WO2023145270A1 - Flow switching valve and manufacturing method therefor - Google Patents

Flow switching valve and manufacturing method therefor Download PDF

Info

Publication number
WO2023145270A1
WO2023145270A1 PCT/JP2022/045270 JP2022045270W WO2023145270A1 WO 2023145270 A1 WO2023145270 A1 WO 2023145270A1 JP 2022045270 W JP2022045270 W JP 2022045270W WO 2023145270 A1 WO2023145270 A1 WO 2023145270A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
flow path
switching valve
rotor seal
rotor
Prior art date
Application number
PCT/JP2022/045270
Other languages
French (fr)
Japanese (ja)
Inventor
綾乃 大坪
充彦 植田
裕至 原田
久雄 稲波
Original Assignee
株式会社日立ハイテク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク filed Critical 株式会社日立ハイテク
Publication of WO2023145270A1 publication Critical patent/WO2023145270A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/06Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements
    • F16K11/072Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with pivoted closure members
    • F16K11/074Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with pivoted closure members with flat sealing faces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K3/00Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing
    • F16K3/02Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with flat sealing faces; Packings therefor
    • F16K3/04Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with flat sealing faces; Packings therefor with pivoted closure members
    • F16K3/06Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with flat sealing faces; Packings therefor with pivoted closure members in the form of closure plates arranged between supply and discharge passages
    • F16K3/08Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with flat sealing faces; Packings therefor with pivoted closure members in the form of closure plates arranged between supply and discharge passages with circular plates rotatable around their centres

