失する傾向にあり、照射後に残存していたとしても、例えばその後の加熱によって、膜から除去され、又は膜における含有量が低下することがある。特にヒドラジンのような分子量が小さい化合物は、いわゆる揮発によって、意図的に加熱せずとも、経時的に複合膜から消失していく傾向がある。
 複合膜の導電率C1は、7S/cm以上、さらには10S/cm以上、好ましくは20S/cm以上、より好ましくは50S/cm以上、さらに好ましくは100S/cm以上、特に好ましくは150S/cm以上、場合によっては200S/cm以上、特に500S/cm以上、さらに1000S/cm以上、である。導電率C1は、少なくとも1つの方向に沿って測定して得られればよい。この方向は、膜の表面に平行な膜面方向であってもよく、膜の表面に垂直な膜厚方向であってもよい。複合膜の高い導電率は、実用上は、特定の方向について要求されることが多い。例えばごく薄い複合膜では、膜面方向の長さが膜厚よりも格段に大きいため、膜面方向の導電率を向上させれば実用上の課題が実質的に解決することが多い。本実施形態の複合膜では、表面抵抗率から換算した導電率がC1として述べた範囲にあってもよい。
 以上から理解できるとおり、複合膜1~3の導電性は、半導体ナノ粒子の配列状態に起因する異方性を有してもよい。本実施形態による複合膜は、第1方向に沿って導電率C1が測定され、第2方向に沿って導電率C1よりも低い導電率C2が測定される膜であってもよい。第1方向が膜面方向である場合、第2方向は膜厚方向であってもよい。第1方向が膜厚方向である場合、第2方向は膜面方向であってもよい。
 導電率C2は、例えば導電率C1の80%未満、50%未満、さらに1%未満であってもよい。ただし、半導体ナノ粒子を適切に配置することにより、導電率C1のみならず、導電率C2も向上させることが可能になる。導電率C2は、例えば1×10-3S/cm以上であり、場合によっては1×10-1S/cm以上、さらに1S/cm以上、特に100S/cm以上であってもよい。ただし、本実施形態の複合膜は、導電率の異方性を必須とするわけではない。
 半導体ナノ粒子の配列の乱れは、上記程度に高い導電率の達成を阻害する要因になるが、DLCが存在することによって、導電性の低下は抑制することが可能である。
 複合膜の導電率の方向依存性は、少なくとも、基材の表面に対する半導体ナノ粒子の親和性と半導体ナノ粒子の立体形状とに影響を受ける。例えば、ディスク状の立体形状を有する半導体ナノ粒子は、半導体ナノ粒子と親和性が低い基材の表面では、ディスク面が基材の表面と略垂直となるように配列する。この半導体ナノ粒子は、半導体ナノ粒子と親和性が高い基材の表面では、ディスク面が基材の表面と略平行となるように配列する。また例えば、ロッド状の立体形状を有する半導体ナノ粒子は、半導体ナノ粒子と親和性が低い基材の表面では、ロッドの軸方向(長軸方向)が基材の表面と略垂直となるように、言い換えると表面に対してロッドが立つように、配列する。この半導体ナノ粒子は、半導体ナノ粒子と親和性が高い基材の表面では、ロッドの軸方向が基材の表面と略平行となるように、言い換えるとロッドが寝るように、配列する。
 半導体ナノ粒子の配列を通じて複合膜の導電率の方向依存性を制御するためには、用いる基材を適切に選択するか、基材の表面の親和性を調整するとよい。例えば、ロッド状の半導体ナノ粒子を半導体ナノ粒子と親和性が低い基材の表面においてロッドの長軸方向が当該表面と略平行となるように配列させるためには、基材の表面に、半導体ナノ粒子と親和性が高い材料を予め塗布しておくとよい。この配列は、膜厚方向に相対的に高い導電率C1を有する複合膜の形成に適している。
 膜に半導体ナノ粒子の配列部が存在しなくてもDLCによる補強効果を得ることは可能である。半導体ナノ粒子を主として含む膜においても、DLCは、膜に適度な剛直性を与えることにより、半導体ナノ粒子により発現する導電性等の機能を向上させ得る。特に、半導体ナノ粒子が密に存在し、少なくともその一部が接触している密集部においては、配列部と同様、DLCによる補強効果が顕著に発現しやすい。これに対し、半導体ナノ粒子の比率が制限され、半導体ナノ粒子が互いに離れて不規則に点在する膜では、DLCそのものの特性である電気絶縁性や赤外線透過性が支配的になりやすい。
 複合膜の波長650nmにおける光線透過率は、例えば30%以上、40%以上、50%以上、60%以上、70%以上、80%以上、さらに85%以上、好ましくは90%以上、より好ましくは92%以上である。なお、80%以上の高い光線透過率を有する複合膜は、透明導電膜と呼ばれることがある。また、同波長における複合膜の光線透過率は、40%以上、さらに50%以上であってもよいが、用途によっては30%以上で足りることもある。同波長における複合膜の光線透過率の上限は、特に限定されないが、例えば95%以下、場合によっては80%以下である。また、複合膜の可視光領域(波長400~800nmの領域)における光線透過率は、全体に亘って、例えば40%以上、さらに50%以上であってもよい。
 同様に、複合膜の波長560nmにおける光線透過率は、例えば30%以上、40%以上、50%以上、60%以上、70%以上、80%以上、さらに85%以上、好ましくは90%以上、より好ましくは92%以上である。また、同波長における複合膜の光線透過率は、40%以上、さらに50%以上であってもよいが、用途によっては30%以上で足りることもある。同波長における複合膜の光線透過率の上限は、特に限定されないが、例えば95%以下、場合によっては80%以下である。
 複合膜の膜厚は、特に制限されず用途に応じて適切に設定すればよいが、例えば5~5000nm、5~2000nm、さらに10~1000nm、特に100~800nmである。
 複合膜の表面抵抗率は、10000Ω/□以下、5000Ω/□以下、1000Ω/□以下、300Ω/□以下、200Ω/□以下、100Ω/□以下であってもよい。表面抵抗率の下限は、特に限定されないが、例えば10Ω/□以上である。
 上記では複合膜が有し得る特性として導電性等を挙げたが、複合膜が上記程度の導電性等を有することは必須ではない。複合膜は、半導体ナノ粒子の特性に応じた機能を有し得る。
 本実施形態の複合膜は、半導体ナノ粒子とDLCとの組み合わせにより、特に優れた耐折性を有し得る。半導体ナノ粒子及びバインダーを含み、DLCを含まない複合膜、すなわちDLCを導入する前の複合膜の抵抗変化率は、2000回程度の屈曲試験により上昇し、例えば70%を超えることがある。これに対し、本実施形態の複合膜の抵抗変化率は、2000回の屈曲試験を経ても、50%以下、30%以下、さらに20%以下であり得る。本実施形態によれば、複合膜の抵抗変化率を、5000回、さらには10000回の屈曲試験を経ても、50%以下、30%以下、さらに20%以下にまで抑制することも可能である。
 抵抗変化率は、以下の式により算出できる。
 (R2-R1)/R1)×100
 R1は屈曲試験前の表面抵抗率(Ω/□)であり、R2は所定回数の屈曲試験後の表面抵抗率(Ω/□)である。
 屈曲試験は、複合膜が形成された大きさ20mm×5mmの矩形の試験片を用いて実施する。試験片は、複合膜が内側に位置するように20mmの辺に沿って湾曲させ、互いの間隔が5mmの一対の部材の間に配置される。この状態から試験が開始され、一対の部材は、間隔が2.5mmとなるまで互いに近づき、その後、間隔が5mmとなるまで互いに離れる。この1サイクルを屈曲回数1回とカウントし、1秒間に5回の屈曲を実施する。所定の屈曲回数だけ試験を実施した後、表面抵抗率を測定する。表面抵抗率は、四探針法により測定することができる。四探針法による測定は、試料の中央を対象として実施するとよい。試料の中央での測定が難しい場合等には、中央に近い位置を含む複数の位置(例えば4カ所)で測定し、その平均をとってもよい。
 屈曲試験の参考図として図7を示す。試験機の一対の部材501及び502は、平坦で互いに平行な面505及び506をそれぞれ有し、面505及び506の平行状態を維持しながら、図示したように近接と離間とを繰り返す。面505及び506の間隔は矢印で示されている。複合膜504を形成する基材503としては、例えば、ポリエチレンテレフタレート(PET)基板を用いることができる。部材501及び502は、例えば、ステンレス製の剛直な部材である。
