WO2022209210A1 - Force sensor - Google Patents

Force sensor Download PDF

Info

Publication number
WO2022209210A1
WO2022209210A1 PCT/JP2022/002376 JP2022002376W WO2022209210A1 WO 2022209210 A1 WO2022209210 A1 WO 2022209210A1 JP 2022002376 W JP2022002376 W JP 2022002376W WO 2022209210 A1 WO2022209210 A1 WO 2022209210A1
Authority
WO
WIPO (PCT)
Prior art keywords
strain
bridge circuits
force
coefficients
strain gauge
Prior art date
Application number
PCT/JP2022/002376
Other languages
French (fr)
Japanese (ja)
Inventor
嵩幸 遠藤
Original Assignee
日本電産コパル電子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産コパル電子株式会社 filed Critical 日本電産コパル電子株式会社
Publication of WO2022209210A1 publication Critical patent/WO2022209210A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/16Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force
    • G01L5/161Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force using variations in ohmic resistance
    • G01L5/1627Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force using variations in ohmic resistance of strain gauges

Definitions

  • Embodiments of the present invention relate to force sensors used in, for example, robot arms.
  • a force sensor is used, for example, in a robot arm or the like, and detects forces (Fx, Fy, Fz) and moments (Mx, My, Mz) with respect to three orthogonal axes (x, y, z). Reference 1).
  • the force sensor is equipped with a plurality of strain sensors that can be deformed in 6-axis directions, for example, 3-axis directions and directions around 3 axes.
  • Each strain sensor includes a plurality of strain gauges, and the plurality of strain gauges constitute a plurality of bridge circuits.
  • the output voltages of multiple bridge circuits are used to detect forces (Fx, Fy, Fz) and moments (Mx, My, Mz).
  • the conventional force sensor does not fully utilize the output voltages of the multiple bridge circuits.
  • This embodiment provides a force sensor capable of improving detection accuracy by fully utilizing the output voltages of a plurality of bridge circuits.
  • the force sensor of this embodiment includes a first structure, a second structure, a plurality of third structures connecting the first structure and the second structure, and the plurality of third structures.
  • at least three strain sensors each having two strain gauge groups provided between the first structure and the second structure at positions different from and the two strain gauge groups of the at least three strain sensors a plurality of bridge circuits for outputting a change in resistance value as a plurality of voltage values; and a computing unit for computing the output voltages of the plurality of bridge circuits. Calculating 3 forces and 3 moments,
  • Fx is the force in the x direction
  • Fy is the force in the y direction
  • Fz is the force in the z direction
  • Mx is the moment about the x axis
  • My is the moment about the y axis
  • Mz is the moment about the z axis
  • C + is the coefficient of the matrices V1 to Vm are the output voltages of the m bridge circuits, the matrix C + of said coefficients is shown in equation (2),
  • C 11 -C 6m are the coefficients of the coefficient matrix C +
  • F 11 -F 66 are the forces applied to the multiple strain gauge groups when Fx-Mz are applied
  • V 11 to V m6 are the output voltages of the m bridge circuits when Fx to Mz are applied
  • the coefficients C 14 , C 16 , C 22 , C 24 , C 26 , C 61 of the matrix of coefficients C + are non-zero.
  • FIG. 1 is a perspective view showing a force sensor according to this embodiment
  • FIG. FIG. 2 is an exploded perspective view showing the force sensor shown in FIG. 1
  • FIG. 3 is a perspective view showing a state in which part of the force sensor shown in FIG. 2 is assembled
  • FIG. 3 is a perspective view showing a state in which a part of the force sensor shown in FIG. 2 is further assembled
  • FIG. 3 is a perspective view showing a further exploded part of the force sensor shown in FIG. 2 ;
  • the top view which takes out and shows the elastic body which concerns on this embodiment.
  • FIG. 2 is a circuit diagram showing an example of a bridge circuit
  • FIG. 1 is a perspective view showing a bridge circuit
  • FIG. 2 is a configuration diagram schematically showing the control system of the force sensor according to the embodiment
  • FIG. 4 is a plan view schematically showing three strain sensors 19-1, 19-2, 19-3
  • FIG. 4 is a diagram schematically showing tension or compression force when force or moment is applied to each strain gauge group; The top view which shows the modification of this embodiment roughly.
  • FIG. 1 A configuration of a force sensor 10 according to the present embodiment will be described with reference to FIGS. 1 to 6.
  • the force sensor 10 is used, for example, in a robot arm or the like, and detects forces (Fx, Fy, Fz) along the X, Y, and Z axes and torques (moments: Mx, My, Mz) around the X, Y, and Z axes. to detect
  • the force sensor 10 includes a cylindrical main body 11 and a cylindrical cover 12 that covers the main body 11.
  • a mounting plate 13 is provided inside the cover 12 as a movable body operable with respect to the main body 11 , and the mounting plate 13 is fixed to the cover 12 with a plurality of screws 14 .
  • a cover 12 and a mounting plate 13 are operably provided with respect to the body 11 .
  • the body 11 is fixed to, for example, the body of a robot arm (not shown).
  • the mounting plate 13 is fixed to, for example, a hand portion of the robot arm.
  • a ring-shaped sealing member 15 is provided between the main body 11 and the cover 12 .
  • the sealing member 15 is made of an elastic material such as rubber or foam, seals the gap between the main body 11 and the cover 12 , and allows the cover 12 to move relative to the main body 11 .
  • An elastic body 16 is provided between the main body 11 and the mounting plate 13 .
  • the elastic body 16 is made of metal, for example. and a plurality of third structures 16-3 and the like provided between the structures 16-2.
  • a plurality of second structures 16-2 are arranged at regular intervals around the first structure 16-1.
  • the elastic body 16 has, for example, three second structures 16-2.
  • the number of second structures 16-2 is not limited to three, and may be three or more. Further, when this embodiment is applied to, for example, a torque sensor other than a force sensor, the number of second structures 16-2 may be two.
  • the first structure 16-1 has six first elastic parts 16-4 around it.
  • the first elastic portion 16-4 has a linear shape along the periphery of the first structure 16-1.
  • Each of the second structures 16-2 includes two substantially U-shaped second elastic portions 16-5 and two second elastic portions 16-5 between the two second elastic portions 16-5. It has a relay portion 16-6 on a straight line for connecting.
  • the third structure 16-3 has one end connected to the first elastic portion 16-4 and the other end connected to the relay portion 16-6.
  • Two third structures 16-3 provided between the first structure 16-1 and one second structure 16-2 are arranged in parallel.
  • the second structure 16-2 is fixed to the main body 11 by a plurality of screws 17, and the first structure 16-1 is fixed to the mounting plate 13 by a plurality of screws 18, as shown in FIGS. be.
  • the strain sensor 19 is provided between the first structure 16-1 and the relay portion 16-6. Specifically, one end of the strain sensor 19 is fixed to the first structure between the two first elastic portions 16-4 by a fixing plate 20 and a screw 21 inserted into the back surface of the first elastic portion 16-4. Fixed at 16-1. The other end of the strain sensor 19 is fixed to the central portion of the relay portion 16-6 by a fixing plate 22 and a screw 23 inserted into the rear surface of the relay portion 16-6. As will be described later, the strain sensor 19 has a plurality of strain gauges arranged on the surface of a metal strain body.
  • the third structure 16-3, the first elastic portion 16-4, the second elastic portion 16-5, and the relay portion 16-6 are deformed. do.
  • the strain generating body of the strain sensor 19 is deformed, and an electric signal is output from the strain gauge.
  • Each strain gauge of each strain sensor 19 constitutes a bridge circuit as will be described later. are detected (moments: Mx, My, Mz).
  • the main body 11 is provided with a plurality of stoppers 30 that protect the elastic body 16 from external force.
  • Each stopper 30 is composed of a cylindrical stopper member 31 , a screw 32 as a fixing member, and a plurality of openings 13 a provided in the mounting plate 13 .
  • This embodiment shows a case where three stoppers 30 are provided.
  • the number of stoppers 30 is not limited to three, and may be three or more.
  • the three stoppers 30 are arranged respectively between the three second structures 16-2.
  • stopper 30 By arranging the stopper 30 between the second structures 16-2, it is possible to suppress an increase in the diameter and outer size of the elastic body 16 and the force sensor as a whole.
  • Three protrusions 11a are provided on the surface of the main body 11 at positions corresponding to the spaces between the three second structures 16-2.
  • the stopper member 31 is inserted into the opening 13a of the mounting plate 13 and fixed to the projection 11a of the main body 11 by a screw 32.
  • the outer diameter of the stopper member 31 is set slightly smaller than the inner diameter of the opening 13a, as will be described later.
  • a printed circuit board 41 As shown in FIG. 5, a printed circuit board 41, a plurality of flexible printed circuit boards 42, a back cover 43, a lead wire assembly 44, and a hollow tube 45 are provided on the back surface of the main body 11.
  • the printed circuit board 41 includes a processing circuit (not shown) for supplying power to the bridge circuit and processing the output signal of the bridge circuit.
  • One end of the plurality of flexible printed boards 42 is arranged on the upper surface side of the main body 11 and connected to each strain sensor 19, as shown in FIG.
  • the other ends of the plurality of flexible printed boards 42 are connected to a processing circuit or the like on the back surface of the printed board 41 .
  • a plurality of flexible printed circuit boards 42 supply power to the strain gauges and supply signals from the strain gauges to the processing circuitry.
  • the lead wire assembly 44 is connected to the printed circuit board 41 to supply power to the processing circuit and transmit signals from the processing circuit.
  • the back cover 43 is fixed to the main body 11 with a plurality of screws and covers the printed circuit board 41 .
  • the main body 11, the cover 12, the mounting plate 13, the first structure 16-1 of the elastic body 16, the printed circuit board 41, and the back cover 43 are provided with openings communicating with each other at their central portions, and are hollow tubes. 45 is provided within this opening.
  • one end of the hollow tube 45 penetrates the back cover 43, the printed circuit board 41, and the first structure 16-1 and protrudes to the surface of the first structure 16-1.
  • a ring-shaped sealing member 26 is provided at one end of the hollow tube 45 protruding from the surface of the first structure 16-1.
  • the sealing member 26 is made of rubber or foam material, for example, and seals the gap between the opening of the mounting plate 13 and one end of the hollow tube 25 . This prevents dust from entering the mounting plate 13 from the outside of the cover 12 .
  • FIG. 6 shows the elastic body 16 and strain sensor 19 .
  • the elastic bodies 16 are provided in one first structure 16-1, three second structures 16-2, a plurality of third structures 16-3, and the first structure 16-1.
  • six first elastic parts 16-4 provided, two second elastic parts 16-5 provided in each of the three second structures 16-2, and between the two second elastic parts 16-5 It has a provided relay section 16-6.
  • the second elastic portion 16-5 is substantially U-shaped and has lower bending or torsional rigidity than the second structure 16-2.
  • the first elastic portion 16-4 has torsional rigidity equal to or lower than that of the second elastic portion 16-5.
