WO2023145958A1 - Thermoplastic composition - Google Patents

Thermoplastic composition Download PDF

Info

Publication number
WO2023145958A1
WO2023145958A1 PCT/JP2023/002990 JP2023002990W WO2023145958A1 WO 2023145958 A1 WO2023145958 A1 WO 2023145958A1 JP 2023002990 W JP2023002990 W JP 2023002990W WO 2023145958 A1 WO2023145958 A1 WO 2023145958A1
Authority
WO
WIPO (PCT)
Prior art keywords
cellulose
thermoplastic composition
thermoplastic
mass
acid
Prior art date
Application number
PCT/JP2023/002990
Other languages
French (fr)
Japanese (ja)
Inventor
良平 森
Original Assignee
冨士色素株式会社
Gsアライアンス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022130009A external-priority patent/JP2023111812A/en
Application filed by 冨士色素株式会社, Gsアライアンス株式会社 filed Critical 冨士色素株式会社
Publication of WO2023145958A1 publication Critical patent/WO2023145958A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1545Six-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/16Compositions of unspecified macromolecular compounds the macromolecular compounds being biodegradable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L97/00Compositions of lignin-containing materials

Definitions

  • the present invention relates to a cellulose-based thermoplastic composition, specifically a thermoplastic composition containing a eutectic mixture of cellulose and hydroxycarboxylic acids and sugars.
  • biomass-derived materials have been attracting attention against the background of problems such as global environmental conservation and oil depletion. From an environmental point of view, plastic waste is regarded as a problem, and the importance of biodegradable thermoplastic materials is increasing.
  • Cellulose is one of the typical biomass-derived materials and has been widely used.
  • plant-derived cellulose is attracting attention again from an environmental point of view because it is also biodegradable.
  • some studies have begun to make new use of such cellulose as a resin-like material.
  • Patent Document 1 a cellulosic fibrous material such as pulp is swollen and suspended in the coexistence of a deep eutectic solvent and water, treated with sodium hydroxide or the like, filtered and washed, and then homogenized under high pressure to obtain a nano A method of making a cellulosic material is disclosed.
  • a deep eutectic solvent is a solvent that is liquid at room temperature and is obtained by mixing a hydrogen bond donor compound and a hydrogen bond acceptor compound at a certain ratio.
  • a solvent with arbitrary physical properties can be produced, and various combinations have been reported (for example, Non-Patent Document 1).
  • deep eutectic solvents generally have excellent solubility, they can finely disperse cellulose and the like, and depending on the combination of raw materials, it is possible to create a colloidal solution of nanocellulose fibers.
  • Patent Document 1 a urea/choline chloride deep eutectic solvent is used.
  • Non-Patent Document 2 bleached birch pulp was dispersed in a reactive or non-reactive deep eutectic solvent such as urea/ammonium thiocyanate, urea/sulfamic acid, or glycerol/aminoguanidine hydrochloride.
  • a reactive or non-reactive deep eutectic solvent such as urea/ammonium thiocyanate, urea/sulfamic acid, or glycerol/aminoguanidine hydrochloride.
  • a technique for producing a wood-based fibrous body by filtering and washing is disclosed. (3), sawdust is dispersed in an imidazole/triethylammonium chloride deep eutectic solvent and treated with succinic anhydride, the resulting suspension is filtered and dried to obtain various mechanical properties.
  • Techniques for making films with According to such a technique it is possible to produce a resin-like material from a cellulosic material such
  • the present invention is a cellulose-based composition that is thermoplastic and does not require the disposal of solvents or the use of environmentally hazardous substances such as halides in the manufacturing process.
  • the object is to provide a material and a manufacturing method thereof.
  • the present inventors have made intensive studies to achieve the above object, and found that a composition containing cellulose and a eutectic mixture of monosaccharide and/or disaccharide and hydroxycarboxylic acid has resin-like properties.
  • the inventors have found that they exhibit thermoplasticity and that they can be produced without the disposal of solvents and the use of environmentally hazardous substances, and have completed the present invention.
  • the present invention provides the following (1) to (11).
  • a thermoplastic composition containing cellulose and a eutectic mixture of monosaccharides and/or disaccharides and hydroxycarboxylic acids.
  • thermoplastic composition according to any one of (1) to (4), wherein the mass ratio of said hydroxycarboxylic acid: said monosaccharide and/or disaccharide is within the range of 1:2 to 6:1.
  • thermoplastic composition comprising: (8) The method for producing a thermoplastic composition according to (7), further comprising a third step of kneading and molding the mixture obtained in the second step with an extruder. (9) A method for producing a thermoplastic composition, comprising the step of mixing cellulose, hydroxycarboxylic acid, and monosaccharide and/or disaccharide in an extruder at a temperature of 150-240°C. (10) Thermoplastic pellets made of the thermoplastic composition according to any one of (1) to (6). (11) A molded article made of the thermoplastic composition according to any one of (1) to (6).
  • thermoplastic composition of the present invention is a cellulose-based composition
  • it is thermoplastic, so it has good mechanical properties derived from cellulose and is also excellent in moldability. Therefore, it is suitable as a material for various molded articles, and is useful as an industrial material such as thermoplastic pellets. Moreover, it has the advantage of not requiring the disposal of solvent or the use of environmentally hazardous substances such as halogenated compounds in the production process.
  • the thermoplastic composition and the method for producing the same of the present invention can also be applied to cellulose as a raw material containing impurities, such as wood chips such as sawdust and waste paper, so it can also be used for waste treatment. It is also useful from the viewpoint of global environment conservation.
  • the present invention is primarily a thermoplastic composition containing cellulose and a eutectic mixture of mono- and/or disaccharides and hydroxycarboxylic acids. First, these components are described in detail. In the present specification, monosaccharides and/or disaccharides are sometimes collectively referred to as "saccharides" and the like.
  • the cellulose constituting the thermoplastic composition of the present invention is not particularly limited, and various known celluloses can be used. Examples include natural cellulose derived from plants, modified cellulose such as cellulose acetate, carboxymethyl cellulose, methyl cellulose, ethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose and hydroxypropyl methyl cellulose, and regenerated cellulose, but are not limited to these.
  • Cellulose is not limited to wood pulp, non-wood pulp, and the like, but may be low-purity materials, or may be contained in waste such as sawdust, waste wood, and used paper.
  • Cellulose is a type of carbohydrate, polysaccharide, and the main component of plant fiber. In plants, it usually exists as lignocellulose, bound or mixed with hemicellulose and lignin. In general, plant-derived cellulose fibers are bundles of 30 to 40 cellulose molecules that form ultra-thin, highly crystalline microfibrils with a diameter of about 3 nm and a length of several hundred nm to several tens of ⁇ m. A bundled structure is formed through the soft non-crystalline portion.
  • the cellulose constituting the thermoplastic composition of the present invention is preferably plant-derived cellulose.
  • the compositions of the present invention exhibit resin-like properties and thermoplastic properties even when the cellulose component is, for example, lignocellulose as described above. Therefore, pulp or the like can be used without being refined, and waste materials such as used paper can also be used as raw materials.
  • the cellulose is plant-derived cellulose and further contains hemicellulose and/or lignin.
  • plant-derived cellulose examples include, but are not limited to, wood, bamboo, hemp, jute, and kenaf, as well as those harvested from crop wastes such as wheat and rice straw, corn, cotton stalks, and sugar cane.
  • Cellulose derived from sawdust, wood chips, waste wood, waste paper, waste cloth, cotton from reforged futons, regenerated pulp, and the like may also be used.
  • Wood-derived cellulose, particularly wood pulp is preferred from the viewpoints of the composition's appearance, mechanical properties, quality stability, and ease of raw material availability, although it depends on the application of the thermoplastic composition. Wood pulp is less seasonally fluctuating in supply, and is also advantageous in terms of cost.
  • hemicellulose and lignin may be removed from the plant-derived cellulose.
  • kraft pulp that has been chemically treated with caustic soda or the like to remove hemicellulose and lignin to obtain high-purity cellulose.
  • thermoplastic composition of the present invention some of the hydroxyl groups in the cellulose molecule may be acetylated or carboxylated, and the hydrogen atoms in the hydroxyl groups are metal ions such as sodium and potassium, or ammonium ions. etc. may be substituted.
  • thermoplastic composition of the present invention develops a cellulose-derived texture and excellent mechanical strength even when the cellulose content is as small as about 0.05% by mass. Moreover, if the content of cellulose is about 60.0% by mass or less, sufficient thermoplasticity is ensured.
  • the thermoplastic composition of the present invention contains hemicellulose and/or lignin, since these components are substances constituting lignocellulose, the amount thereof shall be included in the above cellulose content.
  • the cellulose content in the total 100% by mass of the thermoplastic composition of the present invention is 0 when improving the molding processability of the thermoplastic composition or when producing a small amount with a mixing device having a low shear force.
  • thermoplastic composition for example 10.0 to 50.0% by mass, Among them, it is preferably about 15.0 to 40.0% by mass, more preferably about 18.0 to 30.0% by mass, particularly about 20.0 to 25.0% by mass.
  • thermoplastic composition of the present invention contains a eutectic mixture of hydroxycarboxylic acid and saccharide together with the cellulose.
  • This eutectic mixture acts like a deep eutectic solvent and can loosen cellulose to near nanofiber level and even dissolve or finely disperse to form a nearly homogeneous mixture.
  • the eutectic mixture can also be mixed with cellulose or the like to form a composition that is solid at room temperature and thermoplastic. This is an unexpected phenomenon that does not occur with deep eutectic solvents such as the aforementioned imidazole/ammonium chloride system.
  • composition of the present invention becomes such a thermoplastic material
  • the hydroxycarboxylic acid and the saccharide form a eutectic and simultaneously interact with cellulose.
  • the invention is not limited to any particular theory.
  • the eutectic mixture constitutes the thermoplastic composition together with cellulose as described above, and there is no need to separate and remove the cellulose material after preparation (for example, as in the preparation method described in Non-Patent Document 2). . Therefore, labor and costs for separation, waste solvent treatment, etc. can be reduced.
  • the eutectic mixture in the thermoplastic composition of the present invention is also composed of hydroxycarboxylic acids and monosaccharides and/or disaccharides, both of which are natural products that do not contain halogens. It can be said that it is an excellent material that does not apply a load.
  • the hydroxycarboxylic acid may be any compound as long as it forms a eutectic mixture with monosaccharides and/or disaccharides, and the type thereof is not particularly limited. Examples are glycolic acid, lactic acid, tartronic acid, glyceric acid, hydroxybutyric acid, 2-hydroxybutyric acid, 3-hydroxybutyric acid, ⁇ -hydroxybutyric acid, malic acid, tartaric acid, citramaric acid, citric acid, isocitric acid, leucic acid, mevalonic acid.
  • pantoic acid pantoic acid, ricinoleic acid, ricineraidic acid, cerebronic acid, quinic acid, and shikimic acid; , orceric acid, gallic acid, mandelic acid, benzilic acid, atrolactinic acid, cinnamic acid, melilotic acid, phloletic acid, coumaric acid, umberic acid, caffeic acid, ferulic acid, and aromatic hydroxycarboxylic acids such as sinapic acid.
  • aromatic hydroxycarboxylic acids such as sinapic acid.
  • hydroxycarboxylic acid a compound having one hydroxy group and one carboxy group in the molecule is preferable, and an aliphatic hydroxycarboxylic acid is preferable. More preferably, aliphatic hydroxycarboxylic acids having 2 to 4 carbon atoms are used. Such hydroxycarboxylic acids easily form a deep eutectic solvent with monosaccharides and disaccharides, and their composition with cellulose also exhibits good thermoplasticity. Lactic acid is particularly preferred. Lactic acid may be in any form, such as D-form, L-form, and DL-form.
  • the monosaccharide used in the present invention may be any compound as long as it forms a eutectic mixture with hydroxycarboxylic acid, and the type thereof is not particularly limited. aldoses such as glyceraldehyde, erythrose, threose, ribose, lyxose, xylose, arabinose, allose, talose, gulose, glucose, altrose, mannose, galactose, and idose; Ketoses such as, but not limited to, fructose, sorbose, and tagatose. Depending on the combination with hydroxycarboxylic acid, it is also possible to use multiple monosaccharides in combination.
  • the disaccharide in the present invention is also not particularly limited. Examples include, but are not limited to, sucrose (sucrose), lactulose, lactose (milk sugar), maltose (maltose), trehalose, cellobiose, and the like. It is also possible to use two or more disaccharides together, or to use a monosaccharide and a disaccharide together.
  • monosaccharides are preferred. Aldoses are more preferably used, and aldohexoses are more preferably used. These monosaccharides easily form a eutectic mixture with hydroxycarboxylic acid, and the composition with cellulose also exhibits good thermoplasticity.
  • aldohexoses glucose, allose, mannose, galactose, etc., and particularly glucose (grape sugar) are preferred.
  • the eutectic mixture constituting the thermoplastic composition of the present invention is particularly preferably a mixture of lactic acid and glucose.
  • monosaccharides such as glucose also have several optical isomers, any structure can be used in the present invention.
  • the contents of hydroxycarboxylic acid and sugar are not particularly limited, and for example, the mass ratio of hydroxycarboxylic acid: sugar can be selected from the range of 1:4 to 99:1. be.
  • the mass ratio of hydroxycarboxylic acid: monosaccharide and/or disaccharide is preferably within the range of 1:2 to 6:1, more preferably within the range of 1:1 to 4:1, and still more preferably should be in the range of 2:1 to 3:1. If the ratio of the two is within this range, a eutectic mixture is likely to be formed, and the composition with cellulose also exhibits good thermoplasticity.
  • lactic acid and glucose are contained in a weight ratio of 1:1 to 4:1, especially in a weight ratio of 2:1 to 3:1.
  • thermoplastic composition of the present invention contains 0.05 to 20.0% by mass of cellulose and 20.0% by mass of hydroxycarboxylic acid relative to the total 100% by mass of cellulose, hydroxycarboxylic acid and saccharides. 0 to 99.0% by mass and 1.0 to 80.0% by mass of saccharide; more preferably 0.1 to 5.0% by mass of cellulose and 50.0 to 90.0% by mass of hydroxycarboxylic acid. 0% by mass, saccharides in an amount of 5.0 to 50.0% by mass; more preferably 0.2 to 2.0% by mass of cellulose, 60 to 80% by mass of hydroxycarboxylic acid, and 20 to 20% by mass of saccharides It is contained in an amount of 40% by mass. With such a composition, the thermoplastic composition of the present invention is particularly excellent in texture and moldability. It can be a thermoplastic composition that
  • thermoplastic composition of the present invention is 5 to 60% by mass of cellulose and 20 to 80% by mass of hydroxycarboxylic acid relative to the total 100% by mass of cellulose, hydroxycarboxylic acid, and three sugars. %, sugars in an amount of 5 to 50% by mass; more preferably 10 to 50% by mass of cellulose, 30 to 60% by mass of hydroxycarboxylic acid, and 10 to 40% by mass of sugars; It preferably contains 20 to 45% by weight of cellulose, 35 to 50% by weight of hydroxycarboxylic acid, and 15 to 30% by weight of sugar.
  • the thermoplastic composition of the present invention is particularly excellent in texture, heat resistance, mechanical properties and the like. It can be a thermoplastic composition that melts at temperatures as low as 210° C. or solidifies after cooling.
  • thermoplastic composition of the present invention contains one or more selected from the group consisting of inorganic fillers, natural thermoplastic resins, synthetic thermoplastic resins, and biodegradable resins, in addition to the cellulose, hydroxycarboxylic acid, and sugars described above. It may further contain substances.
  • inorganic filler By containing the inorganic filler, it is possible to control the mechanical properties such as hardness and strength of the thermoplastic composition, as well as the physical properties such as heat resistance. Further, by containing various resins, it is possible to control the melting/solidifying temperature and physical properties of the thermoplastic composition.
  • inorganic filler there are no particular restrictions on the inorganic filler to be blended in the thermoplastic composition of the present invention. Examples include carbonates, sulfates, silicates, phosphates, borates, oxides of calcium, magnesium, aluminum, titanium, iron, zinc, barium, etc., or powdery hydrates thereof.
  • Specific examples include calcium carbonate, magnesium carbonate, zinc oxide, titanium oxide, silica, alumina, clay, talc, kaolin, aluminum hydroxide, magnesium hydroxide, aluminum silicate, magnesium silicate, calcium silicate, Aluminum sulfate, magnesium sulfate, calcium sulfate, magnesium phosphate, barium sulfate, silica sand, carbon black, zeolite, molybdenum, diatomaceous earth, sericite, shirasu, calcium sulfite, sodium sulfate, potassium titanate, bentonite, wollastonite, dolomite, Examples include, but are not limited to, graphite and the like.
  • the inorganic filler may be synthetic or derived from natural minerals, and may be contained singly or in combination of two or more.
  • calcium carbonate, clay, talc, kaolin and the like are preferable from the viewpoint of safety and cost.
  • calcium carbonate is commercially available with various particle sizes and particle shapes, and it is possible to select the type according to the physical properties of the desired thermoplastic composition, which is preferable.
  • the use of eggshell-derived calcium carbonate from food factories can also contribute to the reduction of waste.
  • the content is not particularly limited. Further, it is preferably about 20 to 200% by mass, particularly about 30 to 100% by mass. With such a blending amount, physical properties such as hardness can be controlled without impairing the melt processability of the thermoplastic composition.
  • Natural thermoplastic resins, synthetic thermoplastic resins, and biodegradable resins to be blended in the thermoplastic composition of the present invention are also not particularly limited.
  • Examples include polyethylene resins, polypropylene resins, polymethyl-1-pentene, polyolefin resins such as ethylene-cyclic olefin copolymers; ethylene-vinyl acetate copolymers, ethylene-acrylic acid copolymers, ethylene-methacrylic acid Copolymer, metal salt of ethylene-(meth)acrylic acid copolymer (ionomer), ethylene-alkyl acrylate copolymer, ethylene-alkyl methacrylate copolymer, maleic acid-modified polyethylene, maleic acid-modified polypropylene Functional group-containing polyolefin resins such as; nylon-6, nylon-6,6, nylon-6,10, nylon-6,12 and other polyamide resins; polyethylene terephthalate and its copolymers, polyethylene naphthalate
  • thermoplastic resins can also be used in combination. It also contains elastomer components such as styrene-butadiene copolymer, styrene-isoprene copolymer, styrene-butadiene-ethylene copolymer, styrene-isoprene-ethylene copolymer, acrylonitrile-butadiene copolymer, and fluoroelastomer. It's okay to be
  • thermoplastic composition of the present invention By blending such resins, the physical properties of the thermoplastic composition of the present invention can be changed in various ways. For example, by adding rosin or the like, the water resistance of the thermoplastic composition can be improved. Moreover, by blending a biodegradable resin such as polylactic acid or PHBV, it is possible to promote biodegradation when the thermoplastic composition is discarded, thereby contributing to the environment.
  • a biodegradable resin such as polylactic acid or PHBV
  • thermoplastic resin From the viewpoint of maximizing the physical properties and workability of the thermoplastic composition of the present invention, as well as the texture derived from cellulose, it is possible to choose not to blend the above thermoplastic resin.
  • the content is 5 to 120% by mass, further 10 to 100% by mass with respect to the total 100% by mass of cellulose, hydroxycarboxylic acid, and three sugars, In particular, it is preferably about 20 to 80% by mass.
  • thermoplastic composition of the present invention comprises 5 to 40% by weight of cellulose, 5 to 40% by weight of hydroxycarboxylic acid, 3 to 25% by weight of sugar, It contains 20 to 80% by mass of resin and filler; more preferably 10 to 35% by mass of cellulose, 10 to 35% by mass of hydroxycarboxylic acid, 5 to 20% by mass of sugar, and 30 to 30% by mass of resin and filler. It contains 70% by mass; more preferably 15 to 30% by mass of cellulose, 15 to 30% by mass of hydroxycarboxylic acid, 7 to 15% by mass of sugar, and 35 to 60% by mass of resin or filler. contains. With such a composition, it is possible to obtain a thermoplastic composition that is particularly excellent in texture, heat resistance, water resistance, mechanical properties, and the like.
  • the thermoplastic composition of the present invention may contain additives other than those described above.
  • additives include, for example, colorants, lubricants, coupling agents, fluidity modifiers (fluidity modifiers), cross-linking agents, dispersants, antioxidants, ultraviolet absorbers, flame retardants, stabilizers, and electrifying agents.
  • Inhibitors, foaming agents, plasticizers, starches, casein and the like include, but are not limited to.
  • These additives may be used alone or in combination of two or more. Further, it may be blended in the kneading step described later, or may be blended in the raw material components in advance before the kneading step.
  • the coupling agent may be added in advance to the surface of the cellulose or inorganic filler.
  • the content of these other additives can be arbitrarily set according to the desired physical properties and processability, but the total of cellulose, hydroxycarboxylic acid, and sugars 100% by mass, each of these other additives is about 0 to 10% by mass, particularly about 0.05 to 5% by mass, and the total amount of the other additives is 20% by mass or less, for example, 0.5% by mass. A ratio of 05 to 20% by mass is preferable.
  • thermoplastic composition of the present invention can be produced by mixing each component.
  • the production method is not particularly limited, for example, cellulose, hydroxycarboxylic acid, and sugars, and additives such as inorganic fillers and other resin components may be kneaded at the same time. It is also possible to knead the two components first and then add and knead the other components.
  • thermoplastic composition in order to improve the molding processability of the thermoplastic composition, or to prepare a small amount using a mixing apparatus with a low shearing force, for example, hydroxycarboxylic acid and sugar are melt-kneaded, and then cellulose is kneaded. preferable. Since hydroxycarboxylic acid and sugar can form a eutectic mixture, by mixing these two components first, it is possible to proceed with the subsequent mixing at a mild temperature and under low shear, which reduces energy consumption. In addition to being able to reduce it, it is also possible to prevent deterioration of organic matter at high temperatures.
  • the present invention also provides a first step of mixing a hydroxycarboxylic acid and a monosaccharide and/or a disaccharide at a temperature of 150 to 240° C., and Also included is a method for producing a thermoplastic composition (hereinafter, this production method may be referred to as “manufacturing method-A”), including a second step of mixing at a temperature of 240°C.
  • production method-A is effective when producing a thermoplastic composition having a cellulose content of about 0.05 to 20.0 mass % of the total.
  • each component there is no particular limitation on the method of mixing each component.
  • examples include a method of mixing at a temperature of 150 to 240°C, particularly 160 to 200°C, using a general kneading device such as an extruder, kneader, Banbury mixer, planetary mixer, Henschel mixer, and hot rolls. is not limited to Small batches can be mixed in a stirred flask as described below.
  • each component can be uniformly dispersed by applying a high shearing force during mixing, and cellulose is added in the post-extrusion stage to perform the first step and the second step in the same manner. It is also possible to do it with a device.
  • the first step and the second step may be performed, for example, by separate apparatuses after a period of time. It is also possible to carry out the first step and the second step with a kneader and further knead and mold the resulting mixture with an extruder.
  • the first step and the second step are performed with a twin-screw extruder or a kneader, and the resulting mixture is extruded with a single-screw or twin-screw extruder.
  • the thermoplastic composition of the present invention is extruded, for example, in the form of a strand, and cut into prisms or cylinders having a size of about 2 to 5 mm square with a pelletizer or the like to obtain a thermoplastic composition having the above composition. can be obtained in the form of pellets.
  • the present invention also includes a method for producing a thermoplastic composition, further comprising a third step of kneading and molding the mixture obtained in the second step with an extruder.
  • thermoplastic composition of the present invention can also be produced by simultaneously kneading cellulose, hydroxycarboxylic acid, and sugars (this production method may be referred to as "production method-B").
  • production method-B this production method may be referred to as "production method-B"
  • production method-B when producing a thermoplastic composition having a cellulose content of about 5 to 60% by mass of the total, it is advantageous to adopt production method-B using a high-shear mixing device.
  • the high-shear mixing device There are no particular restrictions on the high-shear mixing device, and examples thereof include extruders, kneaders, Banbury mixers, etc., but extruders, particularly twin-screw extruders, are preferred.
  • hydroxycarboxylic acid and sugar are mixed by high shearing force, and a deep eutectic solvent can be formed even in the presence of other components, so the step of pre-mixing only these two components is further omitted. becomes possible.
  • the present invention also includes a method for producing a thermoplastic composition comprising the step of mixing cellulose, hydroxycarboxylic acid and monosaccharide and/or disaccharide in an extruder at a temperature of 150-240°C. According to such production method-B, it becomes easy to produce a thermoplastic composition having excellent heat resistance and mechanical properties, and it becomes possible to utilize a larger amount of cellulose waste material.
  • twin screw extruder is preferred, it is not so limited and any type of twin screw extruder can be used.
  • the kneading/extrusion conditions are also not limited, and can be carried out at a temperature of, for example, 150 to 240°C, especially 160 to 230°C, particularly 170 to 210°C.
  • components such as inorganic fillers and resins may be kneaded simultaneously with the three of cellulose, hydroxycarboxylic acid and saccharides, or may be kneaded into a mixture of these three afterward.
  • the obtained mixture may be subjected to the same step as the third step in the production method-A.
  • the mixture obtained in the production method-B is extruded in a strand shape using a single-screw or twin-screw extruder, and cut into prisms or cylinders having a size of about 2 to 5 mm square with a pelletizer or the like.
  • a thermoplastic composition of such composition can also be obtained in the form of pellets.
  • the present invention further includes thermoplastic pellets comprising the thermoplastic composition described above.
  • the thermoplastic composition of the present invention is generally 50 to 230° C. as described above, specifically 60 to 200° C., further 70 to 150° C. when the cellulose content is about 0.05 to 20.0% by mass. , Especially at a temperature of about 70 to 100 ° C., and when the cellulose content is about 5 to 60% by mass, it is melted or solidified at a temperature of 150 to 240 ° C., further 160 to 230 ° C., particularly 170 to 210 ° C. Therefore, it has excellent moldability. Therefore, the thermoplastic pellets of the present invention are suitable as a thermoplastic polymeric material.
  • the thermoplastic composition of the present invention has good thermoplasticity as described above, and can be molded into various shapes.
  • the present invention also includes moldings comprising the thermoplastic compositions described above. There are no particular restrictions on the shape and size of these molded bodies, and they may be sheet-shaped, tubular, strand-shaped, or any other shape depending on the purpose.
  • the molding method is also not limited, and any molding method such as extrusion molding, injection molding, roll molding, transfer molding, and blow molding can be used.
  • the thermoplastic pellets of the present invention described above may be molded into a desired shape using an extruder or an injection molding machine, and the thermoplastic composition may be extruded without pelletization to form a sheet or tube. It can be molded. It is also possible to combine with other materials by calender molding or the like.
  • thermoplastic composition and molded article of the present invention can be used as a polymer material for daily necessities such as toys, toothbrushes, and bath products, housings for home electric appliances, and transportation equipment such as automobiles and trains.
  • a refined product such as kraft pulp
  • cellulose raw material when used as a cellulose raw material, it can be used for medical purposes and food products.
  • Cellulose, hydroxycarboxylic acid, monosaccharide, and disaccharide are all highly safe substances, so the thermoplastic composition of the present invention comprising these components is suitable for medical and food applications.
  • the thermoplastic composition of the present invention can also be said to be a natural product-derived material with a different concept from conventional biodegradable resins, and can be used as an additive to other materials for the purpose of increasing the biomass content.
  • Example 1 (First Step/Manufacturing Method-A) 100 g of lactic acid and 40 g of glucose were placed in a flask equipped with a stirrer and stirred at a temperature of 150-200° C. for 30 minutes. The resulting mixture was liquid at room temperature and was a 100% natural deep eutectic solvent.
  • the solid obtained in the second step had a resin-like appearance and feel. When this solid was struck with a clean hammer, it turned into powder. This powdery material melted at a temperature of around 150° C. and turned into a solid again when cooled to around room temperature. Also, this powdery material could be made into a dumbbell-shaped test piece by injection molding. That is, it was shown that the compositions obtained in this example were thermoplastic.
  • thermoplasticity was not expressed either (Comparative Example 1). Although it is not possible to make a definite statement because the temperature control during mixing was not precisely controlled, the thermoplastic material of the present invention cannot be obtained simply by heating and mixing cellulose with a deep eutectic solvent. is suggested.
  • Example 2 The powdery material (thermoplastic composition) obtained in Example 1 and starch were charged into a small twin-screw extruder at a mass ratio of 7:3, and kneaded and extruded at 80 to 120 ° C. to prepare pellets. .
  • a dumbbell-shaped test piece could be produced from the obtained pellets by injection molding in the same manner as in Example 1.
  • Example 3 The powder (thermoplastic composition) obtained in Example 1 and talc were put into a small twin-screw extruder at a mass ratio of 6:4, and pellets were produced in the same manner as in Example 2. Dumbbell-shaped test pieces could be produced from the obtained pellets by injection molding in the same manner as in Examples 1 and 2.
  • Example 4 The pellets obtained in Example 2 and poly(3-hydroxybutyrate/3-hydroxyvalerate) (PHBV, biodegradable resin) were charged into a small twin-screw extruder at a mass ratio of 1:1, Pellets were produced in the same manner as in Example 2. Dumbbell-shaped test pieces could be produced from the obtained pellets by injection molding in the same manner as in Examples 1-3.
  • PHBV poly(3-hydroxybutyrate/3-hydroxyvalerate)
  • Example 5 The pellets obtained in Example 3 and gum rosin were put into a small twin-screw extruder at a mass ratio of 8:2, and pellets were produced in the same manner as in Example 3. Dumbbell-shaped test pieces could be produced from the obtained pellets by injection molding in the same manner as in Examples 1-4.
  • Example 6 Pellets were produced in the same manner as in Example 5 using lignin (Vanirex (registered trademark) CN manufactured by Nippon Paper Industries Co., Ltd.) instead of gum rosin. Dumbbell-shaped test pieces could be produced from the obtained pellets by injection molding in the same manner as in Examples 1-5.
  • lignin Vanirex (registered trademark) CN manufactured by Nippon Paper Industries Co., Ltd.
  • the obtained pellets were then put in an injection molding machine (HAAKE Process 11 manufactured by Thermo Fisher Scientific), and at 180 to 220 ° C., JIS K7171 (ISO 178) bending test specimens (80 ⁇ 10 ⁇ 4 mm ) and a dumbbell-shaped specimen for JIS K7161-2 tensile test. It was found that the composition of this example was thermoplastic and exhibited good molding processability in spite of containing a large amount of cellulose component.
  • Example 8 to 13 The same procedure as in Example 7 was performed using rosin or PHBV along with the ingredients used in Example 7. Table 1 shows the formulation and evaluation results of each thermoplastic composition.
  • compositions of the present invention containing cellulose and eutectic mixtures of hydroxycarboxylic acids and sugars exhibit thermoplastic properties and can be hot melt kneaded with various materials to provide various thermoplastic, resin-like materials. shown that it can be done.
  • the present invention is believed to be a thermoplastic material exhibiting unexpected properties.
  • Example 14 to 19 The same operations as in Examples 8-13 were performed using polypropylene (PP) or polyethylene (PE) instead of rosin or PHBV.
  • Table 2 shows the formulation of the thermoplastic composition and the evaluation results.
  • thermoplastic composition of the present invention can also contain general-purpose resins such as polypropylene and polyethylene, thereby improving physical properties such as mechanical properties and water resistance.
  • general-purpose resins such as polypropylene and polyethylene
  • the thermoplastic composition of the present invention can be blended with a large amount of various resins, inorganic fillers, and the like, thereby improving physical properties such as water resistance and reducing costs. be.
  • up to 175 parts by mass of rosin can be blended to improve water resistance.
  • thermoplastic composition of the present invention exhibits thermoplasticity even when a composition containing a large amount of cellulose is used, and is useful for recycling cellulosic waste materials. It can also be mixed with petroleum-based resins such as polyethylene to increase the degree of biomass.
  • the thermoplastic composition of the present invention can also be mixed with biodegradable resins such as PHBV to increase the usage rate of waste materials and reduce costs without deteriorating physical properties, so to speak, it can be used like a bulking agent. is also possible.
  • the thermoplastic composition of the present invention does not require the disposal of solvents or the use of environmentally hazardous substances such as halogenated compounds during the production process. In view of these points, the effects of the present invention are remarkable.