 本実施形態の複合膜は優れた耐候性を有し得る。例えば、導電要素として銀ナノワイヤーを含む複合膜では、オーバーコートにより複合膜を被覆しない限り、高温多湿の環境では酸化やマイグレーションが進行して導電性が急激に低下する。これに対し、本実施形態の複合膜は、導電要素として半導体ナノ粒子に加え、化学的に安定なダイヤモンド構造に近いDLCを含んでいるため、高温多湿の雰囲気に膜の表面が曝された状態においても、導電性等の機能は影響を受けにくい。
<複合膜の成分>
(半導体ナノ粒子)
 半導体ナノ粒子は、半導体材料として、化合物半導体、具体的には酸化物、硫化物、セレン化物及びテルル化物から選ばれる少なくとも1種を含んでいてもよい。好ましい酸化物としては、酸化錫、酸化インジウム、酸化亜鉛、酸化タングステン、酸化モリブデン、酸化カドミウム、酸化銅、酸化バナジウム、酸化ガリウム銅を例示できる。好ましい硫化物としては、硫化銅、硫化銅インジウムを例示できる。好ましいセレン化物としては、セレン化銅を例示できる。好ましいテルル化物としては、テルル化銅を例示できる。半導体ナノ粒子は、酸化チタン以外の半導体材料を含むものであってもよい。酸化チタンはn型半導体材料である。
 半導体ナノ粒子は、p型半導体材料を含むものであってもよい。硫化銅のようなp型半導体材料は、n型半導体材料よりも、正のイオンビーム、すなわち正の電荷を有するイオンビーム、の照射を伴う改質を受ける膜に含ませることに適している。正のイオンビームは、例えばヘリウムイオン、窒素イオン、炭素イオン、アルゴンイオン等として、負のイオンビームより簡便に照射できる。p型半導体材料は、イオンビームへの照射によりp型以外の半導体材料、例えば真性半導体、から生成したものであってもよい。もっともp型半導体材料に限らず、半導体ナノ粒子は、真性半導体、n型半導体材料等を含むものであってもよい。n型半導体材料への正のイオンビームの照射を前提にしたとしても、複合膜の耐折性等の特性を改良することは可能である。
 ただし、半導体ナノ粒子に照射するイオンビームは、負のイオンビーム、すなわち負の電荷を有するイオンビーム、であってもよい。負のイオンビームを照射された膜中の半導体ナノ粒子は、n型半導体材料を含んでいてもよい。このn型半導体材料は、イオンビームへの照射によりn型以外の半導体材料、例えば真性半導体、から生成したものであってもよく、また、次に述べる不純物半導体材料に相当するものであってもよい。例えば、錫ドープ酸化インジウム(ITO)は、n型半導体材料であり不純物半導体材料でもある。
 半導体ナノ粒子は、微量成分、特にドーパントと呼ばれる導電性を向上させるための成分が添加された不純物半導体材料を含んでいてもよい。不純物半導体は、不純物半導体材料は、例えば、錫ドープ酸化インジウム(ITO)、アルミニウムドープ酸化インジウム、セリウムドープ酸化インジウム、アルミニウムドープ酸化亜鉛、ガリウムドープ酸化亜鉛、インジウムドープ酸化亜鉛、インジウムドープ酸化カドミウム、フッ素インジウムドープ酸化カドミウム、フッ素ドープ酸化カドミウム、塩素ドープ酸化カドミウム、臭素ドープ酸化カドミウム、セシウムドープ酸化モリブデン、セシウムドープ酸化タングステンアンチモンドープ酸化錫(ATO)、フッ素ドープ酸化錫(FTO)である。不純物半導体は、縮退半導体、ヘビードープ半導体等と呼ばれる程度にドーパント、欠陥等を含んでいてもよい。
 半導体ナノ粒子は、赤外線の吸収に適した半導体材料を含んでいてもよい。赤外線の吸収に適した半導体材料としては、局所表面プラズモン共鳴により赤外線を吸収し得る半導体材料(以下、「LSPR-IR吸収半導体」ということがある)が挙げられる。この半導体を含む複合膜は、赤外線の吸収が重視される用途、例えば遮熱用途に適している。LSPR-IR吸収半導体におけるLSPRの存在は、例えば、周囲の媒質の屈折率を変化させた際の吸収ピークの波長変化に直線性があることを明らかにする方法により、確認できる。
 LSPR-IR吸収半導体は、局所表面プラズモン励起からの緩和時間が1ns以上になりうる材料であってもよい。この特性を有する材料は、例えば、硫化銅、セレン化銅、及びセシウム酸化タングステン(CWO)からなる群より選ばれる少なくとも1種である。ただし、これらの材料に限らず、時間分解過渡吸収スペクトル法により局所表面プラズモン励起からの緩和時間を測定し、適切な材料を選択してもよい。
 図8に、時間分解過渡吸収スペクトル法により局所表面プラズモン励起からの緩和時間を測定した結果の一例を示す。図8には、局所表面プラズモン励起後、2.5ナノ秒(ns)後、6ns後及び12.5ns後の吸収スペクトルが示されている。図8に示した吸収スペクトルには、局所表面プラズモン励起によるブリーチ(ネガティブシグナル)が近赤外域に確認できる。図8に示した例では、2.5ns後、6ns後、さらには12.5ns後においてもネガティブシグナルが消失していないから、緩和時間は少なくとも10ns以上である。ポンプ光の波長及び強度によらず、LSPRの励起後にこの程度に長い活性キャリアの緩和時間を示し得る材料は、LSPR-IR吸収半導体として適している。なお、時間分解過渡吸収スペクトル法は、現象の時間全体を直接測定する直接法を適用すればよい。
 図8には硫化銅についての測定結果が示されている。この測定は、試料として硫化銅のクロロホルム溶液を、ポンプ光として波長1064nmのピコ秒レーザを、プローブ光としてスーパーコンティニューム光源をそれぞれ使用するポンププローブ法により実施されたものである。レーザ光及びプローブ光の詳細は以下のとおりである。
・ピコ秒レーザ(EKSPLA社製「PL2210A」、繰り返し周波数1kHz、パルス幅25ps、パルスエネルギー0.9mJ(波長1064nm))
・スーパーコンティニューム光源(Fianium社製「SC450」、繰り返し周波数20MHz、パルス幅50~100ps)
 ただし、この条件は一例であり、局所表面プラズモン励起からの緩和時間の測定には、対象とする材料に応じた適切な条件を設定することができる。
 複合膜が赤外線吸収のために使用される場合、DLCは、いわゆるアクセプタとして機能し得る。複合膜は、DLC以外のアクセプタをさらに含んでいてもよい。DLC以外のアクセプタは、粒子として、特にナノ粒子として含まれていてもよい。なお、アクセプタは、赤外線の照射により半導体ナノ粒子に発生する電子又は正孔を半導体ナノ粒子から受け取る材料である。DLC以外のアクセプタは、半導体ナノ粒子から電子又は正孔を受け取ることができる限り、その種類に特に制限はない。アクセプタに含まれるアクセプタ材料は、半導体ナノ粒子に含まれる半導体材料、好ましくはLSPR-IR吸収半導体に応じて適宜選択される。LSPR-IR吸収半導体が硫化銅である場合、アクセプタは、硫化カドミウムを含んでいてもよい。LSPR-IR吸収半導体がセシウムがドープされた酸化タングステンである場合、アクセプタは、例えば、酸化亜鉛、酸化チタン、酸化錫、及び酸化ガリウムから選ばれる少なくとも1種を含んでいてもよい。LSPR-IR吸収半導体がITOである場合、アクセプタは、酸化錫を含んでいてもよい。アクセプタは、粒子として含まれていてもよく、層を形成する態様で含まれていてもよい。アクセプタは、半導体ナノ粒子と同じ層に含まれていてもよく、隣接する層に含まれていてもよい。また、アクセプタは、導電性のある有機材料であってもよく、例えば、グラフェン、カーボンナノチューブ、グラファイトであってもよい。
 半導体ナノ粒子及びアクセプタは、互いに結合させて一体化した複合粒子であってもよい。複合粒子の一例を図9に示す。この複合粒子は、ITO粒子の周囲に酸化錫(SnO2)粒子が付着した複合粒子である。両粒子は、物理的に結合していても化学的に結合していてもよい。図9右図に示すように、赤外線(図中「輻射熱」)により生成した正孔と電子とは、電子がアクセプタであるSnO2粒子に移動してITO粒子に残る正孔と互いに分離される。
 上記から理解できるように、アクセプタは、それ自体が半導体材料のナノ粒子であってもよい。複合膜が半導体材料のナノ粒子に相当するアクセプタを含む場合、複合膜における半導体ナノ粒子の比率は、当該アクセプタも半導体ナノ粒子の一部に含めて算出する。
