WO2023145555A1 - Method for producing coolant additive or coolant, and coolant additive - Google Patents

Method for producing coolant additive or coolant, and coolant additive Download PDF

Info

Publication number
WO2023145555A1
WO2023145555A1 PCT/JP2023/001273 JP2023001273W WO2023145555A1 WO 2023145555 A1 WO2023145555 A1 WO 2023145555A1 JP 2023001273 W JP2023001273 W JP 2023001273W WO 2023145555 A1 WO2023145555 A1 WO 2023145555A1
Authority
WO
WIPO (PCT)
Prior art keywords
coolant
coupling agent
additive
water
silicate
Prior art date
Application number
PCT/JP2023/001273
Other languages
French (fr)
Japanese (ja)
Inventor
勇士 佐々木
Original Assignee
株式会社Moresco
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Moresco filed Critical 株式会社Moresco
Publication of WO2023145555A1 publication Critical patent/WO2023145555A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/10Liquid materials

Definitions

  • the present invention relates to a coolant additive or a coolant manufacturing method, and a coolant additive.
  • coolants such as engine coolants
  • coolants containing phosphoric compounds which are excellent in rust prevention of iron or aluminum
  • hard water is used as the diluent water for the coolant
  • phosphoric acid and minerals chemically react to form precipitates, which reduces the rust prevention function of the engine coolant.
  • Patent Document 1 discloses a coolant composition containing alcohol, silicate and a calcium compound.
  • Patent Document 1 when the composition of Patent Document 1 is used as a cooling liquid, the cooling liquid tends to become unstable due to gelation of the cooling liquid because the composition contains silicate. Therefore, the development of a non-phosphoric cooling liquid with suppressed gelation is desired.
  • an object of one aspect of the present invention is to provide a coolant additive that can be used in the production of a non-phosphate coolant.
  • the present inventors have made intensive studies and found that gelation is suppressed and stabilized by using a coolant additive produced by mixing and reacting specific components. It was found that a cooling liquid with high performance can be produced. In addition, the inventors have found that the cooling liquid has the same antirust property as that of the phosphoric acid-based cooling liquid, and have completed the present invention.
  • the present invention consists of the following configurations. - A method for producing a coolant additive, which comprises a reaction step of mixing and reacting water, an alcohol, a silicate, and a metal coupling agent. • Additives for coolants, including mixtures of water, alcohols, silicates, metal coupling agents, and partial reactions of these components.
  • FIG. 4 is a diagram showing the results of a stability test of Evaluation Example 1.
  • FIG. FIG. 10 is a diagram showing the results of an aluminum casting heat transfer surface corrosion test in Evaluation Example 4;
  • FIG. 10 is a diagram showing the results of a metal corrosiveness test in Evaluation Example 4;
  • FIG. 10 is a diagram showing the results of a metal corrosiveness test in Evaluation Example 5;
  • FIG. 10 is a diagram showing the results of a hard water stability test in Evaluation Example 6;
  • FIG. 12 is a diagram showing evaluation results of Evaluation Example 8;
  • a method for producing a coolant additive according to an aspect of the present invention includes a reaction step of mixing and reacting water, alcohol, silicate, and a metal coupling agent.
  • metal coupling agent refers to a compound having two or more different reactive groups (e.g., an epoxy group and an alkoxysilyl group), which serves to bind two or more different substances. It is not limited to things. Moreover, when it has three or more reactive groups, at least any two of them may be different reactive groups.
  • a coolant additive containing at least water, a silicate, or a reactant in which a metal coupling agent has reacted can be produced by the above-described reaction step.
  • the coolant additive will be described later.
  • the water used in the method for producing a coolant additive according to one aspect of the present invention may be ultrapure water, pure water, or purified water such as distilled water.
  • the alcohol used in the method for producing a coolant additive according to one aspect of the present invention may be monohydric alcohols or polyhydric alcohols. Additionally, the alcohol may be a primary, secondary or tertiary alcohol.
  • the alcohol is preferably a polyhydric alcohol, more preferably an aliphatic polyhydric alcohol, and even more preferably a primary aliphatic polyhydric alcohol.
  • the alcohol is preferably glycol or glycol ether in terms of suppressing gelation of the cooling liquid and freezing of the cooling liquid.
  • the lower limit of the number of carbon atoms in the alcohol is preferably 2 or more from the viewpoint of suppressing gelation of the cooling liquid.
  • the upper limit of the number of carbon atoms in the alcohol is preferably 10 or less, more preferably 5 or less, from the viewpoint of suppressing gelation of the cooling liquid.
  • Examples of preferred alcohols include ethylene glycol, propylene glycol, diethylene glycol, glycerin, 1,3-propanediol and the like.
  • ethylene glycol or propylene glycol is more preferable, and ethylene glycol is even more preferable, from the viewpoint of suppressing gelation of the coolant and suppression of freezing of the coolant.
  • the use of ethylene glycol improves the rust resistance to aluminum.
  • silicate used in the method for producing a coolant additive according to one aspect of the present invention is a silicate containing an element of Group 1 or an element of Group 2 of the periodic table in terms of improving rust resistance. Acid salts are preferred.
  • a material represented by nX 2 O ⁇ mSiO 2 is an example of a composition formula of a silicate containing an element of Group 1 or Group 2 of the periodic table.
  • X include alkali metals or alkaline earth metals such as potassium, sodium, lithium, magnesium, and calcium.
  • n and m are preferably 0.1-10.
  • the structure of the silicate may be ortho-, meta-, pyro-, or the like.
  • alkali metal silicates are more preferable, and potassium silicate represented by the compound name is even more preferable, from the viewpoint of improving rust resistance.
  • the metal coupling agent used in the method for producing a coolant additive according to one aspect of the present invention means a coupling agent containing a metal element such as titanium, zirconium, aluminum or silicon. Among them, a silane coupling agent is preferable from the viewpoint of suppressing the generation of gel in the cooling liquid.
  • titanium coupling agents examples include titanium alkoxides.
  • zirconium coupling agents examples include zirconium alkoxide and the like. Aluminum alkoxide etc. are mentioned as an aluminum coupling agent.
  • silane coupling agents include 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyl Diethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-acryloxypropyltrimethoxysilane, N-2-(aminoethyl)-3- aminopropyltrimethoxysilane, 3-ureidopropyltrialkoxysilane, 3-isocyanatopropyltriethoxysilane, tris-(trimethoxysilylpropyl)isocyanurate, 3-mercaptopropyltrimethoxysilane and the like.
  • Organic functional groups attached to silane coupling agents include vinyl groups, epoxy groups, styryl groups, methacrylic groups, acryl groups, amino groups, ureido groups, isocyanate groups, isocyanurate groups, mercapto groups, methylene groups, and the like. .
  • the number of hydroxyl groups attached to the silanol group is preferably 1 or more and 3 or less.
  • a silane coupling agent having an epoxy group is more preferable in that it suppresses gelling of the cooling liquid and does not have an unpleasant odor, and 3-glycidoxypropyltrimethoxysilane (hereinafter referred to as "3-GPTMS"). ) is more preferable.
  • reaction step In the reaction step, water, alcohol, silicate, and metal coupling agent are mixed to prepare a mixture.
  • the lower limit of the amount of the metal coupling agent is preferably 10% by mass or more, more preferably 15% by mass or more, and even more preferably 20% by mass or more in 100% by mass of the mixture.
  • the upper limit of the amount of the metal coupling agent is preferably 35% by mass or less, more preferably 30% by mass or less, and even more preferably 25% by mass or less.
  • the lower limit of the amount of silicate is preferably 12.5% by mass or more, more preferably 15% by mass or more, and more preferably 17.5% by mass or more in 100% by mass of the mixture. preferable.
  • the upper limit of the amount of silicate is preferably 25% by mass or less, more preferably 22.5% by mass or less, and even more preferably 20% by mass or less.
  • the lower limit of the amount of alcohol may be 0.1% by mass or more, 1% by mass or more, 2% by mass or more, or 5% by mass or more in 100% by mass of the above mixture. may be Moreover, the upper limit of the amount of alcohol may be 50% by mass or less, 40% by mass or less, 30% by mass or less, or 20% by mass or less.
  • the reaction proceeds efficiently.
  • rust prevention against aluminum is improved.
  • the lower limit of the amount of water is preferably 22.5% by mass or more, more preferably 35% by mass or more, based on 100% by mass of the mixture.
  • the upper limit of the amount of water is preferably 75% by mass or less, more preferably 60% by mass or less.
  • the blending amount of water is preferably larger than the blending amounts of the metal coupling agent, silicate, and alcohol from the viewpoint of facilitating adjustment of the coolant containing the coolant additive.
  • the order of mixing is not particularly limited, but from the viewpoint of the stability of the coolant additive, water and silicate may be mixed before the metal coupling agent is mixed. preferable.
  • the mixture may be prepared by a known method such as stirring.
  • the reaction temperature is usually 20°C to 80°C, preferably 25°C to 60°C, because the evaporation of the components in the reaction process is small and the manufacturing equipment can be simplified.
  • the reaction time is usually 3 hours to 100 hours, preferably 5 hours to 80 hours.
  • the lower limit of T in formulas (A) and (B) is preferably 0°C or higher, more preferably 10°C or higher, and even more preferably 20°C or higher.
  • the upper limit of T is preferably 100°C or lower, more preferably 85°C or lower, and even more preferably 70°C or lower.
  • the lower limit of h in formulas (A) and (B) may be 1 hour or more, 7 hours or more, 14 hours or more, or 24 hours or more, It may be 48 hours or longer, or 72 hours or longer.
  • the upper limit of h may be 1000 hours or less, 360 hours or less, 120 hours or less, or 96 hours or less.
  • a coolant additive manufactured by the method for manufacturing a coolant additive according to one aspect of the present invention described above is also included in one aspect of the present invention.
  • a method for manufacturing a coolant according to one aspect of the present invention may include a step of manufacturing a coolant additive by the method for manufacturing a coolant additive according to one aspect of the present invention.
  • the coolant additive produced by the method for producing a coolant additive according to one aspect of the present invention includes water such as ion-exchanged water, ethylene A solvent such as glycol; an organic acid; a neutralizer (pH adjuster); a coloring agent;
  • the amount of the coolant additive in the coolant according to one aspect of the present invention can be appropriately adjusted according to the application. 05% by mass or more, and more preferably 0.1% by mass or more. Further, the upper limit of the amount of the coolant additive is preferably 3% by mass or less, more preferably 1% by mass or less. When the amount of the coolant additive is within the above range, the rust prevention and stability of the coolant are further improved. Further, when the amount of the additive for coolant is within the above range, the coolant exhibits sufficient anticorrosiveness to metals.
  • a coolant additive according to one aspect of the present invention includes a mixture of water, an alcohol, a silicate, and a metal coupling agent, and a partial reaction product obtained by reacting these components.
  • a "partial reactant” refers to a reactant produced by reacting at least two components contained in a liquid, or a reactant produced by reacting the same components with each other.
  • reaction product of a metal coupling agent and water a reaction product of a metal coupling agent and a silicate, a reaction product of a metal coupling agent, a silicate and water, a reaction product of a silicate and a silicate A reactant, or a reactant of water, silicate and/or a metal coupling agent with an alcohol, and the like.
  • one aspect of the present invention also includes a coolant additive manufactured by the method for manufacturing a coolant additive according to one aspect of the present invention.
  • a coolant according to one aspect of the present invention contains the coolant additive. Further, one aspect of the present invention also includes a coolant manufactured by a method for manufacturing a coolant according to one aspect of the present invention.
  • the cooling liquid according to one aspect of the present invention has high stability.
  • the cooling liquid according to one aspect of the present invention is a non-phosphoric cooling liquid, it has the same anticorrosion properties as the phosphoric acid cooling liquid.
  • the cooling liquid according to one aspect of the present invention is a non-phosphate cooling liquid and has excellent hard water stability.
  • coolants include coolants and antifreeze used in internal combustion engines such as diesel engines and gasoline engines, batteries such as fuel cells and secondary batteries, heat pipes, and motors. Among others, it can be suitably used as a coolant for internal combustion engines.
  • a coolant additive according to an aspect of the present invention includes a compound represented by the following formula (1) as a partial reaction product.
  • Each of R 1 to R 3 is independently a hydroxyl group, an alkyl group having an ether bond, or an amide group, any two of R 1 to R 3 may be bonded to each other, and the bonding group is a ketone may be a base
  • R 4 is an alkyl group having 1 to 10 carbon atoms, -(CH 2 ) Z 1 -CO-NH-(CH 2 ) Z 2 -, or -(CH 2 ) Z 3 -SH 2 -(CH 2 ) Z 4 - Yes, 1 ⁇ Z1 + Z2 ⁇ 10, 1 ⁇ Z3 + Z4 ⁇ 10
  • R5 is an alkyl group having 1 to 10 carbon atoms, isopropyl group, vinyl group, styryl group, acryl group, amino group, carboxyl group, ureido group, mercapto group,
  • the coolant additive according to one aspect of the present invention preferably contains any one of the compounds represented by the following formulas (2) to (9) as a partial reaction product, and the following formulas (2) and (3) , (6) or (7), and more preferably a compound represented by the following formula (2) or (6).
  • identification by analysis by mass spectrometry (MS), nuclear magnetic resonance (NMR), or the like can be mentioned.
  • the coolant according to one aspect of the present invention has an excellent rust-preventing effect on metals even if it does not contain phosphoric acid.
  • SDGs Sustainable Development Goals
  • a method for producing a coolant additive comprising a reaction step of mixing and reacting water, an alcohol, a silicate, and a metal coupling agent.
  • the metal coupling agent is at least one coupling agent selected from titanium coupling agents, zirconium coupling agents, aluminum coupling agents and silane coupling agents.
  • manufacturing method of additive for [3] The method for producing a coolant additive according to [1] or [2], wherein the metal coupling agent is 3-glycidoxypropyltrimethoxysilane.
  • Method. [5] A method for producing a coolant, comprising a step of producing a coolant additive by the method for producing a coolant additive according to any one of [1] to [4]. [6] A coolant additive comprising a mixture of water, an alcohol, a silicate and a metal coupling agent, and a partial reaction product of these components.
  • the partial reaction product includes a reaction product of the metal coupling agent and the water, a reaction product of the metal coupling agent and the silicate, and a reaction product of the metal coupling agent, the silicate and the
  • the coolant additive according to [6] which is at least one selected from the group consisting of a reaction product with water.
  • % represents % by mass unless otherwise specified.
  • addition is performed by dropping, but the addition may not be by dropping.
  • the mixture is allowed to stand still in the reaction step, but the mixture may be fluidized continuously or intermittently by stirring or the like.
  • the obtained coolant additives 1 to 6 were prepared by mixing with ethylene glycol containing an organic acid and a neutralizer at the coolant formulation ratio shown in Table 1, and evaluated as coolants 1 to 6. .
  • the organic acid and the neutralizing agent are additives generally contained in the cooling liquid, and do not affect the stability of the cooling liquid, and the neutralizing agent does not contribute to the anti-corrosion properties.
  • Fig. 1 shows the cooling liquids 3 and 7 after standing for 1 hour in a constant temperature bath at 60°C.
  • the cooling liquid (50% diluted liquid) is the cooling liquid obtained by diluting with ultrapure water.
  • the cooling liquids 1 to 3 containing the cooling liquid additive obtained by setting the standing temperature to 30 ° C. and standing for one day or more, the cooling liquid is stable and cloudy or precipitated. did not occur, and gelling of the coolant was suppressed.
  • the cooling liquid 3 was transparent and had good properties. The stability of the cooling liquid was maintained even when the cooling liquid 3 and ultrapure water were mixed to dilute the cooling liquid concentration to 50%.
  • the cooling liquids 1 and 2 also gave the same results as the cooling liquid 3.
  • Cooling liquids 4 to 6 containing cooling liquid additives with the stationary temperature set to 0°C became cloudy and the cooling liquid was unstable.
  • no precipitation or white turbidity occurred in the coolant containing the additive for coolant obtained by standing at 0° C. for 37 days. From these results, in the manufacture of coolant additives, if the standing temperature is low, the gelling of the coolant may be suppressed by extending the standing time, but the stability of the coolant can be ensured. It has been suggested that it is difficult
  • sample a had the same anticorrosive properties as samples b to d of commercial cooling liquids.
  • LC-MS Analysis conditions by LC-MS are shown below.
  • Apparatus (LC): Agilent 1100 Series manufactured by Agilent Technologies Apparatus (MS): Bruker Daltonics microTOF focus type Column: Unison UK-C8 (3 ⁇ m, 4.6 ⁇ 150 mm) Mobile phase: 10 mM ammonium bicarbonate aqueous solution/acetonitrile 1/5 Flow rate: 1 mL/min Column temperature (LC part): 40°C Mass spectrometry temperature (MS section): 190°C Detection method: ESI (negative mode) Injection volume: 10 ⁇ L
  • the coolant additive contained the following two compounds. These compounds are believed to have been produced during the reaction process during the preparation of the coolant additive.
  • the above four compounds are presumed to correspond to reactants of a metal coupling agent, water, silicate and alcohol, or reactants of a metal coupling agent, water and alcohol.
  • the above compound uses a silane coupling agent as a metal coupling agent.
  • FIG. 6 shows a graph created for deriving the formula.
  • the circled plots in FIG. 6 are plots obtained by reflecting the data in Table 6, and the following formula (A1) was derived.
  • y ⁇ 7.58x ⁇ 22.889 (A1)
  • x 1000/(273.14+T)
  • y ln(h)
  • T represents a temperature (unit: ° C.) that satisfies 0 ⁇ T ⁇ 100
  • h represents time (unit: hour).
  • the triangle mark plot in FIG. 6 is a plot obtained by reflecting the data in Table 5, and the following formula (B1) was derived.
  • y ⁇ 7.58x ⁇ 21.089 (B1)
  • x 1000/(273.14+T)
  • y ln(h)
  • T represents a temperature (unit: ° C.) that satisfies 0 ⁇ T ⁇ 100
  • h represents time (unit: hour).
  • reaction temperatures and reaction times in Table 5 satisfy the above formulas (A1) and (B1).
  • the reaction temperature and reaction time may be appropriately determined, but if the reaction rate is low, the stability of the coolant additive and the coolant will be insufficient.
  • coolant additive 13 does not have antifreeze properties because EG is not added.
  • Coolant Additives 3, 13 and 14 all showed good results in the stability test, metal corrosion test and hard water stability test. Thereby, by mixing and reacting water, silicate and metal coupling agent, a partial reaction product of these components is generated. It has been found that the inclusion of the partial product provides a coolant additive exhibiting good stability and antirust properties.
  • the entire aluminum test piece (AC2A) was immersed in a solution containing 1% of each cooling additive, 1% of sodium hypochlorite, and 98% of water, and was kept at a constant temperature of 60 ° C. The change in weight of the aluminum test piece after standing in the tank for 96 hours was evaluated.
  • Cooling liquid additive 3 which was produced by mixing alcohol, silicate, water, and a metal coupling agent and leaving the mixture at 30°C for 3 days, had high rust resistance.
  • the coolant additive 13 that does not contain alcohol and the coolant additive 14 that is mixed with silicate, water and a metal coupling agent and allowed to stand at 30 ° C. for 3 days and then added with alcohol is not suitable for cooling.
  • the antirust property was inferior to that of Additive 3. From these results, it was found that a coolant additive having an excellent antirust effect can be obtained by mixing and reacting alcohol, water, silicate and a metal coupling agent with the coolant additive. In the coolant additive 3, it is presumed that water, silicate and/or a metal coupling agent react with alcohol to produce a reaction product.
  • water, a silicate, and a metal coupling agent are mixed for a predetermined time (for example, several hours to several days), and then alcohol is added. good too.
  • the present invention can be used as additives for coolants, coolants for engine or battery cooling, rust inhibitor compositions for rust prevention, metalworking compositions for metalworking, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

