WO2023145768A1 - Weight measuring device, and body composition meter - Google Patents

Weight measuring device, and body composition meter Download PDF

Info

Publication number
WO2023145768A1
WO2023145768A1 PCT/JP2023/002273 JP2023002273W WO2023145768A1 WO 2023145768 A1 WO2023145768 A1 WO 2023145768A1 JP 2023002273 W JP2023002273 W JP 2023002273W WO 2023145768 A1 WO2023145768 A1 WO 2023145768A1
Authority
WO
WIPO (PCT)
Prior art keywords
load cell
base portion
measuring device
weight measuring
sensor unit
Prior art date
Application number
PCT/JP2023/002273
Other languages
French (fr)
Japanese (ja)
Inventor
裕之 山田
Original Assignee
株式会社タニタ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社タニタ filed Critical 株式会社タニタ
Publication of WO2023145768A1 publication Critical patent/WO2023145768A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/053Measuring electrical impedance or conductance of a portion of the body
    • A61B5/0537Measuring body composition by impedance, e.g. tissue hydration or fat content
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G19/00Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups
    • G01G19/44Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for weighing persons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G19/00Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups
    • G01G19/44Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for weighing persons
    • G01G19/50Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for weighing persons having additional measuring devices, e.g. for height
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G23/00Auxiliary devices for weighing apparatus