  • the strain sensor 19 is provided between the first structural body 16-1 located between the two first elastic portions 16-4 and the central portion of the relay portion 16-6. Furthermore, the strain sensor 19 is positioned between the two third structures 16-3 and arranged parallel to the two third structures 16-3.
  • the thicknesses of the first elastic portion 16-4, the second elastic portion 16-5, and the relay portion 16-6 are the same as those of the first structure 16-1, the second structure 16-2, and the third structure 16-3.
  • the width W of the first elastic portion 16-4, the second elastic portion 16-5, and the relay portion 16-6 is equal to the width of the third structure 16-3.
  • the longer the lengths L1 and L2 of the U-shaped portion and the narrower the width W of the U-shaped portion, the softer the second elastic portion 16-5. -6 is also more flexible as the width is narrower.
  • the strain body 19a constituting the strain sensor 19 has a thickness of a first structure 16-1, a second structure 16-2, a third structure 16-3, a first elastic portion 16-4, and a second elastic portion.
  • 16-5 and the thickness of the relay portion 16-6, and the width of the strain generating body 19a is the third structure 16-3, the first elastic portion 16-4, the second elastic portion 16-5, and the relay portion. Wider than 16-6 wide.
  • the thickness, width, and size relationship of the first elastic portion 16-4, the second elastic portion 16-5, the relay portion 16-6, and the third structure 16-3 can be changed as required.
  • the configuration of the second structural bodies 16-2 is not limited to this, and the three second structural bodies 16-2 may be integrally configured, for example, in a ring shape, as indicated by broken lines.
  • FIG. 7 shows an example of the strain sensor 19.
  • the strain sensor 19 is composed of a strain body 19a and a plurality of strain gauges R1 to R8 provided on the surface of the strain body 19a.
  • the strain-generating body 19a is made of metal, and its thickness is smaller than its width. Therefore, the strain-generating body 19a is easily deformed in the thickness direction and is difficult to be deformed in the width direction.
  • One end of the strain generating body 19a is provided on the first structure 16-1, and the other end is provided on the relay portion 16-6 of the second structure 16-2.
  • Strain gauges R1, R2, R3, R4, R5, R6, R7 and R8 made of, for example, thin film resistors are provided on the surface of the strain generating body 19a. Strain gauges R1, R2, R3, and R4 for detecting Fx, Fy, and Mz are arranged obliquely with respect to the longitudinal direction of the strain generating body 19a. Specifically, the strain gauges R1, R2, R3, and R4 are arranged at the corners of the strain body 19a along the diagonal lines of the strain body 19a. On the other hand, strain gauges R5, R6, R7, and R8 for detecting Mx, My, and Fz are arranged parallel to the longitudinal direction of the strain-generating body 19a at the center of the strain-generating body 19a. Furthermore, the strain gauges R1, R3, R5 and R8 are arranged near one longitudinal end of the strain body 19a, and the strain gauges R2, R4, R6 and R7 are arranged at the other longitudinal end of the strain body 19a. placed in the vicinity.
  • FIG. 8 shows an example of a bridge circuit using the strain gauges R1 to R8.
  • Strain gauges R1, R2, R3, and R4 constitute a first bridge circuit BC1
  • strain gauges R5, R6, R7, and R8 constitute a second bridge circuit BC2.
  • a series circuit of strain gauges R2 and R1 and a series circuit of strain gauges R4 and R3 are arranged between the power source V and the ground GND.
  • An output voltage Vout+ is output from a connection node between the strain gauges R2 and R1
  • an output voltage Vout- is output from a connection node between the strain gauges R4 and R3.
  • the output voltage Vout+ and the output voltage Vout ⁇ are supplied to the operational amplifier OP1, and the output voltage Vout is output from the output terminal of the operational amplifier OP1.
  • a series circuit of strain gauges R6 and R5 and a series circuit of strain gauges R8 and R7 are arranged between the power source V and the ground GND.
  • An output voltage Vout+ is output from a connection node between the strain gauges R6 and R5, and an output voltage Vout- is output from a connection node between the strain gauges R8 and R7.
  • the output voltage Vout+ and the output voltage Vout ⁇ are supplied to the operational amplifier OP2, and the output voltage Vout is output from the output terminal of the operational amplifier OP2.
  • first bridge circuit BC1 and the operational amplifier OP1 and the second bridge circuit BC2 and the operational amplifier OP2 are simply referred to as bridge circuits.
  • the force sensor 10 of this embodiment has three strain sensors 19, and each strain sensor 19 is provided with a pair of bridge circuits. Therefore, the force sensor 10 has a total of six bridge circuits.
  • the computing unit 61 is configured by, for example, a microcomputer, and the microcomputer includes a microprocessor, memory, and software or firmware. However, the calculation unit 61 is not limited to this. The calculation unit 61 calculates Fx, Fy, Mz, Mx, My, and Fz from the output voltages V 1 , V 2 , . . . V m of the bridge circuits 51 1 , 51 2 to 51 m .
  • FIG. 10 schematically shows three strain sensors 19 (19-1, 19-2, 19-3).
  • the strain gauges R1, R2, R3, and R4 at the corners of the strain sensor 19-1 are shown as a strain gauge group (1)
  • the strain gauges R5, R6, R7, and R8 at the central portion are shown as a strain gauge group (2). indicated by .
  • the strain gauges R1, R2, R3, and R4 at the corners of the strain sensor 19-2 are shown as a strain gauge group (3)
  • the strain gauges R5, R6, R7, and R8 at the central portion are shown as a strain gauge group (4).
  • the strain gauges R1, R2, R3, and R4 at the corners of the strain sensor 19-3 are shown as a strain gauge group (5)
  • the strain gauges R5, R6, R7, and R8 at the central portion are shown as a strain gauge group (6).
  • FIG. 11 shows strain gauge groups (1), (2), (3), and (4) when Fx, Fy, Mz, Mx, My, and Fz are applied to the strain sensors 19-1, 19-2, and 19-3.
  • (5) It schematically shows the magnitude of tension or compression applied to (6).
  • T indicates high tension and "t” indicates low tension.
  • a “C” indicates a high compressive force and a “c” indicates a low compressive force.
  • a "-" indicates that no tension or compression force is applied.
  • Fx and Fy cannot be detected using only strain gauge groups (1) (3) (5).
  • tension or compression forces (T, c, c) applied to strain gauge groups (1), (3), and (5) in the case of Fx, and strain gauge groups (1), (3) in the case of My ) (5) and the tension or compression forces (t, c, c) applied to the strain gauge group (1) differ only in the magnitude of the tension applied to the strain gauge group (1).
  • ) (5) are equal in compression force. For this reason, it is impossible to determine whether Fx or My. can be determined.
  • the tensile or compressive forces (-, C, T) and -Mx (-) applied to the strain gauge groups (1), (3), and (5) indicate that the directions of the moments are opposite. ), the tension or compression force (-, c, t) applied to the strain gauge group (1) (3) (5) is compared to is not applied and only the magnitudes of the compressive and tension forces applied to the strain gauge groups (3) and (5) are different. Therefore, it is not possible to determine whether Fy or -Mx. can determine if there is
  • Fx, Fy, Fz , Mx, My, and Mz apply the coefficient matrix C + to the output voltages V 1 , V 2 , . calculated by multiplying
  • the matrix C + of coefficients is the force F applied to the six strain gauge groups when only Fx is applied to the three strain sensors, the six output voltages output from the six bridge circuits, and the three strain sensors Fy alone.
  • the force F applied to the 6 strain gauge groups when applied to the sensors and the 6 output voltages output from the 6 bridge circuits, and . . . the 6 strain gauge groups when only Mz is applied to the 3 strain sensors is obtained by solving simultaneous equations for the force F applied to and the six output voltages output from the six bridge circuits.
  • the matrix of coefficients C + is shown in equation (2).
  • Equation (2) is a matrix of forces F 11 to F 66 applied to the six strain gauge groups when Fx to Mz are applied, and voltages output from the six bridge circuits when Fx to Mz are applied.
  • the coefficient matrix C + is obtained by multiplying the inverse matrices of V 11 to V m6 .
  • Equation (3) the matrix C + of coefficients is shown in equation (3).
  • the coefficients C11, C13, C15, C21, C23, C25, C32, C34, C36, C42, C44, C46, C54, C56, C63, C65 are non-zero.
  • the coefficients C14, C16, C22, C24, C26, and C61 are coefficients that take into consideration the outputs corresponding to the moments Mx and My when the moments Mx and My are applied. If this coefficient is, for example, 0, for example, although only the moment My is applied, it is calculated as if the force Fx was applied simultaneously with the moment My. In order to avoid this, conventionally, a plurality of strain gauges had to be arranged at positions where the outputs corresponding to Fx, Fy, Fz, Mx, My and Mz do not mechanically interfere with each other. In this case, the values of the coefficients C14, C16, C22, C24, C26, and C61 can be set to zero, but the shape of the elastic body is enlarged.
  • the present embodiment uses C14, C16, C22, C24, C26, and C61 in consideration of the outputs corresponding to the moments Mx and My to prevent the shape of the elastic body 16 from increasing in size, thereby preventing Fx, Fy, and Mx , My can be improved.
  • Equation (4) shows an example of each numerical value of the coefficient matrix C + .
  • the numerical value of each coefficient can be changed.
  • the output signals of the set of strain gauge groups are detected by six bridge circuits, and the output voltages V 1 to V 6 of the six bridge circuits are multiplied by the coefficient matrix C + to obtain Fx, Fy, Fz, Mx, My, Looking for Mz.
  • coefficient matrix C + among the coefficients corresponding to Fx, Fy, Mx, and My, coefficients C14, C16, C22, C24, C26, and C61 are values other than zero. Therefore, by using the output voltage of the bridge circuit corresponding to these coefficients, it is possible to prevent the elastic body from increasing in size and detect the values of Fx, Fy, Mx, and My with high precision.
  • FIG. 12 shows a modification of this embodiment.
  • the above embodiment used three strain sensors 19 .
  • four strain sensors 19 are used.
  • the concentrically arranged first structure 16-1 and second structure 16-2 are connected by a plurality of third structures 16-3.
  • the four strain sensors 19 are provided between the first structure 16-1 and the second structure 16-2 at positions different from the plurality of third structures 16-3.
  • the structure of each strain sensor 19 is the same as that shown in FIG. 7, and each strain sensor 19 constitutes two bridge circuits. Therefore, this modification includes eight bridge circuits.
  • the values of the coefficients C12, C16, C24, C28 of the coefficient matrix C + are values other than zero.
  • Fx to Mz can be detected by using the coefficient matrix C + .
  • the coefficients C12, C16, C24 and C28 of the matrix C + are non-zero values, the output voltages of the bridge circuit corresponding to these coefficients can be fully utilized. Therefore, it is possible to detect the values of Fx, Fy, Mx, and My with high accuracy while suppressing an increase in the size of the elastic body.
  • the present invention is not limited to the above-described embodiments as they are, and can be embodied by modifying the constituent elements without departing from the gist of the present invention at the implementation stage.
  • various inventions can be formed by appropriate combinations of the plurality of constituent elements disclosed in the above embodiments. For example, some components may be omitted from all components shown in the embodiments. Furthermore, components across different embodiments may be combined as appropriate.

