WO2023145243A1 - Machine tool system - Google Patents

Machine tool system Download PDF

Info

Publication number
WO2023145243A1
WO2023145243A1 PCT/JP2022/043962 JP2022043962W WO2023145243A1 WO 2023145243 A1 WO2023145243 A1 WO 2023145243A1 JP 2022043962 W JP2022043962 W JP 2022043962W WO 2023145243 A1 WO2023145243 A1 WO 2023145243A1
Authority
WO
WIPO (PCT)
Prior art keywords
machine tool
air
schedule
unit
machine
Prior art date
Application number
PCT/JP2022/043962
Other languages
French (fr)
Japanese (ja)
Inventor
静雄 西川
Original Assignee
Dmg森精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dmg森精機株式会社 filed Critical Dmg森精機株式会社
Publication of WO2023145243A1 publication Critical patent/WO2023145243A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/406Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by monitoring or safety
    • G05B19/4063Monitoring general control system
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools

Definitions

  • the present invention relates to a machine tool system comprising a plurality of machine tools and one air supply source provided in common for the plurality of machine tools.
  • a machine tool system that supplies compressed air to a machine tool from an air supply source such as a compressor installed in a factory to operate an air-using device mounted on the machine tool (for example, See Patent Document 1).
  • the equipment using air includes, for example, an air blower for blowing off chips, a door opening/closing device using a pneumatic cylinder, and the like.
  • a pressure regulating valve is usually provided in an air supply path that connects an air supply source and an air-using device of a machine tool. High-pressure compressed air supplied from an air supply source is decompressed (adjusted) to a set pressure by passing through this pressure regulating valve.
  • Patent Document 1 discloses a machine tool system in which one machine tool is connected to one air supply source, but in an actual factory, there are cases where a plurality of machine tools are connected to one air supply source. . In this case, there is a possibility that the amount of air supplied to each machine tool will be insufficient due to the overlap of the air use time periods of the plurality of machine tools. When the amount of air supplied to each machine tool is insufficient, the air pressure supplied to the air-using equipment mounted on the machine tool decreases, resulting in a problem that the air-using equipment is prevented from operating normally.
  • a machine tool system comprising: an air supply path for supplying a machine; and a pressure regulating valve provided in each air supply path for adjusting the pressure of the supplied air supplied to each machine tool,
  • Each machine tool is configured to be capable of automatic operation based on an automatic operation program stored therein,
  • a schedule in which either an operating state or a non-operating state, which is a state type of each machine tool, is assigned to a plurality of scheduled cells configured by dividing the operation schedule during automatic operation of each machine tool into a plurality of time intervals.
  • a schedule generator that generates data
  • a state control unit that controls the state of each machine tool based on the schedule data generated by the schedule generation unit;
  • a motion information acquiring unit for acquiring air usage motion information including execution time of the usage motion
  • an air consumption amount storage unit that stores in advance air consumption amount information that associates an air use operation executable by each machine tool with an air consumption amount required for the air use operation,
  • the schedule generation unit Based on the air usage operation information acquired by the operation information acquisition unit and the air consumption amount information stored in the air consumption amount storage unit, the schedule generation unit generates air consumption in the same time interval of the schedule data. and executing a scheduling process for determining a state type to be assigned to each scheduled cell of the schedule data so as to satisfy a first constraint that the sum of the air consumption amounts of the machine tools is less than a predetermined amount. related to machine tool systems.
  • the operation information acquisition unit analyzes the contents of the automatic operation program (for example, the NC program) of each machine tool and acquires the air usage operation information of each machine tool.
  • This air usage operation information includes the details of the air usage operation executed during one cycle of the automatic operation program (from the start to the end of execution of one automatic operation program) and the execution time thereof. .
  • the air usage operations that can be executed by each machine tool and the air consumption required for the air usage operations are stored in advance as air consumption information in the air consumption amount storage unit.
  • a scheduling process is executed based on the obtained air usage operation information of each machine tool and the air consumption amount information stored in the air consumption amount storage unit.
  • the state of each scheduled cell is determined so as to satisfy the first constraint condition that the total air consumption of each machine tool in the same time interval of the schedule data is less than a predetermined amount. Then, each machine tool is controlled to either an operating state or a non-operating state based on the schedule data generated by the schedule generation unit under the control of the state control unit. Therefore, even if a plurality of machine tools perform air-using operations during the same time interval of the schedule data, the total air consumption of each machine tool does not exceed a predetermined amount. Therefore, it is possible to prevent shortage of air supply to each machine tool, and to prevent failure of air use operation due to decrease in supply air pressure.
  • a setting operation unit is further provided for setting the degree of urgency for machining each workpiece, and the schedule generation unit is configured to set the degree of urgency set by the setting operation unit. It is preferable that the scheduling process is executed so as to further satisfy the second constraint condition that the machine tool having a higher value is operated in an earlier time interval.
  • the scheduling processing by the schedule generation unit is executed so as to satisfy the second constraint that the machine tool with a higher degree of urgency for machining is operated in an earlier time interval. Therefore, it is possible to give priority to the processing of an object to be processed that has a high degree of urgency, and complete it early.
  • the schedule generation unit is configured to execute the scheduling process so as to further satisfy a third constraint condition that the allocation ratio of the state type in the operation schedule for each of the machine tools is the same. is preferred.
  • the scheduling process by the scheduling generator satisfies the third constraint that the allocation ratio of the state types (operating state and non-operating state) in the operating schedule for each machine tool is the same. is executed. Therefore, it is possible to avoid intensive operation of only a specific machine tool and to operate each machine tool at the same operating ratio in a well-balanced manner.
  • the plurality of time intervals in the schedule data include time intervals corresponding to predetermined break times, and the schedule generation unit sets the degree of urgency to a predetermined level or higher in the time intervals corresponding to the break times. It is preferable that the scheduling process is executed so as to further satisfy the fourth constraint that only the machine tool is operated.
  • the scheduling processing by the schedule generation unit further satisfies the fourth constraint condition that only machine tools with a degree of urgency equal to or higher than a predetermined level are operated in the time interval corresponding to the rest period. executed. Therefore, even in the time interval corresponding to the break time of the schedule data, the operating state is assigned as the state type to a machine tool with a high degree of urgency for machining. Therefore, a machine tool with a high degree of urgency for machining can be preferentially operated even during the break time, so that the machining of the object to be machined can be completed early.
  • the scheduling process is executed so that the total air consumption of each machine tool in the same time interval is less than a predetermined amount, and the By controlling the state of each machine tool based on the schedule data, it is possible to prevent a decrease in the supplied air pressure caused by overlapping air use periods of the machine tools.
  • FIG. 1 is a schematic configuration diagram showing a machine tool system according to an embodiment
  • FIG. It is a figure which shows an example of the schedule data produced
  • FIG. 10 is a diagram showing an example of setting data of the degree of urgency of machining set for each machine tool; It is a figure which shows the air consumption information memorize
  • FIG. 5 is a diagram showing air usage operation information acquired by an operation information acquisition unit;
  • the machine tool system 1 of this example includes a plurality of (six in this example) machine tools 10 and one air supply source 2 provided in common for the six machine tools 10. , one supply pipe 3 connected to an air supply source 2, a branch pipe 4 (an example of an air supply path) branching from the supply pipe 3 and connected to each machine tool 10, and midway of each branch pipe 4 A pressure regulating valve 5 that adjusts the supply air to a preset set pressure, an NC (Numerical Control) device 12 that controls each machine tool 10, and a setting provided on the operation panel 13 of each machine tool 10 It has an operation unit 13 a and a schedule server 20 connected to each NC unit 12 . The operation of each machine tool 10 is controlled by the NC unit based on the schedule data generated by the schedule server 20 .
  • each machine tool 10 is configured by, for example, a machining center or a turning center, but is not limited to this.
  • the air supply source 2 is composed of, for example, an air compressor, which compresses the sucked outside air and supplies it into the supply pipe 3 .
  • Air supplied into the supply pipe 3 flows into six branch pipes 4 .
  • the air that has flowed into each branch pipe 4 is adjusted to a set pressure by passing through the pressure regulating valve 5 .
  • An electromagnetic flow path switching valve 7 using a solenoid or the like is provided between the pressure regulating valve 5 and the air-using device 11, and the operation of the flow path switching valve 7 is controlled by an NC device 12, which will be described later.
  • NC device 12 which will be described later.
  • an air blow device 11a for blowing chips and the like with air, and a door opening/closing device 11b for driving the opening/closing door of the machining area of the machine tool 10 using a pneumatic cylinder are disclosed. , but not limited to.
  • an accumulator may be arranged in the middle of the flow path in order to suppress fluctuations in the air pressure supplied to the air-using device 11 .
  • the NC device 12 is connected to an operation panel 13 and a schedule server 20, which will be described later, so that signals can be exchanged.
  • the NC device 12 has a program storage section 12a, a schedule storage section 12b, and a machining control section 12c.
  • the NC unit 12 consists of a computer having a CPU, a ROM and a RAM, the program storage unit 12a and the schedule storage unit 12b are made up of a non-volatile storage medium such as a ROM and a magnetic storage device, and the machining control unit 12c is a computer program. The function is realized by
  • the program storage unit 12a stores an NC program (an example of an automatic operation program) that is executed when the machine tool 10 is automatically operated.
  • This NC program includes codes for driving the feed mechanism and spindle drive (not shown), as well as codes for operating auxiliary equipment such as the air blower 11a and the door opening/closing device 11b. include.
  • the schedule storage unit 12b stores schedule data (see FIG. 2) consisting of a plurality of scheduled cells that are configured by dividing an operation schedule for automatic operation of each machine tool 10 into a plurality of time intervals.
  • each time interval of the operation schedule is configured by dividing the time from 9:00 to 19:00 into hourly units along the time series. It is configured by assigning one of the state types of the machine tool 10, that is, the full operating state or the non-operating state, to 10 scheduled cells corresponding to the time interval.
  • the status type of the machine tool 10 assigned to each scheduled cell is determined by the schedule server 20, which will be described later.
  • the machining control unit 12c changes according to the state type of each scheduled cell of the schedule data stored in the schedule storage unit 12b. , to control the state of the machine tool 10 to either a full operating state or a non-operating state.
  • This processing control section 12c functions as a state control section.