Provided is a coolant additive that can be used in the production of a non-phosphate coolant. This method for producing a coolant additive includes a reaction step for mixing and reacting water, an alcohol, a silicate, and a metal coupling agent.

Description

冷却液用添加剤又は冷却液の製造方法、及び、冷却液用添加剤COOLANT ADDITIVE OR COOLANT PRODUCTION METHOD, AND COOLANT ADDITIVE
 本発明は、冷却液用添加剤又は冷却液の製造方法、及び、冷却液用添加剤に関する。 The present invention relates to a coolant additive or a coolant manufacturing method, and a coolant additive.
 エンジン用冷却液等の冷却液として、鉄又はアルミニウムの防錆性に優れるリン酸系化合物を含む冷却液がよく使用されている。一方、当該冷却液の希釈水として硬水を使用する場合、リン酸とミネラルとが化学反応することによって沈殿が生じ、エンジン用冷却液の防錆機能が低下する。また、富栄養化の原因となるリン酸の使用量を削減する機運が高まっており、非リン酸系の冷却液の開発が望まれている。 As coolants such as engine coolants, coolants containing phosphoric compounds, which are excellent in rust prevention of iron or aluminum, are often used. On the other hand, when hard water is used as the diluent water for the coolant, phosphoric acid and minerals chemically react to form precipitates, which reduces the rust prevention function of the engine coolant. In addition, there is an increasing trend to reduce the amount of phosphoric acid used, which causes eutrophication, and the development of a non-phosphoric cooling liquid is desired.
 例えば、特許文献1は、アルコール、ケイ酸塩およびカルシウム化合物を含む冷却液組成物が開示されている。 For example, Patent Document 1 discloses a coolant composition containing alcohol, silicate and a calcium compound.
日本国公開特許公報 特開平7-70558号公報Japanese Unexamined Patent Publication JP-A-7-70558
 しかしながら、特許文献1の組成物を冷却液として使用すると、組成物にケイ酸塩が含まれているため、冷却液のゲル化によって冷却液が不安定になり易い。したがって、ゲル化が抑制された、非リン酸系冷却液の開発が求められている。 However, when the composition of Patent Document 1 is used as a cooling liquid, the cooling liquid tends to become unstable due to gelation of the cooling liquid because the composition contains silicate. Therefore, the development of a non-phosphoric cooling liquid with suppressed gelation is desired.
 そこで、本発明の一態様は、非リン酸系冷却液の製造に使用され得る冷却液用添加剤を提供することを目的とする。 Therefore, an object of one aspect of the present invention is to provide a coolant additive that can be used in the production of a non-phosphate coolant.
 本発明者らは上記課題を達成するために、鋭意研究を重ねた結果、特定の成分を混合し反応させて製造された冷却液用添加剤を使用することによって、ゲル化が抑制されて安定性が高い冷却液を製造できることを見出した。また、当該冷却液はリン酸系冷却液と同等の防錆性を有することを見出し、本発明を完成するに至った。 In order to achieve the above object, the present inventors have made intensive studies and found that gelation is suppressed and stabilized by using a coolant additive produced by mixing and reacting specific components. It was found that a cooling liquid with high performance can be produced. In addition, the inventors have found that the cooling liquid has the same antirust property as that of the phosphoric acid-based cooling liquid, and have completed the present invention.
 すなわち、本発明は、以下の構成からなるものである。
・水と、アルコールと、ケイ酸塩と、金属カップリング剤とを混合して反応させる反応工程を含む、冷却液用添加剤の製造方法。
・水と、アルコールと、ケイ酸塩と、金属カップリング剤との混合物、及びこれら成分の部分反応物を含む、冷却液用添加剤。
That is, the present invention consists of the following configurations.
- A method for producing a coolant additive, which comprises a reaction step of mixing and reacting water, an alcohol, a silicate, and a metal coupling agent.
• Additives for coolants, including mixtures of water, alcohols, silicates, metal coupling agents, and partial reactions of these components.
 本発明の一態様によれば、非リン酸系冷却液の製造に使用され得る冷却液用添加剤を提供できる、という効果を奏する。 According to one aspect of the present invention, it is possible to provide a coolant additive that can be used in the production of non-phosphate coolants.
評価例1の安定性試験の結果を示す図である。4 is a diagram showing the results of a stability test of Evaluation Example 1. FIG. 評価例4のアルミニウム鋳物伝熱面腐食性試験の結果を示す図である。FIG. 10 is a diagram showing the results of an aluminum casting heat transfer surface corrosion test in Evaluation Example 4; 評価例4の金属腐食性試験の結果を示す図である。FIG. 10 is a diagram showing the results of a metal corrosiveness test in Evaluation Example 4; 評価例5の金属腐食性試験の結果を示す図である。FIG. 10 is a diagram showing the results of a metal corrosiveness test in Evaluation Example 5; 評価例6の硬水安定性試験の結果を示す図である。FIG. 10 is a diagram showing the results of a hard water stability test in Evaluation Example 6; 評価例8の評価結果を示す図である。FIG. 12 is a diagram showing evaluation results of Evaluation Example 8;
 以下、本発明の実施の形態について詳細に説明する。ただし、本発明はこれに限定されるものではなく、記述した範囲内で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。本明細書において特記しない限り、数値範囲を表す「A~B」は、「A以上、B以下」を意図する。 Hereinafter, embodiments of the present invention will be described in detail. However, the present invention is not limited to this, and various modifications are possible within the scope described, and the present invention also includes embodiments obtained by appropriately combining technical means disclosed in different embodiments. included in the technical scope of Unless otherwise specified in this specification, "A to B" representing a numerical range intends "A or more and B or less".
 〔1.冷却液用添加剤の製造方法〕
 本発明の一態様に係る冷却液用添加剤の製造方法は、水と、アルコールと、ケイ酸塩と、金属カップリング剤とを混合して反応させる反応工程、を含む。
[1. Manufacturing method of coolant additive]
A method for producing a coolant additive according to an aspect of the present invention includes a reaction step of mixing and reacting water, alcohol, silicate, and a metal coupling agent.
 本明細書において、「金属カップリング剤」とは、2以上の異なる反応基(例えば、エポキシ基とアルコキシシリル基)を有する化合物を指すが、2以上の異種の物質を結合する役割を果たしているものには限定されない。また、反応基を3以上有する場合、少なくともいずれか2つが異なる反応基であればよい。 As used herein, the term "metal coupling agent" refers to a compound having two or more different reactive groups (e.g., an epoxy group and an alkoxysilyl group), which serves to bind two or more different substances. It is not limited to things. Moreover, when it has three or more reactive groups, at least any two of them may be different reactive groups.
 上記反応工程によって、少なくとも水、ケイ酸塩、又は金属カップリング剤が反応した反応物を含む冷却液用添加剤が生成され得る。当該冷却液用添加剤については後述する。 A coolant additive containing at least water, a silicate, or a reactant in which a metal coupling agent has reacted can be produced by the above-described reaction step. The coolant additive will be described later.
 (水)
 本発明の一態様に係る冷却液用添加剤の製造方法で使用される水は、超純水、純水、及び蒸留水等の精製水であってもよい。
(water)
The water used in the method for producing a coolant additive according to one aspect of the present invention may be ultrapure water, pure water, or purified water such as distilled water.
 (アルコール)
 本発明の一態様に係る冷却液用添加剤の製造方法で使用されるアルコールは、1価のアルコール類又は多価のアルコール類であり得る。更に、アルコールは、1級アルコール、2級アルコール又は3級アルコールであってもよい。当該アルコールは、多価アルコールが好ましく、脂肪族多価アルコールがより好ましく、1級の脂肪族多価アルコールがさらに好ましい。冷却液のゲル化抑制及び冷却液の凍結の抑制等の点で、アルコールは、グリコール又はグリコールエーテルが好ましい。冷却液のゲル化抑制等の点で、アルコールの炭素数の下限は、2以上が好ましい。また、冷却液のゲル化抑制等の点で、アルコールの炭素数の上限は、10以下が好ましく、5以下がより好ましい。
(alcohol)
The alcohol used in the method for producing a coolant additive according to one aspect of the present invention may be monohydric alcohols or polyhydric alcohols. Additionally, the alcohol may be a primary, secondary or tertiary alcohol. The alcohol is preferably a polyhydric alcohol, more preferably an aliphatic polyhydric alcohol, and even more preferably a primary aliphatic polyhydric alcohol. The alcohol is preferably glycol or glycol ether in terms of suppressing gelation of the cooling liquid and freezing of the cooling liquid. The lower limit of the number of carbon atoms in the alcohol is preferably 2 or more from the viewpoint of suppressing gelation of the cooling liquid. Moreover, the upper limit of the number of carbon atoms in the alcohol is preferably 10 or less, more preferably 5 or less, from the viewpoint of suppressing gelation of the cooling liquid.
 好ましいアルコールの例として、エチレングリコール、プロピレングリコール、ジエチレングリコール、グリセリン、1,3-プロパンジオール等が挙げられる。これらのアルコールのうち、冷却液のゲル化抑制及び冷却液の凍結の抑制等の点で、エチレングリコール又はプロピレングリコールがより好ましく、エチレングリコールがさらに好ましい。エチレングリコールを用いることにより、アルミニウムに対する防錆性が向上する。 Examples of preferred alcohols include ethylene glycol, propylene glycol, diethylene glycol, glycerin, 1,3-propanediol and the like. Among these alcohols, ethylene glycol or propylene glycol is more preferable, and ethylene glycol is even more preferable, from the viewpoint of suppressing gelation of the coolant and suppression of freezing of the coolant. The use of ethylene glycol improves the rust resistance to aluminum.
 (ケイ酸塩)
 本発明の一態様に係る冷却液用添加剤の製造方法で使用されるケイ酸塩は、防錆性の向上の点で、周期表の第1族の元素又は第2族の元素を含むケイ酸塩が好ましい。
(silicate)
The silicate used in the method for producing a coolant additive according to one aspect of the present invention is a silicate containing an element of Group 1 or an element of Group 2 of the periodic table in terms of improving rust resistance. Acid salts are preferred.
 周期表の第1族の元素又は第2族の元素を含むケイ酸塩の組成式の例として、nXO・mSiOで表される物質が挙げられる。Xは、例えば、カリウム、ナトリウム、リチウム、マグネシウム、カルシウム等のアルカリ金属又はアルカリ土類金属が挙げられる。n及びmは0.1~10であれば好ましい。ケイ酸塩の構造はオルト型、メタ型又はピロ型等であってもよい。アルカリ金属又はアルカリ土類金属を含むケイ酸塩のうち、防錆性の向上の点で、ケイ酸塩アルカリ金属塩がより好ましく、化合物名で表されるケイ酸カリウムがさらに好ましい。 A material represented by nX 2 O·mSiO 2 is an example of a composition formula of a silicate containing an element of Group 1 or Group 2 of the periodic table. Examples of X include alkali metals or alkaline earth metals such as potassium, sodium, lithium, magnesium, and calcium. n and m are preferably 0.1-10. The structure of the silicate may be ortho-, meta-, pyro-, or the like. Among the silicates containing alkali metals or alkaline earth metals, alkali metal silicates are more preferable, and potassium silicate represented by the compound name is even more preferable, from the viewpoint of improving rust resistance.
 (金属カップリング剤)
 本発明の一態様に係る冷却液用添加剤の製造方法で使用される金属カップリング剤は、チタン、ジルコニウム、アルミニウム又はケイ素等の金属元素を含むカップリング剤を意味する。その中でも、冷却液のゲルの発生抑制の観点から、シランカップリング剤が好ましい。
(metal coupling agent)
The metal coupling agent used in the method for producing a coolant additive according to one aspect of the present invention means a coupling agent containing a metal element such as titanium, zirconium, aluminum or silicon. Among them, a silane coupling agent is preferable from the viewpoint of suppressing the generation of gel in the cooling liquid.
 チタンカップリング剤の例として、チタンアルコキシド等が挙げられる。ジルコニウムカップリング剤の例として、ジルコニウムアルコキシド等が挙げられる。アルミニウムカップリング剤として、アルミニウムアルコキシド等が挙げられる。 Examples of titanium coupling agents include titanium alkoxides. Examples of zirconium coupling agents include zirconium alkoxide and the like. Aluminum alkoxide etc. are mentioned as an aluminum coupling agent.
 シランカップリング剤の例として、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-ウレイドプロピルトリアルコキシシラン、3-イソシアネートプロピルトリエトキシシラン、トリス-(トリメトキシシリルプロピル)イソシアヌレート、3-メルカプトプロピルトリメトキシシラン等が挙げられる。シランカップリング剤に付随している有機官能基はビニル基、エポキシ基、スチリル基、メタクリル基、アクリル基、アミノ基、ウレイド基、イソシアネート基、イソシアヌレート基、メルカプト基、メチレン基等が挙げられる。シラノール基に付随する水酸基の数は1つ以上3つ以下が好ましい。冷却液のゲルの発生を抑制し、不快な臭いがない等の点で、エポキシ基を有するシランカップリング剤がより好ましく、3-グリシドキシプロピルトリメトキシシラン(以下、「3-GPTMS」と示す場合がある)がさらに好ましい。 Examples of silane coupling agents include 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyl Diethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-acryloxypropyltrimethoxysilane, N-2-(aminoethyl)-3- aminopropyltrimethoxysilane, 3-ureidopropyltrialkoxysilane, 3-isocyanatopropyltriethoxysilane, tris-(trimethoxysilylpropyl)isocyanurate, 3-mercaptopropyltrimethoxysilane and the like. Organic functional groups attached to silane coupling agents include vinyl groups, epoxy groups, styryl groups, methacrylic groups, acryl groups, amino groups, ureido groups, isocyanate groups, isocyanurate groups, mercapto groups, methylene groups, and the like. . The number of hydroxyl groups attached to the silanol group is preferably 1 or more and 3 or less. A silane coupling agent having an epoxy group is more preferable in that it suppresses gelling of the cooling liquid and does not have an unpleasant odor, and 3-glycidoxypropyltrimethoxysilane (hereinafter referred to as "3-GPTMS"). ) is more preferable.
