WO2023145731A1 - 摩耗量予測装置、摩耗量予測方法、制御プログラム、および記録媒体 - Google Patents

摩耗量予測装置、摩耗量予測方法、制御プログラム、および記録媒体 Download PDF

Info

Publication number
WO2023145731A1
WO2023145731A1 PCT/JP2023/002099 JP2023002099W WO2023145731A1 WO 2023145731 A1 WO2023145731 A1 WO 2023145731A1 JP 2023002099 W JP2023002099 W JP 2023002099W WO 2023145731 A1 WO2023145731 A1 WO 2023145731A1
Authority
WO
WIPO (PCT)
Prior art keywords
wear
cutting tool
wear amount
cutting
information
Prior art date
Application number
PCT/JP2023/002099
Other languages
English (en)
French (fr)
Inventor
雅寛 柴田
啓太朗 勝
哲史 三舩
Original Assignee
京セラ株式会社
株式会社Rist
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社, 株式会社Rist filed Critical 京セラ株式会社
Publication of WO2023145731A1 publication Critical patent/WO2023145731A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/09Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4155Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by programme execution, i.e. part programme or machine function execution, e.g. selection of a programme

Definitions

  • the present disclosure relates to a wear amount prediction device for predicting the wear amount due to cutting of a cutting tool, a wear amount prediction method, a control program used in the wear amount prediction device, and a recording medium recording this control program.
  • Patent Document 1 and Patent Document 2 describe a configuration for predicting the amount of wear using a prediction formula.
  • Patent Literature 3 describes a configuration for predicting wear by inputting an image of a blade portion, machining conditions, and workpiece specifications into a learned model.
  • a wear amount prediction device includes a prediction unit that predicts the wear amount of a cutting tool according to machining time using a learning model, and a display that displays information based on the result predicted by the prediction unit.
  • the learning model uses information on cutting tools, conditions on cutting, and information on work materials as input data, machining time using cutting tools, wear amount of cutting tools accompanying machining , an initial wear time from the start of cutting by the cutting tool to the completion of the initial wear, and an initial wear amount indicating the wear amount of the cutting tool at the time when the initial wear time has elapsed are output data.
  • the prediction unit inputs data including information on the cutting tool, conditions on cutting, and information on the work material into the learning model, and predicts the wear Predict quantity.
  • a wear amount prediction method includes a prediction step of predicting the wear amount of a cutting tool according to machining time using a learning model, and a display that displays information based on the results predicted in the prediction step.
  • the learning model uses information on cutting tools, conditions on cutting, and information on work materials as input data, and the machining time using the cutting tool and the amount of wear of the cutting tool due to machining.
  • an initial wear time from the start of cutting by the cutting tool to the completion of the initial wear, and an initial wear amount indicating the wear amount of the cutting tool at the time when the initial wear time has elapsed are output data.
  • data including information on cutting tools, conditions on cutting, and information on work materials are input to the learning model, and the wear Predict quantity.
  • the wear amount prediction device may be realized by a computer.
  • the wear amount prediction device is operated by operating the computer as each part (software element) included in the wear amount prediction device.
  • a control program for a wear amount prediction device that implements by a computer, and a computer-readable recording medium recording it are also included in the scope of the present disclosure.
  • FIG. 1 is a functional block diagram showing a configuration of main parts of a wear amount prediction device according to an embodiment of the present disclosure
  • FIG. FIG. 4 is a diagram showing an example of teacher data
  • FIG. 10 is a diagram showing details of teacher data
  • 4 is a graph showing cutting data when cutting is actually performed. It is a graph for demonstrating the prediction method of a prediction part. It is a figure which shows the example of a display of the graph as a prediction result of a wear amount prediction apparatus. It is a figure which shows the example of a display of the graph as a prediction result of a wear amount prediction apparatus. It is a figure which shows the example of a screen which inputs data. It is a figure which shows the example of a screen which shows a prediction result.
  • FIG. 11 is a functional block diagram showing a main configuration of a wear amount prediction device according to another embodiment of the present disclosure. It is a figure which shows the example of the wear amount data memorize
  • FIG. 10 is a diagram showing an example of a display screen of an extraction result by a database information extraction unit;
  • FIG. 10 is a functional block diagram showing the main configuration of a wear amount prediction device and a database update device according to still another embodiment of the present disclosure;
  • FIG. 5 is a diagram showing the degree of importance of factors affecting prediction of the presence or absence of chipping, final machining time, and final wear amount.
  • the wear amount prediction device 1 uses a learning model 40 learned by machine learning to predict the wear amount associated with the use of a cutting tool.
  • FIG. 1 is a functional block diagram showing the main configuration of the wear amount prediction device 1.
  • the wear amount prediction device 1 includes an input reception unit 10 , a prediction unit 20 , a display unit 30 and a learning model 40 .
  • the input reception unit 10 receives input to the wear amount prediction device 1.
  • the input data in this embodiment includes data on cutting tools, data on machining conditions, and data on work materials.
  • the prediction unit 20 predicts the wear amount of the cutting tool based on the input data received by the input reception unit 10, and includes a wear amount prediction unit 21 and a graph generation unit 22.
  • the wear amount prediction unit 21 uses the learning model 40 to predict the initial wear time, initial wear amount, final machining time, final wear amount, and/or defect probability from the input data received by the input reception unit 10 .
  • the initial wear time is the time from the start of cutting until the cutting tool becomes familiar with the work material, during which there is a relatively large amount of wear, and is the time required for so-called initial wear (severe wear).
  • initial wear wear that progresses relatively slowly and stably
  • steady wear steady wear
  • the initial wear amount is the wear amount of the cutting tool during the initial wear time.
  • the final machining time is the limit time during which the work material can be machined until chipping occurs in the cutting tool through steady wear.
  • the final wear amount is the wear amount in the final machining time. Chipping is chipping that occurs in a cutting tool. Based on the data obtained by the above measurements, in addition to the initial wear time and the initial wear amount, the final machining time, the final wear amount and the presence or absence of chipping under predetermined conditions can be evaluated.
  • Fracture probability is the probability that a chip will occur in a cutting tool. By predicting the fracture probability, the user can be made aware of the probability that the cutting tool will fracture.
  • the graph generation unit 22 From the initial wear time, the initial wear amount, the final machining time, and the final wear amount predicted by the wear amount prediction unit 21, the graph generation unit 22 generates a graph in which the horizontal axis is the processing time and the vertical axis is the wear amount. do.
  • FIG. 5 is a graph in which the horizontal axis represents machining time (min) and the vertical axis represents wear amount (mm).
  • point 502 be the point indicating the initial wear time and amount of initial wear predicted by the wear amount prediction unit 21
  • point 501 be the point indicating the final machining time and amount of final wear.
  • a connecting straight line 511 is generated.
  • the prediction unit 20 notifies the display unit 30 of the graph generated by the graph generation unit 22 as a prediction result, and causes the display unit 30 to display it.
  • the display unit 30 displays the prediction result of the prediction unit 20 or information based on the prediction result. That is, the display unit 30 may display information based on the prediction result without displaying the prediction result itself.
  • the display unit 30 may be provided outside the wear amount prediction device 1 as an external device instead of being provided in the wear amount prediction device 1 .
  • the external device may be any device, such as a personal computer, tablet, smart phone, etc., as long as it has a display unit capable of displaying information.
  • screen examples to be described later can be applied to a personal computer having a large screen size and a smart phone having a small screen size. The size of the display area, the display position, etc. may be appropriately adjusted according to the screen size.
  • FIG. 6 and 7 are diagrams showing display examples of graphs as prediction results of the wear amount prediction device 1.
  • FIG. 6 and 7 are diagrams showing display examples of graphs as prediction results of the wear amount prediction device 1.
  • a graph 601 in FIG. 6 shows the prediction result of the wear amount prediction device 1.
  • the wear amount prediction device 1 shows the prediction results in a graph, so that the user can recognize the wear amount at any machining time.
  • Graphs 611 and 612 in FIG. 6 show the error ranges of the prediction results.
  • Graph 611 shows the lower bound of error and graph 612 shows the upper bound of error. Therefore, the wear amount is predicted to fall between at least the graphs 611 and 612 .
  • FIG. 7 is an example of displaying a graph 621 showing the extraction results from the database on the graph shown in FIG. The details of the extraction process from the database will be described later, but the graph 621 shows the result of extracting past cutting data for the same data as the input data from the database. By showing the graph 621, the user can recognize the situation when cutting was performed under the same conditions in the past.
  • the display unit 30 displays the results predicted by the prediction unit 20 in graphs that allow the machining time and the amount of wear to be viewed at a glance. As a result, a graph is displayed in which the machining time and the amount of wear can be viewed at a glance, so that the user can easily visualize and recognize the relationship between the amount of machining and the amount of wear.
  • a learning model 40 is a learning model generated by a machine learning algorithm using teacher data 41 . Any machine learning algorithm may be used, and for example, the following techniques or a combination thereof may be used.
  • GBDT Gradient Boosting Decision Tree
  • SVM Small Vector Machine
  • ILP Inductive Logic Programming
  • GP Genetic Algorithms