 上述したように、本実施形態においては、iii)半導体ナノ粒子がp型半導体材料を含んでいてもよく、iv)半導体ナノ粒子が不純物半導体材料を含んでいてもよく、v)半導体ナノ粒子がLSPR-IR吸収半導体を含んでいてもよく、vi)赤外線の照射により半導体ナノ粒子に発生する電子又は正孔を半導体ナノ粒子から受け取る材料を複合膜がさらに含んでいてもよい。本実施形態においては、iii)~vi)からなる群より選択される少なくとも1つが成立してもよい。
 上記iii)~vi)の成立は、上記i)及び/又はii)が成立する場合は勿論のこと、上記i)及びii)が共に成立しない場合であっても有用である。
 すなわち、本発明は、別の側面から、
 半導体ナノ粒子とDLCとを含む、半導体ナノ粒子複合膜であって、
iii)前記半導体ナノ粒子はp型半導体材料を含む、
iv)前記半導体ナノ粒子は不純物半導体材料を含む、
v)前記半導体ナノ粒子はLSPR-IR吸収半導体を含む、及び
vi)前記複合膜は、赤外線の照射により前記半導体ナノ粒子に発生する電子又は正孔を前記半導体ナノ粒子から受け取るアクセプタ材料をさらに含む、
からなる群より選択される少なくとも1つが成立する、半導体ナノ粒子複合膜、を提供する。
 この複合膜は、半導体ナノ粒子とDLCとを含み、半導体ナノ粒子が、p型半導体材料、不純物半導体材料、LSPR-IR吸収半導体材料、及び、赤外線の照射により前記半導体ナノ粒子に発生する電子又は正孔を前記半導体ナノ粒子から受け取るDLC以外のアクセプタ材料、からなる群より選択される少なくとも1つに相当する半導体材料を含む、半導体ナノ粒子複合膜である。
 上述したように、本実施形態においては、DLCは電荷担体のアクセプタとして機能し得る。すなわち、複合膜において、赤外線の照射により半導体ナノ粒子に発生する少なくとも一部の電子又は正孔はDLCに移動する。この移動は、複合膜から電荷担体を放出することに適している。なお、この場合、半導体ナノ粒子とDLCとは、互いの性質(HOMO準位及びLUMO準位等)により適宜選択されるのがよい。
 DLCへの電荷担体の移動は、上記i)及び/又はii)が成立する場合は勿論のこと、上記i)及びii)が共に成立しない膜を備えたデバイス、特に遮熱デバイスにおいて有用である。
 すなわち、本発明は、別の側面から、
 照射された赤外線の少なくとも一部を遮蔽する遮熱デバイスであって、
 前記赤外線を吸収して電子と正孔とを生成する半導体ナノ粒子と、前記電子又は前記正孔を前記粒子から受け取るアクセプタであるDLCと、を含む複合膜を備え、
 前記電子及び前記正孔から選択される電荷担体の少なくとも一部は、前記複合膜から前記遮熱デバイスの外部へ放出される、遮熱デバイスを提供する。
 半導体ナノ粒子の平均最大粒径は、特に制限されず、例えば1nm~2000nm、さらに3nm~1000nmであるが、5nm以上、10nm以上、18nm以上、20nm以上、さらに25nm以上が適している。特に、平均最大粒径が20nm~2000nmの範囲にある比較的大きい半導体ナノ粒子は、複合膜の導電率向上への寄与が大きい。この効果は、PET基板等の樹脂基板上に形成した複合膜において顕著に得られる。半導体ナノ粒子のサイズ拡大による導電性向上は、樹脂基板の表面が疎水性であることと関連していると考えられる。なお、粒径を定めがたい形状を有する粒子については、平均最大粒径を最大寸法と読み替えて上述の範囲を適用する。
 上記程度に相対的に大きな半導体ナノ粒子は、DLCによる特性向上効果をさらに補強する上で好適であり、これは、上記i)及び/又はii)が成立する場合は勿論のこと、上記i)及びii)が共に成立しない場合であっても有用である。
 すなわち、本発明は、別の側面から、
 半導体ナノ粒子とDLCとを含む、半導体ナノ粒子複合膜であって、
 前記半導体ナノ粒子の平均最大粒径が20nm~2000nmである、半導体ナノ粒子複合膜、を提供する。
 半導体ナノ粒子の平均最大粒径が上記範囲にある複合膜は、疎水性の表面上、例えば疎水性の表面を有する基板上に形成することが好ましい。半導体ナノ粒子の平均最大粒径が上記範囲にある複合膜は、具体的には、樹脂基板上に形成して複合基材とすることが好ましい。
 半導体ナノ粒子は、結晶体であっても非晶質体であってもよいが、結晶を含む場合にはその結晶構造がその導電性に影響を及ぼすことがある。また、結晶の種類は半導体ナノ粒子の立体形状にも影響を及ぼし得る。半導体ナノ粒子の種類によって好適な結晶構造は相異するが、例えば硫化銅は、コベライト(covellite)、アニライト(anilite)、ロキシバイト(roxybite)、ダイジェナイト(digenite)及びジュ―ライト(djuleite)からなる群より選ばれる少なくとも1つ、特にコベライト及び/又はロキシバイトを含むことが好ましい。硫化銅を含むナノ粒子は、上記から選ばれる少なくとも1つの結晶のみを含んでいていてもよい。また、半導体ナノ粒子は、2D材料を含んでいてもよく、具体的には、半導体性を有し、かつ、面方向に延びる2D材料の炭化物及び/又は窒化物を含むナノ粒子であってもよい。なお、2D材料としては、例えば、M2CT2(Mは、Sc、Y及びLuからなる群より選択される少なくとも1種;Tは、O、F及びOHからなる群より選択される少なくとも1種)、M2CO2(Mは、Hf、Zr及びTiからなる群より選択される少なくとも1種)が挙げられる。2D材料は、MXeneと呼ばれるものであってもよい。
 半導体ナノ粒子は、自律的な配列による局所的な秩序構造をもたらす立体形状を有することが好ましい。この立体形状は、具体的には、実質的に平行な対辺が現れる断面を有する形状であり、典型的には柱状体及び/又は多面体である。立体形状の一例は、底面が円、楕円若しくは多角形又はこれらのいずれかに近似できる柱状体である。この形状は、上述したロッド状であってもよく、ディスク状であってもよい。
(DLC)
 ダイヤモンドライクカーボン(DLC)は、SP3結合とSP2結合の両者で結合した炭素原子を骨格構造とするアモルファス膜である。DLCは、高耐摩耗性、低摩擦性等の特性を有する材料として知られている。このため、DLCは、通常、それ自体から構成されるコーティング、すなわち膜として形成される。DLC膜の成膜法としては、プラズマCVD法等の気相合成法による堆積に加え、ポリマー膜にイオンビームを照射してポリマーをDLCに変質させる方法が知られている。
 上述したとおり、上記i)及び/又はii)が成立する半導体ナノ粒子複合膜へのDLCの導入は、ポリマー以外の有機化合物を炭素源とする方法が適切である。例えば、半導体ナノ粒子複合膜は、半導体ナノ粒子と共に、ポリマー以外の有機化合物を半導体ナノ粒子のバインダーとして含む半導体ナノ粒子含有膜に、イオンビームを照射することにより形成することができる。バインダーは、ポリマー以外の有機化合物のみから構成されていてもよい。
 DLCの存在は、炭素原子間の結合としてSP3結合及びSP2結合が共に測定できれば確認できる。具体的には、両結合は、ラマンスペクトルにおいて、所定の波数、すなわちSP3結合については1330cm-1近傍、SP2結合については1550cm-1近傍にピークが確認されればその存在が確認できる。DLCは、ラマン分光法に限らず、電子エネルギー損失分光法(EELS)、X線回折法(XRD)、赤外分光法(IR)等を用いてその存在を確認することも可能である。
(バインダー)
 複合膜は、半導体ナノ粒子及びDLCと共に、バインダーを含んでいてもよい。DLCも半導体ナノ粒子の間に介在して膜を形成するという意味ではバインダー成分であるが、ここではバインダーをDLC以外の成分として扱う。バインダーは、DLCと共に、半導体ナノ粒子の間に介在して複合膜に可撓性を付与し得る好ましい構成要素である。バインダーは、イオンビームの照射対象とする半導体ナノ粒子含有膜の成膜性の向上、ナノ粒子の適切な配列等にも寄与し得る。