 (反応工程の条件)
 反応工程においては、水と、アルコールと、ケイ酸塩と、金属カップリング剤と、を混合して、混合物を調製する。
(Conditions of the reaction step)
In the reaction step, water, alcohol, silicate, and metal coupling agent are mixed to prepare a mixture.
 金属カップリング剤の量の下限は、上記混合物100質量%中、10質量%以上であることが好ましく、15質量%以上であることがより好ましく、20質量%以上であることがさらに好ましい。また、金属カップリング剤の量の上限は、35質量%以下であることが好ましく、30質量%以下であることがより好ましく、25質量%以下であることがさらに好ましい。金属カップリング剤の量が上記範囲内であると、効率よく反応が進む。また、エチレングリコールおよび水等と冷却液用組成物を混合し冷却液を生成した場合でもゲル化がより抑制されて、冷却液が安定化する。 The lower limit of the amount of the metal coupling agent is preferably 10% by mass or more, more preferably 15% by mass or more, and even more preferably 20% by mass or more in 100% by mass of the mixture. The upper limit of the amount of the metal coupling agent is preferably 35% by mass or less, more preferably 30% by mass or less, and even more preferably 25% by mass or less. When the amount of the metal coupling agent is within the above range, the reaction proceeds efficiently. In addition, even when a coolant is produced by mixing ethylene glycol, water, or the like with a coolant composition, gelation is further suppressed and the coolant is stabilized.
 ケイ酸塩の量の下限は、上記混合物100質量%中、12.5質量%以上であることが好ましく、15質量%以上であることがより好ましく、17.5質量%以上であることがさらに好ましい。また、ケイ酸塩の量の上限は、25質量%以下であることが好ましく、22.5質量%以下であることがより好ましく、20質量%以下であることがさらに好ましい。ケイ酸塩の量が上記範囲内であると、効率よく反応が進み、冷却液とした場合でも良好な防錆性を発揮する。 The lower limit of the amount of silicate is preferably 12.5% by mass or more, more preferably 15% by mass or more, and more preferably 17.5% by mass or more in 100% by mass of the mixture. preferable. The upper limit of the amount of silicate is preferably 25% by mass or less, more preferably 22.5% by mass or less, and even more preferably 20% by mass or less. When the amount of silicate is within the above range, the reaction proceeds efficiently, and even when used as a cooling liquid, it exhibits good rust prevention properties.
 アルコールの量の下限は、上記混合物100質量%中、0.1質量%以上であってもよく、1質量%以上であってもよく、2質量%以上であってもよく、5質量%以上であってもよい。また、アルコールの量の上限は、50質量%以下であってもよく、40質量%以下であってもよく、30質量%以下であってもよく、20質量%以下であってもよい。アルコールの量が上記範囲内であると、効率よく反応が進行する。また、上記範囲内のアルコールと、ケイ酸塩および金属カップリング剤とを含む混合物を反応させることにより、アルミニウムに対する防錆性が向上する。 The lower limit of the amount of alcohol may be 0.1% by mass or more, 1% by mass or more, 2% by mass or more, or 5% by mass or more in 100% by mass of the above mixture. may be Moreover, the upper limit of the amount of alcohol may be 50% by mass or less, 40% by mass or less, 30% by mass or less, or 20% by mass or less. When the amount of alcohol is within the above range, the reaction proceeds efficiently. In addition, by reacting a mixture containing an alcohol within the above range with a silicate and a metal coupling agent, rust prevention against aluminum is improved.
 水の量の下限は、上記混合物100質量%中、22.5質量%以上であることが好ましく、35質量%以上であることがより好ましい。また、水の量の上限は、75質量%以下であることが好ましく、60質量%以下であることがより好ましい。水の量が上記範囲内であると、効率よく反応が進行する。一態様として、冷却液用添加剤を含む冷却液を調整しやすくするという観点から、水の配合量は金属カップリング剤、ケイ酸塩、アルコールの配合量より多い方が好ましい。 The lower limit of the amount of water is preferably 22.5% by mass or more, more preferably 35% by mass or more, based on 100% by mass of the mixture. Also, the upper limit of the amount of water is preferably 75% by mass or less, more preferably 60% by mass or less. When the amount of water is within the above range, the reaction proceeds efficiently. As one aspect, the blending amount of water is preferably larger than the blending amounts of the metal coupling agent, silicate, and alcohol from the viewpoint of facilitating adjustment of the coolant containing the coolant additive.
 上記混合物を調製するとき、混合する順番は特に制限はないが、冷却液用添加剤の安定性の点で、水とケイ酸塩とを混合してから、金属カップリング剤を混合させることが好ましい。混合物の調製は、撹拌等の公知の方法によって調製すればよい。 When preparing the mixture, the order of mixing is not particularly limited, but from the viewpoint of the stability of the coolant additive, water and silicate may be mixed before the metal coupling agent is mixed. preferable. The mixture may be prepared by a known method such as stirring.
 反応工程での成分の蒸発が少なく、製造装置を簡便化できるため、通常、反応温度は20℃~80℃であり、25℃~60℃であることが好ましい。また、品質の安定化のために、通常、反応時間は3時間~100時間であり、5時間~80時間であることが好ましい。 The reaction temperature is usually 20°C to 80°C, preferably 25°C to 60°C, because the evaporation of the components in the reaction process is small and the manufacturing equipment can be simplified. In order to stabilize the quality, the reaction time is usually 3 hours to 100 hours, preferably 5 hours to 80 hours.
 上記混合物を調製後、後述する化合物の合成を促進させる点で、以下の式(A)を満たす時間以上、上記混合物を反応させることが好ましい。反応工程中は、混合物を静置させてもよいし、撹拌等で流動させてもよい。
 y≧7.58x-22.9・・・(A)
 式(A)中、
  x=1000/(273.14+T)であり、
  y=ln(h)であり、
  Tは0≦T≦100を満たす温度(単位:℃)を表し、
  hは時間(単位:時間)を表す。
After preparing the above mixture, it is preferable to react the above mixture for a period of time that satisfies the following formula (A) or longer in order to promote the synthesis of the compound described below. During the reaction step, the mixture may be allowed to stand still, or may be fluidized by stirring or the like.
y≧7.58x−22.9 (A)
In formula (A),
x=1000/(273.14+T),
y=ln(h) and
T represents a temperature (unit: ° C.) that satisfies 0 ≤ T ≤ 100,
h represents time (unit: hour).
 また、上記混合物を調製後、後述する化合物の合成を促進させる点で、以下の式(B)を満たす時間以上、上記混合物を静置又は撹拌することがより好ましい。
 y≧7.58x-21.1・・・(B)
 式(B)中、
  x=1000/(273.14+T)であり、
  y=ln(h)であり、
  Tは0≦T≦100を満たす温度(単位:℃)を表し、
  hは時間(単位:時間)を表す。
After the mixture is prepared, it is more preferable to leave the mixture at rest or stir for a period of time that satisfies the following formula (B) or longer, in order to promote the synthesis of the compound described below.
y≧7.58x−21.1 (B)
In formula (B),
x=1000/(273.14+T),
y=ln(h) and
T represents a temperature (unit: ° C.) that satisfies 0 ≤ T ≤ 100,
h represents time (unit: hour).
 式(A)及び(B)のTの下限は、0℃以上が好ましく、10℃以上がより好ましく、20℃以上がさらに好ましい。また、Tの上限は100℃以下が好ましく、85℃以下がより好ましく、70℃以下がさらに好ましい。Tが上記範囲内であると、成分の蒸発等が少ないため冷却液用添加剤の製造装置の簡便化を図ることができる。また、Tが上記範囲内であると、冷却液用添加剤又は冷却液用添加剤を含む冷却液の安定性が向上する。 The lower limit of T in formulas (A) and (B) is preferably 0°C or higher, more preferably 10°C or higher, and even more preferably 20°C or higher. The upper limit of T is preferably 100°C or lower, more preferably 85°C or lower, and even more preferably 70°C or lower. When T is within the above range, evaporation of the components is small, so that the production equipment for the coolant additive can be simplified. Further, when T is within the above range, the stability of the coolant additive or the coolant containing the coolant additive is improved.
 式(A)及び(B)のhの下限は、1時間以上であってもよく、7時間以上であってもよく、14時間以上であってもよく、24時間以上であってもよく、48時間以上であってもよく、72時間以上であってもよい。また、hの上限は1000時間以下であってもよく、360時間以下であってもよく、120時間以下であってもよく、96時間以下であってもよい。hが上記範囲内であると、冷却液用添加剤又は冷却液用添加剤を含む冷却液の安定性が向上する。設備の簡便化、品質の安定化の観点から、30~40℃で70時間以上反応させることが望ましい。 The lower limit of h in formulas (A) and (B) may be 1 hour or more, 7 hours or more, 14 hours or more, or 24 hours or more, It may be 48 hours or longer, or 72 hours or longer. Also, the upper limit of h may be 1000 hours or less, 360 hours or less, 120 hours or less, or 96 hours or less. When h is within the above range, the stability of the coolant additive or the coolant containing the coolant additive is improved. From the viewpoint of simplification of equipment and stabilization of quality, it is desirable to carry out the reaction at 30 to 40° C. for 70 hours or more.
 以上に説明した本発明の一態様に係る冷却液用添加剤の製造方法によって製造される冷却液用添加剤も本発明の一態様に含まれる。 A coolant additive manufactured by the method for manufacturing a coolant additive according to one aspect of the present invention described above is also included in one aspect of the present invention.
 〔2.冷却液の製造方法〕
 本発明の一態様に係る冷却液の製造方法は、本発明の一態様に係る冷却液用添加剤の製造方法によって冷却液用添加剤を製造する工程を含んでもよい。
[2. Cooling liquid manufacturing method]
A method for manufacturing a coolant according to one aspect of the present invention may include a step of manufacturing a coolant additive by the method for manufacturing a coolant additive according to one aspect of the present invention.
 本発明の一態様に係る冷却液の製造方法において、前述した本発明の一態様に係る冷却液用添加剤の製造方法によって製造される冷却液用添加剤に、イオン交換水等の水、エチレングリコール等の溶媒;有機酸;中和剤(pH調整剤);着色剤;消泡材等;を加えて冷却液を製造する。 In the method for producing a coolant according to one aspect of the present invention, the coolant additive produced by the method for producing a coolant additive according to one aspect of the present invention includes water such as ion-exchanged water, ethylene A solvent such as glycol; an organic acid; a neutralizer (pH adjuster); a coloring agent;
 本発明の一態様に係る冷却液中の冷却液用添加剤の量は用途に合わせて適宜調整可能であるが、冷却液用添加剤の量の下限は、冷却液100質量%中、0.05質量%以上であることが好ましく、0.1質量%以上であることがより好ましい。また、当該冷却液用添加剤の量の上限は、3質量%以下であることが好ましく、1質量%以下であることがより好ましい。冷却液用添加剤の量が上記範囲内であると、冷却液の防錆性及び安定性がより向上する。また、冷却液用添加剤の量が上記範囲内であると、冷却液は金属に対する十分な防錆性を発揮する。 The amount of the coolant additive in the coolant according to one aspect of the present invention can be appropriately adjusted according to the application. 05% by mass or more, and more preferably 0.1% by mass or more. Further, the upper limit of the amount of the coolant additive is preferably 3% by mass or less, more preferably 1% by mass or less. When the amount of the coolant additive is within the above range, the rust prevention and stability of the coolant are further improved. Further, when the amount of the additive for coolant is within the above range, the coolant exhibits sufficient anticorrosiveness to metals.
 〔3.冷却液用添加剤及び冷却液〕
 本発明の一態様に係る冷却液用添加剤は、水とアルコールとケイ酸塩と金属カップリング剤との混合物、及びこれら成分を反応させて得た部分反応物を含む。「部分反応物」とは、液中に含まれる成分の少なくとも2つが反応して生成される反応物、もしくは同一成分同士が反応して生成される反応物をいう。例えば、金属カップリング剤と水との反応物、金属カップリング剤とケイ酸塩との反応物、金属カップリング剤とケイ酸塩と水との反応物、ケイ酸塩とケイ酸塩との反応物、もしくは、水、ケイ酸塩及び/又は金属カップリング剤とアルコールとの反応物などが挙げられる。また、本発明の一態様に係る冷却液用添加剤の製造方法によって製造される冷却液用添加剤も本発明の一態様に含まれる。
[3. Coolant Additive and Coolant]
A coolant additive according to one aspect of the present invention includes a mixture of water, an alcohol, a silicate, and a metal coupling agent, and a partial reaction product obtained by reacting these components. A "partial reactant" refers to a reactant produced by reacting at least two components contained in a liquid, or a reactant produced by reacting the same components with each other. For example, a reaction product of a metal coupling agent and water, a reaction product of a metal coupling agent and a silicate, a reaction product of a metal coupling agent, a silicate and water, a reaction product of a silicate and a silicate A reactant, or a reactant of water, silicate and/or a metal coupling agent with an alcohol, and the like. Further, one aspect of the present invention also includes a coolant additive manufactured by the method for manufacturing a coolant additive according to one aspect of the present invention.
 本発明の一態様に係る冷却液は、上記冷却液用添加剤を含む。また、本発明の一態様に係る冷却液の製造方法によって製造される冷却液も本発明の一態様に含まれる。 A coolant according to one aspect of the present invention contains the coolant additive. Further, one aspect of the present invention also includes a coolant manufactured by a method for manufacturing a coolant according to one aspect of the present invention.