Definitions

  • the present invention relates to a channel switching valve and a manufacturing method thereof.
  • a flow path switching valve is generally composed of a stator that connects pipes, a rotor seal, a rotor that rotates the rotor seal, and a housing that holds them.
  • the rotor is supported by a spring or the like, and the rotor seal is pressed against the stator by the rotor, thereby keeping the rotor seal flow path and the stator flow path liquid-tight. Rotation of the rotor enables flow path switching between the stator and the rotor.
  • Patent Document 1 discloses a flow path switching valve having a diamond-like carbon film (hereinafter referred to as "DLC film”) on the outermost surface of the stator and rotor seal.
  • DLC film diamond-like carbon film
  • the flow switching valve of US Pat. No. 6,200,000 has a protective coating between the stator and rotor, the protective coating being deposited on the adhesive interlayer and the adhesive interlayer by filtered cathodic vacuum arc (FCVA) deposition. DLC film. This DLC film can extend valve life under high pressure operating conditions.
  • FCVA filtered cathodic vacuum arc
  • the DLC film of the protective film of the flow path switching valve described in Patent Document 1 has an average roughness Ra of 0.025 ⁇ m or less on the contact surface with the stator, which is a mirror surface.
  • the stator and rotor seal may stick together due to intermolecular bonds called "ringing phenomenon". Sticking may occur.
  • the present invention has been made in view of such circumstances, and provides a long-life passage switching valve that avoids sticking between the stator and the rotor seal, and a method of manufacturing the same.
  • a flow path switching valve is configured to rotate a stator having a plurality of first through holes, a rotor seal rotating in contact with the stator and having a plurality of second through holes, and the rotor seal rotating. and a rotor.
  • a diamond-like carbon film is formed on the sliding surfaces of the rotor seal and the stator, and the DLC film has an average roughness Ra of 0.05 ⁇ m or more.
  • a method for manufacturing a flow path switching valve includes: a stator having a plurality of first through holes; a rotor seal rotating in contact with the stator and having a plurality of second through holes; in which the stator and the rotor seal as objects to be treated are placed on an arc ion plating device, and carbon and metal are separated by arc discharge is ionized to form a diamond-like carbon film (DLC film) on the surface of the object to be processed via an intermediate film.
  • the DLC film has an average roughness Ra of 0.05 ⁇ m or more.
  • FIG. 1 is a cross-sectional view of a channel switching valve 1 according to an embodiment
  • FIG. 4 is a top view of the rotor seal 12
  • FIG. 3 is a top view of a contact surface between a rotor seal 12 and a rotor 13
  • FIG. 3 is a cross-sectional view of a protective film 120 (a DLC film 121 and an intermediate film 122) formed on the stator 11 and the rotor seal 12
  • FIG. A method of forming the DLC film 121 of tetrahedral amorphous carbon by the arc ion plating method will be described.
  • FIG. 2 is a flow path schematic diagram of a liquid chromatograph 421 equipped with the flow path switching valve 1 of FIG. 1.
  • FIG. 2 is a flow path schematic diagram of a liquid chromatograph 421 equipped with the flow path switching valve 1 of FIG. 1.
  • FIG. FIG. 2 is an example of a graph of changes in rotational torque during pre-running of the flow path switching valve 1 of FIG. 1.
  • FIG. FIG. 5 is a schematic diagram for explaining extension of a scratch when a stator 11 and a rotor seal 12 reciprocate;
  • FIG. 5 is a schematic diagram for explaining extension of a scratch when a stator 11 and a rotor seal 12 reciprocate;
  • 3 shows the relationship between the film thickness and hardness of the DLC film 121 and the service life of the channel switching valve 1.
  • FIG. FIG. 7 shows a cross-sectional photograph of the end portion of the rotor seal channel of FIG. 4A. 4 shows changes in stator-side roughness Ra1 and seal-side roughness Ra2 before and after running-in, and the service life (usable number of times) of flow path switching valve 1 for samples 1 to 3 according to the present embodiment.
  • FIG. 1A is a cross-sectional view of the flow path switching valve 1 according to the embodiment (cross-sectional view taken along dashed line 19 in FIG. 1C), and FIG. 1B is a top view of the rotor seal 12.
  • FIG. 1C is a top view of the contact surface between the rotor seal 12 and the rotor 13.
  • FIG. 1D is a cross-sectional view of protective film 120 (DLC film 121 and intermediate film 122) formed on stator 11 and rotor seal 12. As shown in FIG.
  • the flow path switching valve 1 is composed of a stator 11, a rotor seal 12, a rotor 13, and a housing 15.
  • the stator 11 has a main body made of metal such as stainless steel (SUS316, hereinafter) or ceramic, and has a plurality of stator flow paths 111 to 116 formed so as to pass through the main body. (See FIG. 1C) The ends of the stator flow paths 111 to 116 are arranged on one circumference around the rotation axis of the rotor 13 in the stator 11 . Pipes (not shown) are connected to these stator flow paths 111-116.
  • the rotor seal 12 has a main body made of metal such as SUS316, ceramic, resin, or the like. ) rotor seal passages 131 , 132 , 133 . The surfaces of the stator 11 and the rotor seal 12 forming sliding surfaces are coated with a protective film 120 for improving wear resistance performance.
  • the protective film 120 is composed of a DLC film 121 and an intermediate film 122 to provide abrasion resistance (see FIG. 1D).
  • the rotor seal 12 is pressed against the stator 11 by a spring (not shown) of the rotor 13.
  • a spring not shown
  • a flow path formed by connecting the rotor seal flow path 132 and the stator flow paths 113 and 114 and a flow path formed by connecting the rotor seal flow path 133 and the stator flow paths 115 and 116 are formed. Further rotation of the rotor 13 may create another flow path (described in detail below).
  • a protective film 120 is provided in order to prevent liquid leakage between these channels and liquid leakage to the outside.
  • the rotor seal 12 is fixed to the rotor 13 by pins 16 and 17.
  • the rotor seal 12 rotates while sliding relative to the stator 11 by a motor (not shown) connected to the rotor 13 .
  • the rotation angle of the rotor 13 can be measured, for example, by equipping the motor with an encoder (not shown).
  • the protective film 120 formed on the sliding surfaces of the rotor seal 12 and the stator 11 will be described with reference to FIG. 1D.
  • DLC film diamond-like carbon film
  • a DLC film 121 is formed on the outermost surfaces of the stator 11 and the rotor seal 12, which are the contact surfaces of the stator 11 and the rotor seal 12, and the stator 11 and the rotor seal 12 are arranged so that the DLC films 121 slide against each other.
  • the DLC film 121 and intermediate film 122 can be formed by a technique called arc ion plating.
  • a DLC of tetrahedral amorphous carbon is formed on the DLC film 121 by an arc ion plating method.
  • Tetrahedral amorphous carbon is DLC that does not contain hydrogen ions.
  • FIG. 2 shows an example of a schematic configuration of an arc ion plating apparatus 300 capable of executing the arc ion plating method.
  • the arc ion plating apparatus 300 includes, as an example, a vacuum chamber 301, and the vacuum chamber 301 includes a rotary table 311 for holding an object 310 to be processed.
  • the vacuum chamber 301 further comprises a graphite cathode 302 from which the DLC film 121 is formed, and a metal target 303 used to form the intermediate film 122 .
  • the intermediate film 122 is mainly made of metal such as aluminum, chromium, titanium, and tungsten.
  • the material of the metal target 303 can be changed according to the material of the stator 11 and rotor seal 12.
  • the vacuum chamber 301 further includes a gas injection port 3012 for injecting argon gas 3011 and an evacuation port 3014 for evacuation 3013 .
  • a workpiece 310 (corresponding to the stator 11 and rotor seal 12 ) is placed on a rotary table 311 , and the rotary table 311 is connected to a bias power supply 312 .
  • a processing object 310 is electrically connected to a bias power supply 312 via a rotary table 311 . Thereby, the bias power supply 312 can apply a bias voltage to the processing object 310 .
  • a film forming process for the DLC film 121 and the intermediate film 122 will be described.
  • Argon gas 3011 is filled in the vacuum chamber 301 .
  • arc discharge is performed by an arc discharge generator (not shown) to ionize the carbon and metal of the cathode 302 of the graphite cathode and the metal target 303, and using the bias power supply 312, DLC and metal ions are processed. It pulls to the outermost surface of the object 310 . Thereby, the DLC film 121 and the intermediate film 122 are formed on the object 310 to be processed.
  • the DLC film 121 has an average vertical roughness Ra of 0.05 ⁇ m or more in the stage before the break-in operation described later. It is formed to 0.3 ⁇ m or less. Both the average roughness Ra1 of the DLC film 121 of the stator 11 (stator-side roughness Ra1) and the average roughness Ra2 of the DLC film 121 of the rotor seal 12 (seal-side roughness Ra2) are 0.05 ⁇ m or more and 0.3 ⁇ m or less. It is preferred to However, it is preferable that the value of the average roughness Ra2 be set to a value larger than the average roughness Ra1. By setting Ra2>Ra1, sticking between the stator 11 and the rotor seal 12 is more difficult to occur.
  • the DLC film 121 of the channel switching valve 1 has a hardness of 20 GPa to 60 GPa.
  • the hardness can be obtained by adjusting the bias voltage of bias power supply 312 during the process.
  • FIGS. 3A and 3B show schematic flow path diagrams of a liquid chromatograph 421 equipped with the flow path switching valve 1 of FIG. 1A.
  • 3A is a schematic diagram of the flow path obtained at a certain rotation angle
  • FIG. 3B is a schematic diagram of the flow path when the rotor 13 is rotated about 60 degrees from the state of FIG. 3A.
  • the liquid chromatograph 421 is composed of a liquid feed pump 422, a needle 423, a syringe pump 424, a channel switching valve 1, a separation column 426, a detector 427, a pipe P2, and a pipe P1 connecting them.
  • the stator channels 111, 112, 113, 114, 115, and 116 of the channel switching valve 1 are connected to the liquid feed pump 422, the separation column 426, the needle 423, the syringe pump 424, or the pipe P2.
  • the needle 423 is connected to the stator flow path 113
  • the syringe pump 424 is connected to the stator flow path 114
  • the stator flow path 113, rotor seal flow path 132, stator flow path 114, and syringe pump 424 are connected. is connected.
  • the flow path switching valve 1 is rotated 60 degrees in the sliding direction 211 of FIG. 3A to switch the flow path, and the state of FIG. 3B is obtained.
  • the sample SP is sucked by the syringe pump 424, and the needle 423, the stator flow channel 113, the rotor seal flow channel 131, the stator flow channel 112, the pipe P2, the stator flow channel 115, the rotor seal flow channel 132, A state of being sucked into the stator flow path 114 is obtained.
  • the eluent 429 sent by the liquid-sending pump 422 passes through the stator channel 111, the rotor seal channel 133, the stator channel 116, the separation column 426, the detector 427, and flows into the waste liquid tank 481. status is obtained.
  • the flow path switching valve 1 When the flow path switching valve 1 is rotated clockwise by 60 degrees in the sliding direction 212 from the state of FIG. 3B, the flow path switching valve 1 can return to the state of FIG. 3A.
  • the liquid-sending pump 422 In the state of FIG. 3A, the liquid-sending pump 422 is driven to send the eluent 429 to the stator channel 111, the rotor seal channel 131, and the stator channel 112, thereby removing the sample SP in the pipe P2. It can be sent to separation column 426 .
  • the sample SP is detected by the detector 427 after being separated by the separation column 426 .
  • the eluent After the detection operation is completed, the eluent is continued to be supplied for several seconds to wash the entire channel. Then return to the state of FIG. 3B for analysis of another sample. After that, by setting the states shown in FIGS. 3A and 3B and repeating the above operation, the inspection of the sample SP is continued.
  • the separation column 426 is filled with particles of several micrometers inside and has high fluid resistance. Further, in order to improve the sample separation performance of the separation column 426, the flow path diameter of the pipe P1 connected to the separation column 426 is designed to be approximately 0.1 mm, which similarly has large fluid resistance. Therefore, the liquid-sending pump 422 is configured to send the eluent 429 at a high pressure of several tens of MPa. On the other hand, since the syringe pump 424 is not connected to a pipe or the like having a large flow resistance, the liquid feeding pressure of the syringe pump 424 is set to a value close to the atmospheric pressure (0.1 MPa).
  • the liquid is delivered from the pump at a pressure of 30 to 120 MPa or more, and the valve must operate under this high pressure condition.
  • the valve In order to provide the contact surfaces of the stator 11 and the rotor seal 12 with sealing properties under high-pressure liquid feeding, it is necessary to press the stator 11 and the rotor seal 12 with a large force.
  • the flow path switching valve is configured so that the surface pressure of the contact surface between the stator 11 and the rotor seal 12 is about 60 to 150 MPa according to the hydraulic pressure used.
  • the roughness Ra of the outermost surface of each of the stator 11 and the rotor seal 12 is a value close to a mirror surface such as 0.025 ⁇ m or less, for example.
  • the stator 11 and the rotor seal 12 may stick due to intermolecular bonds called ringing phenomenon. In this case, the channel switching valve 1 may not operate.
  • the flow path switching valve 1 of the present embodiment includes a DLC film 121 as part of the protective film 120 on the outermost layers of the stator 11 and rotor seal 12 by arc ion plating.
  • the DLC film 121 has an outermost surface average roughness Ra of 0.05 ⁇ m or more, for example, 0.05 to 0.15 ⁇ m, before running-in, which will be described later. This effectively prevents the stator 11 and rotor seal 12 from sticking together. As a result, the contact surface between the stator 11 and the rotor seal 12 does not suffer from abnormal wear or seizure, and a long-life passage switching valve 1 can be provided.
  • the rotor 13 is repeatedly rotated in the counterclockwise sliding direction 211 and the clockwise sliding direction 212. Perform a running-in.
  • the break-in operation is to rotate (reciprocate) the rotor 13 about 100 to 3000 times in the sliding directions 211 and 212 while feeding the eluent 429 .
  • the outermost surface of the DLC film 121 is properly smoothed, and the average roughness Ra is reduced, and the stator 11 and the rotor seal 12 are not stuck to each other. That is, the stator 11 and the rotor seal 12 do not stick together at their contact surfaces, and a long-life valve can be provided.
  • cavitation cavitation phenomenon
  • the contact surface between the stator 11 and the rotor seal 12 wears, and the sealing performance between the two is reduced. is not maintained and the valve life may be shortened. Abraded portions of the contact surface due to this cavitation will be described with reference to FIG.
  • FIG. 5A and FIG. 5B schematically show an example of flaws at the ends of the flow path caused by cavitation.
  • the stator flow path 111 has a stator flow path end flaw 1111
  • the rotor seal flow path 131 has a rotor seal flow path end flaw 1311 .
  • stator channel end flaws 1111 extend in direction 1112 (FIG. 5A) and rotor seal channel end flaws 1311 extend in direction 1312 (FIG. 5B).
  • FIG. 5B the high-pressure rotor seal flow path 133, the stator flow path 111, the stator flow path flaw 1111, the low-pressure rotor seal flow path flaw 1311, and the rotor seal flow path 131 are formed. If it is connected, the sealing property cannot be maintained, and the risk of liquid leakage increases.
  • the extension degree of the flaw 1111 at the end of the stator flow path and the flaw 1311 at the end of the rotor seal flow path due to this cavitation varies depending on the thickness and hardness of the DLC film 121 formed on the stator 11 and the rotor seal 12. There was found. By considering the film thickness and hardness of the DLC film 121, it is possible to withstand wear due to cavitation, reduce the stretching speed of scratches, and extend the bulb life.
  • the graph in FIG. 6 shows the relationship between the film thickness and hardness of the DLC film 121 and the service life of the channel switching valve 1 .
  • the horizontal axis indicates the film thickness of the DLC film 121
  • the vertical axis indicates the hardness
  • the diameter of the circle in the graph indicates the service life of the flow path switching valve 1 when the DPC film 121 having a certain film thickness and hardness is adopted. show.
  • valve life is prolonged by adopting a DLC film with a hardness of 20 to 60 GPa, which is amorphous carbon formed by the arc ion plating method.
  • the life 501 is short when the DLC film 121 with a hardness of less than 20 GPa is used. This is presumably because the DLC film 121 has a low hardness, so that cavitation causes the scratches 1111 at the ends of the stator flow paths 111 to 116 and the scratches 1311 at the ends of the rotor seal flow path to extend at a high speed.
  • the bulb life 502 when the DLC film 121 with a hardness of 20 to 30 GPa is adopted is 1.5 times the bulb life 501 when the hardness is 20 GPa or less, and the DLC film 121 with a hardness of 30 to 40 GPa is adopted.
  • the valve life 503 when the hardness is 20 GPa or less is double the valve life 501 when the hardness is 20 GPa or less. It turned out to be 7 times the life 501.
  • the bulb life 505 when the DLC film 121 of 50 GPa to 60 GPa is adopted is double the bulb life 501 when the hardness is 20 GPa or less.
  • FIG. 7 shows an example of a cross-sectional photograph of the end portion of the rotor seal channel of FIG. 4A. This cross-sectional photograph is a photograph of a sample embedded in a resin to prepare a cross section and photographed with a microscope.
  • the sample shown in FIG. 7 includes a resin 603 for sample preparation, a DLC film 121, an intermediate film 122, and a base material 123 of SUS316 (stator 11 or rotor seal 12).
  • a resin 603 for sample preparation a DLC film 121, an intermediate film 122, and a base material 123 of SUS316 (stator 11 or rotor seal 12).
  • the film thickness of the DLC film 121 is larger than 1.5 ⁇ m, as shown in FIG.
  • it peels off from the base material 123 of SUS316 and is confirmed as a scratch.
  • a gap may be generated between the contact surfaces of the stator 11 and the rotor seal 12 and the liquid may leak from the flow path switching valve 1 .
  • the thickness of the DLC film 121 is less than 0.5 ⁇ m
  • the stator 11 and the rotor seal 12 are brought into contact with each other and a load is applied, cracks 602 are generated in the intermediate film 122, and the DLC film 121 and the intermediate film 122 become SUS316. It has been confirmed that the liquid may peel off from the base material 123 (stator and rotor seal) and leak from the flow path switching valve 1 .
  • the flow path switching valve 1 formed with the DLC film 121 having a film thickness of 0.5 ⁇ m to 1.5 ⁇ m as the protective film 120 is capable of preventing the stator 11 and the rotor seal 12 from adhering to each other and cavitation. It can be seen that the wear of the contact surface can be suppressed and the life of the flow path switching valve can be extended. From the above, it is preferable to employ the DLC film 121 having a film thickness of 0.5 ⁇ m to 1.5 ⁇ m and a hardness of 20 to 60 GPa.
  • FIG. 8 shows changes in the stator-side roughness Ra1 and the seal-side roughness Ra2 before and after the break-in, and the service life (usable number of times) of the flow path switching valve 1 for samples 1 to 3 according to the present embodiment. show.
  • FIG. 8 also shows changes in the maximum roughness Rz1 of the DLC film 121 on the stator 11 side and the maximum roughness Rz2 of the DLC film 121 on the rotor seal 12 side before and after the break-in.
  • the film thickness and hardness of the DLC film 121 in each sample are as shown in FIG.
  • both the stator-side roughness Ra1 and the seal-side roughness Ra2 are set within the range of 0.05 to 0.3 ⁇ m before running-in.
  • a lifetime greatly exceeding that of the conventional specular DLC film 121 was obtained.
  • the present invention is not limited to the above-described embodiments, and includes various modifications.
  • the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations.
  • it is possible to replace part of the configuration of one embodiment with the configuration of another embodiment and it is also possible to add the configuration of another embodiment to the configuration of one embodiment.
  • Reference Signs List 1 Flow path switching valve 11 Stator 12 Rotor seal 13 Rotor 15 Housing 111, 112, 113, 114, 115, 116 Stator flow path 120 Protective film 121 DLC film 122 Intermediate films 131, 132, 133 ... Rotor seal channel 300 ... Arc ion plating device 301 ... Vacuum chamber 302 ... Cathode 303 ... Metal target 310 ... Object to be processed 311 ... Rotary table 312 ... Bias power source 3011 ... Argon gas 3012 ... Gas injection port 3013 ... Evacuation 3014 ... Evacuation port 421 Liquid chromatograph 422 ... Liquid sending pump 423 ... Needle 424 ... Syringe pump 426 ... Separation column 427 ... Detector SP ... Sample 429 ... Eluent 481, 482 ... Waste liquid tanks P1, P2 ... Piping