Abstract

Disclosed is a force sensor that can improve detection accuracy by sufficiently using the output voltages of a plurality of bridge circuits. A plurality of bridge circuits 511, 512, …51m are provided between a first structure and a second structure and output, as a plurality of voltage values, changes in the resistance values of two strain gauge groups of at least three strain sensors. A computation unit 61 computes the output voltages of the plurality of bridge circuits. The computation unit computes three forces and three moments using a determinant. A specific coefficient, that corresponds to a force in an x-direction and a y-direction of a matrix of coefficients and a moment around the z-axis, is a non-zero value.

Description

力覚センサforce sensor
 本発明の実施形態は、例えばロボットアーム等に用いられる力覚センサに関する。 Embodiments of the present invention relate to force sensors used in, for example, robot arms.
 力覚センサは、例えばロボットアーム等に用いられ、直交する3軸(x、y、z)に関して、力(Fx、Fy、Fz)とモーメント(Mx、My、Mz)を検出する(例えば、特許文献1参照)。 A force sensor is used, for example, in a robot arm or the like, and detects forces (Fx, Fy, Fz) and moments (Mx, My, Mz) with respect to three orthogonal axes (x, y, z). Reference 1).
特開2018-48915号公報JP 2018-48915 A
 力覚センサは、6軸方向、例えば3軸方向及び3軸回り方向に変形可能な複数の歪センサを具備している。各歪センサは、複数の歪ゲージを含み、複数の歪ゲージは、複数のブリッジ回路を構成している。複数のブリッジ回路の出力電圧を用いて、力(Fx、Fy、Fz)とモーメント(Mx、My、Mz)が検出される。しかし、従来の力覚センサは、複数のブリッジ回路の出力電圧が十分に利用されていなかった。 The force sensor is equipped with a plurality of strain sensors that can be deformed in 6-axis directions, for example, 3-axis directions and directions around 3 axes. Each strain sensor includes a plurality of strain gauges, and the plurality of strain gauges constitute a plurality of bridge circuits. The output voltages of multiple bridge circuits are used to detect forces (Fx, Fy, Fz) and moments (Mx, My, Mz). However, the conventional force sensor does not fully utilize the output voltages of the multiple bridge circuits.
 本実施形態は、複数のブリッジ回路の出力電圧を十分に利用して検出精度を向上させることが可能な力覚センサを提供する。 This embodiment provides a force sensor capable of improving detection accuracy by fully utilizing the output voltages of a plurality of bridge circuits.
 本実施形態の力覚センサは、第1構造体と、第2構造体と、前記第1構造体と前記第2構造体を接続する複数の第3構造体と、前記複数の第3構造体と異なる位置で、前記第1構造体と第2構造体との間に設けられ、それぞれ2つの歪ゲージ群を有する少なくとも3つの歪センサと、前記少なくとも3つの歪センサの前記2つの歪ゲージ群の抵抗値の変化を複数の電圧値として出力する複数のブリッジ回路と、前記複数のブリッジ回路の出力電圧を演算する演算部と、を具備し、前記演算部は、次式を用いて、3つの力と3つのモーメントを演算し、 The force sensor of this embodiment includes a first structure, a second structure, a plurality of third structures connecting the first structure and the second structure, and the plurality of third structures. at least three strain sensors each having two strain gauge groups provided between the first structure and the second structure at positions different from and the two strain gauge groups of the at least three strain sensors a plurality of bridge circuits for outputting a change in resistance value as a plurality of voltage values; and a computing unit for computing the output voltages of the plurality of bridge circuits. Calculating 3 forces and 3 moments,
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 ここで、
 Fxはx方向の力、Fyはy方向の力、Fzはz方向の力、Mxはx軸回りのモーメント、Myはy軸回りのモーメント、Mzはz軸回りのモーメント、Cは係数の行列、V1~Vmは、m個のブリッジ回路の出力電圧であり、前記係数の行列Cが式(2)で示され、
here,
Fx is the force in the x direction, Fy is the force in the y direction, Fz is the force in the z direction, Mx is the moment about the x axis, My is the moment about the y axis, Mz is the moment about the z axis, C + is the coefficient of the matrices V1 to Vm are the output voltages of the m bridge circuits, the matrix C + of said coefficients is shown in equation (2),
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 ここで、
 C11~C6mは、係数の行列Cの係数
 F11~F66は、Fx~Mzが印加された時、複数の歪ゲージ群に印加される力、
 V11~Vm6は、Fx~Mzが印加された時のm個のブリッジ回路の出力電圧であり、
 前記ブリッジ回路の数mが6であるとき、係数Cの行列の係数C14、C16、C22、C24、C26、C61が0以外の値である。
here,
C 11 -C 6m are the coefficients of the coefficient matrix C + F 11 -F 66 are the forces applied to the multiple strain gauge groups when Fx-Mz are applied;
V 11 to V m6 are the output voltages of the m bridge circuits when Fx to Mz are applied;
When the number m of said bridge circuits is 6, the coefficients C 14 , C 16 , C 22 , C 24 , C 26 , C 61 of the matrix of coefficients C + are non-zero.
本実施形態に係る力覚センサを示す斜視図。1 is a perspective view showing a force sensor according to this embodiment; FIG. 図1に示す力覚センサを分解して示す斜視図。FIG. 2 is an exploded perspective view showing the force sensor shown in FIG. 1 ; 図2に示す力覚センサの一部を組み立てた状態を示す斜視図。FIG. 3 is a perspective view showing a state in which part of the force sensor shown in FIG. 2 is assembled; 図2に示す力覚センサの一部をさらに組み立てた状態を示す斜視図。FIG. 3 is a perspective view showing a state in which a part of the force sensor shown in FIG. 2 is further assembled; 図2に示す力覚センサの一部をさらに分解して示す斜視図。FIG. 3 is a perspective view showing a further exploded part of the force sensor shown in FIG. 2 ; 本実施形態に係る弾性体を取り出して示す平面図。The top view which takes out and shows the elastic body which concerns on this embodiment. 本実施形態に係る歪センサを模式的に示す図。The figure which shows typically the strain sensor which concerns on this embodiment. ブリッジ回路の一例を示す回路図。FIG. 2 is a circuit diagram showing an example of a bridge circuit; 本実施形態に係る力覚センサの制御系を概略的に示す構成図。FIG. 2 is a configuration diagram schematically showing the control system of the force sensor according to the embodiment; 3つの歪センサ19-1、19-2、19-3を概略的に示す平面図。FIG. 4 is a plan view schematically showing three strain sensors 19-1, 19-2, 19-3; 各歪ゲージ群に力やモーメントが印加された場合の張力又は圧縮力を概略的に示す図。FIG. 4 is a diagram schematically showing tension or compression force when force or moment is applied to each strain gauge group; 本実施形態の変形例を概略的に示す平面図。The top view which shows the modification of this embodiment roughly.
 以下、実施の形態について、図面を参照して説明する。図面において、同一部分には同一符号を付している。 Embodiments will be described below with reference to the drawings. In the drawings, the same parts are given the same reference numerals.
 図1乃至図6を用いて、本実施形態に係る力覚センサ10の構成について説明する。
 力覚センサ10は、例えばロボットアーム等に用いられ、X、Y、Z軸方向の力(Fx、Fy、Fz)、及びX、Y、Z軸回りのトルク(モーメント:Mx、My、Mz)を検出する。
A configuration of a force sensor 10 according to the present embodiment will be described with reference to FIGS. 1 to 6. FIG.
The force sensor 10 is used, for example, in a robot arm or the like, and detects forces (Fx, Fy, Fz) along the X, Y, and Z axes and torques (moments: Mx, My, Mz) around the X, Y, and Z axes. to detect
 図1、図2に示すように、力覚センサ10は、円筒状の本体11と、本体11を覆う円筒状のカバー12とを備えている。カバー12の内部には、本体11に対して動作可能な可動体としての取付けプレート13が設けられ、取付けプレート13は、複数のネジ14によりカバー12に固定される。カバー12及び取付けプレート13は、本体11に対して動作可能に設けられる。 As shown in FIGS. 1 and 2, the force sensor 10 includes a cylindrical main body 11 and a cylindrical cover 12 that covers the main body 11. A mounting plate 13 is provided inside the cover 12 as a movable body operable with respect to the main body 11 , and the mounting plate 13 is fixed to the cover 12 with a plurality of screws 14 . A cover 12 and a mounting plate 13 are operably provided with respect to the body 11 .
 本体11は、図示せぬロボットアームの例えば本体に固定される。取付けプレート13は、ロボットアームの例えばハンド部分に固定される。 The body 11 is fixed to, for example, the body of a robot arm (not shown). The mounting plate 13 is fixed to, for example, a hand portion of the robot arm.
 本体11とカバー12との間には、リング状のシール部材15が設けられている。シール部材15は、弾性材、例えばゴム製又は発泡部材により形成され、本体11とカバー12との間隙をシールするとともに、カバー12が本体11に対して動作可能としている。 A ring-shaped sealing member 15 is provided between the main body 11 and the cover 12 . The sealing member 15 is made of an elastic material such as rubber or foam, seals the gap between the main body 11 and the cover 12 , and allows the cover 12 to move relative to the main body 11 .
 本体11と取付けプレート13との間には、弾性体16が設けられる。弾性体16は、例えば金属製であり、後述するように、1つの第1構造体16-1と、複数に分かれた第2構造体16-2と、第1構造体16-1と第2構造体16-2との間に設けられた複数の第3構造体16-3等と、を具備する。複数の第2構造体16-2は、第1構造体16-1の周囲に等間隔に配置される。 An elastic body 16 is provided between the main body 11 and the mounting plate 13 . The elastic body 16 is made of metal, for example. and a plurality of third structures 16-3 and the like provided between the structures 16-2. A plurality of second structures 16-2 are arranged at regular intervals around the first structure 16-1.
 本実施形態において、弾性体16は、例えば3つの第2構造体16-2を具備している。しかし、第2構造体16-2の数は3つに限定されるものではなく、3つ以上であってもよい。また、本実施形態を、力覚センサ以外の例えばトルクセンサに適用する場合、第2構造体16-2の数は、2つであってもよい。 In this embodiment, the elastic body 16 has, for example, three second structures 16-2. However, the number of second structures 16-2 is not limited to three, and may be three or more. Further, when this embodiment is applied to, for example, a torque sensor other than a force sensor, the number of second structures 16-2 may be two.
 図3に示すように、第1構造体16-1は、周囲に6つの第1弾性部16-4を具備している。第1弾性部16-4は、第1構造体16-1の周囲に沿い、直線状の形状を有している。 As shown in FIG. 3, the first structure 16-1 has six first elastic parts 16-4 around it. The first elastic portion 16-4 has a linear shape along the periphery of the first structure 16-1.
 第2構造体16-2のそれぞれは、略U字状の2つの第2弾性部16-5と、2つの第2弾性部16-5の間で、2つの第2弾性部16-5を繋ぐ直線上の中継部16-6を具備している。 Each of the second structures 16-2 includes two substantially U-shaped second elastic portions 16-5 and two second elastic portions 16-5 between the two second elastic portions 16-5. It has a relay portion 16-6 on a straight line for connecting.
 第3構造体16-3は、一端部が第1弾性部16-4に接続され、他端部が中継部16-6に接続される。第1構造体16-1と1つの第2構造体16-2との間に設けられた2つの第3構造体16-3は、平行に配置される。 The third structure 16-3 has one end connected to the first elastic portion 16-4 and the other end connected to the relay portion 16-6. Two third structures 16-3 provided between the first structure 16-1 and one second structure 16-2 are arranged in parallel.
 第2構造体16-2は、複数のネジ17により本体11に固定され、第1構造体16-1は、図2、図4に示すように、複数のネジ18により取付けプレート13に固定される。 The second structure 16-2 is fixed to the main body 11 by a plurality of screws 17, and the first structure 16-1 is fixed to the mounting plate 13 by a plurality of screws 18, as shown in FIGS. be.