 本発明の一態様に係る冷却液は安定性が高い。また、本発明の一態様に係る冷却液は非リン酸系冷却液であるが、リン酸系冷却液と同等の防錆性を有する。また、本発明の一態様に係る冷却液は非リン酸系冷却液であり、硬水安定性に優れる。 The cooling liquid according to one aspect of the present invention has high stability. In addition, although the cooling liquid according to one aspect of the present invention is a non-phosphoric cooling liquid, it has the same anticorrosion properties as the phosphoric acid cooling liquid. In addition, the cooling liquid according to one aspect of the present invention is a non-phosphate cooling liquid and has excellent hard water stability.
 冷却液の用途として、ディーゼルエンジン及びガソリンエンジン等の内燃機関、燃料電池及び二次電池等の電池、ヒートパイプ、モーター等で使用される冷却液又は不凍液等が挙げられる。なかでも、内燃機関用冷却液として好適に使用できる。 Applications of coolants include coolants and antifreeze used in internal combustion engines such as diesel engines and gasoline engines, batteries such as fuel cells and secondary batteries, heat pipes, and motors. Among others, it can be suitably used as a coolant for internal combustion engines.
 〔4.冷却液用添加剤〕
 本発明の一態様に係る冷却液用添加剤は、部分反応物として下記式(1)で表される化合物を含む。
Figure JPOXMLDOC01-appb-C000001
 式(1)中、
 R~Rはそれぞれ独立して、水酸基、エーテル結合を有するアルキル基、又は、アミド基であって、R~Rのいずれか2つが互いに結合してもよく、当該結合基はケトン基であってもよく、
 Rは炭素数1以上10以下のアルキル基、-(CHZ1-CO-NH-(CHZ2-、又は、-(CHZ3-SH-(CHZ4-であり、1≦Z1+Z2≦10であり、1≦Z3+Z4≦10であり、
 Rは炭素数1以上10以下のアルキル基、イソプロピル基、ビニル基、スチリル基、アクリル基、アミノ基、カルボキシル基、ウレイド基、メルカプト基、イソシアネート基、シラノール基、ヒドロキシ基、アルデヒド基、カルボニル基、ニトロ基、スルホン基、フェニル基、ナフチル基、シアノ基、フルオロ基、クロロ基、ブロモ基、ヨード基、トリアゾール基、エポキシ基、炭化水素環基、又は、複素環基であり、
 式(1)の化合物は、R~Rいずれか1つ以上を連結基として2量体以上の多量体を形成してもよく、当該連結基はエーテル結合を有する。
[4. Coolant additive]
A coolant additive according to an aspect of the present invention includes a compound represented by the following formula (1) as a partial reaction product.
Figure JPOXMLDOC01-appb-C000001
In formula (1),
Each of R 1 to R 3 is independently a hydroxyl group, an alkyl group having an ether bond, or an amide group, any two of R 1 to R 3 may be bonded to each other, and the bonding group is a ketone may be a base,
R 4 is an alkyl group having 1 to 10 carbon atoms, -(CH 2 ) Z 1 -CO-NH-(CH 2 ) Z 2 -, or -(CH 2 ) Z 3 -SH 2 -(CH 2 ) Z 4 - Yes, 1 ≤ Z1 + Z2 ≤ 10, 1 ≤ Z3 + Z4 ≤ 10,
R5 is an alkyl group having 1 to 10 carbon atoms, isopropyl group, vinyl group, styryl group, acryl group, amino group, carboxyl group, ureido group, mercapto group, isocyanate group, silanol group, hydroxy group, aldehyde group, carbonyl a nitro group, a sulfone group, a phenyl group, a naphthyl group, a cyano group, a fluoro group, a chloro group, a bromo group, an iodo group, a triazole group, an epoxy group, a hydrocarbon ring group, or a heterocyclic group;
The compound of formula (1) may form a dimer or multimer with one or more of R 1 to R 3 as a linking group, and the linking group has an ether bond.
 本発明の一態様に係る冷却液用添加剤は、部分反応物として下記式(2)~(9)で表されるいずれかの化合物を含むことが好ましく、下記式(2)、(3)、(6)又は(7)で表されるいずれかの化合物を含むことがより好ましく、下記式(2)又は(6)で表される化合物を含むことがさらに好ましい。
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
The coolant additive according to one aspect of the present invention preferably contains any one of the compounds represented by the following formulas (2) to (9) as a partial reaction product, and the following formulas (2) and (3) , (6) or (7), and more preferably a compound represented by the following formula (2) or (6).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
 本発明の一態様に係る冷却液用添加剤に含まれる化合物の構造を特定する方法として、質量分析法(MS)、核磁気共鳴法(NMR)等による分析による特定が挙げられる。 As a method for identifying the structure of the compound contained in the coolant additive according to one aspect of the present invention, identification by analysis by mass spectrometry (MS), nuclear magnetic resonance (NMR), or the like can be mentioned.
 本発明の一態様に係る冷却液は、リン酸が含まれていなくても、金属に対する優れた防錆効果を有する。本発明の一態様に係る冷却液の使用によって、湖沼及び内海等の富栄養化による水質汚染を防止及び削減することができ、持続可能な開発目標(SDGs)の達成に貢献できる。 The coolant according to one aspect of the present invention has an excellent rust-preventing effect on metals even if it does not contain phosphoric acid. By using the cooling liquid according to one aspect of the present invention, it is possible to prevent and reduce water pollution due to eutrophication in lakes, inland seas, etc., and contribute to the achievement of Sustainable Development Goals (SDGs).
 〔まとめ〕
 本発明の一実施形態は以下の構成を包含する。
〔1〕水と、アルコールと、ケイ酸塩と、金属カップリング剤とを混合して反応させる反応工程を含む、冷却液用添加剤の製造方法。
〔2〕前記金属カップリング剤が、チタンカップリング剤、ジルコニウムカップリング剤、アルミニウムカップリング剤及びシランカップリング剤から選択される少なくとも1つのカップリング剤である、〔1〕に記載の冷却液用添加剤の製造方法。
〔3〕前記金属カップリング剤が3-グリシドキシプロピルトリメトキシシランである、〔1〕又は〔2〕に記載の冷却液用添加剤の製造方法。
〔4〕前記反応工程において、前記水及び前記ケイ酸塩を混合した後に、前記金属カップリング剤を添加する、〔1〕~〔3〕のいずれか1に記載の冷却液用添加剤の製造方法。
〔5〕〔1〕~〔4〕のいずれか1に記載の冷却液用添加剤の製造方法によって冷却用添加剤を製造する工程を含む、冷却液の製造方法。
〔6〕水と、アルコールと、ケイ酸塩と、金属カップリング剤との混合物、及びこれら成分の部分反応物を含む、冷却液用添加剤。
〔7〕前記部分反応物は、前記金属カップリング剤と前記水との反応物、前記金属カップリング剤と前記ケイ酸塩との反応物、及び前記金属カップリング剤と前記ケイ酸塩と前記水との反応物、からなる群から選択される少なくとも1種である、〔6〕に記載の冷却液用添加剤。
〔summary〕
One embodiment of the present invention includes the following configurations.
[1] A method for producing a coolant additive, comprising a reaction step of mixing and reacting water, an alcohol, a silicate, and a metal coupling agent.
[2] The coolant according to [1], wherein the metal coupling agent is at least one coupling agent selected from titanium coupling agents, zirconium coupling agents, aluminum coupling agents and silane coupling agents. manufacturing method of additive for
[3] The method for producing a coolant additive according to [1] or [2], wherein the metal coupling agent is 3-glycidoxypropyltrimethoxysilane.
[4] Production of the coolant additive according to any one of [1] to [3], wherein in the reaction step, the metal coupling agent is added after mixing the water and the silicate. Method.
[5] A method for producing a coolant, comprising a step of producing a coolant additive by the method for producing a coolant additive according to any one of [1] to [4].
[6] A coolant additive comprising a mixture of water, an alcohol, a silicate and a metal coupling agent, and a partial reaction product of these components.
[7] The partial reaction product includes a reaction product of the metal coupling agent and the water, a reaction product of the metal coupling agent and the silicate, and a reaction product of the metal coupling agent, the silicate and the The coolant additive according to [6], which is at least one selected from the group consisting of a reaction product with water.
 以下に、本発明を実施例により具体的に説明するが、本発明はこれら実施例に限定されるものではない。実施例中、特に記載がない限り、%は質量%を表す。なお、調製例では滴下による添加を行っているが、滴下による添加でなくてもよい。また、調製例では反応工程において混合物を静置させているが、撹拌等により混合物を連続又は断続的に流動させていてもよい。 The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples. In the examples, % represents % by mass unless otherwise specified. In the preparation examples, addition is performed by dropping, but the addition may not be by dropping. In the preparation examples, the mixture is allowed to stand still in the reaction step, but the mixture may be fluidized continuously or intermittently by stirring or the like.
 (調製例1)冷却液用添加剤及び冷却液の調製
 ビーカー内に、超純水を34%、50%ケイ酸カリウム水溶液(日本化学工業社製1K珪酸カリ)を38%(すなわち、ケイ酸カリウムを19%、水を19%)、3-GPTMSを22%及びエチレングリコール(以下、「EG」と略記する場合がある)を6%この順で滴下撹拌した。そして、滴下撹拌して得られた混合物を、表1に記載の反応条件で0℃又は30℃の恒温槽において1、2又は3日間静置し、冷却液用添加剤を調製した。得られた冷却液用添加剤1~6を、表1に記載の冷却液処方比率で有機酸及び中和剤を含むエチレングリコールに混合して調製し、冷却液1~6として評価を行った。なお、有機酸及び中和剤は、一般的に冷却液に含まれる添加剤であり、冷却液の安定性には影響を及ぼさず、中和剤は防食性に寄与しない。
(Preparation Example 1) Additive for coolant and preparation of coolant In a beaker, 34% ultrapure water and 38% 50% potassium silicate aqueous solution (1K potassium silicate manufactured by Nippon Kagaku Kogyo Co., Ltd.) (that is, silicic acid 19% potassium, 19% water), 22% 3-GPTMS and 6% ethylene glycol (hereinafter sometimes abbreviated as “EG”) were added dropwise with stirring in this order. Then, the mixture obtained by dropping and stirring was allowed to stand in a constant temperature bath at 0° C. or 30° C. under the reaction conditions shown in Table 1 for 1, 2, or 3 days to prepare a coolant additive. The obtained coolant additives 1 to 6 were prepared by mixing with ethylene glycol containing an organic acid and a neutralizer at the coolant formulation ratio shown in Table 1, and evaluated as coolants 1 to 6. . The organic acid and the neutralizing agent are additives generally contained in the cooling liquid, and do not affect the stability of the cooling liquid, and the neutralizing agent does not contribute to the anti-corrosion properties.
 (調製例2)冷却液用添加剤及び冷却液の調製
 ビーカー内に、超純水を34%、50%ケイ酸カリウム水溶液を38%、3-GPTMSを22%及びEGを6%この順で滴下撹拌した。そして、滴下撹拌し、静置加熱を行わずに得られた混合物を冷却液用添加剤7とした。それを表1に記載の冷却液処方比率で有機酸及び中和剤を含むエチレングリコールに混合して調製し、冷却液7として評価を行った。
(Preparation Example 2) Additives for coolant and preparation of coolant In a beaker, 34% ultrapure water, 38% 50% potassium silicate aqueous solution, 22% 3-GPTMS and 6% EG are added in this order. Stirred dropwise. Additive 7 for cooling liquid was obtained by dropping and stirring without standing and heating. It was prepared by mixing it with ethylene glycol containing an organic acid and a neutralizing agent at the cooling liquid formulation ratio shown in Table 1, and evaluated as cooling liquid 7.
 (評価例1)冷却液の安定性試験
 調製例1及び2で得られた冷却液1~7を60℃の恒温槽で1時間静置し、冷却液の安定性を評価した。評価結果を表1に示す。
(Evaluation Example 1) Stability Test of Cooling Liquid Cooling liquids 1 to 7 obtained in Preparation Examples 1 and 2 were allowed to stand in a constant temperature bath at 60° C. for 1 hour to evaluate the stability of the cooling liquid. Table 1 shows the evaluation results.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 また、60℃の恒温槽で1時間静置後の冷却液3及び7を図1に示す。図1中、冷却液(50%希釈液)は、超純水で希釈することによって得られた冷却液である。 Fig. 1 shows the cooling liquids 3 and 7 after standing for 1 hour in a constant temperature bath at 60°C. In FIG. 1, the cooling liquid (50% diluted liquid) is the cooling liquid obtained by diluting with ultrapure water.
 表1に示すように、静置温度を30℃に設定し、1日以上静置して得た冷却液用添加剤を含む冷却液1~3では、冷却液が安定し、白濁又は沈殿物が発生せず、冷却液のゲル化が抑制された。また、図1に示すように、冷却液3は透明であり良好な性状であった。冷却液3と超純水を混合し、冷却液濃度を50%になるように希釈しても冷却液の安定性は維持された。冷却液1~2も冷却液3と同様の結果であった。 As shown in Table 1, in the cooling liquids 1 to 3 containing the cooling liquid additive obtained by setting the standing temperature to 30 ° C. and standing for one day or more, the cooling liquid is stable and cloudy or precipitated. did not occur, and gelling of the coolant was suppressed. Moreover, as shown in FIG. 1, the cooling liquid 3 was transparent and had good properties. The stability of the cooling liquid was maintained even when the cooling liquid 3 and ultrapure water were mixed to dilute the cooling liquid concentration to 50%. The cooling liquids 1 and 2 also gave the same results as the cooling liquid 3.
 静置温度を0℃に設定した冷却液用添加剤を含む冷却液4~6は白濁し、冷却液が不安定だった。一方、表1には記載していないが、0℃において37日間静置して得た冷却液用添加剤を含む冷却液では沈殿又は白濁は発生しなかった。この結果から、冷却液用添加剤の製造において、静置温度が低いときは静置時間を長くすると冷却液のゲル化が抑制される可能性があるが、冷却液の安定性を確実に確保し難いことが示唆された。 Cooling liquids 4 to 6 containing cooling liquid additives with the stationary temperature set to 0°C became cloudy and the cooling liquid was unstable. On the other hand, although not shown in Table 1, no precipitation or white turbidity occurred in the coolant containing the additive for coolant obtained by standing at 0° C. for 37 days. From these results, in the manufacture of coolant additives, if the standing temperature is low, the gelling of the coolant may be suppressed by extending the standing time, but the stability of the coolant can be ensured. It has been suggested that it is difficult
