WO2023145143A1 - Terahertz bandpass polarizer and method for manufacturing terahertz bandpass polarizer - Google Patents
Terahertz bandpass polarizer and method for manufacturing terahertz bandpass polarizer Download PDFInfo
- Publication number
- WO2023145143A1 WO2023145143A1 PCT/JP2022/037618 JP2022037618W WO2023145143A1 WO 2023145143 A1 WO2023145143 A1 WO 2023145143A1 JP 2022037618 W JP2022037618 W JP 2022037618W WO 2023145143 A1 WO2023145143 A1 WO 2023145143A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- terahertz
- bandpass
- polarizer
- substrate
- band
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 44
- 238000000034 method Methods 0.000 title claims description 18
- 239000004020 conductor Substances 0.000 claims abstract description 136
- 239000000758 substrate Substances 0.000 claims abstract description 86
- 239000004642 Polyimide Substances 0.000 claims abstract description 13
- 229920002301 cellulose acetate Polymers 0.000 claims abstract description 13
- 229920001721 polyimide Polymers 0.000 claims abstract description 13
- 239000004952 Polyamide Substances 0.000 claims abstract description 11
- 229920002647 polyamide Polymers 0.000 claims abstract description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 42
- 239000002041 carbon nanotube Substances 0.000 claims description 42
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 40
- 239000000463 material Substances 0.000 claims description 38
- 229910052751 metal Inorganic materials 0.000 claims description 26
- 239000002184 metal Substances 0.000 claims description 26
- 230000001678 irradiating effect Effects 0.000 claims description 8
- 239000002238 carbon nanotube film Substances 0.000 claims description 7
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- 229910052802 copper Inorganic materials 0.000 claims description 6
- 229910052737 gold Inorganic materials 0.000 claims description 6
- 239000006185 dispersion Substances 0.000 claims description 5
- 238000001914 filtration Methods 0.000 claims description 3
- 238000007740 vapor deposition Methods 0.000 claims description 2
- 238000000411 transmission spectrum Methods 0.000 description 22
- 238000010586 diagram Methods 0.000 description 13
- 238000002834 transmittance Methods 0.000 description 12
- 230000010287 polarization Effects 0.000 description 8
- 238000005259 measurement Methods 0.000 description 7
- 230000003287 optical effect Effects 0.000 description 6
- 229920003223 poly(pyromellitimide-1,4-diphenyl ether) Polymers 0.000 description 6
- 102220486681 Putative uncharacterized protein PRO1854_S10A_mutation Human genes 0.000 description 5
- 239000002109 single walled nanotube Substances 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 238000001771 vacuum deposition Methods 0.000 description 3
- 239000000470 constituent Substances 0.000 description 2
- 229910021404 metallic carbon Inorganic materials 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000002048 multi walled nanotube Substances 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 229920000307 polymer substrate Polymers 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
Definitions
- the present invention relates to a terahertz bandpass polarizer and a method for manufacturing a terahertz bandpass polarizer.
- the terahertz band (THz: 10 12 Hz) will be used as a carrier frequency band for radio waves. Therefore, terahertz band transceivers and optical elements for the terahertz band are being developed.
- the terahertz band means, for example, between 0.1 THz and 30 THz.
- the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a terahertz band-pass polarizer having both a polarization function and a band-pass function, and a method for manufacturing the terahertz band band-pass polarizer.
- a terahertz bandpass polarizer includes a substrate made of polyimide, polyamide, or cellulose acetate, and a plurality of substrates provided on the substrate and arranged substantially parallel to each other at regular intervals. and a linear thin conductor wire, and the interval in the width direction perpendicular to the extending direction of the conductor thin wire is 20 ⁇ m to 300 ⁇ m.
- the substrate may have a thickness of 5 ⁇ m to 50 ⁇ m.
- the substrate may have a dielectric constant of 3.0 to 5.0.
- the substrate may have a dielectric loss tangent of 0.0010 to 0.0300.
- the length of the conductor thin wire in the width direction may be 20 ⁇ m to 300 ⁇ m.
- the fine conductor wires may be made of metal.
- the metal may be Au, Al, Cu, or Ag.
- the fine conductor wire is capable of absorbing an electromagnetic wave in the terahertz band, and is capable of absorbing the electromagnetic wave. It may be made of an electromagnetic wave absorbing thermoelectric material capable of generating an electrical signal from generated heat.
- the electromagnetic wave absorbing thermoelectric material may be a carbon nanotube.
- the terahertz-band bandpass polarizer according to any one of the above ⁇ 1> to ⁇ 9> has a cross section parallel to the plate thickness direction of the substrate and parallel to the width direction of the conductor thin wire.
- WHEREIN You may have a convex part in the edge part of the width direction of the said conductor fine line.
- the height of the convex portion may be 20 nm to 2 ⁇ m.
- a method for producing a terahertz-band bandpass polarizer according to an aspect of the present invention is a laminate comprising a substrate made of polyimide, polyamide, or cellulose acetate, and a conductive layer provided on the substrate, A thin conductor wire forming step of removing a part of the conductive layer by irradiating with a laser and forming a plurality of straight conductor thin wires arranged substantially parallel to each other at regular intervals.
- the substrate may have a thickness of 5 ⁇ m to 50 ⁇ m.
- the substrate may have a dielectric constant of 3.0 to 5.0.
- the substrate may have a dielectric loss tangent of 0.0010 to 0.0300.
- the spacing in the width direction orthogonal to the extending direction of the fine conductor wires is 20 ⁇ m to 300 ⁇ m.
- the length in the width direction orthogonal to the extending direction of the fine conductor wires is 20 ⁇ m to 300 ⁇ m.
- the conductive layer may be made of metal.
- the metal may be Au, Al, Cu, or Ag.
- the method for producing a terahertz band-pass polarizer according to ⁇ 18> or ⁇ 19> above may further include a metal conductive layer forming step of forming a conductive layer on the substrate by vapor deposition.
- the conductive layer is capable of absorbing an electromagnetic wave in the terahertz band, and absorbs the electromagnetic wave. It may be made of an electromagnetic wave absorbing thermoelectric material capable of generating an electric signal from the heat generated by heating.
- the electromagnetic wave absorbing thermoelectric material may be a carbon nanotube.
- the method for producing the terahertz-band bandpass polarizer according to ⁇ 22> above comprises filtering a carbon nanotube dispersion liquid to produce a carbon nanotube film, and transferring the carbon nanotube film to the substrate.
- the method may further include an electromagnetic wave absorbing thermoelectric material layer forming step for forming the conductive layer.
- a terahertz bandpass polarizer having both a polarizing function and a bandpass function, and a method for manufacturing the terahertz bandpass polarizer.
- FIG. 1 is a plan view of a terahertz bandpass polarizer according to a first embodiment of the present invention
- FIG. FIG. 2 is a cross-sectional view taken along line AA shown in FIG. 1
- 3 is a flow chart of a method for manufacturing a terahertz bandpass polarizer according to the first embodiment of the present invention
- It is a cross-sectional schematic diagram of a laminated body.
- BRIEF DESCRIPTION OF THE DRAWINGS It is explanatory drawing explaining an example of the manufacturing apparatus of a terahertz band bandpass polarizer.
- FIG. 4 is a plan view of a terahertz bandpass polarizer according to a second embodiment of the present invention
- FIG. 7 is a cross-sectional view taken along line BB shown in FIG. 6; 8 is a flow chart of a method for manufacturing a terahertz bandpass polarizer according to a second embodiment of the present invention; It is a cross-sectional schematic diagram of a laminated body.
- 4 is a diagram showing a transmission spectrum of the terahertz-band bandpass polarizer of Example 1.
- FIG. 10 is a diagram showing a transmission spectrum of the terahertz band-pass polarizer of Example 2;
- FIG. 10 is a diagram showing a transmission spectrum of the terahertz band-pass polarizer of Example 3;
- FIG. 10 is a diagram showing a transmission spectrum of the terahertz band-pass polarizer of Example 4;
- FIG. 10 is a diagram showing a transmission spectrum of the terahertz band-pass polarizer of Example 5;
- FIG. 10 is a diagram showing a transmission spectrum of the terahertz band-pass polarizer of Example 6;
- FIG. 12 is a diagram showing a transmission spectrum of the terahertz band-pass polarizer of Example 7;
- FIG. 10 is a diagram showing a transmission spectrum of the terahertz band-pass polarizer of Example 8;
- FIG. 12 is a diagram showing a transmission spectrum of the terahertz band-pass polarizer of Example 9;
- FIG. 10 is a diagram showing a transmission spectrum of the terahertz bandpass polarizer of Example 10;
- FIG. 10 is a diagram showing the height profile of the terahertz bandpass polarizer of Example 4;
- a plurality of linear thin conductor wires arranged substantially parallel to each other at regular intervals on a substrate made of polyimide, polyamide, or cellulose acetate can provide a conductor. It was found that S-polarized light is transmitted and P-polarized light is blocked near the resonance point, which depends on the spacing of the thin wires.
- the present invention is an invention completed based on the above findings.
- polarized light parallel to the conductor thin wire is defined as S-polarized light
- polarized light perpendicular to the conductive thin wire 20 is defined as P-polarized light.
- the terahertz bandpass polarizer of the present invention will be described below.
- FIG. 1 The terahertz-band bandpass polarizer 100 according to the first embodiment will be described below with reference to FIGS. 1 and 2.
- FIG. 1 characteristic parts may be shown enlarged for convenience in order to make the characteristics easier to understand, and the dimensional ratio of each component may differ from the actual one.
- the materials, dimensions, etc. exemplified in the following description are examples, and the present invention is not limited to them, and can be implemented with appropriate modifications within the scope of the present invention.
- the Y direction is one direction parallel to the surface of the substrate 10 and the extending direction of the fine conductor wires 20 .
- the direction perpendicular to the Y direction along the surface of the substrate 10 is defined as the X direction (width direction).