 バインダーは、半導体ナノ粒子に付着する付着化合物を含んでいてもよい。付着化合物は、半導体ナノ粒子に結合し得る官能基、例えば、フルオリド(F)、クロリド(Cl)、ブロミド(Br)、ヨージド(I)、シアニド(CN)、チオシアナト(SCN)、イソチオシアナト(NCS)、ヒドロキシド(OH)、メルカプト(SH)、カルボニル(CO)、アミノ(NR3)、ニトロシル(NO)、ニトリト(NO2)、ホスファン(PR3)、カルベン(R2C)及びピリジン(NC55)からなる群より選択される少なくとも1種を含んでいてもよい。ここで、Rは、それぞれ独立して有機残基又は水素原子である。上記の例示から理解できるように、半導体ナノ粒子に結合し得る官能基は、金属原子又はアニオンへの配位子として機能し得るその他の官能基であってもよい。
 付着化合物は、無機化合物であっても有機化合物であってもよい。また、付着化合物は、上記に例示した官能基を含む、又は官能基からなるイオンと、その対イオンとから構成された塩であってもよい。付着化合物は、ヒドラジン(H2NNH2)、エチレンジアミン(H2NCH2CH2NH2)、エチレンジチオール(HSCH2CH2SH)、メルカプトプロピオン酸(HSCH2CH2COOH)、アセチルアセトナト(H3CCOCHCOCH3)、アミノベンゾニトリル(NH264CN)等に代表される、上述の官能基を複数有する化合物であっても構わない。
 付着化合物の分子量は、例えば300以下、好ましくは200以下、より好ましくは100以下、さらに好ましくは80以下、場合によっては60未満である。分子量の下限は、特に限定されないが、例えば20以上、さらには30以上である。分子量が大きすぎない付着化合物の使用は、半導体ナノ粒子の間隔を狭小に制御することに適している。
 複合膜における、付着化合物の含有量は、その種類によって適宜調整すればよいが、半導体ナノ粒子及び付着化合物の合計量に対する付着化合物の質量の比率により表示して、例えば1%以上、さらに2%以上、特に3%以上、場合によっては5%以上、好ましくは8%以上であってもよい。この含有量の上限は、特に制限されないが、30%以下、さらには20%以下である。
 バインダーは、付着化合物以外の材料、例えば各種の樹脂を含んでいてもよい。樹脂としては、ポリビニルアルコール、ポリビニルアセタール、ポリビニルピロリドン、カルボキシメチルセルロース、アクリル樹脂、ポリ酢酸ビニル、ポリエチレンテレフタレート、ポリスチレン、ポリエチレン等を例示できる。ただし、これらの高分子材料は、例えば、半導体ナノ粒子を含む層とは別の層、例えば半導体ナノ粒子を含む層の被覆層又は下地層に含有させてもよい。バインダーは、複合膜の成膜上の必要性、用途等に応じて、pH調整剤、着色剤、増粘剤、界面活性剤等を含んでいてもよい。
<複合基材>
 本実施形態の複合基材は、基板と、半導体ナノ粒子及びDLCを含む複合膜とを備えている。基板は、特に限定されず、用途に応じた材料、例えば樹脂、ガラス、繊維、金属等の材料により構成されたものを使用すればよい。基板は、織布、不織布、紙、フィルム等の柔軟性を有するものとしてもよい。用途によっては、透明基板を使用してもよい。複合基材は、複合膜を、電極膜、帯電防止膜、発熱膜、遮熱膜、遮光膜、アンテナ、ヒーター、分光用フィルター、耐摩耗性膜、耐薬品性膜、耐屈折膜、着色用の膜、光触媒膜、触媒膜、光屈折膜、撥水膜、親水膜、滑り性膜、耐凝着性膜、生体親和膜、ガスバリア膜、耐腐食膜、低攻撃性膜、及び電磁波遮蔽膜から選ばれる少なくとも1つの機能膜として使用するものであってもよい。
 また、基板は、複合膜の一部を構成し得る材料、例えば樹脂等の有機化合物、を含んでいてもよい。例えば、イオンビームの照射により樹脂からなる基板の一部をDLC化させて複合膜の一部を構成するようにしてもよい。この場合、DLCの炭素源の少なくとも一部は、ポリマーを含み得る。上記の場合においても、半導体ナノ粒子含有膜に含まれる炭素源は、ポリマー以外の有機化合物であってもよい。
<デバイス>
 本実施形態の複合膜は、各種のデバイス、例えば光透過性の膜を含むデバイスに使用することができる。このようなデバイスとしては、太陽電池に代表される光起電力デバイス、液晶ディスプレイ及び有機ELディスプレイに代表される画像表示デバイス、ヒーテッドウインドシールドに代表される発熱デバイス、電磁波シールド窓及び熱線遮蔽窓に代表される電磁波遮蔽デバイス等が挙げられる。デバイスは、例えば、光起電力デバイス、画像表示デバイス、発熱デバイス、及び電磁波遮蔽デバイスからなる群より選択される少なくとも1つに相当する。これらのデバイスにおいて、複合膜は、電極膜、帯電防止膜、発熱膜、電磁波遮蔽膜等として使用される。透明性の高い複合膜が前述の用途に使用されることにより、商品のデザイン性を妨げない、情報通信を阻害しない、不可視性を実現できるなどのメリットが得られる。
 上述のデバイスでは、通電又は電荷排出のために、複合膜に接するように少なくとも1つの電極が配置されることがある。電極の配置の例を図10及び11に示す。図10に示した例では、一対の電極51及び52が複合膜4の膜面方向に離間して配置されている。電極51及び52に電位差を印加することにより、複合膜4の膜面方向に電流が流れる。この複合膜は、例えば発熱膜として機能しうる。電極51及び52は、基材7の表面7aに形成する必要はなく、複合膜4の表面4aに形成してもよい。なお、発熱ではなく、帯電防止等のために複合膜から電荷を排出するためには、電極は1つのみで足りる。
 図11に示した例では、電極53に接している複合膜4が光透過性の電極として使用される。例えば、複合膜4を透過した光9が機能膜8に入射すると、機能膜8の光電変換機能により電極53及び54の間に電位差が生じる。また、別のデバイスでは、複合膜4と電極54との間に電位差が付与されると、機能膜8にその膜厚方向(図11のz方向)に沿って電圧が印加され、機能膜8が発光し、入射光9とは逆方向に向かう光を発する。図11の例では、基材7としてはガラス板、透明樹脂板等の透明基板を、電極54としてはアルミニウム等の金属膜を使用できる。ただし、基材7及び電極54の例はこれに限らない。例えば、基材7は、薄膜を表面に有する基板であってもよい。
 図11に示した態様において、電極53は、紙面に垂直な方向(図11のy方向)に沿って延びている。この場合、電極53からの距離による複合膜4内の電位の相異を小さくするためには、複合膜4は、少なくとも電極が延びる方向に垂直な膜面方向(x方向)について、高い導電率C1を有することが好ましい。
 図11に示した態様において、複合膜4の膜面に垂直なz方向から観察したときに、電極53と複合膜4とが重複している領域の面積S1は、複合膜4の面積S2の1/2未満、すなわち50%未満である。面積S2に対する面積S1の比率は、例えば30%以下、さらには20%以下、場合によっては10%以下であってもよい。
 ただし、デバイスにおける電極の形状及び配置は、図10及び11の例示に限られるわけではない。
 本実施形態の複合膜は、遮熱デバイスへの使用にも適している。図12に示すデバイスの一例において、遮熱デバイス301は、基材105と、基材105上に形成された複合膜(以降、遮熱デバイスの説明において「遮熱膜」と記載することがある)110とを備えている。遮熱膜110の主面の一方は、露出面であって、外部の気体に接している。遮熱膜110は、入射する赤外線を吸収して電子及び正孔を発生させる半導体ナノ粒子(以降、遮熱デバイスの説明において「赤外線吸収粒子」と記載することがある)と、赤外線吸収粒子から電子又は正孔である電荷担体を受け取ることができるDLCとを含んでいる。DLCは、電荷担体のアクセプタとして機能して、複合膜による遮熱機能を補強し得る。複合膜は、赤外線吸収粒子から電子又は正孔である電荷担体を受け取ることができるDLC以外のアクセプタをさらに含んでいてもよい。遮熱デバイス301は、遮熱膜110の一部に接するように配置された電極108を備えている。電極108は、遮熱膜110の表面の周縁部に形成されている。電極108は、例えば金属膜であり、実質的に非透光性であるが、透光性を有する膜であってもよい。電極108には導電部111の一端が接続されている。導電部111の他端は、電荷担体の放出先119に接続されている。放出先119は、デバイス外に存在する電荷受領部である。導電部111は、電極108と放出先119との間にスイッチ素子112を有している。