 表1及び図1に示すように、冷却液用添加剤の調製において混合物を反応させる時間を設けなかった冷却液7は白濁し、冷却液が不安定だった。また、冷却液7と超純水を混合し、冷却液濃度を50%に希釈しても冷却液は白濁し、不安定な性状であった。これは、反応時間を設けていないために反応率が低い状態の冷却液用添加剤7を希釈して、冷却液7を作製したためと考えられる。この結果から、混合物を一定の温度及び時間で化学反応させ、反応率が高い状態の冷却液用添加剤を用いて冷却液を生成することにより、冷却液が安定化すると考えられる。 As shown in Table 1 and Fig. 1, the cooling liquid 7, in which the mixture was not allowed to react in the preparation of the cooling liquid additive, became cloudy and the cooling liquid was unstable. Further, even when the cooling liquid 7 and ultrapure water were mixed to dilute the cooling liquid to a concentration of 50%, the cooling liquid became cloudy and had unstable properties. This is probably because the coolant 7 was prepared by diluting the coolant additive 7 which had a low reaction rate because no reaction time was provided. From this result, it is considered that the coolant is stabilized by chemically reacting the mixture at a constant temperature and time and generating the coolant using the coolant additive in a state of high reaction rate.
 (評価例2)冷却液用添加剤中の各成分の割合の検討試験
 次に、ケイ酸カリウム及びEGの配合量は変えずに、3-GPTMSの配合割合を変化させて、冷却液の性能の変化を評価した。ビーカー内に、超純水、50%ケイ酸カリウム水溶液を38%、EGを6%及び3-GPTMSをこの順で滴下撹拌した。3-GPTMSの割合を12%、17%、22%、27%及び32%に設定し、水は混合物100%となるように加えた。得られた混合物を30℃において3日間静置し、冷却液用添加剤を調製した。得られた冷却液用添加剤0.4%と有機酸及び中和剤を含むエチレングリコールとを、表1に記載の冷却液処方と同様の比率で混合して、冷却液を調製し、評価を行った。
(Evaluation Example 2) Examination test of the ratio of each component in the coolant additive Next, without changing the blending ratio of potassium silicate and EG, the blending ratio of 3-GPTMS was changed, and the performance of the coolant was evaluated. was evaluated. Into a beaker, ultrapure water, 38% 50% potassium silicate aqueous solution, 6% EG and 3-GPTMS were dropped and stirred in this order. The percentage of 3-GPTMS was set at 12%, 17%, 22%, 27% and 32% and water was added to make the mixture 100%. The resulting mixture was allowed to stand at 30° C. for 3 days to prepare a coolant additive. 0.4% of the resulting coolant additive and ethylene glycol containing an organic acid and a neutralizing agent were mixed in the same ratio as the coolant formulation shown in Table 1 to prepare a coolant and evaluate it. did
 また、ケイ酸カリウムの配合割合を変化させて、冷却液の性能の変化を評価した。ビーカー内に、超純水、50%ケイ酸カリウム水溶液、3-GPTMSを22%及びEGを6%この順で滴下撹拌した。50%ケイ酸カリウム水溶液の割合を28%、33%、38%、43%及び48%に設定し、水は混合物100%となるように加えた。得られた混合物を30℃において3日間静置し、冷却液用添加剤を調製した。得られた冷却液用添加剤と有機酸及び中和剤を含むエチレングリコールとを、表1に記載の冷却液処方と同様の比率で混合して冷却液を調製し、評価を行った。 In addition, we evaluated changes in coolant performance by changing the mixing ratio of potassium silicate. Ultrapure water, 50% potassium silicate aqueous solution, 22% 3-GPTMS and 6% EG were added dropwise and stirred in this order into a beaker. The proportions of 50% potassium silicate aqueous solution were set at 28%, 33%, 38%, 43% and 48% and water was added to make the mixture 100%. The resulting mixture was allowed to stand at 30° C. for 3 days to prepare a coolant additive. The obtained additive for coolant and ethylene glycol containing an organic acid and a neutralizing agent were mixed in the same ratio as the coolant formulation shown in Table 1 to prepare a coolant and evaluated.
 上記で調製した冷却液について、金属腐食性試験を行った。これらの試験内容はJISK2234:2018 不凍液に準じて行った。評価結果を表2及び表3に示す。 A metal corrosiveness test was performed on the coolant prepared above. These tests were conducted in accordance with JISK2234:2018 Antifreeze. Evaluation results are shown in Tables 2 and 3.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 表2に示すように、3-GPTMSの配合割合を12~32%としても混合物中に含まれる成分が反応し、冷却液は良好な防錆性を示した。 As shown in Table 2, even when the blending ratio of 3-GPTMS was 12 to 32%, the components contained in the mixture reacted, and the coolant exhibited good rust prevention properties.
 表3に示すように、ケイ酸カリウムの配合割合を14~24%としても混合物中に含まれる成分が反応し、冷却液は良好な防錆性を示した。 As shown in Table 3, even when the mixing ratio of potassium silicate was 14 to 24%, the components contained in the mixture reacted, and the coolant exhibited good rust prevention properties.
 (評価例3)冷却液用添加剤の各成分の添加タイミングの検討試験
 次に、冷却液用添加剤を調製する際の各成分の添加タイミングを変化させて、冷却液用添加剤の安定性を評価した。表4に示す添加順序でビーカー内に滴下撹拌し、冷却液用添加剤9~12を調製した。冷却液用添加剤を調製する際の各成分の仕込み量は、超純水を34%、50%ケイ酸カリウム水溶液を38%、3-GPTMSを22%及びEGを6%とした。
(Evaluation Example 3) Examination test of the addition timing of each component of the coolant additive evaluated. Additives 9 to 12 for cooling liquid were prepared by dropping and stirring in a beaker in the order of addition shown in Table 4. The amount of each component charged in preparing the coolant additive was 34% ultrapure water, 38% 50% potassium silicate aqueous solution, 22% 3-GPTMS, and 6% EG.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 表4に示すように、冷却液用添加剤9及び11の調製中に白濁が起こらなかった。冷却液用添加剤10の調製において、ケイ酸カリウム水溶液の添加後、白濁(ゲル化)が発生した。一方、すべての成分を滴下撹拌し、30℃の恒温槽において数日間静置すると冷却液用添加剤は透明になった。冷却液用添加剤10は使用可能であるが、白濁を消失させるために、冷却液用添加剤9及び11の調製時間に比べて冷却液用添加剤10の調製に時間を要した。 As shown in Table 4, cloudiness did not occur during the preparation of coolant additives 9 and 11. In the preparation of coolant additive 10, white turbidity (gelation) occurred after addition of the potassium silicate aqueous solution. On the other hand, when all the components were stirred dropwise and allowed to stand in a constant temperature bath at 30°C for several days, the coolant additive became transparent. Coolant Additive 10 could be used, but the preparation of Coolant Additive 10 took longer than the preparation of Coolant Additives 9 and 11 to eliminate cloudiness.
 また、冷却液用添加剤12の調製において、水添加後に白濁が発生したが、ケイ酸カリウム水溶液を添加すると白濁は消失した。全成分を混合した後には白濁は消失したため許容されうるが、安定的に調製を行うためには調製中においても白濁が生じない方が望ましい。 Also, in the preparation of the coolant additive 12, white turbidity occurred after water was added, but the white turbidity disappeared when the potassium silicate aqueous solution was added. The white turbidity disappears after all the components are mixed, so it is acceptable, but for stable preparation, it is desirable that the white turbidity does not occur even during the preparation.
 これらの結果から、冷却液用添加剤の調製の際に白濁が発生しないように、水及びケイ酸カリウム水溶液を混合後、3-GPTMSを添加することが好ましいことが分かった。 From these results, it was found that it is preferable to add 3-GPTMS after mixing water and an aqueous solution of potassium silicate so that cloudiness does not occur during preparation of the coolant additive.
 (評価例4)エンジン冷却液の評価試験
 調製例1で調製した冷却液用添加剤3を有機酸及び中和剤を含むエチレングリコールに混合してエンジン冷却液(冷却液用添加剤を0.2~10%含む)を調製した。調製したエンジン冷却液について、アルミニウム鋳物伝熱面腐食性試験及び金属腐食性試験を行った。これらの試験内容はJISK2234:2018 不凍液に準じて行った。エンジン冷却液から体積分率30%の水溶液を調製し、アルミニウム鋳物伝熱面腐食性試験を行った結果を図2、金属腐食性試験の結果を図3に示す。
(Evaluation Example 4) Evaluation Test of Engine Coolant The coolant additive 3 prepared in Preparation Example 1 was mixed with ethylene glycol containing an organic acid and a neutralizer to obtain an engine coolant (0.00% additive for coolant). 2 to 10%) was prepared. The prepared engine coolant was subjected to an aluminum casting heat transfer surface corrosion test and a metal corrosion test. These tests were conducted according to JISK2234:2018 antifreeze solution. An aqueous solution with a volume fraction of 30% was prepared from the engine coolant, and the results of the aluminum casting heat transfer surface corrosion test are shown in FIG. 2, and the results of the metal corrosion test are shown in FIG.
 図2及び図3から、冷却液用添加剤3を0.3~4%含むエンジン冷却液について、防錆性を有していることを確認した。評価例4においては、JIS試験の結果より、冷却液中の調製例1で調製した冷却液用添加剤の最適の含有量が0.4%であることが分かった。なお、冷却液中の冷却液用添加剤の最適含有量は、冷却液用添加剤の各成分の配合量に応じて異なる。  From Figures 2 and 3, it was confirmed that the engine coolant containing 0.3 to 4% of additive 3 for coolant has anti-corrosion properties. In Evaluation Example 4, it was found from the results of the JIS test that the optimum content of the coolant additive prepared in Preparation Example 1 in the coolant was 0.4%. The optimum content of the coolant additive in the coolant varies depending on the blending amount of each component of the coolant additive.
 (評価例5)冷却液の防錆性の評価試験
 以下に示す試料a~dについて金属腐食性試験(JISK2234:2018 不凍液に準ずる)を行い、防錆効果を評価した。冷却液を水で希釈し、金属腐食性試験は30%水溶液、アルミ伝熱面試験は25%水溶液を用いて実施した。各冷却液の防錆性の評価結果を図4に示す。
 試料a・・・調製例1で調製した冷却液3
 試料b・・・市販リン酸系冷却液
 試料c・・・市販ケイ酸系冷却液
 試料d・・・市販有機酸系冷却液
(Evaluation Example 5) Evaluation Test of Anticorrosiveness of Coolant A metal corrosiveness test (according to JISK2234:2018 antifreeze liquid) was performed on samples a to d shown below to evaluate the anticorrosive effect. The coolant was diluted with water, and the metal corrosion test was performed using a 30% aqueous solution, and the aluminum heat transfer surface test was performed using a 25% aqueous solution. FIG. 4 shows the evaluation results of the rust prevention properties of each cooling liquid.
Sample a... Coolant 3 prepared in Preparation Example 1
Sample b: commercially available phosphoric acid-based cooling liquid Sample c: commercially available silicic acid-based cooling liquid Sample d: commercially available organic acid-based cooling liquid
 図4に示すように、試料aは、市販品の冷却液の試料b~dと同等の防錆性を有することが確認された。 As shown in Fig. 4, it was confirmed that sample a had the same anticorrosive properties as samples b to d of commercial cooling liquids.
 (評価例6)冷却液の硬水安定性試験
 評価例5の試料a及びbについて硬水で希釈したときの沈殿の有無について評価した。具体的には、上記試料a及びbについて、以下の条件1~4で評価を行った。評価結果を図5に示す。
<条件1>
 試料100mL及び硬水100mL(10ppmのCaを含む)を撹拌後、暗所で24時間静置した。
<条件2>
 試料100mL及び硬水100mL(100ppmのCaを含む)を撹拌後、暗所で24時間静置した。
<条件3>
 試料100mL及び硬水100mL(10ppmのCaを含む)を撹拌後、80℃に加熱して、暗所で24時間静置した。
<条件4>
 試料100mL及び硬水100mL(100ppmのCaを含む)を撹拌後、80℃に加熱して、暗所で24時間静置した。
(Evaluation Example 6) Hard Water Stability Test of Cooling Liquid Samples a and b of Evaluation Example 5 were evaluated for the presence or absence of precipitation when diluted with hard water. Specifically, the samples a and b were evaluated under the following conditions 1 to 4. Evaluation results are shown in FIG.
<Condition 1>
After stirring 100 mL of the sample and 100 mL of hard water (containing 10 ppm of Ca), the mixture was allowed to stand in a dark place for 24 hours.
<Condition 2>
After stirring 100 mL of the sample and 100 mL of hard water (containing 100 ppm of Ca), the mixture was allowed to stand in a dark place for 24 hours.
<Condition 3>
After stirring 100 mL of the sample and 100 mL of hard water (containing 10 ppm of Ca), the mixture was heated to 80° C. and allowed to stand in the dark for 24 hours.
<Condition 4>
After stirring 100 mL of the sample and 100 mL of hard water (containing 100 ppm of Ca), the mixture was heated to 80° C. and allowed to stand in the dark for 24 hours.
 図5に示すように、条件1~4のいずれの条件でも試料bでは沈殿が発生したが、試料aでは沈殿が観察されなかった。リン酸系冷却液はミネラル成分と反応して沈殿が生じやすいが、試料aでは沈殿が発生せず硬水安定性が優れていることが分かった。 As shown in Fig. 5, precipitation occurred in sample b under any of conditions 1 to 4, but no precipitation was observed in sample a. Phosphoric acid-based coolants tend to react with mineral components and precipitate, but sample a did not precipitate and was found to be excellent in hard water stability.
 (評価例7)冷却液用添加剤の分析試験