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Multiple-Way Valves (AREA)

Abstract

The present invention provides a long-life flow switching valve that avoids sticking of a stator and a rotor seal. This flow switching valve (1) includes: a stator (11) that has a plurality of first through-holes; a rotor seal (12) that rotates while being in contact with the stator (11) and that has a plurality of second through-holes; and a rotor (13) that is configured to make the rotor seal (12) rotate. Diamond-like carbon films (DLC films) (121; surfaces of protective films 120) are formed on sliding surfaces of the rotor seal (12) and the stator (11), and the average roughness Ra of the DLC films (121) is 0.05 μm or larger.

Description

流路切替バルブ、及びその製造方法Flow path switching valve and manufacturing method thereof
 本発明は、流路切替バルブ、及びその製造方法に関する。 The present invention relates to a channel switching valve and a manufacturing method thereof.
 液体クロマトグラフなどの分析装置において、サンプル液や溶離液を順次分析装置に導入するために流路切替バルブが備えられている。流路切替バルブは、一般に、配管を接続するステータ、ロータシール、ロータシールを回転させるロータ、及び、それらを保持するハウジングから構成される。ロ-タはバネなどによって支持され、ロータシールはロータによりステ-タに押しつけられ、これによりロータシール流路、及びステータ流路の液密性が保たれている。ロータが回転することで、ステータとロータとの間で流路の切替が可能になる。  Analytical instruments such as liquid chromatographs are equipped with channel switching valves to sequentially introduce sample liquids and eluents into the analytical instruments. A flow path switching valve is generally composed of a stator that connects pipes, a rotor seal, a rotor that rotates the rotor seal, and a housing that holds them. The rotor is supported by a spring or the like, and the rotor seal is pressed against the stator by the rotor, thereby keeping the rotor seal flow path and the stator flow path liquid-tight. Rotation of the rotor enables flow path switching between the stator and the rotor.
 流路切替バルブのロータシールは、ロータによりステ-タに押しつけられながら回転し摺動するため、ステータとの接触面が摩耗して、その結果、流路切替バルブの寿命が短くなるという問題がある。この接触面の摩耗を抑制するため、ステータやロータシールの最表面にダイヤモンドライクカーボン膜(以下、「DLC膜」という)を備えた流路切替バルブが特許文献1に示されている。 Since the rotor seal of the flow path switching valve rotates and slides while being pressed against the stator by the rotor, the contact surface with the stator wears, resulting in the problem of shortening the life of the flow path switching valve. be. In order to suppress wear of the contact surface, Patent Document 1 discloses a flow path switching valve having a diamond-like carbon film (hereinafter referred to as "DLC film") on the outermost surface of the stator and rotor seal.
 特許文献1の流路切替バルブは、ステータ及びロータの間に保護被膜を有し、その保護被膜は、接着中間膜と、フィルタ処理陰極真空アーク(FCVA)蒸着によって接着中間膜上に蒸着されたDLC膜とを含む。このDLC膜により、高圧運転条件下でのバルブ寿命を延ばすことができる。 The flow switching valve of US Pat. No. 6,200,000 has a protective coating between the stator and rotor, the protective coating being deposited on the adhesive interlayer and the adhesive interlayer by filtered cathodic vacuum arc (FCVA) deposition. DLC film. This DLC film can extend valve life under high pressure operating conditions.
 しかし、特許文献1に記載された流路切替バルブの保護被膜のDLC膜は、ステータとの接触面の平均粗さRaが0.025μm以下と鏡面状である。この場合、ステータとロータシールが「リンギング現象」とよばれる分子間結合による固着することがある。固着が発生する虞がある。 However, the DLC film of the protective film of the flow path switching valve described in Patent Document 1 has an average roughness Ra of 0.025 μm or less on the contact surface with the stator, which is a mirror surface. In this case, the stator and rotor seal may stick together due to intermolecular bonds called "ringing phenomenon". Sticking may occur.
特表2014-520250号公報Japanese Patent Publication No. 2014-520250
 本発明は、このような事情に鑑みてなされたものであり、ステータとロータシールの固着を回避し、長寿命な流路切替バルブ、及びその製造方法を提供するものである。 The present invention has been made in view of such circumstances, and provides a long-life passage switching valve that avoids sticking between the stator and the rotor seal, and a method of manufacturing the same.
 本発明の流路切替バルブは、複数の第1の貫通孔を有するステータと、前記ステータと接触しながら回転し複数の第2の貫通孔を有するロータシールと、前記ロータシールを回転させるよう構成されるロータとを備える。前記ロータシール及び前記ステータの摺動面にダイヤモンドライクカーボン膜(DLC膜)が成膜されており、前記DLC膜の平均粗さRaは0.05μm以上である。 A flow path switching valve according to the present invention is configured to rotate a stator having a plurality of first through holes, a rotor seal rotating in contact with the stator and having a plurality of second through holes, and the rotor seal rotating. and a rotor. A diamond-like carbon film (DLC film) is formed on the sliding surfaces of the rotor seal and the stator, and the DLC film has an average roughness Ra of 0.05 μm or more.
 また、本発明の流路切替バルブの製造方法は、複数の第1の貫通孔を有するステータと、前記ステータと接触しながら回転し複数の第2の貫通孔を有するロータシールと、前記ロータシールを回転させるよう構成されるロータとを備えた流路切替バルブの製造方法において、アークイオンプレーティング装置に、処理対象物としての前記ステータ及び前記ロータシールを載置し、アーク放電により炭素及び金属をイオン化して、前記処理対象物の表面にダイヤモンドライクカーボン膜(DLC膜)を、中間膜を介して製膜する工程を含む。前記DLC膜の平均粗さRaは0.05μm以上である。 A method for manufacturing a flow path switching valve according to the present invention includes: a stator having a plurality of first through holes; a rotor seal rotating in contact with the stator and having a plurality of second through holes; in which the stator and the rotor seal as objects to be treated are placed on an arc ion plating device, and carbon and metal are separated by arc discharge is ionized to form a diamond-like carbon film (DLC film) on the surface of the object to be processed via an intermediate film. The DLC film has an average roughness Ra of 0.05 μm or more.
 本発明に係る流路切替バルブ、及びその製造方法によれば、ステータとロータシールの固着によるステータとロータシールの接触面の摩耗を抑制し、流路切替バルブの長寿命化を図ることができる。 According to the flow path switching valve and the manufacturing method thereof according to the present invention, wear of the contact surface between the stator and the rotor seal due to fixation between the stator and the rotor seal can be suppressed, and the service life of the flow path switching valve can be extended. .
実施の形態に係る流路切替バルブ1の断面図である。1 is a cross-sectional view of a channel switching valve 1 according to an embodiment; FIG. ロータシール12の上面図である。4 is a top view of the rotor seal 12; FIG. ロータシール12とロータ13の接触面の上面図である。3 is a top view of a contact surface between a rotor seal 12 and a rotor 13; FIG. ステータ11とロータシール12に成膜されている保護膜120(DLC膜121と中間膜122)の断面図である。3 is a cross-sectional view of a protective film 120 (a DLC film 121 and an intermediate film 122) formed on the stator 11 and the rotor seal 12; FIG. アークイオンプレーティング法による四面体アモルファスカーボンのDLC膜121の成膜方法を説明する。A method of forming the DLC film 121 of tetrahedral amorphous carbon by the arc ion plating method will be described. 図1の流路切替バルブ1を搭載した液体クロマトグラフ421の流路模式図である。FIG. 2 is a flow path schematic diagram of a liquid chromatograph 421 equipped with the flow path switching valve 1 of FIG. 1. FIG. 図1の流路切替バルブ1を搭載した液体クロマトグラフ421の流路模式図である。FIG. 2 is a flow path schematic diagram of a liquid chromatograph 421 equipped with the flow path switching valve 1 of FIG. 1. FIG. 図1の流路切替バルブ1の慣らし運転時における回転トルクの変化のグラフの一例である。FIG. 2 is an example of a graph of changes in rotational torque during pre-running of the flow path switching valve 1 of FIG. 1. FIG. ステータ11とロータシール12の往復運動を行った場合における傷の延伸について説明する概略図である。FIG. 5 is a schematic diagram for explaining extension of a scratch when a stator 11 and a rotor seal 12 reciprocate; ステータ11とロータシール12の往復運動を行った場合における傷の延伸について説明する概略図である。FIG. 5 is a schematic diagram for explaining extension of a scratch when a stator 11 and a rotor seal 12 reciprocate; DLC膜121の膜厚、硬度と流路切替バルブ1の寿命の関係を示す。3 shows the relationship between the film thickness and hardness of the DLC film 121 and the service life of the channel switching valve 1. FIG. 図7に図4Aのロータシール流路の端部の断面写真を示す。FIG. 7 shows a cross-sectional photograph of the end portion of the rotor seal channel of FIG. 4A. 本実施の形態に従うサンプル1~3についての、慣らし運転の前後でのステータ側粗さRa1、シール側粗さRa2の変化と、流路切替バルブ1の寿命(使用可能回数)を示す。4 shows changes in stator-side roughness Ra1 and seal-side roughness Ra2 before and after running-in, and the service life (usable number of times) of flow path switching valve 1 for samples 1 to 3 according to the present embodiment.
 以下、添付図面を参照して本実施形態について説明する。添付図面では、機能的に同じ要素は同じ番号で表示される場合もある。なお、添付図面は本開示の原理に則った実施形態と実装例を示しているが、これらは本開示の理解のためのものであり、決して本開示を限定的に解釈するために用いられるものではない。本明細書の記述は典型的な例示に過ぎず、本開示の特許請求の範囲又は適用例を如何なる意味においても限定するものではない。 The present embodiment will be described below with reference to the accompanying drawings. In the accompanying drawings, functionally identical elements may be labeled with the same numbers. It should be noted that although the attached drawings show embodiments and implementation examples in accordance with the principles of the present disclosure, they are for the purpose of understanding the present disclosure and are in no way used to interpret the present disclosure in a restrictive manner. isn't it. The description herein is merely exemplary and is not intended to limit the scope or application of this disclosure in any way.
 本実施形態では、当業者が本開示を実施するのに十分詳細にその説明がなされているが、他の実装・形態も可能で、本開示の技術的思想の範囲と精神を逸脱することなく構成・構造の変更や多様な要素の置き換えが可能であることを理解する必要がある。従って、以降の記述をこれに限定して解釈してはならない。 Although the present embodiments are described in sufficient detail to enable those skilled in the art to practice the present disclosure, other implementations and configurations are possible without departing from the scope and spirit of the present disclosure. It is necessary to understand that it is possible to change the composition/structure and replace various elements. Therefore, the following description should not be construed as being limited to this.
 図1を参照して、実施の形態に係る流路切替バルブ1の構造を説明する。図1Aは、実施の形態に係る流路切替バルブ1の断面図であり(図1Cの破線19の断面図)、図1Bはロータシール12の上面図である。また、図1Cは、ロータシール12とロータ13の接触面の上面図である。また、図1Dは、ステータ11とロータシール12に成膜されている保護膜120(DLC膜121と中間膜122)の断面図である。 The structure of the flow path switching valve 1 according to the embodiment will be described with reference to FIG. FIG. 1A is a cross-sectional view of the flow path switching valve 1 according to the embodiment (cross-sectional view taken along dashed line 19 in FIG. 1C), and FIG. 1B is a top view of the rotor seal 12. FIG. 1C is a top view of the contact surface between the rotor seal 12 and the rotor 13. FIG. FIG. 1D is a cross-sectional view of protective film 120 (DLC film 121 and intermediate film 122) formed on stator 11 and rotor seal 12. As shown in FIG.