Definitions

  • the present invention relates to a weight measuring device and a body composition meter.
  • JP4009215B1 is composed of four load cells and a circuit board for processing these measurement data, lead wires are connected to a pair of strain sensors arranged in each load cell, and the lead wires are connected to the circuit board.
  • a configuration for forming a bridge circuit is disclosed.
  • the strain sensor and the circuit board are connected by lead wires.
  • the workers manually perform forming and soldering one by one, which increases the number of man-hours.
  • automation using an automatic assembly device robot
  • it is difficult for the robot to properly handle the lead wire and there is a problem that the program for performing the forming becomes very complicated.
  • the present invention has been made in view of such problems, and it is an object of the present invention to provide a weight measuring device and a body composition meter that can reduce the number of work steps through automatic assembly.
  • a weight measuring device includes a load cell for detecting weight, a base portion for holding the load cell, and a weight measuring device disposed on the base portion for measuring the weight of an object to be measured based on a detection signal from the load cell.
  • the bonding wire is arranged in a straight line between the load cell and the main substrate, wiring can be automatically performed by an automatic assembly device, reducing the number of work steps. can.
  • FIG. 1 is an exploded perspective view of a weight measuring device according to an embodiment of the present invention.
  • FIG. 2 is a top view of the base portion.
  • FIG. 3 is a perspective view of the base portion.
  • FIG. 4A is a top view of the sensor unit.
  • FIG. 4B is a side view of the sensor unit;
  • FIG. 5 is a perspective view during assembly of the base portion.
  • FIG. 6 is a cross-sectional view of the base portion.
  • FIG. 7 is an explanatory diagram of a weight measuring device according to a modification of the present embodiment.
  • FIG. 1 is an exploded perspective view showing a weight measuring device 1 according to this embodiment.
  • FIG. 2 shows a top view of the base portion 10 of the weighing device 1.
  • FIG. 3 shows a perspective view of the base portion 10 of the weight measuring device 1.
  • FIG. 1 is an exploded perspective view showing a weight measuring device 1 according to this embodiment.
  • FIG. 2 shows a top view of the base portion 10 of the weighing device 1.
  • FIG. 3 shows a perspective view of the base portion 10 of the weight measuring device 1.
  • FIG. 1 is an exploded perspective view showing a weight measuring device 1 according to this embodiment.
  • FIG. 2 shows a top view of the base portion 10 of the weighing device 1.
  • FIG. 3 shows a perspective view of the base portion 10 of the weight measuring device 1.
  • FIG. 1 is an exploded perspective view showing a weight measuring device 1 according to this embodiment.
  • FIG. 2 shows a top view of the base portion 10 of the weighing device 1.
  • FIG. 3 shows a perspective view of the base portion 10 of the
  • Examples of the weight measuring device 1 include a weight scale, a weight scale, and a body composition meter. and a function of measuring body composition such as fat percentage, visceral fat level, muscle mass, estimated bone mass, and body water percentage.
  • the weight measuring device 1 includes a base portion 10 and a top plate 12 arranged above the base portion 10, as shown in FIG.
  • the weight measuring device 1 measures the weight of the object placed on the top plate 12 .
  • the base portion 10 and the top plate 12 are formed in a square plate shape with rounded corners. In this embodiment, the case where the weight measuring device 1 has a square shape will be described, but it is not limited to this, and may have, for example, a rectangular shape.
  • the top plate 12 includes a rectangular display window 21 and four measurement electrodes 22 (22A, 22B, 22C, 22D).
  • the display window 21 is made of a transparent plate and allows the display contents of the display section 31 arranged on the base section 10 to pass therethrough.
  • the display unit 31 displays the user's weight, body composition, and the like.
  • the measurement electrode 22 is an electrode for measuring a user's bioimpedance.
  • the X direction, Y direction and Z direction shown in FIG. 1 are also referred to as vertical direction, horizontal direction and height direction, respectively.
  • the base portion 10 is a plate-like member, and grid-like ribs are formed on the entire surface in the height direction.
  • the base portion 10 is lightened while maintaining its strength due to the grid-like ribs.
  • a main substrate placement portion 11 in which the main substrate 30 is placed is formed slightly above the center of the base portion 10 in a rectangular shape at a position slightly recessed in the height direction from the surface of the base portion 10 .
  • Round sensor unit mounting holes 14 (14A, 14B, 14C, 14D) for mounting the sensor units 40 (40A, 40B, 40C, 40D) are provided near the four corners of the base section 10. It is formed penetrating in the vertical direction.
  • groove portions 16 for routing bonding wires 50 are formed along the routing direction of the bonding wires 50.
  • the groove portion 16 is formed in a linear groove shape that gradually decreases in the height direction from the sensor unit 40 toward the main substrate 30 at a position slightly recessed from the grid-like rib surface of the base portion 10 . .
  • walls 16a are formed perpendicular to the height direction of the base portion 10, as shown in FIG.
  • the main board 30 is composed of a rectangular printed board, and has fixing portions 36 at its four corners for fixing to the main board placement portion 11 by bolting or the like.
  • a display portion 31 configured by an LCD and a plurality of electrodes 33 as terminal portions of the main substrate 30 are arranged.
  • An arithmetic device 32 is mounted on the back side of the main board 30 .
  • a bonding wire 50 to which a detection signal of each load cell 41 is transmitted is connected to each of the electrodes 33, as will be described later.
  • the wiring between the electrodes 33 to which the bonding wires 50 are connected and the computing device 32 are bridge-connected to each other.
  • the computing device 32 receives the detection signal of each load cell 41 and computes the weight of the object placed on the top board 12 based on the received detection signal. Further, the calculation device 32 receives the detection signal of each measurement electrode 22 and calculates the body composition of the user who is in contact with the measurement electrode 22 of the tabletop 12 based on the received detection signal.
  • a load cell 41 is housed in a cylindrical resin case 45, and a relay board 42 is arranged on the upper surface thereof.
  • the relay substrate 42 is provided with a plurality of electrodes 44 as terminal portions of the load cells 41 .
  • bonding wires 50 which are signal lines for transmitting detection signals, are wired.
  • the bonding wires 50 are made of conductive wires made of aluminum or copper. In this embodiment, as an example, a thick aluminum wire having a diameter of about 500 ⁇ m is used as the bonding wire 50 . As shown in FIG. 2, the bonding wires 50 are arranged linearly in plan view between the main substrate 30 and the sensor unit 40 .
  • the bonding wires 50 are arranged in a straight line between the main substrate 30 and the sensor unit 40 (load cell 41). Thereby, the distance between the main substrate 30 and the sensor unit 40 is shortened.
  • Such a configuration enables automatic placement of the bonding wires 50 by an automatic assembly device.
  • the relay substrate 42 having the electrodes 44 so that the bonding wires 50 can be easily connected, the wiring can be easily automated.
  • the bonding wire 50 is connected to the electrode 44 by, for example, welding, but the connection method is not limited to this. In the following description of this embodiment, an example of connection by welding will be shown.
  • a plurality of groove portions 16 are formed on line segments connecting the electrodes 44 of the relay substrate 42 and the electrodes 33 of the main substrate 30 .
  • This embodiment shows an example in which three bonding wires 50 are wired between the relay board 42 and the main board 30 in one sensor unit 40 .
  • three grooves 16 are formed so that three bonding wires 50 are arranged in a straight line.
  • Wall portions 16a are formed in the vertical direction on both sides of the groove portion 16, as shown in FIG.
  • the upper end of the wall portion 16a is the same in the height direction as the upper end of the grid-like ribs.
  • the load cell 41 and the main substrate 30 are connected at the shortest distance, and the distance of the bonding wire 50 routed between them is shortened compared to the conventional configuration in which lead wires are wired. (eg 5-10 cm).
  • the distance of the bonding wires 50 can be kept within the movable range of the wire bonder that routes the bonding wires 50 .
  • the wire bonder welds one end of the bonding wire 50 to one of the electrodes 44 of the relay substrate 42 by heat or ultrasonic waves, slightly lifts the tip of the wire bonder from the electrode 44, and once obliquely upwards.
  • the bonding wire 50 is extended obliquely downward toward the main substrate 30 .
  • the wire bonder extends the bonding wire 50 along the groove portion 16 while moving straight toward the electrode 33 of the main substrate 30 .
  • the bonding wire 50 is extended obliquely downward with respect to the electrode 33 , and then the bonding wire 50 is welded to the electrode 33 .
  • the wire bonder wires the bonding wire 50 between the other electrode 44 of the relay board 42 and the other electrode 33 of the main board 30 . After completing wiring for one sensor unit 40 , the wire bonder performs wiring for other sensor units 40 in the same manner.
  • the wire bonder connects one end and the other end of the bonding wire 50 to the electrode 44 of the relay substrate 42 and the electrode 33 of the main substrate 30, respectively, thereby bonding the electrode 44 of the relay substrate 42 and the main substrate 30 together.
  • electrodes 33 are electrically connected by bonding wires 50 .
  • the bonding wires 50 are connected to the electrodes 33 and 44 by welding, for example, but other connection methods such as soldering may be used.
  • the bonding wires 50 are bent in the height direction near the electrodes 44 of the relay board 42 and the electrodes 33 of the main board 30 (see FIG. 6). With this configuration, it is possible to provide a margin in the length direction of the bonding wire 50, so stress due to deformation of the bonding wire 50 and the base portion 10 due to a change in environmental temperature or load is applied to the bonding wire 50. It can be suppressed to work in the direction of
  • the land pattern of the electrodes 44 of the relay board 42 and the electrodes 33 of the main board 30 is formed relatively larger than the electrode 411 (see FIG. 7) of the load cell 41.
  • electrodes 33 and 44 are configured three to five times wider than electrode 411 of load cell 41 . This facilitates welding of the bonding wires 50 by a wire bonder. If the welding is not sufficient, re-welding with a wire bonder is possible.
  • wiring can be automatically performed by wiring the bonding wire 50 between the relay board 42 of the sensor unit 40 and the main board 30 (5 to 10 cm) using a wire bonder.
  • a battery chamber 15 is formed on the back side of the base portion 10 to accommodate a cylindrical dry battery or secondary battery.
  • connection member 25 is formed of a coil portion 251 extending in the height direction and a wire portion 252 extending from the coil portion 251 along the surface direction of the base portion 10 .
  • the coil portion 251 is compressible in the height direction, and is compressed between the back surface of the measurement electrode 22 of the top plate 12 and the front surface of the base portion 10 when the top plate 12 is placed on the base portion 10 . . As a result, the coil portion 251 is in close contact with the back surface of the measurement electrode 22 due to its biasing force, so that the measurement electrode 22 and the coil portion 251 are brought into a conductive state.
  • the tip of the wire portion 252 is fixed to the electrode 33 of the main substrate 30 by soldering or screwing.
  • FIG. 4A shows a top view of the sensor unit 40 in this embodiment.
  • 4B shows a side view of the sensor unit 40.
  • FIG. 4A shows a top view of the sensor unit 40 in this embodiment.
  • 4B shows a side view of the sensor unit 40.
  • the sensor unit 40 is configured by housing a load cell 41 for detecting weight, a relay board 42 and legs 43 in a cylindrical resin case 45 .
  • the load cell 41 includes a strain element and a pair of strain sensors that exhibit mutually opposite strain characteristics with respect to the load.
  • a plurality of lead wires 46 are connected to the strain sensor, and the other ends of the lead wires 46 are connected to the relay board 42 .
  • Lead wires 46 connected to the relay substrate 42 are electrically connected to the respective electrodes 33 .
  • protrusions 401 are formed at regular intervals around the resin case 45 of the sensor unit 40 .
  • a cylindrical leg 43 is attached to the lower surface of the resin case 45 .
  • the leg 43 is formed with a smaller diameter than the outer diameter of the resin case 45 .
  • a wave spring portion 441 having the same diameter as that of the resin case 45 is formed in the circumferential direction at the boundary between the lower end of the resin case 45 and the leg 43 .
  • the leg 43 is made of a highly elastic material such as rubber or silicone.
  • one of the strain generating bodies is fixed to the resin case 45 and the other is fixed to the leg 43 inside the resin case 45 .
  • FIG. 5 is an exploded perspective view of the base portion 10 and the sensor unit 40 in this embodiment.
  • FIG. 6 is a cross-sectional view of the base portion 10 to which the sensor unit 40 is attached according to the present embodiment, showing a cross-sectional view taken along line VI-VI in FIG.
  • the sensor unit mounting hole 14 of the base portion 10 has an engaging portion 141 and a small diameter portion 142 on its inner circumference.
  • the engaging portions 141 are formed on the inner wall of the sensor unit mounting hole 14 so as to protrude inward at regular intervals.
  • the position of the engaging portion 141 is formed at a position corresponding to the projection 401 of the sensor unit 40, and engages with the upper part of the projection 401 in the height direction.
  • the inner diameter of the sensor unit mounting hole 14 is formed slightly larger than the outer diameter of the resin case 45 of the sensor unit 40
  • the small diameter portion 142 is formed slightly larger than the outer diameter of the leg 43 of the sensor unit 40 .
  • the sensor unit 40 When attaching the sensor unit 40 to the base portion 10 , the sensor unit 40 is inserted into the sensor unit mounting hole 14 and the lower surface of the sensor unit 40 is brought into contact with the small diameter portion 142 of the sensor unit mounting hole 14 . In this state, the sensor unit 40 is rotated clockwise by a predetermined angle. As a result, the protrusion 401 is engaged with the engaging portion 141 , and the biasing force of the compressed wave spring portion 441 fixes the sensor unit 40 to the sensor unit mounting hole 14 .
  • the process of attaching the sensor unit 40 to the base portion 10 can also be performed using an automatic assembly device such as a robot.
  • a robot grips the sensor unit 40, carries it to the sensor unit mounting hole 14 of the base portion 10, and automatically inserts and rotates it. This allows the sensor unit 40 to be automatically attached to the base portion 10 .
  • the sensor units 40 to be attached to the base portion 10 are selected in advance so that the detection characteristics of the load cells 41 to be installed are similar, and the selected four sensor units 40 are attached to the base portion 10 . By configuring in this way, the measurement accuracy of the weight of the object to be measured is improved.
  • the leg 43 protrudes from the back surface of the base portion 10 to the back surface side of the base portion 10 via the small diameter portion 142 .
  • the legs 43 of the sensor unit 40 arranged near the four corners of the base portion 10 are bent by the weight of the object to be measured. Each elastically deforms. As a result, distortion occurs between the resin case 45 of the sensor unit 40 fixed to the base portion 10 and the leg 43 .
  • the load cell 41 detects this distortion and outputs it as a detection signal.
  • the output detection signal is transmitted through the bonding wire 50 and sent to the arithmetic device 32 of the main board 30 .
  • the computing device 32 acquires the detection signal output from each load cell 41 and computes the weight of the object placed on the top plate 12 based on the acquired detection signal. A calculation result is displayed on the display unit 31 .
  • the base portion 10 and the sensor unit 40 are configured as separate parts, and the preassembled sensor unit 40 is attached to the base portion 10.
  • the weight measuring device 1 may be configured such that the load cell 41 , the relay board 42 and the leg 43 are directly arranged on the base portion 10 without the sensor unit 40 being a separate component.
  • the base portion 10 has a sandwich structure, the leg 43 and the load cell 41 are arranged in the lower portion thereof, and the relay board 42 is arranged in the upper portion thereof.
  • a wire bonder may be used to wire the bonding wires 50 .
  • the load cell 41 detects minute changes in resistance due to deformation of the strain sensor. As shown in FIG. 2, when the sensor unit 40 and the main substrate 30 are linearly wired by the bonding wires 50, the difference in the wiring length of the bonding wires 50 causes a difference in the resistance value of the bonding wires 50. may affect the detection signal of
  • the wiring pattern between the electrodes 33 and the arithmetic device 32 may be set so that the wiring lengths of the load cells 41 are the same.
  • the arithmetic unit 32 may store the wiring length between each load cell 41 and the arithmetic unit 32 in advance, and perform an arithmetic operation on the input detection signal of the load cell 41 so as to correct the influence of the wiring length.
  • FIG. 7 is a top view of the base portion 10 of a modified example of this embodiment.
  • the relay substrate 42 is not provided, and the electrodes 411 of the load cells 41 arranged on the base portion 10 and the electrodes 33 of the main substrate 30 are wired by the bonding wires 50 .
  • the electrode 411 of the load cell 41 has a small area because it is arranged directly on the strain sensor. This area is, for example, 1 mm or less in width.
  • the thin lead wire 46 is connected to the electrode 411 and wired to the relay substrate 42 as shown in FIG. 4A.
  • the bonding wire 50 is configured to be easily welded.
  • the bonding wire 50 is welded to the small electrode 411 arranged on the load cell 41 and wired between the load cell 41 and the main substrate 30 . If such wiring can be performed, the relay substrate 42 can be omitted, the electrode 411 of the load cell 41 can be configured as the terminal portion of the load cell 41, and the terminal portion of the load cell 41 and the electrode 33 of the main substrate 30 can be bonded. Wires 50 can be routed automatically. Thereby, the number of parts of the weight measuring device 1 can be reduced.
  • the wiring between the load cell 41 and the main substrate 30 is automatically performed by the automatic assembly device, but the present invention is not limited to this, and other wirings are automatically wired. It may be configured as For example, a groove 16 may be further formed between the electrodes arranged in the battery chamber 15 and the main substrate 30, and the bonding wires 50 may be wired in the groove 16 by an automatic assembly device.
  • the weight measuring device 1 includes the load cell 41 that detects the weight, the base portion 10 that holds the load cell 41 , and the weight measuring device 1 arranged on the base portion 10 , based on the detection signal from the load cell 41 .
  • the load cells 41 and the main substrate 30 are wired linearly using the bonding wires 50 .
  • the wiring length between the load cell 41 and the main board 30 can be shortened, and in the work of wiring in a straight line, the wiring in the base portion 10 can be automatically performed by the automatic assembly device. Man-hours can be reduced. By reducing the number of work steps, it is possible to reduce the manufacturing cost and manufacturing period of the weight measuring device 1 .
  • the base portion 10 includes a plurality of load cells 41 and a plurality of bonding wires 50 that connect the plurality of load cells 41 and the main substrate 30 .
  • the plurality of load cells 41 (41A, 41B, 41C, 41D) are arranged at the four corners of the base portion 10, respectively.
  • the weight of the object to be measured can be measured more accurately.
  • the load cell 41 is provided with a relay substrate 42 electrically connected to the load cell 41
  • the relay substrate 42 is provided with the terminal portion of the load cell 41
  • the terminal portion of the load cell 41 is connected to the bonding wire 50 .
  • the load cell 41 and the main board 30 are electrically connected by connecting one end of the bonding wire 50 and connecting the other end of the bonding wire 50 to the terminal portion of the main board 30 .
  • the relay board 42 is placed on the load cell 41 and one end of the bonding wire 50 is connected to the electrode 44 provided on the relay board 42 .
  • the bonding wires 50 can be easily connected between the relay substrate 42 and the main substrate 30. can be wired to
  • the load cell 41 and the relay board 42 are configured as the sensor unit 40 fixed by the resin case 45, and the base portion 10 has the sensor unit mounting hole 14 in which the sensor unit 40 is mounted.
  • the sensor unit 40 can be automatically assembled in the sensor unit mounting hole 14 of the base portion 10 by a robot by previously forming the load cell 41 as a separate component as the sensor unit 40 . can be done. Thereby, the work man-hours for assembling the base portion 10 can be reduced.
  • the base portion 10 is formed with the groove portion 16 in which the bonding wire 50 is accommodated along the routing direction of the bonding wire 50 .
  • the automatic assembly apparatus can be smoothly operated along the grooves 16 formed in the base portion 10, so wiring of the bonding wires 50 is facilitated.
  • the base portion 10 includes a battery chamber 15 in which a battery that supplies power to the main substrate 30 is accommodated, and a straight line in plan view between the electrodes arranged in the battery chamber 15 and the main substrate 30 . and a bonding wire 50 arranged in a shape.
  • the wiring in the base portion 10 can be automatically performed by an automatic assembly device.
  • this embodiment is configured as a body composition meter including the weight measuring device 1 configured as described above.
  • the weight measuring device 1 of the present embodiment has been described as a body composition meter that measures the body composition of the user, who is the object to be measured, the weight measuring device 1 is not limited to this. It may have only the function of measuring.
  • the weight measuring device 1 of the present embodiment has shown an example in which the four load cells 41 are arranged at the four corners of the base portion 10, the present invention is not limited to this.
  • the weight measuring device 1 may have a configuration in which one load cell 41 is arranged in the center of the base portion 10 .
  • one sensor unit 40 is arranged near the center of the base portion 10 and the bonding wire 50 is routed between the relay substrate 42 of this sensor unit 40 and the main substrate 30 .