 上記評価例で調製した冷却液用添加剤では、各成分を混合後に一定温度で静置することによって化学反応が促進されて、冷却液に安定性及び防錆性を付与していることが推定される。また、当該化学反応によって生成された反応物が、冷却液の安定性及び防錆性に寄与していることも推定される。そこで、冷却液用添加剤に含まれる成分について分析試験を行った。
(Evaluation Example 7) Analytical Test of Coolant Additive In the coolant additive prepared in the above evaluation example, the chemical reaction is accelerated by allowing the components to stand at a constant temperature after mixing, and the coolant is stable. It is presumed that it imparts toughness and rust resistance. It is also presumed that reactants produced by the chemical reaction contribute to the stability and rust prevention of the coolant. Therefore, an analytical test was conducted on the components contained in the coolant additive.
 調製例1で調製した冷却液用添加剤3について、LC-MSによって分析した。LC-MSに供する試料は、10mM重炭酸アンモニウム水溶液とアセトニトリルとの混合溶液(混合比=1:1)に冷却液用添加剤を溶解することによって調製した。LC-MSに供する試料は減圧濃縮及び加熱等は行わなかった。 The coolant additive 3 prepared in Preparation Example 1 was analyzed by LC-MS. Samples subjected to LC-MS were prepared by dissolving coolant additives in a mixed solution of 10 mM aqueous ammonium bicarbonate and acetonitrile (mixing ratio=1:1). Samples subjected to LC-MS were not concentrated under reduced pressure or heated.
 LC-MSによる分析条件を以下に示す。
 装置(LC):アジレント・テクノロジー製Agilent 1100 Series
 装置(MS):ブルカー・ダルトニクス製micrOTOF focus型
 カラム:Unison UK-C8(3μm、4.6×150mm)
 移動相:10mM重炭酸アンモニウム水溶液/アセトニトリル=1/5
 流量:1mL/分
 カラム温度(LC部):40℃
 質量分析温度(MS部):190℃
 検出法:ESI(ネガティブモード)
 注入量:10μL
Analysis conditions by LC-MS are shown below.
Apparatus (LC): Agilent 1100 Series manufactured by Agilent Technologies
Apparatus (MS): Bruker Daltonics microTOF focus type Column: Unison UK-C8 (3 μm, 4.6 × 150 mm)
Mobile phase: 10 mM ammonium bicarbonate aqueous solution/acetonitrile = 1/5
Flow rate: 1 mL/min Column temperature (LC part): 40°C
Mass spectrometry temperature (MS section): 190°C
Detection method: ESI (negative mode)
Injection volume: 10 μL
 分析の結果、冷却液用添加剤に以下の2つの化合物が含まれていることが推測された。これらの化合物は、冷却液用添加剤を調製する際の反応工程において生成されたものと考えられる。
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
As a result of the analysis, it was speculated that the coolant additive contained the following two compounds. These compounds are believed to have been produced during the reaction process during the preparation of the coolant additive.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
 また、LC-MSによる分析結果(分子量)を基に以下の2つの化合物も冷却液用添加剤に含まれることが示唆された。
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Based on the analysis results (molecular weight) by LC-MS, it was suggested that the following two compounds are also included in the coolant additive.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
 LC-MSに加え、H-NMRでも冷却液用添加剤の分析を行った。NMRの分析結果から、以下の4つの化合物も冷却液用添加剤に含まれることが示唆された。
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
In addition to LC-MS, analysis of coolant additives was also performed by 1 H-NMR. The NMR analysis results suggested that the following four compounds were also included in the coolant additive.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
 上記式(2)~(9)の化合物は、金属カップリング剤及び水の反応物に相当すると推定される。なお、上記の分析結果は金属カップリング剤としてシランカップリング剤を用いたものである。 The compounds of formulas (2) to (9) above are presumed to correspond to reactants of the metal coupling agent and water. The above analysis results were obtained using a silane coupling agent as the metal coupling agent.
 LC-MS及びNMRによる分析では確認されなかったが、冷却液用添加剤の調製に使用される成分(水、3-GPTMS、EG及びケイ酸カリウム)の構造から、以下に示す化合物が生成されている可能性が考えられる。
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Although not confirmed by LC-MS and NMR analysis, the structures of the components (water, 3-GPTMS, EG and potassium silicate) used to prepare the coolant additive produced the compounds shown below. It is possible that
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
 上記の4つの化合物は、金属カップリング剤、水、ケイ酸塩及びアルコールの反応物、または金属カップリング剤、水及びアルコールの反応物に相当すると推定される。なお、上記の化合物は金属カップリング剤としてシランカップリング剤を用いたものである。 The above four compounds are presumed to correspond to reactants of a metal coupling agent, water, silicate and alcohol, or reactants of a metal coupling agent, water and alcohol. The above compound uses a silane coupling agent as a metal coupling agent.
 (評価例8)反応温度と反応時間の検討
 ビーカー内に、超純水を34%、50%ケイ酸カリウム水溶液を38%、3-GPTMSを22%及びEGを6%この順で滴下撹拌した。そして、滴下撹拌して得られた混合物の反応温度を10℃、20℃、30℃、60℃及び70℃としたときに、金属カップリング剤の反応が確認された反応時間を表5に示す。また、表6には、滴下撹拌して得られた混合物の反応温度を10℃、20℃、30℃、60℃及び70℃としたときに、混合液中のゲル化の抑制が確認された反応時間を示す。
(Evaluation Example 8) Examination of reaction temperature and reaction time Into a beaker, 34% ultrapure water, 38% 50% potassium silicate aqueous solution, 22% 3-GPTMS and 6% EG were dropped and stirred in this order. . Table 5 shows the reaction time at which the reaction of the metal coupling agent was confirmed when the reaction temperature of the mixture obtained by dropping and stirring was 10 ° C., 20 ° C., 30 ° C., 60 ° C. and 70 ° C. . Further, in Table 6, suppression of gelation in the mixture was confirmed when the reaction temperature of the mixture obtained by dropping and stirring was 10°C, 20°C, 30°C, 60°C, and 70°C. Indicates reaction time.
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
 表5に示すように、反応温度が低い場合は、反応時間を長くすれば、金属カップリング剤が反応することが分かった。評価例1~7の結果から、評価例8で検討したいずれの反応温度においても反応生成物が冷却液用添加剤として機能することが推測されるが、反応温度が低いと製造効率が悪い。 As shown in Table 5, it was found that when the reaction temperature is low, the metal coupling agent reacts if the reaction time is lengthened. From the results of Evaluation Examples 1 to 7, it is presumed that the reaction product functions as an additive for coolants at any reaction temperature studied in Evaluation Example 8, but if the reaction temperature is low, the production efficiency is poor.
 また、表5及び6の結果を基に、反応温度と反応時間の相関関係を示す式を導出した。式の導出のために作成したグラフを図6に示す。図6の丸印のプロットは、表6のデータを反映させて得られたプロットであり、以下の式(A1)が導出された。
 y≧7.58x-22.889・・・(A1)
 式(A1)中、
  x=1000/(273.14+T)であり、
  y=ln(h)であり、
  Tは0≦T≦100を満たす温度(単位:℃)を表し、
  hは時間(単位:時間)を表す。
Also, based on the results in Tables 5 and 6, an equation showing the correlation between reaction temperature and reaction time was derived. FIG. 6 shows a graph created for deriving the formula. The circled plots in FIG. 6 are plots obtained by reflecting the data in Table 6, and the following formula (A1) was derived.
y≧7.58x−22.889 (A1)
In formula (A1),
x=1000/(273.14+T),
y=ln(h) and
T represents a temperature (unit: ° C.) that satisfies 0 ≤ T ≤ 100,
h represents time (unit: hour).
 図6の三角印のプロットは、表5のデータを反映させて得られたプロットであり、以下の式(B1)が導出された。
 y≧7.58x-21.089・・・(B1)
 式(B1)中、
  x=1000/(273.14+T)であり、
  y=ln(h)であり、
  Tは0≦T≦100を満たす温度(単位:℃)を表し、
  hは時間(単位:時間)を表す。
The triangle mark plot in FIG. 6 is a plot obtained by reflecting the data in Table 5, and the following formula (B1) was derived.
y≧7.58x−21.089 (B1)
In formula (B1),
x=1000/(273.14+T),
y=ln(h) and
T represents a temperature (unit: ° C.) that satisfies 0 ≤ T ≤ 100,
h represents time (unit: hour).
 表5の反応温度および反応時間は、上記式(A1)及び(B1)を満たす。
 式(B1)を満たす時間以上、反応させた場合には、未反応の金属カップリング剤がほとんど検出されず無駄なく反応物が生成された。反応温度及び反応時間は、適宜決定すればよいが、反応率が低い場合には、冷却液用添加剤及び冷却液の安定性が不十分になる。
The reaction temperatures and reaction times in Table 5 satisfy the above formulas (A1) and (B1).
When the reaction was carried out for a time longer than the time satisfying formula (B1), almost no unreacted metal coupling agent was detected, and the reactant was produced without waste. The reaction temperature and reaction time may be appropriately determined, but if the reaction rate is low, the stability of the coolant additive and the coolant will be insufficient.
 (評価例9)アルコールの添加タイミングの検討
 ビーカー内に、超純水、50%ケイ酸カリウム水溶液、3-GPTMS及びEGをそれぞれ表7に記載の配合量及び手順で添加し、冷却液用添加剤を調製した。調製した冷却用添加剤を用いて、各種試験を行った結果を表7に示す。安定性試験は評価例1と、金属腐食性試験は評価例2と、硬水安定性試験は評価例6と同じ試験条件及び配合条件で行った。
(Evaluation Example 9) Examination of alcohol addition timing In a beaker, add ultrapure water, 50% potassium silicate aqueous solution, 3-GPTMS and EG in the amounts and procedures shown in Table 7, and add for cooling liquid. formulations were prepared. Table 7 shows the results of various tests conducted using the prepared cooling additive. The stability test was conducted under the same test conditions and compounding conditions as Evaluation Example 1, the metal corrosion test under Evaluation Example 2, and the hard water stability test under Evaluation Example 6.
 表7に示されるように、冷却液用添加剤13はEGを添加していないため、不凍性がない。冷却液用添加剤3、13、14共に安定性試験、金属腐食性試験及び硬水安定性試験は良好な結果を示した。これにより、水、ケイ酸塩及び金属カップリング剤を混合して反応させることにより、それらの成分の部分反応物が生成する。当該部分生成物が含まれることにより、良好な安定性、防錆性を示す冷却液用添加剤となることがわかった。 As shown in Table 7, coolant additive 13 does not have antifreeze properties because EG is not added. Coolant Additives 3, 13 and 14 all showed good results in the stability test, metal corrosion test and hard water stability test. Thereby, by mixing and reacting water, silicate and metal coupling agent, a partial reaction product of these components is generated. It has been found that the inclusion of the partial product provides a coolant additive exhibiting good stability and antirust properties.
 アルミ防錆性試験は、各冷却用添加剤を1%、次亜塩素酸ナトリウムを1%、水を98%添加した溶液に、アルミ試験片(AC2A)の全体を浸漬させ、60℃の恒温槽に96時間静置した後のアルミ試験片の重量変化で評価した。 In the aluminum rust prevention test, the entire aluminum test piece (AC2A) was immersed in a solution containing 1% of each cooling additive, 1% of sodium hypochlorite, and 98% of water, and was kept at a constant temperature of 60 ° C. The change in weight of the aluminum test piece after standing in the tank for 96 hours was evaluated.
 アルコール、ケイ酸塩、水及び金属カップリング剤を混合して30℃で3日間静置して製造した冷却液用添加剤3は、高い防錆性を有していた。しかし、アルコールを含まない冷却液用添加剤13及びケイ酸塩、水及び金属カップリング剤を混合して30℃で3日間静置した後にアルコールを添加した冷却液用添加剤14は、冷却用添加剤3よりも防錆性が劣った。この結果から、冷却液用添加剤にアルコール、水、ケイ酸塩及び金属カップリング剤を混合し反応させることにより優れた防錆効果を有する冷却液用添加剤が得られることが分かった。冷却液用添加剤3では、水、ケイ酸塩及び/又は金属カップリング剤とアルコールとが反応した反応物が生成されると推定される。 Cooling liquid additive 3, which was produced by mixing alcohol, silicate, water, and a metal coupling agent and leaving the mixture at 30°C for 3 days, had high rust resistance. However, the coolant additive 13 that does not contain alcohol and the coolant additive 14 that is mixed with silicate, water and a metal coupling agent and allowed to stand at 30 ° C. for 3 days and then added with alcohol is not suitable for cooling. The antirust property was inferior to that of Additive 3. From these results, it was found that a coolant additive having an excellent antirust effect can be obtained by mixing and reacting alcohol, water, silicate and a metal coupling agent with the coolant additive. In the coolant additive 3, it is presumed that water, silicate and/or a metal coupling agent react with alcohol to produce a reaction product.
 上記の結果から、本発明の反応工程の一態様としては、水と、ケイ酸塩と、金属カップリング剤を、所定時間(たとえば、数時間~数日)混合した後に、アルコールを添加してもよい。 From the above results, as one aspect of the reaction process of the present invention, water, a silicate, and a metal coupling agent are mixed for a predetermined time (for example, several hours to several days), and then alcohol is added. good too.
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
 本発明は、冷却液の添加剤、エンジン又はバッテリー冷却用の冷却液、防錆用の防錆剤組成物及び金属加工用の金属加工組成物等に利用することができる。 The present invention can be used as additives for coolants, coolants for engine or battery cooling, rust inhibitor compositions for rust prevention, metalworking compositions for metalworking, and the like.