 図1Aに示すように、流路切替バルブ1は、ステータ11、ロータシール12、ロータ13、及びハウジング15から構成される。 As shown in FIG. 1A, the flow path switching valve 1 is composed of a stator 11, a rotor seal 12, a rotor 13, and a housing 15.
 ステータ11は、例えばステンレス(以下SUS316)などの金属やセラミックを材料として構成される本体部を有し、その本体部を貫通するように形成される複数のステータ流路111~116を備えている(図1C参照)ステータ流路111~116の端部は、ステータ11において、ロータ13の回転軸を中心とした一の円周上に配置される。これらのステータ流路111~116に、図示しない配管が接続される。 The stator 11 has a main body made of metal such as stainless steel (SUS316, hereinafter) or ceramic, and has a plurality of stator flow paths 111 to 116 formed so as to pass through the main body. (See FIG. 1C) The ends of the stator flow paths 111 to 116 are arranged on one circumference around the rotation axis of the rotor 13 in the stator 11 . Pipes (not shown) are connected to these stator flow paths 111-116.
 ロータシール12は、SUS316など金属、セラミック、樹脂等を材料として構成される本体部を有し、その本体部は、円弧状に略等間隔に形成された複数(図1Bに図示の例では3つ)のロータシール流路131、132、133を有する。摺動面を形成するステータ11とロータシール12の表面には、耐摩耗性能を向上させるための保護膜120がコーティングされている。保護膜120は、耐摩耗性能を持たせるためDLC膜121、及び中間膜122で構成される(図1D参照)。 The rotor seal 12 has a main body made of metal such as SUS316, ceramic, resin, or the like. ) rotor seal passages 131 , 132 , 133 . The surfaces of the stator 11 and the rotor seal 12 forming sliding surfaces are coated with a protective film 120 for improving wear resistance performance. The protective film 120 is composed of a DLC film 121 and an intermediate film 122 to provide abrasion resistance (see FIG. 1D).
 ロータシール12は、ロータ13のバネ(図示せず)によりステ-タ11に押しつけられている。ステータ11とロータシール12とが接触し、所定の角度関係に調整されると、図1Cのように、例えばロータシール流路131及びステータ流路111、112が連結して形成される流路、ロータシール流路132及びステータ流路113、114が連結して形成される流路、及び、ロータシール流路133及びステータ流路115、116が連結して形成される流路が形成される。ロータ13が更に回転すると、別の流路が形成され得る(詳しくは後述する)。これらの流路の間での液漏れ、及び外部への液漏れを防止するため、保護膜120が設けられ、バネによる押下がされることで、液密性が維持されている。 The rotor seal 12 is pressed against the stator 11 by a spring (not shown) of the rotor 13. When the stator 11 and the rotor seal 12 come into contact with each other and are adjusted to have a predetermined angular relationship, as shown in FIG. A flow path formed by connecting the rotor seal flow path 132 and the stator flow paths 113 and 114 and a flow path formed by connecting the rotor seal flow path 133 and the stator flow paths 115 and 116 are formed. Further rotation of the rotor 13 may create another flow path (described in detail below). A protective film 120 is provided in order to prevent liquid leakage between these channels and liquid leakage to the outside.
 ロータシール12は、ピン16、17によりロータ13に固定される。ロータシール12は、ロータ13に接続されたモータ(図示せず)により、ステータ11に対し摺動しつつ回転する。ロータ13の回転角度は、例えば、モータにエンコーダ(図示せず)を備えることで計測され得る。 The rotor seal 12 is fixed to the rotor 13 by pins 16 and 17. The rotor seal 12 rotates while sliding relative to the stator 11 by a motor (not shown) connected to the rotor 13 . The rotation angle of the rotor 13 can be measured, for example, by equipping the motor with an encoder (not shown).
 ロータシール12とステータ11の摺動面に成膜された保護膜120について、図1Dを参照して説明する。保護膜120は一例として、SUS316の基材123(ステータ11とロータシール12の本体部)に形成される中間膜122と、その中間膜122の上に形成されるダイヤモンドライクカーボン膜(DLC膜)121を備える。ステータ11とロータシール12との接触面である両者の最表面にDLC膜121が成膜され、DLC膜121同士が互いに摺動するようステータ11とロータシール12が配置される。 The protective film 120 formed on the sliding surfaces of the rotor seal 12 and the stator 11 will be described with reference to FIG. 1D. As an example of the protective film 120, an intermediate film 122 formed on a base material 123 of SUS316 (the main body of the stator 11 and the rotor seal 12) and a diamond-like carbon film (DLC film) formed on the intermediate film 122. 121. A DLC film 121 is formed on the outermost surfaces of the stator 11 and the rotor seal 12, which are the contact surfaces of the stator 11 and the rotor seal 12, and the stator 11 and the rotor seal 12 are arranged so that the DLC films 121 slide against each other.
 DLC膜121及び中間膜122は、アークイオンプレーティング法と呼ばれる技術によって形成することができる。アークイオンプレーティング法により、DLC膜121には四面体アモルファスカーボンのDLCが成膜される。四面体アモルファスカーボンは水素イオンを含まないDLCである。水素イオンを含まない四面体アモルファスカーボンのDLC膜を採用することにより、リンギングを回避しつつ寿命が長い流路切替バルブを提供することが可能になる。 The DLC film 121 and intermediate film 122 can be formed by a technique called arc ion plating. A DLC of tetrahedral amorphous carbon is formed on the DLC film 121 by an arc ion plating method. Tetrahedral amorphous carbon is DLC that does not contain hydrogen ions. By adopting a tetrahedral amorphous carbon DLC film that does not contain hydrogen ions, it is possible to provide a channel switching valve that has a long life while avoiding ringing.
 アークイオンプレーティング法による四面体アモルファスカーボンのDLC膜121の成膜方法を図2を参照して説明する。図2は、アークイオンプレーティング法を実行可能なアークイオンプレーティング装置300の概略構成の一例を示している。 A method for forming the tetrahedral amorphous carbon DLC film 121 by the arc ion plating method will be described with reference to FIG. FIG. 2 shows an example of a schematic configuration of an arc ion plating apparatus 300 capable of executing the arc ion plating method.
 アークイオンプレーティング装置300は、一例として、真空チャンバ301を備え、真空チャンバ301は処理対象物310を保持するための回転テーブル311を備える。真空チャンバ301は更に、DLC膜121の元となるグラファイト陰極のカソード302と、中間膜122を形成するために使用する金属ターゲット303とを備える。中間膜122は、主にアルミニウム、クロム、チタン、タングステンなどの金属で形成される。金属ターゲット303の材料は、ステータ11やロータシール12の材料に応じて変更することができる。 The arc ion plating apparatus 300 includes, as an example, a vacuum chamber 301, and the vacuum chamber 301 includes a rotary table 311 for holding an object 310 to be processed. The vacuum chamber 301 further comprises a graphite cathode 302 from which the DLC film 121 is formed, and a metal target 303 used to form the intermediate film 122 . The intermediate film 122 is mainly made of metal such as aluminum, chromium, titanium, and tungsten. The material of the metal target 303 can be changed according to the material of the stator 11 and rotor seal 12. FIG.
 真空チャンバ301は更に、アルゴンガス3011を注入するガス注入ポート3012、及び、真空引き3013を行う真空引きポート3014を備える。処理対象物310(ステータ11やロータシール12に相当)は、回転テーブル311の上に配置され、回転テーブル311はバイアス電源312に接続される。処理対象物310は、回転テーブル311を介してバイアス電源312に電気的に接続される。これにより、バイアス電源312は、処理対象物310にバイアス電圧を印加することができる。 The vacuum chamber 301 further includes a gas injection port 3012 for injecting argon gas 3011 and an evacuation port 3014 for evacuation 3013 . A workpiece 310 (corresponding to the stator 11 and rotor seal 12 ) is placed on a rotary table 311 , and the rotary table 311 is connected to a bias power supply 312 . A processing object 310 is electrically connected to a bias power supply 312 via a rotary table 311 . Thereby, the bias power supply 312 can apply a bias voltage to the processing object 310 .
 DLC膜121と中間膜122の成膜プロセスについて説明する。真空チャンバ301中にアルゴンガス3011を充満させる。その後、アーク放電発生装置(図示せず)によりアーク放電を実行することでグラファイト陰極のカソード302と金属ターゲット303の炭素や金属をイオン化し、バイアス電源312を用いて、DLCや金属イオンを処理対象物310の最表面に引き込む。これにより、処理対象物310にDLC膜121及び中間膜122が形成される。アークイオンプレーティング法ではドロップレットと呼ばれるDLCの塊が含まれて成膜されるため、DLC膜121は、その垂直方向の平均粗さRaが、後述する慣らし運転前の段階において0.05μm以上0.3μm以下に形成される。ステータ11のDLC膜121の平均粗さRa1(ステータ側粗さRa1)、ロータシール12のDLC膜121の平均粗さRa2(シール側粗さRa2)のいずれも0.05μm以上0.3μm以下とするのが好適である。ただし、平均粗さRa2の値が、平均粗さRa1よりも大きい値とすることが好適である。Ra2>Ra1とすることで、よりステータ11とロータシール12との間の固着が一層発生し難くなる。 A film forming process for the DLC film 121 and the intermediate film 122 will be described. Argon gas 3011 is filled in the vacuum chamber 301 . After that, arc discharge is performed by an arc discharge generator (not shown) to ionize the carbon and metal of the cathode 302 of the graphite cathode and the metal target 303, and using the bias power supply 312, DLC and metal ions are processed. It pulls to the outermost surface of the object 310 . Thereby, the DLC film 121 and the intermediate film 122 are formed on the object 310 to be processed. In the arc ion plating method, DLC masses called droplets are included in the film, so the DLC film 121 has an average vertical roughness Ra of 0.05 μm or more in the stage before the break-in operation described later. It is formed to 0.3 μm or less. Both the average roughness Ra1 of the DLC film 121 of the stator 11 (stator-side roughness Ra1) and the average roughness Ra2 of the DLC film 121 of the rotor seal 12 (seal-side roughness Ra2) are 0.05 μm or more and 0.3 μm or less. It is preferred to However, it is preferable that the value of the average roughness Ra2 be set to a value larger than the average roughness Ra1. By setting Ra2>Ra1, sticking between the stator 11 and the rotor seal 12 is more difficult to occur.
 流路切替バルブ1のDLC膜121は、20GPa~60GPaの硬度を有する。その硬度は、プロセス中にバイアス電源312のバイアス電圧を調整することにより得ることができる。 The DLC film 121 of the channel switching valve 1 has a hardness of 20 GPa to 60 GPa. The hardness can be obtained by adjusting the bias voltage of bias power supply 312 during the process.
 図1Aの流路切替バルブ1を搭載した液体クロマトグラフ421の流路模式図を図3A、図3Bに示す。図3Aは、ある回転角度において得られる流路の模式図であり、図3Bは、図3Aの状態から約60度ロータ13を回転した状態での流路の模式図である。 FIGS. 3A and 3B show schematic flow path diagrams of a liquid chromatograph 421 equipped with the flow path switching valve 1 of FIG. 1A. 3A is a schematic diagram of the flow path obtained at a certain rotation angle, and FIG. 3B is a schematic diagram of the flow path when the rotor 13 is rotated about 60 degrees from the state of FIG. 3A.
 液体クロマトグラフ421は、送液ポンプ422、ニードル423、シリンジポンプ424、流路切替バルブ1、分離カラム426、検出器427、配管P2、及びそれらを接続する配管P1から構成される。流路切替バルブ1のステータ流路111、112、113、114、115、116は、送液ポンプ422、分離カラム426、ニードル423、シリンジポンプ424、又は配管P2に接続されている。 The liquid chromatograph 421 is composed of a liquid feed pump 422, a needle 423, a syringe pump 424, a channel switching valve 1, a separation column 426, a detector 427, a pipe P2, and a pipe P1 connecting them. The stator channels 111, 112, 113, 114, 115, and 116 of the channel switching valve 1 are connected to the liquid feed pump 422, the separation column 426, the needle 423, the syringe pump 424, or the pipe P2.
 ロータ13が回転し、図3Aの状態になると、送液ポンプ422により送液される溶離液429が、ステータ流路111、ロータシール流路131、ステータ流路112、配管P2、ステータ流路115、ロータシール流路133、ステータ流路116を通って、分離カラム426に導入され、更に、検出器427、廃液タンク481に流れる状態が得られる。 When the rotor 13 rotates and enters the state of FIG. , the rotor seal flow path 133 and the stator flow path 116 , the separation column 426 , the detector 427 and the waste liquid tank 481 .