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement Of Force In General (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

This weight measuring device comprises: load cells for detecting weight; a base portion for holding the load cells; a main board which is disposed on the base portion, and which has mounted thereon a computing device for computing a weight of an object being measured, on the basis of detection signals from the load cells; and bonding wires which are routed in a straight line, as seen in a plan view, to electrically connect terminal portions of the load cells and terminal portions of the main board to one another.

Description

重量測定装置及び体組成計Weight measuring device and body composition meter
 本発明は、重量測定装置及び体組成計に関する。 The present invention relates to a weight measuring device and a body composition meter.
 JP4009215B1には、四つのロードセルと、これらの測定データを処理する回路基板とから構成され、各ロードセルに配置されている一対の歪センサにリード線が接続され、このリード線を回路基板に接続することによりブリッジ回路を形成する構成が開示されている。 JP4009215B1 is composed of four load cells and a circuit board for processing these measurement data, lead wires are connected to a pair of strain sensors arranged in each load cell, and the lead wires are connected to the circuit board. A configuration for forming a bridge circuit is disclosed.
 上述した従来技術では、歪みセンサと回路基板とが各々リード線により接続される。リード線の接続に関しては、作業者が一つ一つ手作業でフォーミング及び半田付けを行うため、作業工数が多くなっていた。この作業工数を節減するために自動組立装置(ロボット)による自動化を行うことも考えられる。しかしながら、ロボットではリード線を適切に扱うことが難しく、フォーミングを行うためのプログラムが非常に複雑になってしまうという問題があった。 In the conventional technology described above, the strain sensor and the circuit board are connected by lead wires. As for the connection of the lead wires, the workers manually perform forming and soldering one by one, which increases the number of man-hours. In order to reduce the number of man-hours for this work, automation using an automatic assembly device (robot) is also conceivable. However, it is difficult for the robot to properly handle the lead wire, and there is a problem that the program for performing the forming becomes very complicated.
 本発明は、このような問題に鑑みてなされたものであり、自動組立により作業工数を削減できる重量測定装置及び体組成計を提供することを目的とする。 The present invention has been made in view of such problems, and it is an object of the present invention to provide a weight measuring device and a body composition meter that can reduce the number of work steps through automatic assembly.
 本発明の一実施態様によれば、重量測定装置は、重量を検出するロードセルと、ロードセルを保持するベース部と、ベース部に配置され、ロードセルからの検出信号に基づいて被測定物の重量を演算する演算装置が実装されるメイン基板と、ロードセルの端子部とメイン基板の端子部とを電気的に接続するように平面視において直線状に配索されたボンディングワイヤと、を備える。 According to one embodiment of the present invention, a weight measuring device includes a load cell for detecting weight, a base portion for holding the load cell, and a weight measuring device disposed on the base portion for measuring the weight of an object to be measured based on a detection signal from the load cell. A main substrate on which an arithmetic unit for arithmetic operation is mounted, and a bonding wire arranged linearly in plan view so as to electrically connect the terminal portion of the load cell and the terminal portion of the main substrate.
 この実施態様によれば、ロードセルとメイン基板との間を直線状にボンディングワイヤが配索されるように構成したので、自動組立装置により配線を自動的に行うことが可能となり、作業工数を削減できる。 According to this embodiment, since the bonding wire is arranged in a straight line between the load cell and the main substrate, wiring can be automatically performed by an automatic assembly device, reducing the number of work steps. can.
図1は、本発明の実施形態に係る重量測定装置の分解斜視図である。FIG. 1 is an exploded perspective view of a weight measuring device according to an embodiment of the present invention. 図2は、ベース部の上面図である。FIG. 2 is a top view of the base portion. 図3は、ベース部の斜視図である。FIG. 3 is a perspective view of the base portion. 図4Aは、センサユニットの上面図である。FIG. 4A is a top view of the sensor unit. 図4Bは、センサユニットの側面図である。FIG. 4B is a side view of the sensor unit; 図5は、ベース部の組立の際の斜視図である。FIG. 5 is a perspective view during assembly of the base portion. 図6は、ベース部の断面図である。FIG. 6 is a cross-sectional view of the base portion. 図7は、本実施形態の変形例の重量測定装置の説明図である。FIG. 7 is an explanatory diagram of a weight measuring device according to a modification of the present embodiment.
 以下、図面等を参照して、本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings and the like.
 図1は、本実施形態に係る重量測定装置1を示す分解斜視図である。図2は、重量測定装置1のベース部10の上面図を示す。図3は、重量測定装置1のベース部10の斜視図を示す。 FIG. 1 is an exploded perspective view showing a weight measuring device 1 according to this embodiment. FIG. 2 shows a top view of the base portion 10 of the weighing device 1. As shown in FIG. FIG. 3 shows a perspective view of the base portion 10 of the weight measuring device 1. As shown in FIG.
 重量測定装置1としては、重量計、体重計、体組成計等が挙げられ、本実施形態の重量測定装置1は、被測定物である利用者の重量を測定する機能と、利用者の体脂肪率、内臓脂肪レベル、筋肉量、推定骨量、体水分率等の体組成を測定する機能と、を有する体組成計を構成する。 Examples of the weight measuring device 1 include a weight scale, a weight scale, and a body composition meter. and a function of measuring body composition such as fat percentage, visceral fat level, muscle mass, estimated bone mass, and body water percentage.
 重量測定装置1は、図1に示すように、ベース部10と、ベース部10の上側に配置される天板12とを備える。 The weight measuring device 1 includes a base portion 10 and a top plate 12 arranged above the base portion 10, as shown in FIG.
 重量測定装置1は、天板12に乗せられた被測定物の重さを測定する。ベース部10及び天板12は、四隅の角が丸くR加工された正方形状の板状に形成される。なお、本実施形態では、重量測定装置1が正方形状である場合について説明するが、これに限定されるものではなく、例えば、長方形状であってもよい。 The weight measuring device 1 measures the weight of the object placed on the top plate 12 . The base portion 10 and the top plate 12 are formed in a square plate shape with rounded corners. In this embodiment, the case where the weight measuring device 1 has a square shape will be described, but it is not limited to this, and may have, for example, a rectangular shape.
 天板12は、長方形状の表示窓21と、四つの測定電極22(22A、22B、22C、22D)とを備える。表示窓21は、透明な板で構成され、ベース部10に配置される表示部31の表示内容を透過する。表示部31は、利用者の重量及び体組成等を表示する。測定電極22は、利用者の生体インピーダンスを測定するための電極である。 The top plate 12 includes a rectangular display window 21 and four measurement electrodes 22 (22A, 22B, 22C, 22D). The display window 21 is made of a transparent plate and allows the display contents of the display section 31 arranged on the base section 10 to pass therethrough. The display unit 31 displays the user's weight, body composition, and the like. The measurement electrode 22 is an electrode for measuring a user's bioimpedance.
 なお、以下では、図1に示すX方向、Y方向及びZ方向は、それぞれ、縦方向、横方向及び高さ方向とも称する。 In the following, the X direction, Y direction and Z direction shown in FIG. 1 are also referred to as vertical direction, horizontal direction and height direction, respectively.
 次に、本実施形態におけるベース部10の構成について説明する。 Next, the configuration of the base portion 10 in this embodiment will be described.
 ベース部10は、板状の部材であって、その表面の全体に格子状のリブが高さ方向に形成されている。ベース部10は、この格子状のリブにより、強度を保ったまま軽量化される。 The base portion 10 is a plate-like member, and grid-like ribs are formed on the entire surface in the height direction. The base portion 10 is lightened while maintaining its strength due to the grid-like ribs.
 ベース部10の中央のやや上部には、メイン基板30が配置されるメイン基板配置部11が、ベース部10の表面よりも高さ方向にやや凹んだ位置に長方形状に形成される。ベース部10の四隅付近には、センサユニット40(40A、40B、40C、40D)を装着するための丸穴形状のセンサユニット装着孔14(14A、14B、14C、14D)がベース部10の高さ方向に貫通して形成される。 A main substrate placement portion 11 in which the main substrate 30 is placed is formed slightly above the center of the base portion 10 in a rectangular shape at a position slightly recessed in the height direction from the surface of the base portion 10 . Round sensor unit mounting holes 14 (14A, 14B, 14C, 14D) for mounting the sensor units 40 (40A, 40B, 40C, 40D) are provided near the four corners of the base section 10. It is formed penetrating in the vertical direction.
 メイン基板配置部11と各センサユニット装着孔14との間には、後述するボンディングワイヤ50を配索するための溝部16が、ボンディングワイヤ50の配索方向に沿って形成される。溝部16は、ベース部10の格子状のリブ表面よりもやや凹んだ位置に、センサユニット40からメイン基板30に向かって徐々に高さ方向に低くなるような直線状の溝形状として形成される。溝部16の両側には、図3に示すように、ベース部10の高さ方向に垂直の壁部16aが形成される。 Between the main board placement portion 11 and each sensor unit mounting hole 14, groove portions 16 for routing bonding wires 50, which will be described later, are formed along the routing direction of the bonding wires 50. As shown in FIG. The groove portion 16 is formed in a linear groove shape that gradually decreases in the height direction from the sensor unit 40 toward the main substrate 30 at a position slightly recessed from the grid-like rib surface of the base portion 10 . . On both sides of the groove portion 16, walls 16a are formed perpendicular to the height direction of the base portion 10, as shown in FIG.
 メイン基板30は、長方形のプリント基板により構成され、その四隅には、メイン基板配置部11にボルト止め等により固定するための固定部36を備える。図2に示すように、メイン基板30の表面には、LCDにより構成される表示部31と、メイン基板30の端子部としての複数の電極33とが配置される。メイン基板30の裏面側には、演算装置32が実装される。電極33の各々には、後述するように、各ロードセル41の検出信号が伝達されるボンディングワイヤ50が接続される。メイン基板30において、ボンディングワイヤ50が接続される電極33と演算装置32との間の配線は互いにブリッジ接続されている。 The main board 30 is composed of a rectangular printed board, and has fixing portions 36 at its four corners for fixing to the main board placement portion 11 by bolting or the like. As shown in FIG. 2, on the surface of the main substrate 30, a display portion 31 configured by an LCD and a plurality of electrodes 33 as terminal portions of the main substrate 30 are arranged. An arithmetic device 32 is mounted on the back side of the main board 30 . A bonding wire 50 to which a detection signal of each load cell 41 is transmitted is connected to each of the electrodes 33, as will be described later. In the main substrate 30, the wiring between the electrodes 33 to which the bonding wires 50 are connected and the computing device 32 are bridge-connected to each other.
 演算装置32は、各ロードセル41の検出信号を受信し、受信した検出信号に基づいて天板12に載置された被測定物の重量を演算する。また、演算装置32は、各測定電極22の検出信号を受信して、受信した検出信号に基づいて、天板12の測定電極22に接触した利用者の体組成を演算する。 The computing device 32 receives the detection signal of each load cell 41 and computes the weight of the object placed on the top board 12 based on the received detection signal. Further, the calculation device 32 receives the detection signal of each measurement electrode 22 and calculates the body composition of the user who is in contact with the measurement electrode 22 of the tabletop 12 based on the received detection signal.
 センサユニット40には、図4A及び図4Bで詳述するが、円筒形状の樹脂ケース45内にロードセル41が収容され、その上面に中継基板42が配置されている。中継基板42には、ロードセル41の端子部としての複数の電極44が備えられる。 In the sensor unit 40, as will be described in detail with reference to FIGS. 4A and 4B, a load cell 41 is housed in a cylindrical resin case 45, and a relay board 42 is arranged on the upper surface thereof. The relay substrate 42 is provided with a plurality of electrodes 44 as terminal portions of the load cells 41 .