Abstract

The objective of the present invention is to provide: a material that is a cellulose-based composition, is thermoplastic, and does not require the disposal of a solvent or the use of environmentally hazardous substances such as halide-containing substances during the manufacturing process; and a method for producing the same. The thermoplastic composition contains cellulose and a eutectic mixture of monosaccharide and/or disaccharide and hydroxycarboxylic acid. The method for manufacturing a thermoplastic composition comprises: a first step for mixing hydroxycarboxylic acid and monosaccharide and/or disaccharide at a temperature of 150-240 °C; and a second step for mixing the mixture obtained in the first step and cellulose at a temperature of 150-240 °C. In addition, the method for manufacturing a thermoplastic composition comprises a step for mixing cellulose, hydroxycarboxylic acid and monosaccharide and/or disaccharide in an extruder at a temperature of 150-240 °C. The eutectic mixture is preferably a mixture of lactic acid and glucose. In addition, the cellulose content is preferably 0.05-60.0 mass%.

Description

熱可塑性組成物thermoplastic composition
 本発明は、セルロースを基材とする熱可塑性組成物に、具体的にはセルロース、並びに、ヒドロキシカルボン酸及び糖類の共晶混合物を含有する、熱可塑性組成物に関する。 The present invention relates to a cellulose-based thermoplastic composition, specifically a thermoplastic composition containing a eutectic mixture of cellulose and hydroxycarboxylic acids and sugars.
 近年、地球環境の保全や石油枯渇等の問題を背景に、バイオマス由来の材料が注目を集めている。環境面からはまた、プラスチック廃棄物が問題視され、生分解性を有する熱可塑性材料の重要度が増大している。セルロースはバイオマス由来の代表的な材料の一つであり、従来から多用されて来た。特に植物由来のセルロースは、生分解性も備えるため、環境面から再び注目されつつある。昨今は、こうしたセルロースを、樹脂のような材料として新たに活用する検討が、幾つかなされ始めている。 In recent years, biomass-derived materials have been attracting attention against the background of problems such as global environmental conservation and oil depletion. From an environmental point of view, plastic waste is regarded as a problem, and the importance of biodegradable thermoplastic materials is increasing. Cellulose is one of the typical biomass-derived materials and has been widely used. In particular, plant-derived cellulose is attracting attention again from an environmental point of view because it is also biodegradable. Recently, some studies have begun to make new use of such cellulose as a resin-like material.
 例えば特許文献1には、パルプ等のセルロース系繊維状材料を深共晶溶媒と水の共存下で膨潤・懸濁させて水酸化ナトリウム等で処理し、濾過・洗浄後に高圧均質化して、ナノセルロース材料を製造する方法が開示されている。ここで、深共晶溶媒(Deep Eutectic Solvent)とは、水素結合ドナー性の化合物と水素結合アクセプター性の化合物とをある一定の割合で混ぜることで得られる、室温で液体の溶媒である。ドナー性化合物とアクセプター性化合物との組み合わせにより、任意の物性の溶媒を作り出すことができ、様々な組み合わせが報告されている(例えば非特許文献1)。深共晶溶媒は、一般に溶解性に優れるので、セルロース等を微分散させることができ、原料の組み合わせによってはナノセルロースファイバーのコロイド溶液のようにすることも可能である。特許文献1では、尿素/塩化コリン系の深共晶溶媒を用いている。 For example, in Patent Document 1, a cellulosic fibrous material such as pulp is swollen and suspended in the coexistence of a deep eutectic solvent and water, treated with sodium hydroxide or the like, filtered and washed, and then homogenized under high pressure to obtain a nano A method of making a cellulosic material is disclosed. Here, a deep eutectic solvent is a solvent that is liquid at room temperature and is obtained by mixing a hydrogen bond donor compound and a hydrogen bond acceptor compound at a certain ratio. By combining a donor compound and an acceptor compound, a solvent with arbitrary physical properties can be produced, and various combinations have been reported (for example, Non-Patent Document 1). Since deep eutectic solvents generally have excellent solubility, they can finely disperse cellulose and the like, and depending on the combination of raw materials, it is possible to create a colloidal solution of nanocellulose fibers. In Patent Document 1, a urea/choline chloride deep eutectic solvent is used.
 また、非特許文献2では、漂白したカンバパルプを、尿素/アンモニウムチオシアネート系、尿素/スルファミン酸系、又はグリセロール/塩酸アミノグアニジン系等の反応性又は非反応性の深共晶溶媒中に分散させた後、濾過・洗浄して木材ベースの繊維体を作製する技術が開示されている。非特許文献3では、おが屑をイミダゾール/塩化トリエチルアンモニウム系の深共晶溶媒中に分散させて無水琥珀酸で処理し、得られた懸濁液を濾別して乾燥して、様々な機械的特性を有するフィルムを作製する技術が開示されている。こうした技術によれば、例えば一旦廃棄された紙のようなセルロース系材料からも樹脂様の材料を製造することが可能となるため、廃棄物の低減にも貢献できる。 In Non-Patent Document 2, bleached birch pulp was dispersed in a reactive or non-reactive deep eutectic solvent such as urea/ammonium thiocyanate, urea/sulfamic acid, or glycerol/aminoguanidine hydrochloride. A technique for producing a wood-based fibrous body by filtering and washing is disclosed. (3), sawdust is dispersed in an imidazole/triethylammonium chloride deep eutectic solvent and treated with succinic anhydride, the resulting suspension is filtered and dried to obtain various mechanical properties. Techniques for making films with According to such a technique, it is possible to produce a resin-like material from a cellulosic material such as paper that has been once discarded, thereby contributing to the reduction of waste.
特表2020-518715号公報Japanese Patent Publication No. 2020-518715
 上記のように、深共晶溶媒を用いてセルロースから樹脂様の材料を得ることができるが、こうして得られる従来の材料は、いずれも熱可塑性ではなく、そのために用途が限定されるきらいがある。特許文献1、非特許文献2及び3記載の技術においても、調製されたセルロース材料はいずれも、濾別によってフィルター上にフィルムとして成形されている。そのため、作製に手間が掛かるだけでなく、深共晶溶媒の廃棄処理の問題も生じる。これら技術ではまた、深共晶溶媒としてスルファミン酸等の含硫黄強酸化合物や塩化物を使用しており、環境面からも改善の余地がある。 As noted above, deep eutectic solvents can be used to obtain resin-like materials from cellulose, but none of the conventional materials thus obtained are thermoplastic, which tends to limit their applications. . In the techniques described in Patent Document 1, Non-Patent Documents 2 and 3, all of the prepared cellulose materials are formed as a film on a filter by filtration. Therefore, not only is the production time-consuming, but there is also the problem of disposal of the deep eutectic solvent. These techniques also use sulfur-containing strong acid compounds such as sulfamic acid and chlorides as deep eutectic solvents, and there is room for improvement from an environmental point of view.
 本発明は、上記のような問題を解決すべく、セルロースに基づく組成物でありながら熱可塑性であり、しかも製造過程で溶媒の廃棄や、含ハロゲン化物等の環境負荷物質の使用を必要としない材料及びその製造方法を提供することを目的とする。 In order to solve the above problems, the present invention is a cellulose-based composition that is thermoplastic and does not require the disposal of solvents or the use of environmentally hazardous substances such as halides in the manufacturing process. The object is to provide a material and a manufacturing method thereof.
 本発明者らは、上記目的を達成すべく鋭意検討した結果、セルロース、並びに、単糖及び/又は二糖とヒドロキシカルボン酸との共晶混合物を含有する組成物が、樹脂様の特性を有する上に熱可塑性を示し、しかも溶媒の廃棄や環境負荷物質の使用を伴うことなく製造できることを見出し、本発明を完成した。 The present inventors have made intensive studies to achieve the above object, and found that a composition containing cellulose and a eutectic mixture of monosaccharide and/or disaccharide and hydroxycarboxylic acid has resin-like properties. The inventors have found that they exhibit thermoplasticity and that they can be produced without the disposal of solvents and the use of environmentally hazardous substances, and have completed the present invention.
 すなわち本発明は、以下の(1)~(11)を提供する。
(1)セルロース、並びに、単糖及び/又は二糖とヒドロキシカルボン酸との共晶混合物を含有する、熱可塑性組成物。
(2)前記共晶混合物が乳酸とグルコースとの混合物である、(1)の熱可塑性組成物。
(3)ヘミセルロース及び/又はリグニンをさらに含有し、かつ前記セルロースが植物由来セルロースである、(1)又は(2)の熱可塑性組成物。
(4)前記セルロースを0.05~60.0質量%含有する、(1)~(3)のいずれかの熱可塑性組成物。
(5)前記ヒドロキシカルボン酸:前記単糖及び/又は二糖の質量比が1:2~6:1の範囲内である、(1)~(4)のいずれかの熱可塑性組成物。
(6)無機フィラー、天然熱可塑性樹脂、合成熱可塑性樹脂、及び生分解性樹脂からなる群より選択される1以上の物質をさらに含有する、(1)~(5)のいずれかの熱可塑性組成物。
(7)ヒドロキシカルボン酸と単糖及び/又は二糖とを、150~240℃の温度で混合する第1の工程、及び
 前記第1の工程で得られた混合物と前記セルロースとを、150~240℃の温度で混合する第2の工程、
を含む、熱可塑性組成物の製造方法。
(8)前記第2の工程で得られた混合物を、押出機で混練及び成形する第3の工程をさらに含む、(7)の熱可塑性組成物の製造方法。
(9)セルロースと、ヒドロキシカルボン酸と、単糖及び/又は二糖とを、押出機にて150~240℃の温度で混合する工程を含む、熱可塑性組成物の製造方法。
(10)(1)~(6)のいずれかの熱可塑性組成物からなる、熱可塑性ペレット。
(11)(1)~(6)のいずれかの熱可塑性組成物からなる、成形体。
That is, the present invention provides the following (1) to (11).
(1) A thermoplastic composition containing cellulose and a eutectic mixture of monosaccharides and/or disaccharides and hydroxycarboxylic acids.
(2) The thermoplastic composition of (1), wherein said eutectic mixture is a mixture of lactic acid and glucose.
(3) The thermoplastic composition of (1) or (2), further comprising hemicellulose and/or lignin, and wherein the cellulose is plant-derived cellulose.
(4) The thermoplastic composition according to any one of (1) to (3), containing 0.05 to 60.0% by mass of the cellulose.
(5) The thermoplastic composition according to any one of (1) to (4), wherein the mass ratio of said hydroxycarboxylic acid: said monosaccharide and/or disaccharide is within the range of 1:2 to 6:1.
(6) The thermoplastic according to any one of (1) to (5), further containing one or more substances selected from the group consisting of inorganic fillers, natural thermoplastic resins, synthetic thermoplastic resins, and biodegradable resins. Composition.
(7) a first step of mixing a hydroxycarboxylic acid and a monosaccharide and/or a disaccharide at a temperature of 150 to 240°C; a second step of mixing at a temperature of 240°C;
A method of making a thermoplastic composition, comprising:
(8) The method for producing a thermoplastic composition according to (7), further comprising a third step of kneading and molding the mixture obtained in the second step with an extruder.
(9) A method for producing a thermoplastic composition, comprising the step of mixing cellulose, hydroxycarboxylic acid, and monosaccharide and/or disaccharide in an extruder at a temperature of 150-240°C.
(10) Thermoplastic pellets made of the thermoplastic composition according to any one of (1) to (6).
(11) A molded article made of the thermoplastic composition according to any one of (1) to (6).
 本発明の熱可塑性組成物は、セルロースに基づく組成物でありながら熱可塑性であるため、セルロース由来の良好な機械特性を有し、かつ成形性にも優れる。そのため、各種成形体の材料として好適であり、例えば熱可塑性ペレットのような工業用材料として有用である。しかも製造過程で溶媒の廃棄や、含ハロゲン化物等の環境負荷物質の使用を必要としない利点を有する。本発明の熱可塑性組成物及びその製造方法はまた、原料とするセルロースが不純物を含む、例えばおが屑等の木屑や古紙のようなものであっても適用し得るため、廃棄物処理にも活用することができ、地球環境保全の観点からも有用である。 Although the thermoplastic composition of the present invention is a cellulose-based composition, it is thermoplastic, so it has good mechanical properties derived from cellulose and is also excellent in moldability. Therefore, it is suitable as a material for various molded articles, and is useful as an industrial material such as thermoplastic pellets. Moreover, it has the advantage of not requiring the disposal of solvent or the use of environmentally hazardous substances such as halogenated compounds in the production process. The thermoplastic composition and the method for producing the same of the present invention can also be applied to cellulose as a raw material containing impurities, such as wood chips such as sawdust and waste paper, so it can also be used for waste treatment. It is also useful from the viewpoint of global environment conservation.
 以下、本発明を実施形態に基づき詳細に説明する。 The present invention will be described in detail below based on embodiments.
[熱可塑性組成物]
 本発明は第一に、セルロース、並びに、単糖及び/又は二糖とヒドロキシカルボン酸との共晶混合物を含有する、熱可塑性組成物である。初めに、これらの成分について詳記する。なお、本明細書では単糖及び/又は二糖を纏めて、「糖類」等ということがある。
[Thermoplastic composition]
The present invention is primarily a thermoplastic composition containing cellulose and a eutectic mixture of mono- and/or disaccharides and hydroxycarboxylic acids. First, these components are described in detail. In the present specification, monosaccharides and/or disaccharides are sometimes collectively referred to as "saccharides" and the like.
 <セルロース>
 本発明の熱可塑性組成物を構成するセルロースに特に制限はなく、種々の公知のものを使用することができる。例として植物等に由来する天然セルロース、酢酸セルロース、カルボキシメチルセルロース、メチルセルロース、エチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース及びヒドロキシプロピルメチルセルロースを始めとする変性セルロース、再生セルロース等が挙げられるが、これらに限定されない。セルロースはまた、木材パルプや非木材パルプ等に限らず、精製度の低いもの、さらにはおが屑や廃棄木材、古紙等の廃棄物中に含まれるものであってもよい。
<Cellulose>
The cellulose constituting the thermoplastic composition of the present invention is not particularly limited, and various known celluloses can be used. Examples include natural cellulose derived from plants, modified cellulose such as cellulose acetate, carboxymethyl cellulose, methyl cellulose, ethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose and hydroxypropyl methyl cellulose, and regenerated cellulose, but are not limited to these. Cellulose is not limited to wood pulp, non-wood pulp, and the like, but may be low-purity materials, or may be contained in waste such as sawdust, waste wood, and used paper.
 セルロースは炭水化物の一種、多糖類であり、植物繊維の主成分である。植物中では通常、ヘミセルロースやリグニンと結合又は混合した、リグノセルロースとして存在している。一般に、植物由来のセルロース繊維は、30~40分子のセルロースが束となって直径約3nm、長さ数百nmから数十μmの超極細幅で高結晶性のミクロフィブリルを形成し、これらが軟質な非結晶部を介しながらさらに束となった構造を形成している。 Cellulose is a type of carbohydrate, polysaccharide, and the main component of plant fiber. In plants, it usually exists as lignocellulose, bound or mixed with hemicellulose and lignin. In general, plant-derived cellulose fibers are bundles of 30 to 40 cellulose molecules that form ultra-thin, highly crystalline microfibrils with a diameter of about 3 nm and a length of several hundred nm to several tens of μm. A bundled structure is formed through the soft non-crystalline portion.