  • the machining control unit 12c After recognizing the current time based on a signal from a timer (not shown) built in the NC unit 12, the machining control unit 12c corresponds to the current time based on the schedule data stored in the schedule storage unit 12b.
  • the state type of the machine tool 10 assigned to the scheduled cell is specified.
  • the machining control unit 12c executes the NC program stored in the program storage unit 12a to control the feed mechanism specified in the NC program. and the spindle driving section, and outputs drive signals corresponding to the extracted operation instructions to the feed driving section and the spindle driving section.
  • the machining control unit 12c then changes the relative position between the tool mounted on the spindle and the workpiece (object to be machined) by means of the feed drive unit to machine the workpiece into a predetermined shape.
  • the machining control unit 12c also extracts operation commands for auxiliary equipment such as the air blower 11a and the door opening/closing device 11b defined in the NC program, and outputs operation signals to these auxiliary equipment. As a result, the auxiliary equipment required for machining the work automatically operates.
  • the machining control unit 12c is configured not to execute the NC program when the state type of the scheduled cell corresponding to the current time specified from the schedule data is the non-operating state. Therefore, when the state type of the scheduled cell corresponding to the current time is the non-operating state, automatic operation of the machine tool 10 based on the NC program is not executed (that is, the machine tool 10 is in the non-operating state).
  • the operation panel 13 is provided on the front side of the machine tool 10, and is configured so that an operator can issue execution commands and setting work for various operations to the machine tool 10 by manual operation.
  • This setting work includes the work of setting the degree of urgency for machining the workpiece by each machine tool 10 .
  • the operation panel 13 of each machine tool 10 is provided with a setting operation section 13a for setting the degree of urgency.
  • the setting operation unit 13a has three selection keys "high”, “medium”, and "low” indicating the level of haste, and the selected level is required for the workpiece of the machine tool 10. Set as the degree of urgency for processing.
  • the selection keys are composed of, for example, soft keys displayed on a touch panel provided on the operation panel 13 of each machine tool 10 .
  • the urgency level of MC2 is set to "high”
  • the urgency level of MC3 is set to "low”
  • the urgency levels of MC1 and MC4-6 are set to "medium”.
  • the setting data of the degree of urgency set by the setting operation section 13a is transmitted from the operation panel 13 via the NC device 12 to the schedule server 20 which will be described later.
  • the schedule server 20 is communicably connected to each NC unit 12 mounted on each of the six machine tools 10, and receives NC program information and processing haste setting data from each NC unit 12. Generate schedule data based on
  • the schedule server 20 has an air consumption storage unit 21, an operation information acquisition unit 22, and a schedule generation unit 23.
  • the schedule server 20 is composed of a computer having a CPU, a ROM and a RAM
  • the air consumption storage unit 21 is composed of a non-volatile storage medium such as a ROM or a magnetic storage device
  • the operation information acquisition unit 22 and the schedule generation unit 23 are:
  • a computer program implements the function.
  • the air consumption amount storage unit 21 associates the contents of the air use operation that can be executed in each of the machine tools MC1 to MC6 with the air consumption amount required for the air use operation.
  • Air consumption information is stored.
  • the air blowing operation by the air blowing device 11a and the door opening/closing operation by the air cylinder of the door opening/closing device 11b are disclosed as executable air using operations, but the present invention is not limited to these.
  • the air consumption is indicated by alphabetical characters, but in practice these are replaced by numerical values.
  • the motion information acquisition unit 22 acquires the NC program from the NC unit 12 mounted on each of the machine tools 10 of MC1 to MC6, and analyzes the contents thereof, thereby performing the following operations for each machine tool 10 during one cycle of the NC program. Acquiring air usage operation information including the content of the air usage operation to be performed and the execution time of the air usage operation.
  • FIG. 5 is an example of air usage operation information acquired by the operation information acquisition unit 22 . As with FIG. 4, the air usage operation disclosed herein is exemplary and not limiting. Also, although the execution time of each air use operation is shown in alphabetical characters, it is actually replaced with numerical values.
  • the schedule generation unit 23 generates schedule data that satisfies the following four constraints by executing scheduling processing based on a genetic algorithm.
  • the first constraint condition is that the sum of the air consumption (l/h) of each machine tool 10 in the same time interval of the schedule data should be less than a predetermined amount.
  • this predetermined amount is set to the maximum supply flow rate (l/h) that can be supplied by the air supply source 2, but is not limited to this. It may be set between 80% and 90%.
  • the air consumption (l/h) in a unit time interval (one hour in this example) of each machine tool 10 is obtained from the air usage operation information (see FIG. 5) acquired by the operation information acquiring unit 22 and the air consumption storage It is calculated by the schedule generator 23 based on the air consumption information (see FIG. 4) stored in the unit 21 .
  • the air consumption (l/h) consumed in a unit time interval of the machine tool 10 of MC1 is (Xa1 (L/s) x Ya1 (s) + Xb1 (L/s) x Yb1 (s)) It can be calculated as x (the number of cycles of the NC program executed per unit time interval).
  • the second constraint is that the machine tool 10 with a higher degree of urgency for machining should be operated in an earlier time interval.
  • the setting data of the degree of urgency for machining of each machine tool 10 is transmitted from the operation panel 13 of each machine tool 10 to the schedule server 20 via the NC device 12 as described above, and is acquired by the schedule generator 23. be.
  • the third constraint condition is that the allocation ratio of each state type in the operation schedule for each machine tool 10 should be the same.
  • the fourth constraint condition is that only machine tools 10 with a degree of urgency equal to or higher than a predetermined level are to be operated in the time interval corresponding to the break time.
  • the time interval from 12:00 to 13:00 is set as the break time, but it is not limited to this.
  • the state type of the machine tool 10 assigned to each scheduled cell of the schedule data (see FIG. 2) is expressed in binary numbers.
  • the fully operational state is expressed as 0, which is the form of the gene
  • the non-operating state is expressed as 1, which is the form of the gene.
  • N individuals with a gene length of 60 are randomly generated as an initial group, and then genetic operations such as evaluation of each generated individual, natural selection, crossover, and mutation are repeated to obtain an optimal solution.
  • the evaluation function may be designed so that the larger the number of constraints among the above four constraints that are satisfied, the higher the evaluation value (fitness).
  • the optimum solution thus obtained is a combination of the state types of each scheduled cell that satisfies the four constraints.
  • the schedule generator 23 generates schedule data corresponding to the optimum solution obtained and transmits the schedule data to the NC unit 12 of each machine tool 10 .
  • the schedule generation unit 23 executes this scheduling process once when the operation of the machine tool system 1 starts (9:00 in this example), and after that, every time a unit time interval (one time interval) elapses, a similar process is performed. Execute the scheduling process and update the schedule data.
  • the schedule generation unit 23 transmits the updated schedule data to the NC unit 12 of each machine tool 10 and stores the data in the schedule storage unit 12b. In this way, by executing the scheduling process each time the unit time interval elapses, the schedule data stored in the schedule storage unit 12b is updated to the optimum schedule data according to the machining progress of each machine tool 10. be.
  • FIG. 2 is a diagram showing an example of schedule data generated by the schedule generator 23.
  • FIG. Looking at this schedule data out of the six scheduled cells in the same time interval, the maximum number of scheduled cells to which the fully operational status is assigned is five, and one or two scheduled cells are always assigned to the non-operating status. there is This is the result of executing the scheduling process so as to satisfy the first constraint condition that the total amount of air consumption of each machine tool 10 in the same time interval is less than the predetermined amount.
  • the amount of air supplied from the air supply source 2 to each machine tool 10 is suppressed to less than a predetermined amount. Therefore, it is possible to avoid a decrease in the supplied air pressure due to an insufficient amount of air supplied from the air supply source 2 to each machine tool 10 . Consequently, it is possible to prevent the operation of the air-using equipment 11 from being hindered due to a decrease in the air pressure supplied to each machine tool 10 .
  • the MC2 machine tool 10 for which the degree of urgency for machining is set to "high”, concentrates on the scheduled cells from 9:00 to 16:00 immediately after the start of operation.
  • the machine tool 10 of MC3 to which the degree of urgency for machining is set to "low”, the non-operating state is intensively assigned to scheduled cells from 9:00 to 11:00 immediately after the start of operation. I know there is. This is the result of executing the scheduling process so as to satisfy the second constraint that the machine tool 10 with a higher degree of urgency is operated in an earlier time interval.
  • the ratio of the full operating state and the non-operating state in the operating schedule is the same (7:3) in any machine tool 10 .
  • the ratio between the full operating state and the non-operating state is not limited to 7:3, and may be any ratio.
  • the scheduled cell corresponding to the break time is assigned to the full operation state. This is the result of executing the scheduling process so as to satisfy the fourth constraint that only the machine tools 10 with a degree of urgency equal to or higher than a predetermined level are operated in the time interval corresponding to the break time.
  • the machine tool 10 with a high degree of urgency for machining is preferentially operated even during the break time, thereby machining the object to be machined. can be completed early.
  • the schedule generator 23 is configured to execute scheduling processing using a genetic algorithm, but is not limited to this, and executes scheduling processing based on, for example, mathematical programming. You may make it
  • the full operating state (an example of the operating state) and the non-operating state were described as candidates for the state type to be assigned to each scheduled cell of the schedule data, but this is not the only option.
  • the operating state may be further classified by the processing speed ratio to the full operating state, and state type candidates such as 50% operating state and 70% operating state may be prepared, and the non-operating state may be further classified by purpose.
  • candidates for the state type such as a non-operating state for tool setup, a non-operating state for pallet exchange, or a non-operating state for cleaning may be prepared.
  • the number of machine tools 10 is six, but the number is not limited to this, and it goes without saying that the number may be five or less, or may be seven or more.
  • the time interval of each scheduled cell that constitutes the operating schedule is one hour, but the time interval is not limited to this. Alternatively, it may be a time interval of 1 hour or longer, such as 2 hours or 3 hours. Further, for example, if the scheduling data is an operating schedule for one month, the time interval may be in units of one day.
  • the scheduling process by the schedule generator 23 is executed each time the time interval of each scheduled cell ends, but it is not limited to this.
  • the scheduling process may be executed, for example, only once before the machine tool system 1 starts operating, or may be executed each time a predetermined unit number of scheduled cells is completed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • General Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Human Computer Interaction (AREA)
  • Numerical Control (AREA)
  • Auxiliary Devices For Machine Tools (AREA)
  • General Factory Administration (AREA)