- the Z direction is a direction (thickness direction) perpendicular to the surface of the substrate 10 .
- the Z direction is a direction perpendicular to the X and Y directions.
- the +Z direction may be expressed as “up” and the ⁇ Z direction as “down”. Up and down do not necessarily match the direction in which gravity is applied.
- FIG. 1 is a plan view of the terahertz bandpass polarizer according to the first embodiment of the present invention.
- FIG. 2 is a cross-sectional view along line AA shown in FIG.
- the terahertz-band bandpass polarizer 100 according to the first embodiment includes a substrate 10 and a plurality of straight lines provided on the substrate 10 and arranged substantially parallel to each other at regular intervals. and a thin conductor wire 20 having a shape.
- substantially parallel means that the angle formed by the thin conductor wire 20 and another thin conductor wire 20 is ⁇ 5° or less when viewed from the opposite side of the substrate 10 .
- a numerical range represented by "-" means a range including the numerical values before and after "-" as lower and upper limits.
- substrate 10 is made of polyimide, polyamide, or cellulose acetate. That is, substrate 10 is a polymer substrate.
- the thickness of the substrate 10 is not particularly limited as long as it can have both a polarization function and a bandpass function.
- the thickness of the substrate 10 is, for example, 5 ⁇ m to 50 ⁇ m.
- a preferable thickness of the substrate 10 is 10 ⁇ m to 30 ⁇ m.
- the substrate 10 is flat and that the plurality of thin conductor wires 20 are directly provided on the substrate 10 . If the unevenness of the resin is large, it may become difficult to transmit only S-polarized light at a specific wavelength. Further, by directly providing a plurality of thin conductor wires 20 on the substrate 10, the polarization characteristics can be further improved.
- the dielectric constant of the substrate 10 at 1 MHz is preferably 3.0 to 5.0. More preferable polyimide has a dielectric constant of 3.0 to 4.0 at 1 MHz. A dielectric constant can be measured according to JIS C 2151:2019.
- the dielectric loss tangent (1 MHz) of the substrate 10 at 1 MHz is preferably 0.0010 to 0.0300.
- a more preferable dielectric loss tangent (1 MHz) at 1 MHz is 0.0013 to 0.0200.
- a dielectric loss tangent can be measured according to JIS C 2151:2019.
- the shape of the substrate 10 is not particularly limited as long as it can have both a polarization function and a bandpass function.
- the shape of the substrate 10 includes a substrate shape, a film shape, a porous shape, and the like.
- the substrate 10 preferably has a film shape.
- a thin conductor wire 20 is provided on the substrate 10 .
- a plurality of thin conductor wires 20 are arranged substantially parallel to each other at regular intervals.
- the thin conductor wires 20 are provided, for example, at intervals ⁇ 1 in the width direction (X direction) orthogonal to the extending direction (Y direction) of the conductor thin wires 20 .
- the interval ⁇ 1 is, for example, 20 ⁇ m to 300 ⁇ m.
- the intervals between the thin conductor wires 20 are substantially the same.
- the interval ⁇ 1 between the conductor thin wires 20 is the length between the center of the conductor thin wire 20 in the width direction and the center of the adjacent conductor thin wire 20 in the width direction.
- the distance between the conductor thin wires 20 in the width direction can be measured by the following method.
- An observation image is obtained by observing the terahertz bandpass polarizer 100 using an optical microscope or the like.
- the widthwise intervals of the conductor thin wires 20 are measured at five points.
- the average value of the obtained five spacing values is used as the spacing in the width direction of the thin conductor wires 20 .
- the shape of the thin conductor wire 20 is linear.
- the length d1 in the width direction of the thin conductor wire 20 is preferably 20 ⁇ m to 300 ⁇ m.
- the length of the conductor fine wire 20 in the width direction can be measured by the following method.
- the terahertz bandpass polarizer 100 is observed in a manner similar to the width direction spacing.
- the lengths in the width direction of the five fine conductor wires 20 are measured in the obtained observation image, and the average value is taken as the length in the width direction of the fine conductor wires 20 .
- the average thickness of the conductor thin wires 20 in the Z direction is, for example, 10 nm to 2000 nm.
- the average thickness of the thin conductor wires 20 in the Z direction is preferably 30 nm to 60 nm when using a metal such as Au.
- the average thickness of the conductive fine wire 20 in the Z direction can be measured, for example, by measuring the height profile of the terahertz bandpass polarizer 100 using a confocal laser microscope.
- the average thickness of the thin conductor wires 20 in the Z direction is obtained by measuring the heights of five randomly selected thin conductor wires 20 and taking the average value as the average thickness of the thin conductor wires 20 in the Z direction.
- the length of the thin conductor wire 20 in the extending direction (Y direction) is, for example, 0.5 mm to 20 mm.
- the conductor thin wire 20 may have a convex portion 21 at the end in the width direction.
- the height h1 of the convex portion 21 is, for example, 20 nm to 2 ⁇ m. It is preferable that the protrusions 21 are located at both ends of the thin conductor wire 20 in the width direction.
- the height h1 of the convex portion 21 is the length in the Z direction from the central portion in the width direction of the thin conductor wire 20 to the highest portion of the convex portion 21 .
- the height of the protrusions 21 in the Z direction of the conductor fine wires 20 can be measured, for example, by measuring the height profile of the terahertz bandpass polarizer 100 using a confocal laser microscope. Specifically, five fine conductor wires 20 are selected, and the length in the Z direction from the central portion in the width direction of each fine conductor wire 20 to the highest portion of the convex portion 21 is measured using a confocal laser microscope. Measure. The average value of the obtained measured values can be used as the height of the convex portion 21 of the fine conductor wire 20 .
- the material of the thin conductor wire 20 of the first embodiment is not particularly limited as long as it has conductivity.
- the material of the thin conductor wire 20 includes metals such as Au, Al, Cu, and Ag. Au is preferable as the material of the thin conductor wire 20 . If metal is used for the thin conductor wire 20, it is possible to obtain a higher transmittance than, for example, carbon nanotubes.
- the terahertz-band bandpass polarizer 100 according to the first embodiment has been described above.
- the terahertz-band bandpass polarizer 100 according to the first embodiment transmits only S-polarized light and blocks P-polarized light in the vicinity of the resonance point determined by the interval ⁇ 1 of the conductor thin wires 20 and the like. That is, the terahertz-band bandpass polarizer 100 has both a polarizing function and a bandpass function.
- FIG. 3 is a flowchart of a method for manufacturing a terahertz bandpass polarizer according to the first embodiment.
- FIG. 4 is a schematic cross-sectional view of the laminate 120 irradiated with laser.
- the method for producing a terahertz band-pass polarizer includes a conductive layer forming step S10 of obtaining a laminate 120 by forming a conductive layer 25 on a substrate 10 made of polyimide, polyamide, or cellulose acetate; On the other hand, a fine conductor wire forming step S20 of removing a part of the conductive layer 25 by irradiating with a laser and forming a plurality of straight fine conductor wires arranged substantially parallel to each other at regular intervals; Prepare.
- the laminate 120 is obtained by forming the conductive layer 25 on the substrate 10 .
- the substrate 10 is made of polyimide, polyamide, or cellulose acetate.
- the thickness of the substrate 10 is, for example, 5 ⁇ m to 50 ⁇ m.
- the shape of the substrate 10 is, for example, a film shape.
- the dielectric constant of the substrate 10 at 1 MHz is preferably 3.0 to 5.0. More preferable polyimide has a dielectric constant of 3.0 to 4.0 at 1 MHz. A dielectric constant can be measured according to JIS C 2151:2019.
- the dielectric loss tangent (1 MHz) of the substrate 10 at 1 MHz is preferably 0.0010 to 0.0300.
- a more preferable dielectric loss tangent (1 MHz) at 1 MHz is 0.0013 to 0.0200.
- a dielectric loss tangent can be measured according to JIS C 2151:2019.
- the material of the conductive layer 25 is not particularly limited as long as it has conductivity.
- Materials for the conductive layer 25 include metals such as Au, Al, Cu, and Ag.
- Au is preferable as the material of the conductive layer 25 .
- the thickness of the conductive layer 25 is, for example, 10 nm to 2000 nm.
- the thickness of the conductive layer 25 is preferably 30 nm to 60 nm when using metal such as Au.
- the method of forming the conductive layer 25 is not particularly limited.
- the conductive layer 25 may be formed by vacuum-depositing a metal such as Au (metal conductive layer forming step), or by applying a conductive paint.
- Conductor thin wire forming step S20 In the fine conductor wire forming step S20, as shown in FIG. 5, a laminate 120 including a conductive layer 25 provided on a substrate 10 is irradiated with a laser to remove part of the conductive layer 25. , to form a plurality of straight thin conductor wires 20 arranged substantially parallel to each other at regular intervals.
- the interval ⁇ 1 in the width direction orthogonal to the extending direction of the thin conductor wires 20 is, for example, 20 ⁇ m to 300 ⁇ m.
- the length d1 in the width direction perpendicular to the extending direction of the thin conductor wire 20 is, for example, 20 ⁇ m to 300 ⁇ m.
- FIG. 5 is an example of an apparatus 200 for manufacturing a terahertz-band bandpass polarizer.
- a terahertz-band bandpass polarizer manufacturing apparatus 200 includes a pulse laser 30 , a beam expander 31 , a half-wave plate 32 , a polarizing beam splitter 33 , a beam diffuser 34 , an objective lens 35 , and an XYZ stage 36 .
- the laser generated by the pulse laser 30 enters the beam expander 31.
- the beam expander 31 adjusts the beam diameter of the laser incident from the pulse laser 30 .
- the laser whose beam diameter has been adjusted is then incident on the half-wave plate 32 .
- the laser With a half-wave plate, the laser is given a phase difference of ⁇ /2 (180°).
- the phase-shifted laser enters the polarizing beam splitter 33 .