 本発明の熱可塑性組成物を構成するセルロースは、植物由来セルロースであることが好ましい。本発明の組成物は、セルロース成分が例えば上記のようなリグノセルロースであっても、樹脂様の特性と熱可塑性とを発現する。そのため、パルプ等を精製せずに使用することもでき、古紙等の廃材を原料とすることもできる。本発明の好ましい一実施形態においては、セルロースが植物由来セルロースであり、かつヘミセルロース及び/又はリグニンをさらに含有する。 The cellulose constituting the thermoplastic composition of the present invention is preferably plant-derived cellulose. The compositions of the present invention exhibit resin-like properties and thermoplastic properties even when the cellulose component is, for example, lignocellulose as described above. Therefore, pulp or the like can be used without being refined, and waste materials such as used paper can also be used as raw materials. In a preferred embodiment of the invention, the cellulose is plant-derived cellulose and further contains hemicellulose and/or lignin.
 植物由来セルロースにも、特に制限はない。例として木材、竹、麻、ジュート、ケナフ、さらには麦や稲の藁、とうもろこし、綿花等の茎、サトウキビを始めとする農作物残廃物から採取したものが挙げられるが、これらに限定されない。おが屑、木片、廃棄木材、古紙、古布、打ち直した布団の綿、再生パルプ等に由来するセルロースであってもよい。熱可塑性組成物の用途にもよるが、一般に組成物の外観や機械特性、品質安定性、及び原料入手の容易性の点からは、木材由来のセルロース、特に木材パルプが好ましい。木材パルプは季節による供給量の変動が小さく、コスト面でも有利である。 There are no particular restrictions on plant-derived cellulose. Examples include, but are not limited to, wood, bamboo, hemp, jute, and kenaf, as well as those harvested from crop wastes such as wheat and rice straw, corn, cotton stalks, and sugar cane. Cellulose derived from sawdust, wood chips, waste wood, waste paper, waste cloth, cotton from reforged futons, regenerated pulp, and the like may also be used. Wood-derived cellulose, particularly wood pulp, is preferred from the viewpoints of the composition's appearance, mechanical properties, quality stability, and ease of raw material availability, although it depends on the application of the thermoplastic composition. Wood pulp is less seasonally fluctuating in supply, and is also advantageous in terms of cost.
 所望により、植物由来セルロースからヘミセルロースやリグニンを取り除いてもよい。例えば苛性ソーダ等で化学処理してヘミセルロースとリグニンを除去し、高純度のセルロースとした、クラフトパルプを使用することも可能である。 If desired, hemicellulose and lignin may be removed from the plant-derived cellulose. For example, it is also possible to use kraft pulp that has been chemically treated with caustic soda or the like to remove hemicellulose and lignin to obtain high-purity cellulose.
 本発明の熱可塑性組成物において、セルロースは分子中の水酸基の一部が、アセチル化やカルボキシ化されていてもよく、また、水酸基中の水素原子がナトリウムやカリウム等の金属イオン、もしくはアンモニウムイオン等で置換されていてもよい。 In the thermoplastic composition of the present invention, some of the hydroxyl groups in the cellulose molecule may be acetylated or carboxylated, and the hydrogen atoms in the hydroxyl groups are metal ions such as sodium and potassium, or ammonium ions. etc. may be substituted.
 これらセルロースは、本発明の熱可塑性組成物全100質量%中に、好ましくは0.05~60.0質量%程度、より好ましくは0.1~50.0質量%程度、さらに好ましくは0.2~40.0質量%程度含有される。本発明の熱可塑性組成物は、セルロースの含有量が0.05質量%程度の少量であっても、セルロース由来の質感や優れた機械強度が発現する。また、セルロースの含有量が60.0質量%程度以下であれば、十分な熱可塑性が担保される。なお、本発明の熱可塑性組成物がヘミセルロース及び/又はリグニンを含有する場合、これら成分はリグノセルロースを構成する物質であるので、その量は上記のセルロース含有量に含めるものとする。 These celluloses are preferably about 0.05 to 60.0% by mass, more preferably about 0.1 to 50.0% by mass, still more preferably about 0.05 to 60.0% by mass, more preferably about 0.05 to 60.0% by mass, based on 100% by mass of the total thermoplastic composition of the present invention. It is contained in an amount of about 2 to 40.0% by mass. The thermoplastic composition of the present invention develops a cellulose-derived texture and excellent mechanical strength even when the cellulose content is as small as about 0.05% by mass. Moreover, if the content of cellulose is about 60.0% by mass or less, sufficient thermoplasticity is ensured. In addition, when the thermoplastic composition of the present invention contains hemicellulose and/or lignin, since these components are substances constituting lignocellulose, the amount thereof shall be included in the above cellulose content.
 ここで、本発明の熱可塑性組成物全100質量%中のセルロース含有量は、熱可塑性組成物の成形加工性を高める、あるいは剪断力が低目の混合装置で少量作製する場合には、0.05~20.0質量%、中でも0.1~10.0質量%、さらには0.2~5.0質量%、特に0.4~2.0質量%程度とするのが好ましい。一方で熱可塑性組成物の耐熱性や機械特性を高める、あるいはより多くのセルロース廃材を活用する観点からは、5.0~60.0質量%程度、例えば10.0~50.0質量%、中でも15.0~40.0質量%、さらには18.0~30.0質量%、特に20.0~25.0質量%程度とするのが好ましい。 Here, the cellulose content in the total 100% by mass of the thermoplastic composition of the present invention is 0 when improving the molding processability of the thermoplastic composition or when producing a small amount with a mixing device having a low shear force. 0.05 to 20.0% by mass, preferably 0.1 to 10.0% by mass, more preferably 0.2 to 5.0% by mass, and particularly preferably about 0.4 to 2.0% by mass. On the other hand, from the viewpoint of improving the heat resistance and mechanical properties of the thermoplastic composition or utilizing more cellulose waste materials, it is about 5.0 to 60.0% by mass, for example 10.0 to 50.0% by mass, Among them, it is preferably about 15.0 to 40.0% by mass, more preferably about 18.0 to 30.0% by mass, particularly about 20.0 to 25.0% by mass.
 <共晶混合物>
 本発明の熱可塑性組成物は、上記セルロースと共に、ヒドロキシカルボン酸と糖類との共晶混合物を含有する。この共晶混合物は深共晶溶媒のように機能し、セルロースをナノファイバーレベル近くにまでほぐし、さらには溶解又は微分散して、ほぼ均質な混合物を形成することができる。この共晶混合物はまた、セルロース等と混合すると、室温で固体で、かつ熱可塑性の組成物を形成することも可能である。これは前述のイミダゾール/塩化アンモニウム系等の深共晶溶媒では起こらない、予想外の現象である。本発明の組成物がこのような熱可塑性材料となる理由は不明であるが、ヒドロキシカルボン酸と糖類が、共晶を形成すると同時にセルロースとの相互作用を生じている可能性が考えられる。但し、本発明は特定の理論に限定されるものではない。
<eutectic mixture>
The thermoplastic composition of the present invention contains a eutectic mixture of hydroxycarboxylic acid and saccharide together with the cellulose. This eutectic mixture acts like a deep eutectic solvent and can loosen cellulose to near nanofiber level and even dissolve or finely disperse to form a nearly homogeneous mixture. The eutectic mixture can also be mixed with cellulose or the like to form a composition that is solid at room temperature and thermoplastic. This is an unexpected phenomenon that does not occur with deep eutectic solvents such as the aforementioned imidazole/ammonium chloride system. The reason why the composition of the present invention becomes such a thermoplastic material is unknown, but it is conceivable that the hydroxycarboxylic acid and the saccharide form a eutectic and simultaneously interact with cellulose. However, the invention is not limited to any particular theory.
 本発明においては、上記のように共晶混合物がセルロースと共に熱可塑性組成物を構成し、(例えば非特許文献2等に記載の調製方法におけるように)セルロース材料作製後に分離・除去する必要がない。そのため、分離や廃溶媒処理等の手間やコストを削減することができる。本発明の熱可塑性組成物中の共晶混合物はまた、ヒドロキシカルボン酸並びに単糖及び/又は二糖という、いずれもハロゲン等不含の天然物で構成されており、この点からも地球環境に負荷を掛けない優れた材料といえる。 In the present invention, the eutectic mixture constitutes the thermoplastic composition together with cellulose as described above, and there is no need to separate and remove the cellulose material after preparation (for example, as in the preparation method described in Non-Patent Document 2). . Therefore, labor and costs for separation, waste solvent treatment, etc. can be reduced. The eutectic mixture in the thermoplastic composition of the present invention is also composed of hydroxycarboxylic acids and monosaccharides and/or disaccharides, both of which are natural products that do not contain halogens. It can be said that it is an excellent material that does not apply a load.
 (ヒドロキシカルボン酸)
 本発明においてヒドロキシカルボン酸は、単糖及び/又は二糖と共晶混合物を形成する化合物であればどのようなものであってもよく、その種類に特に制限はない。例としてグリコール酸、乳酸、タルトロン酸、グリセリン酸、ヒドロキシ酪酸、2-ヒドロキシ酪酸、3-ヒドロキシ酪酸、γ-ヒドロキシ酪酸、リンゴ酸、酒石酸、シトラマル酸、クエン酸、イソクエン酸、ロイシン酸、メバロン酸、パントイン酸、リシノール酸、リシネライジン酸、セレブロン酸、キナ酸、及びシキミ酸等の脂肪族ヒドロキシカルボン酸;サリチル酸、クレオソート酸、バニリン酸、シリング酸、ピロカテク酸、レソルシル酸、プロトカテク酸、ゲンチジン酸、オルセリン酸、没食子酸、マンデル酸、ベンジル酸、アトロラクチン酸、ケイヒ酸、メリロト酸、フロレト酸、クマル酸、ウンベル酸、コーヒー酸、フェルラ酸、及びシナピン酸等の芳香族ヒドロキシカルボン酸等が挙げられるが、これらに限定されない。単糖及び/又は二糖との組み合わせによっては、複数のヒドロキシカルボン酸を併用することも可能である。
(Hydroxycarboxylic acid)
In the present invention, the hydroxycarboxylic acid may be any compound as long as it forms a eutectic mixture with monosaccharides and/or disaccharides, and the type thereof is not particularly limited. Examples are glycolic acid, lactic acid, tartronic acid, glyceric acid, hydroxybutyric acid, 2-hydroxybutyric acid, 3-hydroxybutyric acid, γ-hydroxybutyric acid, malic acid, tartaric acid, citramaric acid, citric acid, isocitric acid, leucic acid, mevalonic acid. , pantoic acid, ricinoleic acid, ricineraidic acid, cerebronic acid, quinic acid, and shikimic acid; , orceric acid, gallic acid, mandelic acid, benzilic acid, atrolactinic acid, cinnamic acid, melilotic acid, phloletic acid, coumaric acid, umberic acid, caffeic acid, ferulic acid, and aromatic hydroxycarboxylic acids such as sinapic acid. include, but are not limited to. Depending on the combination with monosaccharide and/or disaccharide, it is also possible to use multiple hydroxycarboxylic acids in combination.
 ヒドロキシカルボン酸としては、分子中にヒドロキシ基とカルボキシ基とを1つづつ有する化合物が好ましく、また、脂肪族ヒドロキシカルボン酸が好ましい。より好ましくは、炭素数2~4の脂肪族ヒドロキシカルボン酸を使用する。こうしたヒドロキシカルボン酸は単糖や二糖と深共晶溶媒を形成し易く、また、セルロースとの組成物も良好な熱可塑性を示す。特に、乳酸が好ましい。なお、乳酸はD体、L体、DL体等、どのようなものであってもよい。 As the hydroxycarboxylic acid, a compound having one hydroxy group and one carboxy group in the molecule is preferable, and an aliphatic hydroxycarboxylic acid is preferable. More preferably, aliphatic hydroxycarboxylic acids having 2 to 4 carbon atoms are used. Such hydroxycarboxylic acids easily form a deep eutectic solvent with monosaccharides and disaccharides, and their composition with cellulose also exhibits good thermoplasticity. Lactic acid is particularly preferred. Lactic acid may be in any form, such as D-form, L-form, and DL-form.
 (単糖)
 本発明における単糖も、ヒドロキシカルボン酸と共晶混合物を形成する化合物であればどのようなものであってもよく、その種類に特に制限はない。例としてグリセルアルデヒド、エリトロース、トレオース、リボース、リキソース、キシロース、アラビノース、アロース、タロース、グロース、グルコース、アルトロース、マンノース、ガラクトース、及びイドース等のアルドース;ジヒドロキシアセトン、エリトルロース、キシルロース、リブロース、プシコース、フルクトース、ソルボース、及びタガトース等のケトースが挙げられるが、これらに限定されない。ヒドロキシカルボン酸との組み合わせによっては、複数の単糖を併用することも可能である。
(monosaccharide)
The monosaccharide used in the present invention may be any compound as long as it forms a eutectic mixture with hydroxycarboxylic acid, and the type thereof is not particularly limited. aldoses such as glyceraldehyde, erythrose, threose, ribose, lyxose, xylose, arabinose, allose, talose, gulose, glucose, altrose, mannose, galactose, and idose; Ketoses such as, but not limited to, fructose, sorbose, and tagatose. Depending on the combination with hydroxycarboxylic acid, it is also possible to use multiple monosaccharides in combination.
 (二糖)
 本発明における二糖にも、特に制限はない。例としてスクロース(ショ糖)、ラクツロース、ラクトース(乳糖)、マルトース(麦芽糖)、トレハロース、及びセロビオース等が挙げられるが、これらに限定されない。2種以上の二糖を併用することや、単糖と二糖とを併用することも可能である。
(disaccharide)
The disaccharide in the present invention is also not particularly limited. Examples include, but are not limited to, sucrose (sucrose), lactulose, lactose (milk sugar), maltose (maltose), trehalose, cellobiose, and the like. It is also possible to use two or more disaccharides together, or to use a monosaccharide and a disaccharide together.
 上記糖類の中でも、単糖が好ましい。より好ましくはアルドース類、さらに好ましくはアルドヘキソース類を使用する。これらの単糖はヒドロキシカルボン酸と共晶混合物を形成し易く、また、セルロースとの組成物も良好な熱可塑性を示す。アルドヘキソースの中でも、グルコース、アロース、マンノース、ガラクトース等が、特にグルコース(ブドウ糖)が好ましい。すなわち、本発明の熱可塑性組成物を構成する共晶混合物は、乳酸とグルコースとの混合物であることが特に好ましい。グルコース等の単糖にもそれぞれ幾つかの光学異性体が存在するが、本発明においてはどのような構造のものをも使用することができる。 Among the above sugars, monosaccharides are preferred. Aldoses are more preferably used, and aldohexoses are more preferably used. These monosaccharides easily form a eutectic mixture with hydroxycarboxylic acid, and the composition with cellulose also exhibits good thermoplasticity. Among aldohexoses, glucose, allose, mannose, galactose, etc., and particularly glucose (grape sugar) are preferred. Specifically, the eutectic mixture constituting the thermoplastic composition of the present invention is particularly preferably a mixture of lactic acid and glucose. Although monosaccharides such as glucose also have several optical isomers, any structure can be used in the present invention.
 <熱可塑性組成物の組成>
 本発明の熱可塑性組成物において、ヒドロキシカルボン酸と糖類の含有量に特に制限はなく、例えばヒドロキシカルボン酸:糖類の質量比を1:4~99:1の範囲内から選定することも可能である。しかしながら本発明においては、好ましくはヒドロキシカルボン酸:単糖及び/又は二糖の質量比を1:2~6:1の範囲内、より好ましくは1:1~4:1の範囲内、さらに好ましくは2:1~3:1の範囲内とする。両者の比がこうした範囲内であれば、共晶混合物が形成され易く、また、セルロースとの組成物も良好な熱可塑性を示す。本発明の特に好ましい実施形態においては、乳酸とグルコースが、1:1~4:1の質量比で、特に2:1~3:1の質量比で含有される。
<Composition of thermoplastic composition>
