WO2023145711A1 - Curable composition and use of same - Google Patents

Curable composition and use of same Download PDF

Info

Publication number
WO2023145711A1
WO2023145711A1 PCT/JP2023/002025 JP2023002025W WO2023145711A1 WO 2023145711 A1 WO2023145711 A1 WO 2023145711A1 JP 2023002025 W JP2023002025 W JP 2023002025W WO 2023145711 A1 WO2023145711 A1 WO 2023145711A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
weight
hydrolyzable silyl
group
curable composition
Prior art date
Application number
PCT/JP2023/002025
Other languages
French (fr)
Japanese (ja)
Inventor
翔大 神谷
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to CN202380017951.7A priority Critical patent/CN118574899A/en
Publication of WO2023145711A1 publication Critical patent/WO2023145711A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/42Introducing metal atoms or metal-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/336Polymers modified by chemical after-treatment with organic compounds containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C08L101/10Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing hydrolysable silane groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L43/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing boron, silicon, phosphorus, selenium, tellurium or a metal; Compositions of derivatives of such polymers
    • C08L43/04Homopolymers or copolymers of monomers containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides

Definitions

  • the present invention relates to a curable composition and its cured product.
  • curable compositions containing organic polymers having hydrolyzable silyl groups have been used as sealants and the like.
  • Such curable compositions are often blended with aluminum hydroxide for the purpose of imparting flame retardancy.
  • Patent Document 1 discloses an organic polymer (A) having a hydrolyzable silyl group, a specific amount of aluminum hydroxide (B) having a sodium oxide content of 1000 ppm or less, and a specific amount of divalent tin.
  • a moisture-curable resin composition containing a compound (C) is disclosed.
  • curable compositions containing aluminum hydroxide tend to have poor adhesion, and there is room for improvement in this respect.
  • an object of the present invention is to provide a curable composition in which aluminum hydroxide is blended to improve flame retardancy and which has improved adhesiveness.
  • the present inventors have made intensive studies to solve the above problems, and as a result, a curable composition containing an organic polymer having a hydrolyzable silyl group was subjected to specific processing (specifically, The present inventors have found for the first time that the adhesivity can be improved by blending aluminum hydroxide (B) surface-treated with titanate, and have completed the present invention.
  • one aspect of the present invention contains an organic polymer (A) having a hydrolyzable silyl group, an aluminum hydroxide surface-treated with titanate (B), and a silanol condensation catalyst (C), It is a curable composition (hereinafter referred to as "this curable composition").
  • the present inventors have made intensive studies on the curable composition containing aluminum hydroxide from the viewpoint of improving adhesiveness, and as a result, contain aluminum hydroxide (B) surface-treated with titanate. It was found for the first time that the adhesion can be improved by
  • the curable composition contains an organic polymer (A) having a hydrolyzable silyl group, an aluminum hydroxide surface-treated with titanate (B), and a silanol condensation catalyst (C). .
  • organic polymer (A) having a hydrolyzable silyl group is referred to as "(A) component
  • aluminum hydroxide (B) surface-treated with titanate is referred to as “(B) component”
  • Silanol condensation catalyst (C) as “(C) component”
  • hydrolyzable silyl group-containing ( The meth)acrylic ester-based copolymer (A2) may be referred to as the "(A2) component”.
  • the curable composition contains an organic polymer (A) having hydrolyzable silyl groups.
  • the organic polymer (A) having a hydrolyzable silyl group is a hydrolyzable silyl group-containing polyoxyalkylene polymer (A1) (hereinafter referred to as "(A1) component” ), and/or the hydrolyzable silyl group-containing (meth)acrylic acid ester copolymer (A2) (hereinafter sometimes referred to as "(A2) component”).
  • weight average molecular weight (Mw) and number average molecular weight (Mn) are values measured by gel permeation chromatography (GPC) and converted to standard polystyrene.
  • component (A) the polymer precursor before the introduction of the hydrolyzable silyl group was measured according to the principle of the hydroxyl value measurement method of JIS K 1557 and the iodine value measurement method specified in JIS K 0070. It is also possible to directly measure the terminal group concentration by titration analysis based on the molecular weight obtained by considering the structure of the polymer (the degree of branching determined by the polymerization initiator used).
  • the terminal group-equivalent molecular weight of the polymer (A) is obtained by preparing a calibration curve of the number average molecular weight (Mn) obtained by general GPC measurement of the polymer precursor and the above-mentioned terminal group-equivalent molecular weight, and obtaining a hydrolyzable silyl group-containing It is also possible to convert the number-average molecular weight (Mn) of the polymer obtained by GPC into a terminal group-equivalent molecular weight.
  • the hydrolyzable silyl group-containing polyoxyalkylene polymer (A1) is a hydrolyzable silyl group-containing polymer in which the polymer portion (also referred to as “main chain”) is polyoxyalkylene.
  • the hydrolyzable silyl group-containing polyoxyalkylene polymer (A1) forms siloxane bonds between molecules to form a crosslinked product under specific conditions known to those skilled in the art.
  • the lower limit of the number average molecular weight (Mn) of the component (A1) is preferably 500 or more, more preferably 1,500 or more, even more preferably 5,000 or more, most preferably 10,000 or more. preferable.
  • the upper limit of the number average molecular weight of component (A1) is preferably 100,000 or less, more preferably 50,000 or less, and even more preferably 40,000 or less. If the number average molecular weight is within the above range, it is preferable from the viewpoint of ease of handling such as workability and adhesiveness.
  • the ratio (Mw/Mn; molecular weight distribution) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) of the component (A1) is preferably 1.6 or less, and 1.5 or less. is more preferable, 1.4 or less is more preferable, 1.3 or less is particularly preferable, and 1.2 or less is particularly preferable. If the molecular weight distribution is within the above range, it is preferable from the viewpoint of ease of handling such as workability and adhesiveness.
  • hydrolyzable silyl group The structure of the hydrolyzable silyl group contained in component (A1) is not particularly limited. Hydrolyzable silyl groups commonly used in this technical field may be used.
  • the hydrolyzable silyl group of component (A1) is represented by the following general formula (1).
  • Two or more types of hydrolyzable silyl groups represented by general formula (1) may be contained in one polymer molecule.
  • R 1 represents a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms (if substituted, it may be substituted with a heteroatom-containing group).
  • the structures of the R 1 may be the same or different. Examples of R 1 include alkyl groups having 1 to 20 carbon atoms, aryl groups having 6 to 20 carbon atoms, and aralkyl groups having 7 to 20 carbon atoms.
  • X represents a hydroxyl group or a hydrolyzable group.
  • hydrolyzable groups include hydroxyl groups, halogens, alkoxy groups, acyloxy groups, ketoximate groups, amino groups, amide groups, acid amide groups, aminooxy groups, mercapto groups, alkenyloxy groups, and the like.
  • alkoxy groups such as methoxy group and ethoxy group are more preferred, methoxy group and ethoxy group are more preferred, and methoxy group is particularly preferred, since they are moderately hydrolyzable and easy to handle.
  • a is 1, 2 or 3; As a, 2 or 3 is preferable because a network structure is formed by condensation to obtain a cured product.
  • alkoxy groups with fewer carbon atoms have higher reactivity. That is, the reactivity decreases in the order of methoxy group, ethoxy group, and propoxy group.
  • the specific structure of the hydrolyzable silyl group can be appropriately determined depending on the production method and application of the component (A1).
  • hydrolyzable silyl groups include trimethoxysilyl, triethoxysilyl, triisopropoxysilyl, dimethoxymethylsilyl, diethoxymethylsilyl, diisopropoxymethylsilyl, (chloromethyl)dimethoxy
  • a silyl group and a (methoxymethyl)dimethoxysilyl group can be mentioned.
  • the hydrolyzable silyl group is preferably a dialkoxysilyl group or a trialkoxysilyl group in consideration of the physical properties of the resulting cured product and the availability and ease of handling of the raw material compound. Further, in consideration of the curable composition and its excellent shape retention property during curing, a dialkoxysilyl group is preferable, and in consideration of a high cross-linking reaction rate, a trialkoxysilyl group is preferable.
  • the lower limit of the number of hydrolyzable silyl groups contained in one polymer molecule is preferably 0.5 or more, more preferably 1.0 or more, and even more preferably 1.5 or more.
  • the upper limit of the number of hydrolyzable silyl groups contained in one polymer molecule is preferably 5.0 or less, more preferably 4.0 or less. If the number of hydrolyzable silyl groups is within the above range, sufficient flexibility can be imparted to the cured product obtained by the condensation reaction of the silyl groups.
  • the distribution of hydrolyzable silyl groups may be random or block-shaped.
  • the distribution position of the hydrolyzable silyl group may be anywhere in the polymer molecule.
  • the distribution position of the hydrolyzable silyl group includes the terminal or the vicinity of the terminal of the polymer molecule. More preferably, the distribution position of the hydrolyzable silyl group is localized at or near the terminal of the polymer molecule.
  • "near the ends of the polymer molecule” refers to the region from each end of the polymer molecule to a specific position in the polymer molecule, and the weight of the region is the total weight of the polymer molecule.
  • the term "localized at or near the terminal of the polymer molecule” refers to the hydrolyzable silyl groups contained in the polymer molecule that are located at or near the terminal. It means that the number of things accounts for 70% or more, 80% or more, or 90% or more.
  • a known method may be employed for introducing a hydrolyzable silyl group into the polyoxyalkylene polymer.
  • the polyoxyalkylene structure in component (A1) may be linear or branched.
  • the polyoxyalkylene structure is a structure derived from polyoxypropylenediol or polyoxypropylenetriol.
  • the polyoxyalkylene polymer molecule may be composed of only one type of repeating unit, or may contain two or more types of repeating units.
  • One type of polyoxyalkylene-based polymer may be blended, or two or more types of polyoxyalkylene-based polymer may be blended.
  • Examples of the main chain structure of the polyoxyalkylene polymer include structures having repeating units represented by the following general formula (2).
  • R2 is a divalent alkylene group.
  • the structure represented by the general formula (2) preferably accounts for 50% by weight or more, more preferably 70% by weight or more, of the total weight of the polyoxyalkylene polymer in the component (A1). It is more preferable to account for more than % by weight.
  • R 2 is preferably an alkylene group having 1 to 14 carbon atoms, more preferably a linear or branched alkylene group having 2 to 4 carbon atoms.
  • repeating unit represented by formula (2) examples include -CH 2 O-, -CH 2 CH 2 O-, -CH 2 CH(CH 3 )O-, -CH 2 CH(C 2 H 5 ) O—, —CH 2 C(CH 3 ) 2 O—, —CH 2 CH 2 CH 2 CH 2 O—.
  • -CH 2 CH(CH 3 )O- is preferred.
  • a polyoxyalkylene polymer containing —CH 2 CH(CH 3 )O— in a repeating unit can easily adjust the glass transition temperature (Tg) to 0° C. or lower.
  • the polyoxyalkylene polymer may contain a urethane bond or a urea bond in the main chain structure.
  • a commercially available product can also be used as the polyoxyalkylene polymer.
  • Examples of commercially available products include Kaneka MS Polymer (registered trademark) S810, S257, S327, S203H, and S303H (all manufactured by Kaneka Corporation); , SAX750 (all manufactured by Kaneka Corporation); Exester (registered trademark) ES-S2410, ES-S2420, ES-S3630 (all manufactured by AGC Corporation); GENIOSIL (registered trademark) STP-E10, STP-E15, Examples include STP-E-30 and STP-E-35 (both manufactured by Wacker).
  • Method for producing polyoxyalkylene polymer As a method for producing the hydrolyzable silyl group-containing polyoxyalkylene polymer (A1), the following methods (I) to (III) can be used.
  • the production method using the method (I) is preferable because a wide range of aluminum hydroxide content can be obtained in which the effects of the present invention can be obtained.
  • hydroxyl-containing initiators used in methods (I) and (II) include ethylene glycol, propylene glycol, glycerin, pentaerythritol, low molecular weight polypropylene glycol, polyoxypropylene triol, allyl alcohol, methanol, ethanol, propanol, Examples include those having one or more hydroxyl groups, such as butanol, pentanol, hexanol, polypropylene monoallyl ether, and polypropylene monoalkyl ether.
  • Epoxy compounds used in methods (I) and (II) include alkylene oxides such as ethylene oxide and propylene oxide, and glycidyl ethers such as methyl glycidyl ether and allyl glycidyl ether. Among these, propylene oxide is preferred.
  • Examples of the carbon-carbon unsaturated group used in method (I) include a vinyl group, an allyl group, a methallyl group, a propargyl group, and the like. Among these, an allyl group is preferred.
  • a hydroxyl-terminated polymer is reacted with an alkali metal salt, and then a halogenated hydrocarbon compound having a carbon-carbon unsaturated bond is reacted. It is preferable to use the method of
  • Halogenated hydrocarbon compounds used in method (I) include vinyl chloride, allyl chloride, methallyl chloride, propargyl chloride, vinyl bromide, allyl bromide, methallyl bromide, propargyl bromide, vinyl iodide, and allyl iodide. , methallyl iodide, propargyl iodide and the like.
  • Hydrosilane compounds used in method (I) include trimethoxysilane, triethoxysilane, tris(2-propenyloxy)silane, triacetoxysilane, dimethoxymethylsilane, (chloromethyl)dimethoxysilane, and (methoxymethyl)dimethoxysilane. , (N,N-diethylaminomethyl)dimethoxysilane, and the like can be used.
  • the hydrosilylation reaction used in method (I) is accelerated by various catalysts.
  • a known catalyst may be used as the hydrosilylation catalyst.
  • Examples of compounds having both a hydroxyl group-reactive group and a hydrolyzable silyl group that can be used in method (II) include 3-isocyanatopropyltrimethoxysilane, 3-isocyanatopropyldimethoxymethylsilane, 3-isocyanatopropyltriethoxy isocyanate silanes such as silane, isocyanatomethyltrimethoxysilane, isocyanatomethyltriethoxysilane, isocyanatomethyldimethoxymethylsilane; 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyldimethoxymethylsilane, 3-mercaptopropyltriethoxysilane and the like Mercaptosilanes; epoxysilanes such as 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyldimethoxymethylsilane, 3-glycidoxypropyltriethoxysilane, and the
  • Polyisocyanate compounds that can be used in the method (III) include aromatic polyisocyanates such as toluene (tolylene) diisocyanate, diphenylmethane diisocyanate and xylylene diisocyanate; aliphatic polyisocyanates such as isophorone diisocyanate and hexamethylene diisocyanate. can be mentioned.
  • aromatic polyisocyanates such as toluene (tolylene) diisocyanate, diphenylmethane diisocyanate and xylylene diisocyanate
  • aliphatic polyisocyanates such as isophorone diisocyanate and hexamethylene diisocyanate.
  • Compounds having both an isocyanate group-reactive group and a hydrolyzable silyl group that can be used in method (III) include ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropyldimethoxymethylsilane, ⁇ -aminopropyltriethoxy Silane, N-( ⁇ -aminoethyl)- ⁇ -aminopropyltrimethoxysilane, N-( ⁇ -aminoethyl)- ⁇ -aminopropyldimethoxymethylsilane, N-( ⁇ -aminoethyl)- ⁇ -aminopropyltrimethoxysilane Ethoxysilane, ⁇ -(N-phenyl)aminopropyltrimethoxysilane, ⁇ -(N-phenyl)aminopropyldimethoxymethylsilane, N-ethylaminoisobutyltrimethoxysilane,
  • a polyoxyalkylene polymer having a plurality of hydrolyzable silyl groups at one end can also be used as the hydrolyzable silyl group-containing polyoxyalkylene polymer (A1).
  • a method for synthesizing a polyoxyalkylene polymer having a plurality of hydrolyzable silyl groups at one end for example, (i) using a double metal cyanide complex catalyst, an epoxy compound is polymerized with an initiator having a hydroxyl group.
  • the hydrolyzable silyl group-containing (meth)acrylate copolymer (A2) is a hydrolyzable silyl group-containing polymer in which the polymer portion is a (meth)acrylate copolymer. Under specific conditions known to those skilled in the art, the hydrolyzable silyl group-containing (meth)acrylic acid ester copolymer (A2) forms siloxane bonds between molecules to form a crosslinked product.
  • the lower limit of the number average molecular weight (Mn) of component (A2) is preferably 500 or more, more preferably 1,500 or more, even more preferably 5,000 or more, most preferably 10,000 or more. preferable.
  • the upper limit of the number average molecular weight of component (A2) is preferably 100,000 or less, more preferably 50,000 or less, and even more preferably 45,000 or less. If the number average molecular weight is within the above range, it is preferable from the viewpoint of ease of handling such as workability and adhesiveness.
  • the ratio (Mw/Mn; molecular weight distribution) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) of the component (A2) is preferably 1.6 or less, and 1.5 or less. is more preferable, 1.4 or less is more preferable, 1.3 or less is particularly preferable, and 1.2 or less is particularly preferable. If the molecular weight distribution is within the above range, it is preferable from the viewpoint of ease of handling such as workability and adhesiveness.
  • hydrolyzable silyl group The hydrolyzable silyl group in the hydrolyzable silyl group-containing (meth)acrylic acid ester copolymer (A2) is the hydrolyzable sexual silyl group] section is incorporated.
  • (Meth)acrylic acid esters contain structural units derived from (meth)acrylic monomers.
  • (meth)acryl means acryl and/or methacryl.
  • the (meth)acrylate structure in component (A2) may be linear or branched.
  • the (meth)acrylic acid ester molecule may consist of only one type of repeating unit, or may contain two or more types of repeating units. One type of (meth)acrylic acid ester may be blended, or two or more types of (meth)acrylic acid ester may be blended.
  • Examples of the (meth)acrylic acid ester structure include structures represented by the following general formula (3).
  • R3 is a hydrogen atom or a methyl group
  • R4 is a group having 1 or more carbon atoms.
  • the carbon number of R 4 can be, for example, 1-22.
  • R4 can be an alkyl group, a cycloalkyl group or an aryl group.
  • R4 may be substituted with halogen, hydroxy group, alkoxy group, amino group and the like.
  • the structure represented by general formula (3) is obtained by polymerizing a (meth)acrylic monomer.
  • (meth)acrylic monomers include methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, and n-butyl (meth)acrylate.
  • (meth)acrylic monomers one selected from ethyl acrylate, n-propyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, and stearyl acrylate
  • the above is preferable.
  • the main chain structure composed of these monomers facilitates adjusting the glass transition temperature (Tg) to 0° C. or lower.
  • a commercially available product can also be used as the (meth)acrylic acid ester.
  • Examples of commercially available products include XMAP (registered trademark) SA100S, SA110S, SA120S, SA310S, SA410S (all manufactured by Kaneka Corporation); ARUFON (registered trademark) US-6100, US-6110, US-6120, US-6130 , US-6140, US-6150, US-6170, US-6180, US-6190 (all manufactured by Toagosei Co., Ltd.); Actflow NE-1000 (registered trademark) (manufactured by Soken Chemical Co., Ltd.); Joncryl (registered trademark) (manufactured by BASF).
  • the (meth)acrylic acid ester preferably contains an XY diblock structure or an XYX triblock structure in the molecule.
  • the X block is a block having a relatively large content of hydrolyzable silyl groups.
  • a Y block is a Y block having a relatively low content of hydrolyzable silyl groups.
  • the structure of the entire molecule of the (meth)acrylic acid ester is not particularly limited as long as it contains an XY diblock structure or an XYX triblock structure, and may be, for example, an XYXY tetrablock structure.
  • the "XYX triblock structure” means the "ABA triblock structure" generally called by those skilled in the art.
  • the number of repeating units derived from the hydrolyzable silyl group-containing monomer contained in the X block is more than 1.0 on average, preferably 1.5 or more, and more preferably 1.7 or more.
  • the repeating unit derived from the hydrolyzable silyl group-containing monomer contained in the X block is preferably more than 3% by weight, more preferably 4.5% by weight or more, based on the weight of all repeating units contained in the X block. Preferably, 5% by weight or more is more preferable.
  • the (meth)acrylic acid ester is an XYX triblock polymer, and the blocks (X blocks) constituting the terminal portion of the (meth)acrylic acid ester each contain a hydrolyzable silyl group. It is preferred to have more than one.
  • the repeating unit derived from a hydrolyzable silyl group-containing monomer contained in the Y block is 0 to 3% by weight, preferably 0 to 2% by weight, based on the weight of all repeating units contained in the Y block. ⁇ 1 wt% is more preferred.
  • the repeating unit derived from the hydrolyzable silyl group-containing monomer is localized in the region near the end (near one end or both ends).
  • the (meth)acrylic acid ester can be produced by a known polymerization method (radical polymerization method, cationic polymerization method, anionic polymerization method, etc.).
  • hydrolyzable silyl group-containing (meth)acrylate copolymer (A2) As a preferred method for producing the hydrolyzable silyl group-containing (meth)acrylate copolymer (A2), the following methods (IV) to (VI) can be used.
  • (V) A method of copolymerizing a monomer having a (meth)acrylic structure in the presence of a compound having a hydrolyzable silyl group and a mercapto group as a chain transfer agent.
  • a compound having a polymerizable unsaturated group and a hydrolyzable silyl group is covalently mixed with a monomer in the presence of a mercaptan having a hydrolyzable silyl group as a chain transfer agent. It is also possible to adopt a method of polymerization.
  • the living polymerization method (VI) is preferable because it can introduce a functional group to the end of the polymer molecule and synthesize a (meth)acrylic acid ester with a narrow molecular weight distribution.
  • Compounds having a polymerizable unsaturated group and a hydrolyzable silyl group used in (IV) include 3-(dimethoxymethylsilyl)propyl (meth)acrylate, (dimethoxymethylsilyl)methyl (meth)acrylate, (meth) ) (diethoxymethylsilyl)methyl acrylate, 3-((methoxymethyl)dimethoxysilyl)propyl (meth)acrylate, and the like.
  • the compound having a hydrolyzable silyl group and a mercapto group used in (V) includes 3-mercaptopropyldimethoxymethylsilane, (mercaptomethyl)dimethoxymethylsilane, and the like.
  • Examples of the living polymerization method (VI) include a living radical polymerization method, a living cationic polymerization method, and a living anionic polymerization method, among which the living radical polymerization method is suitable for producing a (meth)acrylic acid ester.
  • Examples of living radical polymerization methods include the following. Atom Transfer Radical Polymerization (ATRP (see J. Am. Chem. Soc. 1995, 117, 5614; Macromolecules. 1995, 28, 1721)) ⁇ One electron transfer polymerization (Sigle Electron Transfer Polymerization; SET-LRP (J. Am. See Chem. Soc.
  • JP-A-2007-302749 introduces a hydrolyzable silyl group by converting the terminal functional group of a (meth)acrylic acid ester. Specifically, a hydrolyzable silyl group is introduced by converting the molecular terminal of the (meth)acrylic acid ester into a hydroxyl group, an alkenyl group, and a hydrolyzable silyl group in that order.
  • the method described in JP-A-2018-162394 introduces a hydrolyzable silyl group by copolymerization with a hydrolyzable silyl group-containing (meth)acrylate monomer.
  • hydrolyzable silyl introduce a group.
  • the hydrolyzable silyl group-containing (meth)acrylic acid esters obtained by these methods have locally hydrolyzable silyl groups at or near the ends of the molecule.
  • the upper limit of the glass transition temperature (Tg) of the (meth)acrylic acid ester in the component (A2) is preferably 100°C or less, more preferably 50°C or less, even more preferably 0°C or less, and most preferably -10°C or less.
  • the lower limit of the glass transition temperature (Tg) of the (meth)acrylic acid ester is not particularly limited, it is preferably ⁇ 80° C. or higher, more preferably ⁇ 70° C. or higher.
  • the glass transition temperature of the (meth)acrylic acid ester can be substantially regarded as the glass transition temperature of the component (A2) itself.
  • the (A) component can be used by mixing the low-viscosity (A1) component and the high-viscosity (A2) component.
  • A1 component and A2 component are used together, there is an advantage that the adhesiveness is further improved and the workability is improved as compared with the case where each component is used alone.
  • the viscosity of component (A1) is not particularly limited, but is preferably 1 Pa ⁇ s to 100 Pa ⁇ s, more preferably 5 Pa ⁇ s to 80 Pa ⁇ s, and even more preferably 10 Pa ⁇ s to 70 Pa ⁇ s. This configuration has the advantage that the resulting curable composition has a low viscosity.
  • the viscosity of component (A2) is not particularly limited, but is preferably 6.0 Pa ⁇ s to 1000 Pa ⁇ s, more preferably 50 Pa ⁇ s to 750 Pa ⁇ s, and even more preferably 100 Pa ⁇ s to 500 Pa ⁇ s. This configuration has the advantage of improving the adhesiveness of the resulting curable composition and the tensile elongation of the cured product.
  • the weight ratio (A1):(A2) of the (A1) component and the (A2) component is preferably 5:95 to 50:50. Within this range, a cured product exhibiting flexibility and high shear adhesive strength can be obtained. Further, (A1):(A2) is preferably 20:80 to 50:50 from the viewpoint of achieving both high rigidity and flexibility.
  • the curable composition comprises a titanate surface treated aluminum hydroxide (B).
  • the present curable composition can improve the adhesion of the curable composition containing component (A) by including aluminum hydroxide (B) surface-treated with titanate.
  • the component (B) is not particularly limited as long as it is aluminum hydroxide surface-treated with titanate.
  • Examples of component (B) include Hygilite (registered trademark) H-42T (manufactured by Showa Denko KK), BF013T, BX053T, B103T, BW53T, and BW153T (all of which are manufactured by Nippon Light Metal Co., Ltd.). These components (B) may be used alone or in combination of two or more.
  • component (B) contains at least one titanate surface-treated product, the product to be combined with it may be a surface-treated product other than titanate or a surface-untreated product. good.
  • the average particle diameter of aluminum hydroxide (B) is, for example, 0.1 to 200 ⁇ m, preferably 0.2 to 100 ⁇ m, more preferably 0.5 to 50 ⁇ m, and 0.4 to 20 ⁇ m. is more preferable, and 0.5 to 10 ⁇ m is particularly preferable.
  • the average particle size of aluminum hydroxide (B) is 0.1 to 200 ⁇ m, workability and mechanical properties can be adjusted in a well-balanced manner.
  • the average particle size is measured with a laser scattering particle size analyzer (Microtrac 9320HRA ( ⁇ 100) manufactured by Nikkiso Co., Ltd.).
  • the content of aluminum hydroxide (B) is preferably 30 to 320 parts by weight, more preferably 100 to 315 parts by weight, and more preferably 185 to 310 parts by weight, per 100 parts by weight of component (A). and particularly preferably 190 to 310 parts by weight.
  • the content of aluminum hydroxide (B) is 30 to 320 parts by weight, the adhesion is excellent, and when the content of aluminum hydroxide (B) is 190 to 310 parts by weight, the adhesion is even better.
  • the component (A) has at least one urethane bond or urea bond in one molecule, it may be 270 to 320 parts by weight per 100 parts by weight of the component (A). 275 to 300 parts by weight is particularly preferred.
  • the curable composition contains a silanol condensation catalyst (C).
  • the silanol condensation catalyst (C) is not particularly limited.
  • dialkyltin oxides such as dibutyltin oxide and dioctyltin oxide with ester compounds such as dioctyl phthalate, diisodecyl phthalate and methyl maleate
  • dialkyltin oxides carboxylic acids and a tin compound obtained by reacting an alcohol compound, for example, a reaction product of a dialkyltin oxide such as dibutyltin bistriethoxysilicate or dioctyltin bistriethoxysilicate with a silicate compound, and an oxy derivative of these dialkyltin compounds (stannoxane compound) tetravalent tin compounds such as; Reactants and mixtures; monoalkyltins, such as monobutyltin compounds and monooctyltin compounds, such as monobutyltin trisoctoate and monobutyltin triisopropoxide; titanates such as ethylhexyl) titanate and is
  • aliphatic tertiary amines such as triamylamine, trihexylamine, trioctylamine; aliphatic unsaturated amines such as triallylamine, oleylamine; laurylaniline, stearylaniline, triphenylamine, etc.
  • amines such as monoethanolamine, diethanolamine, triethanolamine, diethylenetriamine, triethylenetetramine, oleylamine, cyclohexylamine, benzylamine, diethylaminopropylamine, xylylenediamine, ethylenediamine, hexamethylene Diamine, N-methyl-1,3-propanediamine, N,N'-dimethyl-1,3-propanediamine, diethylenetriamine, triethylenetetramine, 2-(2-aminoethylamino)ethanol, benzylamine, 3-methoxy Propylamine, 3-lauryloxypropylamine, 3-dimethylaminopropylamine, 3-diethylaminopropylamine, 3-dibutylaminopropylamine, 3-morpholinopropylamine, 2-(1-piperazinyl)ethylamine, xylylenediamine, 2 , 4,6-tris(dimethylaminomethyl)
  • Reaction products and mixtures of amine compounds and organotin compounds such as reaction products or mixtures of laurylamine and tin octoate; low molecular weight polyamide resins obtained from excess polyamines and polybasic acids; excess polyamines and epoxy compounds.
  • silane coupling agents having an amino group such as amino-modified silyl polymers, silylated amino polymers, unsaturated aminosilane complexes, phenylamino long-chain alkylsilanes, and aminosilylated silicones, which are modified derivatives thereof;