- the polarizing beam splitter 33 reflects the S-polarized laser toward the objective lens 35 and transmits the P-polarized laser toward the beam diffuser 34 .
- the P-polarized laser that has passed through the polarization beam splitter 33 terminates at the beam diffuser 34 .
- the laser that has passed through the objective lens 35 is applied to the laminate 120 placed on the XYZ stage 36 .
- the portion of the conductive layer 25 irradiated with the laser is removed.
- a laminate 120 is installed on the XYZ stage 36 .
- the XYZ stage 36 moves the stacked body 120 in the X and Y directions during laser irradiation so that the width and spacing of the fine conductor wires 20 are set to the values set.
- a plurality of thin conductor wires 20 arranged substantially parallel to each other at regular intervals are formed.
- the manufacturing method S100 of the terahertz-band bandpass polarizer according to the first embodiment has been described above.
- the conductive layer forming step S10 is provided, but the conductive layer forming step S10 may not be provided if the laminate 120 can be separately prepared.
- the fine conductor wires 20 are formed using a laser, but the fine conductor wires 20 may be formed using photolithography.
- a terahertz bandpass polarizer 100A of a second embodiment according to the present invention will be described with reference to FIGS. 6 and 7.
- FIG. 1 the same reference numerals are assigned to the same components as in the first embodiment, the description thereof is omitted, and only the different points will be described.
- FIG. 6 is a plan view of a terahertz bandpass polarizer 100A according to one embodiment of the present invention.
- FIG. 7 is a cross-sectional view taken along line BB shown in FIG.
- the terahertz-band bandpass polarizer 100A according to the second embodiment includes a substrate 10 and a plurality of straight lines provided on the substrate 10 and arranged substantially parallel to each other at regular intervals. and a conductive thin wire 20A. Each part will be described below.
- the thin conductor wires 20A are provided on the substrate 10 .
- a plurality of thin conductor wires 20A are arranged substantially parallel to each other at regular intervals.
- the fine conductor wires 20A are provided, for example, at an interval ⁇ 2 in the width direction (X direction) orthogonal to the extending direction (Y direction) of the fine conductor wires 20A.
- the interval ⁇ 2 is 20 ⁇ m to 300 ⁇ m.
- the intervals between the thin conductor wires 20A are substantially the same.
- the interval ⁇ 2 between the thin conductor wires 20A refers to the length between the center of the thin conductor wire 20A in the width direction and the center of the adjacent thin conductor wire 20A in the width direction.
- the shape of the thin conductor wire 20A is linear.
- the length d2 in the width direction of the thin conductor wire 20A is preferably 20 ⁇ m to 300 ⁇ m.
- the average thickness in the Z direction of the thin conductor wires 20A is, for example, 300 nm to 3000 nm.
- the average thickness in the Z direction of the thin conductor wires 20A is preferably 600 nm to 2000 nm. When using carbon nanotubes, it is preferably 600 nm to 1000 nm.
- the length of the thin conductor wire 20A in the extending direction (Y direction) is, for example, 0.5 mm to 20 mm.
- the thin conductor wire 20A may have a protrusion 21A at the end in the width direction.
- the height h2 of the convex portion 21A is, for example, 500 nm to 5000 ⁇ m if the thin conductor wire 20 has a thickness of 1000 nm. It is preferable that the convex portions 21A are present at both ends in the width direction of the thin conductor wire 20A.
- the material of the conductor thin wire 20A of the second embodiment is a material that has conductivity, can absorb electromagnetic waves in the terahertz band, and can generate an electric signal from the heat generated by absorbing the electromagnetic waves ( It is not particularly limited as long as it is an electromagnetic wave absorbing thermoelectric material).
- the material absorbs electromagnetic waves in the terahertz band as heat and converts the generated thermal gradient into an electrical signal, so that the electromagnetic waves in the terahertz band can be detected.
- the material of the thin conductor wire 20A is, for example, a carbon nanotube. When carbon nanotubes are used, the carbon nanotubes absorb the P-polarized light and generate a temperature gradient. By converting the temperature difference into voltage (photothermoelectromotive force effect), electromagnetic waves in the terahertz band can be detected.
- Carbon nanotubes used for the thin conductor wires 20A include multi-walled carbon nanotubes and single-walled carbon nanotubes. Single-walled carbon nanotubes are preferred as the carbon nanotubes.
- metallic carbon nanotubes and semiconducting carbon nanotubes can be used as the carbon nanotubes used for the thin conductor wires 20A.
- a semiconducting carbon nanotube is preferable as the carbon nanotube.
- the content of carbon nanotubes in the fine conductor wires 20A is preferably 50% by mass or more. More preferably, the content of carbon nanotubes is 80% by mass or more. More preferably, the content of carbon nanotubes is 90% by mass or more. The higher the content of carbon nanotubes in the fine conductor wires 20A, the better. Therefore, the upper limit of the carbon nanotube content is 100% by mass.
- the terahertz-band bandpass polarizer 100A according to the second embodiment has been described above.
- the terahertz-band bandpass polarizer 100A according to the second embodiment transmits only S-polarized light and blocks P-polarized light in the vicinity of the resonance point determined by the spacing ⁇ 2 of the thin conductor wires 20A. That is, the terahertz-band bandpass polarizer 100A has both a polarizing function and a bandpass function.
- the thin conductor wires 20A are made of an electromagnetic wave absorbing thermoelectric material capable of absorbing terahertz-band electromagnetic waves. Therefore, the terahertz band-pass polarizer 100A can further detect electromagnetic waves in the terahertz band.
- FIG. 8 is a flow chart of a method for manufacturing a terahertz bandpass polarizer according to the first embodiment.
- FIG. 9 is a schematic cross-sectional view of a laminate 120A irradiated with laser.
- the manufacturing method of the terahertz band-pass polarizer is an electromagnetic wave absorbing thermoelectric material layer forming step of obtaining the laminate 120A shown in FIG. 9 by forming the conductive layer 25A on the substrate 10 made of polyimide, polyamide or cellulose acetate.
- a part of the conductive layer 25A is removed, and the conductive layers 25A are arranged substantially parallel to each other at regular intervals. and a conductor thin wire forming step S20 for forming a plurality of straight conductor thin wires.
- the laminate 120A is obtained by forming the conductive layer 25A on the substrate 10 .
- the conductive layer 25A of the second embodiment is a layer made of an electromagnetic wave absorbing thermoelectric material.
- the substrate 10 is made of polyimide, polyamide, or cellulose acetate.
- the thickness of the substrate 10 is, for example, 5 ⁇ m to 50 ⁇ m.
- the shape of the substrate 10 is, for example, a film shape.
- the material of the conductive layer 25A of the second embodiment is a material that has conductivity, is capable of absorbing electromagnetic waves in the terahertz band, and is capable of generating an electrical signal from heat generated by absorbing the electromagnetic waves.
- (Electromagnetic wave absorption thermoelectric material) is not particularly limited. The material absorbs electromagnetic waves in the terahertz band as heat and converts the generated thermal gradient into an electrical signal, so that the electromagnetic waves in the terahertz band can be detected.
- the material of the thin conductor wire 20A is, for example, a carbon nanotube. When carbon nanotubes are used, the carbon nanotubes absorb the P-polarized light and generate a temperature gradient. By converting the temperature difference into voltage (photothermoelectromotive force effect), electromagnetic waves in the terahertz band can be detected.
- Carbon nanotubes used for the conductive layer 25A include multi-walled carbon nanotubes and single-walled carbon nanotubes. Single-walled carbon nanotubes are preferred as the carbon nanotubes.
- metallic carbon nanotubes and semiconducting carbon nanotubes can be used as the carbon nanotubes used for the conductive layer 25A.
- a semiconducting carbon nanotube is preferable as the carbon nanotube.
- the content of carbon nanotubes in the conductive layer 25A is preferably 50% by mass or more. More preferably, the content of carbon nanotubes is 80% by mass or more. More preferably, the content of carbon nanotubes is 90% by mass or more. The higher the content of carbon nanotubes in the conductive layer 25A, the better. Therefore, the upper limit of the carbon nanotube content is 100% by mass.
- the thickness of the conductive layer 25A is, for example, 300 nm to 3000 nm.
- the average thickness of the conductive layer 25A in the Z direction is preferably 600 nm to 2000 nm.
- the method of forming the conductive layer 25A is not particularly limited.
- an electromagnetic wave absorbing thermoelectric material film for example, a carbon nanotube film
- a dispersion liquid in which an electromagnetic wave absorbing thermoelectric material such as carbon nanotubes is dispersed
- the produced electromagnetic wave absorbing thermoelectric material film is transferred to the substrate 10.
- the conductive layer 25A may be formed.
- the conductive layer 25A may be formed by coating the substrate 10 with a dispersion liquid in which an electromagnetic wave absorbing thermoelectric material such as carbon nanotubes is dispersed.
- Conductor thin wire forming step S20 In the fine conductor wire forming step S20, the laminated body 120A is irradiated with a laser in the same manner as in the first embodiment, thereby removing part of the conductive layer 25A and arranging them substantially parallel to each other at regular intervals. to form a plurality of straight thin conductor wires 20A.
- the manufacturing method S100A of the terahertz-band bandpass polarizer according to the second embodiment has been described above.
- the present embodiment includes the electromagnetic wave absorbing thermoelectric material layer forming step S10A, the electromagnetic wave absorbing thermoelectric material layer forming step S10A may not be provided if the laminate 120A can be prepared separately.
- the conditions in the examples are one example of conditions adopted for confirming the feasibility and effect of the present invention, and the present invention is based on this one example of conditions. It is not limited. Various conditions can be adopted in the present invention as long as the objects of the present invention are achieved without departing from the gist of the present invention.
- Kapton registered trademark
- 50EN thickness 12.5 ⁇ m, dielectric constant 3.2 (1 MHz), dielectric loss tangent 0.0070 (1 MHz)
- Uniamide registered trademark
- EX thickness 25 ⁇ m
- cellulose acetate as a substrate
- a membrane 125 ⁇ m thick
- a metal laminate was obtained by forming an Au film with a film thickness of 50 nm on a substrate using a vacuum deposition method.