In the thermoplastic composition of the present invention, the contents of hydroxycarboxylic acid and sugar are not particularly limited, and for example, the mass ratio of hydroxycarboxylic acid: sugar can be selected from the range of 1:4 to 99:1. be. However, in the present invention, the mass ratio of hydroxycarboxylic acid: monosaccharide and/or disaccharide is preferably within the range of 1:2 to 6:1, more preferably within the range of 1:1 to 4:1, and still more preferably should be in the range of 2:1 to 3:1. If the ratio of the two is within this range, a eutectic mixture is likely to be formed, and the composition with cellulose also exhibits good thermoplasticity. In a particularly preferred embodiment of the invention, lactic acid and glucose are contained in a weight ratio of 1:1 to 4:1, especially in a weight ratio of 2:1 to 3:1.
 本発明の熱可塑性組成物の好ましい一実施形態は、セルロース、ヒドロキシカルボン酸、及び糖類3者の合計100質量%に対し、セルロースを0.05~20.0質量%、ヒドロキシカルボン酸を20.0~99.0質量%、糖類を1.0~80.0質量%の量で含有し;より好ましくはセルロースを0.1~5.0質量%、ヒドロキシカルボン酸を50.0~90.0質量%、糖類を5.0~50.0質量%の量で含有し;さらに好ましくはセルロースを0.2~2.0質量%、ヒドロキシカルボン酸を60~80質量%、糖類を20~40質量%の量で含有する。こうした組成であれば、本発明の熱可塑性組成物は特に質感と成形加工性に優れ、例えば50~230℃、典型的には60~200℃、特に70~150℃程度の温度で溶融又は凝固する熱可塑性の組成物となり得る。 A preferred embodiment of the thermoplastic composition of the present invention contains 0.05 to 20.0% by mass of cellulose and 20.0% by mass of hydroxycarboxylic acid relative to the total 100% by mass of cellulose, hydroxycarboxylic acid and saccharides. 0 to 99.0% by mass and 1.0 to 80.0% by mass of saccharide; more preferably 0.1 to 5.0% by mass of cellulose and 50.0 to 90.0% by mass of hydroxycarboxylic acid. 0% by mass, saccharides in an amount of 5.0 to 50.0% by mass; more preferably 0.2 to 2.0% by mass of cellulose, 60 to 80% by mass of hydroxycarboxylic acid, and 20 to 20% by mass of saccharides It is contained in an amount of 40% by mass. With such a composition, the thermoplastic composition of the present invention is particularly excellent in texture and moldability. It can be a thermoplastic composition that
 本発明の熱可塑性組成物の他の好ましい一実施形態は、セルロース、ヒドロキシカルボン酸、及び糖類3者の合計100質量%に対し、セルロースを5~60質量%、ヒドロキシカルボン酸を20~80質量%、糖類を5~50質量%の量で含有し;より好ましくはセルロースを10~50質量%、ヒドロキシカルボン酸を30~60質量%、糖類を10~40質量%の量で含有し;さらに好ましくはセルロースを20~45質量%、ヒドロキシカルボン酸を35~50質量%、糖類を15~30質量%の量で含有する。こうした組成であれば、本発明の熱可塑性組成物は特に質感や耐熱性、機械特性等に優れ、例えば150~240℃、典型的には160~230℃、中でも170~220℃、特に180~210℃程度の温度で溶融又は冷却後凝固する熱可塑性の組成物となり得る。 Another preferred embodiment of the thermoplastic composition of the present invention is 5 to 60% by mass of cellulose and 20 to 80% by mass of hydroxycarboxylic acid relative to the total 100% by mass of cellulose, hydroxycarboxylic acid, and three sugars. %, sugars in an amount of 5 to 50% by mass; more preferably 10 to 50% by mass of cellulose, 30 to 60% by mass of hydroxycarboxylic acid, and 10 to 40% by mass of sugars; It preferably contains 20 to 45% by weight of cellulose, 35 to 50% by weight of hydroxycarboxylic acid, and 15 to 30% by weight of sugar. With such a composition, the thermoplastic composition of the present invention is particularly excellent in texture, heat resistance, mechanical properties and the like. It can be a thermoplastic composition that melts at temperatures as low as 210° C. or solidifies after cooling.
 <添加物>
 本発明の熱可塑性組成物は、上記したセルロース、ヒドロキシカルボン酸、及び糖類以外に、無機フィラー、天然熱可塑性樹脂、合成熱可塑性樹脂、及び生分解性樹脂からなる群より選択される1以上の物質をさらに含有していてもよい。無機フィラーの含有により、熱可塑性組成物の硬度や強度等の機械特性、さらには耐熱性等の物性を制御することができる。また、各種樹脂を含有することにより、熱可塑性組成物の溶融・凝固温度や物性を制御することも可能である。
<Additives>
The thermoplastic composition of the present invention contains one or more selected from the group consisting of inorganic fillers, natural thermoplastic resins, synthetic thermoplastic resins, and biodegradable resins, in addition to the cellulose, hydroxycarboxylic acid, and sugars described above. It may further contain substances. By containing the inorganic filler, it is possible to control the mechanical properties such as hardness and strength of the thermoplastic composition, as well as the physical properties such as heat resistance. Further, by containing various resins, it is possible to control the melting/solidifying temperature and physical properties of the thermoplastic composition.
 (無機フィラー)
 本発明の熱可塑性組成物に配合される無機フィラーに、特に制限はない。例として、カルシウム、マグネシウム、アルミニウム、チタン、鉄、亜鉛、バリウム等の炭酸塩、硫酸塩、珪酸塩、リン酸塩、ホウ酸塩、酸化物、若しくはこれらの水和物の粉末状のものが挙げられ、具体的には、炭酸カルシウム、炭酸マグネシウム、酸化亜鉛、酸化チタン、シリカ、アルミナ、クレー、タルク、カオリン、水酸化アルミニウム、水酸化マグネシウム、ケイ酸アルミニウム、ケイ酸マグネシウム、ケイ酸カルシウム、硫酸アルミニウム、硫酸マグネシウム、硫酸カルシウム、リン酸マグネシウム、硫酸バリウム、珪砂、カーボンブラック、ゼオライト、モリブデン、珪藻土、セリサイト、シラス、亜硫酸カルシウム、硫酸ナトリウム、チタン酸カリウム、ベントナイト、ウォラストナイト、ドロマイト、黒鉛等が挙げられるが、これらに限定されない。無機フィラーはまた、合成のものであっても天然鉱物由来のものであっても良く、単独又は2種類以上併用して含有されてもよい。これらの内でも、安全性とコストの観点から、炭酸カルシウム、クレー、タルク、カオリン等が好ましい。特に炭酸カルシウムは、様々な粒径及び粒子形状のものが市販されているので、目的とする熱可塑性組成物の物性に応じた品種を選択することができ、好ましい。食品工場から出される卵殻由来の炭酸カルシウムを使用すれば、廃棄物の削減にも貢献し得る。
(Inorganic filler)
There are no particular restrictions on the inorganic filler to be blended in the thermoplastic composition of the present invention. Examples include carbonates, sulfates, silicates, phosphates, borates, oxides of calcium, magnesium, aluminum, titanium, iron, zinc, barium, etc., or powdery hydrates thereof. Specific examples include calcium carbonate, magnesium carbonate, zinc oxide, titanium oxide, silica, alumina, clay, talc, kaolin, aluminum hydroxide, magnesium hydroxide, aluminum silicate, magnesium silicate, calcium silicate, Aluminum sulfate, magnesium sulfate, calcium sulfate, magnesium phosphate, barium sulfate, silica sand, carbon black, zeolite, molybdenum, diatomaceous earth, sericite, shirasu, calcium sulfite, sodium sulfate, potassium titanate, bentonite, wollastonite, dolomite, Examples include, but are not limited to, graphite and the like. The inorganic filler may be synthetic or derived from natural minerals, and may be contained singly or in combination of two or more. Among these, calcium carbonate, clay, talc, kaolin and the like are preferable from the viewpoint of safety and cost. In particular, calcium carbonate is commercially available with various particle sizes and particle shapes, and it is possible to select the type according to the physical properties of the desired thermoplastic composition, which is preferable. The use of eggshell-derived calcium carbonate from food factories can also contribute to the reduction of waste.
 本発明の熱可塑性組成物に無機フィラーを配合する場合、その含有量に特に制限はないが、セルロース、ヒドロキシカルボン酸、及び単糖3者の合計100質量%に対して10~400質量%、さらには20~200質量%、特に30~100質量%程度とすることが好ましい。こうした配合量であれば、熱可塑性組成物の溶融加工性を損なうことなく、硬度等の物性を制御することができる。 When an inorganic filler is added to the thermoplastic composition of the present invention, the content is not particularly limited. Further, it is preferably about 20 to 200% by mass, particularly about 30 to 100% by mass. With such a blending amount, physical properties such as hardness can be controlled without impairing the melt processability of the thermoplastic composition.
 (樹脂)
 本発明の熱可塑性組成物に配合される天然熱可塑性樹脂、合成熱可塑性樹脂、及び生分解性樹脂にも、特に制限はない。例として、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリメチル-1-ペンテン、エチレン-環状オレフィン共重合体等のポリオレフィン系樹脂;エチレン-酢酸ビニル共重合体、エチレン-アクリル酸共重合体、エチレン-メタクリル酸共重合体、エチレン-(メタ)アクリル酸共重合体の金属塩(アイオノマー)、エチレン-アクリル酸アルキルエステル共重合体、エチレン-メタクリル酸アルキルエステル共重合体、マレイン酸変性ポリエチレン、マレイン酸変性ポリプロピレン等の官能基含有ポリオレフィン系樹脂;ナイロン-6、ナイロン-6,6、ナイロン-6,10、ナイロン-6,12等のポリアミド系樹脂;ポリエチレンテレフタレート及びその共重合体、ポリエチレンナフタレート、ポリブチレンテレフタレート等の芳香族ポリエステル系樹脂、ポリ酢酸ビニル、ポリブチレンサクシネート、ポリ乳酸、ポリ(3-ヒドロキシブチレート/3-ヒドロキシバレレート)共重合体(PHBV)を始めとする脂肪族ポリエステル系樹脂等の熱可塑性ポリエステル系樹脂;ポリ(メタ)アクリル酸(エステル)、ポリアクリロニトリル等のアクリル系樹脂;芳香族ポリカーボネート、脂肪族ポリカーボネート等のポリカーボネート樹脂;アタクティックポリスチレン、シンジオタクティックポリスチレン、アクリロニトリル-スチレン(AS)共重合体、アクリロニトリル-ブタジエン-スチレン(ABS)共重合体等のポリスチレン系樹脂;ポリ塩化ビニル、ポリ塩化ビニリデン等のポリ塩化ビニル系樹脂;ポリフェニレンスルフィド;ポリエーテルスルフォン、ポリエーテルケトン、ポリエーテルエーテルケトン等のポリエーテル系樹脂;さらにはポリビニルアルコール、ロジン、酢酸セルロース系熱可塑性樹脂、石油炭化水素樹脂、クマロンインデン樹脂等の種々の公知の熱可塑性樹脂が挙げられるが、これらに限定されない。複数種の熱可塑性樹脂を、併用することもできる。また、スチレン-ブタジエン共重合体、スチレン-イソプレン共重合体、スチレン-ブタジエン-エチレン共重合体、スチレン-イソプレン-エチレン共重合体、アクリロニトリル-ブタジエン共重合体、フッ素系エラストマー等のエラストマー成分を含有していても良い。
(resin)
Natural thermoplastic resins, synthetic thermoplastic resins, and biodegradable resins to be blended in the thermoplastic composition of the present invention are also not particularly limited. Examples include polyethylene resins, polypropylene resins, polymethyl-1-pentene, polyolefin resins such as ethylene-cyclic olefin copolymers; ethylene-vinyl acetate copolymers, ethylene-acrylic acid copolymers, ethylene-methacrylic acid Copolymer, metal salt of ethylene-(meth)acrylic acid copolymer (ionomer), ethylene-alkyl acrylate copolymer, ethylene-alkyl methacrylate copolymer, maleic acid-modified polyethylene, maleic acid-modified polypropylene Functional group-containing polyolefin resins such as; nylon-6, nylon-6,6, nylon-6,10, nylon-6,12 and other polyamide resins; polyethylene terephthalate and its copolymers, polyethylene naphthalate, polybutylene Aromatic polyester resins such as terephthalate, aliphatic polyester resins such as polyvinyl acetate, polybutylene succinate, polylactic acid, poly(3-hydroxybutyrate/3-hydroxyvalerate) copolymer (PHBV) Thermoplastic polyester resins such as; acrylic resins such as poly (meth) acrylic acid (ester) and polyacrylonitrile; polycarbonate resins such as aromatic polycarbonates and aliphatic polycarbonates; atactic polystyrene, syndiotactic polystyrene, acrylonitrile-styrene (AS) copolymers, acrylonitrile-butadiene-styrene (ABS) copolymers and other polystyrene resins; polyvinyl chloride, polyvinylidene chloride and other polyvinyl chloride resins; polyphenylene sulfide; polyether sulfone, polyether ketone, polyether-based resins such as polyetheretherketone; and various known thermoplastic resins such as polyvinyl alcohol, rosin, cellulose acetate-based thermoplastic resins, petroleum hydrocarbon resins, and coumarone-indene resins. Not limited. A plurality of types of thermoplastic resins can also be used in combination. It also contains elastomer components such as styrene-butadiene copolymer, styrene-isoprene copolymer, styrene-butadiene-ethylene copolymer, styrene-isoprene-ethylene copolymer, acrylonitrile-butadiene copolymer, and fluoroelastomer. It's okay to be
 こうした樹脂類の配合によって、本発明の熱可塑性組成物の物性を、様々に変化させることができる。例えばロジン等を配合することにより、熱可塑性組成物の耐水性を改善することができる。また、ポリ乳酸やPHBV等の生分解性樹脂を配合することによって、熱可塑性組成物を廃棄した際の生分解を促進し、環境面に貢献することも可能である。 By blending such resins, the physical properties of the thermoplastic composition of the present invention can be changed in various ways. For example, by adding rosin or the like, the water resistance of the thermoplastic composition can be improved. Moreover, by blending a biodegradable resin such as polylactic acid or PHBV, it is possible to promote biodegradation when the thermoplastic composition is discarded, thereby contributing to the environment.
 本発明の熱可塑性組成物の物性や加工性、さらにはセルロース由来の質感をできるだけ活かす観点からは、上記の熱可塑性樹脂を配合しない選択も考えられる。また、これら熱可塑性樹脂を配合する場合には、その含有量は、セルロース、ヒドロキシカルボン酸、及び糖類3者の合計100質量%に対して5~120質量%、さらには10~100質量%、特に20~80質量%程度とすることが好ましい。 From the viewpoint of maximizing the physical properties and workability of the thermoplastic composition of the present invention, as well as the texture derived from cellulose, it is possible to choose not to blend the above thermoplastic resin. In addition, when these thermoplastic resins are blended, the content is 5 to 120% by mass, further 10 to 100% by mass with respect to the total 100% by mass of cellulose, hydroxycarboxylic acid, and three sugars, In particular, it is preferably about 20 to 80% by mass.
 本発明の熱可塑性組成物の、上記した実施形態とはまた別の好ましい一実施形態は、セルロースを5~40質量%、ヒドロキシカルボン酸を5~40質量%、糖類を3~25質量%、樹脂やフィラーを20~80質量%の量で含有し;より好ましくはセルロースを10~35質量%、ヒドロキシカルボン酸を10~35質量%、糖類を5~20質量%、樹脂やフィラーを30~70質量%の量で含有し;さらに好ましくはセルロースを15~30質量%、ヒドロキシカルボン酸を15~30質量%、糖類を7~15質量%、樹脂やフィラーを35~60質量%の量で含有する。こうした組成であれば、特に質感や耐熱性、耐水性、機械特性等に優れる熱可塑性の組成物となり得る。 Another preferred embodiment of the thermoplastic composition of the present invention comprises 5 to 40% by weight of cellulose, 5 to 40% by weight of hydroxycarboxylic acid, 3 to 25% by weight of sugar, It contains 20 to 80% by mass of resin and filler; more preferably 10 to 35% by mass of cellulose, 10 to 35% by mass of hydroxycarboxylic acid, 5 to 20% by mass of sugar, and 30 to 30% by mass of resin and filler. It contains 70% by mass; more preferably 15 to 30% by mass of cellulose, 15 to 30% by mass of hydroxycarboxylic acid, 7 to 15% by mass of sugar, and 35 to 60% by mass of resin or filler. contains. With such a composition, it is possible to obtain a thermoplastic composition that is particularly excellent in texture, heat resistance, water resistance, mechanical properties, and the like.
 (その他添加剤)
 本発明の熱可塑性組成物には、所望により、上記以外の添加剤を配合することも可能である。その他の添加剤としては、例えば、色剤、滑剤、カップリング剤、流動性改良材(流動性調整剤)、架橋剤、分散剤、酸化防止剤、紫外線吸収剤、難燃剤、安定剤、帯電防止剤、発泡剤、可塑剤、デンプン、カゼイン等が挙げられるが、これらに限定されない。これら添加剤は、単独で用いても良く、2種以上を併用しても良い。また、後述の混練工程において配合しても良く、混練工程の前に予め原料成分中に配合していても良い。例えば、カップリング剤をセルロースや無機フィラーの表面に予め付与する形で含有させることもできる。
(Other additives)