Claims (7)

  1.  水と、アルコールと、ケイ酸塩と、金属カップリング剤とを混合して反応させる反応工程を含む、冷却液用添加剤の製造方法。 A method for manufacturing a coolant additive, which includes a reaction step of mixing and reacting water, alcohol, silicate, and a metal coupling agent.
  2.  前記金属カップリング剤が、チタンカップリング剤、ジルコニウムカップリング剤、アルミニウムカップリング剤及びシランカップリング剤から選択される少なくとも1つのカップリング剤である、請求項1に記載の冷却液用添加剤の製造方法。 The coolant additive according to claim 1, wherein the metal coupling agent is at least one coupling agent selected from a titanium coupling agent, a zirconium coupling agent, an aluminum coupling agent and a silane coupling agent. manufacturing method.
  3.  前記金属カップリング剤が3-グリシドキシプロピルトリメトキシシランである、請求項1又は2に記載の冷却液用添加剤の製造方法。 The method for producing a coolant additive according to claim 1 or 2, wherein the metal coupling agent is 3-glycidoxypropyltrimethoxysilane.
  4.  前記反応工程において、前記水及び前記ケイ酸塩を混合した後に、前記金属カップリング剤を添加する、請求項1又は2に記載の冷却液用添加剤の製造方法。 The method for producing a coolant additive according to claim 1 or 2, wherein in the reaction step, the metal coupling agent is added after mixing the water and the silicate.
  5.  請求項1又は2に記載の冷却液用添加剤の製造方法によって冷却用添加剤を製造する工程を含む、冷却液の製造方法。 A method for manufacturing a coolant, comprising a step of manufacturing a coolant additive by the method for manufacturing a coolant additive according to claim 1 or 2.
  6.  水と、アルコールと、ケイ酸塩と、金属カップリング剤との混合物、及びこれら成分の部分反応物を含む、冷却液用添加剤。 A coolant additive containing a mixture of water, alcohol, silicate, and a metal coupling agent, and a partial reaction product of these components.
  7.  前記部分反応物は、前記金属カップリング剤と前記水との反応物、前記金属カップリング剤と前記ケイ酸塩との反応物、及び前記金属カップリング剤と前記ケイ酸塩と前記水との反応物、からなる群から選択される少なくとも1種である、請求項6に記載の冷却液用添加剤。 The partial reaction products include a reaction product of the metal coupling agent and the water, a reaction product of the metal coupling agent and the silicate, and a reaction product of the metal coupling agent, the silicate, and the water. 7. The coolant additive according to claim 6, which is at least one selected from the group consisting of a reactant.
PCT/JP2023/001273 2022-01-26 2023-01-18 Method for producing coolant additive or coolant, and coolant additive WO2023145555A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022010164 2022-01-26
JP2022-010164 2022-01-26