  • BN Boyesian Network
  • NN Neuronal Network
  • CNN convolutional neural network
  • one or more layers included in the neural network include a convolution layer that performs a convolution operation, and a filter operation (product-sum operation) is performed on input data input to the layer.
  • a convolution layer that performs a convolution operation
  • a filter operation product-sum operation
  • processing such as padding may be used in combination, or an appropriately set stride width may be employed.
  • a multi-layer or super multi-layer neural network with tens to thousands of layers may be used.
  • the teacher data 41 is a data set including teacher input data 41A, which is input data of teacher data, and teacher output data 41B, which is output data of teacher data.
  • the teacher input data 41A may include environmental information, tool information, cutting conditions, and work material information.
  • the teacher output data 41B may also include initial wear amount, initial wear time, final wear amount, final machining time, and the presence/absence of chipping.
  • the tool information is information relating to the cutting tool.
  • Cutting conditions are conditions related to cutting.
  • the work material information is information related to the work material.
  • FIG. 3 is a diagram showing details of the teacher data 41. As shown in FIG. 3
  • the environment information of the teacher input data 41A may include information on "machine”, “cutting fluid”, “coolant pressure”, and “continuous, intermittent machining”.
  • Tool information includes information on "holder, chip”, “breaker”, “corner radius”, “grade”, “film thickness”, “hardness”, “fracture toughness”, and “flexural strength”.
  • the cutting conditions may include information regarding "cutting speed”, “feed per tooth” and “depth of cut”.
  • the work material information may include information on "work material name” and "composition”. Details are as follows. - "Processing machine” is information indicating whether the machine for processing is a “lathe” or a “milling machine”. Since the processing mode changes greatly between lathe processing (turning processing) and milling processing (milling processing), it becomes useful information as teaching data.
  • ⁇ "Cutting oil material is information indicating whether lubrication is applied during machining, whether it is not (dry), or whether air is blown, and if lubricated, the type of oil is oil-based or water-soluble. is.
  • Coolant pressure is information indicating the output pressure of lubrication during machining. Since the coolant pressure changes the life of the cutting tool, it is useful information as teaching data.
  • Continuous or intermittent machining is information indicating whether the cutting edge at the rear part of the cutting is always in contact with the work material or intermittently in contact with the work material during machining.
  • - "Holder, tip” is information indicating the model number of the holder of the cutting tool and the model number of the tip.
  • ⁇ "Breaker is information indicating the structure of the surface (rake face) along the cutting edge of the insert. Chips can be controlled by the shape of the rake face. That is, since the progress of wear due to chips changes, the information is useful as teacher data for evaluating the wear of cutting tools.
  • - "Corner R” is information indicating the roundness of the tip of the tip.
  • - "Material type” is information indicating the composition of the tip.
  • - “Thickness” is information indicating the thickness of the coating that covers the chip.
  • Hardness is information indicating the hardness of the coating.
  • - “Fracture toughness” is information indicating the toughness of the base material of the chip.
  • the toughness of the base material affects the presence or absence of chip breakage.
  • - "Bending strength” is information indicating the toughness of the base material of the chip. As described above, the toughness of the base material affects the presence or absence of chip breakage.
  • - "Cutting speed” is information indicating the speed of rotation.
  • - “Feed per blade” is information for indicating the speed at which the cutting tool advances per rotation.
  • - “Depth of cut” is information indicating the amount of thickness cut by the cutting tool per pass. For example, the cutting width refers to the width of chips, and corresponds to the width of chips removed per pass.
  • - "Work material name” is information indicating the name of the material to be cut by the cutting tool.
  • - “Composition” is information indicating the composition of the work material, and indicates the content of carbon, silicon, manganese, and the like.
  • the teacher output data 41B may include "initial wear time”, “initial wear amount”, “final machining time”, “final wear amount”, and "whether or not there is a defect”.
  • ⁇ "Initial wear time” is the time required for so-called initial wear from the start of cutting until the cutting tool becomes familiar with the work material.
  • - "Initial wear amount” is the wear amount of the cutting tool during the initial wear time.
  • ⁇ "Final machining time” is the time required for machining the work material. If there is a defect, it is the time immediately before it.
  • - “Final wear amount” is the wear amount in the final machining time.
  • ⁇ "Defectiveness" indicates whether or not there is a defect in the chip after processing.
  • the teacher output data 41B does not include cases where the cutting tool is chipped within a predetermined time from the start of cutting. Failure occurs at the timing of initial wear not long after the start of cutting, for example, when the cutting conditions are set incorrectly and cutting cannot be said to have been performed properly, or when sudden failure of the cutting tool occurs accidentally. is mentioned. This is because all of these are specific situations, and are not suitable as teacher data for predicting the steady wear amount of the cutting tool by the prediction unit 20 .
  • FIG. 4 is a graph showing cutting data when cutting was actually performed, in which the horizontal axis indicates machining time (min) and the vertical axis indicates wear amount (mm). Here, five cases from graphs 401 to 405 are shown.
  • the point 411 of the graph 401 is the initial wear time and initial wear amount. Therefore, the machining time and the amount of wear indicated by the point 411 serve as teacher data for the initial wear time and the amount of initial wear. Also, since there is a defect at the point 413, the point 412 is the final machining time and the final wear amount. Therefore, the machining time and wear amount indicated by point 412 are teaching data as the final machining time and final wear amount.
  • the point 421 indicates the initial wear time and initial wear amount. Therefore, the machining time and the amount of wear indicated by point 421 serve as teacher data for the initial wear time and the amount of initial wear. Also, since the chip is lost at the point 423, the point 422 indicates the final machining time and the final wear amount. Therefore, the machining time and wear amount indicated by point 422 are teaching data as the final machining time and final wear amount.
  • Graphs 403, 404, and 405 are lost before the processing time reaches 10 minutes (predetermined time), so they are not used as teacher data.
  • whether or not to include the teacher data may be determined using a threshold value. In other words, data in which the amount of wear exceeds the threshold value within a predetermined period of time may be determined to be lost within the predetermined period of time and excluded from the teaching data.
  • the teaching data 41 does not include information corresponding to a cutting tool that has become defective within an improbable period of time after the start of machining. If the cutting tool breaks within an unusually long period of time, the cause may be, for example, incorrect cutting conditions.
  • the unusual time is, for example, 10 minutes.
  • the teacher data 41 is an example and is not limited to the above.
  • FIG. 8 is a diagram showing an example of a screen for inputting data.
  • FIG. 9 is a diagram showing a screen example showing a prediction result.
  • the input screen allows you to input information about the cutting tool and work material whose wear amount you want to predict.
  • an input area 810 allows input of processing machine, cutting fluid material, coolant pressure, continuous/intermittent machining, holder model number, tip model number, corner radius, and the like.
  • the input to this input area 801 is not limited to what is shown in the example screen 801 as long as the information required as input data for the prediction unit 20 to predict the amount of wear is input.
  • the initial wear time (min) is displayed in the area 911
  • the initial wear amount (mm) is displayed in the area 912
  • the final machining time (min) is displayed in the area 913.
  • the area 914 displays the final wear amount (mm)
  • the area 915 displays the fracture probability.
  • an area 916 receives an input as to whether or not to display an error. If there is an input such as a check in the area 916, the error range, that is, the graphs 611 and 612 (see FIG. 6) are displayed in the graph displayed in the graph display area 921.
  • Area 917 displays the maximum value of machining time (min), and area 918 displays the maximum value of wear amount (mm).
  • the maximum machining time is the predicted final machining time.
  • the maximum amount of wear is the amount of wear in the predicted final machining time.
  • the screen example 901 is not limited to the configuration in which the maximum value of the machining time (min) is displayed in the area 917 and the maximum value of the wear amount (mm) is displayed in the area 918.
  • the linear graph 601 may be extended to display values greater than the maximum value of the machining time (min) in a region 917 and values greater than the maximum value of the wear amount (mm) in a region 918 .
  • a predetermined threshold for example, 3%, 5%, 10%
  • graph 601 may be stretched as described above.
  • a redraw graph button 919 is also displayed, and when the redraw graph button 919 is pressed, the graph displayed in the graph display area 921 is redrawn. For example, when the area 916 is checked or unchecked, a graph including an error range is displayed or a graph without an error range is displayed. is used as
  • the graph shown in FIG. 6 or 7 is displayed as the prediction result.
  • the display unit 30 displays the results of the prediction unit 20 in a graph.
  • the information extracted by the database information extraction unit 50 which will be described later, may be superimposed on the graph of the result obtained by the prediction unit 20 and displayed. This allows the user to easily judge whether the result predicted using the learning model is appropriate or inappropriate.
  • FIG. 10 is a flow chart showing the flow of processing of the wear amount prediction device 1 .
  • the wear amount prediction device 1 input of input data is received by the input reception unit 10 (S101).
  • the prediction unit 20 predicts the amount of wear using the learning model 40 (S102, prediction step).
  • the display unit 30 displays the prediction result of the prediction unit 20 (S103, display step).