 また、図3Aの状態では、ニードル423がステータ流路113に接続され、シリンジポンプ424がステータ流路114に接続され、ステータ流路113、ロータシール流路132、ステータ流路114、シリンジポンプ424が接続された状態が得られる。 3A, the needle 423 is connected to the stator flow path 113, the syringe pump 424 is connected to the stator flow path 114, and the stator flow path 113, rotor seal flow path 132, stator flow path 114, and syringe pump 424 are connected. is connected.
 その後、図3Aの状態から、流路切替バルブ1を図3Aの摺動方向211に60度回転させて流路を切り替えると、図3Bの状態が得られる。図3Bの状態では、サンプルSPが、シリンジポンプ424の吸引により、ニードル423、ステータ流路113、ロータシール流路131、ステータ流路112、配管P2、ステータ流路115、ロータシール流路132、ステータ流路114へと吸引される状態が得られる。また、送液ポンプ422により送液される溶離液429が、ステータ流路111、ロータシール流路133、ステータ流路116を通って、分離カラム426、検出器427を通って廃液タンク481に流れる状態が得られる。 After that, from the state of FIG. 3A, the flow path switching valve 1 is rotated 60 degrees in the sliding direction 211 of FIG. 3A to switch the flow path, and the state of FIG. 3B is obtained. In the state of FIG. 3B, the sample SP is sucked by the syringe pump 424, and the needle 423, the stator flow channel 113, the rotor seal flow channel 131, the stator flow channel 112, the pipe P2, the stator flow channel 115, the rotor seal flow channel 132, A state of being sucked into the stator flow path 114 is obtained. Also, the eluent 429 sent by the liquid-sending pump 422 passes through the stator channel 111, the rotor seal channel 133, the stator channel 116, the separation column 426, the detector 427, and flows into the waste liquid tank 481. status is obtained.
 図3Bの状態から、流路切替バルブ1を時計回りの摺動方向212に60度回転させると、流路切替バルブ1は図3Aの状態に戻ることができる。図3Aの状態で、送液ポンプ422を駆動して、ステータ流路111、ロータシール流路131、ステータ流路112へと溶離液429を送液することにより、配管P2内にあるサンプルSPを分離カラム426に送液することができる。サンプルSPは、分離カラム426で分離された後、検出器427で検出される。検出動作の終了後、全体の流路を洗浄するため更に数秒溶離液の送液を継続する。その後、別のサンプルの分析のために図3Bの状態に戻す。以後、図3A、図3Bの状態を設定し、上記の動作を繰り返すことにより、サンプルSPの検査が継続される。 When the flow path switching valve 1 is rotated clockwise by 60 degrees in the sliding direction 212 from the state of FIG. 3B, the flow path switching valve 1 can return to the state of FIG. 3A. In the state of FIG. 3A, the liquid-sending pump 422 is driven to send the eluent 429 to the stator channel 111, the rotor seal channel 131, and the stator channel 112, thereby removing the sample SP in the pipe P2. It can be sent to separation column 426 . The sample SP is detected by the detector 427 after being separated by the separation column 426 . After the detection operation is completed, the eluent is continued to be supplied for several seconds to wash the entire channel. Then return to the state of FIG. 3B for analysis of another sample. After that, by setting the states shown in FIGS. 3A and 3B and repeating the above operation, the inspection of the sample SP is continued.
 分離カラム426は、内部に数マイクロメートルの粒子が充填されていて流体抵抗が大きい。また、分離カラム426のサンプル分離性能を向上させるため、分離カラム426に接続される配管P1の流路径は0.1mm程度に設計されており、同様に流体抵抗が大きい。そのため、送液ポンプ422は数十MPaの高い圧力で溶離液429を送液するよう構成されている。一方、シリンジポンプ424には流路抵抗の大きい配管等は接続されていないので、シリンジポンプ424の送液圧力は大気圧(0.1MPa)に近い値に設定される。液体クロマトグラフの用途によっては、ポンプからは30~120MPa、又はそれを超える圧力の液体が送液されており、この高圧条件下でバルブは動作しなければならない。このように高圧送液下で、ステータ11とロータシール12の接触面にシール性を持たせるために、ステータ11とロータシール12を大きな力で押し付ける必要がある。使用する液圧に合わせて、ステータ11とロータシール12の接触面の面圧が約60~150MPaとなるよう流路切替バルブが構成される。 The separation column 426 is filled with particles of several micrometers inside and has high fluid resistance. Further, in order to improve the sample separation performance of the separation column 426, the flow path diameter of the pipe P1 connected to the separation column 426 is designed to be approximately 0.1 mm, which similarly has large fluid resistance. Therefore, the liquid-sending pump 422 is configured to send the eluent 429 at a high pressure of several tens of MPa. On the other hand, since the syringe pump 424 is not connected to a pipe or the like having a large flow resistance, the liquid feeding pressure of the syringe pump 424 is set to a value close to the atmospheric pressure (0.1 MPa). Depending on the application of the liquid chromatograph, the liquid is delivered from the pump at a pressure of 30 to 120 MPa or more, and the valve must operate under this high pressure condition. In order to provide the contact surfaces of the stator 11 and the rotor seal 12 with sealing properties under high-pressure liquid feeding, it is necessary to press the stator 11 and the rotor seal 12 with a large force. The flow path switching valve is configured so that the surface pressure of the contact surface between the stator 11 and the rotor seal 12 is about 60 to 150 MPa according to the hydraulic pressure used.
 このようにステータ11とロータシール12の接触面の面圧が大きい場合において、ステータ11とロータシール12のそれぞれの最表面の粗さRaが、例えば0.025μm以下のような鏡面に近い値とされると、ステータ11とロータシール12がリンギング現象とよばれる分子間結合による固着を起こすことがある。この場合、流路切替バルブ1が動作しなくなる可能性がある。 When the surface pressure of the contact surface between the stator 11 and the rotor seal 12 is large as described above, the roughness Ra of the outermost surface of each of the stator 11 and the rotor seal 12 is a value close to a mirror surface such as 0.025 μm or less, for example. As a result, the stator 11 and the rotor seal 12 may stick due to intermolecular bonds called ringing phenomenon. In this case, the channel switching valve 1 may not operate.
 そこで、本実施の形態の流路切替バルブ1は、アークイオンプレーティング法により、ステータ11とロータシール12の最表層に、保護膜120の一部としてDLC膜121を備えている。DLC膜121の、後述する慣らし運転前における最表面の平均粗さRaは0.05μm以上で、例えば0.05~0.15μmとされる。このため、ステータ11とロータシール12の固着は効果的に抑止される。これによりステータ11とロータシール12の接触面で、異常摩耗や焼き付きなども発生せず、長寿命な流路切替バルブ1を提供することができる。 Therefore, the flow path switching valve 1 of the present embodiment includes a DLC film 121 as part of the protective film 120 on the outermost layers of the stator 11 and rotor seal 12 by arc ion plating. The DLC film 121 has an outermost surface average roughness Ra of 0.05 μm or more, for example, 0.05 to 0.15 μm, before running-in, which will be described later. This effectively prevents the stator 11 and rotor seal 12 from sticking together. As a result, the contact surface between the stator 11 and the rotor seal 12 does not suffer from abnormal wear or seizure, and a long-life passage switching valve 1 can be provided.
 また、本実施の形態の流路切替バルブ1は、ステータ11とロータシール12を接触させたのち、ロータ13を反時計回り摺動方向211、及び時計回り摺動方向212へと繰り返し回転させて慣らし運転を実行する。慣らし運転は、溶離液429を送液しながら、摺動方向211、摺動方向212に100-3000回程度ロータ13を回転(往復運動)させるものである。これにより、DLC膜121の最表面が適宜平滑化され、平均粗さRaが減少しつつも、かつステータ11とロータシール12が固着しない平均粗さとされる。すなわち、ステータ11とロータシール12が接触面で固着せず、長寿命なバルブを提供することができる。 Further, in the flow path switching valve 1 of the present embodiment, after the stator 11 and the rotor seal 12 are brought into contact with each other, the rotor 13 is repeatedly rotated in the counterclockwise sliding direction 211 and the clockwise sliding direction 212. Perform a running-in. The break-in operation is to rotate (reciprocate) the rotor 13 about 100 to 3000 times in the sliding directions 211 and 212 while feeding the eluent 429 . As a result, the outermost surface of the DLC film 121 is properly smoothed, and the average roughness Ra is reduced, and the stator 11 and the rotor seal 12 are not stuck to each other. That is, the stator 11 and the rotor seal 12 do not stick together at their contact surfaces, and a long-life valve can be provided.
 慣らし運転に当たっては、図4に示すように、ロータ13を回転させる駆動装置の回転トルクを監視することが好適である。慣らし運転の開始直後は、大きな平均粗さに基づく静止摩擦係数の関係で大きな回転トルクが発生するが、その後は回転トルクは低下し、以後平均粗さの低下により、回転トルクも徐々に低下する。この回転トルクを監視することで、適切な平均粗さを得ることができる。 During break-in, it is preferable to monitor the rotational torque of the driving device that rotates the rotor 13, as shown in FIG. Immediately after the start of break-in, a large rotational torque is generated due to the static friction coefficient based on the large average roughness. . An appropriate average roughness can be obtained by monitoring this rotational torque.
 また、30~120MPaの高圧送液条件下で高圧流路と低圧流路を切替える場合に発生するキャビテーション(空洞現象)により、ステータ11とロータシール12の接触面が摩耗し、両者間のシール性が保たれず、バルブ寿命が短くなる可能性がある。このキャビテーションによる接触面の摩耗箇所について図4を参照して説明する。 In addition, due to cavitation (cavitation phenomenon) that occurs when switching between the high-pressure flow path and the low-pressure flow path under high-pressure liquid feeding conditions of 30 to 120 MPa, the contact surface between the stator 11 and the rotor seal 12 wears, and the sealing performance between the two is reduced. is not maintained and the valve life may be shortened. Abraded portions of the contact surface due to this cavitation will be described with reference to FIG.
 ロータ13が回転し、図3Bの状態から、図3Aの状態へと切り替えがされる場合を考える。このとき、図3Bの状態において低圧のシリンジポンプ424につながるロータシール流路131は、図3Aの状態においては、高圧の送液ポンプ422とステータ流路111を介して接続される。この場合、ステータ流路111とロータシール流路131の圧力差が大きいため、その圧力により、キャビテーションがステータ流路111及びロータシール流路131内に発生する。その後、送液ポンプ422から高圧の流体が流れるため、キャビテーションが流路内で崩壊する。キャビテーションが崩壊する際に、ステータ11とロータシール12の流路内で、衝撃圧や高速の流れが生じ、ステータ流路111とロータシール流路131の流路端部に摩耗が起きる。図5A、図5Bにキャビテーションによってできる流路端部の傷の一例を模式的に示す。ステータ流路111にはステータ流路端部の傷1111、ロータシール流路131にはロータシール流路端部の傷1311ができる。 Consider a case where the rotor 13 rotates and the state in FIG. 3B is switched to the state in FIG. 3A. At this time, the rotor seal channel 131 connected to the low-pressure syringe pump 424 in the state of FIG. 3B is connected to the high-pressure liquid feed pump 422 via the stator channel 111 in the state of FIG. 3A. In this case, since the pressure difference between the stator flow path 111 and the rotor seal flow path 131 is large, cavitation occurs in the stator flow path 111 and the rotor seal flow path 131 due to the pressure. After that, high-pressure fluid flows from the liquid-sending pump 422, so that the cavitation collapses in the flow path. When the cavitation collapses, impact pressure and high-speed flow are generated in the flow paths of the stator 11 and the rotor seal 12 , and wear occurs at the flow path ends of the stator flow path 111 and the rotor seal flow path 131 . FIG. 5A and FIG. 5B schematically show an example of flaws at the ends of the flow path caused by cavitation. The stator flow path 111 has a stator flow path end flaw 1111 , and the rotor seal flow path 131 has a rotor seal flow path end flaw 1311 .