- Kapton registered trademark 50EN was used as the substrate.
- the carbon nanotube dispersion was filtered through a membrane to obtain a carbon nanotube film (thickness: 1 ⁇ m).
- the obtained carbon nanotube film was transferred to a substrate to obtain a CNT laminate.
- Example 1 A terahertz-band bandpass polarizer manufacturing apparatus (objective lens: 10 ⁇ ) shown in FIG. 5 was used to form the thin conductor wires. While irradiating the Au film of the metal laminate on the Kapton substrate with a pulse laser (wavelength 532 nm), the XYZ stage was moved so that the conductor fine line spacing was 200 ⁇ m and the conductor fine line width was 200 ⁇ m. A zonal bandpass polarizer was obtained. In addition, the laser irradiation conditions were performed under the following conditions. Pulse width: 3ns Pulse energy: 50nJ Repetition rate: 1kHz Beam diameter: f2mm Overlap ratio: 15%
- Example 2 While irradiating the Au film of the metal laminate on the Kapton substrate with a laser under the same conditions as in Example 1, the XYZ stage was moved so that the conductor fine line spacing was 100 ⁇ m and the conductor fine line width was 100 ⁇ m. No. 2 terahertz bandpass polarizer was obtained.
- Example 3 While irradiating the Au film of the metal laminate on the Kapton substrate with a laser under the same conditions as in Example 1, the XYZ stage was moved so that the conductor fine line spacing was 60 ⁇ m and the conductor fine line width was 60 ⁇ m. No. 3 terahertz bandpass polarizer was obtained.
- Example 4 While irradiating the Au film of the metal laminate on the Kapton substrate with a laser under the same conditions as in Example 1, the XYZ stage was moved so that the conductor fine line spacing was 40 ⁇ m and the conductor fine line width was 40 ⁇ m. No. 4 terahertz bandpass polarizer was obtained.
- Example 5 A terahertz bandpass polarizer of Example 5 was obtained by vacuum deposition using a shadow mask with a conductor fine line spacing of 200 ⁇ m and a conductor fine line width of 200 ⁇ m for the Au film of the metal laminate on the uniamide substrate. .
- Example 6 The terahertz bandpass polarizer of Example 6 was applied to the Au film of the metal laminate on the cellulose acetate membrane substrate by a vacuum deposition method using a shadow mask having a fine conductor line spacing of 100 ⁇ m and a conductor fine line width of 100 ⁇ m. Obtained.
- Example 7 The CNT laminate was irradiated with a laser under the same conditions as in Example 1, and the XYZ stage was moved so that the conductor fine line spacing was 200 ⁇ m and the conductor fine line width was 200 ⁇ m. got
- Example 8 The CNT laminate was irradiated with a laser under the same conditions as in Example 1, and the XYZ stage was moved so that the conductor fine line spacing was 100 ⁇ m and the conductor fine line width was 100 ⁇ m. got
- Example 9 The CNT laminate was irradiated with a laser under the same conditions as in Example 1, and the XYZ stage was moved so that the conductor fine line spacing was 60 ⁇ m and the conductor fine line width was 60 ⁇ m. got
- Example 10 The CNT laminate was irradiated with a laser under the same conditions as in Example 1, and the XYZ stage was moved so that the conductor fine line spacing was 40 ⁇ m and the conductor fine line width was 40 ⁇ m. got
- the transmission spectrum of the terahertz-band bandpass polarizer of Example 1 is shown in FIG.
- the vertical axis indicates transmittance, and the horizontal axis indicates frequency (THz). It was confirmed that the terahertz-band bandpass polarizer of Example 1 transmits S-polarized light and blocks P-polarized light near the resonance point of 0.7 THz.
- the transmission spectrum of the terahertz-band bandpass polarizer of Example 2 is shown in FIG.
- the vertical axis indicates transmittance, and the horizontal axis indicates frequency (THz). It was confirmed that the terahertz-band bandpass polarizer of Example 2 transmits S-polarized light and blocks P-polarized light near the resonance point of 1.3 THz.
- the transmission spectrum of the terahertz-band bandpass polarizer of Example 3 is shown in FIG.
- the vertical axis indicates transmittance, and the horizontal axis indicates frequency (THz). It was confirmed that the terahertz-band bandpass polarizer of Example 3 transmits S-polarized light and blocks P-polarized light near the resonance point of 2 THz.
- the transmission spectrum of the terahertz-band bandpass polarizer of Example 4 is shown in FIG.
- the vertical axis indicates transmittance, and the horizontal axis indicates frequency (THz). It was confirmed that the terahertz-band bandpass polarizer of Example 4 transmits S-polarized light and blocks P-polarized light near the resonance point of 2.6 THz.
- the transmission spectrum of the terahertz-band bandpass polarizer of Example 5 is shown in FIG.
- the vertical axis indicates transmittance, and the horizontal axis indicates frequency (THz). It was confirmed that the terahertz-band bandpass polarizer of Example 1 transmits S-polarized light and blocks P-polarized light near the resonance point of 0.7 THz.
- the transmission spectrum of the terahertz-band bandpass polarizer of Example 6 is shown in FIG.
- the vertical axis indicates transmittance, and the horizontal axis indicates frequency (THz). It was confirmed that the terahertz-band bandpass polarizer of Example 1 transmits S-polarized light and blocks P-polarized light near the resonance point of 1.3 THz.
- the terahertz bandpass polarizers of Examples 1 to 6 can transmit S-polarized light and block P-polarized light in the vicinity of specific frequencies. Moreover, it was confirmed that the transmission frequency can be shifted to the high frequency side by reducing the distance between the conductor thin wires.
- the transmission spectrum of the terahertz-band bandpass polarizer of Example 7 is shown in FIG.
- the vertical axis indicates transmittance, and the horizontal axis indicates frequency (THz). It was confirmed that the terahertz-band bandpass polarizer of Example 7 transmits S-polarized light and blocks P-polarized light near the resonance point of 0.7 THz.
- the transmission spectrum of the terahertz-band bandpass polarizer of Example 8 is shown in FIG.
- the vertical axis indicates transmittance, and the horizontal axis indicates frequency (THz). It was confirmed that the terahertz-band bandpass polarizer of Example 8 transmits S-polarized light and blocks P-polarized light near the resonance point of 1.3 THz.
- the transmission spectrum of the terahertz-band bandpass polarizer of Example 9 is shown in FIG.
- the vertical axis indicates transmittance, and the horizontal axis indicates frequency (THz). It was confirmed that the terahertz-band bandpass polarizer of Example 9 transmits S-polarized light and blocks P-polarized light near the resonance point of 2 THz.
- the transmission spectrum of the terahertz-band bandpass polarizer of Example 10 is shown in FIG.
- the vertical axis indicates transmittance, and the horizontal axis indicates frequency (THz). It was confirmed that the terahertz-band bandpass polarizer of Example 10 transmits S-polarized light and blocks P-polarized light near the resonance point of 3 THz.
- the terahertz bandpass polarizers of Examples 7 to 10 can transmit S-polarized light and block P-polarized light in the vicinity of specific frequencies. Moreover, it was confirmed that the transmission frequency can be shifted to the high frequency side by reducing the distance between the conductor thin wires.
- the terahertz band-pass polarizers of Examples 7-10 had lower transmittances than the terahertz-band band-pass polarizers of Examples 1-6. This is believed to be due to plasmon resonance of carbon nanotubes.
- Example 4 The height profile of Example 4 is shown in FIG. The vertical axis indicates height (nm), and the horizontal axis indicates displacement ( ⁇ m) in the X direction. It was confirmed that the terahertz bandpass polarizer of Example 4 had protrusions (burrs) at both ends in the width direction. In the case of FIG. 20, convex portions of 40 nm or more were confirmed.
- the terahertz-band bandpass polarizer of the present disclosure has both a polarization function and a bandpass function, so the number of optical elements can be reduced. Therefore, the terahertz bandpass polarizer of the present disclosure has high industrial applicability.
- Substrate 20 Conductive thin wire, 100 Terahertz band-pass polarizer
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Polarising Elements (AREA)
Abstract
This terahertz bandpass polarizer comprises: a substrate comprising a polyimide, a polyamide, or cellulose acetate; and a plurality of linear fine conductor wires provided on the substrate and arranged substantially parallel at a fixed interval from each other, the interval in a width direction orthogonal to the extension direction of the fine conductor wires being 20-300 µm.
Description
本発明は、テラヘルツ帯バンドパス偏光子およびテラヘルツ帯バンドパス偏光子の製造方法に関する。
本願は、2022年1月28日に、日本に出願された特願2022-11423号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to a terahertz bandpass polarizer and a method for manufacturing a terahertz bandpass polarizer.
This application claims priority based on Japanese Patent Application No. 2022-11423 filed in Japan on January 28, 2022, the content of which is incorporated herein.
本願は、2022年1月28日に、日本に出願された特願2022-11423号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to a terahertz bandpass polarizer and a method for manufacturing a terahertz bandpass polarizer.
This application claims priority based on Japanese Patent Application No. 2022-11423 filed in Japan on January 28, 2022, the content of which is incorporated herein.
次世代移動通信システムにおいて、電波のキャリア周波数帯として、テラヘルツ帯(THz:1012Hz)の活用が見込まれている。そのため、テラヘルツ帯送受信機やテラヘルツ帯用光学素子などの開発が行われている。ここでテラヘルツ帯は例えば、0.1THz~30THzの間をいう。
In next-generation mobile communication systems, it is expected that the terahertz band (THz: 10 12 Hz) will be used as a carrier frequency band for radio waves. Therefore, terahertz band transceivers and optical elements for the terahertz band are being developed. Here, the terahertz band means, for example, between 0.1 THz and 30 THz.