  • the wear amount prediction device 1 includes the prediction unit 20 that predicts the wear amount of the cutting tool according to the machining time using the learning model 40, and the result predicted by the prediction unit 20. and a display unit 30 for displaying information based on the information.
  • the learning model 40 is (1) at least one of information related to cutting tools, conditions related to cutting, and information related to work materials; (2) processing time using a cutting tool, amount of wear of the cutting tool due to processing, amount of initial wear indicating the amount of wear of the cutting tool at the time when the initial time has passed since the start of cutting by the cutting tool, and the initial time and, It was generated by performing machine learning using a data set containing as training data.
  • the prediction unit 20 inputs data including at least one of information on the cutting tool, conditions on cutting, and information on the work material to the learning model 40 to predict the amount of wear.
  • the amount of wear predicted by the prediction unit 20 may vary depending on the type of cutting tool and the surface of the cutting tool for which the amount of wear is predicted.
  • a tip made of cemented carbide and a tip made of CBN (Cubic Boron Nitride) may have different faces for predicting the amount of wear.
  • Surfaces for predicting the amount of wear include chip rake face, side flank, front flank, corner R, and the like.
  • the amount of wear such as crater wear on the rake face, notch wear on the side flank, and notch wear on the front flank may be predicted.
  • Worn parts differ depending on the type of cutting tool, so it is possible to predict the amount of wear on the appropriate surface as the surface to be predicted.
  • the result predicted by the prediction unit 20 may be provided to another external device. If an application capable of performing processing using the prediction result is installed in the external device, the external device can perform various processing using the prediction result.
  • FIG. 11 is a functional block diagram showing the main configuration of the wear amount prediction device 1'.
  • a wear amount prediction device 1' according to this embodiment includes a database information extraction unit 50 and a DB (database) 60 in addition to the configuration of the wear amount prediction device 1 of Embodiment 1 described above.
  • the DB 60 stores information indicating the amount of wear associated with use of the cutting tool in association with various types of information.
  • FIG. 12 shows an example of wear amount data stored in the DB 60.
  • the wear amount data is information associated with cutting tool information, cutting conditions, work material information, machining time, wear amount, and presence or absence of chipping.
  • the DB 60 stores information related to cutting tools, conditions related to cutting, information related to work materials, machining time, amount of wear, and presence/absence of chipping in association with each other.
  • Information about cutting tools includes holders, tips (holder model number, tip model number), breaker, corner R, grade symbol, film thickness, hardness, fracture toughness, and bending strength.
  • Cutting conditions include machine, cutting fluid, coolant pressure, continuous, interrupted cutting, cutting speed, feed per tooth, and depth of cut.
  • Information about the work material includes the name and composition of the work material. All of these pieces of information are not essential, and only arbitrary information may be associated with them.
  • the database information extracting unit 50 extracts from the DB 60 the wear amount data in which the input data received by the input receiving unit 10 and all or part of the information about the work material are the same, and notifies the display unit 30 of it.
  • the display unit 30 displays the result of extraction by the database information extraction unit 50 together with the result of prediction by the prediction unit 20 .
  • FIG. 13 is a diagram showing an example of a display screen of the extraction result by the database information extraction unit 50. As shown in FIG. 13
  • a screen example 1001 shown in FIG. 13 is divided into areas 1011 and 1021 and displayed.
  • "Work material”, “Grade symbol”, and “Insert model number” are selectably displayed as essential filter items, and "Holder model number”, “Machining method”, and “Machining machine” are displayed as optional filter items. ”, and “Work Material Classification” are displayed so as to be selectable.
  • a search button 1012 and a clear button 1013 are also displayed.
  • wear amount data is extracted from the DB 60 based on the items selected in the essential filter items and optional filter items, and the extraction results are displayed in area 1021. Also, a graph showing the amount of wear may be displayed like the graph 621 shown in FIG. 7 described above.
  • the wear amount prediction device 1 ' information on the cutting tool in past use, conditions related to cutting using this cutting tool, machining time using this cutting tool, and this cutting tool after machining Information on the cutting tool, conditions related to cutting using this cutting tool, machining time using this cutting tool, and information that the amount of wear of this cutting tool after machining is similar from the DB 60 that associates the wear amount of A database information extraction unit 50 for extraction is provided. Then, the display unit 30 displays the information extracted by the database information extraction unit 50 in addition to the result predicted by the prediction unit 20 .
  • the information extracted from the DB 60 can be used to allow the user to recognize the actual state of the cutting tool in past use. Then, the user can use this result as a material for judging whether the result predicted using the learning model 40 is appropriate or inappropriate.
  • FIG. 14 is a functional block diagram showing the main configuration of a wear amount prediction device 1' and a database updating device 100 according to this embodiment. As shown in FIG. 14, this embodiment includes a database update device 100 in addition to the wear amount prediction device 1' described above.
  • the database update device 100 updates the DB 60 and includes an input condition collection unit 110, a factor collection unit 120, an evaluation unit 130, and an update unit 140.
  • the input condition collection unit 110 collects the input data received by the input reception unit 10 and notifies the evaluation unit 130 of them.
  • the prediction unit 20 derives the presence or absence of chipping, the final machining time, and the degree of importance of the factors that influenced the prediction of the final amount of wear. Then, the factor collection unit 120 collects the presence/absence of chipping, the final machining time, and the factors affecting the final wear amount from the prediction unit 20, and notifies the evaluation unit 130 of them.
  • the display unit 30 may be configured to display the factors derived by the prediction unit 20. By displaying the factors, it is possible for the user to recognize where the factors affecting the presence or absence of chipping, the final machining time, and the final wear amount are.
  • the display unit 30 may be configured to display a plurality of factors derived by the prediction unit 20 and the degree of influence exerted by each factor. This allows the user to recognize the presence or absence of chipping, the final machining time, and the degree of factors affecting the final wear amount.
  • FIG. 15 is a diagram showing the degree of importance (degree) of factors affecting the prediction of the presence or absence of chipping, final machining time, and final wear amount.
  • 1401 in FIG. 15 indicates the degree of importance of factors regarding the presence or absence of chipping
  • 1402 indicates the degree of importance of factors regarding the final machining time
  • 1403 indicates the degree of importance of factors regarding the final wear amount.
  • the factors that affect the prediction of chipping are hardness (HB), insert model number, ae (mm), work material, Vc (m/min. ), ap (mm), breaker, fracture toughness (MPa ⁇ m 1/2 ), holder model number, fz (mm/t).
  • hardness (HB) is the hardness of the work material.
  • ae (mm) is the amount of width to be removed per pass.
  • Vc (m/min) is the cutting speed.
  • ap (mm) is the amount of thickness to be removed per pass.
  • fz (mm/t) is the speed at which the blade advances.
  • the factors that affect the prediction of the final machining time are Vc (m/min), grade symbol, ap (mm), f (mm/rev) in descending order of importance.
  • linear expansion coefficient (K -1 ) is the coefficient of expansion of the base material of the chip.
  • Specific gravity (g/cm 3 ) is the specific gravity of the base material of the chip.
  • the factors that affect the prediction of the final wear amount are Vc (m/min), ap (mm), ae (mm), breaker, tip model number, f (mm/rev), Cr, hardness (HB), holder model number, grade code.
  • Cr is information about the composition of the work material, and is the amount of chromium contained in the work material.
  • the evaluation unit 130 uses the information about the input data acquired from the input condition collection unit 110 and the factors and their importance acquired from the factor collection unit 120 to evaluate whether or not the data should be stored in the DB 60. . Then, the update unit 140 is notified of highly evaluated information.
  • the evaluation unit 130 determines that the "work material” is highly evaluated and notifies the update unit 140 of it. Also, for example, a factor whose importance exceeds 0.5 is judged to be highly evaluated and notified to the update unit 140 .
  • the update unit 140 updates the DB 60 by storing wear amount data including information notified by the evaluation unit 130 in the DB 60 . Also, at this time, the learning model 40 may be updated in addition to the DB 60 .
  • the evaluation unit 130 may be executed by AI (Artificial Intelligence).
  • AI Artificial Intelligence
  • the AI may operate on the database update device 100, or may operate on another device (for example, an edge computer or a cloud server).
  • the function of the wear amount prediction device 1 (hereinafter referred to as “device”) is a program for causing a computer to function as the device, and the computer as each control block (especially each part included in the prediction unit 20) of the device It can be realized by a program for functioning.
  • the device comprises a computer having at least one control device (eg processor) and at least one storage device (eg memory) as hardware for executing the program.
  • control device eg processor
  • storage device eg memory
  • the above program may be recorded on one or more computer-readable recording media, not temporary.
  • the recording medium may or may not be included in the device.
  • the program may be supplied to the device via any transmission medium, wired or wireless.
  • part or all of the functions of the above control blocks can be realized by logic circuits.
  • an integrated circuit in which logic circuits functioning as the above control blocks are formed is also included in the scope of the present disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Numerical Control (AREA)