 図2、図3に示すように、歪センサ19は、第1構造体16-1と中継部16-6との間に設けられる。具体的には、歪センサ19の一端部は、固定プレート20と第1弾性部16-4の裏面に挿入されたネジ21により、2つの第1弾性部16-4の間の第1構造体16-1に固定される。歪センサ19の他端部は固定プレート22と中継部16-6の裏面に挿入されたネジ23により、中継部16-6の中央部に固定される。歪センサ19は、後述するように、金属製の起歪体の表面に複数の歪ゲージが配置されている。 As shown in FIGS. 2 and 3, the strain sensor 19 is provided between the first structure 16-1 and the relay portion 16-6. Specifically, one end of the strain sensor 19 is fixed to the first structure between the two first elastic portions 16-4 by a fixing plate 20 and a screw 21 inserted into the back surface of the first elastic portion 16-4. Fixed at 16-1. The other end of the strain sensor 19 is fixed to the central portion of the relay portion 16-6 by a fixing plate 22 and a screw 23 inserted into the rear surface of the relay portion 16-6. As will be described later, the strain sensor 19 has a plurality of strain gauges arranged on the surface of a metal strain body.
 取付けプレート13及びカバー12が外力により、本体11に対して動作すると、第3構造体16-3、第1弾性部16-4、第2弾性部16-5、及び中継部16-6が変形する。これに伴い、歪センサ19の起歪体が変形し、歪ゲージから電気信号が出力される。 When the mounting plate 13 and the cover 12 are moved with respect to the main body 11 by an external force, the third structure 16-3, the first elastic portion 16-4, the second elastic portion 16-5, and the relay portion 16-6 are deformed. do. As a result, the strain generating body of the strain sensor 19 is deformed, and an electric signal is output from the strain gauge.
 各歪センサ19の各歪ゲージは、後述するように、ブリッジ回路を構成し、ブリッジ回路により、X、Y、Z軸方向の力(Fx、Fy、Fz)、及びX、Y、Z軸回りのトルク(モーメント:Mx、My、Mz)が検出される。 Each strain gauge of each strain sensor 19 constitutes a bridge circuit as will be described later. are detected (moments: Mx, My, Mz).
 図2に示すように、本体11には、弾性体16を外力から保護する複数のストッパ30が設けられている。各ストッパ30は、円筒状のストッパ部材31と、固定部材としてのネジ32と、取付けプレート13に設けられた複数の開口部13aと、により構成される。 As shown in FIG. 2, the main body 11 is provided with a plurality of stoppers 30 that protect the elastic body 16 from external force. Each stopper 30 is composed of a cylindrical stopper member 31 , a screw 32 as a fixing member, and a plurality of openings 13 a provided in the mounting plate 13 .
 本実施形態は、3つのストッパ30を具備する場合を示している。しかし、ストッパ30の数は、3つに限定されるものではなく、3つ以上であってもよい。3つのストッパ30は、3つの第2構造体16-2の相互間にそれぞれ配置される。 This embodiment shows a case where three stoppers 30 are provided. However, the number of stoppers 30 is not limited to three, and may be three or more. The three stoppers 30 are arranged respectively between the three second structures 16-2.
 ストッパ30を第2構造体16-2の相互間に配置することにより、弾性体16及び力覚センサ全体の直径及び外形の大型化を抑制することが可能である。 By arranging the stopper 30 between the second structures 16-2, it is possible to suppress an increase in the diameter and outer size of the elastic body 16 and the force sensor as a whole.
 本体11の表面で、3つの第2構造体16-2の相互間に対応する位置には、3つ突起11aがそれぞれ設けられている。 Three protrusions 11a are provided on the surface of the main body 11 at positions corresponding to the spaces between the three second structures 16-2.
 図4に示すように、ストッパ部材31は、取付けプレート13の開口部13a内に挿入された状態で、ネジ32により本体11の突起11aに固定される。ストッパ部材31の外径は、後述するように、開口部13aの内径より若干小さく設定されている。取付けプレート13が本体11に対して動作し、ストッパ部材31の外面が開口部13aの内面に当接すると、取付けプレート13の動作が阻止され、弾性体16及び歪センサ19の起歪体の破壊が防止される。 As shown in FIG. 4, the stopper member 31 is inserted into the opening 13a of the mounting plate 13 and fixed to the projection 11a of the main body 11 by a screw 32. As shown in FIG. The outer diameter of the stopper member 31 is set slightly smaller than the inner diameter of the opening 13a, as will be described later. When the mounting plate 13 moves with respect to the main body 11 and the outer surface of the stopper member 31 contacts the inner surface of the opening 13a, the mounting plate 13 is prevented from moving, and the elastic body 16 and strain sensor 19 are destroyed. is prevented.
 図5に示すように、本体11の裏面部には、印刷基板41、複数のフレキシブル印刷基板42、裏蓋43、リード線アセンブリ44、中空管45が設けられている。印刷基板41は、ブリッジ回路に電源を供給したり、ブリッジ回路の出力信号を処理したりする図示せぬ処理回路などを具備している。 As shown in FIG. 5, a printed circuit board 41, a plurality of flexible printed circuit boards 42, a back cover 43, a lead wire assembly 44, and a hollow tube 45 are provided on the back surface of the main body 11. The printed circuit board 41 includes a processing circuit (not shown) for supplying power to the bridge circuit and processing the output signal of the bridge circuit.
 複数のフレキシブル印刷基板42の一端部は、図2に示すように、本体11の上面側に配置され、各歪センサ19に接続される。複数のフレキシブル印刷基板42の他端部は、印刷基板41の裏面において、処理回路などに接続される。複数のフレキシブル印刷基板42は、歪ゲージに電源を供給したり、歪ゲージからの信号を処理回路に供給したりする。 One end of the plurality of flexible printed boards 42 is arranged on the upper surface side of the main body 11 and connected to each strain sensor 19, as shown in FIG. The other ends of the plurality of flexible printed boards 42 are connected to a processing circuit or the like on the back surface of the printed board 41 . A plurality of flexible printed circuit boards 42 supply power to the strain gauges and supply signals from the strain gauges to the processing circuitry.
 リード線アセンブリ44は、印刷基板41に接続され、処理回路に電源を供給したり、処理回路からの信号を伝送したりする。裏蓋43は、複数のネジにより本体11に固定され、印刷基板41をカバーする。 The lead wire assembly 44 is connected to the printed circuit board 41 to supply power to the processing circuit and transmit signals from the processing circuit. The back cover 43 is fixed to the main body 11 with a plurality of screws and covers the printed circuit board 41 .
 本体11、カバー12、取付けプレート13、及び弾性体16の第1構造体16-1、印刷基板41、裏蓋43の中央部には、開口部が連通して設けられており、中空管45は、この開口部内に設けられる。 The main body 11, the cover 12, the mounting plate 13, the first structure 16-1 of the elastic body 16, the printed circuit board 41, and the back cover 43 are provided with openings communicating with each other at their central portions, and are hollow tubes. 45 is provided within this opening.
 図2、図3に示すように、中空管45の一端部は、裏蓋43、印刷基板41、第1構造体16-1を貫通し、第1構造体16-1の表面に突出される。中空管45の第1構造体16-1の表面に突出された一端部には、リング状のシール部材26が設けられる。このシール部材26は、例えばゴム又は発泡材料により形成され、取付けプレート13の開口部と中空管25の一端部との間隙をシールする。これにより、カバー12の外部から取付けプレート13の内部に塵埃が侵入することが防止される。 As shown in FIGS. 2 and 3, one end of the hollow tube 45 penetrates the back cover 43, the printed circuit board 41, and the first structure 16-1 and protrudes to the surface of the first structure 16-1. be. A ring-shaped sealing member 26 is provided at one end of the hollow tube 45 protruding from the surface of the first structure 16-1. The sealing member 26 is made of rubber or foam material, for example, and seals the gap between the opening of the mounting plate 13 and one end of the hollow tube 25 . This prevents dust from entering the mounting plate 13 from the outside of the cover 12 .
 (弾性体の構成)
 図6は、弾性体16と歪センサ19を示している。前述したように、弾性体16は、1つの第1構造体16-1と、3つの第2構造体16-2、複数の第3構造体16-3、第1構造体16-1に設けられた6つの第1弾性部16-4、3つの第2構造体16-2のそれぞれに設けられた2つの第2弾性部16-5、及び2つの第2弾性部16-5の間に設けられた中継部16-6を具備している。
(Structure of elastic body)
FIG. 6 shows the elastic body 16 and strain sensor 19 . As described above, the elastic bodies 16 are provided in one first structure 16-1, three second structures 16-2, a plurality of third structures 16-3, and the first structure 16-1. six first elastic parts 16-4 provided, two second elastic parts 16-5 provided in each of the three second structures 16-2, and between the two second elastic parts 16-5 It has a provided relay section 16-6.
 第2弾性部16-5は、略U字状であり、第2構造体16-2に比べて低い曲げ又はねじれ剛性を有している。第1弾性部16-4は、第2弾性部16-5と同程度以下のねじれ剛性を有している。 The second elastic portion 16-5 is substantially U-shaped and has lower bending or torsional rigidity than the second structure 16-2. The first elastic portion 16-4 has torsional rigidity equal to or lower than that of the second elastic portion 16-5.
 歪センサ19は、2つの第1弾性部16-4の間に位置する第1構造体16-1と、中継部16-6の中央部との間に設けられる。さらに、歪センサ19は、2つの第3構造体16-3の間に位置され、2つの第3構造体16-3と平行に配置される。 The strain sensor 19 is provided between the first structural body 16-1 located between the two first elastic portions 16-4 and the central portion of the relay portion 16-6. Furthermore, the strain sensor 19 is positioned between the two third structures 16-3 and arranged parallel to the two third structures 16-3.
 第1弾性部16-4、第2弾性部16-5、及び中継部16-6の厚みは、第1構造体16-1、第2構造体16-2、第3構造体16-3の厚みと等しく、第1弾性部16-4、第2弾性部16-5、及び中継部16-6の幅Wは、第3構造体16-3の幅と等しくされている。第2弾性部16-5は、U字状部の長さL1及びL2が長い程、及びU字状部の幅Wが細い程、柔軟であり、第1弾性部16-4及び中継部16-6も、幅が細い程、柔軟である。 The thicknesses of the first elastic portion 16-4, the second elastic portion 16-5, and the relay portion 16-6 are the same as those of the first structure 16-1, the second structure 16-2, and the third structure 16-3. The width W of the first elastic portion 16-4, the second elastic portion 16-5, and the relay portion 16-6 is equal to the width of the third structure 16-3. The longer the lengths L1 and L2 of the U-shaped portion and the narrower the width W of the U-shaped portion, the softer the second elastic portion 16-5. -6 is also more flexible as the width is narrower.
 歪センサ19を構成する起歪体19aの厚みは、第1構造体16-1、第2構造体16-2、第3構造体16-3、第1弾性部16-4、第2弾性部16-5、及び中継部16-6の厚みより薄く、起歪体19aの幅は、第3構造体16-3、第1弾性部16-4、第2弾性部16-5、及び中継部16-6の幅より広い。但し、第1弾性部16-4、第2弾性部16-5、中継部16-6、第3構造体16-3の厚み、幅の寸法、及び大小関係は、必要に応じて変更できる。 The strain body 19a constituting the strain sensor 19 has a thickness of a first structure 16-1, a second structure 16-2, a third structure 16-3, a first elastic portion 16-4, and a second elastic portion. 16-5 and the thickness of the relay portion 16-6, and the width of the strain generating body 19a is the third structure 16-3, the first elastic portion 16-4, the second elastic portion 16-5, and the relay portion. Wider than 16-6 wide. However, the thickness, width, and size relationship of the first elastic portion 16-4, the second elastic portion 16-5, the relay portion 16-6, and the third structure 16-3 can be changed as required.
 第2構造体16-2の構成は、これに限定されるものではなく、3つの第2構造体16-2は、破線で示すように、例えば環状に一体的に構成されていてもよい。 The configuration of the second structural bodies 16-2 is not limited to this, and the three second structural bodies 16-2 may be integrally configured, for example, in a ring shape, as indicated by broken lines.