Abstract

This machine tool system (1) comprises: a schedule-generating unit (23) that generates schedule data for each machine tool (10); a status control unit (12c) that controls the status of each machine tool (10) on the basis of the schedule data; an operation information acquisition unit (22) that acquires air use operation information that includes details of the air use operation executed during one cycle of an automatic driving program in each machine tool (10) and the execution time; and an air consumption storage unit (21) that stores in advance air consumption information that associates the air use operation that can be executed by each machine tool (10) with the air consumption of that operation. The schedule-generating unit (23) executes scheduling processing so that the total of the air consumption of each machine tool (10) in the same time interval is less than a prescribed amount based on the air use operation information and the air consumption information.

Description

工作機械システムmachine tool system
 本発明は、複数の工作機械と、該複数の工作機械に対して共通に設けられた1つの空気供給源とを備えた工作機械システムに関する。 The present invention relates to a machine tool system comprising a plurality of machine tools and one air supply source provided in common for the plurality of machine tools.
 従来より、工場内に設けられたコンプレッサーなどの空気供給源から工作機械に圧縮空気を供給することで該工作機械に搭載された空気使用機器を作動させる工作機械システムが知られている(例えば、特許文献1参照)。この空気使用機器には、例えば切屑を吹き飛ばすエアーブロー装置や、空圧シリンダを使用した扉開閉装置などが含まれる。空気供給源と工作機械の空気使用機器とを接続する空気供給路には通常、圧力調整弁が設けられている。空気供給源から供給された高圧の圧縮空気は、この圧力調整弁を通過することにより設定圧力に減圧(調整)される。 2. Description of the Related Art Conventionally, there has been known a machine tool system that supplies compressed air to a machine tool from an air supply source such as a compressor installed in a factory to operate an air-using device mounted on the machine tool (for example, See Patent Document 1). The equipment using air includes, for example, an air blower for blowing off chips, a door opening/closing device using a pneumatic cylinder, and the like. A pressure regulating valve is usually provided in an air supply path that connects an air supply source and an air-using device of a machine tool. High-pressure compressed air supplied from an air supply source is decompressed (adjusted) to a set pressure by passing through this pressure regulating valve.
特開平11-019846号公報JP-A-11-019846
 特許文献1では、1つの空気供給源に1つの工作機械を接続した工作機械システムが開示されているが、実際の工場内では、1つの空気供給源に複数の工作機械を接続する場合がある。この場合、複数の工作機械同士で空気の使用時間帯が重なることで各工作機械への供給空気量が不足する虞がある。各工作機械への供給空気量が不足すると、工作機械に搭載された空気使用機器への供給空気圧が低下し、この結果、空気使用機器の正常な作動が妨げられるという問題が生じる。 Patent Document 1 discloses a machine tool system in which one machine tool is connected to one air supply source, but in an actual factory, there are cases where a plurality of machine tools are connected to one air supply source. . In this case, there is a possibility that the amount of air supplied to each machine tool will be insufficient due to the overlap of the air use time periods of the plurality of machine tools. When the amount of air supplied to each machine tool is insufficient, the air pressure supplied to the air-using equipment mounted on the machine tool decreases, resulting in a problem that the air-using equipment is prevented from operating normally.
 本発明は、以上の実情に鑑みてなされたものであって、工作機械同士の空気使用時間帯が重なることによる供給空気圧の低下を防止可能な工作機械システムを提供することを、その目的とする。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a machine tool system capable of preventing a decrease in supply air pressure due to overlap of air use periods of machine tools. .
 前記課題を解決するための本発明の一局面は、
 複数の工作機械と、該複数の工作機械に対して共通に設けられた1つの空気供給源と、該複数の工作機械のそれぞれに接続され、前記空気供給源から供給される空気を該各工作機械に供給する空気供給路と、該各空気供給路に設けられ、前記各工作機械に供給される供給空気の圧力調整を行う圧力調整弁とを備えた工作機械システムであって、
 前記各工作機械は、それぞれが記憶している自動運転プログラムに基づいて自動運転可能に構成され、
 前記各工作機械の自動運転時における稼働スケジュールを複数の時間区間に分けて構成される複数の予定セルに、各工作機械の状態種別である稼働状態と非稼働状態とのいずれかを割り当てたスケジュールデータを生成するスケジュール生成部と、
 前記スケジュール生成部により生成されたスケジュールデータに基づいて各工作機械の状態を制御する状態制御部と、
 前記各工作機械の自動運転プログラムを取得してその内容を解析することで、各工作機械ごとに自動運転プログラムの1サイクル中に実行される前記供給空気を使用した空気使用動作の内容及び当該空気使用動作の実行時間とを含む空気使用動作情報を取得する動作情報取得部と、
 前記各工作機械が実行可能な空気使用動作と当該空気使用動作に必要とされる空気消費量とを対応付けた空気消費量情報を予め記憶する空気消費量記憶部と、を備え、
 前記スケジュール生成部は、前記動作情報取得部により取得された前記空気使用動作情報と、前記空気消費量記憶部に記憶された前記空気消費量情報とを基に、前記スケジュールデータの同じ時間区間における前記各工作機械の空気消費量の総和が所定量未満になるとの第1の制約条件を満たすように、前記スケジュールデータの各予定セルに割当てる状態種別を決定するスケジューリング処理を実行するように構成されている工作機械システムに係る。
One aspect of the present invention for solving the above problems is
a plurality of machine tools, an air supply source provided in common to the plurality of machine tools, and connected to each of the plurality of machine tools to supply air supplied from the air supply source to each of the machine tools. A machine tool system comprising: an air supply path for supplying a machine; and a pressure regulating valve provided in each air supply path for adjusting the pressure of the supplied air supplied to each machine tool,
Each machine tool is configured to be capable of automatic operation based on an automatic operation program stored therein,
A schedule in which either an operating state or a non-operating state, which is a state type of each machine tool, is assigned to a plurality of scheduled cells configured by dividing the operation schedule during automatic operation of each machine tool into a plurality of time intervals. a schedule generator that generates data;
a state control unit that controls the state of each machine tool based on the schedule data generated by the schedule generation unit;
By acquiring the automatic operation program of each machine tool and analyzing its contents, the content of the air use operation using the supplied air and the air that is executed during one cycle of the automatic operation program for each machine tool a motion information acquiring unit for acquiring air usage motion information including execution time of the usage motion;
an air consumption amount storage unit that stores in advance air consumption amount information that associates an air use operation executable by each machine tool with an air consumption amount required for the air use operation,
Based on the air usage operation information acquired by the operation information acquisition unit and the air consumption amount information stored in the air consumption amount storage unit, the schedule generation unit generates air consumption in the same time interval of the schedule data. and executing a scheduling process for determining a state type to be assigned to each scheduled cell of the schedule data so as to satisfy a first constraint that the sum of the air consumption amounts of the machine tools is less than a predetermined amount. related to machine tool systems.
 この工作機械システムの稼働時には、動作情報取得部にて各工作機械の自動運転プログラム(例えばNCプログラム)の内容が解析されて、各工作機械の空気使用動作情報が取得される。この空気使用動作情報には、自動運転プログラムの1サイクル中に(1つの自動運転プログラムの実行開始から終了までの間に)に実行される空気使用動作の内容及びその実行時間が含まれている。各工作機械が実行可能な空気使用動作と当該空気使用動作に必要な空気消費量とは予め空気消費量情報として空気消費量記憶部に記憶されており、スケジュール生成部では、動作情報取得部が取得した各工作機械の空気使用動作情報と、空気消費量記憶部に記憶された空気消費量情報とを基にスケジューリング処理を実行する。このスケジューリング処理では、スケジュールデータの同じ時間区間における各工作機械の空気消費量の総和が所定量未満になるとの第1の制約条件を満たすように各予定セルの状態を決定する。そして、各工作機械は、状態制御部による制御の下、スケジュール生成部が生成したスケジュールデータに基づいて稼働状態と非稼働状態とのいずれかに制御される。したがって、スケジュールデータの同じ時間区間において複数の工作機械同士で空気使用動作の実行時間帯が重なったとしても、各工作機械の空気消費量の総和が所定量以上になることはない。よって、各工作機械の供給空気量が不足するのを防止し、延いては、供給空気圧の低下による空気使用動作の実行不良を回避することができる。 When this machine tool system is in operation, the operation information acquisition unit analyzes the contents of the automatic operation program (for example, the NC program) of each machine tool and acquires the air usage operation information of each machine tool. This air usage operation information includes the details of the air usage operation executed during one cycle of the automatic operation program (from the start to the end of execution of one automatic operation program) and the execution time thereof. . The air usage operations that can be executed by each machine tool and the air consumption required for the air usage operations are stored in advance as air consumption information in the air consumption amount storage unit. A scheduling process is executed based on the obtained air usage operation information of each machine tool and the air consumption amount information stored in the air consumption amount storage unit. In this scheduling process, the state of each scheduled cell is determined so as to satisfy the first constraint condition that the total air consumption of each machine tool in the same time interval of the schedule data is less than a predetermined amount. Then, each machine tool is controlled to either an operating state or a non-operating state based on the schedule data generated by the schedule generation unit under the control of the state control unit. Therefore, even if a plurality of machine tools perform air-using operations during the same time interval of the schedule data, the total air consumption of each machine tool does not exceed a predetermined amount. Therefore, it is possible to prevent shortage of air supply to each machine tool, and to prevent failure of air use operation due to decrease in supply air pressure.
 前記各工作機械に対して、作業者がそれぞれの加工対象物の加工の急ぎ度合を設定するための設定操作部をさらに備え、前記スケジュール生成部は、前記設定操作部にて設定された急ぎ度合が高い工作機械ほど早い時間区間にて稼働させるとの第2の制約条件をさらに満たすように前記スケジューリング処理を実行するように構成されていることが好ましい。 For each of the machine tools, a setting operation unit is further provided for setting the degree of urgency for machining each workpiece, and the schedule generation unit is configured to set the degree of urgency set by the setting operation unit. It is preferable that the scheduling process is executed so as to further satisfy the second constraint condition that the machine tool having a higher value is operated in an earlier time interval.
 この構成によれば、スケジュール生成部によるスケジューリング処理は、加工の急ぎ度合が高い工作機械ほど早い時間区間にて稼働させるとの第2の制約条件を満たすように実行される。したがって、急ぎ度合が高い加工対象物の加工を優先して早期に完了することができる。 According to this configuration, the scheduling processing by the schedule generation unit is executed so as to satisfy the second constraint that the machine tool with a higher degree of urgency for machining is operated in an earlier time interval. Therefore, it is possible to give priority to the processing of an object to be processed that has a high degree of urgency, and complete it early.
 前記スケジュール生成部は、前記各工作機械ごとの前記稼働スケジュールに占める前記状態種別の配分比率が同じになるとの第3の制約条件をさらに満たすように前記スケジューリング処理を実行するように構成されていることが好ましい。 The schedule generation unit is configured to execute the scheduling process so as to further satisfy a third constraint condition that the allocation ratio of the state type in the operation schedule for each of the machine tools is the same. is preferred.