  • Catalysts further known silanol condensation catalysts such as fatty acids such as felzatic acid, other acidic catalysts such as organic acidic phosphoric acid ester compounds, basic catalysts, and the like can be exemplified.
  • silanol condensation catalyst (C) divalent tin is preferably used from the viewpoint of storage stability and durability.
  • the content of the silanol condensation catalyst (C) is, for example, preferably 0.5 to 20 parts by weight, more preferably 1.0 to 10 parts by weight, per 100 parts by weight of component (A). , 2.0 to 7.5 parts by weight. If the content of the silanol condensation catalyst (C) is from 0.5 to 20 parts by weight, there is an advantage that both curability and cost reduction are readily compatible.
  • this curable composition contains fillers, plasticizers, epoxy compounds, ultraviolet absorbers, light stabilizers, antioxidants, surface modifiers, solvents, anti-sagging agents, and physical property adjustment agents. Agents, adhesiveness-imparting agents, tackifiers, photo-curing substances, oxygen-curing substances, other resins, etc. may be added.
  • the curable composition may optionally contain diluents, silicates, curability modifiers, radical inhibitors, and metal deactivators. , antiozonants, phosphorus-based peroxide decomposers, lubricants, pigments, fungicides, flame retardants, foaming agents, and other additives may be added.
  • Fillers can be used in the curable composition. Since the filler is an inexpensive material, it enables cost reduction and adjustment of mechanical properties.
  • fillers include, but are not limited to, heavy calcium carbonate, colloidal calcium carbonate, magnesium carbonate, barium carbonate, barium sulfate, diatomaceous earth, calcined clay, clay, talc, barite, anhydrite, titanium oxide, bentonite, Organic bentonite, ferric oxide, fine aluminum powder, flint powder, zinc oxide, active zinc white, mica, zinc white, white lead, lithopone, zinc sulfide, carbon black, alumina, PVC powder, PMMA powder, glass fiber, filament etc. These fillers may be used alone or in combination of two or more.
  • the amount of the filler used is, for example, preferably 5 to 500 parts by weight, more preferably 10 to 250 parts by weight, and 20 to 150 parts by weight with respect to 100 parts by weight of component (A). is more preferred.
  • organic balloons or inorganic balloons may be added.
  • the balloon is made of a spherical filler and has a hollow interior.
  • materials for the balloon include inorganic materials such as glass and shirasu, and organic materials such as phenol resin, urea resin, polystyrene, and saran.
  • the amount of the balloon used is preferably 0.1 to 100 parts by weight, more preferably 1 to 20 parts by weight, per 100 parts by weight of the polymer (A).
  • plasticizer can be used in the curable composition.
  • plasticizers include dibutyl phthalate, diisononyl phthalate (DINP), diheptyl phthalate, di(2-ethylhexyl) phthalate, diisodecyl phthalate (DIDP), phthalate compounds such as butylbenzyl phthalate; bis(2-ethylhexyl )-terephthalate compounds such as 1,4-benzenedicarboxylate; non-phthalate compounds such as 1,2-cyclohexanedicarboxylic acid diisononyl ester; dioctyl adipate, dioctyl sebacate, dibutyl sebacate, diisodecyl succinate, Aliphatic polyvalent carboxylic acid ester compounds such as tributyl acetylcitrate; unsaturated fatty acid ester compounds such as butyl oleate and methyl
  • polymer plasticizer can be used.
  • polymeric plasticizers include vinyl polymers; polyester plasticizers; polyether polyols such as polyethylene glycol and polypropylene glycol having a number average molecular weight of 500 or more; polyethers such as derivatives converted to polystyrenes; polybutadiene, polybutene, polyisobutylene, butadiene-acrylonitrile, polychloroprene and the like.
  • reactive plasticizers can be used.
  • reactive plasticizers include polyoxyalkylene polymers, saturated hydrocarbon polymers, (meth) Examples include acrylic acid ester-based polymers and polyorganosiloxane-based polymers.
  • polyoxyalkylene-based polymers and (meth)acrylic acid ester-based polymers are preferred as the main chain skeleton of the reactive plasticizer.
  • the use of a reactive plasticizer can reduce the viscosity of the composition and suppress the bleed-out of the plasticizer compared to the use of a low-molecular-weight plasticizer.
  • the hydrolyzable silyl group in the reactive plasticizer may be at the molecular chain end, side chain, or both.
  • the hydrolyzable silyl group when the hydrolyzable silyl group is present at the end of the molecular chain, the molecular weight between cross-linking points becomes long, and a rubber-like cured product having good mechanical properties can be easily obtained, which is more preferable.
  • the average number of hydrolyzable silyl groups per molecule is 0.5 or more and less than 1.5, but the lower limit is preferably 0.6 or more from the viewpoint of mechanical properties during curing. Also, the upper limit is preferably less than 1.0 in order to efficiently lower the modulus of the cured product.
  • the reactive plasticizer may have a terminal olefin group and/or an internal olefin group in addition to the hydrolyzable silyl group, and may not have a terminal olefin group and/or an internal olefin group.
  • the total number of hydrolyzable silyl groups, terminal olefinic groups and internal olefinic groups may be 1.0 or less per terminal structure on average.
  • the polymer that is the reactive plasticizer preferably has a number average molecular weight of 3,000 or more and less than 15,000 in terms of polystyrene by GPC. If the number average molecular weight is 3,000 or more, sufficient mechanical properties can be obtained. Further, if the number average molecular weight is 15,000 or less, the viscosity is low and a sufficient dilution effect can be obtained.
  • the molecular weight distribution of the reactive plasticizer is not particularly limited, it is preferably less than 2.0, more preferably 1.6 or less, even more preferably 1.4 or less, particularly preferably 1.3 or less, and particularly preferably 1.2 or less. preferable.
  • the main chain structure of the reactive plasticizer may be a linear or branched structure, or a structure having multiple hydrolyzable silyl groups at one end. Among them, a straight-chain polymer having a hydrolyzable silyl group introduced at only one end is more preferable. Moreover, the main chain structure does not have to be a single one, and the respective polymers may be separately produced and mixed, or may be produced simultaneously so as to obtain an arbitrary polymer.
  • the hydrolyzable silyl group contained in the reactive plasticizer can be arbitrarily selected, but if it has the same hydrolyzable silyl group as the component (A) of the present invention, the physical properties of the cured product such as hardness and skinning time can be adjusted. It is particularly preferable because it is easy to clean.
  • a plasticizer may be used individually and may use 2 or more types together.
  • the amount of plasticizer used is, for example, 5 to 150 parts by weight, preferably 10 to 120 parts by weight, more preferably 12 to 100 parts by weight, per 100 parts by weight of component (A).
  • Epoxy compound can be used in the present curable composition. The use of these can improve the restorability of the cured product.
  • epoxy compounds include epoxidized unsaturated fats and oils, epoxidized unsaturated fatty acid esters, alicyclic epoxy compounds, epichlorohydrin derivatives, and mixtures thereof. Specifically, epoxidized soybean oil, epoxidized linseed oil, bis(2-ethylhexyl)-4,5-epoxycyclohexane-1,2-dicarboxylate (E-PS), epoxyoctyl stearate , epoxy butyl stearate and the like. Epoxy resins such as bisphenol A type epoxy resins and novolac type epoxy resins can also be used as epoxy compounds.
  • the amount of the epoxy compound used is, for example, preferably 1 to 100 parts by weight, more preferably 2 to 75 parts by weight, and 5 to 50 parts by weight with respect to 100 parts by weight of component (A). is more preferred.
  • a UV absorber can be used in the present curable composition.
  • the use of an ultraviolet absorber can enhance the surface weather resistance of the cured product.
  • Examples of ultraviolet absorbers include benzophenone-based, benzotriazole-based, salicylate-based, substituted tolyl-based, and metal chelate-based compounds.
  • Benzotriazole compounds include, for example, commercial names Tinuvin P, Tinuvin 213, Tinuvin 234, Tinuvin 326, Tinuvin 327, Tinuvin 328, Tinuvin 329, Tinuvin 571 (manufactured by BASF). These ultraviolet absorbers may be used alone or in combination of two or more.
  • the amount of the ultraviolet absorber used is, for example, 0.1 to 10 parts by weight, preferably 0.2 to 8.0 parts by weight, and 0.3 to 6.0 parts by weight, per 100 parts by weight of component (A). Parts by weight are more preferred.
  • a light stabilizer can be used in the curable composition.
  • the use of a light stabilizer can prevent photo-oxidative deterioration of the cured product.
  • Examples of light stabilizers include benzotriazole-based, hindered amine-based, and benzoate-based compounds. Hindered amine compounds are particularly preferred. These light stabilizers may be used alone or in combination of two or more.
  • the amount of light stabilizer used is, for example, 0.1 to 10 parts by weight, preferably 0.2 to 8.0 parts by weight, and 0.3 to 6.0 parts by weight, per 100 parts by weight of component (A). Parts by weight are more preferred.
  • antioxidant antioxidant agent
  • An antioxidant can be used in the present curable composition.
  • the use of an antioxidant can improve the heat resistance and weather resistance of the cured product.
  • antioxidants include hindered phenol-based, monophenol-based, bisphenol-based, and polyphenol-based compounds. Specific examples of antioxidants are also described in JP-A-4-283259 and JP-A-9-194731. These antioxidants may be used alone or in combination of two or more.
  • the amount of antioxidant used is, for example, 0.1 to 2.0 parts by weight, preferably 0.2 to 1.8 parts by weight, and 0.3 to 1 part by weight, per 100 parts by weight of component (A). .6 parts by weight is more preferred.
  • a surface modifier can be used in the present curable composition.
  • surface modifiers include long-chain alkylamines such as laurylamine, 2,2′-methylenebis(4,6-di-t-butylphenyl)sodium phosphate, tris(2,4-di-t- Phosphorus compounds such as butylphenyl)phosphite, oxazolidine compounds, 1,1,1-trimethylolpropane triacrylate and the like. These surface modifiers may be used alone or in combination of two or more.
  • the amount of the surface modifier used is, for example, 1.0 to 10.0 parts by weight, preferably 1.5 to 7.5 parts by weight, and 2.0 to 10.0 parts by weight per 100 parts by weight of component (A). 5.0 parts by weight is more preferred.
  • Solvents and diluents that can be used include, but are not limited to, aliphatic hydrocarbons, aromatic hydrocarbons, alicyclic hydrocarbons, halogenated hydrocarbons, alcohols, esters, ketones, and ethers.
  • the boiling point of the solvent is preferably 150° C. or higher, more preferably 200° C. or higher, and particularly preferably 250° C. or higher, because of the problem of air pollution when the composition is used indoors. .
  • the above solvents or diluents may be used alone or in combination of two or more.
  • An anti-sagging agent may be added to the present curable composition as necessary to prevent sagging and improve workability.
  • the anti-sagging agent is not particularly limited, but examples thereof include polyamide waxes; hydrogenated castor oil derivatives; metal soaps such as calcium stearate, aluminum stearate and barium stearate. These anti-sagging agents may be used alone or in combination of two or more.
  • the amount of anti-sagging agent used is preferably 0.1 to 20 parts by weight per 100 parts by weight of component (A).
  • a physical property modifier for adjusting the tensile properties of the cured product may be added to the present curable composition.
  • the physical property modifier is not particularly limited, for example, alkylalkoxysilanes such as methyltrimethoxysilane, dimethyldimethoxysilane, and trimethylmethoxysilane; dimethyldiisopropenoxysilane, methyltriisopropenoxysilane, ⁇ -glycidoxy Alkylisopropenoxysilanes such as propylmethyldiisopropenoxysilane; trialkylsilylborates such as tris(trimethylsilyl)borate and tris(triethylsilyl)borate; silicone varnishes; and polysiloxanes.
  • the physical property modifier By using the physical property modifier, it is possible to increase the hardness when the composition according to the present embodiment is cured, or conversely decrease the hardness and increase the elongation at break.
  • the physical property modifiers may be used alone, or two or more of them may be used in combination.
  • a compound that produces a compound having a monovalent silanol group in its molecule by hydrolysis has the effect of lowering the modulus of the cured product without exacerbating the stickiness of the surface of the cured product.
  • Compounds that generate trimethylsilanol are particularly preferred.
  • Compounds that generate compounds having a monovalent silanol group in the molecule by hydrolysis include alcohol derivatives such as hexanol, octanol, trimethylolpropane, glycerin, pentaerythritol, and sorbitol, which are hydrolyzed into silane monools.
  • a silicon compound to be generated can be mentioned. Specific examples include tris((trimethylsiloxy)methyl)propane.
  • the amount of the physical property modifier used is preferably 0.1 to 10 parts by weight, more preferably 0.5 to 5 parts by weight, per 100 parts by weight of component (A).
  • An adhesion imparting agent can be added to the present curable composition.
  • a silane coupling agent or a reactant of the silane coupling agent can be added as the adhesion imparting agent.
  • silane coupling agents include ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropylmethyldimethoxysilane, N- ⁇ -aminoethyl- ⁇ -aminopropyltrimethoxysilane, N- ⁇ -aminoethyl- ⁇ - Amino group-containing silanes such as aminopropylmethyldimethoxysilane, N-phenyl- ⁇ -aminopropyltrimethoxysilane, (2-aminoethyl)aminomethyltrimethoxysilane; ⁇ -isocyanatopropyltrimethoxysilane, ⁇ -isocyanatopropyltrimethoxysilane; isocyanate group-containing silanes such as ethoxysilane, ⁇ -isocyanatopropylmethyldimethoxysilane, ⁇ -isocyanatomethyltrimethoxysilane, ⁇ -isocyan
  • reaction products of various silane coupling agents can also be used.
  • the reactants include isocyanate silane and a hydroxyl group-containing compound, isocyanate silane and an amino group-containing compound; reaction products of aminosilane and an acrylic group-containing compound, and a methacrylic group-containing compound (Michael addition reaction product); aminosilane and an epoxy group.
  • Examples include a reaction product with a containing compound, a reaction product with an epoxysilane and a carboxylic acid group-containing compound, and an amino group-containing compound.
  • silane coupling agents such as isocyanate silane and aminosilane, aminosilane and (meth)acrylic group-containing silane, aminosilane and epoxysilane, aminosilane and acid anhydride-containing silane can also be used.
  • adhesion imparting agents other than silane coupling agents are not particularly limited, but include epoxy resins, phenol resins, sulfur, alkyl titanates, aromatic polyisocyanates, and the like.
  • the adhesiveness-imparting agent may be used alone or in combination of two or more. Addition of these adhesion-imparting agents can improve adhesion to adherends.
  • the amount of adhesion-imparting agent used is preferably 0.1 to 20 parts by weight, particularly preferably 0.5 to 10 parts by weight, per 100 parts by weight of the polyoxyalkylene polymer (A) of the present invention.
  • a tackifying resin can be added to the present curable composition for the purpose of enhancing the adhesiveness or adhesion to a substrate, or for other purposes.
  • the tackifier resin there is no particular limitation and any commonly used one can be used.
  • terpene-based resins aromatic modified terpene resins, hydrogenated terpene resins, terpene-phenolic resins, phenolic resins, modified phenolic resins, xylene-phenolic resins, cyclopentadiene-phenolic resins, coumarone-indene resins, rosin-based Resins, rosin ester resins, hydrogenated rosin ester resins, xylene resins, low molecular weight polystyrene resins, styrene copolymer resins, styrene block copolymers and hydrogenated products thereof, petroleum resins (e.g., C5 hydrocarbon resins, C9 hydrocarbon resins, C5C9 hydrocarbon copolymer resins, etc.), hydrogenated petroleum resins, DCPD resins, and the like. These may be used alone or in combination of two or more.
  • petroleum resins e.g., C5 hydrocarbon resins, C9 hydrocarbon resins, C
  • the amount of the tackifying resin used is preferably 2 to 100 parts by weight, more preferably 5 to 50 parts by weight, even more preferably 5 to 30 parts by weight, per 100 parts by weight of component (A). If the amount is less than 2 parts by weight, it is difficult to obtain adhesion and adhesion effects to the substrate, and if the amount exceeds 100 parts by weight, the viscosity of the composition becomes too high and handling may become difficult.
  • a photocurable material can be used in the present curable composition.
  • a photocurable substance When a photocurable substance is used, a film of the photocurable substance is formed on the surface of the cured product, and the stickiness of the cured product and the weather resistance of the cured product can be improved.
  • Many compounds such as organic monomers, oligomers, resins, or compositions containing them are known as this type of compound. Unsaturated acrylic compounds, polyvinyl cinnamates, azide resins, etc., which are monomers, oligomers, or mixtures thereof can be used.
  • unsaturated acrylic compounds include monomers, oligomers or mixtures thereof having one to several acrylic or methacrylic unsaturated groups, such as propylene (or butylene, ethylene) glycol di(meth)acrylate, neopentyl Monomers such as glycol di(meth)dimethacrylate and oligoesters having a molecular weight of 10,000 or less are exemplified.
  • Aronix M-210 for example, special acrylates (bifunctional) Aronix M-210, Aronix M-215, Aronix M-220, Aronix M-233, Aronix M-240, Aronix M-245; (trifunctional) Aronix M305 , Aronix M-309, Aronix M-310, Aronix M-315, Aronix M-320, Aronix M-325, and (multifunctional) Aronix M-400, etc., especially compounds containing acrylic functional groups is preferred, and a compound containing 3 or more of the same functional groups on average in one molecule is preferred (Aronix is a product of Toagosei Kagaku Kogyo Co., Ltd.).
  • polyvinyl cinnamate examples include a photosensitive resin having a cinnamoyl group as a photosensitive group, which is obtained by esterifying polyvinyl alcohol with cinnamic acid, and many polyvinyl cinnamate derivatives.
  • Azidated resins are known as photosensitive resins having an azide group as a photosensitive group. Publishing, Printing Society Publishing Department, page 93 onwards, page 106 onwards, page 117 onwards), and these may be used singly or in combination, and if necessary, a sensitizer may be added. can be done. The effect may be enhanced by adding a sensitizer such as ketones or nitro compounds or an accelerator such as amines.
  • the photocurable substance is preferably used in the range of 0.1 to 20 parts by weight, more preferably in the range of 0.5 to 10 parts by weight, per 100 parts by weight of component (A). If it is less than 0.1 part by weight, there is no effect of improving the weather resistance, and if it is more than 20 parts by weight, the cured product becomes too hard and tends to crack.
  • oxygen-curable material can be used in the present curable composition.
  • oxygen-curable substances include unsaturated compounds that can react with oxygen in the air, and react with oxygen in the air to form a hardened film near the surface of the cured product, which causes the surface to become sticky and dust on the surface of the cured product. and prevent the adhesion of dust.
  • Specific examples of oxygen-curable substances include drying oils represented by paulownia oil and linseed oil, various alkyd resins obtained by modifying these compounds; acrylic polymers modified with drying oils, and epoxy resins.
  • silicone resins 1,2-polybutadiene, 1,4-polybutadiene, C5-C8 diene polymers obtained by polymerizing or copolymerizing diene compounds such as butadiene, chloroprene, isoprene, 1,3-pentadiene, etc.
  • diene compounds such as butadiene, chloroprene, isoprene, 1,3-pentadiene, etc.
  • liquid polymers These may be used alone or in combination of two or more.
  • the amount of the oxygen-curable substance used is preferably in the range of 0.1 to 20 parts by weight, more preferably 0.5 to 20 parts by weight, per 100 parts by weight of the polyoxyalkylene polymer (A) of the present invention. 10 parts by weight. If the amount is less than 0.1 part by weight, the improvement in staining resistance is not sufficient, and if it exceeds 20 parts by weight, the tensile properties of the cured product tend to be impaired. As described in JP-A-3-160053, the oxygen-curable substance is preferably used in combination with the photo-curable substance.
  • the curable composition can be used as a waterproofing material, an elastic sealing material for construction, a sealing material for siding boards, a sealing material for double glazing, a sealing material for vehicles, automobile parts, parts for large vehicles such as trucks and buses, and parts for train vehicles. , aircraft parts, marine parts, electrical parts, liquid sealing materials used in various machine parts, etc.
  • Architectural and industrial sealing materials, electrical and electronic component materials such as solar cell back sealing agents, electric wires and cables
  • Electrical insulating materials such as insulation coating materials, adhesives, adhesives, elastic adhesives, contact adhesives, tile adhesives, reactive hot melt adhesives, paints, powder coatings, coating materials, foams, can lids, etc.
  • sealing materials heat dissipation sheets, potting agents for electrical and electronic equipment, films, gaskets, marine deck caulking, casting materials, various molding materials, artificial marble, and rust prevention and waterproofing of wire glass and laminated glass edges (cut parts)
  • a cured product (hereinafter referred to as "main cured product") is provided by curing the present curable composition.
  • the cured product is formed by curing the curable composition. Therefore, the cured product has excellent flame retardancy.
  • the cured product is formed by curing the following curable composition.
  • the curing method is not particularly limited, and for example, it can be cured at an outside temperature or room temperature, or it can be cured by heating.
  • one aspect of the present invention includes the following. ⁇ 1> an organic polymer (A) having a hydrolyzable silyl group; aluminum hydroxide (B) surface-treated with titanate; A curable composition containing a silanol condensation catalyst (C). ⁇ 2>
  • the organic polymer (A) is a hydrolyzable silyl group-containing polyoxyalkylene polymer (A1) and/or a hydrolyzable silyl group-containing (meth)acrylic acid ester copolymer (A2) The curable composition according to ⁇ 1>.
  • ⁇ 3> The curable composition according to ⁇ 1> or ⁇ 2>, wherein the organic polymer (A) is a hydrolyzable silyl group-containing (meth)acrylate copolymer (A2).
  • the organic polymer (A) is a hydrolyzable silyl group-containing polyoxyalkylene polymer (A1) and a hydrolyzable silyl group-containing (meth)acrylate copolymer (A2).
  • ⁇ 1> or ⁇ 2> ⁇ 5>
  • the content of the aluminum hydroxide (B) is 30 to 300 parts by weight with respect to 100 parts by weight of the organic polymer (A), according to any one of ⁇ 1> to ⁇ 5>.
  • Curable composition. ⁇ 7> The weight ratio of the hydrolyzable silyl group-containing polyoxyalkylene polymer (A1) and the hydrolyzable silyl group-containing (meth)acrylic acid ester copolymer (A2) is 5:95 to The curable composition according to ⁇ 4>, which is 50:50.
  • ⁇ 8> Any one of ⁇ 1> to ⁇ 7>, wherein the content of the silanol condensation catalyst (C) is 0.5 to 20 parts by weight with respect to 100 parts by weight of the organic polymer (A) A curable composition as described.
  • organic polymer Organic polymers (A-1), (A-2), (A-3) and (A-4) prepared according to the synthesis examples below were used.
  • test substrate width 25 mm, length 100 mm, thickness 3 mm
  • Primer No. manufactured by Yokohama Rubber Co., Ltd. 40 was applied with a brush and dried for about 30 minutes.
  • the obtained composition was applied in the form of a bead having a width of 10 mm, a thickness of 10 mm and a length of 80 mm, and cured at 23° C. and a relative humidity of 50% for 7 days.
  • the interface between the sealant and the base material was cut with a razor blade, and the sealant was pulled in a direction of 180 degrees to observe the breakage state.
  • CF was defined as a state where the sealant was destroyed
  • TCF was defined as a state in which a thin layer remained on the base material
  • AF was defined as a state in which no sealant remained on the base material.
  • test base material was used as the test base material.
  • SUS304 cold-rolled stainless steel plate (manufactured by Nippon Tact Co., Ltd.) Al: Anodized aluminum A5052P (manufactured by Engineering Test Service Co., Ltd.) Glass: Float glass (manufactured by TP Giken Co., Ltd.).
  • the flame retardancy of the curable composition was measured according to UL-94 rating. Specifically, the curable composition was made into a sheet-shaped specimen having a thickness of 3 mm, and was completely cured by placing it in a 23° C., 50% RH condition for 3 days and then in a 50° C. dryer for 4 days. Five specimens (length 125 mm ⁇ width 13 mm ⁇ thickness 3 mm) were cut out from this sheet.
  • the specimen was held vertically, and the flame of a gas burner was applied to the lower end of the specimen for 10 seconds. When the combustion stopped within 30 seconds, the flame of the gas burner was further applied to the lower end of the test piece for 10 seconds.
  • the number average molecular weight in the examples is the GPC molecular weight measured under the following conditions: Liquid delivery system: Tosoh HLC-8220GPC Column: TSK-GEL H type manufactured by Tosoh Solvent: THF Molecular weight: converted to polystyrene Measurement temperature: 40°C.
  • a pentamethyldiethylenetriamine complex of cuprous bromide was used as a catalyst to react terminal bromine groups of the polymer with 1,7-octadiene in an acetonitrile solvent to obtain a polyacrylic acid ester.
  • 1,7-octadiene was used in an amount of 60 molar equivalents with respect to the initiator.
  • unreacted 1,7-octadiene was devolatilized and recovered.
  • the resulting polymer was purified by adsorption, heated to about 190° C. for debromination, and purified again by adsorption to obtain a polyacrylic acid ester having alkenyl groups at both ends.
  • the resulting polyacrylate having alkenyl groups at both ends was treated with methyldimethoxysilane at 100° C. to the alkenyl groups of the polyacrylate using 300 ppm of an isopropanol solution containing 3 wt % platinum of a platinum-vinylsiloxane complex as a catalyst. was reacted for 1 hour. The reaction was carried out in the presence of methyl orthoformate, and 4 molar equivalents of methyldimethoxysilane relative to alkenyl groups were used.
  • organic polymer (A-1) methyldimethoxysilyl group-terminated polyacrylate
  • the obtained organic polymer had a number average molecular weight of 40,500, a molecular weight distribution of 1.3, and the number of silyl groups introduced per molecule was 2.0.
  • this polymer (Q-2) was added 50 ⁇ l of a platinum divinyldisiloxane complex solution (isopropanol solution of 3% by weight in terms of platinum), and 4.8 g of dimethoxymethylsilane was slowly added dropwise while stirring. After reacting at 100° C. for 2 hours, unreacted dimethoxymethylsilane is distilled off under reduced pressure to obtain a polyoxypropylene (organic polymer (A- 2)) was obtained. It was found that the organic polymer (A-2) had an average of 0.8 dimethoxymethylsilyl groups at one terminal and an average of 1.6 dimethoxymethylsilyl groups per molecule.
  • organic polymer (A-2) had an average of 0.8 dimethoxymethylsilyl groups at one terminal and an average of 1.6 dimethoxymethylsilyl groups per molecule.
  • the unpurified polyoxypropylene thus obtained was mixed with n-hexane and water, and then the water was removed by centrifugation. Removed. As a result, polyoxypropylene (Q-3) having a plurality of carbon-carbon unsaturated bonds at the ends was obtained. Polymer (Q-3) was found to have an average of 1.50 carbon-carbon unsaturated bonds introduced at one end.
  • the obtained (Q-4) was mixed with 70 parts of the organic polymer (A-2) so that the solid content of the (meth)acrylic ester copolymer was 30 parts, and after mixing uniformly, the rotary IBA was removed by an evaporator to obtain an organic polymer (A-4).
  • Example 1 Organic polymer (A-1), aluminum hydroxide (B-2), calcium carbonate, plasticizer, epoxy compound-1, ultraviolet absorber, light stabilizer, antioxidant, surface A modifier was added in the amounts shown in Table 1, mixed using a twin-screw mixer, and dispersed to prepare a main agent.
  • a silanol condensation catalyst and a co-catalyst were mixed as a curing agent in the amounts shown in Table 1 (unit: parts by weight) using a spatula.
  • the prepared main agent and curing agent were sufficiently mixed, and uniformly kneaded and defoamed using a rotation/revolution mixer to prepare a curable composition. Adhesiveness and flame retardancy were evaluated by the method described in the section [Methods of measurement and evaluation] using the prepared curable composition. Table 1 shows the results.
  • the compounding amount of each component in Table 1 is shown in parts by weight.
  • Examples 2 to 11, Comparative Examples 1 to 3 A curable composition was prepared in the same manner as in Example 1, except that the amount of each component was changed as shown in Table 1. Adhesiveness and flame retardancy were evaluated by the method described in the section [Methods of measurement and evaluation] using the prepared curable composition. Table 1 shows the results.
  • Table 1 shows that the curable compositions of Examples 1 to 11 have excellent adhesion when cured. Moreover, it was shown that the curable compositions of Examples 1 to 11 are also excellent in flame retardancy. Furthermore, the curable composition of Example 3 in which the organic polymer (A-1) and the organic polymer (A-2) are used in combination, and the organic polymer (A-1) and the organic polymer (A-4) In the curable composition of Example 7, which was used in combination with, compared with the curable composition of Example 2, it was shown that the adhesiveness was further improved and the workability was excellent.
  • a curable composition having flame retardancy and adhesiveness can be provided, and thus can be suitably used as a sealant or the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The purpose of the present invention is to provide a curable composition to which aluminum hydroxide is added so as to improve the flame retardancy, and which has improved adhesiveness. The above is achieved by providing a curable composition which contains (A) an organic polymer having a hydrolyzable silyl group, (B) aluminum hydroxide that is surface-treated with titanate, and (C) a silanol condensation catalyst.