テラヘルツ帯用光学素子としては、金属メッシュ、メタマテリアルを用いたバンドパスフィルタ(特定の周波数成分のみを透過する)がある。
As an optical element for the terahertz band, there is a band-pass filter (which transmits only specific frequency components) using a metal mesh or metamaterial.
他のテラヘルツ帯用光学素子としては、特許文献1に記載のワイヤグリッド構造による偏光板がある。
As another optical element for the terahertz band, there is a polarizing plate with a wire grid structure described in Patent Document 1.
しかし、従来のテラヘルツ帯用バンドパスフィルタは、偏光制御することができなかった。同様に、従来のテラヘルツ帯用偏光子は、特定の周波数成分のみを抽出することができなかった。そのため、偏光制御および特定の周波数成分の抽出を行うためには、複数の光学素子を組み合わせなければならなかった。
However, conventional bandpass filters for the terahertz band were unable to control polarization. Similarly, conventional polarizers for the terahertz band cannot extract only specific frequency components. Therefore, in order to perform polarization control and extraction of specific frequency components, it has been necessary to combine a plurality of optical elements.
本発明は、上記の事情を鑑みなされた発明であり、偏光機能およびバンドパス機能を兼ね備えたテラヘルツ帯バンドパス偏光子およびテラヘルツ帯バンドパス偏光子の製造方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a terahertz band-pass polarizer having both a polarization function and a band-pass function, and a method for manufacturing the terahertz band band-pass polarizer.
前記課題を解決するために、本発明は以下の手段を提案している。
<1> 本発明の一態様に係るテラヘルツ帯バンドパス偏光子は、ポリイミド、ポリアミド、またはセルロースアセテートからなる基板と、前記基板上に設けられ、互いに一定の間隔で略平行に配置された複数の直線状の導電体細線と、を備え、前記導電体細線の延在方向と直交する幅方向の前記間隔が20μm~300μmである。 In order to solve the above problems, the present invention proposes the following means.
<1> A terahertz bandpass polarizer according to an aspect of the present invention includes a substrate made of polyimide, polyamide, or cellulose acetate, and a plurality of substrates provided on the substrate and arranged substantially parallel to each other at regular intervals. and a linear thin conductor wire, and the interval in the width direction perpendicular to the extending direction of the conductor thin wire is 20 μm to 300 μm.
<1> 本発明の一態様に係るテラヘルツ帯バンドパス偏光子は、ポリイミド、ポリアミド、またはセルロースアセテートからなる基板と、前記基板上に設けられ、互いに一定の間隔で略平行に配置された複数の直線状の導電体細線と、を備え、前記導電体細線の延在方向と直交する幅方向の前記間隔が20μm~300μmである。 In order to solve the above problems, the present invention proposes the following means.
<1> A terahertz bandpass polarizer according to an aspect of the present invention includes a substrate made of polyimide, polyamide, or cellulose acetate, and a plurality of substrates provided on the substrate and arranged substantially parallel to each other at regular intervals. and a linear thin conductor wire, and the interval in the width direction perpendicular to the extending direction of the conductor thin wire is 20 μm to 300 μm.
<2> 上記<1>に記載のテラヘルツ帯バンドパス偏光子は、前記基板の厚さが5μm~50μmであってもよい。
<2> In the terahertz bandpass polarizer described in <1> above, the substrate may have a thickness of 5 μm to 50 μm.
<3> 上記<1>または<2>に記載のテラヘルツ帯バンドパス偏光子は、前記基板の比誘電率が3.0~5.0であってもよい。
<3> In the terahertz-band bandpass polarizer described in <1> or <2> above, the substrate may have a dielectric constant of 3.0 to 5.0.
<4> 上記<1>~<3>のいずれか1つに記載のテラヘルツ帯バンドパス偏光子は、前記基板の誘電正接は、0.0010~0.0300であってもよい。
<4> In the terahertz bandpass polarizer according to any one of <1> to <3> above, the substrate may have a dielectric loss tangent of 0.0010 to 0.0300.
<5> 上記<1>~<4>のいずれか1つに記載のテラヘルツ帯バンドパス偏光子は、前記導電体細線の前記幅方向の長さが20μm~300μmであってもよい。
<5> In the terahertz bandpass polarizer according to any one of <1> to <4> above, the length of the conductor thin wire in the width direction may be 20 μm to 300 μm.
<6> 上記<1>~<5>のいずれか1つに記載のテラヘルツ帯バンドパス偏光子は、前記導電体細線が金属からなってもよい。
<6> In the terahertz bandpass polarizer according to any one of <1> to <5> above, the fine conductor wires may be made of metal.
<7> 上記<6>に記載のテラヘルツ帯バンドパス偏光子は、前記金属が、Au、Al、Cu、またはAgであってもよい。
<7> In the terahertz-band bandpass polarizer described in <6> above, the metal may be Au, Al, Cu, or Ag.
<8> 上記<1>~<5>のいずれか1つに記載のテラヘルツ帯バンドパス偏光子は、前記導電体細線がテラヘルツ帯の電磁波を吸収可能であり、かつ、前記電磁波を吸収して発生した熱から電気信号を発生可能な電磁波吸収熱電材料からなってもよい。
<8> In the terahertz band-pass polarizer according to any one of <1> to <5> above, the fine conductor wire is capable of absorbing an electromagnetic wave in the terahertz band, and is capable of absorbing the electromagnetic wave. It may be made of an electromagnetic wave absorbing thermoelectric material capable of generating an electrical signal from generated heat.
<9> 上記<8>に記載のテラヘルツ帯バンドパス偏光子は、前記電磁波吸収熱電材料が、カーボンナノチューブであってもよい。
<9> In the terahertz-band bandpass polarizer according to <8> above, the electromagnetic wave absorbing thermoelectric material may be a carbon nanotube.
<10> 上記<1>~<9>のいずれか1つに記載のテラヘルツ帯バンドパス偏光子は、前記基板の板厚方向に平行であり、前記導電体細線の前記幅方向に平行な断面において、前記導電体細線の幅方向の端部に凸部を有してもよい。
<10> The terahertz-band bandpass polarizer according to any one of the above <1> to <9> has a cross section parallel to the plate thickness direction of the substrate and parallel to the width direction of the conductor thin wire. WHEREIN: You may have a convex part in the edge part of the width direction of the said conductor fine line.
<11> 上記<10>に記載のテラヘルツ帯バンドパス偏光子は、前記凸部の高さが、20nm~2μmであってもよい。
<11> In the terahertz bandpass polarizer according to <10> above, the height of the convex portion may be 20 nm to 2 μm.
<12> 本発明の一態様に係るテラヘルツ帯バンドパス偏光子の製造方法は、ポリイミド、ポリアミド、またはセルロースアセテートからなる基板と、前記基板上に設けられる導電層と、を備える積層体に対し、レーザーを照射することで、前記導電層の一部を除去し、互いに一定の間隔で略平行に配置された複数の直線状の導電体細線を形成する、導電体細線形成工程を備える。
<12> A method for producing a terahertz-band bandpass polarizer according to an aspect of the present invention is a laminate comprising a substrate made of polyimide, polyamide, or cellulose acetate, and a conductive layer provided on the substrate, A thin conductor wire forming step of removing a part of the conductive layer by irradiating with a laser and forming a plurality of straight conductor thin wires arranged substantially parallel to each other at regular intervals.
<13> 上記<12>に記載のテラヘルツ帯バンドパス偏光子の製造方法は、前記基板の厚さが5μm~50μmであってもよい。
<13> In the method for producing a terahertz-band bandpass polarizer according to <12> above, the substrate may have a thickness of 5 μm to 50 μm.
<14> 上記<12>または<13>に記載のテラヘルツ帯バンドパス偏光子の製造方法は、前記基板の比誘電率が3.0~5.0であってもよい。
<14> In the method for producing a terahertz-band bandpass polarizer according to <12> or <13> above, the substrate may have a dielectric constant of 3.0 to 5.0.
<15> 上記<12>~<14>のいずれか1つに記載のテラヘルツ帯バンドパス偏光子の製造方法は、前記基板の誘電正接は、0.0010~0.0300であってもよい。
<15> In the method for producing a terahertz-band bandpass polarizer according to any one of <12> to <14> above, the substrate may have a dielectric loss tangent of 0.0010 to 0.0300.
<16> 上記<12>~<15>のいずれか1つに記載のテラヘルツ帯バンドパス偏光子の製造方法は、前記導電体細線の延在方向と直交する幅方向の前記間隔が20μm~300μmであってもよい。
<16> In the method for producing a terahertz band-pass polarizer according to any one of <12> to <15> above, the spacing in the width direction orthogonal to the extending direction of the fine conductor wires is 20 μm to 300 μm. may be
<17> 上記<12>~<16>のいずれか1つに記載のテラヘルツ帯バンドパス偏光子の製造方法は、前記導電体細線の延在方向と直交する幅方向の長さが20μm~300μmであってもよい。
<17> In the method for producing a terahertz-band bandpass polarizer according to any one of the above <12> to <16>, the length in the width direction orthogonal to the extending direction of the fine conductor wires is 20 μm to 300 μm. may be
<18> 上記<12>~<17>のいずれか1つに記載のテラヘルツ帯バンドパス偏光子の製造方法は、前記導電層が金属からなってもよい。
<18> In the method for producing a terahertz bandpass polarizer according to any one of <12> to <17> above, the conductive layer may be made of metal.
<19> 上記<18>に記載のテラヘルツ帯バンドパス偏光子の製造方法は、前記金属が、Au、Al、Cu、またはAgであってもよい。
<19> In the method for producing a terahertz-band bandpass polarizer according to <18> above, the metal may be Au, Al, Cu, or Ag.
<20> 上記<18>または<19>に記載のテラヘルツ帯バンドパス偏光子の製造方法は、前記基板上に蒸着によって導電層を形成する金属導電層形成工程を、更に備えてもよい。
<20> The method for producing a terahertz band-pass polarizer according to <18> or <19> above may further include a metal conductive layer forming step of forming a conductive layer on the substrate by vapor deposition.