 この構成によれば、スケジューリング生成部によるスケジューリング処理は、各工作機械ごとの稼働スケジュールに占める前記状態種別(稼働状態及び非稼働状態)の配分比率が同じになるとの第3の制約条件を満たすように実行される。したがって、特定の工作機械のみが集中的に稼働することを回避して各工作機械を同じ稼働比率でバランス良く作動させることができる。 According to this configuration, the scheduling process by the scheduling generator satisfies the third constraint that the allocation ratio of the state types (operating state and non-operating state) in the operating schedule for each machine tool is the same. is executed. Therefore, it is possible to avoid intensive operation of only a specific machine tool and to operate each machine tool at the same operating ratio in a well-balanced manner.
 前記スケジュールデータにおける前記複数の時間区間は、予め定めた休憩時間に対応する時間区間を含み、前記スケジュール生成部は、前記休憩時間に対応する時間区間においては、前記急ぎ度合が所定レベル以上である工作機械のみを稼働させるとの第4の制約条件をさら満たすように前記スケジューリング処理を実行するように構成されていることが好ましい。 The plurality of time intervals in the schedule data include time intervals corresponding to predetermined break times, and the schedule generation unit sets the degree of urgency to a predetermined level or higher in the time intervals corresponding to the break times. It is preferable that the scheduling process is executed so as to further satisfy the fourth constraint that only the machine tool is operated.
 この構成によれば、スケジュール生成部によるスケジューリング処理は、休憩時間に対応する時間区間においては、急ぎ度合が所定レベル以上である工作機械のみを稼働させるとの第4の制約条件をさら満たすように実行される。したがって、スケジュールデータの休憩時間に対応する時間区間であっても、加工の急ぎ度合が高い工作機械に対しては状態種別として稼働状態が割り当てられる。よって、加工の急ぎ度合が高い工作機械については休憩時間であっても優先的に稼働させることで加工対象物の加工を早期に完了させることができる。 According to this configuration, the scheduling processing by the schedule generation unit further satisfies the fourth constraint condition that only machine tools with a degree of urgency equal to or higher than a predetermined level are operated in the time interval corresponding to the rest period. executed. Therefore, even in the time interval corresponding to the break time of the schedule data, the operating state is assigned as the state type to a machine tool with a high degree of urgency for machining. Therefore, a machine tool with a high degree of urgency for machining can be preferentially operated even during the break time, so that the machining of the object to be machined can be completed early.
 以上のように、本発明に係る工作機械システムによれば、同じ時間区間における各工作機械の空気消費量の総和が所定量未満になるようにスケジューリング処理を実行し、このスケジューリング処理により生成されたスケジュールデータに基づいて各工作機械の状態を制御するようにしたことで、工作機械同士の空気使用時間帯が重なることに起因する供給空気圧の低下を防止することができる。 As described above, according to the machine tool system of the present invention, the scheduling process is executed so that the total air consumption of each machine tool in the same time interval is less than a predetermined amount, and the By controlling the state of each machine tool based on the schedule data, it is possible to prevent a decrease in the supplied air pressure caused by overlapping air use periods of the machine tools.
実施形態に係る工作機械システムを示す概略構成図である。1 is a schematic configuration diagram showing a machine tool system according to an embodiment; FIG. スケジュール生成部により生成されるスケジュールデータの一例を示す図である。It is a figure which shows an example of the schedule data produced|generated by the schedule production|generation part. 各工作機械に対して設定された加工の急ぎ度合の設定データの一例を示す図である。FIG. 10 is a diagram showing an example of setting data of the degree of urgency of machining set for each machine tool; 空気消費量記憶部に記憶された空気消費量情報を示す図である。It is a figure which shows the air consumption information memorize|stored in the air consumption storage part. 動作情報取得部により取得された空気使用動作情報を示す図である。FIG. 5 is a diagram showing air usage operation information acquired by an operation information acquisition unit;
 以下、本発明の具体的な実施形態について、図面を参照しながら説明する。 Specific embodiments of the present invention will be described below with reference to the drawings.
 図1に示すように、本例の工作機械システム1は、複数(本例では6つ)の工作機械10と、6つの工作機械10に対して共通に設けられた1つの空気供給源2と、空気供給源2に接続された1つの供給管3と、該供給管3から分岐して各工作機械10に接続される分岐管4(空気供給路の一例)と、各分岐管4の途中に設けられ、供給空気を予め設定した設定圧力に調整する圧力調整弁5と、各工作機械10を制御するNC(Numerical Control)装置12と、各工作機械10の操作盤13に設けられた設定操作部13aと、各NC装置12に接続されたスケジュールサーバ20とを有している。そして、各工作機械10は、スケジュールサーバ20にて生成されたスケジュールデータに基づいてNC装置により運転制御される。尚、図1では、各工作機械10は、例えばマシニングセンタやターニングセンタなどにより構成されるが、これに限定されない。 As shown in FIG. 1, the machine tool system 1 of this example includes a plurality of (six in this example) machine tools 10 and one air supply source 2 provided in common for the six machine tools 10. , one supply pipe 3 connected to an air supply source 2, a branch pipe 4 (an example of an air supply path) branching from the supply pipe 3 and connected to each machine tool 10, and midway of each branch pipe 4 A pressure regulating valve 5 that adjusts the supply air to a preset set pressure, an NC (Numerical Control) device 12 that controls each machine tool 10, and a setting provided on the operation panel 13 of each machine tool 10 It has an operation unit 13 a and a schedule server 20 connected to each NC unit 12 . The operation of each machine tool 10 is controlled by the NC unit based on the schedule data generated by the schedule server 20 . In FIG. 1, each machine tool 10 is configured by, for example, a machining center or a turning center, but is not limited to this.
 前記空気供給源2は、例えばエアコンプレッサにより構成されていて、吸引した外気を圧縮して前記供給管3内に供給する。供給管3内に供給された空気は、6つの分岐管4に流入する。各分岐管4に流入した空気は、圧力調整弁5を通過することで設定圧力に調整される。圧力調整弁5と空気使用機器11との間には、ソレノイド等を使用した電磁式の流路切替弁7が設けられており、後述するNC装置12により流路切替弁7の作動を制御することで各空気使用機器11への空気の供給制御が実行される。空気使用機器11の一例として、切屑などのエアーブローを行うエアーブロー装置11aと、空圧シリンダを用いて工作機械10の加工エリアの開閉扉を駆動する扉開閉装置11bとを開示しているが、これに限定されない。尚、空気使用機器11への供給空気圧の変動を抑制するために流路の途中にアキュムレータを配置するなどしてもよい。 The air supply source 2 is composed of, for example, an air compressor, which compresses the sucked outside air and supplies it into the supply pipe 3 . Air supplied into the supply pipe 3 flows into six branch pipes 4 . The air that has flowed into each branch pipe 4 is adjusted to a set pressure by passing through the pressure regulating valve 5 . An electromagnetic flow path switching valve 7 using a solenoid or the like is provided between the pressure regulating valve 5 and the air-using device 11, and the operation of the flow path switching valve 7 is controlled by an NC device 12, which will be described later. Thus, air supply control to each air-using device 11 is executed. As an example of the air-using device 11, an air blow device 11a for blowing chips and the like with air, and a door opening/closing device 11b for driving the opening/closing door of the machining area of the machine tool 10 using a pneumatic cylinder are disclosed. , but not limited to. Note that an accumulator may be arranged in the middle of the flow path in order to suppress fluctuations in the air pressure supplied to the air-using device 11 .
 NC装置12は、後述する操作盤13及びスケジュールサーバ20に信号の授受可能に接続されている。 The NC device 12 is connected to an operation panel 13 and a schedule server 20, which will be described later, so that signals can be exchanged.
 前記NC装置12は、プログラム記憶部12a、スケジュール記憶部12b、及び加工制御部12cを有している。NC装置12は、CPU、ROM及びRAMを有するコンピュータからなり、プログラム記憶部12a及びスケジュール記憶部12bは、ROMや磁気記憶装置などの不揮発性記憶媒体により構成され、加工制御部12cは、コンピュータプログラムによりその機能が実現される。 The NC device 12 has a program storage section 12a, a schedule storage section 12b, and a machining control section 12c. The NC unit 12 consists of a computer having a CPU, a ROM and a RAM, the program storage unit 12a and the schedule storage unit 12b are made up of a non-volatile storage medium such as a ROM and a magnetic storage device, and the machining control unit 12c is a computer program. The function is realized by
 プログラム記憶部12aには、工作機械10を自動運転させる際に実行されるNCプログラム(自動運転プログラムの一例)が記憶されている。このNCプログラムには、送り機構部及び主軸駆動部(いずれも図示省略)を駆動するためのコードの他に、前記エアーブロー装置11a及び扉開閉装置11bなどの補助機器を作動させるためのコードが含まれている。 The program storage unit 12a stores an NC program (an example of an automatic operation program) that is executed when the machine tool 10 is automatically operated. This NC program includes codes for driving the feed mechanism and spindle drive (not shown), as well as codes for operating auxiliary equipment such as the air blower 11a and the door opening/closing device 11b. include.
 スケジュール記憶部12bには、各工作機械10の自動運転時における稼働スケジュールを複数の時間区間に分けて構成される複数の予定セルからなるスケジュールデータ(図2参照)が記憶されている。図2の例では、稼働スケジュールの各時間区間は、9:00~19:00までの時間を時系列に沿って1時間単位で区分けして構成され、各工作機械10の稼働スケジュールはこの各時間区間に対応する10個の予定セルに、工作機械10の状態種別であるフル稼働状態と非稼働状態とのいずれかを割り当てて構成されている。各予定セルに割り当てる工作機械10の状態種別は、後述するスケジュールサーバ20により決定される。 The schedule storage unit 12b stores schedule data (see FIG. 2) consisting of a plurality of scheduled cells that are configured by dividing an operation schedule for automatic operation of each machine tool 10 into a plurality of time intervals. In the example of FIG. 2, each time interval of the operation schedule is configured by dividing the time from 9:00 to 19:00 into hourly units along the time series. It is configured by assigning one of the state types of the machine tool 10, that is, the full operating state or the non-operating state, to 10 scheduled cells corresponding to the time interval. The status type of the machine tool 10 assigned to each scheduled cell is determined by the schedule server 20, which will be described later.
 加工制御部12cは、各工作機械10の操作盤13に設けられた運転開始ボタン(図示省略)が押されると、スケジュール記憶部12bに記憶されたスケジュールデータの各予定セルの状態種別に応じて、工作機械10の状態をフル稼働状態と非稼働状態とのいずれかに制御する。この加工制御部12cが状態制御部として機能する。 When an operation start button (not shown) provided on the operation panel 13 of each machine tool 10 is pressed, the machining control unit 12c changes according to the state type of each scheduled cell of the schedule data stored in the schedule storage unit 12b. , to control the state of the machine tool 10 to either a full operating state or a non-operating state. This processing control section 12c functions as a state control section.
 加工制御部12cは、NC装置12に内蔵された計時部(図示省略)からの信号を基に現在時刻を認識した後、スケジュール記憶部12bに記憶されたスケジュールデータを基に、現在時刻に対応する予定セルに割り当てられた工作機械10の状態種別を特定する。 After recognizing the current time based on a signal from a timer (not shown) built in the NC unit 12, the machining control unit 12c corresponds to the current time based on the schedule data stored in the schedule storage unit 12b. The state type of the machine tool 10 assigned to the scheduled cell is specified.