Abstract

摩耗量予測装置は、加工時間に応じた切削工具の摩耗量を、学習モデルを用いて予測する予測部と、予測した結果に基づく情報を表示する表示部と備え、学習モデルは、切削工具に関する情報、切削に関わる条件、および被削材に関わる情報と、切削工具を用いた加工時間、加工に伴う切削工具の摩耗量、切削工具による切削開始から初期摩耗が完了するまでの初期摩耗時間、および初期摩耗時間が経過した時点における切削工具の摩耗量を示す初期摩耗量とを含むデータセットを教師データとして機械学習を行うことにより生成される。

Description

摩耗量予測装置、摩耗量予測方法、制御プログラム、および記録媒体
 本開示は、切削工具の切削による摩耗量を予測する摩耗量予測装置、摩耗量予測方法、摩耗量予測装置に用いる制御プログラム、およびこの制御プログラムを記録した記録媒体に関する。
 切削工具は、使用に伴い摩耗していく。使用に伴い、どの程度、摩耗するかは、これまで作業者の経験則で予測していることが多かった。また、特許文献1、および特許文献2には、予測式を用いて摩耗量を予測する構成が記載されている。さらに、特許文献3には、刃部の画像、加工条件、工作物諸元を学習済みモデルに入力することにより摩耗を予測する構成が記載されている。
日本国特開2004-255514号公報 日本国特開2008-221454号公報 日本国特開2021-070114号公報
 本開示の一態様に係る摩耗量予測装置は、加工時間に応じた切削工具の摩耗量を、学習モデルを用いて予測する予測部と、前記予測部が予測した結果に基づく情報を表示する表示部と、を備え、前記学習モデルは、切削工具に関する情報、切削に関わる条件、および被削材に関わる情報を入力データとし、切削工具を用いた加工時間、加工に伴う該切削工具の摩耗量、前記切削工具による切削開始から初期摩耗が完了するまでの初期摩耗時間、および前記初期摩耗時間が経過した時点における前記切削工具の摩耗量を示す初期摩耗量を出力データとするデータセットを教師データとして機械学習を行うことにより生成されたものであり、前記予測部は、切削工具に関する情報、切削に関わる条件、および被削材に関わる情報を含むデータを前記学習モデルに入力して、前記摩耗量を予測する。
 本開示の一態様に係る摩耗量予測方法は、加工時間に応じた切削工具の摩耗量を、学習モデルを用いて予測する予測ステップと、前記予測ステップで予測した結果に基づく情報を表示する表示ステップと、を含み、前記学習モデルは、切削工具に関する情報、切削に関わる条件、および被削材に関わる情報を入力データとし、切削工具を用いた加工時間、加工に伴う該切削工具の摩耗量、前記切削工具による切削開始から初期摩耗が完了するまでの初期摩耗時間、および前記初期摩耗時間が経過した時点における前記切削工具の摩耗量を示す初期摩耗量を出力データとするデータセットを教師データとして機械学習を行うことにより生成されたものであり、前記予測ステップでは、切削工具に関する情報、切削に関わる条件、および被削材に関わる情報を含むデータを前記学習モデルに入力して、前記摩耗量を予測する。
 本開示の各態様に係る摩耗量予測装置は、コンピュータによって実現してもよく、この場合には、コンピュータを前記摩耗量予測装置が備える各部(ソフトウェア要素)として動作させることにより前記摩耗量予測装置をコンピュータにて実現させる摩耗量予測装置の制御プログラム、およびそれを記録したコンピュータ読み取り可能な記録媒体も、本開示の範疇に入る。
本開示の実施形態に係る摩耗量予測装置の要部構成を示す機能ブロック図である。 教師データの例を示す図である。 教師データの詳細を示す図である。 実際に切削を行ったときの切削データを示すグラフである。 予測部の予測方法を説明するためのグラフである。 摩耗量予測装置の予測結果としてのグラフの表示例を示す図である。 摩耗量予測装置の予測結果としてのグラフの表示例を示す図である。 データを入力する画面例を示す図である。 予測結果を示す画面例を示す図である。 摩耗量予測装置の処理の流れを示すフローチャートである。 本開示の他の実施形態に係る摩耗量予測装置の要部構成を示す機能ブロック図である。 DB(データベース)に記憶される摩耗量データの例を示す図である。 データベース情報抽出部による抽出結果の表示画面例を示す図である。 本開示のさらに他の実施形態に係る摩耗量予測装置およびデータベース更新装置の要部構成を示す機能ブロック図である。 欠損の有無、最終加工時間、および最終摩耗量の予測に影響を与えた要因の重要度を示す図である。
 〔実施形態1〕
 以下、本開示の一実施形態について、詳細に説明する。本実施形態に係る摩耗量予測装置1は、機械学習により学習した学習モデル40を用いて、切削工具の使用に伴う摩耗量を予測するものである。
 まず、図1を参照して、摩耗量予測装置1の要部構成について説明する。図1は、摩耗量予測装置1の要部構成を示す機能ブロック図である。図1に示すように、摩耗量予測装置1は、入力受付部10、予測部20、表示部30、および学習モデル40を含む。
 入力受付部10は、摩耗量予測装置1への入力を受け付ける。本実施形態における入力データには、切削工具に関するデータ、加工条件に関するデータ、および被削材に関するデータが含まれる。
 予測部20は、入力受付部10で受け付けた入力データを元に、切削工具の摩耗量を予測するものであり、摩耗量予測部21およびグラフ生成部22を含む。
 摩耗量予測部21は、学習モデル40を用いて、入力受付部10で受け付けた入力データから、初期摩耗時間、初期摩耗量、最終加工時間、最終摩耗量、及び/又は欠損確率を予測する。ここで、初期摩耗時間とは、切削開始から切削工具が被削材となじむまでの比較的摩耗量の多い時間であり、いわゆる初期摩耗(シビア摩耗)に要する時間である。比較的摩耗量の多い初期摩耗に対して、比較的緩やかに安定して進行する摩耗は、一般的に定常摩耗(マイルド摩耗)と呼ばれる。
 初期摩耗量とは、初期摩耗時間における切削工具の摩耗量である。所定の条件下での加工時間および摩耗量の推移を測定することによって、当該条件下での初期摩耗時間および初期摩耗量を予め評価できる。最終加工時間とは、定常摩耗を経て切削工具に欠損が生じるまでの、被削材の加工が可能な限界時間である。最終摩耗量とは、最終加工時間における摩耗量である。欠損とは、切削工具に生じる欠けである。上記した測定によるデータに基づいて、初期摩耗時間および初期摩耗量に加えて、所定の条件下での最終加工時間、最終摩耗量および欠損の有無を評価できる。
 欠損の例としては、摩耗性欠け、チッピング、溶着性欠け、機械的欠け、熱亀裂性欠け、および貝殻状剥離(フレーキング)が挙げられる。欠損確率とは、切削工具に欠損が生じる確率である。欠損確率を予測することにより、使用者に、切削工具が欠損する確率を認識させることができる。
 グラフ生成部22は、摩耗量予測部21が予測した初期摩耗時間、初期摩耗量、最終加工時間、および最終摩耗量から、横軸を加工時間、縦軸を摩耗量とした場合のグラフを生成する。
 ここで、図5を参照して、グラフ生成部22がグラフを生成する方法について説明する。図5は、横軸が加工時間(min)、縦軸が摩耗量(mm)であるグラフである。摩耗量予測部21が予測した初期摩耗時間および初期摩耗量を示す点を点502、最終加工時間および最終摩耗量を示す点を点501とすると、グラフ生成部22は点502と点501とを結ぶ直線511を生成する。
 予測部20は、グラフ生成部22が生成したグラフを予測結果として、表示部30に通知して、表示させる。
 表示部30は、予測部20における予測結果または、予測結果に基づく情報を表示する。すなわち、表示部30は、予測結果そのものを表示せずに、予測結果に基づく情報を表示してもよい。表示部30を摩耗量予測装置1に備えるのではなく、外部装置として摩耗量予測装置1の外部に備える構成であってもよい。外部装置は、パーソナルコンピュータ、タブレット、スマートホン等、情報の表示が可能な表示部を備える装置であれば、どのようなものであってもよい。また、後述する画面例は、画面サイズの大きいパーソナルコンピュータであっても、画面サイズの小さいスマートホンであっても適応できる。表示領域のサイズ、表示位置等は、画面サイズに応じて適宜調整すればよい。
 次に、図6および図7を参照して、表示部30で表示される、摩耗量予測装置1の予測結果の例について説明する。図6および図7は、摩耗量予測装置1の予測結果としてのグラフの表示例を示す図である。
 図6のグラフ601は、摩耗量予測装置1の予測結果を示す。グラフ601に示すように、摩耗量予測装置1は、予測結果をグラフで示すので、使用者は、任意の加工時間における摩耗量を認識することができる。また、図6のグラフ611およびグラフ612は、予測結果の誤差の範囲を示す。グラフ611は、誤差の下限を示し、グラフ612は誤差の上限を示す。よって、少なくともグラフ611とグラフ612との間に収まるような摩耗量が予測されることになる。