<21> 上記<12>~<17>のいずれか1つに記載のテラヘルツ帯バンドパス偏光子の製造方法は、前記導電層がテラヘルツ帯の電磁波を吸収可能であり、かつ、前記電磁波を吸収して発生した熱から電気信号を発生可能な電磁波吸収熱電材料からなってもよい。
<21> In the method for producing a terahertz band bandpass polarizer according to any one of <12> to <17> above, the conductive layer is capable of absorbing an electromagnetic wave in the terahertz band, and absorbs the electromagnetic wave. It may be made of an electromagnetic wave absorbing thermoelectric material capable of generating an electric signal from the heat generated by heating.
<22> 上記<21>に記載のテラヘルツ帯バンドパス偏光子の製造方法は、前記電磁波吸収熱電材料がカーボンナノチューブであってもよい。
<22> In the method for producing a terahertz-band bandpass polarizer according to <21> above, the electromagnetic wave absorbing thermoelectric material may be a carbon nanotube.
<23> 上記<22>に記載のテラヘルツ帯バンドパス偏光子の製造方法は、カーボンナノチューブ分散液を濾過することで、カーボンナノチューブフィルムを作製し、前記カーボンナノチューブフィルムを前記基板に転写することで、前記導電層を形成する電磁波吸収熱電材料層形成工程をさらに備えてもよい。
<23> The method for producing the terahertz-band bandpass polarizer according to <22> above comprises filtering a carbon nanotube dispersion liquid to produce a carbon nanotube film, and transferring the carbon nanotube film to the substrate. The method may further include an electromagnetic wave absorbing thermoelectric material layer forming step for forming the conductive layer.
本発明の上記態様によれば、偏光機能およびバンドパス機能を兼ね備えたテラヘルツ帯バンドパス偏光子およびテラヘルツ帯バンドパス偏光子の製造方法を提供することができる。
According to the above aspect of the present invention, it is possible to provide a terahertz bandpass polarizer having both a polarizing function and a bandpass function, and a method for manufacturing the terahertz bandpass polarizer.
本発明者らが鋭意検討したところ、ポリイミド、ポリアミド、またはセルロースアセテートからなる基板の上に、互いに一定の間隔で略平行に配置された複数の直線状の導電体細線を設けることで、導電体細線の間隔などに依存した共振点付近でS偏光が透過し、P偏光が遮断されることを見出した。本発明は、上記の知見に基づいて完成した発明である。本明細書において、導電体細線に平行な偏光をS偏光とし、導電体細線20に垂直な偏光をP偏光とする。以下、本発明のテラヘルツ帯バンドパス偏光子について、説明する。
As a result of intensive studies by the present inventors, it has been found that a plurality of linear thin conductor wires arranged substantially parallel to each other at regular intervals on a substrate made of polyimide, polyamide, or cellulose acetate can provide a conductor. It was found that S-polarized light is transmitted and P-polarized light is blocked near the resonance point, which depends on the spacing of the thin wires. The present invention is an invention completed based on the above findings. In this specification, polarized light parallel to the conductor thin wire is defined as S-polarized light, and polarized light perpendicular to the conductive thin wire 20 is defined as P-polarized light. The terahertz bandpass polarizer of the present invention will be described below.
(第1実施形態)
以下、第1実施形態に係るテラヘルツ帯バンドパス偏光子100について、図1および図2を用いて説明する。以下の説明で用いる図面は、特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などは実際とは異なっていることがある。以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、本発明の効果を奏する範囲で適宜変更して実施することが可能である。 (First embodiment)
The terahertz-band bandpass polarizer 100 according to the first embodiment will be described below with reference to FIGS. 1 and 2. FIG. In the drawings used in the following description, characteristic parts may be shown enlarged for convenience in order to make the characteristics easier to understand, and the dimensional ratio of each component may differ from the actual one. The materials, dimensions, etc. exemplified in the following description are examples, and the present invention is not limited to them, and can be implemented with appropriate modifications within the scope of the present invention.
以下、第1実施形態に係るテラヘルツ帯バンドパス偏光子100について、図1および図2を用いて説明する。以下の説明で用いる図面は、特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などは実際とは異なっていることがある。以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、本発明の効果を奏する範囲で適宜変更して実施することが可能である。 (First embodiment)
The terahertz-
まず方向について定義する。基板10の表面と平行な一方向であり、かつ、導電体細線20の延在方向をY方向とする。基板10の表面に沿って、Y方向と直交する方向をX方向(幅方向)とする。Z方向は、基板10の表面と垂直な方向(板厚方向)である。Z方向は、X方向およびY方向と直交する方向である。以下、+Z方向を「上」、-Z方向を「下」と表現する場合がある。上下は、必ずしも重力が加わる方向とは一致しない。
First, define the direction. The Y direction is one direction parallel to the surface of the substrate 10 and the extending direction of the fine conductor wires 20 . The direction perpendicular to the Y direction along the surface of the substrate 10 is defined as the X direction (width direction). The Z direction is a direction (thickness direction) perpendicular to the surface of the substrate 10 . The Z direction is a direction perpendicular to the X and Y directions. Hereinafter, the +Z direction may be expressed as “up” and the −Z direction as “down”. Up and down do not necessarily match the direction in which gravity is applied.
図1は、本発明の第1実施形態に係るテラヘルツ帯バンドパス偏光子の平面図である。図2は、図1に示されたA-A線に沿う断面図である。図1および図2に示すように、第1実施形態に係るテラヘルツ帯バンドパス偏光子100は、基板10と、基板10上に設けられ、互いに一定の間隔で略平行に配置された複数の直線状の導電体細線20とを備える。ここで、略平行とは、基板10の対向視で、導電体細線20と他の導電体細線20とがなす角度が±5°以下であることをいう。以下、各部について説明する。なお、本明細書中において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
FIG. 1 is a plan view of the terahertz bandpass polarizer according to the first embodiment of the present invention. FIG. 2 is a cross-sectional view along line AA shown in FIG. As shown in FIGS. 1 and 2, the terahertz-band bandpass polarizer 100 according to the first embodiment includes a substrate 10 and a plurality of straight lines provided on the substrate 10 and arranged substantially parallel to each other at regular intervals. and a thin conductor wire 20 having a shape. Here, “substantially parallel” means that the angle formed by the thin conductor wire 20 and another thin conductor wire 20 is ±5° or less when viewed from the opposite side of the substrate 10 . Each part will be described below. In this specification, a numerical range represented by "-" means a range including the numerical values before and after "-" as lower and upper limits.
「基板」
基板10は、ポリイミド、ポリアミド、またはセルロースアセテートからなる。即ち、基板10は、ポリマー基板である。基板10の厚さは、偏光機能およびバンドパス機能を兼ね備えることができれば特に限定されない。基板10の厚さは、例えば、5μm~50μmである。好ましい基板10の厚さとしては、10μm~30μmである。特定のポリマー基板を用いることで、特定の波長において、S偏光のみを透過することができる。また、基板10は平坦であり、かつ、基板10上に複数の直線状の導電体細線20を直接設けることが好ましい。樹脂の凹凸が大きい場合、特定の波長において、S偏光のみを透過しにくくなる場合がある。また、基板10上に複数の直線状の導電体細線20を直接設けることで、より偏光特性を向上することができる。 "substrate"
Substrate 10 is made of polyimide, polyamide, or cellulose acetate. That is, substrate 10 is a polymer substrate. The thickness of the substrate 10 is not particularly limited as long as it can have both a polarization function and a bandpass function. The thickness of the substrate 10 is, for example, 5 μm to 50 μm. A preferable thickness of the substrate 10 is 10 μm to 30 μm. By using a specific polymer substrate, only S-polarized light can be transmitted at a specific wavelength. Further, it is preferable that the substrate 10 is flat and that the plurality of thin conductor wires 20 are directly provided on the substrate 10 . If the unevenness of the resin is large, it may become difficult to transmit only S-polarized light at a specific wavelength. Further, by directly providing a plurality of thin conductor wires 20 on the substrate 10, the polarization characteristics can be further improved.
基板10は、ポリイミド、ポリアミド、またはセルロースアセテートからなる。即ち、基板10は、ポリマー基板である。基板10の厚さは、偏光機能およびバンドパス機能を兼ね備えることができれば特に限定されない。基板10の厚さは、例えば、5μm~50μmである。好ましい基板10の厚さとしては、10μm~30μmである。特定のポリマー基板を用いることで、特定の波長において、S偏光のみを透過することができる。また、基板10は平坦であり、かつ、基板10上に複数の直線状の導電体細線20を直接設けることが好ましい。樹脂の凹凸が大きい場合、特定の波長において、S偏光のみを透過しにくくなる場合がある。また、基板10上に複数の直線状の導電体細線20を直接設けることで、より偏光特性を向上することができる。 "substrate"
基板10の1MHzのときの比誘電率は、3.0~5.0であることが好ましい。より好ましいポリイミドの1MHzのときの比誘電率は、3.0~4.0である。比誘電率は、JIS C 2151:2019に準拠して測定することができる。
The dielectric constant of the substrate 10 at 1 MHz is preferably 3.0 to 5.0. More preferable polyimide has a dielectric constant of 3.0 to 4.0 at 1 MHz. A dielectric constant can be measured according to JIS C 2151:2019.
基板10の1MHzのときの誘電正接(1MHz)は、0.0010~0.0300であることが好ましい。より好ましい1MHzのときの誘電正接(1MHz)は、0.0013~0.0200である。誘電正接は、JIS C 2151:2019に従って測定することができる。
The dielectric loss tangent (1 MHz) of the substrate 10 at 1 MHz is preferably 0.0010 to 0.0300. A more preferable dielectric loss tangent (1 MHz) at 1 MHz is 0.0013 to 0.0200. A dielectric loss tangent can be measured according to JIS C 2151:2019.