 そして、加工制御部12cは、前記スケジュールデータより特定した状態種別がフル稼働状態である場合には、プログラム記憶部12aに記憶されたNCプログラムを実行して、当該NCプログラムに規定された送り機構部及び主軸駆動部に関する動作指令を抽出し、抽出した動作指令に対応する駆動信号を該送り駆動部及び主軸駆動部に出力する。そうして、加工制御部12cは、主軸に装着された工具とワーク(加工対象物)との相対位置を送り駆動部により変化させてワークを所定形状に加工する。また、加工制御部12cは、NCプログラムに規定されたエアーブロー装置11aや扉開閉装置11bなどの補助機器の動作指令を抽出して、これらの補助機器に対して動作信号を出力する。これにより、ワークの加工に必要な補助機器が自動で作動することとなる。 Then, when the state type specified from the schedule data is the full operation state, the machining control unit 12c executes the NC program stored in the program storage unit 12a to control the feed mechanism specified in the NC program. and the spindle driving section, and outputs drive signals corresponding to the extracted operation instructions to the feed driving section and the spindle driving section. The machining control unit 12c then changes the relative position between the tool mounted on the spindle and the workpiece (object to be machined) by means of the feed drive unit to machine the workpiece into a predetermined shape. The machining control unit 12c also extracts operation commands for auxiliary equipment such as the air blower 11a and the door opening/closing device 11b defined in the NC program, and outputs operation signals to these auxiliary equipment. As a result, the auxiliary equipment required for machining the work automatically operates.
 一方、加工制御部12cは、前記スケジュールデータより特定した現在時刻に対応する予定セルの状態種別が非稼働状態である場合にはNCプログラムを実行しないように構成されている。したがって、現在時刻に対応する予定セルの状態種別が非稼働状態である場合には、NCプログラムに基づく工作機械10の自動運転は実行されない(つまり非稼働状態となる)。 On the other hand, the machining control unit 12c is configured not to execute the NC program when the state type of the scheduled cell corresponding to the current time specified from the schedule data is the non-operating state. Therefore, when the state type of the scheduled cell corresponding to the current time is the non-operating state, automatic operation of the machine tool 10 based on the NC program is not executed (that is, the machine tool 10 is in the non-operating state).
 前記操作盤13は、工作機械10の正面側に設けられていて、作業者の手動操作により工作機械10に対する各種動作の実行指令や設定作業を行えるように構成されている。この設定作業には、各工作機械10による加工対象物の加工の急ぎ度合を設定する作業が含まれる。各工作機械10の操作盤13には、この急ぎ度合を設定するための設定操作部13aが設けられている。設定操作部13aは、急ぎ度合のレベルを示す「高」、「中」、「低」の3つの選択キーを有していて、選択されたレベルを工作機械10の加工対象物に要求される加工の急ぎ度合として設定する。選択キーは、例えば各工作機械10の操作盤13に設けられたタッチパネルに表示されるソフトキーにより構成される。図3は、設定操作部13aを介して設定された急ぎ度合の設定データの一例である。この例では、MC2の急ぎ度合が「高」に設定され、MC3の急ぎ度合が「低」に設定され、その他のMC1及びMC4~6の急ぎ度合が「中」に設定されている。設定操作部13aにて設定された前記急ぎ度合の設定データは、操作盤13からNC装置12を経由して後述するスケジュールサーバ20に送信される。 The operation panel 13 is provided on the front side of the machine tool 10, and is configured so that an operator can issue execution commands and setting work for various operations to the machine tool 10 by manual operation. This setting work includes the work of setting the degree of urgency for machining the workpiece by each machine tool 10 . The operation panel 13 of each machine tool 10 is provided with a setting operation section 13a for setting the degree of urgency. The setting operation unit 13a has three selection keys "high", "medium", and "low" indicating the level of haste, and the selected level is required for the workpiece of the machine tool 10. Set as the degree of urgency for processing. The selection keys are composed of, for example, soft keys displayed on a touch panel provided on the operation panel 13 of each machine tool 10 . FIG. 3 shows an example of setting data of the degree of urgency set via the setting operation section 13a. In this example, the urgency level of MC2 is set to "high", the urgency level of MC3 is set to "low", and the urgency levels of MC1 and MC4-6 are set to "medium". The setting data of the degree of urgency set by the setting operation section 13a is transmitted from the operation panel 13 via the NC device 12 to the schedule server 20 which will be described later.
 前記スケジュールサーバ20は、前記6つの工作機械10に搭載された各NC装置12に通信可能に接続されていて、各NC装置12より受信したNCプログラムの情報と加工の急ぎ度合の設定データとを基にスケジュールデータを生成する。 The schedule server 20 is communicably connected to each NC unit 12 mounted on each of the six machine tools 10, and receives NC program information and processing haste setting data from each NC unit 12. Generate schedule data based on
 具体的には、スケジュールサーバ20は、空気消費量記憶部21、動作情報取得部22及びスケジュール生成部23を有している。スケジュールサーバ20は、CPU、ROM及びRAMを有するコンピュータからなり、空気消費量記憶部21はROMや磁気記憶装置などの不揮発性記憶媒体により構成され、動作情報取得部22及びスケジュール生成部23は、コンピュータプログラムによりその機能が実現される。 Specifically, the schedule server 20 has an air consumption storage unit 21, an operation information acquisition unit 22, and a schedule generation unit 23. The schedule server 20 is composed of a computer having a CPU, a ROM and a RAM, the air consumption storage unit 21 is composed of a non-volatile storage medium such as a ROM or a magnetic storage device, and the operation information acquisition unit 22 and the schedule generation unit 23 are: A computer program implements the function.
 空気消費量記憶部21には、図4に示すように、MC1~MC6の各工作機械10において実行可能な空気使用動作の内容と当該空気使用動作に必要とされる空気消費量とを対応付けた空気消費量情報が記憶されている。図4の例では、実行可能な空気使用動作としてエアーブロー装置11aによるエアーブロー動作と、扉開閉装置11bのエアーシリンダによる扉開閉動作とを開示しているが、これに限定されない。また、図4では、空気消費量をアルファベットで示しているが、実際にはこれが数値に置き換わる。 As shown in FIG. 4, the air consumption amount storage unit 21 associates the contents of the air use operation that can be executed in each of the machine tools MC1 to MC6 with the air consumption amount required for the air use operation. Air consumption information is stored. In the example of FIG. 4, the air blowing operation by the air blowing device 11a and the door opening/closing operation by the air cylinder of the door opening/closing device 11b are disclosed as executable air using operations, but the present invention is not limited to these. In addition, in FIG. 4, the air consumption is indicated by alphabetical characters, but in practice these are replaced by numerical values.
 動作情報取得部22は、MC1~MC6の各工作機械10に搭載されたNC装置12よりNCプログラムを取得してその内容を解析することで、各工作機械10ごとにNCプログラムの1サイクル中に実行される空気使用動作の内容と当該空気使用動作の実行時間とを含む空気使用動作情報を取得する。図5は、動作情報取得部22により取得される空気使用動作情報の一例である。図4と同様に、ここに開示する空気使用動作は一例であり、これに限定されない。また各空気使用動作の実行時間をアルファベットで示しているが、実際にはこれが数値に置き換わる。 The motion information acquisition unit 22 acquires the NC program from the NC unit 12 mounted on each of the machine tools 10 of MC1 to MC6, and analyzes the contents thereof, thereby performing the following operations for each machine tool 10 during one cycle of the NC program. Acquiring air usage operation information including the content of the air usage operation to be performed and the execution time of the air usage operation. FIG. 5 is an example of air usage operation information acquired by the operation information acquisition unit 22 . As with FIG. 4, the air usage operation disclosed herein is exemplary and not limiting. Also, although the execution time of each air use operation is shown in alphabetical characters, it is actually replaced with numerical values.
 スケジュール生成部23は、遺伝的アルゴリズムに基づくスケジューリング処理を実行することで、以下の4つの制約条件を満たすスケジュールデータを生成する。 The schedule generation unit 23 generates schedule data that satisfies the following four constraints by executing scheduling processing based on a genetic algorithm.
 第1の制約条件は、スケジュールデータの同じ時間区間における各工作機械10の空気消費量(l/h)の総和が所定量未満になるという条件である。本例では、この所定量は、空気供給源2が供給可能な最大供給流量(l/h)に設定されているが、これに限ったものではなく、例えば最大供給流量(l/h)の80%~90%に設定してもよい。各工作機械10の単位時間区間(本例では1時間)における空気消費量(l/h)は、動作情報取得部22により取得された空気使用動作情報(図5参照)と、空気消費量記憶部21に記憶された空気消費量情報(図4参照)とを基にスケジュール生成部23により算出される。一例として、MC1の工作機械10の単位時間区間に消費される空気消費量(l/h)は、(Xa1(L/s)×Ya1(s)+Xb1(L/s)×Yb1(s))×(単位時間区間当たりのNCプログラムのサイクル実行回数)として算出することができる。 The first constraint condition is that the sum of the air consumption (l/h) of each machine tool 10 in the same time interval of the schedule data should be less than a predetermined amount. In this example, this predetermined amount is set to the maximum supply flow rate (l/h) that can be supplied by the air supply source 2, but is not limited to this. It may be set between 80% and 90%. The air consumption (l/h) in a unit time interval (one hour in this example) of each machine tool 10 is obtained from the air usage operation information (see FIG. 5) acquired by the operation information acquiring unit 22 and the air consumption storage It is calculated by the schedule generator 23 based on the air consumption information (see FIG. 4) stored in the unit 21 . As an example, the air consumption (l/h) consumed in a unit time interval of the machine tool 10 of MC1 is (Xa1 (L/s) x Ya1 (s) + Xb1 (L/s) x Yb1 (s)) It can be calculated as x (the number of cycles of the NC program executed per unit time interval).
 第2の制約条件は、加工の急ぎ度合が高い工作機械10ほど早い時間区間に稼働させるという条件である。ここで、各工作機械10の加工の急ぎ度合の設定データは、上述したように各工作機械10の操作盤13からNC装置12を介してスケジュールサーバ20に送信され、スケジュール生成部23により取得される。 The second constraint is that the machine tool 10 with a higher degree of urgency for machining should be operated in an earlier time interval. Here, the setting data of the degree of urgency for machining of each machine tool 10 is transmitted from the operation panel 13 of each machine tool 10 to the schedule server 20 via the NC device 12 as described above, and is acquired by the schedule generator 23. be.
 第3の制約条件は、各工作機械10ごとの稼働スケジュールに占める各状態種別の配分比率が同じになるという条件である。 The third constraint condition is that the allocation ratio of each state type in the operation schedule for each machine tool 10 should be the same.
 第4の制約条件は、休憩時間に対応する時間区間においては、急ぎ度合が所定レベル以上である工作機械10のみを作動させるという条件である。本例では、12:00~13:00の時間区間が休憩時間とされているが、これに限ったものではない。 The fourth constraint condition is that only machine tools 10 with a degree of urgency equal to or higher than a predetermined level are to be operated in the time interval corresponding to the break time. In this example, the time interval from 12:00 to 13:00 is set as the break time, but it is not limited to this.
 次に、スケジュール生成部23により実行される遺伝的アルリズムを使用したスケジューリング処理の概略を説明する。このスケジューリング処理では、スケジュールデータ(図2参照)の各予定セルに割り当てる工作機械10の状態種別を二進数で表現する。本例では、フル稼働状態を遺伝子の形である0と表現し、非稼働状態を遺伝子の形である1と表現する。そうすると、1つの工作機械10に対応する遺伝子の長さは予定セルの数と同数の10となる。工作機械10は合計で6つあるので、結局、遺伝子の長さは10×6で60となる。スケジューリング処理では、先ず、初期集団として遺伝子長さが60の固体をランダムにN個生成し、その後、生成した各個体の評価、自然淘汰、交叉、及び突然変異といった遺伝的操作を繰り返して最適解を得る。各固体の評価では、上述した4つの制約条件のうち満たされる制約条件の数が多いほど高い評価値(適応度)を付与するように評価関数を設計すればよい。そうして得られる最適解は、前記4つの制約条件を満たすような各予定セルの状態種別の組み合わせである。スケジュール生成部23は、得られた最適解に対応するスケジュールデータを生成して各工作機械10のNC装置12に送信する。 Next, the outline of the scheduling process using the genetic algorithm executed by the schedule generation unit 23 will be described. In this scheduling process, the state type of the machine tool 10 assigned to each scheduled cell of the schedule data (see FIG. 2) is expressed in binary numbers. In this example, the fully operational state is expressed as 0, which is the form of the gene, and the non-operating state is expressed as 1, which is the form of the gene. Then, the gene length corresponding to one machine tool 10 is 10, which is the same as the number of planned cells. Since there are a total of six machine tools 10, the gene length is 10×6=60. In the scheduling process, first, N individuals with a gene length of 60 are randomly generated as an initial group, and then genetic operations such as evaluation of each generated individual, natural selection, crossover, and mutation are repeated to obtain an optimal solution. get In the evaluation of each individual, the evaluation function may be designed so that the larger the number of constraints among the above four constraints that are satisfied, the higher the evaluation value (fitness). The optimum solution thus obtained is a combination of the state types of each scheduled cell that satisfies the four constraints. The schedule generator 23 generates schedule data corresponding to the optimum solution obtained and transmits the schedule data to the NC unit 12 of each machine tool 10 .