 図3A、図3Bに示した往復運動の回数が増えると、ステータ流路端部の傷1111が方向1112(図5A)に延伸し、ロータシール流路端部の傷1311は方向1312(図5B)に延伸する。そして最終的に、図5Bで示すように、高圧のロータシール流路133、ステータ流路111、ステータ流路の傷1111と、低圧のロータシール流路の傷1311と、ロータシール流路131が接続して、シール性が保たれず、液漏れが発生する虞が高まる。 As the number of reciprocating motions shown in FIGS. 3A and 3B increases, stator channel end flaws 1111 extend in direction 1112 (FIG. 5A) and rotor seal channel end flaws 1311 extend in direction 1312 (FIG. 5B). ). Finally, as shown in FIG. 5B, the high-pressure rotor seal flow path 133, the stator flow path 111, the stator flow path flaw 1111, the low-pressure rotor seal flow path flaw 1311, and the rotor seal flow path 131 are formed. If it is connected, the sealing property cannot be maintained, and the risk of liquid leakage increases.
 このキャビテーションによるステータ流路端部の傷1111、及びロータシール流路端部の傷1311の延伸度は、ステータ11やロータシール12に成膜されるDLC膜121の膜厚や硬度により、異なることが判明した。DLC膜121の膜厚や硬度を考慮することで、キャビテーションによる摩耗に耐え、傷の延伸速度を遅くでき、バルブ寿命を延ばすことができる。 The extension degree of the flaw 1111 at the end of the stator flow path and the flaw 1311 at the end of the rotor seal flow path due to this cavitation varies depending on the thickness and hardness of the DLC film 121 formed on the stator 11 and the rotor seal 12. There was found. By considering the film thickness and hardness of the DLC film 121, it is possible to withstand wear due to cavitation, reduce the stretching speed of scratches, and extend the bulb life.
 図6のグラフにより、DLC膜121の膜厚、硬度と流路切替バルブ1の寿命の関係を示す。横軸はDLC膜121の膜厚を示し、縦軸は硬度を示し、グラフ中の円の直径は、ある膜厚と硬度のDPC膜121が採用された場合における流路切替バルブ1の寿命を示す。 The graph in FIG. 6 shows the relationship between the film thickness and hardness of the DLC film 121 and the service life of the channel switching valve 1 . The horizontal axis indicates the film thickness of the DLC film 121, the vertical axis indicates the hardness, and the diameter of the circle in the graph indicates the service life of the flow path switching valve 1 when the DPC film 121 having a certain film thickness and hardness is adopted. show.
 本出願の発明者らの検討の結果、アークイオンプレーティング法で成膜したアモルファスカーボンで、硬度20~60GPaのDLC膜を採用すると、バルブ寿命が長くなることが判明した。 As a result of the study by the inventors of the present application, it was found that the valve life is prolonged by adopting a DLC film with a hardness of 20 to 60 GPa, which is amorphous carbon formed by the arc ion plating method.
 硬度20GPa未満のDLC膜121が採用された際の寿命501は短い。これは、DLC膜121の硬度が小さいために、キャビテーションによるステータ流路111~116の端部の傷1111、ロータシール流路端部の傷1311の延伸速度が速いためと考えられる。 The life 501 is short when the DLC film 121 with a hardness of less than 20 GPa is used. This is presumably because the DLC film 121 has a low hardness, so that cavitation causes the scratches 1111 at the ends of the stator flow paths 111 to 116 and the scratches 1311 at the ends of the rotor seal flow path to extend at a high speed.
 一方、硬度20~30GPaのDLC膜121が採用された場合のバルブ寿命502は、硬度が20GPa以下の場合のバルブ寿命501の1.5倍となり、硬度30~40GPaのDLC膜121が採用された場合のバルブ寿命503は、硬度が20GPa以下の場合のバルブ寿命501の2倍になり、硬度40~50GPaのDLC膜121が採用された場合のバルブ寿命504は、硬度が20GPa以下の場合のバルブ寿命501の7倍となることが判明した。また、50GPa~60GPaのDLC膜121が採用された場合のバルブ寿命505は、硬度が20GPa以下の場合のバルブ寿命501の2倍となることが判明した。 On the other hand, the bulb life 502 when the DLC film 121 with a hardness of 20 to 30 GPa is adopted is 1.5 times the bulb life 501 when the hardness is 20 GPa or less, and the DLC film 121 with a hardness of 30 to 40 GPa is adopted. The valve life 503 when the hardness is 20 GPa or less is double the valve life 501 when the hardness is 20 GPa or less. It turned out to be 7 times the life 501. It was also found that the bulb life 505 when the DLC film 121 of 50 GPa to 60 GPa is adopted is double the bulb life 501 when the hardness is 20 GPa or less.
 他方、硬度が60GPaを超えるDLC膜121の採用は不適切であることが判明した。60GPa超の場合、ステータ11及びロータシール12の材料であるSUS316とDLC膜121との硬度差が大きく、ステータ11とロータシール12を押し付けた際に、DLC膜121がステータ11及びロータシール12から剥がれ、接触面から液が漏れる虞が高い。 On the other hand, it turned out that the adoption of the DLC film 121 with a hardness exceeding 60 GPa is inappropriate. When it exceeds 60 GPa, the hardness difference between SUS316, which is the material of the stator 11 and the rotor seal 12, and the DLC film 121 is large, and when the stator 11 and the rotor seal 12 are pressed against each other, the DLC film 121 is separated from the stator 11 and the rotor seal 12. There is a high possibility that the liquid will leak from the contact surface due to peeling.
 さらに、DLC膜121の膜厚に着目すると、膜厚0.5μm~1.5μmが好適であることが判明した。図7に図4Aのロータシール流路の端部の断面写真の一例を示す。この断面写真は、サンプルを樹脂に包埋して断面を作製し、顕微鏡で撮影した写真である。 Furthermore, focusing on the film thickness of the DLC film 121, it was found that a film thickness of 0.5 μm to 1.5 μm is suitable. FIG. 7 shows an example of a cross-sectional photograph of the end portion of the rotor seal channel of FIG. 4A. This cross-sectional photograph is a photograph of a sample embedded in a resin to prepare a cross section and photographed with a microscope.
 図7に示されるサンプルは、サンプル作製用の樹脂603、DLC膜121、中間膜122、SUS316の基材123(ステータ11又はロータシール12)を含んでいる。このとき、DLC膜121の膜厚を1.5μmより大きくすると、図7に示すように、キャビテーションによる衝撃圧により、中間膜122に亀裂602ができ、DLC膜121及び中間膜122が、時間経過とともにSUS316の基材123から剥がれ、傷として確認される。これにより、ステータ11とロータシール12の接触面に隙間が生じ、流路切替バルブ1から液が漏れることが生じ得ることが確認された。 The sample shown in FIG. 7 includes a resin 603 for sample preparation, a DLC film 121, an intermediate film 122, and a base material 123 of SUS316 (stator 11 or rotor seal 12). At this time, if the film thickness of the DLC film 121 is larger than 1.5 μm, as shown in FIG. At the same time, it peels off from the base material 123 of SUS316 and is confirmed as a scratch. As a result, it has been confirmed that a gap may be generated between the contact surfaces of the stator 11 and the rotor seal 12 and the liquid may leak from the flow path switching valve 1 .
 一方で、DLC膜121の膜厚0.5μm未満においては、ステータ11とロータシール12を接触させて荷重をかけると、中間膜122に亀裂602が入り、DLC膜121及び中間膜122がSUS316の基材123(ステータとロータシール)から剥離し、流路切替バルブ1から液が漏れることが生じ得ることが確認された。 On the other hand, when the thickness of the DLC film 121 is less than 0.5 μm, when the stator 11 and the rotor seal 12 are brought into contact with each other and a load is applied, cracks 602 are generated in the intermediate film 122, and the DLC film 121 and the intermediate film 122 become SUS316. It has been confirmed that the liquid may peel off from the base material 123 (stator and rotor seal) and leak from the flow path switching valve 1 .
 以上のように、膜厚0.5μm~1.5μmのDLC膜121を保護膜120として成膜した流路切替バルブ1は、ステータ11とロータシール12の固着やキャビテーションによるステータ11とロータシール12の接触面の摩耗を抑制し、流路切替バルブの長寿命化を図ることができることが分かる。以上より、膜厚0.5μm~1.5μmで且つ硬度が20~60GPaのDLC膜121の採用が好適である。 As described above, the flow path switching valve 1 formed with the DLC film 121 having a film thickness of 0.5 μm to 1.5 μm as the protective film 120 is capable of preventing the stator 11 and the rotor seal 12 from adhering to each other and cavitation. It can be seen that the wear of the contact surface can be suppressed and the life of the flow path switching valve can be extended. From the above, it is preferable to employ the DLC film 121 having a film thickness of 0.5 μm to 1.5 μm and a hardness of 20 to 60 GPa.
 図8に、本実施の形態に従うサンプル1~3についての、慣らし運転の前後でのステータ側粗さRa1、シール側粗さRa2の変化と、流路切替バルブ1の寿命(使用可能回数)を示す。図8では、平均粗さRa1、Ra2に加え、ステータ11側のDLC膜121の最大粗さRz1、ロータシール12側でのDLC膜121の最大粗さRz2の慣らし運転前後での変化も示している。また、各サンプルにおけるDLC膜121の膜厚及び硬度は図8に示す通りである。 FIG. 8 shows changes in the stator-side roughness Ra1 and the seal-side roughness Ra2 before and after the break-in, and the service life (usable number of times) of the flow path switching valve 1 for samples 1 to 3 according to the present embodiment. show. In addition to the average roughnesses Ra1 and Ra2, FIG. 8 also shows changes in the maximum roughness Rz1 of the DLC film 121 on the stator 11 side and the maximum roughness Rz2 of the DLC film 121 on the rotor seal 12 side before and after the break-in. there is Also, the film thickness and hardness of the DLC film 121 in each sample are as shown in FIG.
 図8に示すように、サンプル1~3はいずれも慣らし運転実行前において、ステータ側粗さRa1、シール側粗さRa2がいずれも0.05~0.3μmの範囲に設定されている。実験の結果、いずれのサンプルについても、従来の鏡面状のDLC膜121の寿命を大きく上回る寿命が得られた。 As shown in FIG. 8, for samples 1 to 3, both the stator-side roughness Ra1 and the seal-side roughness Ra2 are set within the range of 0.05 to 0.3 μm before running-in. As a result of the experiment, for any sample, a lifetime greatly exceeding that of the conventional specular DLC film 121 was obtained.
[その他]
 本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
[others]
The present invention is not limited to the above-described embodiments, and includes various modifications. For example, the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations. In addition, it is possible to replace part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Moreover, it is possible to add, delete, or replace a part of the configuration of each embodiment with another configuration.
1…流路切替バルブ
11…ステータ
12…ロータシール
13…ロータ
15…ハウジング
111、112、113、114、115、116…ステータ流路
120…保護膜
121…DLC膜
122中間膜
131、132、133…ロータシール流路
300…アークイオンプレーティング装置
301…真空チャンバ
302…カソード
303…金属ターゲット
310…処理対象物
311…回転テーブル
312…バイアス電源
3011…アルゴンガス
3012…ガス注入ポート
3013…真空引き
3014…真空引きポート
421液体クロマトグラフ
422…送液ポンプ
423…ニードル
424…シリンジポンプ
426…分離カラム
427…検出器
SP…サンプル
429…溶離液
481、482…廃液タンク
P1、P2…配管
Reference Signs List 1 Flow path switching valve 11 Stator 12 Rotor seal 13 Rotor 15 Housing 111, 112, 113, 114, 115, 116 Stator flow path 120 Protective film 121 DLC film 122 Intermediate films 131, 132, 133 ... Rotor seal channel 300 ... Arc ion plating device 301 ... Vacuum chamber 302 ... Cathode 303 ... Metal target 310 ... Object to be processed 311 ... Rotary table 312 ... Bias power source 3011 ... Argon gas 3012 ... Gas injection port 3013 ... Evacuation 3014 ... Evacuation port 421 Liquid chromatograph 422 ... Liquid sending pump 423 ... Needle 424 ... Syringe pump 426 ... Separation column 427 ... Detector SP ... Sample 429 ... Eluent 481, 482 ... Waste liquid tanks P1, P2 ... Piping