 図7は、図6で示すグラフに、データベースからの抽出結果を示すグラフ621を表示する例である。データベースからの抽出処理についての詳細は後述するが、グラフ621は、入力されたデータと同じデータにおける過去の切削データをデータベースから抽出した結果を示すものである。グラフ621を示すことにより、使用者は、過去に同じ条件で切削されたときの状況を認識することができる。
 以上のように、表示部30では、予測部20が予測した結果を、加工時間と摩耗量とを一覧可能なグラフで表示する。これにより、加工時間と摩耗量とを一覧可能なグラフが表示されるので、使用者に加工時間と摩耗量との関係を容易に、かつイメージし易く認識させることができる。
 〔学習モデル40の詳細〕
 学習モデル40は、教師データ41を用いた機械学習アルゴリズムにより生成された学習モデルである。機械学習アルゴリズムは、どのような方法であってもよく、例えば以下の手法、またはこれらの組み合わせを用いることができる。
・勾配ブースティング決定木(GBDT: Gradient Boosting Decision Tree)
・サポートベクターマシン(SVM: Support Vector Machine)
・クラスタリング(Clustering)
・帰納論理プログラミング(ILP: Inductive Logic Programming)
・遺伝的アルゴリズム(GP: Genetic Programming)
・ベイジアンネットワーク(BN: Baysian Network)
・ニューラルネットワーク(NN: Neural Network)
 ニューラルネットワークを用いる場合、畳み込み処理を含む畳み込みニューラルネットワーク(CNN: Convolutional Neural Network)を用いてもよい。より具体的には、ニューラルネットワークに含まれる1または複数の層(レイヤ)として、畳み込み演算を行う畳み込み層を設け、当該層に入力される入力データに対してフィルタ演算(積和演算)を行う構成としてもよい。またフィルタ演算を行う際には、パディング等の処理を併用したり、適宜設定されたストライド幅を採用したりしてもよい。
 また、ニューラルネットワークとして、数十~数千層に至る多層型又は超多層型のニューラルネットワークを用いてもよい。
 次に、図2を参照して、学習モデル40の機械学習に用いる教師データ41について説明する。図2は、教師データ41の例を示す図である。教師データ41は、教師データの入力データである教師入力データ41A、および教師データの出力データである教師出力データ41Bを含むデータセットである。図2に示すように、教師入力データ41Aは、環境情報、工具情報、切削条件、および被削材情報を含んでもよい。また、教師出力データ41Bは、初期摩耗量、初期摩耗時間、最終摩耗量、最終加工時間、および欠損有無を含んでもよい。詳細は後述するように、工具情報は、切削工具に関する情報である。切削条件は、切削に関わる条件である。被削材情報は、被削材に関わる情報である。
 次に、教師データ41の詳細について、図3を参照して説明する。図3は、教師データ41の詳細を示す図である。
 図3に示すように、教師入力データ41Aの環境情報には、「加工マシン」、「切削油材」、「クーラント圧」、および「連続、断続加工」に関する情報が含まれてよい。
 工具情報には、「ホルダ、チップ」、「ブレーカ」、「コーナーR」、「材種」、「膜厚」、「硬度」、「破壊靱性」、および「抗折強度」に関する情報が含まれてもよい。切削条件には、「切削速度」、「刃当たり送り」、および「切込み」に関する情報が含まれてもよい。被削材情報には、「被削材名」、および「組成」に関する情報が含まれてもよい。詳細は以下の通りである。
・「加工マシン」とは、加工を行う機械が「旋盤」であるのか、「フライス盤」であるのかを示す情報である。旋盤加工(ターニング加工)とフライス盤加工(ミーリング加工)とで加工形態が大幅に変わるため、教師データとして有用な情報となる。
・「切削油材」とは、加工時に注油するのか、しないのか(ドライ)、またはエアーを吹きかけるのか、および注油するのであれば、その油の種類は、油性なのか水溶性なのかを示す情報である。
・「クーラント圧」とは、加工時の注油の出力の圧力を示す情報である。クーラント圧により切削工具の寿命に変化が生じるため、教師データとして有用な情報となる。
・「連続、断続加工」とは、加工時に、切削後部の刃部が、被削材と常に接しているのか、または断続的に接するのかを示す情報である。
・「ホルダ、チップ」とは、切削工具のホルダの型番、およびチップの型番を示す情報である。
・「ブレーカ」とは、チップにおける刃先に沿った面(すくい面)の構造を示す情報である。すくい面の形状によって、切りくずをコントロールすることができる。すなわち、切屑による摩耗の進行具合が変わるため、切削工具の摩耗を評価するための教師データとして有用な情報となる。
・「コーナーR」とは、チップの先端の丸みを示す情報である。
・「材種」とは、チップの組成を示す情報である。
・「膜厚」とは、チップを覆うコーティングの厚さを示す情報である。
・「硬度」とは、コーティングの硬度を示す情報である。
・「破壊靱性」とは、チップの母材の靱性を示す情報である。母材の靱性は、チップの欠損の有無に影響を与えるものである。
・「抗折強度」とは、チップの母材の靱性を示す情報である。上述したように母材の靱性は、チップの欠損の有無に影響を与える。
・「切削速度」とは、回転する速度を示す情報である。
・「刃当たり送り」とは、1回転あたりに切削工具が進む速度を示すための情報である。・「切込み」とは、1パスあたりに切削工具が削り取る厚み量を示す情報である。例えば、切込み幅とは切屑の幅を指しており、1パス当たりに削り取る切屑の幅に相当する。
・「被削材名」とは、切削工具により切削される対象となる材料の名称を示す情報である。
・「組成」とは、被削材の組成を示す情報であり、炭素、シリコン、およびマンガン等の含有量を示す。
 また、教師出力データ41Bは、「初期摩耗時間」、「初期摩耗量」、「最終加工時間」、「最終摩耗量」、および「欠損有無」を含んでもよい。
・「初期摩耗時間」とは、切削開始から切削工具が被削材となじむまでのいわゆる初期摩耗に要する時間である。
・「初期摩耗量」とは、初期摩耗時間における切削工具の摩耗量である。
・「最終加工時間」とは、被削材の加工に要した時間である。欠損があった場合は、その直前までの時間である。
・「最終摩耗量」とは、最終加工時間における摩耗量である。
・「欠損有無」とは、加工後に、チップに欠損があるかないかを示す。
 本実施形態では、教師出力データ41Bに、切削開始から所定時間内に、切削工具が欠損した場合を含めないようにしている。切削開始からほどない初期摩耗のタイミングで欠損する状況として、例えば、誤った切削条件が設定されて適切に切削が行われたとは言えない場合や、切削工具の突発欠損が偶発的に起きた場合が挙げられる。これらはいずれも特異的な状況であるため予測部20で切削工具の定常摩耗量を予測するための教師データとしては適切ではないためである。
 図4を参照して、教師出力データ41Bの内容について説明する。図4は、実際に切削を行ったときの切削データを示すグラフであり、横軸が加工時間(min)、縦軸が摩耗量(mm)を示す。ここでは、グラフ401からグラフ405までの5つの事例が示されている。
 グラフ401の点411の時点が、初期摩耗時間、および初期摩耗量である。よって、点411で示される加工時間および摩耗量が、初期摩耗時間および初期摩耗量の教師データとなる。また、点413の時点で欠損しているので、点412の時点が、最終加工時間、および最終摩耗量である。よって、点412で示される加工時間および摩耗量が、最終加工時間および最終摩耗量として教師データとなる。
 グラフ401と同様に、グラフ402では、点421の時点が初期摩耗時間、および初期摩耗量を示す。よって、点421で示される加工時間および摩耗量が、初期摩耗時間および初期摩耗量の教師データとなる。また、点423の時点で欠損しているので、点422の時点が最終加工時間、および最終摩耗量を示すことになる。よって、点422で示される加工時間および摩耗量が、最終加工時間および最終摩耗量として教師データとなる。
 グラフ403、グラフ404、およびグラフ405は、加工時間が10分(所定時間)に至る前に欠損してしまっているので、これらは、教師データには用いない。学習モデル40の生成装置において、教師データに含めるか、含めないかを閾値を用いて判断してもよい。すなわち、所定時間内に摩耗量が閾値を超えたデータを、所定時間内に欠損したと判断して、教師データから排除する構成であってもよい。