 スケジュール生成部23は、このスケジューリング処理を工作機械システム1の運転開始時(本例では9:00)に一度実行し、その後は、単位時間区間(1つの時間区間)が経過する度に同様のスケジューリング処理を実行してスケジュールデータを更新する。スケジュール生成部23は、更新したスケジュールデータを各工作機械10のNC装置12に送信してスケジュール記憶部12bに記憶させる。このように、単位時間区間が経過する度にスケジューリング処理を実行することで、スケジュール記憶部12bに記憶されたスケジュールデータが、各工作機械10の加工進捗度に応じた最適なスケジュールデータに更新される。 The schedule generation unit 23 executes this scheduling process once when the operation of the machine tool system 1 starts (9:00 in this example), and after that, every time a unit time interval (one time interval) elapses, a similar process is performed. Execute the scheduling process and update the schedule data. The schedule generation unit 23 transmits the updated schedule data to the NC unit 12 of each machine tool 10 and stores the data in the schedule storage unit 12b. In this way, by executing the scheduling process each time the unit time interval elapses, the schedule data stored in the schedule storage unit 12b is updated to the optimum schedule data according to the machining progress of each machine tool 10. be.
 図2は、スケジュール生成部23により生成されたスケジュールデータの一例を示す図である。このスケジュールデータを見ると、同じ時間区間にある6つの予定セルのうちフル稼働状態が割り当てられる予定セルは最大でも5つであり、1つ又は2つの予定セルは必ず非稼働状態が割り当てられている。これは、同じ時間区間における各工作機械10の空気消費量の総和が所定量未満になるという前記第1の制約条件を満たすようにスケジューリング処理が実行された結果である。 FIG. 2 is a diagram showing an example of schedule data generated by the schedule generator 23. FIG. Looking at this schedule data, out of the six scheduled cells in the same time interval, the maximum number of scheduled cells to which the fully operational status is assigned is five, and one or two scheduled cells are always assigned to the non-operating status. there is This is the result of executing the scheduling process so as to satisfy the first constraint condition that the total amount of air consumption of each machine tool 10 in the same time interval is less than the predetermined amount.
 このように第1の制約条件を満たすようにスケジューリング処理が実行されることで、空気供給源2から各工作機械10への供給空気量が所定量未満に抑制される。したがって、空気供給源2から各工作機械10への供給空気量が不足して供給空気圧が低下するのを回避することができる。延いては、各工作機械10への供給空気圧の低下により空気使用機器11の作動が妨げられるのを回避することができる。 By executing the scheduling process so as to satisfy the first constraint, the amount of air supplied from the air supply source 2 to each machine tool 10 is suppressed to less than a predetermined amount. Therefore, it is possible to avoid a decrease in the supplied air pressure due to an insufficient amount of air supplied from the air supply source 2 to each machine tool 10 . Consequently, it is possible to prevent the operation of the air-using equipment 11 from being hindered due to a decrease in the air pressure supplied to each machine tool 10 .
 また、前記スケジュールデータを見みると、加工の急ぎ度合が「高」に設定されたMC2の工作機械10では、稼働開始直後の9:00から16:00までの予定セルにフル稼働状態が集中的に割り当てられ、加工の急ぎ度合が「低」に設定されたMC3の工作機械10では、稼働開始直後の9:00から11:00までの予定セルに非稼働状態が集中的に割り当てられていることが分かる。これは、急ぎ度合い高い工作機械10ほど早い時間区間に稼働させるという前記第2の制約条件を満たすようにスケジューリング処理が実行された結果である。 Also, looking at the schedule data, the MC2 machine tool 10, for which the degree of urgency for machining is set to "high", concentrates on the scheduled cells from 9:00 to 16:00 immediately after the start of operation. In the machine tool 10 of MC3, to which the degree of urgency for machining is set to "low", the non-operating state is intensively assigned to scheduled cells from 9:00 to 11:00 immediately after the start of operation. I know there is. This is the result of executing the scheduling process so as to satisfy the second constraint that the machine tool 10 with a higher degree of urgency is operated in an earlier time interval.
 このように第2の制約条件を満たすようにスケジューリング処理が実行されることで、急ぎ度合が高い加工対象物の加工を優先的に早期に完了することができる。 By executing the scheduling process so as to satisfy the second constraint in this way, it is possible to preferentially complete the machining of the workpiece with a high degree of urgency at an early stage.
 また、前記スケジュールデータを見ると、いずれの工作機械10においても、稼働スケジュールに占めるフル稼働状態と非稼働状態との比率は同じ比率(7:3)であることが分かる。これは、各工作機械10ごとの稼働スケジュールに占める各状態種別の比率が同じになるという前記第3の制約条件を満たすようにスケジューリング処理が実行された結果である。尚、フル稼働状態と非稼働状態との比率は7:3に限定されず、如何なる比率であってもよい。 Also, looking at the schedule data, it can be seen that the ratio of the full operating state and the non-operating state in the operating schedule is the same (7:3) in any machine tool 10 . This is the result of executing the scheduling process so as to satisfy the third constraint that the proportion of each state type in the operation schedule of each machine tool 10 is the same. Note that the ratio between the full operating state and the non-operating state is not limited to 7:3, and may be any ratio.
 このように第3の制約条件を満たすようにスケジューリング処理が実行されることで、特定の工作機械10のみが集中的に稼働することを回避して各工作機械10を同じ稼働比率でバランス良く作動させることができる。 By executing the scheduling process so as to satisfy the third constraint in this way, it is possible to avoid intensive operation of only a specific machine tool 10 and to operate each machine tool 10 at the same operating ratio in a well-balanced manner. can be made
 また、前記スケジュールデータを見ると、加工の急ぎ度合が「高」に設定されているMC2の工作機械10においてのみ、休憩時間に対応する予定セルにフル稼働状態が割り当てられている。これは、休憩時間に対応する時間区間においては、急ぎ度合が所定レベル以上である工作機械10のみを作動させるという第4の制約条件を満たすようにスケジューリング処理が実行された結果である。 Also, looking at the schedule data, only in the MC2 machine tool 10 for which the degree of urgency for machining is set to "high", the scheduled cell corresponding to the break time is assigned to the full operation state. This is the result of executing the scheduling process so as to satisfy the fourth constraint that only the machine tools 10 with a degree of urgency equal to or higher than a predetermined level are operated in the time interval corresponding to the break time.
 このように第4の制約条件を満たすようにスケジューリング処理が実行されることで、加工の急ぎ度合が高い工作機械10については休憩時間であっても優先的に稼働させることで加工対象物の加工を早期に完了させることができる。 By executing the scheduling process so as to satisfy the fourth constraint condition in this way, the machine tool 10 with a high degree of urgency for machining is preferentially operated even during the break time, thereby machining the object to be machined. can be completed early.
 (他の実施形態)
 前記実施形態では、スケジュール生成部23は、遺伝的アルゴリズムを使用してスケジューリング処理を実行するように構成されているが、これに限ったものではなく、例えば数理計画法に基づいてスケジューリング処理を実行するようにしてもよい。
(Other embodiments)
In the above embodiment, the schedule generator 23 is configured to execute scheduling processing using a genetic algorithm, but is not limited to this, and executes scheduling processing based on, for example, mathematical programming. You may make it
 前記実施形態では、スケジュールデータの各予定セルに割り当てる状態種別の候補として、フル稼働状態(稼働状態の一例)と非稼働状態とを挙げて説明したが、これに限ったものではない。例えば、稼働状態を、フル稼働状態に対する加工速度比でさらに区分けして、50%稼働状態や70%稼働状態といった状態種別の候補を用意してもよいし、非稼働状態をその目的別にさらに区分けして、工具段取り用の非稼働状態、パレット交換用の非稼働状態、又は清掃用の非稼働状態といった状態種別の候補を用意してもよい。 In the above embodiment, the full operating state (an example of the operating state) and the non-operating state were described as candidates for the state type to be assigned to each scheduled cell of the schedule data, but this is not the only option. For example, the operating state may be further classified by the processing speed ratio to the full operating state, and state type candidates such as 50% operating state and 70% operating state may be prepared, and the non-operating state may be further classified by purpose. Then, candidates for the state type such as a non-operating state for tool setup, a non-operating state for pallet exchange, or a non-operating state for cleaning may be prepared.
 前記実施形態では、工作機械10は6つとされているが、これに限ったものではなく、5つ以下であってもよいし、7つ以上であってもよいことは言うまでもない。 In the above embodiment, the number of machine tools 10 is six, but the number is not limited to this, and it goes without saying that the number may be five or less, or may be seven or more.
 前記実施形態では、稼働スケジュールを構成する各予定セルの時間区間は1時間とされているが、これに限ったものではなく、例えば10分や15分単位など1時間未満の時間区間であってもよいし、2時間や3時間など1時間以上の時間区間であってもよい。また、例えばスケジューリングデータを1ヶ月の稼働スケジュールとした場合、時間区間は1日単位であってもよい。 In the above-described embodiment, the time interval of each scheduled cell that constitutes the operating schedule is one hour, but the time interval is not limited to this. Alternatively, it may be a time interval of 1 hour or longer, such as 2 hours or 3 hours. Further, for example, if the scheduling data is an operating schedule for one month, the time interval may be in units of one day.
 前記実施形態では、スケジュール生成部23によるスケジューリング処理は、各予定セルの時間区間が終了する度に実行されるが、これに限ったものではない。スケジューリング処理は、例えば、工作機械システム1の稼働開始前に1回だけ実行するようにしてもよいし、予め定めた単位数の予定セルが終了する度に実行するようにしてもよい。 In the above embodiment, the scheduling process by the schedule generator 23 is executed each time the time interval of each scheduled cell ends, but it is not limited to this. The scheduling process may be executed, for example, only once before the machine tool system 1 starts operating, or may be executed each time a predetermined unit number of scheduled cells is completed.
 尚、上述した実施形態の説明は、すべての点で例示であって、制限的なものではない。当業者にとって変形及び変更が適宜可能である。本発明の範囲は、上述の実施形態ではなく、特許請求の範囲によって示される。さらに、本発明の範囲には、特許請求の範囲内と均等の範囲内での実施形態からの変更が含まれる。 It should be noted that the above description of the embodiment is illustrative in all respects and is not restrictive. Modifications and modifications are possible for those skilled in the art. The scope of the invention is indicated by the claims rather than the above-described embodiments. Furthermore, the scope of the present invention includes modifications from the embodiments within the scope of claims and equivalents.
1   工作機械システム
2   空気供給源
4   分岐管(空気供給路)
5   圧力調整弁
10  工作機械
12c 加工制御部(状態制御部)
13a 設定操作部
21  空気消費量記憶部
22  動作情報取得部
23  スケジュール生成部
1 machine tool system 2 air supply source 4 branch pipe (air supply path)
5 Pressure regulating valve 10 Machine tool 12c Machining control unit (state control unit)
13a Setting operation unit 21 Air consumption storage unit 22 Operation information acquisition unit 23 Schedule generation unit