基板10の形状は、偏光機能およびバンドパス機能を兼ね備えることができれば特に限定されない。基板10の形状としては、基板状、フィルム状、多孔質状などが挙げられる。基板10の形状としては、好ましくはフィルム状である。
The shape of the substrate 10 is not particularly limited as long as it can have both a polarization function and a bandpass function. The shape of the substrate 10 includes a substrate shape, a film shape, a porous shape, and the like. The substrate 10 preferably has a film shape.
「導電体細線」
導電体細線20は、基板10上に設けられる。また、導電体細線20は、互いに一定の間隔で略平行に複数配置される。図1に示す通り、導電体細線20は、例えば、導電体細線20の延在方向(Y方向)と直交する幅方向(X方向)に間隔ε1で離れて設けられる。間隔ε1の間隔を変えることで、透過するS偏光の周波数を制御することができる。間隔ε1は、例えば、20μm~300μmである。各導電体細線20間の間隔は略同一である。なお、導電体細線20の間隔ε1は、導電体細線20の幅方向の中心と隣接する導電体細線20の幅方向の中心との間の長さをいう。 "Conductor thin wire"
Athin conductor wire 20 is provided on the substrate 10 . A plurality of thin conductor wires 20 are arranged substantially parallel to each other at regular intervals. As shown in FIG. 1, the thin conductor wires 20 are provided, for example, at intervals ε1 in the width direction (X direction) orthogonal to the extending direction (Y direction) of the conductor thin wires 20 . By changing the interval ε1, the frequency of transmitted S-polarized light can be controlled. The interval ε1 is, for example, 20 μm to 300 μm. The intervals between the thin conductor wires 20 are substantially the same. The interval ε1 between the conductor thin wires 20 is the length between the center of the conductor thin wire 20 in the width direction and the center of the adjacent conductor thin wire 20 in the width direction.
導電体細線20は、基板10上に設けられる。また、導電体細線20は、互いに一定の間隔で略平行に複数配置される。図1に示す通り、導電体細線20は、例えば、導電体細線20の延在方向(Y方向)と直交する幅方向(X方向)に間隔ε1で離れて設けられる。間隔ε1の間隔を変えることで、透過するS偏光の周波数を制御することができる。間隔ε1は、例えば、20μm~300μmである。各導電体細線20間の間隔は略同一である。なお、導電体細線20の間隔ε1は、導電体細線20の幅方向の中心と隣接する導電体細線20の幅方向の中心との間の長さをいう。 "Conductor thin wire"
A
導電体細線20の幅方向の間隔は以下の方法で測定することができる。光学顕微鏡などを用いて、テラヘルツ帯バンドパス偏光子100を観察して観察像を得る。得られた観察像において、導電体細線20の幅方向の間隔を5か所測定する。得られた5つの間隔の値の平均値を導電体細線20の幅方向の間隔とする。
The distance between the conductor thin wires 20 in the width direction can be measured by the following method. An observation image is obtained by observing the terahertz bandpass polarizer 100 using an optical microscope or the like. In the obtained observation image, the widthwise intervals of the conductor thin wires 20 are measured at five points. The average value of the obtained five spacing values is used as the spacing in the width direction of the thin conductor wires 20 .
導電体細線20の形状は、直線状である。導電体細線20の幅方向の長さd1は20μm~300μmであることが好ましい。導電体細線20の幅方向の長さd1を変えることで、透過するS偏光の周波数を制御することができる。
The shape of the thin conductor wire 20 is linear. The length d1 in the width direction of the thin conductor wire 20 is preferably 20 μm to 300 μm. By changing the width-direction length d1 of the thin conductor wire 20, the frequency of the transmitted S-polarized light can be controlled.
導電体細線20の幅方向の長さは以下の方法で測定することができる。幅方向の間隔と同様な方法で、テラヘルツ帯バンドパス偏光子100を観察する。得られた観察像において5つの導電体細線20の幅方向の長さを測定し、その平均値を導電体細線20の幅方向の長さとする。
The length of the conductor fine wire 20 in the width direction can be measured by the following method. The terahertz bandpass polarizer 100 is observed in a manner similar to the width direction spacing. The lengths in the width direction of the five fine conductor wires 20 are measured in the obtained observation image, and the average value is taken as the length in the width direction of the fine conductor wires 20 .
導電体細線20のZ方向の平均厚さは、例えば、10nm~2000nmである。導電体細線20のZ方向の平均厚さは、Auなどの金属を用いる場合は、好ましくは、30nm~60nmである。
The average thickness of the conductor thin wires 20 in the Z direction is, for example, 10 nm to 2000 nm. The average thickness of the thin conductor wires 20 in the Z direction is preferably 30 nm to 60 nm when using a metal such as Au.
導電体細線20のZ方向の平均厚さは、例えば、共焦点レーザー顕微鏡を用い、テラヘルツ帯バンドパス偏光子100の高さプロファイルを計測することで、測定することができる。導電体細線20のZ方向の平均厚さは、ランダムに選択した5つの導電体細線20の高さを測定し、その平均値を導電体細線20のZ方向の平均厚さとする。
The average thickness of the conductive fine wire 20 in the Z direction can be measured, for example, by measuring the height profile of the terahertz bandpass polarizer 100 using a confocal laser microscope. The average thickness of the thin conductor wires 20 in the Z direction is obtained by measuring the heights of five randomly selected thin conductor wires 20 and taking the average value as the average thickness of the thin conductor wires 20 in the Z direction.
導電体細線20の延在方向(Y方向)の長さは、例えば、0.5mm~20mmである。
The length of the thin conductor wire 20 in the extending direction (Y direction) is, for example, 0.5 mm to 20 mm.
基板10の板厚方向に平行であり、導電体細線20の幅方向に平行な断面において、導電体細線20は、幅方向の端部に凸部21を有していても良い。凸部21の高さh1は、例えば、20nm~2μmである。凸部21は、導電体細線20の幅方向の両端にあることが好ましい。凸部21の高さh1は、導電体細線20の幅方向の中央部分から凸部21で最も高い部分までのZ方向の長さである。
In a cross section parallel to the plate thickness direction of the substrate 10 and parallel to the width direction of the conductor thin wire 20, the conductor thin wire 20 may have a convex portion 21 at the end in the width direction. The height h1 of the convex portion 21 is, for example, 20 nm to 2 μm. It is preferable that the protrusions 21 are located at both ends of the thin conductor wire 20 in the width direction. The height h1 of the convex portion 21 is the length in the Z direction from the central portion in the width direction of the thin conductor wire 20 to the highest portion of the convex portion 21 .
導電体細線20のZ方向の凸部21の高さは、例えば、共焦点レーザー顕微鏡を用い、テラヘルツ帯バンドパス偏光子100の高さプロファイルを計測することで測定することができる。具体的には、5つの導電体細線20を選択し、各導電体細線20の幅方向の中央部分から凸部21の最も高い部分までのZ方向の長さを、共焦点レーザー顕微鏡を用いて測定する。得られた測定値の平均値を導電体細線20の凸部21の高さとすることができる。
The height of the protrusions 21 in the Z direction of the conductor fine wires 20 can be measured, for example, by measuring the height profile of the terahertz bandpass polarizer 100 using a confocal laser microscope. Specifically, five fine conductor wires 20 are selected, and the length in the Z direction from the central portion in the width direction of each fine conductor wire 20 to the highest portion of the convex portion 21 is measured using a confocal laser microscope. Measure. The average value of the obtained measured values can be used as the height of the convex portion 21 of the fine conductor wire 20 .
第1実施形態の導電体細線20の材質は、導電性を有するのであれば特に限定されない。導電体細線20の材質としては、Au、Al、Cu、またはAgなどの金属が挙げられる。導電体細線20の材質としては、Auが好ましい。導電体細線20に金属を用いると、例えば、カーボンナノチューブなどよりも高い透過率を得ることができる。
The material of the thin conductor wire 20 of the first embodiment is not particularly limited as long as it has conductivity. The material of the thin conductor wire 20 includes metals such as Au, Al, Cu, and Ag. Au is preferable as the material of the thin conductor wire 20 . If metal is used for the thin conductor wire 20, it is possible to obtain a higher transmittance than, for example, carbon nanotubes.
以上、第1実施形態に係るテラヘルツ帯バンドパス偏光子100について説明した。第1実施形態に係るテラヘルツ帯バンドパス偏光子100は、導電体細線20の間隔ε1等によって、定まる共振点付近で、S偏光のみを透過し、P偏光を遮断する。即ち、テラヘルツ帯バンドパス偏光子100は、偏光機能およびバンドパス機能を兼ね備える。
The terahertz-band bandpass polarizer 100 according to the first embodiment has been described above. The terahertz-band bandpass polarizer 100 according to the first embodiment transmits only S-polarized light and blocks P-polarized light in the vicinity of the resonance point determined by the interval ε1 of the conductor thin wires 20 and the like. That is, the terahertz-band bandpass polarizer 100 has both a polarizing function and a bandpass function.
次に、テラヘルツ帯バンドパス偏光子の製造方法について、図3および図4を用いて説明する。図3は、第1実施形態に係るテラヘルツ帯バンドパス偏光子の製造方法のフローチャートである。図4は、レーザーを照射する積層体120の断面模式図である。テラヘルツ帯バンドパス偏光子の製造方法は、ポリイミド、ポリアミド、またはセルロースアセテートからなる基板10上に、導電層25を形成することで、積層体120を得る導電層形成工程S10と、積層体120に対し、レーザーを照射することで、導電層25の一部を除去し、互いに一定の間隔で略平行に配置された複数の直線状の導電体細線を形成する、導電体細線形成工程S20と、を備える。
Next, a method for manufacturing a terahertz band-pass polarizer will be described with reference to FIGS. 3 and 4. FIG. FIG. 3 is a flowchart of a method for manufacturing a terahertz bandpass polarizer according to the first embodiment. FIG. 4 is a schematic cross-sectional view of the laminate 120 irradiated with laser. The method for producing a terahertz band-pass polarizer includes a conductive layer forming step S10 of obtaining a laminate 120 by forming a conductive layer 25 on a substrate 10 made of polyimide, polyamide, or cellulose acetate; On the other hand, a fine conductor wire forming step S20 of removing a part of the conductive layer 25 by irradiating with a laser and forming a plurality of straight fine conductor wires arranged substantially parallel to each other at regular intervals; Prepare.