Description

硬化性組成物およびその利用Curable composition and its use
 本発明は、硬化性組成物、およびその硬化物に関する。 The present invention relates to a curable composition and its cured product.
 従来、加水分解性シリル基を有する有機重合体を含む硬化性組成物は、シーリング材等に利用されている。このような硬化性組成物は、難燃性を付与する目的で、水酸化アルミニウムが配合されることがよくある。  Conventionally, curable compositions containing organic polymers having hydrolyzable silyl groups have been used as sealants and the like. Such curable compositions are often blended with aluminum hydroxide for the purpose of imparting flame retardancy.
 例えば、特許文献1には、加水分解性シリル基を有する有機重合体(A)と、酸化ナトリウム量が1000ppm以下である、特定量の水酸化アルミニウム(B)と、特定量の2価のスズ化合物(C)と、を含有する、湿気硬化型樹脂組成物が開示されている。 For example, Patent Document 1 discloses an organic polymer (A) having a hydrolyzable silyl group, a specific amount of aluminum hydroxide (B) having a sodium oxide content of 1000 ppm or less, and a specific amount of divalent tin. A moisture-curable resin composition containing a compound (C) is disclosed.
特開2013-006950号公報JP 2013-006950 A
 しかしながら、水酸化アルミニウムを配合した硬化性組成物は、接着性が悪化する傾向にあり、この点において改善の余地があった。 However, curable compositions containing aluminum hydroxide tend to have poor adhesion, and there is room for improvement in this respect.
 そこで、本発明の目的は、水酸化アルミニウムを配合して難燃性を向上させた硬化性組成物であって、接着性を改善した硬化性組成物を提供することにある。 Therefore, an object of the present invention is to provide a curable composition in which aluminum hydroxide is blended to improve flame retardancy and which has improved adhesiveness.
 本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、加水分解性シリル基を有する有機重合体を含む硬化性組成物において、特定の加工がなされた(具体的には、チタネートで表面処理された)水酸化アルミニウム(B)を配合することにより、接着性を改善できることを初めて見出し、本発明を完成させるに至った。 The present inventors have made intensive studies to solve the above problems, and as a result, a curable composition containing an organic polymer having a hydrolyzable silyl group was subjected to specific processing (specifically, The present inventors have found for the first time that the adhesivity can be improved by blending aluminum hydroxide (B) surface-treated with titanate, and have completed the present invention.
 したがって、本発明の一態様は、加水分解性シリル基を有する有機重合体(A)と、チタネートで表面処理された水酸化アルミニウム(B)と、シラノール縮合触媒(C)と、を含有する、硬化性組成物(以下、「本硬化性組成物」と称する。)である。 Therefore, one aspect of the present invention contains an organic polymer (A) having a hydrolyzable silyl group, an aluminum hydroxide surface-treated with titanate (B), and a silanol condensation catalyst (C), It is a curable composition (hereinafter referred to as "this curable composition").
 本発明の一態様によれば、水酸化アルミニウムを配合して難燃性を向上させた硬化性組成物であって、接着性を改善した硬化性組成物を提供することができる。 According to one aspect of the present invention, it is possible to provide a curable composition in which aluminum hydroxide is blended to improve flame retardancy and to improve adhesiveness.
 本発明の実施の一形態について、以下に詳細に説明する。なお、本明細書において特記しない限り、数値範囲を表す「A~B」は、「A以上、B以下」を意味する。また、本明細書中に記載された文献の全てが、本明細書中において参考文献として援用される。 One embodiment of the present invention will be described in detail below. In this specification, unless otherwise specified, "A to B" representing a numerical range means "A or more and B or less". Also, all of the documents mentioned in this specification are incorporated herein by reference.
 〔1.本発明の概要〕
 上述の通り、加水分解性シリル基を有する有機重合体を含む硬化性組成物は、水酸化アルミニウムを配合すると、接着性が悪化する傾向があった。
[1. Outline of the present invention]
As described above, a curable composition containing an organic polymer having a hydrolyzable silyl group tends to have poor adhesiveness when aluminum hydroxide is added.
 そこで、本発明者らは、水酸化アルミニウムを配合した前記硬化性組成物について、接着性の改善の観点から鋭意検討を行った結果、チタネートで表面処理された水酸化アルミニウム(B)を配合することにより、接着性を改善できることを初めて見出した。 Therefore, the present inventors have made intensive studies on the curable composition containing aluminum hydroxide from the viewpoint of improving adhesiveness, and as a result, contain aluminum hydroxide (B) surface-treated with titanate. It was found for the first time that the adhesion can be improved by
 前記特定の表面処理を施した水酸化アルミニウムを配合することにより、難燃性を維持しつつ、接着性を改善できることはこれまでには知られておらず、本発明は、極めて優れた効果を奏する。 It has not been known so far that adhesion can be improved while maintaining flame retardancy by blending aluminum hydroxide subjected to the specific surface treatment, and the present invention has extremely excellent effects. Play.
 上述の通り、本発明の一態様による構成によれば、難燃性と接着性とを両立した、加水分解性シリル基を有する有機重合体を含む硬化性組成物が得られるため、例えば、目標11「住み続けられるまちづくりを」等の持続可能な開発目標(SDGs)の達成に貢献できる。以下、本硬化性組成物の構成について詳説する。 As described above, according to the configuration according to one aspect of the present invention, it is possible to obtain a curable composition containing an organic polymer having a hydrolyzable silyl group that achieves both flame retardancy and adhesiveness. 11 We can contribute to the achievement of Sustainable Development Goals (SDGs) such as "Building sustainable communities." The configuration of the present curable composition will be described in detail below.
 〔2.硬化性組成物〕
 本硬化性組成物は、上述の通り、加水分解性シリル基を有する有機重合体(A)と、チタネートで表面処理された水酸化アルミニウム(B)と、シラノール縮合触媒(C)と、を含む。
[2. Curable composition]
As described above, the curable composition contains an organic polymer (A) having a hydrolyzable silyl group, an aluminum hydroxide surface-treated with titanate (B), and a silanol condensation catalyst (C). .
 以下において、「加水分解性シリル基を有する有機重合体(A)」を「(A)成分」と、「チタネートで表面処理された水酸化アルミニウム(B)を「(B)成分」と、「シラノール縮合触媒(C)」を「(C)成分」と、「加水分解性シリル基含有ポリオキシアルキレン系重合体(A1)」を「(A1)成分」と、「加水分解性シリル基含有(メタ)アクリル酸エステル系共重合体(A2)」を「(A2)成分」と、称する場合がある。 In the following, "organic polymer (A) having a hydrolyzable silyl group" is referred to as "(A) component", "aluminum hydroxide (B) surface-treated with titanate" is referred to as "(B) component", and " Silanol condensation catalyst (C)” as “(C) component”, “hydrolyzable silyl group-containing polyoxyalkylene polymer (A1)” as “(A1) component”, and “hydrolyzable silyl group-containing ( The meth)acrylic ester-based copolymer (A2) may be referred to as the "(A2) component".
 (2-1.加水分解性シリル基を有する有機重合体(A))
 本硬化性組成物は、加水分解性シリル基を有する有機重合体(A)を含む。また、本発明の一実施形態において、加水分解性シリル基を有する有機重合体(A)は、加水分解性シリル基含有ポリオキシアルキレン系重合体(A1)(以下、「(A1)成分」と称する場合がある。)、および/または加水分解性シリル基含有(メタ)アクリル酸エステル系共重合体(A2)(以下、「(A2)成分」と称する場合がある。)であることが好ましい。
(2-1. Organic polymer (A) having a hydrolyzable silyl group)
The curable composition contains an organic polymer (A) having hydrolyzable silyl groups. In one embodiment of the present invention, the organic polymer (A) having a hydrolyzable silyl group is a hydrolyzable silyl group-containing polyoxyalkylene polymer (A1) (hereinafter referred to as "(A1) component" ), and/or the hydrolyzable silyl group-containing (meth)acrylic acid ester copolymer (A2) (hereinafter sometimes referred to as "(A2) component"). .
 本願明細書において、重量平均分子量(Mw)および数平均分子量(Mn)は、ゲルパーミエーションクロマトグラフィ(GPC)により測定される、標準ポリスチレン換算の値である。 In the present specification, the weight average molecular weight (Mw) and number average molecular weight (Mn) are values measured by gel permeation chromatography (GPC) and converted to standard polystyrene.
 (A)成分の分子量としては、加水分解性シリル基導入前の重合体前駆体を、JIS K 1557の水酸基価の測定方法と、JIS K 0070に規定されたよう素価の測定方法の原理に基づいた滴定分析により、直接的に末端基濃度を測定し、重合体の構造(使用した重合開始剤によって定まる分岐度)を考慮して求めた末端基換算分子量で示すこともできる。重合体(A)の末端基換算分子量は、重合体前駆体の一般的なGPC測定により求めた数平均分子量(Mn)と上記末端基換算分子量の検量線を作成し、加水分解性シリル基含有重合体のGPCにより求めた数平均分子量(Mn)を末端基換算分子量に換算して求めることも可能である。 As the molecular weight of component (A), the polymer precursor before the introduction of the hydrolyzable silyl group was measured according to the principle of the hydroxyl value measurement method of JIS K 1557 and the iodine value measurement method specified in JIS K 0070. It is also possible to directly measure the terminal group concentration by titration analysis based on the molecular weight obtained by considering the structure of the polymer (the degree of branching determined by the polymerization initiator used). The terminal group-equivalent molecular weight of the polymer (A) is obtained by preparing a calibration curve of the number average molecular weight (Mn) obtained by general GPC measurement of the polymer precursor and the above-mentioned terminal group-equivalent molecular weight, and obtaining a hydrolyzable silyl group-containing It is also possible to convert the number-average molecular weight (Mn) of the polymer obtained by GPC into a terminal group-equivalent molecular weight.
 <加水分解性シリル基含有ポリオキシアルキレン系重合体(A1)>
 加水分解性シリル基含有ポリオキシアルキレン系重合体(A1)は、加水分解性シリル基含有ポリマーにおいて、当該ポリマー部分(「主鎖」とも称する。)がポリオキシアルキレンである化合物である。加水分解性シリル基含有ポリオキシアルキレン系重合体(A1)は、当業者に知られた特定の条件下において、分子間でシロキサン結合を形成し架橋体を形成する。
<Hydrolyzable Silyl Group-Containing Polyoxyalkylene Polymer (A1)>
The hydrolyzable silyl group-containing polyoxyalkylene polymer (A1) is a hydrolyzable silyl group-containing polymer in which the polymer portion (also referred to as “main chain”) is polyoxyalkylene. The hydrolyzable silyl group-containing polyoxyalkylene polymer (A1) forms siloxane bonds between molecules to form a crosslinked product under specific conditions known to those skilled in the art.
 本発明の一実施形態において、(A1)成分の数平均分子量(Mn)の下限は、500以上が好ましく、1,500以上がより好ましく、5,000以上がさらに好ましく、10,000以上が最も好ましい。(A1)成分の数平均分子量の上限は、100,000以下が好ましく、50,000以下がより好ましく、40,000以下がさらに好ましい。数平均分子量が上記の範囲であれば、作業性等取り扱いの容易さと接着性の点から好ましい。 In one embodiment of the present invention, the lower limit of the number average molecular weight (Mn) of the component (A1) is preferably 500 or more, more preferably 1,500 or more, even more preferably 5,000 or more, most preferably 10,000 or more. preferable. The upper limit of the number average molecular weight of component (A1) is preferably 100,000 or less, more preferably 50,000 or less, and even more preferably 40,000 or less. If the number average molecular weight is within the above range, it is preferable from the viewpoint of ease of handling such as workability and adhesiveness.
 本発明の一実施形態において、(A1)成分の重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn;分子量分布)は、1.6以下が好ましく、1.5以下がより好ましく、1.4以下がさらに好ましく、1.3以下が特に好ましく、1.2以下が特に好ましい。分子量分布が上記の範囲であれば、作業性等取り扱いの容易さと接着性の点から好ましい。 In one embodiment of the present invention, the ratio (Mw/Mn; molecular weight distribution) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) of the component (A1) is preferably 1.6 or less, and 1.5 or less. is more preferable, 1.4 or less is more preferable, 1.3 or less is particularly preferable, and 1.2 or less is particularly preferable. If the molecular weight distribution is within the above range, it is preferable from the viewpoint of ease of handling such as workability and adhesiveness.
 [加水分解性シリル基]
 (A1)成分に含まれている加水分解性シリル基の構造は、特に限定されない。本技術分野において通常に用いられる加水分解性シリル基を使用してよい。
[Hydrolyzable silyl group]
The structure of the hydrolyzable silyl group contained in component (A1) is not particularly limited. Hydrolyzable silyl groups commonly used in this technical field may be used.
 一実施形態において、(A1)成分の加水分解性シリル基は、下記一般式(1)により表される。1個のポリマー分子中に、一般式(1)で表される2種類以上の加水分解性シリル基が含まれていてもよい。
-Si(R3-a(X)  (1)
 式中、Rは、炭素原子数1~20の置換または非置換の炭化水素基を表す(置換されている場合には、ヘテロ原子含有基で置換されていてもよい)。1個の加水分解性シリル基の中にRが2個以上存在するとき、当該Rの構造は、同一であってもよく、異なっていてもよい。Rの例としては、炭素数1~20のアルキル基、炭素数6~20のアリール基、炭素数7~20のアラルキル基が挙げられる。
In one embodiment, the hydrolyzable silyl group of component (A1) is represented by the following general formula (1). Two or more types of hydrolyzable silyl groups represented by general formula (1) may be contained in one polymer molecule.
—Si(R 1 ) 3-a (X) a (1)
In the formula, R 1 represents a substituted or unsubstituted hydrocarbon group having 1 to 20 carbon atoms (if substituted, it may be substituted with a heteroatom-containing group). When two or more R 1 are present in one hydrolyzable silyl group, the structures of the R 1 may be the same or different. Examples of R 1 include alkyl groups having 1 to 20 carbon atoms, aryl groups having 6 to 20 carbon atoms, and aralkyl groups having 7 to 20 carbon atoms.
 Xは、水酸基または加水分解性基を表す。加水分解性基の例としては、例えば、水酸基、ハロゲン、アルコキシ基、アシルオキシ基、ケトキシメート基、アミノ基、アミド基、酸アミド基、アミノオキシ基、メルカプト基、アルケニルオキシ基等が挙げられる。これらの中では、加水分解性が穏やかで取扱いやすいことから、メトキシ基、エトキシ基等のアルコキシ基がより好ましく、メトキシ基、エトキシ基がさらに好ましく、メトキシ基が特に好ましい。  X represents a hydroxyl group or a hydrolyzable group. Examples of hydrolyzable groups include hydroxyl groups, halogens, alkoxy groups, acyloxy groups, ketoximate groups, amino groups, amide groups, acid amide groups, aminooxy groups, mercapto groups, alkenyloxy groups, and the like. Among these, alkoxy groups such as methoxy group and ethoxy group are more preferred, methoxy group and ethoxy group are more preferred, and methoxy group is particularly preferred, since they are moderately hydrolyzable and easy to handle.
 aは、1、2または3である。aとしては、縮合により網目構造を形成して硬化物が得られる2または3が好ましい。 a is 1, 2 or 3; As a, 2 or 3 is preferable because a network structure is formed by condensation to obtain a cured product.
 一般に、アルコキシ基は、炭素数が少ない方が反応性は高い。すなわち、メトキシ基、エトキシ基、プロポキシ基の順に、反応性が低くなる。この性質を利用して、(A1)成分の製造方法や用途に応じて、具体的な加水分解性シリル基の構造を適宜決定できる。 In general, alkoxy groups with fewer carbon atoms have higher reactivity. That is, the reactivity decreases in the order of methoxy group, ethoxy group, and propoxy group. Using this property, the specific structure of the hydrolyzable silyl group can be appropriately determined depending on the production method and application of the component (A1).
 加水分解性シリル基の具体例としては、トリメトキシシリル基、トリエトキシシリル基、トリイソプロポキシシリル基、ジメトキシメチルシリル基、ジエトキシメチルシリル基、ジイソプロポキシメチルシリル基、(クロロメチル)ジメトキシシリル基、(メトキシメチル)ジメトキシシリル基が挙げられる。 Specific examples of hydrolyzable silyl groups include trimethoxysilyl, triethoxysilyl, triisopropoxysilyl, dimethoxymethylsilyl, diethoxymethylsilyl, diisopropoxymethylsilyl, (chloromethyl)dimethoxy A silyl group and a (methoxymethyl)dimethoxysilyl group can be mentioned.
 得られる硬化物の物性や、原料となる化合物の入手および取扱いの容易さを考慮すると、加水分解性シリル基は、ジアルコキシシリル基またはトリアルコキシシリル基であることが好ましい。また、硬化性組成物およびその硬化時の形状維持性に優れる点を考慮すると、ジアルコキシシリル基が好ましく、架橋反応速度が速い点を考慮すると、トリアルコキシシリル基が好ましい。 The hydrolyzable silyl group is preferably a dialkoxysilyl group or a trialkoxysilyl group in consideration of the physical properties of the resulting cured product and the availability and ease of handling of the raw material compound. Further, in consideration of the curable composition and its excellent shape retention property during curing, a dialkoxysilyl group is preferable, and in consideration of a high cross-linking reaction rate, a trialkoxysilyl group is preferable.
 ポリマー分子1個に含まれる加水分解性シリル基の数の下限は、0.5個以上が好ましく、1.0個以上がより好ましく、1.5個以上がさらに好ましい。ポリマー分子1個に含まれる加水分解性シリル基の数の上限は、5.0個以下が好ましく、4.0個以下がより好ましい。加水分解性シリル基の数が上記の範囲であれば、シリル基の縮合反応によって得られる硬化物に充分な柔軟性を与えられる。 The lower limit of the number of hydrolyzable silyl groups contained in one polymer molecule is preferably 0.5 or more, more preferably 1.0 or more, and even more preferably 1.5 or more. The upper limit of the number of hydrolyzable silyl groups contained in one polymer molecule is preferably 5.0 or less, more preferably 4.0 or less. If the number of hydrolyzable silyl groups is within the above range, sufficient flexibility can be imparted to the cured product obtained by the condensation reaction of the silyl groups.
 加水分解性シリル基の分布は、ランダム状であってもよいし、ブロック状であってもよい。加水分解性シリル基の分布位置は、ポリマー分子のどこであってもよい。好ましくは、加水分解性シリル基の分布位置は、ポリマー分子の末端または末端近傍が分布位置に含まれている。より好ましくは、加水分解性シリル基の分布位置は、ポリマー分子の末端または末端近傍に局在している。本発明の一実施形態において、「ポリマー分子の末端近傍」とは、ポリマー分子の各末端からポリマー分子中の特定の位置までの領域を表しており、当該領域の重量は、ポリマー分子の全重量の20重量%以下、15重量%以下または10重量%以下を占める。本発明の一実施形態において、「ポリマー分子の末端または末端近傍に局在している」とは、ポリマー分子に含まれている加水分解性シリル基のうち、末端または末端近傍に位置しているものの個数が、70%以上、80%以上または90%以上を占めることを表す。 The distribution of hydrolyzable silyl groups may be random or block-shaped. The distribution position of the hydrolyzable silyl group may be anywhere in the polymer molecule. Preferably, the distribution position of the hydrolyzable silyl group includes the terminal or the vicinity of the terminal of the polymer molecule. More preferably, the distribution position of the hydrolyzable silyl group is localized at or near the terminal of the polymer molecule. In one embodiment of the present invention, "near the ends of the polymer molecule" refers to the region from each end of the polymer molecule to a specific position in the polymer molecule, and the weight of the region is the total weight of the polymer molecule. 20% by weight or less, 15% by weight or less, or 10% by weight or less of the In one embodiment of the present invention, the term "localized at or near the terminal of the polymer molecule" refers to the hydrolyzable silyl groups contained in the polymer molecule that are located at or near the terminal. It means that the number of things accounts for 70% or more, 80% or more, or 90% or more.
 ポリオキシアルキレン系重合体に加水分解性シリル基を導入する方法は、公知の方法を採用してよい。 A known method may be employed for introducing a hydrolyzable silyl group into the polyoxyalkylene polymer.
 [ポリオキシアルキレン]
 (A1)成分中のポリオキシアルキレン構造は、直鎖状であってもよいし、分枝状であってもよい。好ましくは、ポリオキシアルキレン構造は、ポリオキシプロピレンジオールまたはポリオキシプロピレントリオールに由来する構造である。
[Polyoxyalkylene]
The polyoxyalkylene structure in component (A1) may be linear or branched. Preferably, the polyoxyalkylene structure is a structure derived from polyoxypropylenediol or polyoxypropylenetriol.
 ポリオキシアルキレン系重合体分子は、1種類の繰り返し単位のみで構成されていてもよいし、2種類以上の繰り返し単位を含んでいてもよい。1種類のポリオキシアルキレン系重合体を配合してもよいし、2種類以上のポリオキシアルキレン系重合体を配合してもよい。 The polyoxyalkylene polymer molecule may be composed of only one type of repeating unit, or may contain two or more types of repeating units. One type of polyoxyalkylene-based polymer may be blended, or two or more types of polyoxyalkylene-based polymer may be blended.
 ポリオキシアルキレン系重合体の主鎖構造の例としては、下記一般式(2)で表される繰り返し単位を有する構造が挙げられる。式中、Rは2価のアルキレン基である。
-R-O-  (2)
 一般式(2)で表される構造は、(A1)成分中のポリオキシアルキレン系重合体の全重量の50重量%以上を占めることが好ましく、70重量%以上を占めることがより好ましく、90重量%以上を占めることがさらに好ましい。
Examples of the main chain structure of the polyoxyalkylene polymer include structures having repeating units represented by the following general formula (2). In the formula, R2 is a divalent alkylene group.
-R 2 -O- (2)
The structure represented by the general formula (2) preferably accounts for 50% by weight or more, more preferably 70% by weight or more, of the total weight of the polyoxyalkylene polymer in the component (A1). It is more preferable to account for more than % by weight.
 一般式(2)中に含まれているRの具体的な構造は、特に限定されない。Rは、炭素数1~14のアルキレン基であることが好ましく、炭素数2~4の直鎖状または分岐状のアルキレン基であることがより好ましい。 The specific structure of R 2 contained in general formula (2) is not particularly limited. R 2 is preferably an alkylene group having 1 to 14 carbon atoms, more preferably a linear or branched alkylene group having 2 to 4 carbon atoms.
 一般式(2)で表される繰り返し単位の具体例としては、-CHO-、-CHCHO-、-CHCH(CH)O-、-CHCH(C)O-、-CHC(CHO-、-CHCHCHCHO-が挙げられる。この中でも、-CHCH(CH)O-が好ましい。-CHCH(CH)O-を繰り返し単位に含むポリオキシアルキレン系重合体は、ガラス転移温度(Tg)を0℃以下に調節しやすい。 Specific examples of the repeating unit represented by formula (2) include -CH 2 O-, -CH 2 CH 2 O-, -CH 2 CH(CH 3 )O-, -CH 2 CH(C 2 H 5 ) O—, —CH 2 C(CH 3 ) 2 O—, —CH 2 CH 2 CH 2 CH 2 O—. Among these, -CH 2 CH(CH 3 )O- is preferred. A polyoxyalkylene polymer containing —CH 2 CH(CH 3 )O— in a repeating unit can easily adjust the glass transition temperature (Tg) to 0° C. or lower.
 ポリオキシアルキレン系重合体は、主鎖の構造中にウレタン結合またはウレア結合を含んでいてもよい。 The polyoxyalkylene polymer may contain a urethane bond or a urea bond in the main chain structure.
 ポリオキシアルキレン系重合体としては、市販品を用いることもできる。市販品の例としては、カネカMSポリマー(登録商標)S810、S257、S327、S203H、S303H(いずれも株式会社カネカ製);サイリル(登録商標)SAX220、SAT350、SAT400、SAX510,SAX520、SAX580、SAX590、SAX750(いずれも株式会社カネカ製);エクセスター(登録商標)ES-S2410、ES-S2420、ES-S3630(いずれもAGC株式会社製);GENIOSIL(登録商標)STP-E10、STP-E15、STP-E-30、STP-E-35(いずれもWacker製)が挙げられる。 A commercially available product can also be used as the polyoxyalkylene polymer. Examples of commercially available products include Kaneka MS Polymer (registered trademark) S810, S257, S327, S203H, and S303H (all manufactured by Kaneka Corporation); , SAX750 (all manufactured by Kaneka Corporation); Exester (registered trademark) ES-S2410, ES-S2420, ES-S3630 (all manufactured by AGC Corporation); GENIOSIL (registered trademark) STP-E10, STP-E15, Examples include STP-E-30 and STP-E-35 (both manufactured by Wacker).
 (ポリオキシアルキレン系重合体の製造方法)
 加水分解性シリル基含有ポリオキシアルキレン系重合体(A1)の製造方法としては、以下の(I)~(III)の方法を用いることができる。本発明の効果が得られる水酸化アルミニウムの含有量の範囲を広く取れることから、(I)の方法を用いた製造方法が好ましい。
(Method for producing polyoxyalkylene polymer)
As a method for producing the hydrolyzable silyl group-containing polyoxyalkylene polymer (A1), the following methods (I) to (III) can be used. The production method using the method (I) is preferable because a wide range of aluminum hydroxide content can be obtained in which the effects of the present invention can be obtained.
 (I)複合金属シアン化物錯体触媒を用い、水酸基を有する開始剤にエポキシ化合物を重合させる方法によって水酸基末端ポリオキシアルキレン系重合体を得た後、得られた水酸基末端ポリオキシアルキレン系重合体の水酸基を、炭素-炭素不飽和基に変換し、その後、シラン化合物をヒドロシリル化反応により付加させる方法。 (I) Using a double metal cyanide complex catalyst, after obtaining a hydroxyl group-terminated polyoxyalkylene polymer by a method of polymerizing an epoxy compound with an initiator having a hydroxyl group, the resulting hydroxyl group-terminated polyoxyalkylene polymer A method in which a hydroxyl group is converted to a carbon-carbon unsaturated group and then a silane compound is added by a hydrosilylation reaction.
 (II)複合金属シアン化物錯体触媒を用い、水酸基を有する開始剤にエポキシ化合物を重合させる方法によって水酸基末端ポリオキシアルキレン系重合体を得た後、得られた水酸基末端ポリオキシアルキレン系重合体と、水酸基と反応する基および加水分解性シリル基の両方を有する化合物とを反応させる方法。 (II) After obtaining a hydroxyl group-terminated polyoxyalkylene polymer by a method of polymerizing an epoxy compound with an initiator having a hydroxyl group using a double metal cyanide complex catalyst, the obtained hydroxyl group-terminated polyoxyalkylene polymer and , a method of reacting a compound having both a hydroxyl group-reactive group and a hydrolyzable silyl group.
 (III)水酸基末端ポリオキシアルキレン系重合体と過剰のポリイソシアネート化合物を反応させて、末端にイソシアネート基を有する重合体とした後、イソシアネート基と反応する基および加水分解性シリル基の両方を有する化合物を反応させる方法。 (III) A hydroxyl group-terminated polyoxyalkylene polymer and an excess polyisocyanate compound are reacted to form a polymer having an isocyanate group at the end, and then having both a group reactive with the isocyanate group and a hydrolyzable silyl group. A method of reacting compounds.
 (I)、(II)の方法で用いる水酸基を有する開始剤としては、エチレングリコール、プロピレングリコール、グリセリン、ペンタエリスリトール、低分子量のポリプロピレングリコール、ポリオキシプロピレントリオール、アリルアルコール、メタノール、エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、ポリプロピレンモノアリルエーテル、ポリプロピレンモノアルキルエーテル等の水酸基を1個以上有するものが挙げられる。 Examples of hydroxyl-containing initiators used in methods (I) and (II) include ethylene glycol, propylene glycol, glycerin, pentaerythritol, low molecular weight polypropylene glycol, polyoxypropylene triol, allyl alcohol, methanol, ethanol, propanol, Examples include those having one or more hydroxyl groups, such as butanol, pentanol, hexanol, polypropylene monoallyl ether, and polypropylene monoalkyl ether.
 (I)、(II)の方法で用いるエポキシ化合物としては、エチレンオキサイド、プロピレンオキサイド、等のアルキレンオキサイド類、メチルグリシジルエーテル、アリルグリシジルエーテル、等のグリシジルエーテル類、等が挙げられる。このなかでもプロピレンオキサイドが好ましい。 Epoxy compounds used in methods (I) and (II) include alkylene oxides such as ethylene oxide and propylene oxide, and glycidyl ethers such as methyl glycidyl ether and allyl glycidyl ether. Among these, propylene oxide is preferred.
 (I)の方法で用いる炭素-炭素不飽和基としては、ビニル基、アリル基、メタリル基、プロパルギル基等が挙げられる。このなかでもアリル基が好ましい。 Examples of the carbon-carbon unsaturated group used in method (I) include a vinyl group, an allyl group, a methallyl group, a propargyl group, and the like. Among these, an allyl group is preferred.
 (I)の水酸基を炭素-炭素不飽和基に変換する方法としては、水酸基末端含有重合体に、アルカリ金属塩を作用させた後、炭素-炭素不飽和結合を有するハロゲン化炭化水素化合物を反応させる方法を用いるのが好ましい。 As a method for converting the hydroxyl group of (I) to a carbon-carbon unsaturated group, a hydroxyl-terminated polymer is reacted with an alkali metal salt, and then a halogenated hydrocarbon compound having a carbon-carbon unsaturated bond is reacted. It is preferable to use the method of
 (I)の方法で用いるハロゲン化炭化水素化合物としては、塩化ビニル、塩化アリル、塩化メタリル、塩化プロバルギル、臭化ビニル、臭化アリル、臭化メタリル、臭化プロバルギル、ヨウ化ビニル、ヨウ化アリル、ヨウ化メタリル、ヨウ化プロバルギル等が挙げられる。 Halogenated hydrocarbon compounds used in method (I) include vinyl chloride, allyl chloride, methallyl chloride, propargyl chloride, vinyl bromide, allyl bromide, methallyl bromide, propargyl bromide, vinyl iodide, and allyl iodide. , methallyl iodide, propargyl iodide and the like.
 (I)の方法で用いるヒドロシラン化合物としては、トリメトキシシラン、トリエトキシシラン、トリス(2-プロペニルオキシ)シラン、トリアセトキシシラン、ジメトキシメチルシラン、(クロロメチル)ジメトキシシラン、(メトキシメチル)ジメトキシシラン、(N,N-ジエチルアミノメチル)ジメトキシシラン、等が使用可能である。 Hydrosilane compounds used in method (I) include trimethoxysilane, triethoxysilane, tris(2-propenyloxy)silane, triacetoxysilane, dimethoxymethylsilane, (chloromethyl)dimethoxysilane, and (methoxymethyl)dimethoxysilane. , (N,N-diethylaminomethyl)dimethoxysilane, and the like can be used.
 (I)の方法で用いるヒドロシリル化反応は、各種触媒によって加速される。ヒドロシリル化触媒としては、公知の触媒を用いればよい。例えば、アルミナ、シリカ、カーボンブラック等の担体に白金を担持させたもの、塩化白金酸;塩化白金酸とアルコールやアルデヒドやケトン等とからなる塩化白金酸錯体;白金-オレフィン錯体[例えばPt(CH=CH(PPh)、Pt(CH=CHCl];白金-ビニルシロキサン錯体[Pt{(vinyl)MeSiOSiMe(vinyl)}、Pt{Me(vinyl)SiO}];白金-ホスフィン錯体[Ph(PPh、Pt(PBu];白金-ホスファイト錯体[Pt{P(OPh)]等を用いることができる。 The hydrosilylation reaction used in method (I) is accelerated by various catalysts. A known catalyst may be used as the hydrosilylation catalyst. For example, platinum supported on a carrier such as alumina, silica, carbon black, chloroplatinic acid; chloroplatinic acid complexes composed of chloroplatinic acid and alcohols, aldehydes, ketones, etc.; platinum-olefin complexes [for example, Pt(CH 2 =CH 2 ) 2 (PPh 3 ), Pt(CH 2 =CH 2 ) 2 Cl 2 ]; platinum-vinyl siloxane complex [Pt {(vinyl)Me 2 SiOSiMe 2 (vinyl)}, Pt {Me(vinyl) SiO} 4 ]; platinum-phosphine complex [Ph(PPh 3 ) 4 , Pt(PBu 3 ) 4 ]; platinum-phosphite complex [Pt{P(OPh) 3 } 4 ], etc. can be used.