 (歪センサの構成)
 図7は、歪センサ19の一例を示している。前述したように、歪センサ19は、起歪体19aと、起歪体19aの表面に設けられた複数の歪ゲージR1~R8により構成される。起歪体19aは、金属により構成され、その厚みは、幅より薄くされている。このため、起歪体19aは、厚み方向に変形しやすく、幅方向に変形し難い。
(Configuration of strain sensor)
FIG. 7 shows an example of the strain sensor 19. As shown in FIG. As described above, the strain sensor 19 is composed of a strain body 19a and a plurality of strain gauges R1 to R8 provided on the surface of the strain body 19a. The strain-generating body 19a is made of metal, and its thickness is smaller than its width. Therefore, the strain-generating body 19a is easily deformed in the thickness direction and is difficult to be deformed in the width direction.
 起歪体19aの一端部は第1構造体16-1に設けられ、他端部は第2構造体16-2の中継部16-6に設けられる。 One end of the strain generating body 19a is provided on the first structure 16-1, and the other end is provided on the relay portion 16-6 of the second structure 16-2.
 起歪体19aの表面に例えば薄膜抵抗体からなる歪ゲージR1、R2、R3、R4、R5、R6、R7、R8が設けられる。Fx、Fy、Mzを検出するための歪ゲージR1、R2、R3、R4は、起歪体19aの長手方向に対して斜めに配置される。具体的には、歪ゲージR1、R2、R3、R4は、起歪体19aの対角線に沿って、起歪体19aの角部に配置される。一方、Mx、My、Fzを検出するための歪ゲージR5、R6、R7、R8は、起歪体19aの長手方向に対して平行で、起歪体19aの中央部に配置される。さらに、歪ゲージR1、R3、R5、R8は、起歪体19aの長手方向の一端部近傍に配置され、歪ゲージR2、R4、R6、R7は、起歪体19aの長手方向の他端部近傍に配置される。 Strain gauges R1, R2, R3, R4, R5, R6, R7 and R8 made of, for example, thin film resistors are provided on the surface of the strain generating body 19a. Strain gauges R1, R2, R3, and R4 for detecting Fx, Fy, and Mz are arranged obliquely with respect to the longitudinal direction of the strain generating body 19a. Specifically, the strain gauges R1, R2, R3, and R4 are arranged at the corners of the strain body 19a along the diagonal lines of the strain body 19a. On the other hand, strain gauges R5, R6, R7, and R8 for detecting Mx, My, and Fz are arranged parallel to the longitudinal direction of the strain-generating body 19a at the center of the strain-generating body 19a. Furthermore, the strain gauges R1, R3, R5 and R8 are arranged near one longitudinal end of the strain body 19a, and the strain gauges R2, R4, R6 and R7 are arranged at the other longitudinal end of the strain body 19a. placed in the vicinity.
 図8は、上記歪ゲージR1~R8を用いたブリッジ回路の一例を示している。歪ゲージR1、R2、R3、R4は、第1ブリッジ回路BC1を構成し、歪ゲージR5、R6、R7、R8は、第2ブリッジ回路BC2を構成する。 FIG. 8 shows an example of a bridge circuit using the strain gauges R1 to R8. Strain gauges R1, R2, R3, and R4 constitute a first bridge circuit BC1, and strain gauges R5, R6, R7, and R8 constitute a second bridge circuit BC2.
 第1ブリッジ回路BC1は、電源Vと接地GNDとの間に歪ゲージR2と歪ゲージR1の直列回路と、歪ゲージR4と歪ゲージR3の直列回路が配置される。歪ゲージR2と歪ゲージR1の接続ノードから出力電圧Vout+が出力され、歪ゲージR4と歪ゲージR3の接続ノードから出力電圧Vout-が出力される。出力電圧Vout+及び出力電圧Vout-は、演算増幅器OP1に供給され、演算増幅器OP1の出力端から出力電圧Voutが出力される。 In the first bridge circuit BC1, a series circuit of strain gauges R2 and R1 and a series circuit of strain gauges R4 and R3 are arranged between the power source V and the ground GND. An output voltage Vout+ is output from a connection node between the strain gauges R2 and R1, and an output voltage Vout- is output from a connection node between the strain gauges R4 and R3. The output voltage Vout+ and the output voltage Vout− are supplied to the operational amplifier OP1, and the output voltage Vout is output from the output terminal of the operational amplifier OP1.
 第2ブリッジ回路BC2は、電源Vと接地GNDとの間に歪ゲージR6と歪ゲージR5の直列回路と、歪ゲージR8と歪ゲージR7の直列回路が配置される。歪ゲージR6と歪ゲージR5の接続ノードから出力電圧Vout+が出力され、歪ゲージR8と歪ゲージR7の接続ノードから出力電圧Vout-が出力される。出力電圧Vout+及び出力電圧Vout-は、演算増幅器OP2に供給され、演算増幅器OP2の出力端から出力電圧Voutが出力される。 In the second bridge circuit BC2, a series circuit of strain gauges R6 and R5 and a series circuit of strain gauges R8 and R7 are arranged between the power source V and the ground GND. An output voltage Vout+ is output from a connection node between the strain gauges R6 and R5, and an output voltage Vout- is output from a connection node between the strain gauges R8 and R7. The output voltage Vout+ and the output voltage Vout− are supplied to the operational amplifier OP2, and the output voltage Vout is output from the output terminal of the operational amplifier OP2.
 以下、第1ブリッジ回路BC1と演算増幅器OP1と、第2ブリッジ回路BC2と演算増幅器OP2とを、それぞれ単にブリッジ回路と称す。 Hereinafter, the first bridge circuit BC1 and the operational amplifier OP1, and the second bridge circuit BC2 and the operational amplifier OP2 are simply referred to as bridge circuits.
 本実施形態の力覚センサ10は、3つの歪センサ19を具備し、各歪センサ19に一対のブリッジ回路が配置されている。このため、力覚センサ10は、合計6つのブリッジ回路を有している。 The force sensor 10 of this embodiment has three strain sensors 19, and each strain sensor 19 is provided with a pair of bridge circuits. Therefore, the force sensor 10 has a total of six bridge circuits.
 図9は、力覚センサ10の制御系の構成を示している。複数のブリッジ回路51、51~51の出力電圧V、V…Vは、演算部61に供給される。本実施形態の場合、m=6である。演算部61は、例えばマイクロコンピュータにより構成され、マイクロコンピュータは、マイクロプロセッサやメモリ、及びソフトウェア又はファームウェアを含んでいる。しかし、演算部61は、これに限定されるものではない。演算部61は、ブリッジ回路51、51~51の出力電圧V、V…VからFx、Fy、Mz、Mx、My、Fzを演算する。 FIG. 9 shows the configuration of the control system of the force sensor 10. As shown in FIG. Output voltages V 1 , V 2 , . In this embodiment, m=6. The computing unit 61 is configured by, for example, a microcomputer, and the microcomputer includes a microprocessor, memory, and software or firmware. However, the calculation unit 61 is not limited to this. The calculation unit 61 calculates Fx, Fy, Mz, Mx, My, and Fz from the output voltages V 1 , V 2 , . . . V m of the bridge circuits 51 1 , 51 2 to 51 m .
 (演算動作)
 先ず、原理について説明する。
 図10は、3つの歪センサ19(19-1、19-2、19-3)を概略的に示している。ここで、歪センサ19-1の角部の歪ゲージR1、R2、R3、R4を歪ゲージ群(1)で示し、中央部の歪ゲージR5、R6、R7、R8を歪ゲージ群(2)で示す。歪センサ19-2の角部の歪ゲージR1、R2、R3、R4を歪ゲージ群(3)で示し、中央部の歪ゲージR5、R6、R7、R8を歪ゲージ群(4)で示す。歪センサ19-3の角部の歪ゲージR1、R2、R3、R4を歪ゲージ群(5)で示し、中央部の歪ゲージR5、R6、R7、R8を歪ゲージ群(6)で示す。
(calculation operation)
First, the principle will be explained.
FIG. 10 schematically shows three strain sensors 19 (19-1, 19-2, 19-3). Here, the strain gauges R1, R2, R3, and R4 at the corners of the strain sensor 19-1 are shown as a strain gauge group (1), and the strain gauges R5, R6, R7, and R8 at the central portion are shown as a strain gauge group (2). indicated by . The strain gauges R1, R2, R3, and R4 at the corners of the strain sensor 19-2 are shown as a strain gauge group (3), and the strain gauges R5, R6, R7, and R8 at the central portion are shown as a strain gauge group (4). The strain gauges R1, R2, R3, and R4 at the corners of the strain sensor 19-3 are shown as a strain gauge group (5), and the strain gauges R5, R6, R7, and R8 at the central portion are shown as a strain gauge group (6).
 図11は、歪センサ19-1、19-2、19-3にFx、Fy、Mz、Mx、My、Fzが印加された場合に歪ゲージ群(1)(2)(3)(4)(5)(6)に加わる張力又は圧縮力の大小を概略的に示している。ここで、「T」は、張力が大きいことを示し、「t」は、張力が小さいことを示している。「C」は、圧縮力が大きいことを示し、「c」は、圧縮力が小さいことを示している。「-」は、張力及び圧縮力が印加されないことを示している。 FIG. 11 shows strain gauge groups (1), (2), (3), and (4) when Fx, Fy, Mz, Mx, My, and Fz are applied to the strain sensors 19-1, 19-2, and 19-3. (5) It schematically shows the magnitude of tension or compression applied to (6). Here, "T" indicates high tension and "t" indicates low tension. A "C" indicates a high compressive force and a "c" indicates a low compressive force. A "-" indicates that no tension or compression force is applied.
 例えばFxが印加された場合、歪センサ19-1の角部に配置された歪ゲージ群(1)には、大きな張力が印加され、歪センサ19-2、19-3の角部に配置された歪ゲージ群(3)(5)には、小さな圧縮力が印加される。 For example, when Fx is applied, a large tension is applied to the strain gauge group (1) arranged at the corners of the strain sensor 19-1, and the strain gauge group (1) arranged at the corners of the strain sensors 19-2 and 19-3. A small compressive force is applied to the strain gauge groups (3) and (5).
 Fx、Fyは、歪ゲージ群(1)(3)(5)だけを用いて検出できない。具体的には、Fxの場合の歪ゲージ群(1)(3)(5)に印加される張力又は圧縮力(T、c、c)と、Myの場合の歪ゲージ群(1)(3)(5)に印加される張力又は圧縮力(t、c、c)とを比較すると、これらは歪ゲージ群(1)に印加される張力の大きさが異なるだけで、歪ゲージ群(3)(5)に印加される圧縮力が等しい。このため、FxであるかMyであるかを判別できないが、歪ゲージ群(2)(4)(6)に印加される張力又は圧縮力を判別することにより、FxであるかMyであるかを判別できる。  Fx and Fy cannot be detected using only strain gauge groups (1) (3) (5). Specifically, tension or compression forces (T, c, c) applied to strain gauge groups (1), (3), and (5) in the case of Fx, and strain gauge groups (1), (3) in the case of My ) (5) and the tension or compression forces (t, c, c) applied to the strain gauge group (1) differ only in the magnitude of the tension applied to the strain gauge group (1). ) (5) are equal in compression force. For this reason, it is impossible to determine whether Fx or My. can be determined.
 また、Fyの場合、歪ゲージ群(1)(3)(5)に印加される張力又は圧縮力(-、C、T)と、-Mx(-は、モーメントの方向が反対であることを示す)の場合の歪ゲージ群(1)(3)(5)に印加される張力又は圧縮力(-、c、t)とを比較すると、歪ゲージ群(1)には、張力又は圧縮力が印加されず、歪ゲージ群(3)(5)に印加される圧縮力と張力の大きさが異なるだけである。このため、Fyであるか-Mxであるかを判別できず、歪ゲージ群(2)(4)(6)に印加される張力又は圧縮力を判別することにより、Fyであるか-Mxであるかを判別できる。 In the case of Fy, the tensile or compressive forces (-, C, T) and -Mx (-) applied to the strain gauge groups (1), (3), and (5) indicate that the directions of the moments are opposite. ), the tension or compression force (-, c, t) applied to the strain gauge group (1) (3) (5) is compared to is not applied and only the magnitudes of the compressive and tension forces applied to the strain gauge groups (3) and (5) are different. Therefore, it is not possible to determine whether Fy or -Mx. can determine if there is
 次に、演算部61による、ブリッジ回路51、51~51の出力電圧V、V…Vを用いたFx、Fy、Fz、Mx、My、Mzの演算について説明する。 Next, calculations of Fx, Fy, Fz , Mx, My, and Mz using the output voltages V 1 , V 2 , .
 Fx、Fy、Fz、Mx、My、Mzは、式(1)で示すように、ブリッジ回路51、51~51の出力電圧V、V…Vに係数の行列Cを掛けて計算される。 Fx, Fy, Fz , Mx, My, and Mz apply the coefficient matrix C + to the output voltages V 1 , V 2 , . calculated by multiplying