If desired, the thermoplastic composition of the present invention may contain additives other than those described above. Other additives include, for example, colorants, lubricants, coupling agents, fluidity modifiers (fluidity modifiers), cross-linking agents, dispersants, antioxidants, ultraviolet absorbers, flame retardants, stabilizers, and electrifying agents. Inhibitors, foaming agents, plasticizers, starches, casein and the like include, but are not limited to. These additives may be used alone or in combination of two or more. Further, it may be blended in the kneading step described later, or may be blended in the raw material components in advance before the kneading step. For example, the coupling agent may be added in advance to the surface of the cellulose or inorganic filler.
 本発明の熱可塑性組成物において、これらのその他添加剤の含有量は、目的とする物性及び加工性に応じて任意に設定することができるが、セルロース、ヒドロキシカルボン酸、及び糖類3者の合計100質量%に対して、これら他の添加剤はそれぞれ0~10質量%程度、特に0.05~5質量%程度の割合で、かつ当該その他の添加剤全体で20質量%以下、例えば0.05~20質量%となる割合とすることが好ましい。 In the thermoplastic composition of the present invention, the content of these other additives can be arbitrarily set according to the desired physical properties and processability, but the total of cellulose, hydroxycarboxylic acid, and sugars 100% by mass, each of these other additives is about 0 to 10% by mass, particularly about 0.05 to 5% by mass, and the total amount of the other additives is 20% by mass or less, for example, 0.5% by mass. A ratio of 05 to 20% by mass is preferable.
[熱可塑性組成物の製造方法]
 本発明の熱可塑性組成物は、各成分を混合することにより製造することができる。その製造方法に特に制限はなく、例えばセルロース、ヒドロキシカルボン酸、及び糖類の3者、さらには無機フィラーや他樹脂成分等の添加物を、同時に混練してもよく、また、上記3者の内の2成分を先に混練し、他の成分を後から添加・混練することも可能である。
[Method for producing thermoplastic composition]
The thermoplastic composition of the present invention can be produced by mixing each component. The production method is not particularly limited, for example, cellulose, hydroxycarboxylic acid, and sugars, and additives such as inorganic fillers and other resin components may be kneaded at the same time. It is also possible to knead the two components first and then add and knead the other components.
 ここで、熱可塑性組成物の成形加工性を高める、あるいは剪断力が低目の混合装置で少量作製する場合には、例えばヒドロキシカルボン酸と糖類とを溶融混練し、次いでセルロースを混練することが好ましい。ヒドロキシカルボン酸と糖類とは共晶混合物を形成し得るので、これら2成分を先に混合することにより、以後の混合をマイルドな温度、かつ低剪断下で進めることが可能となり、エネルギー消費量を低減できる上、また、高温での有機物の劣化を防ぐこともできる。 Here, in order to improve the molding processability of the thermoplastic composition, or to prepare a small amount using a mixing apparatus with a low shearing force, for example, hydroxycarboxylic acid and sugar are melt-kneaded, and then cellulose is kneaded. preferable. Since hydroxycarboxylic acid and sugar can form a eutectic mixture, by mixing these two components first, it is possible to proceed with the subsequent mixing at a mild temperature and under low shear, which reduces energy consumption. In addition to being able to reduce it, it is also possible to prevent deterioration of organic matter at high temperatures.
 本発明はまた、ヒドロキシカルボン酸と単糖及び/又は二糖とを、150~240℃の温度で混合する第1の工程、及び第1の工程で得られた混合物とセルロースとを、150~240℃の温度で混合する第2の工程、を含む、熱可塑性組成物の製造方法(以下で、この製造方法を「製造方法-A」という場合がある。)をも包含する。例えばセルロース含有量が全体の0.05~20.0質量%程度の熱可塑性組成物を作製する場合は、こうした製造方法-Aが有効である。 The present invention also provides a first step of mixing a hydroxycarboxylic acid and a monosaccharide and/or a disaccharide at a temperature of 150 to 240° C., and Also included is a method for producing a thermoplastic composition (hereinafter, this production method may be referred to as “manufacturing method-A”), including a second step of mixing at a temperature of 240°C. For example, production method-A is effective when producing a thermoplastic composition having a cellulose content of about 0.05 to 20.0 mass % of the total.
 本発明の製造方法、例えば製造方法-Aにおいて、各成分の混合手法に特に制限はない。例えば、押出機、ニーダー、バンバリーミキサー、プラネタリーミキサー、ヘンシェルミキサー、熱ロール等の一般的な混練装置で、150~240℃、特に160~200℃の温度で混合する方法が挙げられるが、これらに限定されない。小バッチであれば、後記するように撹拌機付きのフラスコ中で混合することも可能である。 In the manufacturing method of the present invention, such as manufacturing method-A, there is no particular limitation on the method of mixing each component. Examples include a method of mixing at a temperature of 150 to 240°C, particularly 160 to 200°C, using a general kneading device such as an extruder, kneader, Banbury mixer, planetary mixer, Henschel mixer, and hot rolls. is not limited to Small batches can be mixed in a stirred flask as described below.
 但し、ある程度以上の規模で混合する場合には(後記する製造方法-B に限らず、製造方法-Aにおいても)、押出機、特に二軸押出機を使用するのが好ましい。押出機であれば、混合時に高い剪断力を作用させて各成分を均一に分散させることができ、また、押出後段でセルロースを添加して上記第1の工程と第2の工程とを同一の装置で行うことも可能となる。勿論、これら第1の工程と第2の工程とを、例えば時間を置いて別々の装置で行ってもよい。また、第1の工程と第2の工程とをニーダーで行い、得られた混合物を押出機でさらに混練して成形することも可能である。 However, when mixing on a scale above a certain level (not only in production method-B described later, but also in production method-A), it is preferable to use an extruder, particularly a twin-screw extruder. In the case of an extruder, each component can be uniformly dispersed by applying a high shearing force during mixing, and cellulose is added in the post-extrusion stage to perform the first step and the second step in the same manner. It is also possible to do it with a device. Of course, the first step and the second step may be performed, for example, by separate apparatuses after a period of time. It is also possible to carry out the first step and the second step with a kneader and further knead and mold the resulting mixture with an extruder.
 本発明の製造方法-Aの一実施形態では、例えば第1の工程と第2の工程とを二軸押出機やニーダーで行い、得られた混合物を一軸又は二軸押出機で押出成形する。このようにして本発明の熱可塑性組成物を例えばストランド状に押し出し、ペレタイザー等で例えば2~5mm角程度のサイズの角柱や円柱へと切断することにより、上記のような組成の熱可塑性組成物をペレットの形状で得ることができる。本発明はまた、上記した第2の工程で得られた混合物を、押出機で混練及び成形する第3の工程をさらに含む、熱可塑性組成物の製造方法をも包含する。 In one embodiment of the production method-A of the present invention, for example, the first step and the second step are performed with a twin-screw extruder or a kneader, and the resulting mixture is extruded with a single-screw or twin-screw extruder. In this way, the thermoplastic composition of the present invention is extruded, for example, in the form of a strand, and cut into prisms or cylinders having a size of about 2 to 5 mm square with a pelletizer or the like to obtain a thermoplastic composition having the above composition. can be obtained in the form of pellets. The present invention also includes a method for producing a thermoplastic composition, further comprising a third step of kneading and molding the mixture obtained in the second step with an extruder.
 本発明の熱可塑性組成物はまた、セルロース、ヒドロキシカルボン酸、及び糖類の3者を、同時に混練すること(この製造方法を「製造方法-B」という場合がある。)によっても製造することができる。例えばセルロース含有量が全体の5~60質量%程度の熱可塑性組成物を作製する場合には、高剪断力の混合装置を用いて製造方法-Bを採用するのが有利である。ここで、高剪断力の混合装置に特に制限はなく、例えば押出機、ニーダー、バンバリーミキサー等が挙げられるが、押出機、特に二軸押出機が好ましい。こうした混合装置によれば、高い剪断力によってヒドロキシカルボン酸と糖類とが混合され、他成分共存下でも深共晶溶媒が形成され得るため、これら二成分のみを事前に混合する工程は、さらに省略可能なものとなる。 The thermoplastic composition of the present invention can also be produced by simultaneously kneading cellulose, hydroxycarboxylic acid, and sugars (this production method may be referred to as "production method-B"). can. For example, when producing a thermoplastic composition having a cellulose content of about 5 to 60% by mass of the total, it is advantageous to adopt production method-B using a high-shear mixing device. There are no particular restrictions on the high-shear mixing device, and examples thereof include extruders, kneaders, Banbury mixers, etc., but extruders, particularly twin-screw extruders, are preferred. According to such a mixing device, hydroxycarboxylic acid and sugar are mixed by high shearing force, and a deep eutectic solvent can be formed even in the presence of other components, so the step of pre-mixing only these two components is further omitted. becomes possible.
 本発明はまた、セルロースと、ヒドロキシカルボン酸と単糖及び/又は二糖とを、押出機にて150~240℃の温度で混合する工程を含む、熱可塑性組成物の製造方法を包含する。こうした製造方法-Bによれば、耐熱性や機械特性により優れる熱可塑性組成物の製造が容易となり、また、より多くのセルロース廃材を活用することが可能となる。 The present invention also includes a method for producing a thermoplastic composition comprising the step of mixing cellulose, hydroxycarboxylic acid and monosaccharide and/or disaccharide in an extruder at a temperature of 150-240°C. According to such production method-B, it becomes easy to produce a thermoplastic composition having excellent heat resistance and mechanical properties, and it becomes possible to utilize a larger amount of cellulose waste material.
 製造方法-Bにおいて使用する押出機に特に制限はない。二軸押出機が好ましいが、これに限定されず、また、どのようなタイプの二軸押出機を使用することもできる。混練・押出条件にも制限はなく、例えば150~240℃、中でも160~230℃、特に170~210℃の温度で行うことができる。また、無機フィラーや樹脂等の成分を、セルロース、ヒドロキシカルボン酸、及び糖類の3者と同時に混練してもよく、これら3者の混合物中に後から混練してもよい。例えば押出機を用いた製造方法-Bによって上記3者のみ、あるいは他の成分の一部を混練し、次いで押出機やニーダー等の混合装置で残りの成分を混練することも可能である。 There are no particular restrictions on the extruder used in Manufacturing Method-B. Although a twin screw extruder is preferred, it is not so limited and any type of twin screw extruder can be used. The kneading/extrusion conditions are also not limited, and can be carried out at a temperature of, for example, 150 to 240°C, especially 160 to 230°C, particularly 170 to 210°C. In addition, components such as inorganic fillers and resins may be kneaded simultaneously with the three of cellulose, hydroxycarboxylic acid and saccharides, or may be kneaded into a mixture of these three afterward. For example, it is also possible to knead only the above three components or some of the other components by production method-B using an extruder, and then knead the remaining components with a mixing device such as an extruder or a kneader.
 製造方法-Bにおいては、押出機から混練物を押し出して直接成形品とする、あるいはペレットへと成形することも可能である。また、得られた混合物を、上記製造方法-Aにおける第3の工程と同様の工程に付してもよい。例えば製造方法-Bで得られた混合物を、一軸又は二軸押出機に掛けてストランド状に押し出し、ペレタイザー等で例えば2~5mm角程度のサイズの角柱や円柱へと切断することにより、上記のような組成の熱可塑性組成物をペレットの形状で得ることもできる。 In manufacturing method-B, it is possible to directly extrude the kneaded product from an extruder to form a molded product or to form pellets. Moreover, the obtained mixture may be subjected to the same step as the third step in the production method-A. For example, the mixture obtained in the production method-B is extruded in a strand shape using a single-screw or twin-screw extruder, and cut into prisms or cylinders having a size of about 2 to 5 mm square with a pelletizer or the like. A thermoplastic composition of such composition can also be obtained in the form of pellets.
[成形品]
 本発明はさらに、上記の熱可塑性組成物からなる、熱可塑性ペレットを包含する。本発明の熱可塑性組成物は上記のように概して50~230℃、具体的にはセルロース含有量が0.05~20.0質量%程度の場合は60~200℃、さらには70~150℃、特に70~100℃程度の温度で、また、セルロース含有量が5~60質量%程度の場合は150~240℃、さらには160~230℃、特に170~210℃程度の温度で溶融又は凝固するため、成形性に優れる。そのため、本発明の熱可塑性ペレットは、熱可塑性高分子材料として好適である。
[Molding]
The present invention further includes thermoplastic pellets comprising the thermoplastic composition described above. The thermoplastic composition of the present invention is generally 50 to 230° C. as described above, specifically 60 to 200° C., further 70 to 150° C. when the cellulose content is about 0.05 to 20.0% by mass. , Especially at a temperature of about 70 to 100 ° C., and when the cellulose content is about 5 to 60% by mass, it is melted or solidified at a temperature of 150 to 240 ° C., further 160 to 230 ° C., particularly 170 to 210 ° C. Therefore, it has excellent moldability. Therefore, the thermoplastic pellets of the present invention are suitable as a thermoplastic polymeric material.
 本発明の熱可塑性組成物は、上記のように熱可塑性が良好であり、様々な形状へと成形することができる。本発明はまた、上記の熱可塑性組成物からなる、成形体をも包含する。これら成形体の形状及びサイズに特に制限はなく、シート状、管状、ストランド状、その他の、目的に応じた任意の形状とすることができる。成形方法も限定されず、押出成形、射出成形、ロール成形、トランスファー成形、ブロー成形等のどのような成形法をも用いることができる。例えば上記した本発明の熱可塑性ペレットから、押出機や射出成形機を用いて所望の形状に成形してもよく、また、熱可塑性組成物をペレット化することなく押出し、シートや管状物へと成形してもよい。カレンダー成形等によって他材料と複合することも可能である。 The thermoplastic composition of the present invention has good thermoplasticity as described above, and can be molded into various shapes. The present invention also includes moldings comprising the thermoplastic compositions described above. There are no particular restrictions on the shape and size of these molded bodies, and they may be sheet-shaped, tubular, strand-shaped, or any other shape depending on the purpose. The molding method is also not limited, and any molding method such as extrusion molding, injection molding, roll molding, transfer molding, and blow molding can be used. For example, the thermoplastic pellets of the present invention described above may be molded into a desired shape using an extruder or an injection molding machine, and the thermoplastic composition may be extruded without pelletization to form a sheet or tube. It can be molded. It is also possible to combine with other materials by calender molding or the like.