 (II)の方法で使用できる水酸基と反応する基および加水分解性シリル基の両方を有する化合物としては、例えば3-イソシアネートプロピルトリメトキシシラン、3-イソシアネートプロピルジメトキシメチルシラン、3-イソシアネートプロピルトリエトキシシラン、イソシアネートメチルトリメトキシシラン、イソシアネートメチルトリエトキシシラン、イソシアネートメチルジメトキシメチルシラン等のイソシアネートシラン類;3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルジメトキシメチルシラン、3-メルカプトプロピルトリエトキシシラン等のメルカプトシラン類;3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルジメトキシメチルシラン、3-グリシドキシプロピルトリエトキシシラン等のエポキシシラン類等が使用可能である。 Examples of compounds having both a hydroxyl group-reactive group and a hydrolyzable silyl group that can be used in method (II) include 3-isocyanatopropyltrimethoxysilane, 3-isocyanatopropyldimethoxymethylsilane, 3-isocyanatopropyltriethoxy isocyanate silanes such as silane, isocyanatomethyltrimethoxysilane, isocyanatomethyltriethoxysilane, isocyanatomethyldimethoxymethylsilane; 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyldimethoxymethylsilane, 3-mercaptopropyltriethoxysilane and the like Mercaptosilanes; epoxysilanes such as 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyldimethoxymethylsilane, 3-glycidoxypropyltriethoxysilane, and the like can be used.
 (III)の方法で使用できるポリイソシアネート化合物としては、トルエン(トリレン)ジイソシアネート、ジフェニルメタンジイソシアネート、キシリレンジイソシアネート等の芳香族系ポリイソシアネート;イソフォロンジイソシアネート、ヘキサメチレンジイソシアネート等の脂肪族系ポリイソシアネート等を挙げることができる。 Polyisocyanate compounds that can be used in the method (III) include aromatic polyisocyanates such as toluene (tolylene) diisocyanate, diphenylmethane diisocyanate and xylylene diisocyanate; aliphatic polyisocyanates such as isophorone diisocyanate and hexamethylene diisocyanate. can be mentioned.
 (III)の方法で使用できるイソシアネート基と反応する基および加水分解性シリル基の両方を有する化合物としては、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルジメトキシメチルシラン、γ-アミノプロピルトリエトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルジメトキシメチルシラン、N-(β-アミノエチル)-γ-アミノプロピルトリエトキシシラン、γ-(N-フェニル)アミノプロピルトリメトキシシラン、γ-(N-フェニル)アミノプロピルジメトキシメチルシラン、N-エチルアミノイソブチルトリメトキシシラン、N-エチルアミノイソブチルジメトキシメチルシラン、N-シクロヘキシルアミノメチルトリメトキシシラン、N-シクロヘキシルアミノメチルジメトキシメチルシラン、等のアミノ基含有シラン類;γ-ヒドロキシプロピルトリメトキシシラン、γ-ヒドロキシプロピルジメトキシメチルシラン等のヒドロキシ基含有シラン類;γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルジメトキシメチルシラン等のメルカプト基含有シラン類;等が挙げられる。 Compounds having both an isocyanate group-reactive group and a hydrolyzable silyl group that can be used in method (III) include γ-aminopropyltrimethoxysilane, γ-aminopropyldimethoxymethylsilane, γ-aminopropyltriethoxy Silane, N-(β-aminoethyl)-γ-aminopropyltrimethoxysilane, N-(β-aminoethyl)-γ-aminopropyldimethoxymethylsilane, N-(β-aminoethyl)-γ-aminopropyltrimethoxysilane Ethoxysilane, γ-(N-phenyl)aminopropyltrimethoxysilane, γ-(N-phenyl)aminopropyldimethoxymethylsilane, N-ethylaminoisobutyltrimethoxysilane, N-ethylaminoisobutyldimethoxymethylsilane, N-cyclohexyl amino group-containing silanes such as aminomethyltrimethoxysilane and N-cyclohexylaminomethyldimethoxymethylsilane; hydroxy group-containing silanes such as γ-hydroxypropyltrimethoxysilane and γ-hydroxypropyldimethoxymethylsilane; γ-mercaptopropyl mercapto group-containing silanes such as trimethoxysilane and γ-mercaptopropyldimethoxymethylsilane;
 また、加水分解性シリル基含有ポリオキシアルキレン系重合体(A1)として1つの末端に複数の加水分解性シリル基を有するポリオキシアルキレン系重合体も使用することができる。1つの末端に複数の加水分解性シリル基を有するポリオキシアルキレン系重合体の合成方法としては、例えば、(i)複合金属シアン化物錯体触媒を用い、水酸基を有する開始剤にエポキシ化合物を重合させる方法によって水酸基末端ポリオキシアルキレン系重合体を得る、(ii)得られた水酸基末端ポリオキシアルキレン系重合体の水酸基にアルカリ金属塩を作用させた後、アリルグリシジルエーテルを反応させ、さらに生成した水酸基末端に、アルカリ金属塩を作用させた後、炭素-炭素不飽和結合を有するハロゲン化炭化水素化合物を反応させ、1つの末端に複数の炭素-炭素不飽和基を有するポリオキシアルキレン系重合体を得る、(iii)得られた1つの末端に複数の炭素-炭素不飽和基を有するポリオキシアルキレン系重合体にヒドロシリル化反応によりシラン化合物を付加させる、または、(i)の工程の途中もしくは後に、(iv)加水分解性シリル基を有するエポキシ化合物を反応させる方法等が挙げられる。 A polyoxyalkylene polymer having a plurality of hydrolyzable silyl groups at one end can also be used as the hydrolyzable silyl group-containing polyoxyalkylene polymer (A1). As a method for synthesizing a polyoxyalkylene polymer having a plurality of hydrolyzable silyl groups at one end, for example, (i) using a double metal cyanide complex catalyst, an epoxy compound is polymerized with an initiator having a hydroxyl group. (ii) reacting the hydroxyl groups of the resulting hydroxyl group-terminated polyoxyalkylene polymer with an alkali metal salt, reacting with allyl glycidyl ether, and further generating hydroxyl groups; After reacting the end with an alkali metal salt, a halogenated hydrocarbon compound having a carbon-carbon unsaturated bond is reacted to obtain a polyoxyalkylene polymer having a plurality of carbon-carbon unsaturated groups at one end. (iii) adding a silane compound to the obtained polyoxyalkylene polymer having a plurality of carbon-carbon unsaturated groups at one end by a hydrosilylation reaction, or during or after the step (i) and (iv) a method of reacting an epoxy compound having a hydrolyzable silyl group.
 <加水分解性シリル基含有(メタ)アクリル酸エステル系共重合体(A2)>
 加水分解性シリル基含有(メタ)アクリル酸エステル系共重合体(A2)は、加水分解性シリル基含有ポリマーにおいて、前記ポリマー部分が(メタ)アクリル酸エステル系共重合体である化合物である。加水分解性シリル基含有(メタ)アクリル酸エステル系共重合体(A2)は、当業者に知られた特定の条件下において、分子間でシロキサン結合を形成し架橋体を形成する。
<Hydrolyzable silyl group-containing (meth)acrylate copolymer (A2)>
The hydrolyzable silyl group-containing (meth)acrylate copolymer (A2) is a hydrolyzable silyl group-containing polymer in which the polymer portion is a (meth)acrylate copolymer. Under specific conditions known to those skilled in the art, the hydrolyzable silyl group-containing (meth)acrylic acid ester copolymer (A2) forms siloxane bonds between molecules to form a crosslinked product.
 本発明の一実施形態において、(A2)成分の数平均分子量(Mn)の下限は、500以上が好ましく、1,500以上がより好ましく、5,000以上がさらに好ましく、10,000以上が最も好ましい。(A2)成分の数平均分子量の上限は、100,000以下が好ましく、50,000以下がより好ましく、45,000以下がさらに好ましい。数平均分子量が上記の範囲であれば、作業性等取り扱いの容易さと接着性の点から好ましい。 In one embodiment of the present invention, the lower limit of the number average molecular weight (Mn) of component (A2) is preferably 500 or more, more preferably 1,500 or more, even more preferably 5,000 or more, most preferably 10,000 or more. preferable. The upper limit of the number average molecular weight of component (A2) is preferably 100,000 or less, more preferably 50,000 or less, and even more preferably 45,000 or less. If the number average molecular weight is within the above range, it is preferable from the viewpoint of ease of handling such as workability and adhesiveness.
 本発明の一実施形態において、(A2)成分の重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn;分子量分布)は、1.6以下が好ましく、1.5以下がより好ましく、1.4以下がさらに好ましく、1.3以下が特に好ましく、1.2以下が特に好ましい。分子量分布が上記の範囲であれば、作業性等取り扱いの容易さと接着性の点から好ましい。 In one embodiment of the present invention, the ratio (Mw/Mn; molecular weight distribution) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) of the component (A2) is preferably 1.6 or less, and 1.5 or less. is more preferable, 1.4 or less is more preferable, 1.3 or less is particularly preferable, and 1.2 or less is particularly preferable. If the molecular weight distribution is within the above range, it is preferable from the viewpoint of ease of handling such as workability and adhesiveness.
 [加水分解性シリル基]
 加水分解性シリル基含有(メタ)アクリル酸エステル系共重合体(A2)中の加水分解性シリル基は、上記<加水分解性シリル基含有ポリオキシアルキレン系重合体(A1)>の[加水分解性シリル基]の項の記載内容が援用される。
[Hydrolyzable silyl group]
The hydrolyzable silyl group in the hydrolyzable silyl group-containing (meth)acrylic acid ester copolymer (A2) is the hydrolyzable sexual silyl group] section is incorporated.
 [(メタ)アクリル酸エステル]
 (メタ)アクリル酸エステルは、(メタ)アクリル系モノマーに由来する構成単位を含む。本明細書において、「(メタ)アクリル」とは、アクリルおよび/またはメタアクリルのことを表す。
[(Meth) acrylic acid ester]
(Meth)acrylic acid esters contain structural units derived from (meth)acrylic monomers. As used herein, "(meth)acryl" means acryl and/or methacryl.
 (A2)成分中の(メタ)アクリル酸エステル構造は、直鎖状であってもよいし、分枝状であってもよい。 The (meth)acrylate structure in component (A2) may be linear or branched.
 (メタ)アクリル酸エステル分子は、1種類の繰り返し単位のみで構成されていてもよいし、2種類以上の繰り返し単位を含んでいてもよい。1種類の(メタ)アクリル酸エステルを配合してもよいし、2種類以上の(メタ)アクリル酸エステルを配合してもよい。 The (meth)acrylic acid ester molecule may consist of only one type of repeating unit, or may contain two or more types of repeating units. One type of (meth)acrylic acid ester may be blended, or two or more types of (meth)acrylic acid ester may be blended.
 (メタ)アクリル酸エステル構造の例としては、下記一般式(3)で表される構造が挙げられる。式中、Rは水素原子またはメチル基であり、Rは炭素数が1個以上の基である。Rの炭素数は、例えば、1~22個でありうる。Rは、アルキル基、シクロアルキル基またはアリール基でありうる。Rは、ハロゲン、ヒドロキシ基、アルコキシ基、アミノ基等で置換されていてもよい。
-CH(R)-CH(COOR)-  (3)
 一般式(3)で表される構造は、(メタ)アクリル系モノマーの重合によって得られる。(メタ)アクリル系モノマーの具体例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸n-ペンチル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸n-ヘプチル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸オクチル、(メタ)アクリル酸2-メトキシエチル、(メタ)アクリル酸3-メトキシブチル、(メタ)アクリル酸2-エトキシエチル、(メタ)アクリル酸2-ブトキシエチル、(メタ)アクリル酸イソプロポキシエチル、(メタ)アクリル酸フェニル、(メタ)アクリル酸トルイル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸2,2,2-トリフルオロエチル、(メタ)アクリル酸グリシジル、(メタ)アクリル酸1-エチルシクロペンチルエーテル、(メタ)アクリル酸ジメチルアミノエチル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ウンデシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸トリデシル、(メタ)アクリル酸テトラデシル、(メタ)アクリル酸ペンタデシル、(メタ)アクリル酸ヘキサデシル、(メタ)アクリル酸ヘプタデシル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸イコシル、(メタ)アクリル酸ドコシル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸オレイル、(メタ)アクリル酸リノレイル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸2-アミノエチル、γ-(メタクリロイルオキシプロピル)トリメトキシシラン、(メタ)アクリル酸のエチレンオキサイド付加物、(メタ)アクリル酸トリフルオロメチルメチル、(メタ)アクリル酸2-トリフルオロメチルエチル、(メタ)アクリル酸2-パーフルオロエチルエチル、(メタ)アクリル酸2-パーフルオロエチル-2-パーフルオロブチルエチル、(メタ)アクリル酸2-パーフルオロエチル、(メタ)アクリル酸パーフルオロメチル、(メタ)アクリル酸ジパーフルオロメチルメチル、(メタ)アクリル酸2-パーフルオロメチル-2-パーフルオロエチルメチル、(メタ)アクリル酸2-パーフルオロヘキシルエチル、(メタ)アクリル酸2-パーフルオロデシルエチル、(メタ)アクリル酸2-パーフルオロヘキサデシルエチルが挙げられる。
Examples of the (meth)acrylic acid ester structure include structures represented by the following general formula (3). In the formula, R3 is a hydrogen atom or a methyl group, and R4 is a group having 1 or more carbon atoms. The carbon number of R 4 can be, for example, 1-22. R4 can be an alkyl group, a cycloalkyl group or an aryl group. R4 may be substituted with halogen, hydroxy group, alkoxy group, amino group and the like.
—CH(R 3 )—CH(COOR 4 )— (3)
The structure represented by general formula (3) is obtained by polymerizing a (meth)acrylic monomer. Specific examples of (meth)acrylic monomers include methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, and n-butyl (meth)acrylate. , isobutyl (meth)acrylate, t-butyl (meth)acrylate, n-pentyl (meth)acrylate, n-hexyl (meth)acrylate, cyclohexyl (meth)acrylate, n-heptyl (meth)acrylate , n-octyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, octyl (meth)acrylate, 2-methoxyethyl (meth)acrylate, 3-methoxybutyl (meth)acrylate, (meth)acrylic 2-Ethoxyethyl Acid, 2-Butoxyethyl (Meth)acrylate, Isopropoxyethyl (Meth)acrylate, Phenyl (Meth)acrylate, Toluyl (Meth)acrylate, Benzyl (Meth)acrylate, (Meth)Acrylic 2-hydroxyethyl acid, 2-hydroxypropyl (meth)acrylate, 2,2,2-trifluoroethyl (meth)acrylate, glycidyl (meth)acrylate, 1-ethylcyclopentyl ether (meth)acrylate, ( meth)dimethylaminoethyl acrylate, nonyl (meth)acrylate, decyl (meth)acrylate, undecyl (meth)acrylate, dodecyl (meth)acrylate, tridecyl (meth)acrylate, tetradecyl (meth)acrylate, Pentadecyl (meth) acrylate, hexadecyl (meth) acrylate, heptadecyl (meth) acrylate, stearyl (meth) acrylate, icosyl (meth) acrylate, docosyl (meth) acrylate, lauryl (meth) acrylate, ( Meth) stearyl acrylate, oleyl (meth) acrylate, linoleyl (meth) acrylate, isobornyl (meth) acrylate, 2-aminoethyl (meth) acrylate, γ-(methacryloyloxypropyl) trimethoxysilane, (meth) ) Ethylene oxide adducts of acrylic acid, trifluoromethylmethyl (meth)acrylate, 2-trifluoromethylethyl (meth)acrylate, 2-perfluoroethylethyl (meth)acrylate, 2- (meth)acrylate Perfluoroethyl-2-perfluorobutylethyl, 2-perfluoroethyl (meth)acrylate, perfluoromethyl (meth)acrylate, diperfluoromethylmethyl (meth)acrylate, 2-perfluoro(meth)acrylate fluoromethyl-2-perfluoroethylmethyl, 2-perfluorohexylethyl (meth)acrylate, 2-perfluorodecylethyl (meth)acrylate, and 2-perfluorohexadecylethyl (meth)acrylate.
 上述した(メタ)アクリル系モノマーの中では、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸n-ブチル、アクリル酸2-エチルヘキシルおよびメタアクリル酸2-エチルヘキシル、アクリル酸ステアリルから選択される1種類以上が好ましい。これらのモノマーから構成される主鎖構造は、ガラス転移温度(Tg)を0℃以下に調節しやすい。 Among the above (meth)acrylic monomers, one selected from ethyl acrylate, n-propyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, and stearyl acrylate The above is preferable. The main chain structure composed of these monomers facilitates adjusting the glass transition temperature (Tg) to 0° C. or lower.
 (メタ)アクリル酸エステルとしては、市販品を用いることもできる。市販品の例としては、XMAP(登録商標)SA100S、SA110S、SA120S、SA310S、SA410S(いずれも株式会社カネカ製);ARUFON(登録商標)US-6100、US-6110、US-6120、US-6130、US-6140、US-6150、US-6170、US-6180、US-6190(いずれも東亞合成株式会社製);アクトフローNE-1000(登録商標)(綜研化学株式会社製);Joncryl(登録商標)(BASF製)が挙げられる。 A commercially available product can also be used as the (meth)acrylic acid ester. Examples of commercially available products include XMAP (registered trademark) SA100S, SA110S, SA120S, SA310S, SA410S (all manufactured by Kaneka Corporation); ARUFON (registered trademark) US-6100, US-6110, US-6120, US-6130 , US-6140, US-6150, US-6170, US-6180, US-6190 (all manufactured by Toagosei Co., Ltd.); Actflow NE-1000 (registered trademark) (manufactured by Soken Chemical Co., Ltd.); Joncryl (registered trademark) (manufactured by BASF).
 本発明の一実施形態において、(メタ)アクリル酸エステルは、分子中にXYジブロック構造またはXYXトリブロック構造を含むことが好ましい。ここで、Xブロックとは、加水分解性シリル基の含有量が相対的に多いブロックである。Yブロックとは、加水分解性シリル基の含有量が相対的に少ないYブロックである。(メタ)アクリル酸エステルの分子全体の構造は、XYジブロック構造またはXYXトリブロック構造を含んでいれば特に限定されず、例えば、XYXYテトラブロック構造であってもよい。ここで、「XYXトリブロック構造」とは、当業者間で一般に言われている「ABAトリブロック構造」を意味する。 In one embodiment of the present invention, the (meth)acrylic acid ester preferably contains an XY diblock structure or an XYX triblock structure in the molecule. Here, the X block is a block having a relatively large content of hydrolyzable silyl groups. A Y block is a Y block having a relatively low content of hydrolyzable silyl groups. The structure of the entire molecule of the (meth)acrylic acid ester is not particularly limited as long as it contains an XY diblock structure or an XYX triblock structure, and may be, for example, an XYXY tetrablock structure. Here, the "XYX triblock structure" means the "ABA triblock structure" generally called by those skilled in the art.
 Xブロックに含まれる加水分解性シリル基含有モノマー由来の繰り返し単位は、平均で1.0個より多く、1.5個以上が好ましく、1.7個以上がより好ましい。また、Xブロックに含まれる加水分解性シリル基含有モノマー由来の繰り返し単位は、Xブロックに含まれる全ての繰り返し単位の重量を基準として、3重量%超が好ましく、4.5重量%以上がより好ましく、5重量%以上がさらに好ましい。 The number of repeating units derived from the hydrolyzable silyl group-containing monomer contained in the X block is more than 1.0 on average, preferably 1.5 or more, and more preferably 1.7 or more. In addition, the repeating unit derived from the hydrolyzable silyl group-containing monomer contained in the X block is preferably more than 3% by weight, more preferably 4.5% by weight or more, based on the weight of all repeating units contained in the X block. Preferably, 5% by weight or more is more preferable.
 本発明の一実施形態において、(メタ)アクリル酸エステルはXYXトリブロック重合体であり、(メタ)アクリル酸エステルの末端部分を構成するブロック(Xブロック)は、それぞれ、加水分解性シリル基を1個より多く有することが好ましい。 In one embodiment of the present invention, the (meth)acrylic acid ester is an XYX triblock polymer, and the blocks (X blocks) constituting the terminal portion of the (meth)acrylic acid ester each contain a hydrolyzable silyl group. It is preferred to have more than one.
 Yブロックに含まれる加水分解性シリル基含有モノマー由来の繰り返し単位は、Yブロックに含まれる全ての繰り返し単位の重量を基準として、0~3重量%であり、0~2重量%が好ましく、0~1重量%がより好ましい。 The repeating unit derived from a hydrolyzable silyl group-containing monomer contained in the Y block is 0 to 3% by weight, preferably 0 to 2% by weight, based on the weight of all repeating units contained in the Y block. ~1 wt% is more preferred.
 分子中にXYジブロック構造またはXYXトリブロック構造を含む(メタ)アクリル酸エステルにおいて、加水分解性シリル基含有モノマー由来の繰り返し単位は、末端近傍(一端または両端の近傍)領域に局在している。 In a (meth)acrylic acid ester containing an XY diblock structure or an XYX triblock structure in the molecule, the repeating unit derived from the hydrolyzable silyl group-containing monomer is localized in the region near the end (near one end or both ends). there is
 ((メタ)アクリル酸エステルの製造方法)
 (メタ)アクリル酸エステルは、公知の重合方法により製造できる(ラジカル重合法、カチオン重合法、アニオン重合法等)。
(Method for producing (meth)acrylic acid ester)
The (meth)acrylic acid ester can be produced by a known polymerization method (radical polymerization method, cationic polymerization method, anionic polymerization method, etc.).
 加水分解性シリル基含有(メタ)アクリル酸エステル系共重合体(A2)の好ましい製造方法としては、以下の(IV)から(VI)の方法を用いることができる。 As a preferred method for producing the hydrolyzable silyl group-containing (meth)acrylate copolymer (A2), the following methods (IV) to (VI) can be used.
 (IV)重合性不飽和基と加水分解性シリル基を有する化合物を、(メタ)アクリル構造を有するモノマーとともに共重合する方法。 (IV) A method of copolymerizing a compound having a polymerizable unsaturated group and a hydrolyzable silyl group with a monomer having a (meth)acrylic structure.
 (V)連鎖移動剤として、加水分解性シリル基とメルカプト基を有する化合物の存在下、(メタ)アクリル構造を有するモノマーを共重合する方法。 (V) A method of copolymerizing a monomer having a (meth)acrylic structure in the presence of a compound having a hydrolyzable silyl group and a mercapto group as a chain transfer agent.
 (IV)と(V)との組み合わせとして、連鎖移動剤として加水分解性シリル基を有するメルカプタンの存在下、重合性不飽和基と加水分解性シリル基とを有する化合物を、単量体とともに共重合させる方法をとることも可能である。 As a combination of (IV) and (V), a compound having a polymerizable unsaturated group and a hydrolyzable silyl group is covalently mixed with a monomer in the presence of a mercaptan having a hydrolyzable silyl group as a chain transfer agent. It is also possible to adopt a method of polymerization.
 (VI)リビングラジカル重合法によって(メタ)アクリル構造を有するモノマーを重合した後、分子鎖末端に加水分解性シリル基を導入する方法。 (VI) A method of polymerizing a monomer having a (meth)acrylic structure by a living radical polymerization method and then introducing a hydrolyzable silyl group at the molecular chain end.
 重合体分子の末端に官能基を導入でき、分子量分布の小さい(メタ)アクリル酸エステルを合成できることから、(VI)のリビング重合法が好ましい。 The living polymerization method (VI) is preferable because it can introduce a functional group to the end of the polymer molecule and synthesize a (meth)acrylic acid ester with a narrow molecular weight distribution.
 (IV)で用いる重合性不飽和基と加水分解性シリル基を有する化合物としては、(メタ)アクリル酸3-(ジメトキシメチルシリル)プロピル、(メタ)アクリル酸(ジメトキシメチルシリル)メチル、(メタ)アクリル酸(ジエトキシメチルシリル)メチル、(メタ)アクリル酸3-((メトキシメチル)ジメトキシシリル)プロピル等が挙げられる。 Compounds having a polymerizable unsaturated group and a hydrolyzable silyl group used in (IV) include 3-(dimethoxymethylsilyl)propyl (meth)acrylate, (dimethoxymethylsilyl)methyl (meth)acrylate, (meth) ) (diethoxymethylsilyl)methyl acrylate, 3-((methoxymethyl)dimethoxysilyl)propyl (meth)acrylate, and the like.
 (V)で用いる加水分解性シリル基とメルカプト基を有する化合物としては、3-メルカプトプロピルジメトキシメチルシラン、(メルカプトメチル)ジメトキシメチルシラン、等が挙げられる。 The compound having a hydrolyzable silyl group and a mercapto group used in (V) includes 3-mercaptopropyldimethoxymethylsilane, (mercaptomethyl)dimethoxymethylsilane, and the like.
 (VI)のリビング重合法の例としては、リビングラジカル重合法、リビングカチオン重合法、リビングアニオン重合法が挙げられ、その中でもリビングラジカル重合法が(メタ)アクリル酸エステルの製造に適している。リビングラジカル重合法の例としては、以下が挙げられる。
・原子移動ラジカル重合(Atom Transfer Radical Polymerization;ATRP(J. Am. Chem. Soc. 1995, 117, 5614; Macromolecules. 1995, 28, 1721を参照))
・一電子移動重合(Sigle Electron Transfer Polymerization;SET-LRP(J. Am.
 Chem. Soc. 2006, 128, 14156; JPSChem 2007, 45, 1607を参照))
・可逆移動触媒重合(Reversible Chain Transfer Catalyzed Polymerization;RTCP(「有機触媒で制御するリビングラジカル重合」『高分子論文集』68, 223-231 (2011);特開2014-111798を参照))
・可逆的付加-開裂連鎖移動重合法(RAFT重合)
・ニトロキシラジカル法(NMP法)
・有機テルル化合物を用いる重合法(TERP法)
・有機アンチモン化合物を用いる重合法(SBRP法)
・有機ビスマス化合物を用いる重合法(BIRP)
・ヨウ素移動重合法
 (メタ)アクリル酸エステルに加水分解性シリル基を導入する方法としては、特開2007-302749号公報に記載の方法や、特開2018-162394号公報に記載の方法が挙げられる。特開2007-302749号公報に記載の方法は、(メタ)アクリル酸エステルの末端の官能基を変換することにより、加水分解性シリル基を導入する。具体的には、(メタ)アクリル酸エステルの分子末端を、水酸基、アルケニル基、加水分解性シリル基の順番に変換することにより、加水分解性シリル基を導入する。特開2018-162394号公報に記載の方法は、加水分解性シリル基含有(メタ)アクリル酸エステルモノマーとの共重合により、加水分解性シリル基を導入する。具体的には、リビング重合の進行段階に応じて加水分解性シリル基含有(メタ)アクリル酸エステルモノマーの投入量を制御することにより、(メタ)アクリル酸エステル分子の末端近傍に加水分解性シリル基を導入する。これらの方法によって得られる加水分解性シリル基含有(メタ)アクリル酸エステルは、分子の末端または末端近傍に局所的に加水分解性シリル基を有する。
Examples of the living polymerization method (VI) include a living radical polymerization method, a living cationic polymerization method, and a living anionic polymerization method, among which the living radical polymerization method is suitable for producing a (meth)acrylic acid ester. Examples of living radical polymerization methods include the following.
Atom Transfer Radical Polymerization (ATRP (see J. Am. Chem. Soc. 1995, 117, 5614; Macromolecules. 1995, 28, 1721))
・One electron transfer polymerization (Sigle Electron Transfer Polymerization; SET-LRP (J. Am.
See Chem. Soc. 2006, 128, 14156; JPSChem 2007, 45, 1607))
・Reversible Chain Transfer Catalyzed Polymerization (RTCP)
・Reversible addition-fragmentation chain transfer polymerization (RAFT polymerization)
・Nitrooxy radical method (NMP method)
・Polymerization method using organic tellurium compound (TERP method)
・Polymerization method using organic antimony compounds (SBRP method)
・Polymerization method using organic bismuth compounds (BIRP)
Iodine transfer polymerization method Examples of methods for introducing a hydrolyzable silyl group into a (meth)acrylic acid ester include the method described in JP-A-2007-302749 and the method described in JP-A-2018-162394. be done. The method described in JP-A-2007-302749 introduces a hydrolyzable silyl group by converting the terminal functional group of a (meth)acrylic acid ester. Specifically, a hydrolyzable silyl group is introduced by converting the molecular terminal of the (meth)acrylic acid ester into a hydroxyl group, an alkenyl group, and a hydrolyzable silyl group in that order. The method described in JP-A-2018-162394 introduces a hydrolyzable silyl group by copolymerization with a hydrolyzable silyl group-containing (meth)acrylate monomer. Specifically, by controlling the input amount of the hydrolyzable silyl group-containing (meth)acrylic acid ester monomer according to the progress stage of the living polymerization, hydrolyzable silyl introduce a group. The hydrolyzable silyl group-containing (meth)acrylic acid esters obtained by these methods have locally hydrolyzable silyl groups at or near the ends of the molecule.
 (A2)成分中の(メタ)アクリル酸エステルのガラス転移温度(Tg)の上限は、100℃以下が好ましく、50℃以下がより好ましく、0℃以下がさらに好ましく、-10℃以下が最も好ましい。前記(メタ)アクリル酸エステルのガラス転移温度(Tg)の下限は特に限定されないが、-80℃以上が好ましく、-70℃以上がより好ましい。前記(メタ)アクリル酸エステルのガラス転移温度は、実質的には、(A2)成分自体のガラス転移温度と見做せる。 The upper limit of the glass transition temperature (Tg) of the (meth)acrylic acid ester in the component (A2) is preferably 100°C or less, more preferably 50°C or less, even more preferably 0°C or less, and most preferably -10°C or less. . Although the lower limit of the glass transition temperature (Tg) of the (meth)acrylic acid ester is not particularly limited, it is preferably −80° C. or higher, more preferably −70° C. or higher. The glass transition temperature of the (meth)acrylic acid ester can be substantially regarded as the glass transition temperature of the component (A2) itself.
 本発明の一実施形態において、(A)成分は、低粘度の(A1)成分および高粘度の(A2)成分を混合して用いることも可能である。(A1)成分と(A2)成分とを併用すると、各成分単独の場合よりも、接着性がさらに改善すると共に、作業性が向上するとの利点がある。 In one embodiment of the present invention, the (A) component can be used by mixing the low-viscosity (A1) component and the high-viscosity (A2) component. When the (A1) component and the (A2) component are used together, there is an advantage that the adhesiveness is further improved and the workability is improved as compared with the case where each component is used alone.
 (A1)成分の粘度は、特に限定されないが、1Pa・s~100Pa・sが好ましく、5Pa・s~80Pa・sがより好ましく、10Pa・s~70Pa・sがさらに好ましい。当該構成によれば、得られる硬化性組成物が低粘度化するとの利点を有する。 The viscosity of component (A1) is not particularly limited, but is preferably 1 Pa·s to 100 Pa·s, more preferably 5 Pa·s to 80 Pa·s, and even more preferably 10 Pa·s to 70 Pa·s. This configuration has the advantage that the resulting curable composition has a low viscosity.
 (A2)成分の粘度は、特に限定されないが、6.0Pa・s~1000Pa・sが好ましく、50Pa・s~750Pa・sがより好ましく、100Pa・s~500Pa・sがさらに好ましい。当該構成によれば、得られる硬化性組成物の接着性、および硬化物の引っ張り伸びが向上するとの利点を有する。 The viscosity of component (A2) is not particularly limited, but is preferably 6.0 Pa·s to 1000 Pa·s, more preferably 50 Pa·s to 750 Pa·s, and even more preferably 100 Pa·s to 500 Pa·s. This configuration has the advantage of improving the adhesiveness of the resulting curable composition and the tensile elongation of the cured product.
 (A1)成分と(A2)成分の重量比(A1):(A2)は、は5:95~50:50であることが好ましい。この範囲であると、柔軟性と高いせん断接着強度を示す硬化物を得ることができる。さらに、高剛性と柔軟性を両立する点で、(A1):(A2)は20:80~50:50であることが好ましい。 The weight ratio (A1):(A2) of the (A1) component and the (A2) component is preferably 5:95 to 50:50. Within this range, a cured product exhibiting flexibility and high shear adhesive strength can be obtained. Further, (A1):(A2) is preferably 20:80 to 50:50 from the viewpoint of achieving both high rigidity and flexibility.
 (2-2.チタネートで表面処理された水酸化アルミニウム(B))
 本硬化性組成物は、チタネートで表面処理された水酸化アルミニウム(B)を含む。本硬化性組成物は、チタネートで表面処理された水酸化アルミニウム(B)を含むことにより、成分(A)を含む硬化性組成物の接着性を改善できる。
(2-2. Aluminum hydroxide surface-treated with titanate (B))