 メイン基板30とセンサユニット40との間には、検出信号を伝達するための信号線であるボンディングワイヤ50が配線される。ボンディングワイヤ50は、アルミニウム又は銅からなる導電性の線材により構成される。本実施形態では、一例として直径が約500μmのアルミニウムからなる太線をボンディングワイヤ50として用いる。図2に示すように、ボンディングワイヤ50は、メイン基板30とセンサユニット40との間で、平面視において直線状に配置される。 Between the main substrate 30 and the sensor unit 40, bonding wires 50, which are signal lines for transmitting detection signals, are wired. The bonding wires 50 are made of conductive wires made of aluminum or copper. In this embodiment, as an example, a thick aluminum wire having a diameter of about 500 μm is used as the bonding wire 50 . As shown in FIG. 2, the bonding wires 50 are arranged linearly in plan view between the main substrate 30 and the sensor unit 40 .
 ここで、本実施形態の重量測定装置1における、ロードセル41とメイン基板30との間の配線について説明する。 Here, the wiring between the load cell 41 and the main substrate 30 in the weight measuring device 1 of this embodiment will be described.
 従来、ロードセルとメイン基板との間の配線は、作業者がリード線を一つ一つ手作業で格子状のリブに沿って折り曲げ加工し、リード線の先端を各電極に半田付けを行うことで接続が行なわれていた。このため、ロードセルとメイン基板との配線の作業工数が増加するという問題があった。 Conventionally, wiring between the load cell and the main board was done by manually bending the lead wires one by one along the grid-shaped ribs and soldering the ends of the lead wires to the electrodes. A connection was made with Therefore, there is a problem that the number of work steps for wiring between the load cell and the main substrate increases.
 これに対して、作業工数を低減するために、自動組立装置(ロボット)により、ロードセルとメイン基板との間の配線作業の自動化を行うことも考えられるが、リード線を適切に折り曲げ加工し、さらに半田付けを行うことは、ロボットでは困難である。 On the other hand, in order to reduce the work man-hours, it is conceivable to automate the wiring work between the load cell and the main board by using an automatic assembly device (robot). Further soldering is difficult for robots.
 そこで本実施形態では、メイン基板30とセンサユニット40(ロードセル41)との間にボンディングワイヤ50が直線状に配索されるように構成した。これにより、メイン基板30とセンサユニット40との距離が短縮される。このような構成により、自動組立装置によるボンディングワイヤ50の自動配置を行うことが可能になる。さらに、ボンディングワイヤ50を容易に接続できるように、電極44を備える中継基板42を配置することで、配線がより自動化されやすく構成した。ボンディングワイヤ50の電極44への接続は、例えば溶着により接続されるが、接続の方法はこれに限定するものではない。以下、本実施形態の説明では、溶着によって接続される例を示す。 Therefore, in the present embodiment, the bonding wires 50 are arranged in a straight line between the main substrate 30 and the sensor unit 40 (load cell 41). Thereby, the distance between the main substrate 30 and the sensor unit 40 is shortened. Such a configuration enables automatic placement of the bonding wires 50 by an automatic assembly device. Furthermore, by arranging the relay substrate 42 having the electrodes 44 so that the bonding wires 50 can be easily connected, the wiring can be easily automated. The bonding wire 50 is connected to the electrode 44 by, for example, welding, but the connection method is not limited to this. In the following description of this embodiment, an example of connection by welding will be shown.
 図2に示すように、ベース部10において、中継基板42の電極44とメイン基板30の電極33とを結ぶ線分上に、それぞれ複数の溝部16が形成される。本実施形態では、一つのセンサユニット40において、中継基板42とメイン基板30との間に三本のボンディングワイヤ50が配線される例を示す。 As shown in FIG. 2 , in the base portion 10 , a plurality of groove portions 16 are formed on line segments connecting the electrodes 44 of the relay substrate 42 and the electrodes 33 of the main substrate 30 . This embodiment shows an example in which three bonding wires 50 are wired between the relay board 42 and the main board 30 in one sensor unit 40 .
 中継基板42とメイン基板30との間には、三つのボンディングワイヤ50が直線状に配索されるように三つの溝部16が形成される。溝部16の両側には、図3に示すように、垂直方向に壁部16aが形成される。壁部16aの上端は、格子状のリブの上端と高さ方向で同じである。 Between the relay board 42 and the main board 30, three grooves 16 are formed so that three bonding wires 50 are arranged in a straight line. Wall portions 16a are formed in the vertical direction on both sides of the groove portion 16, as shown in FIG. The upper end of the wall portion 16a is the same in the height direction as the upper end of the grid-like ribs.
 そして、このような構成により、ロードセル41とメイン基板30とが最短距離で結ばれるようになり、この間に配索されるボンディングワイヤ50の距離が、リード線を配線する従来の構成よりも短縮される(例えば5~10cm)。これにより、ボンディングワイヤ50の距離を、ボンディングワイヤ50を配索するワイヤボンダの可動範囲内に収めることができる。 With such a configuration, the load cell 41 and the main substrate 30 are connected at the shortest distance, and the distance of the bonding wire 50 routed between them is shortened compared to the conventional configuration in which lead wires are wired. (eg 5-10 cm). As a result, the distance of the bonding wires 50 can be kept within the movable range of the wire bonder that routes the bonding wires 50 .
 このような構成により、ベース部10のメイン基板30に、ロードセル41からの検出信号を伝達する配線を、自動組立装置であるワイヤボンダを用いて自動的に配線することが可能となる。 With such a configuration, it is possible to automatically wire the wiring for transmitting the detection signal from the load cell 41 to the main substrate 30 of the base section 10 using a wire bonder, which is an automatic assembly device.
 より具体的には、ワイヤボンダは、中継基板42の電極44のいずれか一つにボンディングワイヤ50の一端を熱又は超音波により溶着し、ワイヤボンダの先端部を電極44からやや持ち上げて、一旦斜め上方へとボンディングワイヤ50を延伸させた後、メイン基板30に向かって斜め下方へとボンディングワイヤ50を繰り出しながら延伸させる。ワイヤボンダは、溝部16に沿って、メイン基板30の電極33に向かって直線状に進みながらボンディングワイヤ50を延伸させる。ボンディングワイヤ50が電極33に達した位置で、ボンディングワイヤ50を電極33に対して斜め下方に延伸させた後、ボンディングワイヤ50を電極33に溶着する。 More specifically, the wire bonder welds one end of the bonding wire 50 to one of the electrodes 44 of the relay substrate 42 by heat or ultrasonic waves, slightly lifts the tip of the wire bonder from the electrode 44, and once obliquely upwards. After extending the bonding wire 50 to the main substrate 30 , the bonding wire 50 is extended obliquely downward toward the main substrate 30 . The wire bonder extends the bonding wire 50 along the groove portion 16 while moving straight toward the electrode 33 of the main substrate 30 . At the position where the bonding wire 50 reaches the electrode 33 , the bonding wire 50 is extended obliquely downward with respect to the electrode 33 , and then the bonding wire 50 is welded to the electrode 33 .
 同様にして、ワイヤボンダは、中継基板42の他の電極44とメイン基板30の他の電極33との間にボンディングワイヤ50を配線する。一つのセンサユニット40について全ての配線が完了した後、ワイヤボンダは、他のセンサユニット40についても同様に、配線を行う。 Similarly, the wire bonder wires the bonding wire 50 between the other electrode 44 of the relay board 42 and the other electrode 33 of the main board 30 . After completing wiring for one sensor unit 40 , the wire bonder performs wiring for other sensor units 40 in the same manner.
 このように、ワイヤボンダが、中継基板42の電極44とメイン基板30の電極33とに、それぞれボンディングワイヤ50の一端と他端とを接続することで、中継基板42の電極44とメイン基板30の電極33とが、ボンディングワイヤ50により電気的に接続される。ボンディングワイヤ50の電極33、44への接続は、例えば溶着により行われるが、半田付け等、他の接続方法であってもよい。 In this manner, the wire bonder connects one end and the other end of the bonding wire 50 to the electrode 44 of the relay substrate 42 and the electrode 33 of the main substrate 30, respectively, thereby bonding the electrode 44 of the relay substrate 42 and the main substrate 30 together. and electrodes 33 are electrically connected by bonding wires 50 . The bonding wires 50 are connected to the electrodes 33 and 44 by welding, for example, but other connection methods such as soldering may be used.
 ボンディングワイヤ50は、中継基板42の電極44とメイン基板30の電極33との付近で高さ方向に湾曲して配線される(図6参照)。このように構成することで、ボンディングワイヤ50の長さ方向に余裕を持たせることができるので、環境温度又は荷重の変化によるボンディングワイヤ50及びベース部10の変形による応力が、ボンディングワイヤ50の長さ方向に働くことを抑制することができる。 The bonding wires 50 are bent in the height direction near the electrodes 44 of the relay board 42 and the electrodes 33 of the main board 30 (see FIG. 6). With this configuration, it is possible to provide a margin in the length direction of the bonding wire 50, so stress due to deformation of the bonding wire 50 and the base portion 10 due to a change in environmental temperature or load is applied to the bonding wire 50. It can be suppressed to work in the direction of
 また、ワイヤボンダによる自動配線を容易とするために、中継基板42の電極44とメイン基板30の電極33とは、ランドパターンを、ロードセル41の電極411(図7参照)よりも比較的大きく構成した。例えば、電極33及び電極44は、ロードセル41の電極411よりも3~5倍の幅に構成される。これにより、ワイヤボンダによるボンディングワイヤ50の溶着が容易となる。溶着が十分でない場合には、ワイヤボンダによる再溶着が可能となる。 Further, in order to facilitate automatic wiring by a wire bonder, the land pattern of the electrodes 44 of the relay board 42 and the electrodes 33 of the main board 30 is formed relatively larger than the electrode 411 (see FIG. 7) of the load cell 41. . For example, electrodes 33 and 44 are configured three to five times wider than electrode 411 of load cell 41 . This facilitates welding of the bonding wires 50 by a wire bonder. If the welding is not sufficient, re-welding with a wire bonder is possible.
 このように、センサユニット40の中継基板42とメイン基板30との間(5~10cm)を、ワイヤボンダを用いてボンディングワイヤ50を配線することにより、自動的に配線を行うことができる。 Thus, wiring can be automatically performed by wiring the bonding wire 50 between the relay board 42 of the sensor unit 40 and the main board 30 (5 to 10 cm) using a wire bonder.
 また、ベース部10の裏面側には、円筒形状の乾電池又は二次電池からなるバッテリを収容するバッテリ室15が形成されている。 A battery chamber 15 is formed on the back side of the base portion 10 to accommodate a cylindrical dry battery or secondary battery.
 ベース部10と天板12との間には、天板12の各測定電極22(22A、22B、22C、22D)の裏面とメイン基板30の各電極33との間で電気信号を伝達するための接続部材25(25A、25B、25C、25D)がそれぞれ配置される。接続部材25は、高さ方向に延伸するコイル部251と、コイル部251からベース部10の表面方向に沿って延設されるワイヤ部252とから形成される。 Between the base portion 10 and the top plate 12, there is a are arranged respectively. The connection member 25 is formed of a coil portion 251 extending in the height direction and a wire portion 252 extending from the coil portion 251 along the surface direction of the base portion 10 .
 コイル部251は、高さ方向に圧縮可能であり、ベース部10に天板12が載置された状態で天板12の測定電極22の裏面とベース部10の表面との間で圧縮される。これにより、コイル部251が、その付勢力により測定電極22の裏面に密着するので、測定電極22とコイル部251とが導通状態となる。ワイヤ部252の先端は、メイン基板30の電極33に半田付け又はねじ止めにより固定される。 The coil portion 251 is compressible in the height direction, and is compressed between the back surface of the measurement electrode 22 of the top plate 12 and the front surface of the base portion 10 when the top plate 12 is placed on the base portion 10 . . As a result, the coil portion 251 is in close contact with the back surface of the measurement electrode 22 due to its biasing force, so that the measurement electrode 22 and the coil portion 251 are brought into a conductive state. The tip of the wire portion 252 is fixed to the electrode 33 of the main substrate 30 by soldering or screwing.
 次に、本実施形態におけるセンサユニット40について、図4A及び図4Bを参照して詳細に説明する。 Next, the sensor unit 40 in this embodiment will be described in detail with reference to FIGS. 4A and 4B.