 本発明の熱可塑性組成物及び成形品の用途にも、特に制限はない。例えば玩具や歯ブラシ、浴用品等の日用品、家電製品等の筐体、自動車や電車等の輸送機器の高分子材料等として使用することができる。特に、セルロース原料としてクラフトパルプ等の精製品を用いた場合には、医療用や食品用に使用することも可能である。セルロース、ヒドロキシカルボン酸、単糖、及び二糖はいずれも、安全性が高い物質であるため、これら成分で構成される本発明の熱可塑性組成物は、医療・食品用途に好適である。本発明の熱可塑性組成物はまた、従来の生分解性樹脂とは異なる概念の天然物由来材料ともいえ、バイオマス度を上げる目的で、他材料への添加剤として活用することも可能である。 There are no particular restrictions on the uses of the thermoplastic composition and molded article of the present invention. For example, it can be used as a polymer material for daily necessities such as toys, toothbrushes, and bath products, housings for home electric appliances, and transportation equipment such as automobiles and trains. In particular, when a refined product such as kraft pulp is used as a cellulose raw material, it can be used for medical purposes and food products. Cellulose, hydroxycarboxylic acid, monosaccharide, and disaccharide are all highly safe substances, so the thermoplastic composition of the present invention comprising these components is suitable for medical and food applications. The thermoplastic composition of the present invention can also be said to be a natural product-derived material with a different concept from conventional biodegradable resins, and can be used as an additive to other materials for the purpose of increasing the biomass content.
 以下、本発明を、実施例に基づきより具体的に説明する。なお、これらの実施例は、本明細書に開示され、また添付の請求の範囲に記載された、本発明の概念及び範囲の理解を、より容易なものとする上で、特定の態様及び実施形態の例示の目的のためにのみ記載するのであって、本発明はこれらの実施例に何ら限定されるものではない。 Hereinafter, the present invention will be described more specifically based on examples. It should be noted that these Examples are intended to provide specific aspects and implementations in order to facilitate an understanding of the concept and scope of the present invention disclosed herein and recited in the appended claims. The present invention is in no way limited to these examples, which are provided for illustrative purposes only.
 [実施例1]
 (第1の工程/製造方法-A)
 撹拌機を備えたフラスコ中に、乳酸100g、及びグルコース40gを入れ、150~200℃の温度で30分間攪拌した。得られた混合物は室温で液体であり、100%天然物の深共晶溶媒となっていた。
[Example 1]
(First Step/Manufacturing Method-A)
100 g of lactic acid and 40 g of glucose were placed in a flask equipped with a stirrer and stirred at a temperature of 150-200° C. for 30 minutes. The resulting mixture was liquid at room temperature and was a 100% natural deep eutectic solvent.
 (第2の工程/製造方法-A)
 撹拌機を備えたフラスコ中に、第1の工程で得られた混合物100gを入れ、150~200℃に加熱した。ここに、パルプ0.5gを入れて、150~200℃程度で1時間以上攪拌すると、ほぼ均一な褐色の液状物となった。上記温度での加熱攪拌は、全8時間行った。次いで、この液状物を清浄なアルミニウム板上に移したところ、凝固して固形物となった。
(Second step/manufacturing method-A)
100 g of the mixture obtained in the first step was placed in a flask equipped with a stirrer and heated to 150-200°C. 0.5 g of pulp was added thereto and stirred at about 150 to 200° C. for 1 hour or longer to obtain a substantially uniform brown liquid. Heating and stirring at the above temperature were carried out for a total of 8 hours. When the liquid was then transferred onto a clean aluminum plate, it solidified into a solid.
 (組成物の性状)
 上記第2の工程で得られた固形物は、樹脂様の外観及び触感を有していた。この固形物を清浄な金槌で叩いたところ、粉状となった。この粉状物は150℃前後の温度で溶融し、室温付近に冷却すると再び固形物となった。また、この粉状物は、射出成形によりダンベル型試験片とすることができた。すなわち、本実施例で得られた組成物は、熱可塑性であることが示された。
(Properties of composition)
The solid obtained in the second step had a resin-like appearance and feel. When this solid was struck with a clean hammer, it turned into powder. This powdery material melted at a temperature of around 150° C. and turned into a solid again when cooled to around room temperature. Also, this powdery material could be made into a dumbbell-shaped test piece by injection molding. That is, it was shown that the compositions obtained in this example were thermoplastic.
 なお、第1の工程において、乳酸及びグルコースの代わりに他の深共晶溶媒を用いて実施例1と類似の簡易実験を行ったところ、第2の工程でパルプが均一に微分散せず、熱可塑性も発現しなかった(比較例1)。混合時の温度制御等を精密に行っていない簡易実験のため確言は出来ないが、セルロースを単に深共晶溶媒と加熱・混合しただけでは、本発明のような熱可塑性材料は得られないことが示唆される。 In addition, in the first step, a simple experiment similar to Example 1 was performed using other deep eutectic solvents instead of lactic acid and glucose. Thermoplasticity was not expressed either (Comparative Example 1). Although it is not possible to make a definite statement because the temperature control during mixing was not precisely controlled, the thermoplastic material of the present invention cannot be obtained simply by heating and mixing cellulose with a deep eutectic solvent. is suggested.
 [実施例2]
 実施例1で得られた粉状物(熱可塑性組成物)とデンプンとを、7:3の質量比で小型二軸押出機に投入し、80~120℃で混練押出して、ペレットを作製した。得られたペレットからは、実施例1と同様、射出成形によりダンベル状試験片を作製することができた。
[Example 2]
The powdery material (thermoplastic composition) obtained in Example 1 and starch were charged into a small twin-screw extruder at a mass ratio of 7:3, and kneaded and extruded at 80 to 120 ° C. to prepare pellets. . A dumbbell-shaped test piece could be produced from the obtained pellets by injection molding in the same manner as in Example 1.
 [実施例3]
 実施例1で得られた粉状物(熱可塑性組成物)とタルクとを、6:4の質量比で小型二軸押出機に投入し、実施例2と同様にしてペレットを作製した。得られたペレットからは、実施例1及び2と同様、射出成形によりダンベル状試験片を作製することができた。
[Example 3]
The powder (thermoplastic composition) obtained in Example 1 and talc were put into a small twin-screw extruder at a mass ratio of 6:4, and pellets were produced in the same manner as in Example 2. Dumbbell-shaped test pieces could be produced from the obtained pellets by injection molding in the same manner as in Examples 1 and 2.
 [実施例4]
 実施例2で得られたペレットとポリ(3-ヒドロキシブチレート/3-ヒドロキシバレレート)(PHBV、生分解性樹脂)とを、1:1の質量比で小型二軸押出機に投入し、実施例2と同様にしてペレットを作製した。得られたペレットからは、実施例1~3と同様、射出成形によりダンベル状試験片を作製することができた。
[Example 4]
The pellets obtained in Example 2 and poly(3-hydroxybutyrate/3-hydroxyvalerate) (PHBV, biodegradable resin) were charged into a small twin-screw extruder at a mass ratio of 1:1, Pellets were produced in the same manner as in Example 2. Dumbbell-shaped test pieces could be produced from the obtained pellets by injection molding in the same manner as in Examples 1-3.
 [実施例5]
 実施例3で得られたペレットとガムロジンとを、8:2の質量比で小型二軸押出機に投入し、実施例3と同様にしてペレットを作製した。得られたペレットからは、実施例1~4と同様、射出成形によりダンベル状試験片を作製することができた。
[Example 5]
The pellets obtained in Example 3 and gum rosin were put into a small twin-screw extruder at a mass ratio of 8:2, and pellets were produced in the same manner as in Example 3. Dumbbell-shaped test pieces could be produced from the obtained pellets by injection molding in the same manner as in Examples 1-4.
 [実施例6]
 ガムロジンの代わりにリグニン(日本製紙株式会社製のバニレックス(登録商標)CN)を使用して、実施例5と同様にしてペレットを作製した。得られたペレットからは、実施例1~5と同様、射出成形によりダンベル状試験片を作製することができた。
[Example 6]
Pellets were produced in the same manner as in Example 5 using lignin (Vanirex (registered trademark) CN manufactured by Nippon Paper Industries Co., Ltd.) instead of gum rosin. Dumbbell-shaped test pieces could be produced from the obtained pellets by injection molding in the same manner as in Examples 1-5.
 [実施例7]
 二軸押出機(テクノベル社製の二軸混練押出機、φ15mm、L/D=50)中に、40質量部の杉の木粉、50質量部の乳酸、25質量部のグルコース、及び50質量部のタルクを投入し、設定温度160~220℃で混練しながらストランド状に押し出した(上記した製造方法-Bによって熱可塑性組成物を調製した)。次いでストランドをペレタイザーで切断し、熱可塑性組成物のペレットとした。
[Example 7]
40 parts by mass of cedar wood powder, 50 parts by mass of lactic acid, 25 parts by mass of glucose, and 50 parts by mass of cedar wood powder in a twin-screw extruder (twin-screw kneading extruder manufactured by Technobel, φ 15 mm, L / D = 50) Part of talc was added and extruded into strands while being kneaded at a set temperature of 160 to 220°C (a thermoplastic composition was prepared by the above-described production method-B). The strand was then cut by a pelletizer into pellets of the thermoplastic composition.
 得られたペレットを次に、射出成型機(サーモフィッシャーサイエンティフィック社製のHAAKE Process11)に掛けたところ、180~220℃でJIS K7171(ISO 178)曲げ試験用試験片(80×10×4mm)及びJIS K7161-2引張試験用ダンベル状試験片へと成形することができた。本実施例の組成物は、セルロース成分を多量に含有するにも拘らず熱可塑性であり、良好な成形加工性を示すことが明らかとなった。 The obtained pellets were then put in an injection molding machine (HAAKE Process 11 manufactured by Thermo Fisher Scientific), and at 180 to 220 ° C., JIS K7171 (ISO 178) bending test specimens (80 × 10 × 4 mm ) and a dumbbell-shaped specimen for JIS K7161-2 tensile test. It was found that the composition of this example was thermoplastic and exhibited good molding processability in spite of containing a large amount of cellulose component.
 次にこれらの試験片各3体を用いて、JIS K7171に従う曲げ試験(試験速度2mm/分)及びJIS K7161-2に従う引張試験(引張速度5mm/分)を行い、機械強度を評価した。また、耐水性も評価した。尚、耐水性は、作製した熱可塑性樹脂ペレット及びダンベル試験片を水を入れたガラスビーカーに投入し、形状の変化を目視観察して下記の基準に基づき評価した。
 (耐水性評価基準)
〇:形状の変化が観察されなかった
△:試験片の形状は変化したが、崩壊はしなかった
×:試験片が水中で崩壊し、形状が保持されなかった
 評価結果を、熱可塑性組成物の配合と共に、後記する表1に示す。
Next, using these three test pieces, a bending test (test speed: 2 mm/min) according to JIS K7171 and a tensile test (tensile speed: 5 mm/min) according to JIS K7161-2 were performed to evaluate the mechanical strength. Water resistance was also evaluated. The water resistance was evaluated based on the following criteria by placing the prepared thermoplastic resin pellets and dumbbell test pieces in a glass beaker filled with water and visually observing changes in shape.
(Water resistance evaluation criteria)
○: No change in shape was observed △: The shape of the test piece changed, but it did not collapse ×: The test piece collapsed in water and the shape was not retained are shown in Table 1 below together with the formulation of
 [実施例8~13]
 実施例7で用いた成分と共に、ロジン又はPHBVを使用し、実施例7と同様の操作を行った。各熱可塑性組成物の配合及び評価結果を、表1に示す。
[Examples 8 to 13]
The same procedure as in Example 7 was performed using rosin or PHBV along with the ingredients used in Example 7. Table 1 shows the formulation and evaluation results of each thermoplastic composition.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記の実施例より、セルロース並びにヒドロキシカルボン酸及び糖類の共晶混合物を含有する本発明の組成物は、熱可塑性を示し、各種材料と熱溶融混練して様々な熱可塑性の樹脂様材料を提供できることが示された。セルロースを単に深共晶溶媒と混合しただけでは、熱可塑性の材料は得られなかった(比較例1)ことに鑑み、本発明は予想外の特性を示す熱可塑性材料と考えられる。 From the above examples, it can be seen that the compositions of the present invention containing cellulose and eutectic mixtures of hydroxycarboxylic acids and sugars exhibit thermoplastic properties and can be hot melt kneaded with various materials to provide various thermoplastic, resin-like materials. shown that it can be done. In view of the fact that simply mixing cellulose with a deep eutectic solvent did not yield a thermoplastic material (Comparative Example 1), the present invention is believed to be a thermoplastic material exhibiting unexpected properties.
 [実施例14~19]
 ロジン又はPHBVの代わりにポリプロピレン(PP)又はポリエチレン(PE)を使用し、実施例8~13と同様の操作を行った。熱可塑性組成物の配合と評価結果を、表2に示す。
[Examples 14 to 19]
The same operations as in Examples 8-13 were performed using polypropylene (PP) or polyethylene (PE) instead of rosin or PHBV. Table 2 shows the formulation of the thermoplastic composition and the evaluation results.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本発明の熱可塑性組成物は、ポリプロピレンやポリエチレンのような汎用樹脂を含有することもでき、それによって機械特性や耐水性等の物性を改善し得ることが示された。このように本発明の熱可塑性組成物には、様々な樹脂や無機フィラー等を多量に配合することができ、それによって耐水性等の物性を改善し、あるいは低コスト化を図ることが可能である。例えば、実施例8~10と同様にして、ロジンを175質量部まで配合して耐水性を高め得ることが、確かめられている。 It was shown that the thermoplastic composition of the present invention can also contain general-purpose resins such as polypropylene and polyethylene, thereby improving physical properties such as mechanical properties and water resistance. As described above, the thermoplastic composition of the present invention can be blended with a large amount of various resins, inorganic fillers, and the like, thereby improving physical properties such as water resistance and reducing costs. be. For example, in the same manner as in Examples 8 to 10, it has been confirmed that up to 175 parts by mass of rosin can be blended to improve water resistance.
 以上のように本発明の熱可塑性組成物は、セルロースを多量に配合した組成物であっても熱可塑性を示し、セルロース系の廃材等のリサイクル用途として有用である。ポリエチレンを始めとする石油系樹脂等に混合して、バイオマス度を高めることもできる。本発明の熱可塑性組成物はまた、PHBVを始めとする生分解性樹脂に混合して、物性を低下させることなく廃材使用率を高めると共に低コスト化する、いわば増量剤のように使用することも可能である。しかも本発明の熱可塑性組成物は、製造過程で溶媒の廃棄や、含ハロゲン化物等の環境負荷物質の使用を必要としない。こうした点に鑑み、本発明の効果は顕著である。 As described above, the thermoplastic composition of the present invention exhibits thermoplasticity even when a composition containing a large amount of cellulose is used, and is useful for recycling cellulosic waste materials. It can also be mixed with petroleum-based resins such as polyethylene to increase the degree of biomass. The thermoplastic composition of the present invention can also be mixed with biodegradable resins such as PHBV to increase the usage rate of waste materials and reduce costs without deteriorating physical properties, so to speak, it can be used like a bulking agent. is also possible. Moreover, the thermoplastic composition of the present invention does not require the disposal of solvents or the use of environmentally hazardous substances such as halogenated compounds during the production process. In view of these points, the effects of the present invention are remarkable.