The curable composition comprises a titanate surface treated aluminum hydroxide (B). The present curable composition can improve the adhesion of the curable composition containing component (A) by including aluminum hydroxide (B) surface-treated with titanate.
 成分(B)は、水酸化アルミニウムがチタネートで表面処理された物であれば特に限定されない。成分(B)としては、例えば、ハイジライト(登録商標)H-42T(昭和電工株式会社製)、BF013T、BX053T、B103T、BW53T、BW153T(いずれも日本軽金属株式会社製)等が挙げられる。これらの成分(B)は、単独で使用してもよく、2種以上を組み合わせて使用してもよい。なお、成分(B)は、チタネートで表面処理された物を少なくとも1種以上含んでいれば、それと組み合わせる物は、チタネート以外の表面処理を施された物や表面無処理の物であってもよい。 The component (B) is not particularly limited as long as it is aluminum hydroxide surface-treated with titanate. Examples of component (B) include Hygilite (registered trademark) H-42T (manufactured by Showa Denko KK), BF013T, BX053T, B103T, BW53T, and BW153T (all of which are manufactured by Nippon Light Metal Co., Ltd.). These components (B) may be used alone or in combination of two or more. As long as component (B) contains at least one titanate surface-treated product, the product to be combined with it may be a surface-treated product other than titanate or a surface-untreated product. good.
 水酸化アルミニウム(B)の平均粒径は、例えば、0.1~200μmであり、0.2~100μmであることが好ましく、0.5~50μmであることがより好ましく、0.4~20μmであることがさらに好ましく、0.5~10μmであることが特に好ましい。水酸化アルミニウム(B)の平均粒径が0.1~200μmであると、作業性と機械物性をバランス良く調整することが可能でとなる。平均粒径は、レーザー散乱法粒度測定器(日機装社製、Microtrac9320HRA(×100))により、測定される。 The average particle diameter of aluminum hydroxide (B) is, for example, 0.1 to 200 μm, preferably 0.2 to 100 μm, more preferably 0.5 to 50 μm, and 0.4 to 20 μm. is more preferable, and 0.5 to 10 μm is particularly preferable. When the average particle size of aluminum hydroxide (B) is 0.1 to 200 μm, workability and mechanical properties can be adjusted in a well-balanced manner. The average particle size is measured with a laser scattering particle size analyzer (Microtrac 9320HRA (×100) manufactured by Nikkiso Co., Ltd.).
 水酸化アルミニウム(B)の含有量は、(A)成分100重量部に対して、30~320重量部であることが好ましく、100~315重量部であることがより好ましく、185~310重量部であることがさらに好ましく、190~310重量部であることが特に好ましい。水酸化アルミニウム(B)の含有量が30~320重量部であると、接着性に優れ、水酸化アルミニウム(B)の含有量が190~310重量部であると、より接着性に優れる。また、(A)成分が一分子中に少なくとも1つ以上のウレタン結合またはウレア結合を有するものである場合は、当該(A)成分100重量部に対して、270~320重量部であることが好ましく、275~300重量部であることが特に好ましい。 The content of aluminum hydroxide (B) is preferably 30 to 320 parts by weight, more preferably 100 to 315 parts by weight, and more preferably 185 to 310 parts by weight, per 100 parts by weight of component (A). and particularly preferably 190 to 310 parts by weight. When the content of aluminum hydroxide (B) is 30 to 320 parts by weight, the adhesion is excellent, and when the content of aluminum hydroxide (B) is 190 to 310 parts by weight, the adhesion is even better. Further, when the component (A) has at least one urethane bond or urea bond in one molecule, it may be 270 to 320 parts by weight per 100 parts by weight of the component (A). 275 to 300 parts by weight is particularly preferred.
 (2-3.シラノール縮合触媒(C))
 本硬化性組成物は、シラノール縮合触媒(C)を含む。
(2-3. Silanol condensation catalyst (C))
The curable composition contains a silanol condensation catalyst (C).
 シラノール縮合触媒(C)としては、特に限定されないが、例えば、ジブチル錫ジラウレート、ジブチル錫ジアセテート、ジブチル錫ジエチルヘキサノエート、ジブチル錫ジオクテート、ジブチル錫ジメチルマレート、ジブチル錫ジエチルマレート、ジブチル錫ジブチルマレート、ジブチル錫ジイソオクチルマレート、ジブチル錫ジトリデシルマレート、ジブチル錫ジベンジルマレート、ジブチル錫マレエート、ジオクチル錫ジアセテート、ジオクチル錫ジステアレート、ジオクチル錫ジラウレート、ジオクチル錫ジエチルマレート、ジオクチル錫ジイソオクチルマレート等のジアルキル錫ジカルボキシレート類、例えば、ジブチル錫ジメトキシド、ジブチル錫ジフェノキシド等のジアルキル錫アルコキサイド類、例えば、ジブチル錫ジアセチルアセトナート、ジブチル錫ジエチルアセトアセテートなどのジアルキル錫の分子内配位性誘導体類、例えば、ジブチル錫オキサイドやジオクチル錫オキサイド等のジアルキル錫オキサイドと、例えば、ジオクチルフタレート、ジイソデシルフタレート、メチルマレエート等のエステル化合物との反応物、ジアルキル錫オキサイド、カルボン酸およびアルコール化合物を反応させて得られる錫化合物、例えば、ジブチル錫ビストリエトキシシリケート、ジオクチル錫ビストリエトキシシリケート等のジアルキル錫オキサイドとシリケート化合物との反応物、およびこれらジアルキル錫化合物のオキシ誘導体(スタノキサン化合物)等の4価の錫化合物類;例えば、オクチル酸錫、ナフテン酸錫、ステアリン酸錫、フェルザチック酸錫等の2価の錫化合物類、あるいはこれらと後述のラウリルアミン等のアミン系化合物との反応物および混合物;例えば、モノブチル錫トリスオクトエートやモノブチル錫トリイソプロポキシド等のモノブチル錫化合物やモノオクチル錫化合物等のモノアルキル錫類;例えば、テトラブチルチタネート、テトラプロピルチタネート、テトラ(2-エチルヘキシル)チタネート、イソプロポキシチタンビス(エチルアセトアセテート)等のチタン酸エステル類;アルミニウムトリスアセチルアセトナート、アルミニウムトリスエチルアセトアセテート、ジ-イソプロポキシアルミニウムエチルアセトアセテート等の有機アルミニウム化合物類;カルボン酸ビスマス、カルボン酸鉄、カルボン酸チタニウム、カルボン酸鉛、カルボン酸バナジウム、カルボン酸ジルコニウム、カルボン酸カルシウム、カルボン酸カリウム、カルボン酸バリウム、カルボン酸マンガン、カルボン酸セリウム、カルボン酸ニッケル、カルボン酸コバルト、カルボン酸亜鉛、カルボン酸アルミニウム等のカルボン酸(2-エチルヘキサン酸、ネオデカン酸、バーサチック酸、オレイン酸、ナフテン酸等)金属塩、あるいはこれらと後述のラウリルアミン等のアミン系化合物との反応物および混合物;ジルコニウムテトラアセチルアセトナート、ジルコニウムトリブトキシアセチルアセトナート、ジブトキシジルコニウムジアセチルアセトナート、ジルコニウムアセチルアセトナートビス(エチルアセトアセテート)、チタンテトラアセチルアセトナート等のキレート化合物類;メチルアミン、エチルアミン、プロピルアミン、イソプロピルアミン、ブチルアミン、アミルアミン、ヘキシルアミン、オクチルアミン、2-エチルヘキシルアミン、ノニルアミン、デシルアミン、ラウリルアミン、ペンタデシルアミン、セチルアミン、ステアリルアミン、シクロヘキシルアミン等の脂肪族第一アミン類;ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジイソプロピルアミン、ジブチルアミン、ジアミルアミン、ジオクチルアミン、ジ(2-エチルヘキシル)アミン、ジデシルアミン、ジラウリルアミン、ジセチルアミン、ジステアリルアミン、メチルステアリルアミン、エチルステアリルアミン、ブチルステアリルアミン等の脂肪族第二アミン類;トリアミルアミン、トリヘキシルアミン、トリオクチルアミン等の脂肪族第三アミン類;トリアリルアミン、オレイルアミン、などの脂肪族不飽和アミン類;ラウリルアニリン、ステアリルアニリン、トリフェニルアミン等の芳香族アミン類;および、その他のアミン類として、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、ジエチレントリアミン、トリエチレンテトラミン、オレイルアミン、シクロヘキシルアミン、ベンジルアミン、ジエチルアミノプロピルアミン、キシリレンジアミン、エチレンジアミン、ヘキサメチレンジアミン、N-メチル-1,3-プロパンジアミン、N,N'-ジメチル-1,3-プロパンジアミン、ジエチレントリアミン、トリエチレンテトラミン、2-(2-アミノエチルアミノ)エタノール、ベンジルアミン、3-メトキシプロピルアミン、3-ラウリルオキシプロピルアミン、3-ジメチルアミノプロピルアミン、3-ジエチルアミノプロピルアミン、3-ジブチルアミノプロピルアミン、3-モルホリノプロピルアミン、2-(1-ピペラジニル)エチルアミン、キシリレンジアミン、2,4,6-トリス(ジメチルアミノメチル)フェノール、1,8-ジアザビシクロ(5,4,0)ウンデセン-7(DBU)等のアミン系化合物、あるいはこれらのアミン系化合物と後述のネオデカン等の有機カルボン酸との塩、あるいはこれらのアミン系化合物と後述のネオデカン等の有機カルボン酸と金属アルコキシドを含む触媒;酢酸、プロピオン酸、酪酸、吉相酸、カプロン酸などの直鎖飽和脂肪酸類;ウンデシレン酸、リンデル酸、ツズ酸などのモノエン不飽和脂肪酸類;2-メチル酪酸、イソ酪酸、2-エチル酪酸、2-エチルヘキサン酸、2,2-ジメチルヘキサン酸、バーサチック酸、ネオデカン酸、ツベルクロステアリン酸などの枝分かれ脂肪酸;プロピオール酸、タリリン酸などの三重結合をもつ脂肪酸;ナフテン酸、マルバリン酸、ステルクリン酸などの脂環式カルボン酸;アジピン酸、アゼライン酸、ピメリン酸、セバシン酸などの脂肪族ジカルボン酸、安息香酸、アニス酸、イソプロピル安息香酸、サリチル酸などの芳香族モノカルボン酸;ジイソプロポキシチタン、ジイソプロポキシチタンビス(エチルアセトセテート)などのアルコキシチタン化合物;トリイソプロポキシアルミニウム、トリブトキシアルミニウム、ジイソプロポキシアルミニウムエチルアセトアセテートなどのアルコキシアルミニウム化合物;テトラブトキシハフニウムなどの各種金属アルコキシド化合物が挙げられる。ラウリルアミンとオクチル酸錫の反応物あるいは混合物のようなアミン系化合物と有機錫化合物との反応物および混合物;過剰のポリアミンと多塩基酸とから得られる低分子量ポリアミド樹脂;過剰のポリアミンとエポキシ化合物との反応生成物;γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルトリイソプロポキシシラン、γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルメチルジエトキシシラン、N-(β-アミノエチル)アミノプロピルトリメトキシシラン、N-(β-アミノエチル)アミノプロピルメチルジメトキシシラン、N-(β-アミノエチル)アミノプロピルトリエトキシシラン、N-(β-アミノエチル)アミノプロピルメチルジエトキシシラン、N-(β-アミノエチル)アミノプロピルトリイソプロポキシシラン、γ-ウレイドプロピルトリメトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、N-ベンジル-γ-アミノプロピルトリメトキシシラン、N-ビニルベンジル-γ-アミノプロピルトリエトキシシラン等を挙げることができる。また、これらを変性した誘導体である、アミノ変性シリルポリマー、シリル化アミノポリマー、不飽和アミノシラン錯体、フェニルアミノ長鎖アルキルシラン、アミノシリル化シリコーン等のアミノ基を有するシランカップリング剤;等のシラノール縮合触媒、さらにはフェルザチック酸等の脂肪酸や有機酸性リン酸エステル化合物等他の酸性触媒、塩基性触媒等の公知のシラノール縮合触媒等が例示できる。シラノール縮合触媒(C)として、貯蔵安定性や耐久性の観点から、2価スズが好ましく使用される。これら硬化触媒は、単独で使用してもよく、2種以上を組み合わせて使用してもよい。 The silanol condensation catalyst (C) is not particularly limited. Dibutyl Malate, Dibutyl Tin Diisooctyl Malate, Dibutyl Tin Ditridecyl Malate, Dibutyl Tin Dibenzyl Malate, Dibutyl Tin Maleate, Dioctyl Tin Diacetate, Dioctyl Tin Distearate, Dioctyl Tin Dilaurate, Dioctyl Tin Diethyl Malate, Dioctyl dialkyltin dicarboxylates such as tin diisooctyl maleate; dialkyltin alkoxides such as dibutyltin dimethoxide and dibutyltin diphenoxide; Intramolecular coordinating derivatives, e.g. reaction products of dialkyltin oxides such as dibutyltin oxide and dioctyltin oxide with ester compounds such as dioctyl phthalate, diisodecyl phthalate and methyl maleate, dialkyltin oxides, carboxylic acids and a tin compound obtained by reacting an alcohol compound, for example, a reaction product of a dialkyltin oxide such as dibutyltin bistriethoxysilicate or dioctyltin bistriethoxysilicate with a silicate compound, and an oxy derivative of these dialkyltin compounds (stannoxane compound) tetravalent tin compounds such as; Reactants and mixtures; monoalkyltins, such as monobutyltin compounds and monooctyltin compounds, such as monobutyltin trisoctoate and monobutyltin triisopropoxide; titanates such as ethylhexyl) titanate and isopropoxytitanium bis(ethylacetoacetate); organic aluminum compounds such as aluminum trisacetylacetonate, aluminum trisethylacetoacetate, di-isopropoxyaluminum ethylacetoacetate; Iron carboxylate, titanium carboxylate, lead carboxylate, vanadium carboxylate, zirconium carboxylate, calcium carboxylate, potassium carboxylate, barium carboxylate, manganese carboxylate, cerium carboxylate, nickel carboxylate, cobalt carboxylate, carboxylic acid Carboxylic acid (2-ethylhexanoic acid, neodecanoic acid, versatic acid, oleic acid, naphthenic acid, etc.) metal salts such as zinc and aluminum carboxylate, or reaction products and mixtures of these with amine compounds such as laurylamine described later Chelate compounds such as zirconium tetraacetylacetonate, zirconium tributoxyacetylacetonate, dibutoxyzirconium diacetylacetonate, zirconium acetylacetonate bis(ethylacetoacetate), titanium tetraacetylacetonate; methylamine, ethylamine, propylamine , isopropylamine, butylamine, amylamine, hexylamine, octylamine, 2-ethylhexylamine, nonylamine, decylamine, laurylamine, pentadecylamine, cetylamine, stearylamine, cyclohexylamine, and other aliphatic primary amines; dimethylamine, diethylamine , dipropylamine, diisopropylamine, dibutylamine, diamylamine, dioctylamine, di(2-ethylhexyl)amine, didecylamine, dilaurylamine, dicetylamine, distearylamine, methylstearylamine, ethylstearylamine, butylstearylamine, etc. aliphatic tertiary amines such as triamylamine, trihexylamine, trioctylamine; aliphatic unsaturated amines such as triallylamine, oleylamine; laurylaniline, stearylaniline, triphenylamine, etc. and other amines such as monoethanolamine, diethanolamine, triethanolamine, diethylenetriamine, triethylenetetramine, oleylamine, cyclohexylamine, benzylamine, diethylaminopropylamine, xylylenediamine, ethylenediamine, hexamethylene Diamine, N-methyl-1,3-propanediamine, N,N'-dimethyl-1,3-propanediamine, diethylenetriamine, triethylenetetramine, 2-(2-aminoethylamino)ethanol, benzylamine, 3-methoxy Propylamine, 3-lauryloxypropylamine, 3-dimethylaminopropylamine, 3-diethylaminopropylamine, 3-dibutylaminopropylamine, 3-morpholinopropylamine, 2-(1-piperazinyl)ethylamine, xylylenediamine, 2 , 4,6-tris(dimethylaminomethyl)phenol, 1,8-diazabicyclo(5,4,0)undecene-7 (DBU) and other amine compounds, or these amine compounds and organic compounds such as neodecane described below. Salts with carboxylic acids, or catalysts containing these amine compounds, organic carboxylic acids such as neodecane described later, and metal alkoxides; linear saturated fatty acids such as acetic acid, propionic acid, butyric acid, valeric acid, and caproic acid; undecylenic acid , lindelic acid, monoenunsaturated fatty acids such as thuzunic acid; Branched fatty acids such as stearic acid; fatty acids with triple bonds such as propiolic acid and talylic acid; alicyclic carboxylic acids such as naphthenic acid, malvaric acid and sterclinic acid; fats such as adipic acid, azelaic acid, pimelic acid and sebacic acid dicarboxylic acids, benzoic acid, anisic acid, isopropyl benzoic acid, aromatic monocarboxylic acids such as salicylic acid; alkoxy titanium compounds such as diisopropoxytitanium, diisopropoxytitanium bis(ethylacetoacetate); alkoxyaluminum compounds such as butoxyaluminum and diisopropoxyaluminum ethylacetoacetate; and various metal alkoxide compounds such as tetrabutoxyhafnium. Reaction products and mixtures of amine compounds and organotin compounds, such as reaction products or mixtures of laurylamine and tin octoate; low molecular weight polyamide resins obtained from excess polyamines and polybasic acids; excess polyamines and epoxy compounds. γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-aminopropyltriisopropoxysilane, γ-aminopropylmethyldimethoxysilane, γ-aminopropylmethyldiethoxysilane, N- (β-aminoethyl)aminopropyltrimethoxysilane, N-(β-aminoethyl)aminopropylmethyldimethoxysilane, N-(β-aminoethyl)aminopropyltriethoxysilane, N-(β-aminoethyl)aminopropyl Methyldiethoxysilane, N-(β-aminoethyl)aminopropyltriisopropoxysilane, γ-ureidopropyltrimethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, N-benzyl-γ-aminopropyltrimethoxysilane Silane, N-vinylbenzyl-γ-aminopropyltriethoxysilane and the like can be mentioned. In addition, silane coupling agents having an amino group, such as amino-modified silyl polymers, silylated amino polymers, unsaturated aminosilane complexes, phenylamino long-chain alkylsilanes, and aminosilylated silicones, which are modified derivatives thereof; Catalysts, further known silanol condensation catalysts such as fatty acids such as felzatic acid, other acidic catalysts such as organic acidic phosphoric acid ester compounds, basic catalysts, and the like can be exemplified. As the silanol condensation catalyst (C), divalent tin is preferably used from the viewpoint of storage stability and durability. These curing catalysts may be used alone or in combination of two or more.
 シラノール縮合触媒(C)の含有量は、(A)成分100重量部に対して、例えば、0.5~20重量部であることが好ましく、1.0~10重量部であることがより好ましく、2.0~7.5重量部であることがさらに好ましい。シラノール縮合触媒(C)の含有量が0.5~20重量部であれば、硬化性と低コスト化とが両立しやすいという利点を有する。 The content of the silanol condensation catalyst (C) is, for example, preferably 0.5 to 20 parts by weight, more preferably 1.0 to 10 parts by weight, per 100 parts by weight of component (A). , 2.0 to 7.5 parts by weight. If the content of the silanol condensation catalyst (C) is from 0.5 to 20 parts by weight, there is an advantage that both curability and cost reduction are readily compatible.
 (2-4.その他の成分)
 本硬化性組成物は、上記の他に、添加剤として、充填剤、可塑剤、エポキシ化合物、紫外線吸収剤、光安定剤、酸化防止剤、表面改質剤、溶剤、タレ防止剤、物性調整剤、接着性付与剤、粘着性付与剤、光硬化性物質、酸素硬化性物質、その他の樹脂等を添加してもよい。また、本硬化性組成物には、硬化性組成物または硬化物の諸物性の調整を目的として、必要に応じて、希釈剤、シリケート、硬化性調整剤、ラジカル禁止剤、金属不活性化剤、オゾン劣化防止剤、リン系過酸化物分解剤、滑剤、顔料、防かび剤、難燃剤、発泡剤等の各種添加剤を添加してもよい。
(2-4. Other components)
In addition to the above, this curable composition contains fillers, plasticizers, epoxy compounds, ultraviolet absorbers, light stabilizers, antioxidants, surface modifiers, solvents, anti-sagging agents, and physical property adjustment agents. Agents, adhesiveness-imparting agents, tackifiers, photo-curing substances, oxygen-curing substances, other resins, etc. may be added. In addition, for the purpose of adjusting various physical properties of the curable composition or cured product, the curable composition may optionally contain diluents, silicates, curability modifiers, radical inhibitors, and metal deactivators. , antiozonants, phosphorus-based peroxide decomposers, lubricants, pigments, fungicides, flame retardants, foaming agents, and other additives may be added.
 <充填剤>
 本硬化性組成物には、充填剤を使用することができる。充填剤は、安価な材料であるため、コストダウンを可能とし、機械物性の調整を可能とする。
<Filler>
Fillers can be used in the curable composition. Since the filler is an inexpensive material, it enables cost reduction and adjustment of mechanical properties.
 充填剤としては、特に限定されないが、例えば、重質炭酸カルシウム、膠質炭酸カルシウム、炭酸マグネシウム、炭酸バリウム、硫酸バリウム、ケイソウ土、焼成クレー、クレー、タルク、バライト、無水石膏、酸化チタン、ベントナイト、有機ベントナイト、酸化第二鉄、アルミニウム微粉末、フリント粉末、酸化亜鉛、活性亜鉛華、マイカ、亜鉛華、鉛白、リトポン、硫化亜鉛、カーボンブラック、アルミナ、PVC粉末、PMMA粉末、ガラス繊維、フィラメント等が挙げられる。これら充填剤は、単独で使用してもよく、2種以上を組み合わせて使用してもよい。 Examples of fillers include, but are not limited to, heavy calcium carbonate, colloidal calcium carbonate, magnesium carbonate, barium carbonate, barium sulfate, diatomaceous earth, calcined clay, clay, talc, barite, anhydrite, titanium oxide, bentonite, Organic bentonite, ferric oxide, fine aluminum powder, flint powder, zinc oxide, active zinc white, mica, zinc white, white lead, lithopone, zinc sulfide, carbon black, alumina, PVC powder, PMMA powder, glass fiber, filament etc. These fillers may be used alone or in combination of two or more.
 充填剤の使用量は、(A)成分100重量部に対して、例えば、5~500重量部であることが好ましく、10~250重量部であることがより好ましく、20~150重量部であることがさらに好ましい。 The amount of the filler used is, for example, preferably 5 to 500 parts by weight, more preferably 10 to 250 parts by weight, and 20 to 150 parts by weight with respect to 100 parts by weight of component (A). is more preferred.
 組成物の軽量化(低比重化)の目的で、有機バルーン、又は無機バルーンを添加してもよい。バルーンは、球状体充填剤で内部が中空のものであり、このバルーンの材料としては、ガラス、シラス等の無機系材料、フェノール樹脂、尿素樹脂、ポリスチレン、サラン等の有機系材料が挙げられる。 For the purpose of weight reduction (lower specific gravity) of the composition, organic balloons or inorganic balloons may be added. The balloon is made of a spherical filler and has a hollow interior. Examples of materials for the balloon include inorganic materials such as glass and shirasu, and organic materials such as phenol resin, urea resin, polystyrene, and saran.
 バルーンの使用量は、重合体(A)100重量部に対して、0.1~100重量部であることが好ましく、1~20重量部がより好ましい。 The amount of the balloon used is preferably 0.1 to 100 parts by weight, more preferably 1 to 20 parts by weight, per 100 parts by weight of the polymer (A).
 <可塑剤>
 本硬化性組成物には、可塑剤を使用することができる。可塑剤の具体例としては、ジブチルフタレート、ジイソノニルフタレート(DINP)、ジヘプチルフタレート、ジ(2-エチルヘキシル)フタレート、ジイソデシルフタレート(DIDP)、ブチルベンジルフタレートなどのフタル酸エステル化合物;ビス(2-エチルヘキシル)-1,4-ベンゼンジカルボキシレートなどのテレフタル酸エステル化合物;1,2-シクロヘキサンジカルボン酸ジイソノニルエステルなどの非フタル酸エステル化合物;アジピン酸ジオクチル、セバシン酸ジオクチル、セバシン酸ジブチル、コハク酸ジイソデシル、アセチルクエン酸トリブチルなどの脂肪族多価カルボン酸エステル化合物;オレイン酸ブチル、アセチルリシノール酸メチルなどの不飽和脂肪酸エステル化合物;アルキルスルホン酸フェニルエステル;リン酸エステル化合物;トリメリット酸エステル化合物;塩素化パラフィン;アルキルジフェニル、部分水添ターフェニルなどの炭化水素系油;プロセスオイル;エポキシ化大豆油、エポキシステアリン酸ベンジル、ビス(2-エチルヘキシル)-4,5-エポキシシクロヘキサン-1,2-ジカーボキシレート(E-PS)、エポキシオクチルステアレ-ト、エポキシブチルステアレ-トなどのエポキシ可塑剤等が挙げられる。
<Plasticizer>
A plasticizer can be used in the curable composition. Specific examples of plasticizers include dibutyl phthalate, diisononyl phthalate (DINP), diheptyl phthalate, di(2-ethylhexyl) phthalate, diisodecyl phthalate (DIDP), phthalate compounds such as butylbenzyl phthalate; bis(2-ethylhexyl )-terephthalate compounds such as 1,4-benzenedicarboxylate; non-phthalate compounds such as 1,2-cyclohexanedicarboxylic acid diisononyl ester; dioctyl adipate, dioctyl sebacate, dibutyl sebacate, diisodecyl succinate, Aliphatic polyvalent carboxylic acid ester compounds such as tributyl acetylcitrate; unsaturated fatty acid ester compounds such as butyl oleate and methyl acetylricinoleate; phenyl alkylsulfonic acid esters; phosphoric acid ester compounds; trimellitic acid ester compounds; Paraffin; hydrocarbon oils such as alkyldiphenyl and partially hydrogenated terphenyl; process oil; epoxidized soybean oil, benzyl epoxystearate, bis(2-ethylhexyl)-4,5-epoxycyclohexane-1,2-dicarb Epoxy plasticizers such as xylate (E-PS), epoxy octyl stearate, epoxy butyl stearate, and the like.
 また、高分子可塑剤を使用することができる。高分子可塑剤の具体例としては、ビニル系重合体;ポリエステル系可塑剤;数平均分子量500以上のポリエチレングリコール、ポリプロピレングリコール等のポリエーテルポリオール、これらポリエーテルポリオールのヒドロキシ基をエステル基、エーテル基などに変換した誘導体等のポリエーテル類;ポリスチレン類;ポリブタジエン、ポリブテン、ポリイソブチレン、ブタジエン-アクリロニトリル、ポリクロロプレン等が挙げられる。 In addition, a polymer plasticizer can be used. Specific examples of polymeric plasticizers include vinyl polymers; polyester plasticizers; polyether polyols such as polyethylene glycol and polypropylene glycol having a number average molecular weight of 500 or more; polyethers such as derivatives converted to polystyrenes; polybutadiene, polybutene, polyisobutylene, butadiene-acrylonitrile, polychloroprene and the like.
 さらに、反応性可塑剤を使用することができる。反応性可塑剤の具体例としては、加水分解性シリル基を1分子当たり平均して0.5個以上1.5個未満有する、ポリオキシアルキレン系重合体、飽和炭化水素重合体、(メタ)アクリル酸エステル系重合体、ポリオルガノシロキサン系重合体等が挙げられる。これらの中では、本発明の(A)成分との相溶性の観点から、反応性可塑剤の主鎖骨格としては、ポリオキシアルキレン系重合体と(メタ)アクリル酸エステル系重合体が好ましい。反応性可塑剤を使用すると、低分子可塑剤を使用した場合に比較して、組成物の粘度を低減しながら、可塑剤のブリードアウトを抑制することができる。 In addition, reactive plasticizers can be used. Specific examples of reactive plasticizers include polyoxyalkylene polymers, saturated hydrocarbon polymers, (meth) Examples include acrylic acid ester-based polymers and polyorganosiloxane-based polymers. Among these, from the viewpoint of compatibility with the component (A) of the present invention, polyoxyalkylene-based polymers and (meth)acrylic acid ester-based polymers are preferred as the main chain skeleton of the reactive plasticizer. The use of a reactive plasticizer can reduce the viscosity of the composition and suppress the bleed-out of the plasticizer compared to the use of a low-molecular-weight plasticizer.
 反応性可塑剤中の加水分解性シリル基は、分子鎖末端、側鎖、その両方のいずれにあってもよい。特に、加水分解性シリル基が分子鎖末端にあるときは、架橋点間分子量が長くなり、機械的物性が良好なゴム状硬化物が得られ易くなることからより好ましい。加水分解性シリル基の個数は、1分子当たり平均して0.5個以上1.5個未満であるが、硬化時の機械的物性の観点から下限は0.6個以上であることが好ましく、また硬化物のモジュラスを効率的に下げるため上限は1.0個未満であることが好ましい。また、反応性可塑剤は、加水分解性シリル基に加えて、末端オレフィン基及び/又は内部オレフィン基を有するものであってもよく、末端オレフィン基及び/又は内部オレフィン基を有しないものであってよいが、加水分解性シリル基、末端オレフィン基及び内部オレフィン基の合計数は、末端構造1個あたり平均して1.0個以下であってよい。 The hydrolyzable silyl group in the reactive plasticizer may be at the molecular chain end, side chain, or both. In particular, when the hydrolyzable silyl group is present at the end of the molecular chain, the molecular weight between cross-linking points becomes long, and a rubber-like cured product having good mechanical properties can be easily obtained, which is more preferable. The average number of hydrolyzable silyl groups per molecule is 0.5 or more and less than 1.5, but the lower limit is preferably 0.6 or more from the viewpoint of mechanical properties during curing. Also, the upper limit is preferably less than 1.0 in order to efficiently lower the modulus of the cured product. The reactive plasticizer may have a terminal olefin group and/or an internal olefin group in addition to the hydrolyzable silyl group, and may not have a terminal olefin group and/or an internal olefin group. However, the total number of hydrolyzable silyl groups, terminal olefinic groups and internal olefinic groups may be 1.0 or less per terminal structure on average.
 反応性可塑剤である重合体は、GPCによるポリスチレン換算での数平均分子量が3,000以上15,000未満であることが好ましい。数平均分子量が3,000以上であれば、十分な機械的物性を得ることが出来る。また、数平均分子量が15,000以下であれば、粘度が低く、十分な希釈効果を得ることが出来る。 The polymer that is the reactive plasticizer preferably has a number average molecular weight of 3,000 or more and less than 15,000 in terms of polystyrene by GPC. If the number average molecular weight is 3,000 or more, sufficient mechanical properties can be obtained. Further, if the number average molecular weight is 15,000 or less, the viscosity is low and a sufficient dilution effect can be obtained.
 反応性可塑剤の分子量分布は特に限定されないが、2.0未満が好ましく、1.6以下がより好ましく、1.4以下がさらに好ましく、1.3以下が特に好ましく、1.2以下が特に好ましい。 Although the molecular weight distribution of the reactive plasticizer is not particularly limited, it is preferably less than 2.0, more preferably 1.6 or less, even more preferably 1.4 or less, particularly preferably 1.3 or less, and particularly preferably 1.2 or less. preferable.
 反応性可塑剤の主鎖構造は、直鎖状または分岐状構造、または1つの末端に加水分解性シリル基を複数個有する構造であってもよい。その中でも、1つの末端のみに加水分解性シリル基が導入された、直鎖状の重合体がより好ましい。また、主鎖構造は単一のものでなくともよく、それぞれの重合体は別々に製造したものを混合してもよいし、任意の重合体が得られるように同時に製造してもよい。 The main chain structure of the reactive plasticizer may be a linear or branched structure, or a structure having multiple hydrolyzable silyl groups at one end. Among them, a straight-chain polymer having a hydrolyzable silyl group introduced at only one end is more preferable. Moreover, the main chain structure does not have to be a single one, and the respective polymers may be separately produced and mixed, or may be produced simultaneously so as to obtain an arbitrary polymer.
 反応性可塑剤に含まれる加水分解性シリル基は任意に選択できるが、本発明の(A)成分と同じ加水分解性シリル基を有する場合、硬度や皮張り時間等の硬化物の物性の調整がしやすく、特に好ましい。可塑剤は、単独で使用してもよく、2種以上を併用してもよい。 The hydrolyzable silyl group contained in the reactive plasticizer can be arbitrarily selected, but if it has the same hydrolyzable silyl group as the component (A) of the present invention, the physical properties of the cured product such as hardness and skinning time can be adjusted. It is particularly preferable because it is easy to clean. A plasticizer may be used individually and may use 2 or more types together.
 可塑剤の使用量は、(A)成分100重量部に対して、例えば、5~150重量部であり、10~120重量部が好ましく、12~100重量部がより好ましい。 The amount of plasticizer used is, for example, 5 to 150 parts by weight, preferably 10 to 120 parts by weight, more preferably 12 to 100 parts by weight, per 100 parts by weight of component (A).
 <エポキシ化合物>
 本硬化性組成物には、エポキシ化合物を使用することができる。これらを使用すると硬化物の復元性を高めることができる。エポキシ化合物としてはエポキシ化不飽和油脂類、エポキシ化不飽和脂肪酸エステル類、脂環族エポキシ化合物類、エピクロルヒドリン誘導体に示す化合物及びそれらの混合物等が例示できる。具体的には、エポキシ化大豆油、エポキシ化あまに油、ビス(2-エチルヘキシル)-4,5-エポキシシクロヘキサン-1,2-ジカーボキシレート(E-PS)、エポキシオクチルステアレ-ト、エポキシブチルステアレ-ト等が挙げられる。また、ビスフェノールA型エポキシ樹脂類、ノボラック型エポキシ樹脂などのエポキシ樹脂をエポキシ化合物として使用することもできる。
<Epoxy compound>
An epoxy compound can be used in the present curable composition. The use of these can improve the restorability of the cured product. Examples of epoxy compounds include epoxidized unsaturated fats and oils, epoxidized unsaturated fatty acid esters, alicyclic epoxy compounds, epichlorohydrin derivatives, and mixtures thereof. Specifically, epoxidized soybean oil, epoxidized linseed oil, bis(2-ethylhexyl)-4,5-epoxycyclohexane-1,2-dicarboxylate (E-PS), epoxyoctyl stearate , epoxy butyl stearate and the like. Epoxy resins such as bisphenol A type epoxy resins and novolac type epoxy resins can also be used as epoxy compounds.
 エポキシ化合物の使用量は、(A)成分100重量部に対して、例えば、1~100重量部であることが好ましく、2~75重量部であることがより好ましく、5~50重量部であることがさらに好ましい。 The amount of the epoxy compound used is, for example, preferably 1 to 100 parts by weight, more preferably 2 to 75 parts by weight, and 5 to 50 parts by weight with respect to 100 parts by weight of component (A). is more preferred.