Claims (9)

  1.  複数の第1の貫通孔を有するステータと、
     前記ステータと接触しながら回転し複数の第2の貫通孔を有するロータシールと、
     前記ロータシールを回転させるよう構成されるロータと
    を備え、
     前記ロータシール及び前記ステータの摺動面にダイヤモンドライクカーボン膜(DLC膜)が成膜されており、
     前記DLC膜の平均粗さRaは0.05μm以上である
    ことを特徴とする流路切替バルブ。
    a stator having a plurality of first through holes;
    a rotor seal that rotates in contact with the stator and has a plurality of second through holes;
    a rotor configured to rotate the rotor seal;
    A diamond-like carbon film (DLC film) is formed on sliding surfaces of the rotor seal and the stator,
    The channel switching valve, wherein the DLC film has an average roughness Ra of 0.05 μm or more.
  2.  前記DLC膜の硬度が20~60GPaである、請求項1に記載の流路切替バルブ。 The flow path switching valve according to claim 1, wherein the DLC film has a hardness of 20 to 60 GPa.
  3.  前記DLC膜の膜厚が0.5~1.5μmである、請求項1に記載の流路切替バルブ。 The channel switching valve according to claim 1, wherein the DLC film has a thickness of 0.5 to 1.5 µm.
  4.  前記DLC膜の平均粗さRaは0.05μm以上0.3μm以下である、請求項1に記載の流路切替バルブ。 The flow path switching valve according to claim 1, wherein the DLC film has an average roughness Ra of 0.05 µm or more and 0.3 µm or less.
  5.  前記ロータシールを、前記ロータによる回転往復運動をすることで慣らし運転を行うように構成された、請求項1に記載の流路切替バルブ。 The flow path switching valve according to claim 1, wherein the rotor seal is configured to perform a break-in operation by rotating the rotor in a reciprocating motion.
  6.  前記ロータの回転トルクを監視しつつ前記慣らし運転を実行するように構成された、請求項5に記載の流路切替バルブ。 The flow path switching valve according to claim 5, configured to perform the running-in operation while monitoring the rotational torque of the rotor.
  7.  前記DLC膜が、四面体アモルファスカーボンのDLCである、請求項1に記載の流路切替バルブ。 The flow path switching valve according to claim 1, wherein the DLC film is a tetrahedral amorphous carbon DLC.
  8.  前記ロータシール側のDLC膜の平均粗さRaは、前記ステータ側のDLC膜の平均粗さよりも大きい、請求項1に記載の流路切替バルブ。 The flow path switching valve according to claim 1, wherein the average roughness Ra of the DLC film on the rotor seal side is greater than the average roughness of the DLC film on the stator side.
  9.  複数の第1の貫通孔を有するステータと、前記ステータと接触しながら回転し複数の第2の貫通孔を有するロータシールと、前記ロータシールを回転させるよう構成されるロータとを備えた流路切替バルブの製造方法において、
     アークイオンプレーティング装置に、処理対象物としての前記ステータ及び前記ロータシールを載置し、アーク放電により炭素及び金属をイオン化して、前記処理対象物の表面にダイヤモンドライクカーボン膜(DLC膜)を、中間膜を介して製膜する工程を含み、 前記DLC膜の平均粗さRaは0.05μm以上である
    ことを特徴とする、流路切替バルブの製造方法。
    A flow path comprising a stator having a plurality of first through holes, a rotor seal rotating in contact with the stator and having a plurality of second through holes, and a rotor configured to rotate the rotor seal. In the manufacturing method of the switching valve,
    The stator and the rotor seal as objects to be treated are placed in an arc ion plating apparatus, carbon and metal are ionized by arc discharge, and a diamond-like carbon film (DLC film) is formed on the surface of the object to be treated. 1. A method for manufacturing a flow path switching valve, comprising: forming a film via an intermediate film, wherein the DLC film has an average roughness Ra of 0.05 μm or more.
PCT/JP2022/045270 2022-01-28 2022-12-08 Flow switching valve and manufacturing method therefor WO2023145270A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-011663 2022-01-28
JP2022011663A JP2023110304A (en) 2022-01-28 2022-01-28 Flow passage switching valve, and manufacturing method therefor