Claims (11)

  1.  セルロース、並びに、単糖及び/又は二糖とヒドロキシカルボン酸との共晶混合物を含有する、熱可塑性組成物。 A thermoplastic composition containing cellulose and a eutectic mixture of monosaccharides and/or disaccharides and hydroxycarboxylic acids.
  2.  前記共晶混合物が乳酸とグルコースとの混合物である、請求項1記載の熱可塑性組成物。 The thermoplastic composition according to claim 1, wherein the eutectic mixture is a mixture of lactic acid and glucose.
  3.  ヘミセルロース及び/又はリグニンをさらに含有し、かつ前記セルロースが植物由来セルロースである、請求項1又は2に記載の熱可塑性組成物。 The thermoplastic composition according to claim 1 or 2, further comprising hemicellulose and/or lignin, and wherein the cellulose is plant-derived cellulose.
  4.  前記セルロースを0.05~60.0質量%含有する、請求項1又は2に記載の熱可塑性組成物。 The thermoplastic composition according to claim 1 or 2, containing 0.05 to 60.0% by mass of the cellulose.
  5.  前記ヒドロキシカルボン酸:前記単糖及び/又は二糖の質量比が1:2~6:1の範囲内である、請求項1又は2に記載の熱可塑性組成物。 The thermoplastic composition according to claim 1 or 2, wherein the mass ratio of said hydroxycarboxylic acid: said monosaccharide and/or disaccharide is within the range of 1:2 to 6:1.
  6.  無機フィラー、天然熱可塑性樹脂、合成熱可塑性樹脂、及び生分解性樹脂からなる群より選択される1以上の物質をさらに含有する、請求項1又は2に記載の熱可塑性組成物。 The thermoplastic composition according to claim 1 or 2, further comprising one or more substances selected from the group consisting of inorganic fillers, natural thermoplastic resins, synthetic thermoplastic resins, and biodegradable resins.
  7.  ヒドロキシカルボン酸と単糖及び/又は二糖とを、150~240℃の温度で混合する第1の工程、及び
     前記第1の工程で得られた混合物とセルロースとを、150~240℃の温度で混合する第2の工程、
    を含む、熱可塑性組成物の製造方法。
    A first step of mixing hydroxycarboxylic acid and monosaccharide and/or disaccharide at a temperature of 150 to 240 ° C., and mixing the mixture obtained in the first step and cellulose at a temperature of 150 to 240 ° C. a second step of mixing with
    A method of making a thermoplastic composition, comprising:
  8.  前記第2の工程で得られた混合物を、押出機で混練及び成形する第3の工程をさらに含む、請求項7記載の熱可塑性組成物の製造方法。 The method for producing a thermoplastic composition according to claim 7, further comprising a third step of kneading and molding the mixture obtained in the second step with an extruder.
  9.  セルロースと、ヒドロキシカルボン酸と単糖及び/又は二糖とを、押出機にて150~240℃の温度で混合する工程を含む、熱可塑性組成物の製造方法。 A method for producing a thermoplastic composition, which includes a step of mixing cellulose, hydroxycarboxylic acid, and monosaccharide and/or disaccharide in an extruder at a temperature of 150 to 240°C.
  10.  請求項1又は2に記載の熱可塑性組成物からなる、熱可塑性ペレット。 A thermoplastic pellet made of the thermoplastic composition according to claim 1 or 2.
  11.  請求項1又は2に記載の熱可塑性組成物からなる、成形体。 A molded article made of the thermoplastic composition according to claim 1 or 2.
PCT/JP2023/002990 2022-01-31 2023-01-31 Thermoplastic composition WO2023145958A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022-013398 2022-01-31
JP2022013398 2022-01-31
JP2022130009A JP2023111812A (en) 2022-01-31 2022-08-17 thermoplastic composition
JP2022-130009 2022-08-17