 図13を参照して、図12の形態における電荷担体の放出の一例を説明する。この例では、遮熱膜110において生成した電子は、遮熱膜110の主面において外部の化学種170を還元し、その結果、遮熱デバイス301から放出される。この例では、遮熱膜110は、光触媒として機能し、化学種170の反応を促進している。一方、正孔は、電極108及び導電部111を通過して放出先119へと導出される。ただし、図13に示した電荷担体の放出は、放出の諸形態の一例に過ぎない。電荷担体の放出は、電荷担体による外部の化学種の酸化還元を伴う化学反応、外部への電荷担体の導出、又はそれらの組み合わせにより進行してもよい。外部の化学種の酸化等の反応は、その化学種の分解や変性を伴うものであってもよい。
 遮熱デバイス301は、赤外線を含む入射光150を受光可能な受光領域を有する。受光領域は、入射光150に含まれる可視光線の少なくとも一部が透過する透光領域141と、入射光150に含まれる可視光線が実質的に透過しない非透光領域142とを含む。
 なお、光電変換装置における発電層(光電変換層)の2つの主面は、遮熱デバイス301における遮熱膜110とは異なり、隣接する層によりそれぞれその全体が被覆されていて外部に露出していない。また、光電変換装置は、図12及び13とは異なり、インバータ、蓄電デバイス、電圧計及び電流計の少なくとも1つを含む回路に電荷が供給される。
 遮熱デバイス301は、赤外線吸収膜である遮熱膜110を有し、下記a)~c)からなる群より選ばれる少なくとも1つが成立するように、デバイスの外部と接続されていてもよい。
 a)赤外線の照射により複合膜(赤外線吸収膜)に発生する電子及び正孔から選ばれる電荷担体の少なくとも一部は、赤外線吸収膜の主面に接すると共に気相又は液相であるデバイスの外部の化学種を酸化又は還元することにより放出される。
 b)赤外線の照射により複合膜(赤外線吸収膜)に発生する電子及び正孔の少なくとも一部は、インバータ、蓄電デバイス、電圧計及び電流計の少なくとも1つを含む回路以外であるデバイスの外部において再結合する。
 c)赤外線の照射により複合膜(赤外線吸収膜)に発生する電子及び正孔から選ばれる電荷担体の少なくとも一部は、グラウンド電位を有する赤外線デバイスの外部に放出される。
 上記では、本実施形態の複合膜を含むデバイスとして、膜の光透過性を利用するデバイスと遮熱デバイスとを例示したが、デバイスがこれらに限られるわけではない。特に、例示したデバイスは、いずれも複合膜に電極等の導電部が電気的に接続されていたが、複合膜を利用するデバイスは、その種類によっては、導電部を必要としない。
<半導体ナノ粒子複合膜の製造方法>
 本実施形態の製造方法は、半導体ナノ粒子と炭素源とを含む半導体ナノ粒子含有膜を成膜する第1ステップと、半導体ナノ粒子含有膜にイオンビームを照射してDLCを生成させることにより、半導体ナノ粒子とDLCとを含む半導体ナノ粒子複合膜を得る第2ステップと、を具備し、炭素源は、ポリマー以外の有機化合物を含む、製造方法である。半導体ナノ粒子含有膜は、ポリマーを含まないものであってもよい。炭素源は、上述したバインダーに含まれる有機化合物であってもよい。炭素源は、半導体ナノ粒子に付着する付着化合物を含むものであってもよい。炭素源は、低分子化合物のみからなるものであってもよい。
 第1ステップは、例えば、半導体ナノ粒子とバインダーとを含む半導体ナノ粒子含有膜を成膜するステップであってもよい。このステップは、特許文献1の記述に基づいて実施すればよい。ただし、第1ステップが特許文献1に記述された内容に限定されるわけではない。例えば、半導体ナノ粒子含有膜においては、半導体ナノ粒子の少なくとも一部が一列に配列していなくても構わない。
 第2ステップで生成するDLCは、半導体ナノ粒子含有膜中の炭素源に由来する炭素原子を含むものであってもよい。ただし、DLCは、別の炭素源、例えば基板から供給される炭素源に由来する炭素原子を含むものであってもよい。イオンビームの種類、ドーズ量等は、膜にDLCが生成する限り、特に制限はない。イオンビームを構成するイオン種は、特に制限されないが、例えばヘリウム、アルゴン、窒素、炭素を挙げることができる。複合膜は、照射されたイオンビームに応じ、例えば、不活性元素及び/又は窒素を含むものとなり得る。
 第2ステップは、DLCの生成と共に、半導体ナノ粒子の改質を伴うものであってもよい。この改質は、例えば、半導体ナノ粒子に含まれる半導体材料の変質であってもよく、半導体材料におけるキャリア密度の上昇であってもよい。半導体材料の変質は、例えば真性半導体からのp型半導体材料の生成であってもよい。
 なお、上記した方法以外に、プラズマCVD法等の気相合成法により、DLCを半導体ナノ粒子を形成した膜に作成する方法でも、本発明の複合膜を作成することができる。
 以下、実施例により本発明をさらに説明するが、以下の説明も本発明を特定の例に制限する趣旨ではない。
(実施例1)
(半導体ナノ粒子含有膜の形成)
 硫化銅ナノ粒子は既存の方法(Chemistry of Materials, 2017, 29, 4783-4791)を参考にして合成を行った。合成した硫化銅ナノ粒子インクをオクタンに分散し、これを第一インクとした。第一インクに含まれる硫化銅ナノ粒子はディスク状であって、その平均最大粒径は30nmであった。
 ポリエチレンテレフタレート(PET)基板上にスピンコータを用いて50μlの第1インクを塗布し、塗布膜を得た。なお、塗布する際には、第1インクの濃度を50mg/mlに調整した。
 塗布膜の上に、スピンコータを用いてヒドラジン(H2NNH2)を含む200μlの溶液(第2インク)を塗布し、遮熱膜として機能する薄膜を得た。この溶液の溶媒はオクタンであり、ヒドラジン(H2NNH2)の濃度は0.3質量%とした。第2インクとの接触により、硫化銅ナノ粒子に配位する化合物は、その一部がオレイルアミン(第1化合物)からヒドラジン(H2NNH2)(第2化合物)に置換された。
 この塗布膜の上に、第1インクを用いた上記と同様の成膜により追加の塗布膜を形成し、その後第2インクを使用して上記と同様に化合物の置換を実施した。こうして厚膜化した半導体ナノ粒子含有複合膜が形成されたPET基板を得た。
(イオンビームの照射)
 引き続き、半導体ナノ粒子含有膜が形成されたPET基板に以下の条件でイオンビームを照射し、半導体ナノ粒子複合膜を得た。
・イオン種:ヘリウム
・ドーズ量:ビーム電流値:0.5nA/mm2/s
・ビームフラックス:3.12×109ion/mm2/s
・照射時間:5分、10分、20分又は40分
 得られた半導体ナノ粒子複合膜の膜厚は100nmであった。
(XRD及びFT-IRによる解析)
 半導体ナノ粒子複合膜のX線回折法(XRD)による分析結果の一例を図14に示す。ダイヤモンド構造に由来するピークが確認できる。また、半導体ナノ粒子複合膜をフーリエ変換赤外分光法(FT-IR)により測定し、2900cm-1近傍にsp3炭素構造に由来するピークを、1600cm-1近傍にsp2炭素構造に由来するピークを確認した。
(硬度及び弾性率の測定)
 ナノインデンテーション法を用い、半導体ナノ粒子含有膜(イオンビーム照射時間:0分)及び半導体ナノ粒子複合膜(同:40分)の硬度及び弾性率を測定した。結果を以下の表に示す。
Figure JPOXMLDOC01-appb-T000001
 上記の解析及び測定により、イオンビームの照射によって膜にDLCが生成し、膜が硬化したことが確認できた。DLCを構成する炭素原子の少なくとも一部は、ヒドラジンによる置換後も膜に残存したオレイルアミンに由来すると考えられる。
(表面抵抗率の測定)
 四探針法により、半導体ナノ粒子含有膜(イオンビーム照射時間:0分)及び半導体ナノ粒子複合膜(同:5分、10分、20分又は40分)の表面抵抗率を測定した。結果を図15に示す。イオンビームの照射量に応じ、表面抵抗率が大きく低下することが確認できる。イオンビームの照射により、表面抵抗率は50%程度にまで低下した。電子顕微鏡を用いた断面観察の結果を参照すると、表面抵抗率の低下をもたらした膜の導電性の大幅な向上は、半導体ナノ粒子の間隔の短縮ではなく、膜に生成したDLCの影響と推定される。なお、複合膜の膜厚(100nm)を考慮すると、表面抵抗率100Ω/□は、1000S/cmに相当する。本実施例による半導体ナノ粒子複合膜の導電率は、表面抵抗率100Ω/□未満、すなわち導電率1000S/cm超に相当する。
(屈曲試験)