Claims (4)

  1.  複数の工作機械と、該複数の工作機械に対して共通に設けられた1つの空気供給源と、該複数の工作機械のそれぞれに接続され、前記空気供給源から供給される空気を該各工作機械に供給する空気供給路と、該各空気供給路に設けられ、前記各工作機械に供給される供給空気の圧力調整を行う圧力調整弁とを備えた工作機械システムであって、
     前記各工作機械は、それぞれが記憶している自動運転プログラムに基づいて自動運転可能に構成され、
     前記各工作機械の自動運転時における稼働スケジュールを複数の時間区間に分けて構成される複数の予定セルに、各工作機械の状態種別である稼働状態と非稼働状態とのいずれかを割り当てたスケジュールデータを生成するスケジュール生成部と、
     前記スケジュール生成部により生成されたスケジュールデータに基づいて各工作機械の状態を制御する状態制御部と、
     前記各工作機械の自動運転プログラムを取得してその内容を解析することで、各工作機械ごとに自動運転プログラムの1サイクル中に実行される前記供給空気を使用した空気使用動作の内容及び当該空気使用動作の実行時間とを含む空気使用動作情報を取得する動作情報取得部と、
     前記各工作機械が実行可能な空気使用動作と当該空気使用動作に必要とされる空気消費量とを対応付けた空気消費量情報を予め記憶する空気消費量記憶部と、を備え、
     前記スケジュール生成部は、前記動作情報取得部により取得された前記空気使用動作情報と、前記空気消費量記憶部に記憶された前記空気消費量情報とを基に、前記スケジュールデータの同じ時間区間における前記各工作機械の空気消費量の総和が所定量未満になるとの第1の制約条件を満たすように、前記スケジュールデータの各予定セルに割当てる状態種別を決定するスケジューリング処理を実行するように構成されていることを特徴とする工作機械システム。
    a plurality of machine tools, an air supply source provided in common to the plurality of machine tools, and connected to each of the plurality of machine tools to supply air supplied from the air supply source to each of the machine tools. A machine tool system comprising: an air supply path for supplying a machine; and a pressure regulating valve provided in each air supply path for adjusting the pressure of the supplied air supplied to each machine tool,
    Each machine tool is configured to be capable of automatic operation based on an automatic operation program stored therein,
    A schedule in which either an operating state or a non-operating state, which is a state type of each machine tool, is assigned to a plurality of scheduled cells configured by dividing the operation schedule during automatic operation of each machine tool into a plurality of time intervals. a schedule generator that generates data;
    a state control unit that controls the state of each machine tool based on the schedule data generated by the schedule generation unit;
    By acquiring the automatic operation program of each machine tool and analyzing its contents, the content of the air use operation using the supplied air and the air that is executed during one cycle of the automatic operation program for each machine tool a motion information acquiring unit for acquiring air usage motion information including execution time of the usage motion;
    an air consumption amount storage unit that stores in advance air consumption amount information that associates an air use operation executable by each machine tool with an air consumption amount required for the air use operation,
    Based on the air usage operation information acquired by the operation information acquisition unit and the air consumption amount information stored in the air consumption amount storage unit, the schedule generation unit generates a and executing a scheduling process for determining a state type to be assigned to each scheduled cell of the schedule data so as to satisfy a first constraint condition that the total air consumption of each machine tool is less than a predetermined amount. A machine tool system characterized by:
  2.  前記各工作機械に対して、作業者が加工対象物の加工の急ぎ度合を設定するための設定操作部を備え、
     前記スケジュール生成部は、前記設定操作部にて設定された急ぎ度合が高い工作機械ほど早い時間区間にて稼働させるとの第2の制約条件をさらに満たすように前記スケジューリング処理を実行するように構成されていることを特徴とする請求項1記載の工作機械システム。
    each of the machine tools has a setting operation unit for the operator to set the degree of haste with which the workpiece is to be machined;
    The schedule generation unit is configured to execute the scheduling process so as to further satisfy a second constraint condition that a machine tool with a higher degree of urgency set by the setting operation unit is operated in an earlier time interval. 2. The machine tool system according to claim 1, wherein the machine tool system is
  3.  前記スケジュール生成部は、前記各工作機械ごとの前記稼働スケジュールに占める前記状態種別の配分比率が同じになるとの第3の制約条件をさらに満たすように前記スケジューリング処理を実行するように構成されていることを特徴とする請求項1又は2記載の工作機械システム。 The schedule generation unit is configured to execute the scheduling process so as to further satisfy a third constraint condition that the allocation ratio of the state type in the operation schedule for each of the machine tools is the same. 3. The machine tool system according to claim 1, wherein:
  4.  前記各工作機械に対して、作業者が加工対象物の加工の急ぎ度合を設定するための設定操作部を備え、
     前記スケジュールデータにおける前記複数の時間区間は、予め定めた休憩時間に対応する時間区間を含み、
     前記スケジュール生成部は、前記休憩時間に対応する時間区間においては、前記設定操作部にて設定された前記急ぎ度合が所定レベル以上である工作機械のみを稼働させるとの第4の制約条件をさら満たすように前記スケジューリング処理を実行するように構成されていることを特徴とする請求項1から3のいずれか1つに記載の工作機械システム。
     