 このように、所定時間内に欠損した場合の切削データを教師データとしないことで、切削工具の切削に伴う摩耗量を予測するためのデータとして望ましくないデータを排除することができ、より正確な予測を行うことができる。
 以上のように、教師データ41には、加工開始後、通常ではあり得ない時間内に欠損を生じた切削工具に対応する情報は含まれない。切削工具が、通常ではあり得ない時間内に欠損を生じる場合、例えば誤った切削条件が設定されていることが原因として考えられる。初期不良の切削工具を除いて、教師データ41とすることにより、初期不良の影響を排除して摩耗量の予測を行うことができる。よって、予測精度が高められる。通常ではあり得ない時間とは、例えば10分である。
 教師データ41は一例であり、上記に挙げたものに限られない。
 〔表示部30における画面例〕
 次に、図8および図9を参照して、表示部30における画面例について説明する。図8は、データを入力する画面例を示す図である。図9は、予測結果を示す画面例を示す図である。
 図8に示すように、入力画面では、摩耗量を予測したい切削工具および被削材の関する情報を入力できるようになっている。画面例801では、入力領域810に、加工マシン、切削油材、クーラント圧、連続・断続加工、ホルダ型番、チップ型番、およびコーナーRなどが入力可能となっている。この入力領域801への入力は、予測部20が摩耗量を予測するための入力データとして必要な情報が入力されればよく、画面例801で示すものに限定されない。
 図9に示すように、結果を示す画面例901では、領域911に初期摩耗時間(min)が表示され、領域912に初期摩耗量(mm)が表示され、領域913に最終加工時間(min)が表示され、領域914に最終摩耗量(mm)が表示され、領域915に欠損確率が表示される。また、領域916は、誤差表示を行うか否かの入力を受け付ける。領域916に、チェック等の入力があれば、グラフ表示領域921に表示するグラフに誤差範囲、すなわちグラフ611およびグラフ612(図6参照)を示すグラフを表示する。
 領域917には、加工時間(min)の最大値が表示され、領域918には摩耗量(mm)の最大値が表示される。加工時間の最大値とは、予測された最終加工時間のことである。摩耗量の最大値とは、予測最終加工時間における摩耗量のことである。
 画面例901は、加工時間(min)の最大値が領域917に、摩耗量(mm)の最大値が領域918に表示される構成には限定されない。直線状であるグラフ601を引き延ばして、加工時間(min)の最大値よりも大きな値が領域917に、摩耗量(mm)の最大値よりも大きな値が領域918に表示されてもよい。例えば、最終加工時間および最終摩耗量に加えて欠損の確率を併せて出力した場合において、最終加工時間における欠損の確率が所定の閾値(例えば、3%、5%、10%)よりも低い際に、上記のようにグラフ601を引き延ばしてもよい。
 また、グラフ再描画ボタン919も表示されており、グラフ再描画ボタン919が押下されると、グラフ表示領域921に表示されるグラフが再描画される。これは、例えば、領域916へチェックを入れたとき、またはチェックを外したときに、押下されることにより、誤差範囲を含むグラフが表示される、または誤差範囲を含まないグラフが表示されるというように用いられる。
 グラフ表示領域921には、図6または図7で示したグラフが、予測結果として表示される。
 以上のように、摩耗量予測装置1’では、表示部30が、予測部20による結果をグラフに表示する。このとき、図7に示すように、後述するデータベース情報抽出部50による抽出情報を予測部20による結果のグラフに重ね合わせて表示してもよい。これにより、使用者に対し、学習モデルを用いて予測された結果が、適切であるか、不適切であるかの判断を容易に行わせることができる。
 〔処理の流れ〕
 次に、図10を参照して、摩耗量予測装置1における処理の流れを説明する。図10は、摩耗量予測装置1の処理の流れを示すフローチャートである。
 図10に示すように、まず、摩耗量予測装置1では、入力受付部10で入力データの入力を受け付ける(S101)。次に、予測部20が学習モデル40を用いて摩耗量の予測を行う(S102、予測ステップ)。最後に、表示部30は、予測部20の予測結果を表示する(S103、表示ステップ)。
 以上のように、本実施形態に係る摩耗量予測装置1は、加工時間に応じた切削工具の摩耗量を、学習モデル40を用いて予測する予測部20と、予測部20が予測した結果に基づく情報を表示する表示部30と、を備える。
 学習モデル40は、
 (1)切削工具に関する情報、切削に関わる条件、および被削材に関わる情報の少なくとも何れかと、
 (2)切削工具を用いた加工時間、加工に伴う切削工具の摩耗量、前記切削工具による切削開始から初期時間が経過した時点における前記切削工具の摩耗量を示す初期摩耗量、および前記初期時間と、
を含むデータセットを教師データとして機械学習を行うことにより生成されたものである。
 予測部20は、切削工具に関する情報、切削に関わる条件、および被削材に関わる情報の少なくとも何れかを含むデータを学習モデル40に入力して、摩耗量を予測するものである。
 以上の構成により、どのような切削工具を、どのような切削条件で、どのくらい使用したら、どの程度、摩耗するのかを、使用者に認識させることができる。よって、使用者は、任意の加工時間における切削工具の摩耗量を認識することができる。また、入力データの値を変更することにより、摩耗量がどのように変化するのかを認識することができるので、摩耗量のシミュレーションを行うこともできる。これにより、切削工具をどのようにすれば、摩耗量がどの程度となるかを認識することができ、被削材に適応した切削工具を選定することが容易となる。
 予測部20が予測する摩耗量は、切削工具の種類に応じて、摩耗量を予測する切削工具の面が異なるものであってもよい。例えば、超硬合金で形成されたチップと、CBN(立方晶窒化ホウ素:Cubic Boron Nitride)で形成されたチップと、で摩耗量を予測する面を異ならせてもよい。摩耗量を予測する面としては、チップすくい面、横逃げ面、前逃げ面、コーナーRなどが考えられる。また、すくい面におけるクレータ摩耗、横逃げ面における境界摩耗、および前逃げ面における境界摩耗などの摩耗量を予測してもよい。
 切削工具の種類によって、摩耗する箇所は異なるものであるところ、予測する面として適切な面の摩耗量を予測することができる。
 また、上述した実施形態では、予測部20で予測した結果を表示部30で表示する構成を説明したが、予測部20で予測した結果を他の外部装置に提供するものであってもよい。外部装置に、予測結果を用いた処理が可能なアプリケーションがインストールされていれば、当該外部装置において、予測結果を用いた様々な処理を行うことができる。
 〔実施形態2〕
 本開示の他の実施形態について、以下に説明する。説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
 図11を参照して、本実施形態に係る摩耗量予測装置1’について説明する。図11は、摩耗量予測装置1’の要部構成を示す機能ブロック図である。図11に示すように、本実施形態に係る摩耗量予測装置1’は、上述した実施形態1の摩耗量予測装置1の構成に加え、データベース情報抽出部50およびDB(データベース)60を含む。
 DB60には、切削工具に使用に伴う摩耗量を示す情報が、各種情報と対応付けて記憶されている。
 図12に、DB60に記憶される摩耗量データの例を示す。摩耗量データとは、切削工具に関する情報、切削に関わる条件、被削材に関わる情報、加工時間、摩耗量、および欠損有無などが対応付けられた情報である。図12に示すように、例えば、DB60には、切削工具に関する情報、切削に関わる条件、被削材に関わる情報、加工時間、摩耗量、および欠損有無が対応付けられて記憶されている。切削工具に関する情報には、ホルダ、チップ(ホルダ型番、チップ型番)、ブレーカ、コーナーR、材種記号、膜厚、硬度、破壊靱性、および抗折強度などが含まれる。切削に関わる条件には、加工マシン、切削油材、クーラント圧、連続、断続加工、切削速度、刃当たり送り、および切込みなどが含まれる。被削材に関わる情報には、被削材名および組成が含まれる。これらの情報は、全て必須ではなく、任意の情報のみが対応付けられているものであってもよい。
 データベース情報抽出部50は、DB60から、入力受付部10で受け付けた入力データと被削材等に関する情報の全部または一部とが同じとなる摩耗量データを抽出し、表示部30に通知する。表示部30は、予測部20による予測結果とともに、データベース情報抽出部50による抽出結果を表示する。
 〔表示部30における画面例〕
 次に、図13を参照して、データベース情報抽出部50による抽出結果の表示画面例について説明する。図13は、データベース情報抽出部50による抽出結果の表示画面例を示す図である。