 図4Aは、本実施形態におけるセンサユニット40の上面図を示す。図4Bは、センサユニット40の側面図を示す。 FIG. 4A shows a top view of the sensor unit 40 in this embodiment. 4B shows a side view of the sensor unit 40. FIG.
 センサユニット40は、重量を検出するためのロードセル41、中継基板42及び脚43を、円筒形状の樹脂ケース45に収容して構成される。 The sensor unit 40 is configured by housing a load cell 41 for detecting weight, a relay board 42 and legs 43 in a cylindrical resin case 45 .
 ロードセル41は、起歪体と荷重に対して互いに逆の歪特性を示す一対の歪センサとを備える。歪みセンサには複数のリード線46が接続され、リード線46の他端は中継基板42に接続される。中継基板42において、接続されたリード線46が、各電極33に電気的に接続される。 The load cell 41 includes a strain element and a pair of strain sensors that exhibit mutually opposite strain characteristics with respect to the load. A plurality of lead wires 46 are connected to the strain sensor, and the other ends of the lead wires 46 are connected to the relay board 42 . Lead wires 46 connected to the relay substrate 42 are electrically connected to the respective electrodes 33 .
 図4Bに示すように、センサユニット40の樹脂ケース45の周囲には、等間隔に突起部401が突出して形成されている。また、樹脂ケース45の下面側には、円筒形状の脚43が装着される。脚43は、樹脂ケース45の外径よりも小径に形成される。樹脂ケース45の下端側の脚43との境界部分では、樹脂ケース45と同径の波バネ部441が周方向に形成される。脚43は、ゴム又はシリコーン等の弾性が大きい材質により形成される。 As shown in FIG. 4B, protrusions 401 are formed at regular intervals around the resin case 45 of the sensor unit 40 . A cylindrical leg 43 is attached to the lower surface of the resin case 45 . The leg 43 is formed with a smaller diameter than the outer diameter of the resin case 45 . A wave spring portion 441 having the same diameter as that of the resin case 45 is formed in the circumferential direction at the boundary between the lower end of the resin case 45 and the leg 43 . The leg 43 is made of a highly elastic material such as rubber or silicone.
 ロードセル41は、樹脂ケース45の内部で、起歪体の一方が樹脂ケース45に、他方が脚43に固定されている。 In the load cell 41 , one of the strain generating bodies is fixed to the resin case 45 and the other is fixed to the leg 43 inside the resin case 45 .
 図5は、本実施形態におけるベース部10及びセンサユニット40の分解斜視図である。図6は、本実施形態におけるセンサユニット40が装着されたベース部10の断面図であり、図3のVI-VI断面図を示す。 FIG. 5 is an exploded perspective view of the base portion 10 and the sensor unit 40 in this embodiment. FIG. 6 is a cross-sectional view of the base portion 10 to which the sensor unit 40 is attached according to the present embodiment, showing a cross-sectional view taken along line VI-VI in FIG.
 ベース部10のセンサユニット装着孔14は、その内周に係合部141と小径部142とを備える。係合部141は、センサユニット装着孔14の内壁に、等間隔に内側に突出して形成される。係合部141の位置は、センサユニット40の突起部401に対応する位置に形成され、突起部401の高さ方向の上部で係合するようになっている。センサユニット装着孔14の内径は、センサユニット40の樹脂ケース45の外径よりやや大きく形成され、小径部142は、センサユニット40の脚43の外径よりもやや大きく形成される。 The sensor unit mounting hole 14 of the base portion 10 has an engaging portion 141 and a small diameter portion 142 on its inner circumference. The engaging portions 141 are formed on the inner wall of the sensor unit mounting hole 14 so as to protrude inward at regular intervals. The position of the engaging portion 141 is formed at a position corresponding to the projection 401 of the sensor unit 40, and engages with the upper part of the projection 401 in the height direction. The inner diameter of the sensor unit mounting hole 14 is formed slightly larger than the outer diameter of the resin case 45 of the sensor unit 40 , and the small diameter portion 142 is formed slightly larger than the outer diameter of the leg 43 of the sensor unit 40 .
 センサユニット40をベース部10に取り付ける際は、センサユニット40をセンサユニット装着孔14に挿入してセンサユニット40の下面をセンサユニット装着孔14の小径部142に当接させる。この状態で、センサユニット40を時計回り方向に所定の角度に回転させる。これにより、突起部401が係合部141に係合し、圧縮された波バネ部441の付勢力により、センサユニット40がセンサユニット装着孔14に固定される。 When attaching the sensor unit 40 to the base portion 10 , the sensor unit 40 is inserted into the sensor unit mounting hole 14 and the lower surface of the sensor unit 40 is brought into contact with the small diameter portion 142 of the sensor unit mounting hole 14 . In this state, the sensor unit 40 is rotated clockwise by a predetermined angle. As a result, the protrusion 401 is engaged with the engaging portion 141 , and the biasing force of the compressed wave spring portion 441 fixes the sensor unit 40 to the sensor unit mounting hole 14 .
 なお、センサユニット40をベース部10に取り付ける行程についても、ロボット等の自動組立装置を用いて行うことが可能になる。例えば、ロボットが、センサユニット40を把持してベース部10のセンサユニット装着孔14に運び、これを挿入及び回転を自動的に行う。これにより、センサユニット40をベース部10に自動的に取り付けることが可能となる。 The process of attaching the sensor unit 40 to the base portion 10 can also be performed using an automatic assembly device such as a robot. For example, a robot grips the sensor unit 40, carries it to the sensor unit mounting hole 14 of the base portion 10, and automatically inserts and rotates it. This allows the sensor unit 40 to be automatically attached to the base portion 10 .
 なお、ベース部10に取り付けられるセンサユニット40は、内装されるロードセル41の検出特性が近似するものを予め選定しておき、選定された四つのセンサユニット40をベース部10に装着する。このように構成することで、被測定物の重量の測定精度が向上する。 Note that the sensor units 40 to be attached to the base portion 10 are selected in advance so that the detection characteristics of the load cells 41 to be installed are similar, and the selected four sensor units 40 are attached to the base portion 10 . By configuring in this way, the measurement accuracy of the weight of the object to be measured is improved.
 図6に示すように、センサユニット40がセンサユニット装着孔14に装着された状態では、ベース部10の裏面から、小径部142を介して脚43がベース部10の裏面側に突出する。 As shown in FIG. 6 , when the sensor unit 40 is attached to the sensor unit attachment hole 14 , the leg 43 protrudes from the back surface of the base portion 10 to the back surface side of the base portion 10 via the small diameter portion 142 .
 センサユニット40がベース部10に装着された状態では、天板12に被測定物を載置すると、被測定物の重量により、ベース部10の四隅付近に配置されたセンサユニット40の脚43がそれぞれ弾性変形する。これにより、ベース部10に固定されたセンサユニット40の樹脂ケース45と、脚43との間で歪みが生じる。ロードセル41は、この歪みを検出し、検出信号として出力する。出力された検出信号は、ボンディングワイヤ50を伝達してメイン基板30の演算装置32に送られる。演算装置32は、各ロードセル41から出力された検出信号を取得し、取得し検出信号に基づいて、天板12に載置された被測定物の重量を演算する。演算結果は、表示部31に表示される。 When the object to be measured is placed on the top plate 12 while the sensor unit 40 is attached to the base portion 10, the legs 43 of the sensor unit 40 arranged near the four corners of the base portion 10 are bent by the weight of the object to be measured. Each elastically deforms. As a result, distortion occurs between the resin case 45 of the sensor unit 40 fixed to the base portion 10 and the leg 43 . The load cell 41 detects this distortion and outputs it as a detection signal. The output detection signal is transmitted through the bonding wire 50 and sent to the arithmetic device 32 of the main board 30 . The computing device 32 acquires the detection signal output from each load cell 41 and computes the weight of the object placed on the top plate 12 based on the acquired detection signal. A calculation result is displayed on the display unit 31 .
 ここで、図1から図6で前述したように、本実施形態は、ベース部10とセンサユニット40とを別部品として構成し、ベース部10に、予め組み立てられたセンサユニット40を装着するように構成した。これに対して、重量測定装置1が、センサユニット40を別部品とせず、ベース部10に、ロードセル41、中継基板42及び脚43を直接配置するように構成してもよい。例えば、ベース部10をサンドイッチ構造として、その下側部分に脚43とロードセル41とを配置し、その上側部分に中継基板42を配置し、これらを高さ方向に接合した後に、上述したようにワイヤボンダによってボンディングワイヤ50の配線を行うように構成してもよい。 Here, as described above with reference to FIGS. 1 to 6, in this embodiment, the base portion 10 and the sensor unit 40 are configured as separate parts, and the preassembled sensor unit 40 is attached to the base portion 10. configured to On the other hand, the weight measuring device 1 may be configured such that the load cell 41 , the relay board 42 and the leg 43 are directly arranged on the base portion 10 without the sensor unit 40 being a separate component. For example, the base portion 10 has a sandwich structure, the leg 43 and the load cell 41 are arranged in the lower portion thereof, and the relay board 42 is arranged in the upper portion thereof. A wire bonder may be used to wire the bonding wires 50 .
 また、ロードセル41は、歪センサの変形による微少な抵抗値の変化を検出するものである。図2に示すように、センサユニット40とメイン基板30との間をボンディングワイヤ50により直線状に配線すると、ボンディングワイヤ50の配線長の違いによってボンディングワイヤ50の抵抗値に差異が生じ、ロードセル41の検出信号に影響を与えるおそれがある。 Also, the load cell 41 detects minute changes in resistance due to deformation of the strain sensor. As shown in FIG. 2, when the sensor unit 40 and the main substrate 30 are linearly wired by the bonding wires 50, the difference in the wiring length of the bonding wires 50 causes a difference in the resistance value of the bonding wires 50. may affect the detection signal of
 これを抑えるために、例えばメイン基板30において、ロードセル41毎に配線長が同一となるように、電極33と演算装置32との間の配線パターンを設定してもよい。または、演算装置32が、予め各ロードセル41と演算装置32との配線長を記憶しておき、入力されたロードセル41の検出信号に対して、配線長による影響を補正するような演算を行うようにしてもよい。 In order to suppress this, for example, on the main substrate 30, the wiring pattern between the electrodes 33 and the arithmetic device 32 may be set so that the wiring lengths of the load cells 41 are the same. Alternatively, the arithmetic unit 32 may store the wiring length between each load cell 41 and the arithmetic unit 32 in advance, and perform an arithmetic operation on the input detection signal of the load cell 41 so as to correct the influence of the wiring length. can be
 次に、本実施形態の変形例について、図7を参照して説明する。 Next, a modified example of this embodiment will be described with reference to FIG.
 図7は、本実施形態の変形例のベース部10の上面図である。 FIG. 7 is a top view of the base portion 10 of a modified example of this embodiment.
 この変形例では、中継基板42を備えず、ベース部10に配置したロードセル41の電極411とメイン基板30の電極33との間を、ボンディングワイヤ50により配線するように構成した。 In this modified example, the relay substrate 42 is not provided, and the electrodes 411 of the load cells 41 arranged on the base portion 10 and the electrodes 33 of the main substrate 30 are wired by the bonding wires 50 .
 ロードセル41の電極411は、歪センサに直に配置されているために面積が小さい。この面積は、例えば幅が1mm以下である。上述した実施形態では、この電極411に細線のリード線46を接続し、図4Aに示すように、これを中継基板42へと配線することで、面積が大きく形成された電極44に、ワイヤボンダでボンディングワイヤ50を溶着することが容易となるように構成した。 The electrode 411 of the load cell 41 has a small area because it is arranged directly on the strain sensor. This area is, for example, 1 mm or less in width. In the above-described embodiment, the thin lead wire 46 is connected to the electrode 411 and wired to the relay substrate 42 as shown in FIG. 4A. The bonding wire 50 is configured to be easily welded.