 半導体ナノ粒子含有膜(イオンビーム照射時間:0分)を形成したPET基板及び半導体ナノ粒子複合膜(同:5分、20分、40分)を形成したPET基板について、屈曲試験を実施した。屈曲試験の詳細は、図7を参照して上記で説明したとおりである。試験後に膜の表面抵抗率R2を測定し、試験前の表面抵抗率R1と共に下記の式に代入して抵抗変化率を算出した。
 (R2-R1)/R1×100[%]
 結果を図16に示す。
 照射時間5分及び20分の複合膜については、10000サイクル(10000回)の屈曲後のみにR2を測定した。結果を図16に示す。各複合膜の抵抗変化率は、10000回に至るまで20%以下であった。これに対し、イオンビーム未照射の膜の抵抗変化率は、2000回の屈曲試験後に70%を上回った。時間の関係上、屈曲試験のサイクル数は10000回までで打ち切ったが、その間、各複合膜の表面抵抗率に実質的な変化は観察されなかった。DLCとの複合化による耐折性の向上は予想を上回るものとなった。
(赤外光照射試験)
 半導体ナノ粒子含有膜(イオンビーム照射時間:0分)を形成したPET基板及び半導体ナノ粒子複合膜(同:30分)を形成したPET基板について、赤外光を照射し、温度上昇を測定した。これらの膜付き基板には、バンドパスフィルターを通過させて波長600nm以上の光のみとしたAM1.5疑似太陽光源(100mW)からの光を照射した。照射開始10分後、半導体ナノ粒子含有膜の温度上昇は2.7℃であった。これに対し、半導体ナノ粒子複合膜の温度上昇は1.8℃であった。
(光透過試験)
 半導体ナノ粒子複合膜(イオンビーム照射時間:10分)について、分光光度計 島津UV3600を用いて)可視光及び赤外光の透過率を測定した。波長560nmの光線透過率は84%であった。可視域での高い透過率が確認できたが、イオンビーム照射前の透過率94%からやや低下していた。これは、イオンビームのイオン種として、透過性の高いヘリウムを用いたため、基板のPETが反応して変色したことによる。一方、赤外域での透過率は十分に低く、波長1000nm~2500nmでの透過率は40%未満であった。
(引き剥がし試験)
 粘着テープを用いたプルオフ法により膜の引き剥がし試験を実施した。粘着テープとしては、ニチバン社製セロハンテープ(登録商標)CT1835-5Pを用いた。この粘着テープをPET基板上に形成した各半導体ナノ粒子複合膜(同:5~40分)に貼り付け、さらに引き剥がした。いずれの膜についても剥離は確認できなかった。
(実施例2)
 実施例1と同様にして、平均高さ5nm、平均直径(平均最大粒径)30nmのディスク状の硫化銅ナノ粒子を含むインクを得た。このインクを第1インクに代えて用いたことを除いては実施例1と同様にして、PET基板とガラス基板上に塗布し、半導体ナノ粒子含有膜を得た。ただし、膜厚は実施例1よりも厚く形成した。ガラス基板上の半導体ナノ粒子含有膜の表面抵抗率は41Ω/□、PET基板上の半導体ナノ粒子含有膜の表面抵抗率は70Ω/□であった。
 同様にして複数種類のインクを作製し、半導体ナノ粒子の平均最大粒径と膜の表面抵抗率との関係を調べたところ、平均最大粒径が表面抵抗率に及ぼす影響は、PET基板上で顕著になることが確認された。特にPET基板上では、平均最大粒径が20nm程度を下回ると、表面抵抗率が大幅に上昇して上記表面抵抗率の100倍を上回ることもあった。この傾向は、イオンビームを照射した後にも継続する。半導体ナノ粒子の平均最大粒径が20nm以上に制限されるわけではないが、PET基板のような疎水性の表面を有する基板上においては、相対的に大きい半導体ナノ粒子の使用が望ましいと考えられる。
 実施例1、2と同様にして得た半導体ナノ粒子複合膜のTEM像を図17及び18に示す。この観察面において、半導体ナノ粒子が占める比率は50%を超えていた。一部の半導体ナノ粒子が互いに僅かな距離を保ちながら一列に配列していることも確認できる。
(実施例3)
 実施例2と同様にして、半導体ナノ粒子複合膜が形成されたPET基板を得た。なお、形成した複合膜の表面抵抗率は243Ω/□となった。
 引き続き、半導体ナノ粒子含有膜が形成されたPET基板に表2に示す条件でイオンビームを照射した。イオンビーム照射後の表面抵抗率を表2に併せて示す。
Figure JPOXMLDOC01-appb-T000002
 さらに、分光光度計を用いて、半導体ナノ粒子複合膜が形成されたPET基板の吸光度を測定した。結果を図19に示す。
(実施例4)
 実施例3と同様にして、半導体ナノ粒子複合膜が形成されたPET基板を得た。引き続き、半導体ナノ粒子含有膜が形成されたPET基板に表3に示す条件でイオンビームを照射した。イオンビーム照射後の表面抵抗率を表3に併せて示す。
Figure JPOXMLDOC01-appb-T000003
 さらに、分光光度計を用いて、半導体ナノ粒子複合膜が形成されたPET基板の吸光度を測定した。結果を図20に示す。
(実施例5)
 実施例2と同様にして、半導体ナノ粒子複合膜が形成されたPET基板を得た。なお、形成した複合膜の表面抵抗率は134.9Ω/□となった。
 引き続き、半導体ナノ粒子含有膜が形成されたPET基板に表4に示す条件でイオンビームを照射した。イオンビーム照射後の表面抵抗率を表4に併せて示す。
Figure JPOXMLDOC01-appb-T000004
 さらに、分光光度計を用いて、半導体ナノ粒子複合膜が形成されたPET基板の吸光度を測定した。結果を図21に示す。なお、Arイオンビーム照射の場合が、最も着色が抑制されており、注入量を調整すれば可視透過性を十分に確保しつつ、導電性の向上が図れることが判明した。また、Arイオンビーム照射の場合には、膜の耐久性が顕著に向上することも確認できた。
 表2~4及び図19~21より、イオン種の選択及びイオン照射量の制御によって、半導体ナノ粒子複合膜の特性は調整可能であることが理解できる。
(実施例6)
 半導体ナノ粒子複合膜を導電層として含む有機薄膜太陽電池を作製した。まず、膜厚200~400nmの厚みの30~60層のCuS膜をUVオゾン処理済みのPET基板上にスピンコートを用いて成膜した。次に、ヘリウム又は炭素のイオンビーム照射を表5の条件で実施してDLCを生成させた。さらに、膜の表面にUVオゾン処理を実施した。その後、スピンコート(2000rpm,45秒)でPEDOT・PSSを塗付し、ホットプレートを用いて120℃、15分間の条件でベーキング処理を実施した。正孔輸送層であるPEDOT・PSS層の厚みは約30nmであった。
 引き続き、発電層を形成した。まず、ポリ(3-ヘキシルチオフェン-2,5-ジイル)(以下、「P3HT」という)20mg、(6,6)-フェニルC61酪酸メチル(以下、「PCBM」という)20mgを1,2-ジクロロベンゼンに加え、30分間超音波処理を行い、P3HTおよびPCBMを完全に1,2-ジクロロベンゼンに溶かし、発電層形成液を完成させた。この発電層形成液をスピンコート(800rpm,30秒)で正孔輸送層の上に塗布した。塗布液は、ガラスシャーレ内に1時間放置し、徐々に1,2-ジクロロベンゼンを蒸発させることにより、厚み約100nmの発電層を形成した。
 さらに、電子輸送層を形成した。まず、Wilken, S.; Parisi, J.; Borchert, H. Role of Oxygen Adsorption in Nanocrystalline ZnO Interfacial Layers for Polymer-Fullerene Bulk Heterojunction Solar Cells. J. Phys. Chem. C 2014, 118, 19672- 19682に記載された方法により、ZnOナノ粒子層形成液を作成した。この形成液をスピンコート(2000rpm,30秒)により発電層の上に塗布した。ZnOナノ粒子層の厚みは約140nmであった。最後に、抵抗加熱蒸着装置を用いて厚み100nmのAg電極を電子輸送層上に形成した。
 得られた薄膜太陽電池の特性を表6に示す。なお、薄膜太陽電池の特性は、分光計器製のOTENTO-SUNVI-OP高近似ソーラシミュレータを光源として用い、Keithley model 2400をソースメーターとして用いて測定した。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 