 図13に示す画面例1001では、領域1011と領域1021とに分かれて表示されている。領域1011には、必須フィルタ項目として「被削材」、「材種記号」、および「チップ型番」が選択可能に表示され、任意フィルタ項目として「ホルダ型番」、「加工方法」、「加工マシン」、および「被削材分類」が選択可能に表示されている。また、検索ボタン1012、およびクリアボタン1013が表示されている。
 領域1021には、検索結果が表示される。
 検索ボタン1012が押下されると、必須フィルタ項目および任意フィルタ項目で選択された項目に基づいて、DB60から摩耗量データの抽出が行われ、領域1021に抽出結果が表示される。また、上述した図7に示すグラフ621のように摩耗量を示すグラフが表示されてもよい。
 クリアボタン1022が押下されると、必須フィルタ項目および任意フィルタ項目における選択が解除される。
 以上のように、摩耗量予測装置1’では、過去の使用における、切削工具に関する情報、この切削工具を用いた切削に関わる条件、この切削工具を用いた加工時間、および加工後におけるこの切削工具の摩耗量を対応付けたDB60から、切削工具に関する情報、この切削工具を用いた切削に関わる条件、この切削工具を用いた加工時間、および加工後におけるこの切削工具の摩耗量が類似する情報を抽出するデータベース情報抽出部50を備える。そして、表示部30は、予測部20が予測した結果に加え、データベース情報抽出部50が抽出した情報を表示する。
 これにより、DB60から抽出された情報を用いて、過去の使用における、切削工具の実際の状態を使用者に認識させることができる。そして、使用者は、この結果を、学習モデル40を用いて予測された結果が適切であるか、不適切であるかを判断する材料とすることができる。
 〔実施形態3〕
 本開示の他の実施形態について、以下に説明する。説明の便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
 図14を参照して、本実施形態に係る摩耗量予測装置1’およびデータベース更新装置100について説明する。図14は、本実施形態に係る摩耗量予測装置1’およびデータベース更新装置100の要部構成を示す機能ブロック図である。図14に示すように、本実施形態では、上述した摩耗量予測装置1’に加え、データベース更新装置100を含む。
 データベース更新装置100は、DB60を更新するものであり、入力条件収集部110、要因収集部120、評価部130、およびアップデート部140を含む。
 入力条件収集部110は、入力受付部10で受け付けた入力データを収集し、評価部130に通知する。
 本実施形態では、予測部20は、上述した摩耗量の予測に加え、欠損の有無、最終加工時間、および最終摩耗量の予測に影響を与えた要因の重要度を導出する。そして、要因収集部120は、予測部20から、欠損の有無、最終加工時間、および最終摩耗量に影響を与えた要因を収集し、評価部130に通知する。
 また、表示部30は、予測部20が導出した要因を表示する構成であってもよい。要因を表示することにより、欠損の有無、最終加工時間、および最終摩耗量に影響を与えた要因がどこにあるのか、使用者に認識させることができる。
 また、表示部30は、予測部20により導出された複数の要因、および、各要因が及ぼす影響の度合を表示する構成であってもよい。これにより、欠損の有無、最終加工時間、および最終摩耗量に影響を与えた要因のそれぞれの度合を使用者に認識させることができる。
 ここで、要因について、図15を参照して説明する。図15は、欠損の有無、最終加工時間、および最終摩耗量の予測に影響を与えた要因の重要度(度合)を示す図である。図15の1401は、欠損の有無に関する要因の重要度を示し、1402は、最終加工時間に関する要因の重要度を示し、1403は最終摩耗量に関する要因の重要度を示す。
 図15の1401に示すように、欠損の有無の予測に影響を与える要因は、重要度の高い順から、硬度(HB)、チップ型番、ae(mm)、被削材、Vc(m/min)、ap(mm)、ブレーカ、破壊靱性(MPa・m1/2)、ホルダ型番、fz(mm/t)となる。ここで、硬度(HB)とは、被削材の硬度である。ae(mm)とは、1パス当たりに削り取る幅の量である。Vc(m/min)とは、切削速度である。ap(mm)とは、1パス当たりに削り取る厚み量である。fz(mm/t)とは、刃が進む速度である。
 図15の1402に示すように、最終加工時間の予測に影響を与える要因は、重要度の高い順から、Vc(m/min)、材種記号、ap(mm)、f(mm/rev)、線膨張係数(K-1)、破壊靱性(MPa・m1/2)、比重(g/cm3)、膜厚(μm)、ホルダ型番、ブレーカとなる。ここで、f(mm/rev)とは、1回転あたり切削工具が進む速度であり、上述した「刃当たり送り」×「刃数」に相当する。線膨張係数(K-1)とは、チップの母材の膨張係数である。比重(g/cm3)とは、チップの母材の比重である。
 図15の1403に示すように、最終摩耗量の予測に影響を与える要因は、重要度の高い順から、Vc(m/min)、ap(mm)、ae(mm)、ブレーカ、チップ型番、f(mm/rev)、Cr、硬度(HB)、ホルダ型番、材種記号となる。ここで、Crとは、被削材の組成に関する情報であり、被削材に含まれるクロムの量である。
 評価部130は、入力条件収集部110から取得した入力データに関する情報、および、要因収集部120から取得した要因およびその重要度を用いて、DB60に保存すべきデータであるか否かを評価する。そして、評価の高い情報をアップデート部140に通知する。
 例えば、評価部130は、入力データとして「被削材」が入力されることが多い場合、「被削材」については、高評価と判断し、アップデート部140に通知する。また、例えば、重要度が0.5を超える要因については、高評価と判断し、アップデート部140に通知する。
 アップデート部140は、評価部130から通知のあった情報を含む摩耗量データをDB60に保存することにより、DB60をアップデートする。また、このとき、DB60に加えて学習モデル40をアップデートしてもよい。
 また、評価部130は、AI(Artificial Intelligence:人工知能)に実行させてもよい。この場合、AIはデータベース更新装置100で動作するものであってもよいし、他の装置(例えばエッジコンピュータまたはクラウドサーバ等)で動作するものであってもよい。
 また、上述した摩耗量予測装置1、1’によれば、切削工具の効率的な使用につなげることができる。これにより、持続可能な開発目標(SDGs)の達成に貢献できる。
 〔ソフトウェアによる実現例〕
 摩耗量予測装置1(以下、「装置」と呼ぶ)の機能は、当該装置としてコンピュータを機能させるためのプログラムであって、当該装置の各制御ブロック(特に予測部20に含まれる各部)としてコンピュータを機能させるためのプログラムにより実現することができる。
 この場合、上記装置は、上記プログラムを実行するためのハードウェアとして、少なくとも1つの制御装置(例えばプロセッサ)と少なくとも1つの記憶装置(例えばメモリ)を有するコンピュータを備えている。この制御装置と記憶装置により上記プログラムを実行することにより、上記各実施形態で説明した各機能が実現される。
 上記プログラムは、一時的ではなく、コンピュータ読み取り可能な、1または複数の記録媒体に記録されていてもよい。この記録媒体は、上記装置が備えていてもよいし、備えていなくてもよい。後者の場合、上記プログラムは、有線または無線の任意の伝送媒体を介して上記装置に供給されてもよい。
 また、上記各制御ブロックの機能の一部または全部は、論理回路により実現することも可能である。例えば、上記各制御ブロックとして機能する論理回路が形成された集積回路も本開示の範疇に含まれる。この他にも、例えば量子コンピュータにより上記各制御ブロックの機能を実現することも可能である。
 以上、本開示に係る発明について、諸図面および実施例に基づいて説明してきた。しかし、本開示に係る発明は上述した各実施形態に限定されない。すなわち、本開示に係る発明は本開示で示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本開示に係る発明の技術的範囲に含まれる。つまり、当業者であれば本開示に基づき種々の変形または修正を行うことが容易であることに注意されたい。また、これらの変形または修正は本開示の範囲に含まれることに留意されたい。
  1 摩耗量予測装置
 10 入力受付部
 20 予測部
 21 摩耗量予測部
 22 グラフ生成部
 30 表示部
 40 学習モデル
 50 データベース情報抽出部
 60 DB
100 データベース更新装置
110 入力条件収集部
120 要因収集部
130 評価部
140 アップデート部