 これに対して、本変形例では、ロードセル41に配置された小さい電極411にボンディングワイヤ50を溶着させ、ロードセル41とメイン基板30との間にボンディングワイヤ50を配線した。このような配線を行うことができれば、中継基板42を省略して、ロードセル41の電極411をロードセル41の端子部として構成し、ロードセル41の端子部とメイン基板30の電極33との間にボンディングワイヤ50を自動的に配線することが可能となる。これにより、重量測定装置1の部品点数を削減することができる。 On the other hand, in this modification, the bonding wire 50 is welded to the small electrode 411 arranged on the load cell 41 and wired between the load cell 41 and the main substrate 30 . If such wiring can be performed, the relay substrate 42 can be omitted, the electrode 411 of the load cell 41 can be configured as the terminal portion of the load cell 41, and the terminal portion of the load cell 41 and the electrode 33 of the main substrate 30 can be bonded. Wires 50 can be routed automatically. Thereby, the number of parts of the weight measuring device 1 can be reduced.
 なお、上述した実施形態では、ロードセル41とメイン基板30との間を自動組立装置により自動的に配線を行うように構成したが、これに限られず、他の配線についても自動的に配線を行うように構成してもよい。例えば、バッテリ室15に配置された電極とメイン基板30との間に溝部16をさらに形成し、自動組立装置により、溝部16にボンディングワイヤ50を配線するように構成してもよい。 In the above-described embodiment, the wiring between the load cell 41 and the main substrate 30 is automatically performed by the automatic assembly device, but the present invention is not limited to this, and other wirings are automatically wired. It may be configured as For example, a groove 16 may be further formed between the electrodes arranged in the battery chamber 15 and the main substrate 30, and the bonding wires 50 may be wired in the groove 16 by an automatic assembly device.
 以上説明したように、本実施形態に係る重量測定装置1は、重量を検出するロードセル41と、ロードセル41を保持するベース部10と、ベース部10に配置され、ロードセル41からの検出信号に基づいて被測定物の重量を演算する演算装置32が実装されるメイン基板30と、ロードセル41の端子部(電極44)とメイン基板30の端子部(電極33)とを電気的に接続するように平面視において直線状に配索されたボンディングワイヤ50と、を備える。 As described above, the weight measuring device 1 according to the present embodiment includes the load cell 41 that detects the weight, the base portion 10 that holds the load cell 41 , and the weight measuring device 1 arranged on the base portion 10 , based on the detection signal from the load cell 41 . The main substrate 30, on which an arithmetic unit 32 for calculating the weight of the object to be measured is mounted, is electrically connected to the terminal portion (electrode 44) of the load cell 41 and the terminal portion (electrode 33) of the main substrate 30. and a bonding wire 50 arranged in a straight line in a plan view.
 このような構成によれば、ロードセル41とメイン基板30との間が、ボンディングワイヤ50を用いて直線状に配線される。これにより、ロードセル41とメイン基板30との間の配線長を短縮でき、直線状に配線する作業においては、自動組立装置によりベース部10における配線を自動的に行うことが可能となるので、作業工数を削減できる。作業工数の削減により、重量測定装置1の製造コスト及び製造期間を削減することが可能となる。 According to such a configuration, the load cells 41 and the main substrate 30 are wired linearly using the bonding wires 50 . As a result, the wiring length between the load cell 41 and the main board 30 can be shortened, and in the work of wiring in a straight line, the wiring in the base portion 10 can be automatically performed by the automatic assembly device. Man-hours can be reduced. By reducing the number of work steps, it is possible to reduce the manufacturing cost and manufacturing period of the weight measuring device 1 .
 また、本実施形態では、ベース部10は、複数のロードセル41と、複数のロードセル41とメイン基板30とを接続する複数のボンディングワイヤ50と、を備える。 Also, in this embodiment, the base portion 10 includes a plurality of load cells 41 and a plurality of bonding wires 50 that connect the plurality of load cells 41 and the main substrate 30 .
 このような構成によれば、ベース部10に複数のロードセル41(41A、41B、41C、41D)を備える構成においても、自動組立装置により複数の配線を自動的に行うことが可能となり、作業工数がさらに削減できる。 According to such a configuration, even in a configuration in which a plurality of load cells 41 (41A, 41B, 41C, 41D) are provided in the base portion 10, it is possible to automatically perform a plurality of wirings by an automatic assembly device, reducing work man-hours. can be further reduced.
 また、本実施形態では、複数のロードセル41(41A、41B、41C、41D)は、ベース部10の四隅にそれぞれ配置される。 Also, in this embodiment, the plurality of load cells 41 (41A, 41B, 41C, 41D) are arranged at the four corners of the base portion 10, respectively.
 このような構成によれば、複数のロードセル41をベース部10の四隅に均等に配置することで、被測定物の重量をより正確に測定することができる。 According to such a configuration, by arranging the plurality of load cells 41 evenly at the four corners of the base portion 10, the weight of the object to be measured can be measured more accurately.
 また、本実施形態では、ロードセル41には、ロードセル41と電気的に接続される中継基板42が配置され、中継基板42にロードセル41の端子部が設けられ、ロードセル41の端子部にボンディングワイヤ50の一端が接続され、メイン基板30の端子部にボンディングワイヤ50の他端が接続されることによって、ロードセル41とメイン基板30とが電気的に接続される。 Further, in the present embodiment, the load cell 41 is provided with a relay substrate 42 electrically connected to the load cell 41 , the relay substrate 42 is provided with the terminal portion of the load cell 41 , and the terminal portion of the load cell 41 is connected to the bonding wire 50 . The load cell 41 and the main board 30 are electrically connected by connecting one end of the bonding wire 50 and connecting the other end of the bonding wire 50 to the terminal portion of the main board 30 .
 このような構成によれば、ロードセル41に中継基板42を配置して、中継基板42に設けられた電極44にボンディングワイヤ50の一端が接続される。これにより、図7に示すように、ロードセル41上の微小な電極411にボンディングワイヤ50を固定することが困難である場合にも、中継基板42とメイン基板30との間にボンディングワイヤ50を容易に配線することができる。 According to such a configuration, the relay board 42 is placed on the load cell 41 and one end of the bonding wire 50 is connected to the electrode 44 provided on the relay board 42 . As a result, as shown in FIG. 7, even when it is difficult to fix the bonding wires 50 to the minute electrodes 411 on the load cells 41, the bonding wires 50 can be easily connected between the relay substrate 42 and the main substrate 30. can be wired to
 また、本実施形態では、ロードセル41と中継基板42とが、樹脂ケース45によって固定されたセンサユニット40として構成され、ベース部10は、センサユニット40が装着されるセンサユニット装着孔14を有する。 In addition, in this embodiment, the load cell 41 and the relay board 42 are configured as the sensor unit 40 fixed by the resin case 45, and the base portion 10 has the sensor unit mounting hole 14 in which the sensor unit 40 is mounted.
 このような構成によれば、ロードセル41を予め別部品であるセンサユニット40として予め別部品としておくことで、ロボットにより、ベース部10のセンサユニット装着孔14にセンサユニット40を自動的に組み立てることができる。これにより、ベース部10の組み立ての作業工数を削減することができる。 According to such a configuration, the sensor unit 40 can be automatically assembled in the sensor unit mounting hole 14 of the base portion 10 by a robot by previously forming the load cell 41 as a separate component as the sensor unit 40 . can be done. Thereby, the work man-hours for assembling the base portion 10 can be reduced.
 また、本実施形態では、ベース部10において、ボンディングワイヤ50の配索方向に沿ってボンディングワイヤ50が収容される溝部16が形成される。 Further, in the present embodiment, the base portion 10 is formed with the groove portion 16 in which the bonding wire 50 is accommodated along the routing direction of the bonding wire 50 .
 このような構成によれば、ベース部10に形成した溝部16に沿って自動組立装置をスムーズに動作させることができるので、ボンディングワイヤ50の配線が容易となる。 With such a configuration, the automatic assembly apparatus can be smoothly operated along the grooves 16 formed in the base portion 10, so wiring of the bonding wires 50 is facilitated.
 また、本実施形態では、ベース部10は、メイン基板30に電力を供給するバッテリが収容されるバッテリ室15と、バッテリ室15に配置される電極とメイン基板30との間に平面視において直線状に配索されるボンディングワイヤ50と、を備える。 Further, in the present embodiment, the base portion 10 includes a battery chamber 15 in which a battery that supplies power to the main substrate 30 is accommodated, and a straight line in plan view between the electrodes arranged in the battery chamber 15 and the main substrate 30 . and a bonding wire 50 arranged in a shape.
 このような構成によれば、バッテリ室15とメイン基板30とをボンディングワイヤ50により配線することにより、自動組立装置によりベース部10における配線を自動的に行うことが可能となる。 According to such a configuration, by wiring the battery chamber 15 and the main board 30 with the bonding wires 50, the wiring in the base portion 10 can be automatically performed by an automatic assembly device.
 また、本実施形態は、前述のように構成された重量測定装置1を備える体組成計として構成される。 Further, this embodiment is configured as a body composition meter including the weight measuring device 1 configured as described above.
 このような構成によれば、自動組立装置によりベース部10における配線を自動的に行うことが可能となるので、体組成計の作業工数を削減できる。作業工数の削減により、体組成計の製造コスト及び製造期間を削減できる体組成計を提供することが可能となる。 According to such a configuration, it is possible to automatically perform wiring in the base portion 10 by an automatic assembly device, so that the number of work steps for the body composition analyzer can be reduced. By reducing the number of work steps, it is possible to provide a body composition monitor capable of reducing the manufacturing cost and manufacturing period of the body composition monitor.
 以上、本発明の実施形態、及びその変形例について説明したが、上記実施形態及び変形例は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。 Although the embodiments of the present invention and their modifications have been described above, the above embodiments and modifications merely show a part of the application examples of the present invention, and the technical scope of the present invention is limited to the above embodiments. It is not intended to be limited to a specific configuration.
 本実施形態の重量測定装置1は、被測定物である利用者の体組成を測定する体組成計として説明したが、これに限られるものではなく、重量測定装置1が被測定物の重量を測定する機能のみを有するものであってもよい。 Although the weight measuring device 1 of the present embodiment has been described as a body composition meter that measures the body composition of the user, who is the object to be measured, the weight measuring device 1 is not limited to this. It may have only the function of measuring.
 また、本実施形態の重量測定装置1は、ベース部10の四隅に四つのロードセル41を配置した例を示したが、これに限られない。例えば、重量測定装置1は、ベース部10の中央に一つのロードセル41を配置する構成であってもよい。この場合は、ベース部10の中央付近に一つのセンサユニット40を配置し、このセンサユニット40の中継基板42とメイン基板30との間にボンディングワイヤ50が配索されるように構成される。 Further, although the weight measuring device 1 of the present embodiment has shown an example in which the four load cells 41 are arranged at the four corners of the base portion 10, the present invention is not limited to this. For example, the weight measuring device 1 may have a configuration in which one load cell 41 is arranged in the center of the base portion 10 . In this case, one sensor unit 40 is arranged near the center of the base portion 10 and the bonding wire 50 is routed between the relay substrate 42 of this sensor unit 40 and the main substrate 30 .
 本願は、2022年1月27日に日本国特許庁に出願された特願2022-011150に基づく優先権を主張する。この出願のすべての内容は参照により本明細書に組み込まれる。 This application claims priority based on Japanese Patent Application No. 2022-011150 filed with the Japan Patent Office on January 27, 2022. The entire contents of this application are incorporated herein by reference.
 1   重量測定装置
 10  ベース部
 14  センサユニット装着孔
 15  バッテリ室
 16  溝部
 16a 壁部
 30  メイン基板
 32  演算装置
 40  センサユニット
 41  ロードセル
 42  中継基板
 45  樹脂ケース
 50  ボンディングワイヤ
Reference Signs List 1 weight measuring device 10 base portion 14 sensor unit mounting hole 15 battery chamber 16 groove portion 16a wall portion 30 main substrate 32 arithmetic device 40 sensor unit 41 load cell 42 relay substrate 45 resin case 50 bonding wire