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 係数の行列Cは、Fxのみを3つの歪センサに印加した時に6つの歪ゲージ群に印加される力F及び6つのブリッジ回路から出力される6つの出力電圧と、Fyのみを3つの歪センサに印加した時に6つの歪ゲージ群に印加される力F及び6つのブリッジ回路から出力される6つの出力電圧と、・・・Mzのみを3つの歪センサに印加した時に6つの歪ゲージ群に印加される力F及び6つのブリッジ回路から出力される6つの出力電圧と、を連立方程式により解くことで求められる。具体的には、係数の行列Cは、式(2)で示される。 The matrix C + of coefficients is the force F applied to the six strain gauge groups when only Fx is applied to the three strain sensors, the six output voltages output from the six bridge circuits, and the three strain sensors Fy alone. The force F applied to the 6 strain gauge groups when applied to the sensors and the 6 output voltages output from the 6 bridge circuits, and . . . the 6 strain gauge groups when only Mz is applied to the 3 strain sensors is obtained by solving simultaneous equations for the force F applied to and the six output voltages output from the six bridge circuits. Specifically, the matrix of coefficients C + is shown in equation (2).
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 式(2)は、Fx~Mzが印加された時に6つの歪ゲージ群に印加される力F11~F66の行列に、Fx~Mzが印加された時に6つのブリッジ回路から出力される電圧V11~Vm6の逆行列を乗算することにより係数の行列Cを求めている。 Equation (2) is a matrix of forces F 11 to F 66 applied to the six strain gauge groups when Fx to Mz are applied, and voltages output from the six bridge circuits when Fx to Mz are applied. The coefficient matrix C + is obtained by multiplying the inverse matrices of V 11 to V m6 .
 具体的には、力覚センサに印加される力を明確化するため、単軸毎に力を印加する(F11=Fx、F22=Fy、F33=Fz、F44=Mx、F55=My、F66=Mz)。すなわち、力覚センサにFx、Fy、Fz、Mx、My、Mzの1つのみを印加し、6つのブリッジ回路の出力電圧V~Vが測定される。この測定が、Fx、Fy、Fz、Mx、My、Mzのそれぞれに対して行われる。この結果、式(1)で示す6つの行列式が求められる。この6つの行列式から式(2)で示す連立方程式を解くことにより、係数C11~Cm6が演算される。これにより、係数の行列Cが求められる。 Specifically, in order to clarify the force applied to the force sensor, force is applied for each single axis (F 11 =Fx, F 22 =Fy, F 33 =Fz, F 44 =Mx, F 55 = My, F66 = Mz). That is, only one of Fx, Fy, Fz, Mx, My, and Mz is applied to the force sensor, and the output voltages V 1 to V 6 of the six bridge circuits are measured. This measurement is performed for each of Fx, Fy, Fz, Mx, My and Mz. As a result, six determinants shown in Equation (1) are obtained. The coefficients C 11 to C m6 are calculated by solving the simultaneous equations shown in Equation (2) from these six determinants. This gives the matrix C + of coefficients.
 本実施形態において、係数の行列Cは、式(3)で示される。 In this embodiment, the matrix C + of coefficients is shown in equation (3).
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 上記係数の行列Cを予め求め、この係数の行列Cを用いることにより、力覚センサに印加されるFx~Mzを検出することができる。係数の行列Cにおいて、係数C11、C13、C15、C21、C23、C25、C32、C34、C36、C42、C44、C46、C54、C56、C63、C65は、0以外の値である。 By obtaining the matrix C 1 + of the above coefficients in advance and using this matrix C 1 + of coefficients, Fx to Mz applied to the force sensor can be detected. In the matrix C + of coefficients, the coefficients C11, C13, C15, C21, C23, C25, C32, C34, C36, C42, C44, C46, C54, C56, C63, C65 are non-zero.
 しかも、係数の行列Cにおいて、x方向の力Fxとy方向の力Fy、及びz軸回りのモーメントMzに対応する係数のうち、特定の係数C14、C16、C22、C24、C26、C61の値が0以外の値である。このため、これらの係数に対応するブリッジ回路の出力電圧を用いてFx、Fy、Mx、Myの値を高精度に検出することが可能である。 Moreover, in the coefficient matrix C + , among the coefficients corresponding to the x-direction force Fx, the y-direction force Fy, and the moment Mz about the z-axis, specific coefficients C14, C16, C22, C24, C26, C61 The value is a value other than 0. Therefore, it is possible to detect the values of Fx, Fy, Mx, and My with high accuracy using the output voltages of the bridge circuits corresponding to these coefficients.
 すなわち、係数C14、C16、C22、C24、C26、C61は、モーメントMx、Myが印加されたとき、モーメントMx、Myに対応する出力を考慮した係数である。この係数が例えば0である場合、例えば、モーメントMyのみが印加されたにも関わらず、モーメントMyと同時に力Fxも印加されたとして演算されてしまう。これを避けるため、従来、複数の歪ゲージは、Fx、Fy、Fz、Mx、My、Mzに対応する出力がそれぞれ機械的に干渉しない位置に配置される必要があった。この場合、係数C14、C16、C22、C24、C26、C61の値をゼロとすることができるが、弾性体の形状が大型化していた。 That is, the coefficients C14, C16, C22, C24, C26, and C61 are coefficients that take into consideration the outputs corresponding to the moments Mx and My when the moments Mx and My are applied. If this coefficient is, for example, 0, for example, although only the moment My is applied, it is calculated as if the force Fx was applied simultaneously with the moment My. In order to avoid this, conventionally, a plurality of strain gauges had to be arranged at positions where the outputs corresponding to Fx, Fy, Fz, Mx, My and Mz do not mechanically interfere with each other. In this case, the values of the coefficients C14, C16, C22, C24, C26, and C61 can be set to zero, but the shape of the elastic body is enlarged.
 本実施形態は、モーメントMx、Myに対応する出力を考慮したC14、C16、C22、C24、C26、C61を用いることにより、弾性体16の形状の大型化を防止して、Fx、Fy、Mx、Myの検出精度を向上可能としている。 The present embodiment uses C14, C16, C22, C24, C26, and C61 in consideration of the outputs corresponding to the moments Mx and My to prevent the shape of the elastic body 16 from increasing in size, thereby preventing Fx, Fy, and Mx , My can be improved.
 尚、式(4)は、係数の行列Cの各数値の一例を示している。各係数の数値は、変更可能である。 Equation (4) shows an example of each numerical value of the coefficient matrix C + . The numerical value of each coefficient can be changed.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 (実施形態の効果)
 上記実施形態によれば、第1構造体16-1と3つの第2構造体16-2との間に設けられた3つの歪センサ19と、3つの歪センサ19のそれぞれに設けられた2組の歪ゲージ群の出力信号を6つのブリッジ回路により検出し、6つのブリッジ回路の出力電圧V~V6 に係数の行列Cを乗算することによりFx、Fy、Fz、Mx、My、Mzを求めている。しかも、係数の行列Cにおいて、Fx、Fy、Mx、Myに対応する係数のうち、係数C14、C16、C22、C24、C26、C61が0以外の値である。このため、これら係数に対応するブリッジ回路の出力電圧を利用することにより、弾性体の大型化を防止して、Fx、Fy、Mx、Myの値を高精度に検出することが可能である。
(Effect of Embodiment)
According to the above embodiment, the three strain sensors 19 provided between the first structure 16-1 and the three second structures 16-2, and the two strain sensors 19 provided in each of the three strain sensors 19. The output signals of the set of strain gauge groups are detected by six bridge circuits, and the output voltages V 1 to V 6 of the six bridge circuits are multiplied by the coefficient matrix C + to obtain Fx, Fy, Fz, Mx, My, Looking for Mz. Moreover, in the coefficient matrix C + , among the coefficients corresponding to Fx, Fy, Mx, and My, coefficients C14, C16, C22, C24, C26, and C61 are values other than zero. Therefore, by using the output voltage of the bridge circuit corresponding to these coefficients, it is possible to prevent the elastic body from increasing in size and detect the values of Fx, Fy, Mx, and My with high precision.
 (変形例)
 図12は、本実施形態の変形例を示している。
 上記実施形態は、3つの歪センサ19を用いていた。変形例では、4つの歪センサ19が用いられる。同心状に配置された第1構造体16-1と第2構造体16-2は、複数の第3構造体16-3により連結されている。4つの歪センサ19は、複数の第3構造体16-3と異なる位置で、第1構造体16-1と第2構造体16-2との間に設けられている。各歪センサ19の構成は、図7に示すものと同様であり、各歪センサ19により2つのブリッジ回路が構成される。このため、本変形例は、8つのブリッジ回路を具備している。
(Modification)
FIG. 12 shows a modification of this embodiment.
The above embodiment used three strain sensors 19 . In a variant, four strain sensors 19 are used. The concentrically arranged first structure 16-1 and second structure 16-2 are connected by a plurality of third structures 16-3. The four strain sensors 19 are provided between the first structure 16-1 and the second structure 16-2 at positions different from the plurality of third structures 16-3. The structure of each strain sensor 19 is the same as that shown in FIG. 7, and each strain sensor 19 constitutes two bridge circuits. Therefore, this modification includes eight bridge circuits.
 本変形例において、8つのブリッジ回路から8つの出力電圧V~Vが出力され、これら出力電圧V~Vを用いて、力覚センサ10に印加されたFx、Fy、Fz、Mx、My、Mzが検出される。 In this modification, eight output voltages V 1 to V 8 are output from the eight bridge circuits, and these output voltages V 1 to V 8 are used to apply Fx, Fy, Fz, Mx to the force sensor 10. , My, Mz are detected.
 具体的には、上記式(1)、式(2)において、ブリッジ回路の数mが8として計算される。本変形例において、式(2)の係数の行列Cは、式(5)で示される。 Specifically, in the above equations (1) and (2), the number m of bridge circuits is calculated as eight. In this modification, the matrix C + of the coefficients of equation (2) is given by equation (5).
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 本変形例において、係数の行列Cの係数C12、C16、C24、C28の値が0以外の値である。 In this modification, the values of the coefficients C12, C16, C24, C28 of the coefficient matrix C + are values other than zero.
 本変形例において、モーメントMxが印加された場合、90°と270°に位置する歪センサ19は、曲げられるのに対して、0°と180°に位置する歪センサ19は、ねじられる。このため、歪ゲージ群(1)(3)(5)(7)でモーメントMxを測定し、係数C12、C16、C24、C28を求めておくことにより、Fx、Fy、Mx、Myの検出精度を向上させることができる。 In this modification, when a moment Mx is applied, the strain sensors 19 positioned at 90° and 270° are bent, whereas the strain sensors 19 positioned at 0° and 180° are twisted. Therefore, by measuring the moment Mx with strain gauge groups (1), (3), (5), and (7) and obtaining the coefficients C12, C16, C24, and C28, the detection accuracy of Fx, Fy, Mx, and My can be improved.
 本変形例によれば、係数の行列Cを用いることにより、Fx~Mzを検出することができる。しかも、行列Cの係数C12、C16、C24、C28が0以外の値であるため、これらの係数に対応するブリッジ回路の出力電圧を十分に利用することができる。したがって、弾性体の形状の大型化を抑えて、Fx、Fy、Mx、Myの値を高精度に検出することが可能である。 According to this modification, Fx to Mz can be detected by using the coefficient matrix C + . Moreover, since the coefficients C12, C16, C24 and C28 of the matrix C + are non-zero values, the output voltages of the bridge circuit corresponding to these coefficients can be fully utilized. Therefore, it is possible to detect the values of Fx, Fy, Mx, and My with high accuracy while suppressing an increase in the size of the elastic body.
 その他、本発明は上記各実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記各実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。 In addition, the present invention is not limited to the above-described embodiments as they are, and can be embodied by modifying the constituent elements without departing from the gist of the present invention at the implementation stage. Also, various inventions can be formed by appropriate combinations of the plurality of constituent elements disclosed in the above embodiments. For example, some components may be omitted from all components shown in the embodiments. Furthermore, components across different embodiments may be combined as appropriate.