Claims (17)

  1.  半導体ナノ粒子とダイヤモンドライクカーボンを含み、
     i)前記半導体ナノ粒子を主として含む、及び
     ii)前記半導体ナノ粒子の少なくとも一部が一列に配列している、
    からなる群より選択される少なくとも1つが成立する、半導体ナノ粒子複合膜。
  2.  前記半導体ナノ粒子は、酸化チタン以外の半導体材料を含む、請求項1に記載の半導体ナノ粒子複合膜。
  3.  少なくとも前記i)が成立する、請求項1に記載の半導体ナノ粒子複合膜。
  4.  iii)前記半導体ナノ粒子はp型半導体材料を含む、
     iv)前記半導体ナノ粒子は不純物半導体材料を含む、
     v)前記半導体ナノ粒子はLSPR-IR吸収半導体材料を含む、及び
     vi)前記複合膜は、赤外線の照射により前記半導体ナノ粒子に発生する電子又は正孔を前記半導体ナノ粒子から受け取るアクセプタ材料をさらに含む、
    からなる群より選択される少なくとも1つがさらに成立する、請求項1~3のいずれか1項に記載の半導体ナノ粒子複合膜。
  5.  少なくとも前記iii)が成立する、請求項4に記載の半導体ナノ粒子複合膜。
  6.  前記複合膜において、赤外線の照射により前記半導体ナノ粒子に発生する電子又は正孔の少なくとも一部が前記ダイヤモンドライクカーボンに移動する、請求項1~5のいずれか1項に記載の半導体ナノ粒子複合膜。
  7.  表面抵抗率が1000Ω/□以下である、請求項1~6のいずれか1項に記載の半導体ナノ粒子複合膜。
  8.  表面抵抗率が100Ω/□以下である、請求項7に記載の半導体ナノ粒子複合膜。
  9.  導電率が500S/cm以上である、請求項1~8のいずれか1項に記載の半導体ナノ粒子複合膜。
  10.  屈曲試験前の表面抵抗率をR1、2000回の屈曲を与えた屈曲試験後の表面抵抗率をR2としたときに、下記式により算出される抵抗変化率が50%以下である、請求項1~9のいずれか1項に記載の半導体ナノ粒子複合膜。
     (R2-R1)/R1×100[%]
  11.  前記半導体ナノ粒子は、1nm~2000nmの平均最大粒径を有する、請求項1~10のいずれか1項に記載の半導体ナノ粒子複合膜。
  12.  基板と、請求項1~11のいずれか1項に記載された半導体ナノ粒子複合膜と、を含む複合基材。
  13.  前記基板は、樹脂基板である、請求項12に記載の複合基材。
  14.  請求項1~11のいずれか1項に記載の半導体ナノ粒子複合膜と、
     前記半導体ナノ粒子複合膜に電気的に接続した導電部と、を備えたデバイス。
  15.  光起電力デバイス、画像表示デバイス、発熱デバイス、及び電磁波遮蔽デバイスからなる群より選択される少なくとも1つに相当する、請求項14に記載のデバイス。
  16.  請求項1~11のいずれか1項に記載の半導体ナノ粒子複合膜の製造方法であって、
     半導体ナノ粒子と炭素源とを含む半導体ナノ粒子含有膜を成膜することと、
     前記半導体ナノ粒子含有膜にイオンビームを照射してダイヤモンドライクカーボンを生成させることにより、前記半導体ナノ粒子と前記ダイヤモンドライクカーボンとを含む半導体ナノ粒子複合膜を得ることと、
     を具備し、
     前記炭素源は、ポリマー以外の有機化合物を含む、製造方法。
  17.  前記半導体ナノ粒子含有膜はポリマーを含まない、請求項16に記載の半導体ナノ粒子複合膜の製造方法。
PCT/JP2023/003128 2022-01-31 2023-01-31 半導体ナノ粒子複合膜、これを含む複合基材及びデバイス、並びに半導体ナノ粒子複合膜の製造方法 WO2023145975A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023577094A JPWO2023145975A1 (ja) 2022-01-31 2023-01-31