 <紫外線吸収剤>
 本硬化性組成物には、紫外線吸収剤を使用することができる。紫外線吸収剤を使用すると硬化物の表面耐候性を高めることができる。紫外線吸収剤としては、例えば、ベンゾフェノン系、ベンゾトリアゾール系、サリチレート系、置換トリル系、金属キレート系の化合物等が挙げられる。ベンゾトリアゾール系の化合物としては、例えば、市販名チヌビンP、チヌビン213、チヌビン234、チヌビン326、チヌビン327、チヌビン328、チヌビン329、チヌビン571(以上、BASF製)等が挙げられる。これらの紫外線吸収剤は、単独で使用してもよく、2種以上を組み合わせて使用してもよい。
<Ultraviolet absorber>
A UV absorber can be used in the present curable composition. The use of an ultraviolet absorber can enhance the surface weather resistance of the cured product. Examples of ultraviolet absorbers include benzophenone-based, benzotriazole-based, salicylate-based, substituted tolyl-based, and metal chelate-based compounds. Benzotriazole compounds include, for example, commercial names Tinuvin P, Tinuvin 213, Tinuvin 234, Tinuvin 326, Tinuvin 327, Tinuvin 328, Tinuvin 329, Tinuvin 571 (manufactured by BASF). These ultraviolet absorbers may be used alone or in combination of two or more.
 紫外線吸収剤の使用量は、(A)成分100重量部に対して、例えば、0.1~10重量部であり、0.2~8.0重量部が好ましく、0.3~6.0重量部がより好ましい。 The amount of the ultraviolet absorber used is, for example, 0.1 to 10 parts by weight, preferably 0.2 to 8.0 parts by weight, and 0.3 to 6.0 parts by weight, per 100 parts by weight of component (A). Parts by weight are more preferred.
 <光安定剤>
 本硬化性組成物には、光安定剤を使用することができる。光安定剤を使用すると硬化物の光酸化劣化を防止できる。光安定剤として、例えば、ベンゾトリアゾール系、ヒンダードアミン系、ベンゾエート系の化合物等が挙げられる。特にヒンダードアミン系の化合物が好ましい。これらの光安定剤は、単独で使用してもよく、2種以上を組み合わせて使用してもよい。
<Light stabilizer>
A light stabilizer can be used in the curable composition. The use of a light stabilizer can prevent photo-oxidative deterioration of the cured product. Examples of light stabilizers include benzotriazole-based, hindered amine-based, and benzoate-based compounds. Hindered amine compounds are particularly preferred. These light stabilizers may be used alone or in combination of two or more.
 光安定剤の使用量は、(A)成分100重量部に対して、例えば、0.1~10重量部であり、0.2~8.0重量部が好ましく、0.3~6.0重量部がより好ましい。 The amount of light stabilizer used is, for example, 0.1 to 10 parts by weight, preferably 0.2 to 8.0 parts by weight, and 0.3 to 6.0 parts by weight, per 100 parts by weight of component (A). Parts by weight are more preferred.
 <酸化防止剤>
 本硬化性組成物には、酸化防止剤(老化防止剤)を使用することができる。酸化防止剤を使用すると硬化物の耐熱性や耐候性を高めることができる。酸化防止剤としては、例えば、ヒンダードフェノール系、モノフェノール系、ビスフェノール系、ポリフェノール系の化合物等が挙げられる。酸化防止剤の具体例は、特開平4-283259号公報、特開平9-194731号公報等にも記載されている。これらの酸化防止剤は、単独で使用してもよく、2種以上を組み合わせて使用してもよい。
<Antioxidant>
An antioxidant (antiaging agent) can be used in the present curable composition. The use of an antioxidant can improve the heat resistance and weather resistance of the cured product. Examples of antioxidants include hindered phenol-based, monophenol-based, bisphenol-based, and polyphenol-based compounds. Specific examples of antioxidants are also described in JP-A-4-283259 and JP-A-9-194731. These antioxidants may be used alone or in combination of two or more.
 酸化防止剤の使用量は、(A)成分100重量部に対して、例えば、0.1~2.0重量部であり、0.2~1.8重量部が好ましく、0.3~1.6重量部がより好ましい。 The amount of antioxidant used is, for example, 0.1 to 2.0 parts by weight, preferably 0.2 to 1.8 parts by weight, and 0.3 to 1 part by weight, per 100 parts by weight of component (A). .6 parts by weight is more preferred.
 <表面改質剤>
 本硬化性組成物には、表面改質剤(表面改良剤)を使用することができる。表面改質剤としては、例えば、ラウリルアミンなどの長鎖アルキルアミン、リン酸2,2‘-メチレンビス(4,6-ジ-t-ブチルフェニル)ナトリウム、トリス(2,4-ジ-t-ブチルフェニル)ホスファイトなどのリン化合物、オキサゾリジン化合物、1,1,1-トリメチロールプロパントリアクリル酸エステル等が挙げられる。これらの表面改質剤は、単独で使用してもよく、2種以上を組み合わせて使用してもよい。
<Surface modifier>
A surface modifier (surface modifier) can be used in the present curable composition. Examples of surface modifiers include long-chain alkylamines such as laurylamine, 2,2′-methylenebis(4,6-di-t-butylphenyl)sodium phosphate, tris(2,4-di-t- Phosphorus compounds such as butylphenyl)phosphite, oxazolidine compounds, 1,1,1-trimethylolpropane triacrylate and the like. These surface modifiers may be used alone or in combination of two or more.
 表面改質剤の使用量は、(A)成分100重量部に対して、例えば、1.0~10.0重量部であり、1.5~7.5重量部が好ましく、2.0~5.0重量部がより好ましい。 The amount of the surface modifier used is, for example, 1.0 to 10.0 parts by weight, preferably 1.5 to 7.5 parts by weight, and 2.0 to 10.0 parts by weight per 100 parts by weight of component (A). 5.0 parts by weight is more preferred.
 <溶剤、希釈剤>
 本硬化性組成物には、溶剤または希釈剤を添加することができる。溶剤及び希釈剤としては、特に限定されないが、脂肪族炭化水素、芳香族炭化水素、脂環族炭化水素、ハロゲン化炭化水素、アルコール、エステル、ケトン、エーテルなどを使用することができる。溶剤または希釈剤を使用する場合、組成物を屋内で使用した時の空気への汚染の問題から、溶剤の沸点は、150℃以上が好ましく、200℃以上がより好ましく、250℃以上が特に好ましい。上記溶剤または希釈剤は単独で用いてもよく、2種以上併用してもよい。
<Solvent, diluent>
A solvent or diluent can be added to the curable composition. Solvents and diluents that can be used include, but are not limited to, aliphatic hydrocarbons, aromatic hydrocarbons, alicyclic hydrocarbons, halogenated hydrocarbons, alcohols, esters, ketones, and ethers. When a solvent or diluent is used, the boiling point of the solvent is preferably 150° C. or higher, more preferably 200° C. or higher, and particularly preferably 250° C. or higher, because of the problem of air pollution when the composition is used indoors. . The above solvents or diluents may be used alone or in combination of two or more.
 <タレ防止剤>
 本硬化性組成物には、必要に応じてタレを防止し、作業性を良くするためにタレ防止剤を添加しても良い。また、タレ防止剤としては特に限定されないが、例えば、ポリアミドワックス類;水添ヒマシ油誘導体類;ステアリン酸カルシウム、ステアリン酸アルミニウム、ステアリン酸バリウム等の金属石鹸類等が挙げられる。これらタレ防止剤は単独で用いてもよく、2種以上併用してもよい。
<Anti-sagging agent>
An anti-sagging agent may be added to the present curable composition as necessary to prevent sagging and improve workability. The anti-sagging agent is not particularly limited, but examples thereof include polyamide waxes; hydrogenated castor oil derivatives; metal soaps such as calcium stearate, aluminum stearate and barium stearate. These anti-sagging agents may be used alone or in combination of two or more.
 タレ防止剤の使用量は、(A)成分100重量部に対して、0.1~20重量部が好ましい。 The amount of anti-sagging agent used is preferably 0.1 to 20 parts by weight per 100 parts by weight of component (A).
 <物性調整剤>
 本硬化性組成物には、硬化物の引張特性を調整する物性調整剤を添加しても良い。物性調整剤としては特に限定されないが、例えば、メチルトリメトキシシラン、ジメチルジメトキシシラン、トリメチルメトキシシラン等のアルキルアルコキシシラン類;ジメチルジイソプロペノキシシラン、メチルトリイソプロペノキシシラン、γ-グリシドキシプロピルメチルジイソプロペノキシシラン等のアルキルイソプロペノキシシラン;トリス(トリメチルシリル)ボレート、トリス(トリエチルシリル)ボレートなどのトリアルキルシリルボレート類;シリコーンワニス類;ポリシロキサン類等が挙げられる。前記物性調整剤を用いることにより、本実施形態に係る組成物を硬化させた時の硬度を上げたり、逆に硬度を下げ、破断伸びを出したりし得る。上記物性調整剤は単独で用いてもよく、2種以上を併用してもよい。
<Physical property modifier>
A physical property modifier for adjusting the tensile properties of the cured product may be added to the present curable composition. Although the physical property modifier is not particularly limited, for example, alkylalkoxysilanes such as methyltrimethoxysilane, dimethyldimethoxysilane, and trimethylmethoxysilane; dimethyldiisopropenoxysilane, methyltriisopropenoxysilane, γ-glycidoxy Alkylisopropenoxysilanes such as propylmethyldiisopropenoxysilane; trialkylsilylborates such as tris(trimethylsilyl)borate and tris(triethylsilyl)borate; silicone varnishes; and polysiloxanes. By using the physical property modifier, it is possible to increase the hardness when the composition according to the present embodiment is cured, or conversely decrease the hardness and increase the elongation at break. The physical property modifiers may be used alone, or two or more of them may be used in combination.
 特に、加水分解により、分子内に1価のシラノール基を有する化合物を生成する化合物は、硬化物の表面のべたつきを悪化させずに硬化物のモジュラスを低下させる作用を有する。特にトリメチルシラノールを生成する化合物が好ましい。加水分解により分子内に1価のシラノール基を有する化合物を生成する化合物としては、ヘキサノール、オクタノール、トリメチロールプロパン、グリセリン、ペンタエリスリトール、ソルビトールなどのアルコールの誘導体であって加水分解によりシランモノオールを生成するシリコン化合物を挙げることができる。具体的には、トリス((トリメチルシロキシ)メチル)プロパン等が挙げられる。 In particular, a compound that produces a compound having a monovalent silanol group in its molecule by hydrolysis has the effect of lowering the modulus of the cured product without exacerbating the stickiness of the surface of the cured product. Compounds that generate trimethylsilanol are particularly preferred. Compounds that generate compounds having a monovalent silanol group in the molecule by hydrolysis include alcohol derivatives such as hexanol, octanol, trimethylolpropane, glycerin, pentaerythritol, and sorbitol, which are hydrolyzed into silane monools. A silicon compound to be generated can be mentioned. Specific examples include tris((trimethylsiloxy)methyl)propane.
 物性調整剤の使用量は、(A)成分100重量部に対して、0.1~10重量部であることが好ましく、0.5~5重量部がより好ましい。 The amount of the physical property modifier used is preferably 0.1 to 10 parts by weight, more preferably 0.5 to 5 parts by weight, per 100 parts by weight of component (A).
 <接着性付与剤>
 本硬化性組成物には、接着性付与剤を添加することができる。接着性付与剤としては、シランカップリング剤、シランカップリング剤の反応物を添加することができる。
<Adhesion imparting agent>
An adhesion imparting agent can be added to the present curable composition. A silane coupling agent or a reactant of the silane coupling agent can be added as the adhesion imparting agent.
 シランカップリング剤の具体例としては、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルメチルジメトキシシラン、N-β-アミノエチル-γ-アミノプロピルトリメトキシシラン、N-β-アミノエチル-γ-アミノプロピルメチルジメトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、(2-アミノエチル)アミノメチルトリメトキシシランなどのアミノ基含有シラン類;γ-イソシアネートプロピルトリメトキシシラン、γ-イソシアネートプロピルトリエトキシシラン、γ-イソシアネートプロピルメチルジメトキシシラン、α-イソシアネートメチルトリメトキシシラン、α-イソシアネートメチルジメトキシメチルシラン等のイソシアネート基含有シラン類;γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルトリエトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン等のメルカプト基含有シラン類;γ-グリシドキシプロピルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシ基含有シラン類、が挙げられる。また、各種シランカップリング剤の反応物も使用できる。上記接着性付与剤は1種類のみで使用しても良いし、2種類以上混合使用しても良い。 Specific examples of silane coupling agents include γ-aminopropyltrimethoxysilane, γ-aminopropylmethyldimethoxysilane, N-β-aminoethyl-γ-aminopropyltrimethoxysilane, N-β-aminoethyl-γ- Amino group-containing silanes such as aminopropylmethyldimethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, (2-aminoethyl)aminomethyltrimethoxysilane; γ-isocyanatopropyltrimethoxysilane, γ-isocyanatopropyltrimethoxysilane; isocyanate group-containing silanes such as ethoxysilane, γ-isocyanatopropylmethyldimethoxysilane, α-isocyanatomethyltrimethoxysilane, α-isocyanatomethyldimethoxymethylsilane; γ-mercaptopropyltrimethoxysilane, γ-mercaptopropyltriethoxysilane, mercapto group-containing silanes such as γ-mercaptopropylmethyldimethoxysilane; epoxy group-containing silanes such as γ-glycidoxypropyltrimethoxysilane and β-(3,4-epoxycyclohexyl)ethyltrimethoxysilane; . Reaction products of various silane coupling agents can also be used. The adhesiveness-imparting agent may be used alone or in combination of two or more.
 また、各種シランカップリング剤の反応物も使用できる。反応物としては、イソシアネートシランと水酸基含有化合物、イソシアネートシランとアミノ基含有化合物との反応物;アミノシランとアクリル基含有化合物、メタクリル基含有化合物との反応物(マイケル付加反応物);アミノシランとエポキシ基含有化合物との反応物、エポキシシランとカルボン酸基含有化合物、アミノ基含有化合物との反応物などが挙げられる。イソシアネートシランとアミノシラン、アミノシランと(メタ)アクリル基含有シラン、アミノシランとエポキシシラン、アミノシランと酸無水物含有シランなどシランカップリング剤同士の反応物も使用できる。 In addition, reaction products of various silane coupling agents can also be used. The reactants include isocyanate silane and a hydroxyl group-containing compound, isocyanate silane and an amino group-containing compound; reaction products of aminosilane and an acrylic group-containing compound, and a methacrylic group-containing compound (Michael addition reaction product); aminosilane and an epoxy group. Examples include a reaction product with a containing compound, a reaction product with an epoxysilane and a carboxylic acid group-containing compound, and an amino group-containing compound. Reaction products between silane coupling agents such as isocyanate silane and aminosilane, aminosilane and (meth)acrylic group-containing silane, aminosilane and epoxysilane, aminosilane and acid anhydride-containing silane can also be used.
 シランカップリング剤以外の接着性付与剤の具体例としては、特に限定されないが、例えば、エポキシ樹脂、フェノール樹脂、硫黄、アルキルチタネート類、芳香族ポリイソシアネート等が挙げられる。上記接着性付与剤は1種類のみで使用しても良いし、2種類以上混合使用しても良い。これら接着性付与剤は添加することにより被着体に対する接着性を改善することができる。 Specific examples of adhesion imparting agents other than silane coupling agents are not particularly limited, but include epoxy resins, phenol resins, sulfur, alkyl titanates, aromatic polyisocyanates, and the like. The adhesiveness-imparting agent may be used alone or in combination of two or more. Addition of these adhesion-imparting agents can improve adhesion to adherends.
 接着性付与剤の使用量は、本発明のポリオキシアルキレン系重合体(A)100重量部に対して、0.1~20重量部が好ましく、特に0.5~10重量部が好ましい。 The amount of adhesion-imparting agent used is preferably 0.1 to 20 parts by weight, particularly preferably 0.5 to 10 parts by weight, per 100 parts by weight of the polyoxyalkylene polymer (A) of the present invention.
 <粘着性付与剤>
 本硬化性組成物には、基材への接着性や密着性を高める目的、あるいはその他必要に応じて粘着付与樹脂を添加できる。粘着付与樹脂としては、特に制限はなく通常使用されているものを使うことができる。
<Tackifier>
A tackifying resin can be added to the present curable composition for the purpose of enhancing the adhesiveness or adhesion to a substrate, or for other purposes. As the tackifier resin, there is no particular limitation and any commonly used one can be used.
 具体例としては、テルペン系樹脂、芳香族変性テルペン樹脂、水素添加テルペン樹脂、テルペン-フェノール樹脂、フェノール樹脂、変性フェノール樹脂、キシレン-フェノール樹脂、シクロペンタジエン-フェノール樹脂、クマロンインデン樹脂、ロジン系樹脂、ロジンエステル樹脂、水添ロジンエステル樹脂、キシレン樹脂、低分子量ポリスチレン系樹脂、スチレン共重合体樹脂、スチレン系ブロック共重合体及びその水素添加物、石油樹脂(例えば、C5炭化水素樹脂、C9炭化水素樹脂、C5C9炭化水素共重合樹脂等)、水添石油樹脂、DCPD樹脂等が挙げられる。これらは単独で用いても良く、2種以上を併用しても良い。 Specific examples include terpene-based resins, aromatic modified terpene resins, hydrogenated terpene resins, terpene-phenolic resins, phenolic resins, modified phenolic resins, xylene-phenolic resins, cyclopentadiene-phenolic resins, coumarone-indene resins, rosin-based Resins, rosin ester resins, hydrogenated rosin ester resins, xylene resins, low molecular weight polystyrene resins, styrene copolymer resins, styrene block copolymers and hydrogenated products thereof, petroleum resins (e.g., C5 hydrocarbon resins, C9 hydrocarbon resins, C5C9 hydrocarbon copolymer resins, etc.), hydrogenated petroleum resins, DCPD resins, and the like. These may be used alone or in combination of two or more.
 粘着付与樹脂の使用量は、(A)成分100重量部に対して2~100重量部が好ましく、5~50重量部であることがより好ましく、5~30重量部であることがさらに好ましい。2重量部より少ないと基材への接着、密着効果が得られにくく、また100重量部を超えると組成物の粘度が高くなりすぎ取扱いが困難となる場合がある。 The amount of the tackifying resin used is preferably 2 to 100 parts by weight, more preferably 5 to 50 parts by weight, even more preferably 5 to 30 parts by weight, per 100 parts by weight of component (A). If the amount is less than 2 parts by weight, it is difficult to obtain adhesion and adhesion effects to the substrate, and if the amount exceeds 100 parts by weight, the viscosity of the composition becomes too high and handling may become difficult.
 <光硬化性物質>
 本硬化性組成物には光硬化性物質を使用できる。光硬化性物質を使用すると硬化物表面に光硬化性物質の皮膜が形成され、硬化物のべたつきや硬化物の耐候性を改善できる。この種の化合物には有機単量体、オリゴマー、樹脂或いはそれらを含む組成物等多くのものが知られており、代表的なものとしては、アクリル系又はメタクリル系不飽和基を1ないし数個有するモノマー、オリゴマー或いはそれ等の混合物である不飽和アクリル系化合物、ポリケイ皮酸ビニル類あるいはアジド化樹脂等が使用できる。
<Photocurable substance>
A photocurable material can be used in the present curable composition. When a photocurable substance is used, a film of the photocurable substance is formed on the surface of the cured product, and the stickiness of the cured product and the weather resistance of the cured product can be improved. Many compounds such as organic monomers, oligomers, resins, or compositions containing them are known as this type of compound. Unsaturated acrylic compounds, polyvinyl cinnamates, azide resins, etc., which are monomers, oligomers, or mixtures thereof can be used.
 不飽和アクリル系化合物としては、アクリル系又はメタクリル系不飽和基を1ないし数個有するモノマー、オリゴマー或いはそれ等の混合物であって、プロピレン(又はブチレン、エチレン)グリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)ジメタクリレート等の単量体又は分子量10,000以下のオリゴエステルが例示される。具体的には、例えば特殊アクリレート(2官能)のアロニックスM-210、アロニックスM-215、アロニックスM-220、アロニックスM-233、アロニックスM-240、アロニックスM-245;(3官能)のアロニックスM305、アロニックスM-309、アロニックスM-310、アロニックスM-315、アロニックスM-320、アロニックスM-325、及び(多官能)のアロニックスM-400などが例示できるが、特にアクリル官能基を含有する化合物が好ましく、また1分子中に平均して3個以上の同官能基を含有する化合物が好ましい(以上アロニックスはいずれも東亜合成化学工業株式会社の製品である。)。 Examples of unsaturated acrylic compounds include monomers, oligomers or mixtures thereof having one to several acrylic or methacrylic unsaturated groups, such as propylene (or butylene, ethylene) glycol di(meth)acrylate, neopentyl Monomers such as glycol di(meth)dimethacrylate and oligoesters having a molecular weight of 10,000 or less are exemplified. Specifically, for example, special acrylates (bifunctional) Aronix M-210, Aronix M-215, Aronix M-220, Aronix M-233, Aronix M-240, Aronix M-245; (trifunctional) Aronix M305 , Aronix M-309, Aronix M-310, Aronix M-315, Aronix M-320, Aronix M-325, and (multifunctional) Aronix M-400, etc., especially compounds containing acrylic functional groups is preferred, and a compound containing 3 or more of the same functional groups on average in one molecule is preferred (Aronix is a product of Toagosei Kagaku Kogyo Co., Ltd.).
 ポリケイ皮酸ビニル類としては、シンナモイル基を感光基とする感光性樹脂でありポリビニルアルコールをケイ皮酸でエステル化したものの他、多くのポリケイ皮酸ビニル誘導体が例示される。アジド化樹脂は、アジド基を感光基とする感光性樹脂として知られており、通常はジアジド化合物を感光剤として加えたゴム感光液の他、「感光性樹脂」(昭和47年3月17日出版、印刷学会出版部発行、第93頁以降、第106頁以降、第117頁以降)に詳細な例示があり、これらを単独又は混合し、必要に応じて増感剤を加えて使用することができる。なお、ケトン類、ニトロ化合物などの増感剤やアミン類などの促進剤を添加すると、効果が高められる場合がある。 Examples of polyvinyl cinnamate include a photosensitive resin having a cinnamoyl group as a photosensitive group, which is obtained by esterifying polyvinyl alcohol with cinnamic acid, and many polyvinyl cinnamate derivatives. Azidated resins are known as photosensitive resins having an azide group as a photosensitive group. Publishing, Printing Society Publishing Department, page 93 onwards, page 106 onwards, page 117 onwards), and these may be used singly or in combination, and if necessary, a sensitizer may be added. can be done. The effect may be enhanced by adding a sensitizer such as ketones or nitro compounds or an accelerator such as amines.
 光硬化性物質は、(A)成分100重量部に対して0.1~20重量部の範囲で使用することが好ましく、より好ましくは0.5~10重量部の範囲である。0.1重量部以下では耐候性を高める効果はなく、20重量部以上では硬化物が硬くなりすぎて、ヒビ割れを生じる傾向がある。 The photocurable substance is preferably used in the range of 0.1 to 20 parts by weight, more preferably in the range of 0.5 to 10 parts by weight, per 100 parts by weight of component (A). If it is less than 0.1 part by weight, there is no effect of improving the weather resistance, and if it is more than 20 parts by weight, the cured product becomes too hard and tends to crack.
 <酸素硬化性物質>
 本硬化性組成物には、酸素硬化性物質を使用することができる。酸素硬化性物質には空気中の酸素と反応し得る不飽和化合物を例示でき、空気中の酸素と反応して硬化物の表面付近に硬化皮膜を形成し表面のべたつきや硬化物表面へのゴミやホコリの付着を防止するなどの作用をする。酸素硬化性物質の具体例には、キリ油、アマニ油などで代表される乾性油や、該化合物を変性して得られる各種アルキッド樹脂;乾性油により変性されたアクリル系重合体、エポキシ系樹脂、シリコン樹脂;ブタジエン、クロロプレン、イソプレン、1,3-ペンタジエンなどのジエン系化合物を重合または共重合させて得られる1,2-ポリブタジエン、1,4-ポリブタジエン、C5~C8ジエンの重合体などの液状重合体などが挙げられる。これらは単独で用いてもよく、2種以上併用してもよい。
<Oxygen Curable Substance>
An oxygen-curable material can be used in the present curable composition. Examples of oxygen-curable substances include unsaturated compounds that can react with oxygen in the air, and react with oxygen in the air to form a hardened film near the surface of the cured product, which causes the surface to become sticky and dust on the surface of the cured product. and prevent the adhesion of dust. Specific examples of oxygen-curable substances include drying oils represented by paulownia oil and linseed oil, various alkyd resins obtained by modifying these compounds; acrylic polymers modified with drying oils, and epoxy resins. , silicone resins; 1,2-polybutadiene, 1,4-polybutadiene, C5-C8 diene polymers obtained by polymerizing or copolymerizing diene compounds such as butadiene, chloroprene, isoprene, 1,3-pentadiene, etc. Examples include liquid polymers. These may be used alone or in combination of two or more.
 酸素硬化性物質の使用量は、本発明のポリオキシアルキレン系重合体(A)100重量部に対して0.1~20重量部の範囲で使用するのがよく、さらに好ましくは0.5~10重量部である。前記使用量が0.1重量部未満になると汚染性の改善が充分でなくなり、20重量部を超えると硬化物の引張り特性などが損なわれる傾向が生ずる。特開平3-160053号公報に記載されているように酸素硬化性物質は光硬化性物質と併用するのがよい。 The amount of the oxygen-curable substance used is preferably in the range of 0.1 to 20 parts by weight, more preferably 0.5 to 20 parts by weight, per 100 parts by weight of the polyoxyalkylene polymer (A) of the present invention. 10 parts by weight. If the amount is less than 0.1 part by weight, the improvement in staining resistance is not sufficient, and if it exceeds 20 parts by weight, the tensile properties of the cured product tend to be impaired. As described in JP-A-3-160053, the oxygen-curable substance is preferably used in combination with the photo-curable substance.
 (2-5.用途)
 本硬化性組成物は、防水材、建築用弾性シーリング材、サイディングボード用シーリング材、複層ガラス用シーリング材、車両用シーリング材、自動車部品、トラック、バスなどの大型車両部品、列車車両用部品、航空機部品、船舶用部品、電機部品、各種機械部品などにおいて使用される液状シーリング材等建築用および工業用のシーリング材、太陽電池裏面封止剤などの電気・電子部品材料、電線・ケーブル用絶縁被覆材などの電気絶縁材料、粘着剤、接着剤、弾性接着剤、コンタクト接着剤、タイル用接着剤、反応性ホットメルト接着剤、塗料、粉体塗料、コーティング材、発泡体、缶蓋等のシール材、放熱シート、電気電子用ポッティング剤、フィルム、ガスケット、マリンデッキコーキング、注型材料、各種成形材料、人工大理石、および、網入りガラスや合わせガラス端面(切断部)の防錆・防水用封止材、自動車や船舶、家電等に使用される防振・制振・防音・免震材料、自動車部品、電機部品、各種機械部品などにおいて使用される液状シール材等の様々な用途に利用可能である。
(2-5. Applications)
The curable composition can be used as a waterproofing material, an elastic sealing material for construction, a sealing material for siding boards, a sealing material for double glazing, a sealing material for vehicles, automobile parts, parts for large vehicles such as trucks and buses, and parts for train vehicles. , aircraft parts, marine parts, electrical parts, liquid sealing materials used in various machine parts, etc. Architectural and industrial sealing materials, electrical and electronic component materials such as solar cell back sealing agents, electric wires and cables Electrical insulating materials such as insulation coating materials, adhesives, adhesives, elastic adhesives, contact adhesives, tile adhesives, reactive hot melt adhesives, paints, powder coatings, coating materials, foams, can lids, etc. sealing materials, heat dissipation sheets, potting agents for electrical and electronic equipment, films, gaskets, marine deck caulking, casting materials, various molding materials, artificial marble, and rust prevention and waterproofing of wire glass and laminated glass edges (cut parts) Sealing materials for automobiles, ships, vibration isolation, soundproofing, and seismic isolation materials used in automobiles, ships, home appliances, etc. Liquid sealing materials used in automobile parts, electrical parts, various machine parts, etc. Available.
 〔3.硬化物〕
 本発明の一実施形態において、本硬化性組成物を硬化させてなる、硬化物(以下、「本硬化物」と称する。)を提供する。
[3. Cured material]
In one embodiment of the present invention, a cured product (hereinafter referred to as "main cured product") is provided by curing the present curable composition.
 本硬化物は、本硬化性組成物を硬化して形成されたものである。従い、本硬化物は、難燃性に優れる。 The cured product is formed by curing the curable composition. Therefore, the cured product has excellent flame retardancy.
 本発明の一実施形態において、本硬化物は、以下の硬化性組成物を、硬化させることによって形成されたものである。
・(A)成分および(B)成分を含むA剤と、(C)成分を含むB剤と、を含む硬化性組成物
・(A)成分を含むA剤と、(B)成分および(C)成分を含むB剤と、を含む硬化性組成物
 なお、硬化の方法は特に限定されることなく、例えば、外気温や室温で硬化させたり、加熱して硬化させることができる。
In one embodiment of the present invention, the cured product is formed by curing the following curable composition.
・ A curable composition containing (A) component and (B) component A containing component, and (C) component containing B component ・ A containing component (A) component, (B) component and (C The curing method is not particularly limited, and for example, it can be cured at an outside temperature or room temperature, or it can be cured by heating.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, but can be modified in various ways within the scope of the claims, and can be obtained by appropriately combining technical means disclosed in different embodiments. is also included in the technical scope of the present invention.
 すなわち、本発明の一態様は、以下を含む。
<1>加水分解性シリル基を有する有機重合体(A)と、
 チタネートで表面処理された水酸化アルミニウム(B)と、
 シラノール縮合触媒(C)と、を含有する、硬化性組成物。
<2>前記有機重合体(A)が、加水分解性シリル基含有ポリオキシアルキレン系重合体(A1)、および/または加水分解性シリル基含有(メタ)アクリル酸エステル系共重合体(A2)である、<1>に記載の硬化性組成物。
<3>前記有機重合体(A)が、加水分解性シリル基含有(メタ)アクリル酸エステル系共重合体(A2)である、<1>または<2>に記載の硬化性組成物。
<4>前記有機重合体(A)が、加水分解性シリル基含有ポリオキシアルキレン系重合体(A1)、および加水分解性シリル基含有(メタ)アクリル酸エステル系共重合体(A2)である、<1>または<2>に記載の硬化性組成物。
<5>前記シラノール縮合触媒(C)が、2価スズである、<1>~<4>のいずれかに記載の硬化性組成物。
<6>前記水酸化アルミニウム(B)の含有量が、前記有機重合体(A)100重量部に対して、30~300重量部である、<1>~<5>のいずれかに記載の硬化性組成物。
<7>前記加水分解性シリル基含有ポリオキシアルキレン系重合体(A1)と前記加水分解性シリル基含有(メタ)アクリル酸エステル系共重合体(A2)との重量比が、5:95~50:50である、<4>に記載の硬化性組成物。
<8>前記シラノール縮合触媒(C)の含有量が、前記有機重合体(A)100重量部に対して、0.5~20重量部である、<1>~<7>のいずれかに記載の硬化性組成物。
<9>前記水酸化アルミニウム(B)の平均粒径が、0.1~200μmである、<1>~<8>のいずれかに記載の硬化性組成物。
<10><1>~<9>のいずれかに記載の硬化性組成物を硬化させてなる、硬化物。
That is, one aspect of the present invention includes the following.
<1> an organic polymer (A) having a hydrolyzable silyl group;
aluminum hydroxide (B) surface-treated with titanate;
A curable composition containing a silanol condensation catalyst (C).
<2> The organic polymer (A) is a hydrolyzable silyl group-containing polyoxyalkylene polymer (A1) and/or a hydrolyzable silyl group-containing (meth)acrylic acid ester copolymer (A2) The curable composition according to <1>.
<3> The curable composition according to <1> or <2>, wherein the organic polymer (A) is a hydrolyzable silyl group-containing (meth)acrylate copolymer (A2).
<4> The organic polymer (A) is a hydrolyzable silyl group-containing polyoxyalkylene polymer (A1) and a hydrolyzable silyl group-containing (meth)acrylate copolymer (A2). , <1> or <2>.