Claims (3)

  1.  第1構造体と、
     第2構造体と、
     前記第1構造体と前記第2構造体を接続する複数の第3構造体と、
     前記複数の第3構造体と異なる位置で、前記第1構造体と第2構造体との間に設けられ、それぞれ2つの歪ゲージ群を有する少なくとも3つの歪センサと、
     前記少なくとも3つの歪センサの前記2つの歪ゲージ群の抵抗値の変化を複数の電圧値として出力する複数のブリッジ回路と、
     前記複数のブリッジ回路の出力電圧を演算する演算部と、
     を具備し、
     前記演算部は、次式を用いて、3つの力と3つのモーメントを演算し、
    Figure JPOXMLDOC01-appb-M000001
     ここで、
     Fxはx方向の力、Fyはy方向の力、Fzはz方向の力、Mxはx軸回りのモーメント、Myはy軸回りのモーメント、Mzはz軸回りのモーメント、Cは係数の行列、V1~Vmは、m個のブリッジ回路の出力電圧であり、前記係数の行列Cが次式で示され、
    Figure JPOXMLDOC01-appb-M000002
     ここで、
     C11~C6mは、係数の行列Cの係数
     F11~F66は、Fx~Mzが印加された時、複数の歪ゲージ群に印加される力、
     V11~Vm6は、Fx~Mzが印加された時のm個のブリッジ回路の出力電圧であり、
     前記ブリッジ回路の数mが6であるとき、係数の行列Cの係数C14、C16、C22、C24、C26、C61が0以外の値であることを特徴とする力覚センサ。
    a first structure;
    a second structure;
    a plurality of third structures connecting the first structure and the second structure;
    at least three strain sensors each having two strain gauge groups provided between the first structure and the second structure at positions different from the plurality of third structures;
    a plurality of bridge circuits that output changes in resistance values of the two strain gauge groups of the at least three strain sensors as a plurality of voltage values;
    a computing unit that computes the output voltages of the plurality of bridge circuits;
    and
    The calculation unit calculates three forces and three moments using the following equations,
    Figure JPOXMLDOC01-appb-M000001
    here,
    Fx is the force in the x direction, Fy is the force in the y direction, Fz is the force in the z direction, Mx is the moment about the x axis, My is the moment about the y axis, Mz is the moment about the z axis, C + is the coefficient of The matrices V1 to Vm are the output voltages of the m bridge circuits, the matrix C + of said coefficients is given by
    Figure JPOXMLDOC01-appb-M000002
    here,
    C 11 -C 6m are the coefficients of the coefficient matrix C + F 11 -F 66 are the forces applied to the multiple strain gauge groups when Fx-Mz are applied;
    V 11 to V m6 are the output voltages of the m bridge circuits when Fx to Mz are applied;
    The haptic sensation characterized in that when the number m of the bridge circuits is 6, the coefficients C 14 , C 16 , C 22 , C 24 , C 26 , and C 61 of the coefficient matrix C + are values other than 0. sensor.
  2.  第1構造体と、
     第2構造体と、
     前記第1構造体と前記第2構造体を接続する複数の第3構造体と、
     前記複数の第3構造体と異なる位置で、前記第1構造体と第2構造体との間に設けられ、それぞれ2つの歪ゲージ群を有する少なくとも3つの歪センサと、
     前記少なくとも3つの歪センサの前記2つの歪ゲージ群の抵抗値の変化を複数の電圧値として出力する複数のブリッジ回路と、
     前記複数のブリッジ回路の出力電圧を演算する演算部と、
     を具備し、
     前記演算部は、次式を用いて、3つの力と3つのモーメントを演算し、
    Figure JPOXMLDOC01-appb-M000003
     ここで、
     Fxはx方向の力、Fyはy方向の力、Fzはz方向の力、Mxはx軸回りのモーメント、Myはy軸回りのモーメント、Mzはz軸回りのモーメント、Cは係数の行列、V1~Vmは、m個のブリッジ回路の出力電圧であり、前記係数の行列Cが次式で示され、
    Figure JPOXMLDOC01-appb-M000004
     ここで、
     C11~C6mは、係数の行列Cの係数
     F11~F66は、Fx~Mzが印加された時、複数の歪ゲージ群に印加される力、
     V11~Vm6は、Fx~Mzが印加された時のm個のブリッジ回路の出力電圧であり、
     前記ブリッジ回路の数mが8であるとき、係数の行列Cの係数C12、C16、C24、C28が0以外の値であることを特徴とする力覚センサ。
    a first structure;
    a second structure;
    a plurality of third structures connecting the first structure and the second structure;
    at least three strain sensors each having two strain gauge groups provided between the first structure and the second structure at positions different from the plurality of third structures;
    a plurality of bridge circuits that output changes in resistance values of the two strain gauge groups of the at least three strain sensors as a plurality of voltage values;
    a computing unit that computes the output voltages of the plurality of bridge circuits;
    and
    The calculation unit calculates three forces and three moments using the following equations,
    Figure JPOXMLDOC01-appb-M000003
    here,
    Fx is the force in the x direction, Fy is the force in the y direction, Fz is the force in the z direction, Mx is the moment about the x axis, My is the moment about the y axis, Mz is the moment about the z axis, C + is the coefficient of The matrices V1 to Vm are the output voltages of the m bridge circuits, the matrix C + of said coefficients is given by
    Figure JPOXMLDOC01-appb-M000004
    here,
    C 11 -C 6m are the coefficients of the coefficient matrix C + F 11 -F 66 are the forces applied to the multiple strain gauge groups when Fx-Mz are applied;
    V 11 to V m6 are the output voltages of the m bridge circuits when Fx to Mz are applied;
    The force sensor, wherein when the number m of the bridge circuits is 8, coefficients C 12 , C 16 , C 24 , and C 28 of the coefficient matrix C + are values other than zero.
  3.  前記歪センサのそれぞれは、前記第1構造体、第2構造体、及び第3構造体より薄い金属板により構成された起歪体を含み、前記複数の歪ゲージは、前記起歪体の長手方向に対して斜めに配置された複数の第1歪ゲージ群と、前記起歪体の長手方向と平行に配置された複数の第2歪ゲージ群と、を含むことを特徴とする請求項1又は2記載の力覚センサ。 Each of the strain sensors includes a strain body made of a metal plate thinner than the first structure, the second structure, and the third structure, and the plurality of strain gauges extend along the length of the strain body. A plurality of first strain gauge groups arranged obliquely with respect to a direction, and a plurality of second strain gauge groups arranged parallel to the longitudinal direction of the strain-generating body. Or the force sensor according to 2.
PCT/JP2022/002376 2021-03-31 2022-01-24 Force sensor WO2022209210A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-060808 2021-03-31
JP2021060808A JP2022156888A (en) 2021-03-31 2021-03-31 force sensor