Claims (8)

  1.  重量測定装置であって、
     重量を検出するロードセルと、
     前記ロードセルを保持するベース部と、
     前記ベース部に配置され、前記ロードセルからの検出信号に基づいて被測定物の重量を演算する演算装置が実装されるメイン基板と、
     前記ロードセルの端子部と前記メイン基板の端子部とを電気的に接続するように平面視において直線状に配索されたボンディングワイヤと、を備える、
     重量測定装置。
    A weighing device,
    a load cell for detecting weight;
    a base holding the load cell;
    a main board on which is mounted an arithmetic unit that is arranged on the base and calculates the weight of the object to be measured based on the detection signal from the load cell;
    a bonding wire arranged linearly in a plan view so as to electrically connect the terminal portion of the load cell and the terminal portion of the main substrate;
    Weighing device.
  2.  請求項1に記載の重量測定装置であって、
     前記ベース部は、
     複数の前記ロードセルと、
     前記複数のロードセルと前記メイン基板とを接続する複数の前記ボンディングワイヤと、を備える、
     重量測定装置。
    The weight measuring device according to claim 1,
    The base portion
    a plurality of the load cells;
    a plurality of bonding wires connecting the plurality of load cells and the main substrate;
    Weighing device.
  3.  請求項2に記載の重量測定装置であって、
     前記複数のロードセルは、前記ベース部の四隅にそれぞれ配置される、
     重量測定装置。
    The weight measuring device according to claim 2,
    The plurality of load cells are arranged at four corners of the base portion, respectively.
    Weighing device.
  4.  請求項1から3のいずれか一つに記載の重量測定装置であって、
     前記ロードセルには、前記ロードセルと電気的に接続される中継基板が配置され、前記中継基板に前記ロードセルの端子部が設けられ、
     前記ロードセルの端子部に前記ボンディングワイヤの一端が接続され、前記メイン基板の端子部に前記ボンディングワイヤの他端が接続されることによって、前記ロードセルと前記メイン基板とが電気的に接続される、
     重量測定装置。
    The weight measuring device according to any one of claims 1 to 3,
    A relay board electrically connected to the load cell is disposed on the load cell, and a terminal portion of the load cell is provided on the relay board,
    one end of the bonding wire is connected to a terminal portion of the load cell and the other end of the bonding wire is connected to a terminal portion of the main substrate, thereby electrically connecting the load cell and the main substrate;
    Weighing device.
  5.  請求項4に記載の重量測定装置であって、
     前記ロードセルと前記中継基板とが、樹脂ケースによって固定されたセンサユニットとして構成され、
     前記ベース部は、前記センサユニットが装着される装着孔を有する、
     重量測定装置。
    The weight measuring device according to claim 4,
    The load cell and the relay board are configured as a sensor unit fixed by a resin case,
    The base portion has a mounting hole to which the sensor unit is mounted,
    Weighing device.
  6.  請求項1から5のいずれか一つに記載の重量測定装置であって、
     前記ベース部には、前記ボンディングワイヤの配索方向に沿って前記ボンディングワイヤが収容される溝部が形成される、
     重量測定装置。
    A weight measuring device according to any one of claims 1 to 5,
    The base portion is formed with a groove portion in which the bonding wire is housed along the routing direction of the bonding wire.
    Weighing device.
  7.  請求項1から6のいずれか一つに記載の重量測定装置であって、
     前記ベース部は、
     前記メイン基板に電力を供給するバッテリが収容されるバッテリ室と、
     前記バッテリ室に配置される電極と前記メイン基板との間に平面視において直線状に配索されるボンディングワイヤと、を備える、
     重量測定装置。
    A weight measuring device according to any one of claims 1 to 6,
    The base portion
    a battery chamber housing a battery that supplies power to the main substrate;
    a bonding wire arranged linearly in a plan view between the electrode arranged in the battery chamber and the main substrate;
    Weighing device.
  8.  請求項1から7のいずれか一つに記載の重量測定装置を備える体組成計。 A body composition meter comprising the weight measuring device according to any one of claims 1 to 7.
PCT/JP2023/002273 2022-01-27 2023-01-25 Weight measuring device, and body composition meter WO2023145768A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022011150A JP2023109577A (en) 2022-01-27 2022-01-27 Weight measurement device and body composition meter
JP2022-011150 2022-01-27