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-013741 2022-01-31
JP2022013741 2022-01-31

Publications (1)

Publication Number Publication Date
WO2023145975A1 true WO2023145975A1 (ja) 2023-08-03

Family

ID=87472128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/003128 WO2023145975A1 (ja) 2022-01-31 2023-01-31 半導体ナノ粒子複合膜、これを含む複合基材及びデバイス、並びに半導体ナノ粒子複合膜の製造方法

Country Status (2)

Country Link
JP (1) JPWO2023145975A1 (ja)
WO (1) WO2023145975A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014175432A1 (ja) 2013-04-26 2014-10-30 株式会社長町サイエンスラボ Dlc層を有する構造体及びdlc層の生成方法
WO2021075495A1 (ja) 2019-10-15 2021-04-22 国立大学法人京都大学 導電膜、分散体とこれらの製造方法、及び導電膜を含むデバイス

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014175432A1 (ja) 2013-04-26 2014-10-30 株式会社長町サイエンスラボ Dlc層を有する構造体及びdlc層の生成方法
WO2021075495A1 (ja) 2019-10-15 2021-04-22 国立大学法人京都大学 導電膜、分散体とこれらの製造方法、及び導電膜を含むデバイス

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHEMISTRY OF MATERIALS, vol. 29, 2017, pages 4783 - 4791
JIANG JINLONG; DU JINFANG; WANG QIONG; ZHANG XIA; ZHU WEIJUN; LI RUISHAN; YANG HUA: "Enhanced field emission properties from graphene-TiO2/DLC nanocomposite films prepared by ultraviolet-light assisted electrochemical deposition", JOURNAL OF ALLOYS AND COMPOUNDS, ELSEVIER SEQUOIA, LAUSANNE., CH, vol. 686, 11 June 2016 (2016-06-11), CH , pages 588 - 592, XP029701906, ISSN: 0925-8388, DOI: 10.1016/j.jallcom.2016.06.084 *
MARCIANO, F.R. ; LIMA-OLIVEIRA, D.A. ; DA-SILVA, N.S. ; DINIZ, A.V. ; CORAT, E.J. ; TRAVA-AIROLDI, V.J.: "Antibacterial activity of DLC films containing TiO"2 nanoparticles", JOURNAL OF COLLOID AND INTERFACE SCIENCE, ACADEMIC PRESS,INC., US, vol. 340, no. 1, 1 December 2009 (2009-12-01), US , pages 87 - 92, XP026674180, ISSN: 0021-9797, DOI: 10.1016/j.jcis.2009.08.024 *
WILKEN, S.PARISI, J.BORCHERT, H.: "Role of Oxygen Adsorption in Nanocrystalline ZnO Interfacial Layers for Polymer-Fullerene Bulk Heterojunction Solar Cells", J. PHYS. CHEM. C, vol. 118, 2014, pages 19672 - 19682

Also Published As

Publication number Publication date
JPWO2023145975A1 (ja) 2023-08-03

Similar Documents

Publication Publication Date Title
Yang et al. Semi-transparent ZnO-CuI/CuSCN photodiode detector with narrow-band UV photoresponse
Dai et al. Pulsed laser deposition of CdSe quantum dots on Zn2SnO4 nanowires and their photovoltaic applications
Hu et al. TiO2 nanocolumn arrays for more efficient and stable perovskite solar cells
Yun et al. Role of WO3 layers electrodeposited on SnO2 inverse opal skeletons in photoelectrochemical water splitting
Hou et al. Structure and band edge energy of highly luminescent CdSe1–x Te x alloyed quantum dots
Hossain et al. Influence of thickness variation of gamma-irradiated DSSC photoanodic TiO2 film on structural, morphological and optical properties
Hu et al. 22% Efficiency Inverted Perovskite Photovoltaic Cell Using Cation‐Doped Brookite TiO2 Top Buffer
Liu et al. Novel dye-sensitized solar cell architecture using TiO2-coated vertically aligned carbon nanofiber arrays
Kostis et al. Effect of the oxygen sub-stoichiometry and of hydrogen insertion on the formation of intermediate bands within the gap of disordered molybdenum oxide films
Juan et al. Plasmonic Au nanooctahedrons enhance light harvesting and photocarrier extraction in perovskite solar cell
Li et al. Centimeter-sized stable zero-dimensional Cs3Bi2I9 single crystal for mid-infrared lead-free perovskite photodetector
Lee et al. Crystal facet‐controlled efficient SnS photocathodes for high performance bias‐free solar water splitting
Paulraj et al. Investigation of samarium-doped PbS thin films fabricated using nebulizer spray technique for photosensing applications
Arif et al. A significant effect of Ce-doping on key characteristics of NiO thin films for optoelectronics facilely fabricated by spin coater
Jiang et al. Engineering the interfaces of ITO@ Cu2S nanowire arrays toward efficient and stable counter electrodes for quantum-dot-sensitized solar cells
Ranjitha et al. CdS quantum dot sensitized nanocrystalline Gd-doped TiO 2 thin films for photoelectrochemical solar cells
Talebi et al. Broadband plasmonic absorption enhancement of perovskite solar cells with embedded Au@ SiO2@ graphene core–shell nanoparticles
Du et al. Hot-Carrier Injection Antennas with Hemispherical AgO x@ Ag Architecture for Boosting the Efficiency of Perovskite Solar Cells
Alfadhli et al. Structural characterizations and photoelectric performance of non-crystalline boron subphthalocyanine chloride films/FTO for photodiode applications
Gouda et al. High-resolution study of TiO2 contact layer thickness on the performance of over 800 perovskite solar cells
Ichwani et al. Adhesion in perovskite solar cell multilayer structures
Liu et al. Aromatic heterocyclic organic spacer cation-assisted growth of large-grain-size 2DRP perovskite film for enhanced solar cell performance
Daem et al. Inverse opal photonic nanostructures for enhanced light harvesting in CH3NH3PbI3 perovskite solar cells
Reddy et al. Cost-effective Sb-doped SnO 2 films as stable and efficient alternative transparent conducting electrodes for dye-sensitized solar cells
Kumar et al. The investigation of thickness-dependent mono-fractal, optical and optoelectronics properties of sputtered silver thin film for silicon solar cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23747185

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023577094

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2023747185

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2023747185

Country of ref document: EP

Effective date: 20240902