Publications (1)

Publication Number Publication Date
WO2022209210A1 true WO2022209210A1 (en) 2022-10-06

Family

ID=83458643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/002376 WO2022209210A1 (en) 2021-03-31 2022-01-24 Force sensor

Country Status (2)

Country Link
JP (1) JP2022156888A (en)
WO (1) WO2022209210A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060130595A1 (en) * 2004-11-23 2006-06-22 Mts Systems Corporation Multi axis load cell body
JP2018159715A (en) * 2018-07-11 2018-10-11 株式会社レプトリノ Force sensor and method of configuring bridge circuit of force sensor
JP2018179806A (en) * 2017-04-14 2018-11-15 日本電産コパル電子株式会社 Force sensor
JP2020118645A (en) * 2019-01-28 2020-08-06 日本電産コパル電子株式会社 Elastic body and force sensor using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060130595A1 (en) * 2004-11-23 2006-06-22 Mts Systems Corporation Multi axis load cell body
JP2018179806A (en) * 2017-04-14 2018-11-15 日本電産コパル電子株式会社 Force sensor
JP2018159715A (en) * 2018-07-11 2018-10-11 株式会社レプトリノ Force sensor and method of configuring bridge circuit of force sensor
JP2020118645A (en) * 2019-01-28 2020-08-06 日本電産コパル電子株式会社 Elastic body and force sensor using the same

Also Published As

Publication number Publication date
JP2022156888A (en) 2022-10-14

Similar Documents

Publication Publication Date Title
US11085839B2 (en) Torque sensor capable of independently setting the sensitivity and allowance torque of a strain sensor
US7500406B2 (en) Multiaxial sensor
US7121147B2 (en) Force detection device
JP4955740B2 (en) Phalange contact load cell
US9993309B2 (en) Force/torque transducer and method of operating the same
JP6999586B2 (en) Elastic body and force sensor using it
JP3621782B2 (en) Force sensor device
KR20210043731A (en) Strain gauge and multiple axis force sensor
JP4249735B2 (en) Force sensor
WO2020158167A1 (en) Force sensor
WO2022209210A1 (en) Force sensor
JP6611761B2 (en) Strain gauge and multi-axis force sensor
JPH05149811A (en) Axial force sensor for six components
US20100000327A1 (en) Strain gauge type sensor
JPH01262431A (en) Force sensor
KR20230017187A (en) force and torque transducers
JP6999587B2 (en) Elastic body and force sensor using it
WO2023181531A1 (en) Torque sensor
JP2000266620A (en) Inner force sensor
JP7432973B1 (en) force sensor
JP3586696B2 (en) Thin load cell
JP2006058211A (en) Strain gauge type sensor
JP7353004B1 (en) torque sensor
JP2004245717A (en) Contact pressure sensor and grasp robot
JP2019215270A (en) Tread force detector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22779440

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22779440

Country of ref document: EP

Kind code of ref document: A1