Publications (1)

Publication Number Publication Date
WO2023145555A1 true WO2023145555A1 (en) 2023-08-03

Family

ID=87471429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/001273 WO2023145555A1 (en) 2022-01-26 2023-01-18 Method for producing coolant additive or coolant, and coolant additive

Country Status (1)

Country Link
WO (1) WO2023145555A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01172485A (en) * 1987-12-22 1989-07-07 Korea Advanced Inst Of Sci Technol Nonfreezing liquid composition for car radiator
CN105694825A (en) * 2014-11-28 2016-06-22 比亚迪股份有限公司 An engine running-in liquid
CN106811181A (en) * 2015-11-27 2017-06-09 青岛城轨交通装备科技有限公司 A kind of automobile engine winterization fluid
CN107573906A (en) * 2017-09-08 2018-01-12 常州市奥普泰科光电有限公司 A kind of preparation method of the anticorrosive engine coolant of environment-friendly type
CN109929521A (en) * 2017-12-15 2019-06-25 新昌县新崎制冷设备有限公司 Coolant liquid is used in a kind of machining

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01172485A (en) * 1987-12-22 1989-07-07 Korea Advanced Inst Of Sci Technol Nonfreezing liquid composition for car radiator
CN105694825A (en) * 2014-11-28 2016-06-22 比亚迪股份有限公司 An engine running-in liquid
CN106811181A (en) * 2015-11-27 2017-06-09 青岛城轨交通装备科技有限公司 A kind of automobile engine winterization fluid
CN107573906A (en) * 2017-09-08 2018-01-12 常州市奥普泰科光电有限公司 A kind of preparation method of the anticorrosive engine coolant of environment-friendly type
CN109929521A (en) * 2017-12-15 2019-06-25 新昌县新崎制冷设备有限公司 Coolant liquid is used in a kind of machining

Similar Documents

Publication Publication Date Title
US4389371A (en) Process for inhibiting the corrosion of aluminum
CN1522289A (en) Monocarboxylic acid based antifreeze composition
JPH0135776B2 (en)
CN101955755B (en) Engine coolant
JP2020514514A (en) Antifreeze concentrate showing anticorrosion
JP2939376B2 (en) Corrosion-inhibited antifreeze composition containing a cyclohexane ring-containing acid
JP2938638B2 (en) Antifreeze composition with reduced corrosion
US10883031B2 (en) Automotive engine coolant composition, automotive engine concentrated coolant composition, and method of operating internal combustion engine
WO2023145555A1 (en) Method for producing coolant additive or coolant, and coolant additive
EP1192296A1 (en) Corrosion inhibiting compositions for heat transfer fluids
US7641813B2 (en) Antifreeze compositions
WO2007116478A1 (en) Coolant composition
US20040026656A1 (en) Antifreeze
RU2362792C1 (en) Concenrate of corrosion inhibitors
JPH1161117A (en) Rust preventive solution
RU2297433C1 (en) Antifreeze
RU2263131C1 (en) Antifreeze concentrate
KR101331986B1 (en) Concentrate composition of organic acid salt with high concentration, method of preparing the same, and engine cooling water containing the same
RU2393271C1 (en) Inhibitor of corrosion for low-freezing cooling liquids
US4434065A (en) Novel aliphatic sulfosiloxane-silicate copolymers
CA2220315A1 (en) Heat transfer fluids containing potassium carboxylates
RU2290425C1 (en) Super-concentrate used in preparing antifreezes and heat carrier
KR100855687B1 (en) A antifreezing solution composition of organic acid salt and its preparing method
JPS61149489A (en) Corrosion inhibitor composition
KR101296849B1 (en) GLYCERINE Antifreeze composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23746769

Country of ref document: EP

Kind code of ref document: A1