<5> The curable composition according to any one of <1> to <4>, wherein the silanol condensation catalyst (C) is divalent tin.
<6> The content of the aluminum hydroxide (B) is 30 to 300 parts by weight with respect to 100 parts by weight of the organic polymer (A), according to any one of <1> to <5>. Curable composition.
<7> The weight ratio of the hydrolyzable silyl group-containing polyoxyalkylene polymer (A1) and the hydrolyzable silyl group-containing (meth)acrylic acid ester copolymer (A2) is 5:95 to The curable composition according to <4>, which is 50:50.
<8> Any one of <1> to <7>, wherein the content of the silanol condensation catalyst (C) is 0.5 to 20 parts by weight with respect to 100 parts by weight of the organic polymer (A) A curable composition as described.
<9> The curable composition according to any one of <1> to <8>, wherein the aluminum hydroxide (B) has an average particle size of 0.1 to 200 μm.
<10> A cured product obtained by curing the curable composition according to any one of <1> to <9>.
 以下、本発明を実施例に基づいてより詳細に説明するが、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.
 〔材料〕
 実施例および比較例で使用した材料は、以下の通りである。
〔material〕
Materials used in Examples and Comparative Examples are as follows.
 (有機重合体)
 下記の合成例に基づき製造した、有機重合体(A-1)、(A-2)、(A-3)および(A-4)を使用した。
(organic polymer)
Organic polymers (A-1), (A-2), (A-3) and (A-4) prepared according to the synthesis examples below were used.
 (水酸化アルミニウム)
 水酸化アルミニウム(B-1):水酸化アルミニウム(表面チタネート処理、平均粒径:6μm、商品名:BX053T、日本軽金属製)
 水酸化アルミニウム(B-2):水酸化アルミニウム(表面チタネート処理、平均粒径:7μm、商品名:B103T、日本軽金属製)
 水酸化アルミニウム(B-3):水酸化アルミニウム(表面チタネート処理、平均粒径:1μm、商品名:BF013T、日本軽金属製)
 水酸化アルミニウム(B-4):水酸化アルミニウム(表面無処理、平均粒径3μm、商品名:BX043、日本軽金属製)
 水酸化アルミニウム(B-5):水酸化アルミニウム(表面メタクリロキシシラン処理、平均粒径:7μm、商品名:B103ST、日本軽金属製)
 水酸化アルミニウム(B-6):水酸化アルミニウム(表面無処理、平均粒径1μm、商品名:ハイジライトH-42M、昭和電工製)
 水酸化アルミニウム(B-7):水酸化アルミニウム(表面無処理、平均粒径:6μm、商品名:BX053、日本軽金属製)
 (硬化剤)
 シラノール縮合触媒:オクチル酸錫(ネオスタンU-28、日東化成工業(株)製)
 助触媒:ラウリルアミン(和光純薬(株)製)
 (その他の成分)
 炭酸カルシウム:膠質炭酸カルシウム(商品名:カルファインN-2、丸尾カルシウム製)
 可塑剤:フタル酸ジイソデシル(DIDP、(株)協和発酵製)
 エポキシ化合物-1:エポキシヘキサヒドロフタル酸ジ2-エチルヘキシル(サンソサイザー E-PS 、新日本理化(株)製)
 エポキシ化合物-2:ビスフェノールA型エポキシ樹脂(jER 828、三菱ケミカル(製))
 紫外線吸収剤:2-(5-クロロ-2H-ベンゾトリアゾール-2-イル)-4-メチル-6-tert-ブチルフェノール(チヌビン326、BASF製)
 光安定剤:ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート(チヌビン770、BASF製)
 酸化防止剤:ヒンダードフェノール系酸化防止剤(Irganox1010、BASF製)
 表面改質剤:1,1,1-トリメチロールプロパントリアクリル酸エステル(アロニックスM309、東亞合成(株)製
 〔測定および評価方法〕
 実施例および比較例における測定および評価を、以下の方法で行った。
(aluminum hydroxide)
Aluminum hydroxide (B-1): Aluminum hydroxide (surface titanate treatment, average particle size: 6 μm, trade name: BX053T, manufactured by Nippon Light Metal)
Aluminum hydroxide (B-2): aluminum hydroxide (surface titanate treatment, average particle size: 7 μm, trade name: B103T, manufactured by Nippon Light Metal)
Aluminum hydroxide (B-3): Aluminum hydroxide (surface titanate treatment, average particle size: 1 μm, trade name: BF013T, manufactured by Nippon Light Metal)
Aluminum hydroxide (B-4): aluminum hydroxide (no surface treatment, average particle size 3 μm, trade name: BX043, manufactured by Nippon Light Metal)
Aluminum hydroxide (B-5): Aluminum hydroxide (surface methacryloxysilane treatment, average particle size: 7 μm, trade name: B103ST, manufactured by Nippon Light Metal Co., Ltd.)
Aluminum hydroxide (B-6): aluminum hydroxide (no surface treatment, average particle diameter 1 μm, trade name: Hygilite H-42M, manufactured by Showa Denko)
Aluminum hydroxide (B-7): aluminum hydroxide (no surface treatment, average particle size: 6 μm, trade name: BX053, manufactured by Nippon Light Metal)
(curing agent)
Silanol condensation catalyst: tin octoate (Neostan U-28, manufactured by Nitto Kasei Kogyo Co., Ltd.)
Cocatalyst: Laurylamine (manufactured by Wako Pure Chemical Industries, Ltd.)
(other ingredients)
Calcium carbonate: colloidal calcium carbonate (trade name: Calfine N-2, manufactured by Maruo Calcium)
Plasticizer: diisodecyl phthalate (DIDP, manufactured by Kyowa Hakko Co., Ltd.)
Epoxy compound-1: di-2-ethylhexyl epoxyhexahydrophthalate (Sanso Cizer E-PS, manufactured by Shin Nippon Rika Co., Ltd.)
Epoxy compound-2: bisphenol A type epoxy resin (jER 828, Mitsubishi Chemical (manufactured))
UV absorber: 2-(5-chloro-2H-benzotriazol-2-yl)-4-methyl-6-tert-butylphenol (tinuvin 326, manufactured by BASF)
Light stabilizer: bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate (tinuvin 770, manufactured by BASF)
Antioxidant: hindered phenolic antioxidant (Irganox 1010, manufactured by BASF)
Surface modifier: 1,1,1-trimethylolpropane triacrylate (Aronix M309, manufactured by Toagosei Co., Ltd. [Measurement and evaluation methods]
Measurements and evaluations in Examples and Comparative Examples were carried out by the following methods.
 (ナイフカットピール試験)
 試験基材(幅25mm、長さ100mm、厚さ3mm)に、横浜ゴム(株)製プライマーNo.40を刷毛で塗布し約30分乾燥させた。その後、得られた組成物を幅10mm、厚さ10mm、長さ80mmのビード状に乗せ、23℃相対湿度50%下で7日間硬化させた。養生後、シーラントと基材の界面にカミソリ刃で切れ込みを入れ、シーラントを180度方向に引っ張って破断時の状態を観察した。破壊状態を確認し、シーラントが破壊した状態をCF、薄層が基材に薄く残った状態をTCF、基材にシーラントが残らなかった状態をAFとした。CFおよびTCFは、接着性が良好と評価した。
(Knife cut peel test)
A test substrate (width 25 mm, length 100 mm, thickness 3 mm) was coated with Primer No. manufactured by Yokohama Rubber Co., Ltd. 40 was applied with a brush and dried for about 30 minutes. After that, the obtained composition was applied in the form of a bead having a width of 10 mm, a thickness of 10 mm and a length of 80 mm, and cured at 23° C. and a relative humidity of 50% for 7 days. After curing, the interface between the sealant and the base material was cut with a razor blade, and the sealant was pulled in a direction of 180 degrees to observe the breakage state. The destruction state was confirmed, CF was defined as a state where the sealant was destroyed, TCF was defined as a state in which a thin layer remained on the base material, and AF was defined as a state in which no sealant remained on the base material. CF and TCF were evaluated as having good adhesion.
 なお、試験基材としては、以下を使用した。 In addition, the following was used as the test base material.
 SUS304:冷間圧延ステンレス鋼板(日本タクト(株)製)
 Al:陽極酸化アルミ A5052P((株)エンジニアリングテストサービス製)
 ガラス:フロートガラス(TP技研(株)製)。
SUS304: cold-rolled stainless steel plate (manufactured by Nippon Tact Co., Ltd.)
Al: Anodized aluminum A5052P (manufactured by Engineering Test Service Co., Ltd.)
Glass: Float glass (manufactured by TP Giken Co., Ltd.).
 (難燃性試験)
 硬化性組成物の難燃性をUL-94評価に準拠して測定した。具体的には、硬化性組成物を厚みが3mmのシート状試験体にして23℃、50%RH条件に3日間、さらに50℃乾燥機に4日間入れることで完全に硬化させた。このシートから試験体(長さ125mm×幅13mm×厚み3mm)を5本切り抜いた。
(Flame retardant test)
The flame retardancy of the curable composition was measured according to UL-94 rating. Specifically, the curable composition was made into a sheet-shaped specimen having a thickness of 3 mm, and was completely cured by placing it in a 23° C., 50% RH condition for 3 days and then in a 50° C. dryer for 4 days. Five specimens (length 125 mm×width 13 mm×thickness 3 mm) were cut out from this sheet.
 試験体を垂直に保持し、試験体の下端に10秒間ガスバーナーの炎を接炎させた。燃焼が30秒以内に止まった場合は、更に、試験体の下端に10秒間ガスバーナーの炎を接炎させた。 The specimen was held vertically, and the flame of a gas burner was applied to the lower end of the specimen for 10 seconds. When the combustion stopped within 30 seconds, the flame of the gas burner was further applied to the lower end of the test piece for 10 seconds.
 <判定基準>
 V-0評価として、下記の(1)~(5)の何れの条件も満たす場合を「○」、下記の(1)~(5)の条件のうち、一つでも満たさない場合を「×」とした。
<Judgment Criteria>
As a V-0 evaluation, "○" if any of the following conditions (1) to (5) are satisfied, and "X" if none of the following conditions (1) to (5) are satisfied "
 (1)5個の試験体の何れも炎を接触させた後、10秒以上燃焼し続けることができない。 (1) None of the five specimens could continue to burn for 10 seconds or more after contact with the flame.
 (2)5個の試験体の10回の接炎による総燃焼時間が50秒を超えない。 (2) The total burning time of 10 flame contact times for 5 specimens does not exceed 50 seconds.
 (3)固定用クランプの位置まで燃焼する試験体がない。 (3) There is no test piece that burns up to the position of the fixing clamp.
 (4)試験体の下方に置かれた脱脂綿を発火させる、燃焼する粒子を落下させる試験体がない。 (4) There is no test piece that causes the absorbent cotton placed below the test piece to ignite or that causes burning particles to fall.
 (5)2回目の接炎の後、30秒以上赤熱を続ける試験体がない。 (5) After the second flame contact, there is no specimen that continues to glow red for 30 seconds or longer.
 V-1評価として、下記の(1)~(5)の何れの条件も満たす場合を「○」、下記の(1)~(5)の条件のうち、一つでも満たさない場合を「×」とした。 As a V-1 evaluation, "○" if any of the following conditions (1) to (5) are satisfied, and "×" if none of the following conditions (1) to (5) are satisfied "
 (1)5個の試験体の何れも炎を接触させた後、30秒以上燃焼し続けることができない。 (1) None of the five specimens could continue to burn for 30 seconds or longer after contact with the flame.
 (2)5個の試験体の10回の接炎による総燃焼時間が250秒を超えない。 (2) The total burning time of 10 flame contact times for 5 specimens does not exceed 250 seconds.
 (3)固定用クランプの位置まで燃焼する試験体がない。 (3) There is no test piece that burns up to the position of the fixing clamp.
 (4)試験体の下方に置かれた脱脂綿を発火させる、燃焼する粒子を落下させる試験体がない。 (4) There is no test piece that causes the absorbent cotton placed below the test piece to ignite or that causes burning particles to fall.
 (5)2回目の接炎の後、60秒以上赤熱を続ける試験体がない。 (5) After the second flame application, there is no specimen that continues to glow red for 60 seconds or longer.
 V-2評価として、下記の(1)~(5)の何れの条件も満たす場合を「○」、下記の(1)~(5)の条件のうち、一つでも満たさない場合を「×」とした。 As a V-2 evaluation, "○" if any of the following conditions (1) to (5) are satisfied, and "X" if none of the following conditions (1) to (5) are satisfied "
 (1)5個の試験体の何れも炎を接触させた後、30秒以上燃焼し続けることができない。 (1) None of the five specimens could continue to burn for 30 seconds or longer after contact with the flame.
 (2)5個の試験体の10回の接炎による総燃焼時間が250秒を超えない。 (2) The total burning time of 10 flame contact times for 5 specimens does not exceed 250 seconds.
 (3)固定用クランプの位置まで燃焼する試験体がない。 (3) There is no test piece that burns up to the position of the fixing clamp.
 (4)試験体の下方に置かれた脱脂綿を発火させる、燃焼する粒子の落下が許容される。(5)2回目の接炎の後、60秒以上赤熱を続ける試験体がない。 (4) Falling of burning particles that ignite the absorbent cotton placed below the specimen is allowed. (5) There is no specimen that continues to glow red for 60 seconds or more after the second flame application.
 (その他)
 実施例中の数平均分子量は、以下の条件で測定したGPC分子量である:
 送液システム:東ソー製HLC-8220GPC
 カラム:東ソー製TSK-GEL Hタイプ
 溶媒:THF
 分子量:ポリスチレン換算
 測定温度:40℃。
(others)
The number average molecular weight in the examples is the GPC molecular weight measured under the following conditions:
Liquid delivery system: Tosoh HLC-8220GPC
Column: TSK-GEL H type manufactured by Tosoh Solvent: THF
Molecular weight: converted to polystyrene Measurement temperature: 40°C.
 また、実施例に示す重合体の末端1個あたり、または1分子あたりのシリル基の平均導入数は、NMR測定により算出した。 In addition, the average number of silyl groups introduced per terminal or per molecule of the polymer shown in the examples was calculated by NMR measurement.
 〔合成例1:有機重合体(A-1)((A2)成分に相当))〕
 ジエチル2,5-ジブロモアジペート(1.06重量部)を開始剤とし、臭化第一銅(0.76重量部)を触媒、ペンタメチルジエチレントリアミンを触媒配位子として、アセトニトリル溶媒中でブチルアクリレート(69.9重量部)、エチルアクリレート(10.6重量部)、ステアリルアクリレート(18.6重量部)の重合を約80~90℃で行い、両末端臭素基を有するポリアクリル酸エステルを得た。尚、重合反応速度についてはペンタメチルジエチレントリアミンの量で適宜調整した。続いて臭化第一銅のペンタメチルジエチレントリアミン錯体を触媒として、アセトニトリル溶媒中で前記ポリマーの末端臭素基と1,7-オクタジエンを反応させ、ポリアクリル酸エステルを得た。尚、1,7-オクタジエンは開始剤に対して60モル当量を用いた。反応後に未反応の1,7-オクタジエンを脱揮回収した。得られたポリマーを吸着精製し、約190℃に加熱して脱臭素化反応を行い、再度吸着精製を行い、両末端にアルケニル基を有するポリアクリル酸エステルを得た。
[Synthesis Example 1: Organic polymer (A-1) (corresponding to component (A2))]
Diethyl 2,5-dibromoadipate (1.06 parts by weight) as initiator, cuprous bromide (0.76 parts by weight) as catalyst, pentamethyldiethylenetriamine as catalyst ligand, butyl acrylate in acetonitrile solvent (69.9 parts by weight), ethyl acrylate (10.6 parts by weight), and stearyl acrylate (18.6 parts by weight) were polymerized at about 80 to 90 ° C. to obtain a polyacrylate having bromine groups at both ends. rice field. Incidentally, the polymerization reaction rate was appropriately adjusted by the amount of pentamethyldiethylenetriamine. Subsequently, a pentamethyldiethylenetriamine complex of cuprous bromide was used as a catalyst to react terminal bromine groups of the polymer with 1,7-octadiene in an acetonitrile solvent to obtain a polyacrylic acid ester. Incidentally, 1,7-octadiene was used in an amount of 60 molar equivalents with respect to the initiator. After the reaction, unreacted 1,7-octadiene was devolatilized and recovered. The resulting polymer was purified by adsorption, heated to about 190° C. for debromination, and purified again by adsorption to obtain a polyacrylic acid ester having alkenyl groups at both ends.
 得られた両末端にアルケニル基を有するポリアクリル酸エステルに対し、白金ビニルシロキサン錯体の白金含量3wt%のイソプロパノール溶液300ppmを触媒として、ポリアクリル酸エステルのアルケニル基に対してメチルジメトキシシランを100℃で1時間反応させた。尚、前記反応はオルト蟻酸メチル存在下で行い、アルケニル基に対して4モル当量のメチルジメトキシシランを用いた。反応後、未反応のメチルジメトキシシラン、オルト蟻酸メチルを脱揮除去してメチルジメトキシシリル基末端ポリアクリル酸エステル(有機重合体(A-1))を得た。得られた有機重合体の数平均分子量は40,500、分子量分布は1.3であり、1分子あたりに導入されたシリル基数は2.0個であった。 The resulting polyacrylate having alkenyl groups at both ends was treated with methyldimethoxysilane at 100° C. to the alkenyl groups of the polyacrylate using 300 ppm of an isopropanol solution containing 3 wt % platinum of a platinum-vinylsiloxane complex as a catalyst. was reacted for 1 hour. The reaction was carried out in the presence of methyl orthoformate, and 4 molar equivalents of methyldimethoxysilane relative to alkenyl groups were used. After the reaction, unreacted methyldimethoxysilane and methyl orthoformate were devolatilized and removed to obtain a methyldimethoxysilyl group-terminated polyacrylate (organic polymer (A-1)). The obtained organic polymer had a number average molecular weight of 40,500, a molecular weight distribution of 1.3, and the number of silyl groups introduced per molecule was 2.0.
 〔合成例2:有機重合体(A-2)((A1)成分に相当))〕
 数平均分子量が約4500のポリオキシプロピレングリコールを開始剤とし、亜鉛ヘキサシアノコバルテートグライム錯体触媒にてプロピレンオキサイドの重合を行い、末端に水酸基を有する数平均分子量27,900(末端基換算分子量17,700)、分子量分布Mw/Mn=1.21のポリオキシプロピレン(P-2)を得た。得られた水酸基末端ポリオキシプロピレン(P-2)の水酸基に対して1.2モル当量のナトリウムメトキシドを28%メタノール溶液として添加した。真空脱揮によりメタノールを留去した後、重合体(P-2)の水酸基に対して、さらに1.5モル当量の塩化アリルを添加して末端の水酸基をアリル基に変換した。未反応の塩化アリルを減圧脱揮により除去した。得られた未精製のポリオキシプロピレンをn-ヘキサンと、水を混合攪拌した後、遠心分離により水を除去し、得られたヘキサン溶液からヘキサンを減圧脱揮することでポリマー中の金属塩を除去した。以上により、末端にアリル基を有するポリオキシプロピレン(Q-2)を得た。この重合体(Q-2)500gに対して白金ジビニルジシロキサン錯体溶液(白金換算で3重量%のイソプロパノール溶液)50μlを加え、撹拌しながら、ジメトキシメチルシラン4.8gをゆっくりと滴下した。100℃で2時間反応させた後、未反応のジメトキシメチルシランを減圧下留去する事により、末端にジメトキシメチルシリル基を有する数平均分子量28,500のポリオキシプロピレン(有機重合体(A-2))を得た。有機重合体(A-2)はジメトキシメチルシリル基を1つの末端に平均0.8個、1分子中に平均1.6個有することが分かった。
[Synthesis Example 2: Organic polymer (A-2) (corresponding to component (A1))]
Polyoxypropylene glycol having a number average molecular weight of about 4500 is used as an initiator, and propylene oxide is polymerized with a zinc hexacyanocobaltate glyme complex catalyst to obtain a terminal hydroxyl group-containing number average molecular weight of 27,900 (terminal group equivalent molecular weight of 17, 700) and a polyoxypropylene (P-2) having a molecular weight distribution Mw/Mn of 1.21 was obtained. A 28% methanol solution of sodium methoxide was added in an amount of 1.2 molar equivalents relative to the hydroxyl groups of the obtained hydroxyl group-terminated polyoxypropylene (P-2). After methanol was distilled off by vacuum devolatilization, 1.5 molar equivalents of allyl chloride was added to the hydroxyl groups of the polymer (P-2) to convert terminal hydroxyl groups to allyl groups. Unreacted allyl chloride was removed by vacuum devolatilization. The unpurified polyoxypropylene thus obtained was mixed with n-hexane and water, and then the water was removed by centrifugation. Removed. As a result, polyoxypropylene (Q-2) having an allyl group at its end was obtained. To 500 g of this polymer (Q-2) was added 50 μl of a platinum divinyldisiloxane complex solution (isopropanol solution of 3% by weight in terms of platinum), and 4.8 g of dimethoxymethylsilane was slowly added dropwise while stirring. After reacting at 100° C. for 2 hours, unreacted dimethoxymethylsilane is distilled off under reduced pressure to obtain a polyoxypropylene (organic polymer (A- 2)) was obtained. It was found that the organic polymer (A-2) had an average of 0.8 dimethoxymethylsilyl groups at one terminal and an average of 1.6 dimethoxymethylsilyl groups per molecule.
 〔合成例3:有機重合体(A-3)((A1)成分に相当))〕
 数平均分子量が約4500のポリオキシプロピレングリコールと1-ブタノールの重量比98%、2%の混合物を開始剤とし、亜鉛ヘキサシアノコバルテートグライム錯体触媒にてプロピレンオキサイドの重合を行い、末端に水酸基を有する数平均分子量16,000(末端基換算分子量11,700)、分子量分布Mw/Mn=1.35のポリオキシプロピレン(P-3)を得た。得られた水酸基末端ポリオキシプロピレン(P-3)の水酸基に対して1.0モル当量のナトリウムメトキシドを28%メタノール溶液として添加した。真空脱揮によりメタノールを留去した後、重合体(P-3)の水酸基に対して、0.5モル当量のアリルグリシジルエーテルを添加して130℃で2時間反応を行った。その後、0.28モル当量のナトリウムメトキシドのメタノール溶液を添加してメタノールを除去し、さらに1.29モル当量の塩化アリルを添加して末端の水酸基をアリル基に変換し、未反応の塩化アリルを減圧脱揮により除去した。得られた未精製のポリオキシプロピレンをn-ヘキサンと、水を混合攪拌した後、遠心分離により水を除去し、得られたヘキサン溶液からヘキサンを減圧脱揮することでポリマー中の金属塩を除去した。以上により、末端に複数の炭素-炭素不飽和結合を有するポリオキシプロピレン(Q-3)を得た。重合体(Q-3)は1つの末端に炭素-炭素不飽和結合が平均1.50個導入されていることがわかった。
[Synthesis Example 3: Organic polymer (A-3) (corresponding to component (A1))]
A mixture of polyoxypropylene glycol having a number average molecular weight of about 4500 and 1-butanol at a weight ratio of 98% and 2% is used as an initiator, and propylene oxide is polymerized with a zinc hexacyanocobaltate glyme complex catalyst, and a hydroxyl group is added to the end. Polyoxypropylene (P-3) having a number average molecular weight of 16,000 (molecular weight in terms of terminal groups of 11,700) and a molecular weight distribution Mw/Mn of 1.35 was obtained. A 28% methanol solution of sodium methoxide was added in an amount of 1.0 molar equivalent to the hydroxyl group of the obtained hydroxyl group-terminated polyoxypropylene (P-3). After methanol was distilled off by vacuum devolatilization, 0.5 molar equivalent of allyl glycidyl ether was added to the hydroxyl groups of polymer (P-3), and reaction was carried out at 130° C. for 2 hours. Thereafter, 0.28 molar equivalents of sodium methoxide in methanol are added to remove the methanol, and 1.29 molar equivalents of allyl chloride are added to convert terminal hydroxyl groups to allyl groups and unreacted chlorides. Allyl was removed by vacuum devolatilization. The unpurified polyoxypropylene thus obtained was mixed with n-hexane and water, and then the water was removed by centrifugation. Removed. As a result, polyoxypropylene (Q-3) having a plurality of carbon-carbon unsaturated bonds at the ends was obtained. Polymer (Q-3) was found to have an average of 1.50 carbon-carbon unsaturated bonds introduced at one end.
 得られた(Q-3)500gに対し白金ジビニルジシロキサン錯体溶液50μlを加え、撹拌しながらジメトキシメチルシラン8.7gをゆっくりと滴下した。その混合溶液を100℃で2時間反応させた後、未反応のジメトキシメチルシランを減圧下留去する事により、末端に複数のジメトキシメチルシリル基を有する数平均分子量16,700のポリオキシプロピレン(有機重合体(A-3)))を得た。有機重合体(A-3)はジメトキシメチルシリル基を1つの末端に平均1.2個、一分子中に平均2.0個有することが分かった。 50 μl of the platinum-divinyldisiloxane complex solution was added to 500 g of the obtained (Q-3), and 8.7 g of dimethoxymethylsilane was slowly added dropwise while stirring. After the mixed solution was reacted at 100° C. for 2 hours, unreacted dimethoxymethylsilane was distilled off under reduced pressure to obtain a polyoxypropylene (polyoxypropylene having a number average molecular weight of 16,700 and having a plurality of terminal dimethoxymethylsilyl groups) ( An organic polymer (A-3))) was obtained. It was found that the organic polymer (A-3) had an average of 1.2 dimethoxymethylsilyl groups at one terminal and an average of 2.0 dimethoxymethylsilyl groups per molecule.
 〔合成例4:有機重合体(A-4)((A1,2)成分に相当)〕
 105℃に加熱したイソブチルアルコール(IBA)180g中に、メチルメタクリレート43g、ブチルアクリレート204g、ステアリルメタクリレート45g、γ-メタクリオキシプロピルジメトキシメチルシラン7.2g、およびIBA13gからなる混合物に重合開始剤としてアゾビス-2-メチルブチロニトリル1.4gを溶かした溶液を5時間かけて滴下した後、さらにIBA4。5gに重合開始剤としてアゾビス-2-メチルブチロニトリル0.3gを溶かした溶液を1時間かけて滴下した.その後、2時間後重合を行ない、固形分濃度60%であり数平均分子量が17,800、ジメトキシメチルシリル基を一分子中に平均1.83個有する(メタ)アクリル酸エステル共重合体(Q-4)を得た。得られた(Q-4)を(メタ)アクリル酸エステル共重合体が固形分で30部になるように、有機重合体(A-2)を70部混合し、均一に混合した後、ロータリーエバポレーターでIBAを留去し有機重合体(A-4)を得た。
[Synthesis Example 4: Organic polymer (A-4) (corresponding to component (A1, 2))]
In 180 g of isobutyl alcohol (IBA) heated to 105° C., azobis- After a solution of 1.4 g of 2-methylbutyronitrile was added dropwise over 5 hours, a solution of 0.3 g of azobis-2-methylbutyronitrile as a polymerization initiator dissolved in 4.5 g of IBA was added over 1 hour. dripped. After that, polymerization was performed for 2 hours to obtain a (meth)acrylic acid ester copolymer (Q -4) was obtained. The obtained (Q-4) was mixed with 70 parts of the organic polymer (A-2) so that the solid content of the (meth)acrylic ester copolymer was 30 parts, and after mixing uniformly, the rotary IBA was removed by an evaporator to obtain an organic polymer (A-4).
 〔合成例5:有機重合体(A-5)((A1)成分に相当)〕
 数平均分子量が約4500のポリオキシプロピレングリコールと数平均分子量が約4500のポリオキシプロピレントリオールの重量比60%、40%の混合物を開始剤とし、亜鉛ヘキサシアノコバルテートグライム錯体触媒にてプロピレンオキサイドの重合を行い、末端に水酸基を有する数平均分子量19000、分子量分布Mw/Mn=1.28のポリオキシプロピレン(P-4)を得た。
[Synthesis Example 5: Organic polymer (A-5) (corresponding to component (A1))]
A mixture of polyoxypropylene glycol having a number average molecular weight of about 4500 and polyoxypropylene triol having a number average molecular weight of about 4500 at a weight ratio of 60% and 40% is used as an initiator, and propylene oxide is produced with a zinc hexacyanocobaltate glyme complex catalyst. Polymerization was carried out to obtain polyoxypropylene (P-4) having a terminal hydroxyl group, a number average molecular weight of 19000 and a molecular weight distribution Mw/Mn of 1.28.
 得られた水酸基末端ポリオキシプロピレン(P-4)500gに対して2-エチルヘキサン酸ビスマス錯体溶液(ビスマス換算で25重量%の2-エチルヘキサン酸溶液)15μlを加え、撹拌しながら、イソシアナトプロピルトリメトキシシラン17.5gをゆっくりと滴下した。90℃で2時間反応させた後、未反応のイソシアナトプロピルトリメトキシシランを減圧留去する事により、末端にトリメトキシシリル基を有する数平均分子量訳19500のポリオキシプロピレン(A-5)を得た。有機重合体(A-5)はトリメトキシシリル基を1つの末端に平均3.0個、一分子中に平均6.0個有することが分かった。 To 500 g of the obtained hydroxyl group-terminated polyoxypropylene (P-4), 15 μl of a 2-ethylhexanoic acid bismuth complex solution (25% by weight of 2-ethylhexanoic acid solution in terms of bismuth) was added, and isocyanato was added with stirring. 17.5 g of propyltrimethoxysilane was slowly added dropwise. After reacting at 90° C. for 2 hours, unreacted isocyanatopropyltrimethoxysilane was distilled off under reduced pressure to obtain polyoxypropylene (A-5) having a terminal trimethoxysilyl group and a number average molecular weight of about 19,500. Obtained. It was found that the organic polymer (A-5) had an average of 3.0 trimethoxysilyl groups at one terminal and an average of 6.0 trimethoxysilyl groups per molecule.
 〔実施例1〕
 有機重合体(A-1)と、水酸化アルミニウム(B-2)と、炭酸カルシウムと、可塑剤と、エポキシ化合物-1と、紫外線吸収剤と、光安定剤と、酸化防止剤と、表面改質剤とを、表1に記載の配合量で添加し、2軸ミキサーを用いて混合し、分散させて主剤を作製した。また、硬化剤として、シラノール縮合触媒と、助触媒とを、表1に示す配合量(単位:重量部)で、スパチュラを用いて混合し、作製した。作製した主剤、および硬化剤を十分に混合し、自転公転ミキサーを用いて均一に混練脱泡して、硬化性組成物を作製した。作製した硬化性組成物を用い、上記〔測定および評価方法〕の項に記載の方法により、接着性および難燃性を評価した。結果を表1に示す。なお、表1中各成分の配合量は、重量部で示す。
[Example 1]
Organic polymer (A-1), aluminum hydroxide (B-2), calcium carbonate, plasticizer, epoxy compound-1, ultraviolet absorber, light stabilizer, antioxidant, surface A modifier was added in the amounts shown in Table 1, mixed using a twin-screw mixer, and dispersed to prepare a main agent. In addition, a silanol condensation catalyst and a co-catalyst were mixed as a curing agent in the amounts shown in Table 1 (unit: parts by weight) using a spatula. The prepared main agent and curing agent were sufficiently mixed, and uniformly kneaded and defoamed using a rotation/revolution mixer to prepare a curable composition. Adhesiveness and flame retardancy were evaluated by the method described in the section [Methods of measurement and evaluation] using the prepared curable composition. Table 1 shows the results. In addition, the compounding amount of each component in Table 1 is shown in parts by weight.
 〔実施例2~11、比較例1~3〕
 各成分の配合量を表1に記載の通りに変更したこと以外は実施例1と同様の手順により、硬化性組成物を作製した。作製した硬化性組成物を用い、上記〔測定および評価方法〕の項に記載の方法により、接着性および難燃性を評価した。結果を表1に示す。
[Examples 2 to 11, Comparative Examples 1 to 3]
A curable composition was prepared in the same manner as in Example 1, except that the amount of each component was changed as shown in Table 1. Adhesiveness and flame retardancy were evaluated by the method described in the section [Methods of measurement and evaluation] using the prepared curable composition. Table 1 shows the results.
 〔結果〕
 表1より、実施例1~11の硬化性組成物は、硬化させた際に、優れた接着性を有することが示された。また、実施例1~11の硬化性組成物は、難燃性にも優れることが示された。さらに、有機重合体(A-1)と有機重合体(A-2)とを併用した実施例3の硬化性組成物、および有機重合体(A-1)と有機重合体(A-4)とを併用した実施例7の硬化性組成物では、実施例2の硬化性組成物と比較して、接着性がさらに改善されると共に、作業性に優れることが示された。
〔result〕
Table 1 shows that the curable compositions of Examples 1 to 11 have excellent adhesion when cured. Moreover, it was shown that the curable compositions of Examples 1 to 11 are also excellent in flame retardancy. Furthermore, the curable composition of Example 3 in which the organic polymer (A-1) and the organic polymer (A-2) are used in combination, and the organic polymer (A-1) and the organic polymer (A-4) In the curable composition of Example 7, which was used in combination with, compared with the curable composition of Example 2, it was shown that the adhesiveness was further improved and the workability was excellent.
 本発明の一態様によれば、難燃性および接着性を有する硬化性組成物を提供できるため、シーリング剤等に好適に利用することができる。