    each of the machine tools has a setting operation unit for the operator to set the degree of haste with which the workpiece is to be machined;
    wherein the plurality of time intervals in the schedule data include time intervals corresponding to predetermined break times;
    The schedule generation unit further sets a fourth constraint that only machine tools whose urgency level set by the setting operation unit is equal to or higher than a predetermined level are operated in the time interval corresponding to the break time. 4. A machine tool system according to any one of claims 1 to 3, characterized in that it is configured to execute said scheduling process so as to satisfy a condition.
PCT/JP2022/043962 2022-01-26 2022-11-29 Machine tool system WO2023145243A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022010082A JP7153814B1 (en) 2022-01-26 2022-01-26 machine tool system
JP2022-010082 2022-01-26

Publications (1)

Publication Number Publication Date
WO2023145243A1 true WO2023145243A1 (en) 2023-08-03

Family

ID=83600554

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/043962 WO2023145243A1 (en) 2022-01-26 2022-11-29 Machine tool system

Country Status (2)

Country Link
JP (1) JP7153814B1 (en)
WO (1) WO2023145243A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1119846A (en) * 1997-07-03 1999-01-26 Brother Ind Ltd Door opening/closing device for machine tool
JP2010190108A (en) * 2009-02-18 2010-09-02 Hitachi Ltd Method for controlling operation of air compressing facility
JP2017070167A (en) * 2015-10-02 2017-04-06 Jfeスチール株式会社 Power consumption amount prediction method and prediction system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1119846A (en) * 1997-07-03 1999-01-26 Brother Ind Ltd Door opening/closing device for machine tool
JP2010190108A (en) * 2009-02-18 2010-09-02 Hitachi Ltd Method for controlling operation of air compressing facility
JP2017070167A (en) * 2015-10-02 2017-04-06 Jfeスチール株式会社 Power consumption amount prediction method and prediction system

Also Published As

Publication number Publication date
JP2023108828A (en) 2023-08-07
JP7153814B1 (en) 2022-10-14

Similar Documents

Publication Publication Date Title
CN101770215B (en) Programmable controller
US10386814B2 (en) Machining status display apparatus, and NC program generating apparatus and NC program editing apparatus provided with the same
CN101833302B (en) Numerical controller having axis reconfiguration function
WO2023145243A1 (en) Machine tool system
JPH0390904A (en) Sequence controller
EP0511395A1 (en) Conversational type numerical control equipment
WO2021083693A1 (en) Dental machining system for predicting the wear condition of a dental tool
CN107592920B (en) Numerical control device
CN107797530B (en) Numerical control device, control system, control method and computer-readable medium
CN106707971B (en) Numerical control device
WO2022038672A1 (en) Scheduling device and learning device
US11747784B2 (en) Optimisation of chip removal processes on machine tools
US6584373B1 (en) Method for controlling a CNC machine tool
KR101902878B1 (en) A machining center monitoring system for implementing smart factory and a machining center monitoring method using the same
KR100596613B1 (en) Production plan planning method and device
JPH02109657A (en) Automatic selection of tool
EP1394642A3 (en) Multi-system numerical control device
JPH08143134A (en) Sintered ore carriage plan control system
CN111324086B (en) Numerical controller
JP6797331B1 (en) Numerical control device and numerical control method
JP2010198380A (en) Processing apparatus, processing method and program
Kortenkamp et al. Distributed, autonomous control of space habitats
JP2862051B2 (en) Numerical control device and numerical control system
CN103999004A (en) Method for switching between work piece processing operating modes of a processing machine which are different in respect of operator intervention requirements
CN102955448A (en) Numeric control device with hand-operated processing function for automatically switching processing direction

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22924095

Country of ref document: EP

Kind code of ref document: A1