Publications (1)

Publication Number Publication Date
WO2023145768A1 true WO2023145768A1 (en) 2023-08-03

Family

ID=87472071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/002273 WO2023145768A1 (en) 2022-01-27 2023-01-25 Weight measuring device, and body composition meter

Country Status (2)

Country Link
JP (1) JP2023109577A (en)
WO (1) WO2023145768A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60221288A (en) * 1984-04-13 1985-11-05 株式会社 富士電機総合研究所 Pressure sensing recognizing controller
US7790992B1 (en) * 2008-08-26 2010-09-07 Charles Richard Abbruscato Electronic scale with two different types of power on switches

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60221288A (en) * 1984-04-13 1985-11-05 株式会社 富士電機総合研究所 Pressure sensing recognizing controller
US7790992B1 (en) * 2008-08-26 2010-09-07 Charles Richard Abbruscato Electronic scale with two different types of power on switches

Also Published As

Publication number Publication date
JP2023109577A (en) 2023-08-08

Similar Documents

Publication Publication Date Title
US8966996B2 (en) Force sensor
EP2236995B1 (en) Flow meter with transducer positioned and aligned by circuit board
JP3792274B2 (en) Six-axis force sensor using multiple shear strain gauges
WO2006006677A1 (en) Load sensor and method of producing the same
US20050092096A1 (en) Force detection device
US11293818B2 (en) Strain gauge and multi-axis force sensor
JP6940037B2 (en) Force sensor device
KR20110098070A (en) Six axis force-moment sensor
WO2023145768A1 (en) Weight measuring device, and body composition meter
KR102398725B1 (en) Semiconductor full bridge strain gauge module and load cell using the same
TWI794448B (en) Torsion and pressure detecting device and electric driver with the same
CN113302466B (en) Force sensor device
TWI753531B (en) Adjustable level probe card
JP2023534575A (en) torque and force transducer
JP2004045138A (en) Force component meter
CN111546324B (en) Robot calibration method and robot calibration device
JP7000368B2 (en) Robot calibration method and robot calibration device
WO2022185979A1 (en) Load cell, scale, and strain sensor
CN220288842U (en) Sensor structure, force transducer and measuring device
CN110672120B (en) Device calibration device
WO2022209210A1 (en) Force sensor
KR200260569Y1 (en) Load cell leg for passing type weighing machine
JP2003315089A (en) Strain gauge
JP2008298439A (en) Weighing apparatus
JP2007292677A (en) Strain gauge type sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23746979

Country of ref document: EP

Kind code of ref document: A1