 
According to one aspect of the present invention, a curable composition having flame retardancy and adhesiveness can be provided, and thus can be suitably used as a sealant or the like.

Claims (10)

  1.  加水分解性シリル基を有する有機重合体(A)と、
     チタネートで表面処理された水酸化アルミニウム(B)と、
     シラノール縮合触媒(C)と、を含有する、硬化性組成物。
    an organic polymer (A) having a hydrolyzable silyl group;
    aluminum hydroxide (B) surface-treated with titanate;
    A curable composition containing a silanol condensation catalyst (C).
  2.  前記有機重合体(A)が、加水分解性シリル基含有ポリオキシアルキレン系重合体(A1)、および/または加水分解性シリル基含有(メタ)アクリル酸エステル系共重合体(A2)である、請求項1に記載の硬化性組成物。 The organic polymer (A) is a hydrolyzable silyl group-containing polyoxyalkylene polymer (A1) and/or a hydrolyzable silyl group-containing (meth)acrylic acid ester copolymer (A2). A curable composition according to claim 1 .
  3.  前記有機重合体(A)が、加水分解性シリル基含有(メタ)アクリル酸エステル系共重合体(A2)である、請求項1または2に記載の硬化性組成物。 The curable composition according to claim 1 or 2, wherein the organic polymer (A) is a hydrolyzable silyl group-containing (meth)acrylate copolymer (A2).
  4.  前記有機重合体(A)が、加水分解性シリル基含有ポリオキシアルキレン系重合体(A1)、および加水分解性シリル基含有(メタ)アクリル酸エステル系共重合体(A2)である、請求項1または2に記載の硬化性組成物。 The organic polymer (A) is a hydrolyzable silyl group-containing polyoxyalkylene polymer (A1) and a hydrolyzable silyl group-containing (meth)acrylic acid ester copolymer (A2). 3. The curable composition according to 1 or 2.
  5.  前記シラノール縮合触媒(C)が、2価スズである、請求項1または2に記載の硬化性組成物。 The curable composition according to claim 1 or 2, wherein the silanol condensation catalyst (C) is divalent tin.
  6.  前記水酸化アルミニウム(B)の含有量が、前記有機重合体(A)100重量部に対して、30~300重量部である、請求項1または2に記載の硬化性組成物。 The curable composition according to claim 1 or 2, wherein the content of said aluminum hydroxide (B) is 30 to 300 parts by weight with respect to 100 parts by weight of said organic polymer (A).
  7.  前記加水分解性シリル基含有ポリオキシアルキレン系重合体(A1)と前記加水分解性シリル基含有(メタ)アクリル酸エステル系共重合体(A2)との重量比が、5:95~50:50である、請求項4に記載の硬化性組成物。 The weight ratio of the hydrolyzable silyl group-containing polyoxyalkylene polymer (A1) and the hydrolyzable silyl group-containing (meth)acrylate copolymer (A2) is 5:95 to 50:50. The curable composition according to claim 4, which is
  8.  前記シラノール縮合触媒(C)の含有量が、前記有機重合体(A)100重量部に対して、0.5~20重量部である、請求項1または2に記載の硬化性組成物。 The curable composition according to claim 1 or 2, wherein the content of the silanol condensation catalyst (C) is 0.5 to 20 parts by weight with respect to 100 parts by weight of the organic polymer (A).
  9.  前記水酸化アルミニウム(B)の平均粒径が、0.1~200μmである、請求項1または2に記載の硬化性組成物。 The curable composition according to claim 1 or 2, wherein the aluminum hydroxide (B) has an average particle size of 0.1 to 200 µm.
  10.  請求項1または2に記載の硬化性組成物を硬化させてなる、硬化物。

     
    A cured product obtained by curing the curable composition according to claim 1 .

PCT/JP2023/002025 2022-01-31 2023-01-24 Curable composition and use of same WO2023145711A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202380017951.7A CN118574899A (en) 2022-01-31 2023-01-24 Curable composition and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-013203 2022-01-31
JP2022013203 2022-01-31

Publications (1)

Publication Number Publication Date
WO2023145711A1 true WO2023145711A1 (en) 2023-08-03

Family

ID=87471950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/002025 WO2023145711A1 (en) 2022-01-31 2023-01-24 Curable composition and use of same

Country Status (2)

Country Link
CN (1) CN118574899A (en)
WO (1) WO2023145711A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003012879A (en) * 2001-07-03 2003-01-15 Kanegafuchi Chem Ind Co Ltd Curable composition
WO2011089987A1 (en) * 2010-01-20 2011-07-28 コニシ株式会社 Flame-resistant moisture-curable resin composition, flame-resistant moisture-curable bonding agent comprising said composition, and bonding method using said bonding agent

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003012879A (en) * 2001-07-03 2003-01-15 Kanegafuchi Chem Ind Co Ltd Curable composition
WO2011089987A1 (en) * 2010-01-20 2011-07-28 コニシ株式会社 Flame-resistant moisture-curable resin composition, flame-resistant moisture-curable bonding agent comprising said composition, and bonding method using said bonding agent

Also Published As

Publication number Publication date
CN118574899A (en) 2024-08-30

Similar Documents

Publication Publication Date Title
US10954419B2 (en) Curable composition
US9803052B2 (en) Polymer having terminal structure including plurality of reactive silicon groups, method for manufacturing same, and use for same
EP2794789B1 (en) Waterproof coating material and building roof having coating film formed therefrom
EP1710280A1 (en) Hardenable composition
WO2010035821A1 (en) Curable composition and cured product thereof
JP6401583B2 (en) Curable composition
JP2012214755A (en) Curing composition
WO2022203065A1 (en) Curable composition and cured product thereof
JP7224131B2 (en) Curable composition
US20230027947A1 (en) Mixture of polyoxyalkylene polymers and curable composition
US9969843B2 (en) Polymer having terminal structure including plurality of reactive silicon groups, method for manufacturing same, and use for same
WO2022163563A1 (en) Polyoxyalkylene-based polymer and mixture thereof
JP5421106B2 (en) Curable composition
WO2022163562A1 (en) Polyoxyalkylene polymer mixture and curable composition
US20210284797A1 (en) Polyoxyalkylene polymer and curable composition
WO2023145711A1 (en) Curable composition and use of same
JP2020164607A (en) Reactive silyl group-containing (meth) acrylate polymer and curable composition containing the same
CN113795547B (en) Curable composition and cured product
JP5183126B2 (en) EPDM tarpaulin adhesion method
WO2023162664A1 (en) Curable composition and use of same
WO2022203064A1 (en) (meth)acrylic acid ester-based copolymer and curable composition
WO2023054700A1 (en) Curable composition
JP2023010631A (en) Multiple liquid type curable composition
WO2023132323A1 (en) Curable composition and cured product thereof
WO2023282172A1 (en) Multi-component curable composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23746922

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023576913

Country of ref document: JP

Kind code of ref document: A