Publications (1)

Publication Number Publication Date
WO2023145958A1 true WO2023145958A1 (en) 2023-08-03

Family

ID=87471780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/002990 WO2023145958A1 (en) 2022-01-31 2023-01-31 Thermoplastic composition

Country Status (1)

Country Link
WO (1) WO2023145958A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1192503A (en) * 1997-09-22 1999-04-06 Canon Inc Polymer compound containing sugar chain polymer compound and its decomposition method
JPH11193524A (en) * 1997-12-26 1999-07-21 Kankyo Create:Kk Treatment method and agent for existing concrete pile head
WO2008143322A1 (en) * 2007-05-23 2008-11-27 Okayama Prefecture Industrial Promotion Foundation Cellulose derivative, cellulose derivative-polylactic acid graft copolymer and method for producing the same, and polylactic acid resin composition
JP2009503193A (en) * 2005-07-26 2009-01-29 クナウフ インシュレイション ゲーエムベーハー Binders and binder-made substances
CN103951852A (en) * 2014-05-21 2014-07-30 季国良 Manufacturing method of high-strength starch-base degradable environment-friendly material
US20160257802A1 (en) * 2013-11-01 2016-09-08 3M Innovative Properties Company Plasticized polymeric composition
JP2019526717A (en) * 2016-08-24 2019-09-19 オルガノクリック アーベー Bio-based polyelectrolyte complex composition comprising water-insoluble particles
JP2020533447A (en) * 2017-09-08 2020-11-19 デュポン・ニュートリション・ユーエスエイ,インコーポレイテッド Colloidal compositions of microcrystalline cellulose and alginate, their preparation, and the products obtained from them.

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1192503A (en) * 1997-09-22 1999-04-06 Canon Inc Polymer compound containing sugar chain polymer compound and its decomposition method
JPH11193524A (en) * 1997-12-26 1999-07-21 Kankyo Create:Kk Treatment method and agent for existing concrete pile head
JP2009503193A (en) * 2005-07-26 2009-01-29 クナウフ インシュレイション ゲーエムベーハー Binders and binder-made substances
WO2008143322A1 (en) * 2007-05-23 2008-11-27 Okayama Prefecture Industrial Promotion Foundation Cellulose derivative, cellulose derivative-polylactic acid graft copolymer and method for producing the same, and polylactic acid resin composition
US20160257802A1 (en) * 2013-11-01 2016-09-08 3M Innovative Properties Company Plasticized polymeric composition
CN103951852A (en) * 2014-05-21 2014-07-30 季国良 Manufacturing method of high-strength starch-base degradable environment-friendly material
JP2019526717A (en) * 2016-08-24 2019-09-19 オルガノクリック アーベー Bio-based polyelectrolyte complex composition comprising water-insoluble particles
JP2020533447A (en) * 2017-09-08 2020-11-19 デュポン・ニュートリション・ユーエスエイ,インコーポレイテッド Colloidal compositions of microcrystalline cellulose and alginate, their preparation, and the products obtained from them.

Similar Documents

Publication Publication Date Title
Zdanowicz et al. Deep eutectic solvents for polysaccharides processing. A review
JP4572516B2 (en) Method for producing resin composition
Klapiszewski et al. Influence of processing conditions on the thermal stability and mechanical properties of PP/silica-lignin composites
US10093798B2 (en) Polyester resin composition
WO2011049162A1 (en) Composition containing microfibrillated plant fibers
CN102079820A (en) Completely biodegradable food packing material and preparation method thereof
Jordá-Vilaplana et al. Development and characterization of a new natural fiber reinforced thermoplastic (NFRP) with Cortaderia selloana (Pampa grass) short fibers
JP4601478B2 (en) Resin composition containing cellulose
CN102079822B (en) Plant fiber enhanced starch composite packaging material and preparation method thereof
WO2014087767A1 (en) Composite material and molded body using same
Chihaoui et al. Lignin-containing cellulose fibrils as reinforcement of plasticized PLA biocomposites produced by melt processing using PEG as a carrier
JP5469322B2 (en) Environmentally friendly thermoplastic resin composition
JP2017137470A (en) Resin composition
JPWO2019163873A1 (en) Disentangling aid for hydrophobized cellulosic fibers, method for producing resin composition using the same, and molded article
JP7434871B2 (en) Molding composition and molded object
US20120295313A1 (en) Process for producing granules
Xu et al. Effect of ionic liquid 1-buyl-3-methylimidazolium halide on the structure and tensile property of PBS/corn starch blends
JP6572235B2 (en) Method for incorporating wet natural fibers and starch into thermoplastics
Sharifi et al. Extruded biocomposite films based on poly (lactic acid)/chemically-modified agricultural waste: Tailoring interface to enhance performance
CN109803985A (en) Esterification starch and starch-series plastics composite
WO2023145958A1 (en) Thermoplastic composition
CN113698674A (en) Biodegradable high-performance particle material with ceramic texture and preparation method thereof
JP2023111812A (en) thermoplastic composition
JPH05269736A (en) Fiber material to be blended in resin and resin composite used thereof
Lončarić et al. Deep eutectic solvents in the production of biopolymer-based materials

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23747168

Country of ref document: EP

Kind code of ref document: A1