Publications (1)

Publication Number Publication Date
WO2023145270A1 true WO2023145270A1 (en) 2023-08-03

Family

ID=87471593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/045270 WO2023145270A1 (en) 2022-01-28 2022-12-08 Flow switching valve and manufacturing method therefor

Country Status (2)

Country Link
JP (1) JP2023110304A (en)
WO (1) WO2023145270A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08233121A (en) * 1995-02-28 1996-09-10 Kyocera Corp Faucet valve
JP2014520250A (en) * 2011-04-25 2014-08-21 ウオーターズ・テクノロジーズ・コーポレイシヨン Valve with protective coating
JP2014181353A (en) * 2013-03-18 2014-09-29 Shimadzu Corp Arc plasma film deposition apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08233121A (en) * 1995-02-28 1996-09-10 Kyocera Corp Faucet valve
JP2014520250A (en) * 2011-04-25 2014-08-21 ウオーターズ・テクノロジーズ・コーポレイシヨン Valve with protective coating
JP2014181353A (en) * 2013-03-18 2014-09-29 Shimadzu Corp Arc plasma film deposition apparatus

Also Published As

Publication number Publication date
JP2023110304A (en) 2023-08-09

Similar Documents

Publication Publication Date Title
US20100276617A1 (en) Flow channel switching valve
US10428967B2 (en) Valves having protective coatings
EP0791760A2 (en) Water lubricated bearing or water lubricated seal
US9273682B2 (en) Method for making a pump system with enhanced dynamic seal reliability
KR102039532B1 (en) Trunnion ball valve for high pressure, and hydrogen station
US7883093B2 (en) Mechanical seal
CN112204279B (en) Shaft sealing device
JP5343008B2 (en) Ultra-smooth surface sputtering target and method of manufacturing the same
WO2023145270A1 (en) Flow switching valve and manufacturing method therefor
US6234815B1 (en) Rotary joint for fluid
TW201309819A (en) Part with DLC coating and method for applying the DLC coating
US20090029068A1 (en) Carbon thin film manufacturing method and carbon thin film coated body
JP5666583B2 (en) Rotating shear injector valve with coated stator surface
JP4983292B2 (en) Flow path switching valve
JP2918874B1 (en) Mechanical seal and rotary joint for slurry fluid
US9377011B2 (en) High pressure pump with reduced seal wear
JP2004019912A (en) Rotary joint
JP5161931B2 (en) Seal ring for power recovery device for seawater desalination, power recovery device, and seawater desalination device
US20200284384A1 (en) Powder rotary feedthrough having a purge chamber
JP2015523487A (en) Internal combustion engine jacket
CN113463062A (en) Deposition method of diamond-like carbon-based coating on inner wall of bent pipe
US20080178795A1 (en) Gas Bearing Spindles
US20230138338A1 (en) Fluid end with selectively coated surfaces
WO2023217406A1 (en) Amorphous carbon coating for reduction of friction and wear in a slide component
Bloyce Coatings for high performance pumps and compressors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22922562

Country of ref document: EP

Kind code of ref document: A1