Claims (12)

  1.  加工時間に応じた切削工具の摩耗量を、学習モデルを用いて予測する予測部と、
     前記予測部が予測した結果に基づく情報を表示する表示部と、を備え、
     前記学習モデルは、切削工具に関する情報、切削に関わる条件、および被削材に関わる情報を入力データとし、切削工具を用いた加工時間、加工に伴う該切削工具の摩耗量、前記切削工具による切削開始から初期摩耗が完了するまでの初期摩耗時間、および前記初期摩耗時間が経過した時点における前記切削工具の摩耗量を示す初期摩耗量を出力データとするデータセットを教師データとして機械学習を行うことにより生成されたものであり、
     前記予測部は、切削工具に関する情報、切削に関わる条件、および被削材に関わる情報を含むデータを前記学習モデルに入力して、前記摩耗量を予測する、摩耗量予測装置。
  2.  前記データセットには、前記切削工具の摩耗に寄与する要因に関する情報を含み、前記表示部は、前記予測部により予測された、前記切削工具の摩耗に寄与する要因を表示する、請求項1に記載の摩耗量予測装置。
  3.  前記表示部は、前記予測部により予測された、前記切削工具の摩耗に寄与する複数の要因、および、各要因が摩耗に影響を及ぼしている度合を表示する、請求項2に記載の摩耗量予測装置。
  4.  前記データセットには、前記切削工具の欠損の有無に関する情報を含み、前記表示部は、前記予測部により予測された、前記切削工具の欠損の確率を表示する、請求項1~3のいずれか1項に記載の摩耗量予測装置。
  5.  上記データセットには、加工開始後、通常ではあり得ない時間内に欠損を生じた切削工具に対応する情報は含まれない、請求項1~4のいずれか1項に記載の摩耗量予測装置。
  6.  前記切削工具の種類に応じて、前記摩耗量を予測する当該切削工具の面が異なる、請求項1~5のいずれか1項に記載の摩耗量予測装置。
  7.  前記表示部は、前記予測部が予測した結果を、加工時間と摩耗量とを一覧可能なグラフで表示する、請求項1~6のいずれか1項記載の摩耗量予測装置。
  8.  過去の使用における、切削工具に関する情報、該切削工具を用いた切削に関わる条件、該切削工具を用いた加工時間、および加工後における該切削工具の摩耗量を対応付けたデータベースから、前記の切削工具に関する情報、該切削工具を用いた切削に関わる条件、該切削工具を用いた加工時間、および加工後における該切削工具の摩耗量が類似する情報を抽出するデータベース情報抽出部を備え、
     前記表示部は、前記予測部が予測した結果に加え、前記データベース情報抽出部が抽出した情報を表示する、請求項1~7のいずれか1項に記載の摩耗量予測装置。
  9.  前記表示部は、前記予測部による結果と、前記データベース情報抽出部による抽出情報とを同一グラフに表示する、請求項8に記載の摩耗量予測装置。
  10.  加工時間に応じた切削工具の摩耗量を、学習モデルを用いて予測する予測ステップと、
     前記予測ステップで予測した結果に基づく情報を表示する表示ステップと、を含み、
     前記学習モデルは、切削工具に関する情報、切削に関わる条件、および被削材に関わる情報を入力データとし、切削工具を用いた加工時間、加工に伴う該切削工具の摩耗量、前記切削工具による切削開始から初期摩耗が完了するまでの初期摩耗時間、および前記初期摩耗時間が経過した時点における前記切削工具の摩耗量を示す初期摩耗量を出力データとするデータセットを教師データとして機械学習を行うことにより生成されたものであり、
     前記予測ステップでは、切削工具に関する情報、切削に関わる条件、および被削材に関わる情報を含むデータを前記学習モデルに入力して、前記摩耗量を予測する、摩耗量予測方法。
  11.  請求項1に記載の摩耗量予測装置としてコンピュータを機能させるための制御プログラムであって、前記予測部としてコンピュータを機能させるための制御プログラム。
  12.  請求項11に記載の制御プログラムを記録したコンピュータ読み取り可能な記録媒体。
PCT/JP2023/002099 2022-01-26 2023-01-24 摩耗量予測装置、摩耗量予測方法、制御プログラム、および記録媒体 WO2023145731A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022010197 2022-01-26
JP2022-010197 2022-01-26

Publications (1)

Publication Number Publication Date
WO2023145731A1 true WO2023145731A1 (ja) 2023-08-03

Family

ID=87471951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/002099 WO2023145731A1 (ja) 2022-01-26 2023-01-24 摩耗量予測装置、摩耗量予測方法、制御プログラム、および記録媒体

Country Status (1)

Country Link
WO (1) WO2023145731A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019139755A (ja) * 2018-02-06 2019-08-22 ファナック株式会社 研磨工具摩耗量予測装置、機械学習装置及びシステム
CN112059725A (zh) * 2020-09-11 2020-12-11 哈尔滨理工大学 一种基于emd-svm的刀具磨损监测方法
JP2021047520A (ja) * 2019-09-17 2021-03-25 株式会社ジェイテクト 作業支援システム
JP2021070114A (ja) * 2019-10-31 2021-05-06 株式会社ジェイテクト 工具摩耗予測システム
CN113523904A (zh) * 2020-04-17 2021-10-22 中国科学院沈阳计算技术研究所有限公司 一种刀具磨损检测方法
JP2022147150A (ja) * 2021-03-23 2022-10-06 株式会社ジェイテクト 摩耗境界決定装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019139755A (ja) * 2018-02-06 2019-08-22 ファナック株式会社 研磨工具摩耗量予測装置、機械学習装置及びシステム
JP2021047520A (ja) * 2019-09-17 2021-03-25 株式会社ジェイテクト 作業支援システム
JP2021070114A (ja) * 2019-10-31 2021-05-06 株式会社ジェイテクト 工具摩耗予測システム
CN113523904A (zh) * 2020-04-17 2021-10-22 中国科学院沈阳计算技术研究所有限公司 一种刀具磨损检测方法
CN112059725A (zh) * 2020-09-11 2020-12-11 哈尔滨理工大学 一种基于emd-svm的刀具磨损监测方法
JP2022147150A (ja) * 2021-03-23 2022-10-06 株式会社ジェイテクト 摩耗境界決定装置

Similar Documents

Publication Publication Date Title
JP6404893B2 (ja) 工具寿命推定装置
CN100476657C (zh) 工程设计方法与工程设计装置
Ramesh et al. Fuzzy modeling and analysis of machining parameters in machining titanium alloy
CN108475052A (zh) 诊断设备、计算机程序和诊断系统
Khandey et al. Machining parameters optimization for satisfying the multiple objectives in machining of MMCs
Mia et al. Modeling of principal flank wear: an empirical approach combining the effect of tool, environment and workpiece hardness
Cruz et al. A two-step machine learning approach for dynamic model selection: A case study on a micro milling process
Carpenter et al. A flexible tool selection decision support system for milling operations
Denkena et al. Investigations on a standardized process chain and support structure related rework procedures of SLM manufactured components
Filho et al. Influence of milling direction in the machinability of Inconel 718 with submicron grain cemented carbide tools
WO2023145731A1 (ja) 摩耗量予測装置、摩耗量予測方法、制御プログラム、および記録媒体
Ribeiro et al. An applied database system for the optimization of cutting conditions and tool selection
Rubaiee et al. Key initiatives to improve the machining characteristics of Inconel-718 alloy: Experimental analysis and optimization
Bonhin et al. Effect of machining parameters on turning of VAT32® superalloy with ceramic tool
Tayal et al. Reliability and economic analysis in sustainable machining of Monel 400 alloy
Astakhov Turning
CN104145223B (zh) 加工程序生成装置以及加工程序生成方法
Kuttolamadom et al. Correlation of the volumetric tool wear rate of carbide milling inserts with the material removal rate of Ti–6Al–4V
Razak et al. Artificial intelligence techniques for machining performance: A review
Kratzer et al. Decision support system for a metal additive manufacturing process chain design for the automotive industry
CN110536773A (zh) 加工控制装置、工作机械及加工控制方法
Jennings et al. Forecasting obsolescence risk using machine learning
Alemayoh et al. Experimental and numerical investigation of dry turning AISI 1030 carbon steel using CNC lathe machining
US11567484B1 (en) Apparatus and method for analyzing machinability of a part for manufacture
Kodama et al. Decision support system for principal factors of grinding wheel using data mining methodology

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23746942

Country of ref document: EP

Kind code of ref document: A1