「導電層形成工程S10」
導電層形成工程S10では、基板10上に、導電層25を形成することで、積層体120を得る。 "Conductive layer forming step S10"
In the conductive layer forming step S<b>10 , the laminate 120 is obtained by forming theconductive layer 25 on the substrate 10 .
導電層形成工程S10では、基板10上に、導電層25を形成することで、積層体120を得る。 "Conductive layer forming step S10"
In the conductive layer forming step S<b>10 , the laminate 120 is obtained by forming the
基板
基板10は、ポリイミド、ポリアミド、またはセルロースアセテートからなる。基板10の厚さは、例えば、5μm~50μmである。基板10の形状としては、例えば、フィルム状である。 Substrate Thesubstrate 10 is made of polyimide, polyamide, or cellulose acetate. The thickness of the substrate 10 is, for example, 5 μm to 50 μm. The shape of the substrate 10 is, for example, a film shape.
基板10は、ポリイミド、ポリアミド、またはセルロースアセテートからなる。基板10の厚さは、例えば、5μm~50μmである。基板10の形状としては、例えば、フィルム状である。 Substrate The
基板10の1MHzのときの比誘電率は、3.0~5.0であることが好ましい。より好ましいポリイミドの1MHzのときの比誘電率は、3.0~4.0である。比誘電率は、JIS C 2151:2019に準拠して測定することができる。
The dielectric constant of the substrate 10 at 1 MHz is preferably 3.0 to 5.0. More preferable polyimide has a dielectric constant of 3.0 to 4.0 at 1 MHz. A dielectric constant can be measured according to JIS C 2151:2019.
基板10の1MHzのときの誘電正接(1MHz)は、0.0010~0.0300であることが好ましい。より好ましい1MHzのときの誘電正接(1MHz)は、0.0013~0.0200である。誘電正接は、JIS C 2151:2019に従って測定することができる。
The dielectric loss tangent (1 MHz) of the substrate 10 at 1 MHz is preferably 0.0010 to 0.0300. A more preferable dielectric loss tangent (1 MHz) at 1 MHz is 0.0013 to 0.0200. A dielectric loss tangent can be measured according to JIS C 2151:2019.
導電層
導電層25の材質は、導電性を有する材質であれば特に限定されない。導電層25の材質としては、Au、Al、Cu、またはAgなどの金属が挙げられる。導電層25の材質としては、Auが好ましい。 Conductive Layer The material of theconductive layer 25 is not particularly limited as long as it has conductivity. Materials for the conductive layer 25 include metals such as Au, Al, Cu, and Ag. Au is preferable as the material of the conductive layer 25 .
導電層25の材質は、導電性を有する材質であれば特に限定されない。導電層25の材質としては、Au、Al、Cu、またはAgなどの金属が挙げられる。導電層25の材質としては、Auが好ましい。 Conductive Layer The material of the
導電層25の厚さは、例えば、10nm~2000nmである。導電層25の厚さは、Auなどの金属を用いる場合は、好ましくは、30nm~60nmである。
The thickness of the conductive layer 25 is, for example, 10 nm to 2000 nm. The thickness of the conductive layer 25 is preferably 30 nm to 60 nm when using metal such as Au.
導電層25の形成方法は、特に限定されない。例えば、Auなどの金属を真空蒸着することで導電層25を形成してもよいし(金属導電層形成工程)、導電塗料を塗布することで、導電層25を形成してもよい。
The method of forming the conductive layer 25 is not particularly limited. For example, the conductive layer 25 may be formed by vacuum-depositing a metal such as Au (metal conductive layer forming step), or by applying a conductive paint.
「導電体細線形成工程S20」
導電体細線形成工程S20では、図5に示すように、基板10上に設けられる導電層25と、を備える積層体120に対し、レーザーを照射することで、導電層25の一部を除去し、互いに一定の間隔で略平行に配置された複数の直線状の導電体細線20を形成する。
導電体細線20の延在方向と直交する幅方向の前記間隔ε1は例えば、20μm~300μmである。導電体細線20の延在方向と直交する幅方向の長さd1は、例えば、20μm~300μmである。 "Conductor thin wire forming step S20"
In the fine conductor wire forming step S20, as shown in FIG. 5, a laminate 120 including aconductive layer 25 provided on a substrate 10 is irradiated with a laser to remove part of the conductive layer 25. , to form a plurality of straight thin conductor wires 20 arranged substantially parallel to each other at regular intervals.
The interval ε1 in the width direction orthogonal to the extending direction of thethin conductor wires 20 is, for example, 20 μm to 300 μm. The length d1 in the width direction perpendicular to the extending direction of the thin conductor wire 20 is, for example, 20 μm to 300 μm.
導電体細線形成工程S20では、図5に示すように、基板10上に設けられる導電層25と、を備える積層体120に対し、レーザーを照射することで、導電層25の一部を除去し、互いに一定の間隔で略平行に配置された複数の直線状の導電体細線20を形成する。
導電体細線20の延在方向と直交する幅方向の前記間隔ε1は例えば、20μm~300μmである。導電体細線20の延在方向と直交する幅方向の長さd1は、例えば、20μm~300μmである。 "Conductor thin wire forming step S20"
In the fine conductor wire forming step S20, as shown in FIG. 5, a laminate 120 including a
The interval ε1 in the width direction orthogonal to the extending direction of the
図5は、テラヘルツ帯バンドパス偏光子の製造装置200の一例である。テラヘルツ帯バンドパス偏光子の製造装置200は、パルスレーザー30、ビームエクスパンダー31、2分の1波長板32、偏光ビームスプリッター33、ビームディフューザー34、対物レンズ35、およびXYZステージ36を備える。
FIG. 5 is an example of an apparatus 200 for manufacturing a terahertz-band bandpass polarizer. A terahertz-band bandpass polarizer manufacturing apparatus 200 includes a pulse laser 30 , a beam expander 31 , a half-wave plate 32 , a polarizing beam splitter 33 , a beam diffuser 34 , an objective lens 35 , and an XYZ stage 36 .
パルスレーザー30で生成されたレーザーは、ビームエクスパンダー31に入射する。ビームエクスパンダ―31によって、パルスレーザー30から入射したレーザーのビーム径が調整される。ビーム径が調整されたレーザーは次に、2分の1波長板32に入射する。2分の1波長板で、レーザーは、位相差λ/2(180°)を与えられる。位相差を与えられたレーザーは、偏光ビームスプリッター33に入射する。偏光ビームスプリッター33では、S偏光のレーザーを対物レンズ35に向けて反射し、P偏光のレーザーをビームディフューザー34に向けて透過する。偏光ビームスプリッター33を透過したP偏光のレーザーはビームディフューザー34で終端する。対物レンズ35を通過したレーザーは、XYZステージ36に設置された積層体120に照射される。レーザーが照射された部分の導電層25は、除去される。
The laser generated by the pulse laser 30 enters the beam expander 31. The beam expander 31 adjusts the beam diameter of the laser incident from the pulse laser 30 . The laser whose beam diameter has been adjusted is then incident on the half-wave plate 32 . With a half-wave plate, the laser is given a phase difference of λ/2 (180°). The phase-shifted laser enters the polarizing beam splitter 33 . The polarizing beam splitter 33 reflects the S-polarized laser toward the objective lens 35 and transmits the P-polarized laser toward the beam diffuser 34 . The P-polarized laser that has passed through the polarization beam splitter 33 terminates at the beam diffuser 34 . The laser that has passed through the objective lens 35 is applied to the laminate 120 placed on the XYZ stage 36 . The portion of the conductive layer 25 irradiated with the laser is removed.
XYZステージ36には、積層体120が設置される。XYZステージ36は、導電体細線20の幅および間隔が設定された数値となるように、レーザー照射時にX方向およびY方向に積層体120を移動させる。これによって、互いに一定の間隔で略平行に配置された複数の直線状の導電体細線20を形成される。レーザーを用いることで、通常のフォトリソグラフィでは形成されない凸部21を形成することができる。
A laminate 120 is installed on the XYZ stage 36 . The XYZ stage 36 moves the stacked body 120 in the X and Y directions during laser irradiation so that the width and spacing of the fine conductor wires 20 are set to the values set. As a result, a plurality of thin conductor wires 20 arranged substantially parallel to each other at regular intervals are formed. By using a laser, it is possible to form the projections 21 that cannot be formed by ordinary photolithography.
以上、第1実施形態に係るテラヘルツ帯バンドパス偏光子の製造方法S100を説明した。本実施形態では、導電層形成工程S10を備えていたが、積層体120を別に用意できれば、導電層形成工程S10を備えていなくてもよい。
The manufacturing method S100 of the terahertz-band bandpass polarizer according to the first embodiment has been described above. In this embodiment, the conductive layer forming step S10 is provided, but the conductive layer forming step S10 may not be provided if the laminate 120 can be separately prepared.
本実施形態の製造方法では、レーザーを用いて導電体細線20を形成したが、フォトリソグラフィを用いて導電体細線20を形成してもよい。
In the manufacturing method of the present embodiment, the fine conductor wires 20 are formed using a laser, but the fine conductor wires 20 may be formed using photolithography.
本実施形態では、凸部21がある場合を説明したが、凸部21は無くてもよい。
In the present embodiment, the case where the convex portion 21 is present has been described, but the convex portion 21 may be omitted.
(第2実施形態)
次に、本発明に係る第2実施形態のテラヘルツ帯バンドパス偏光子100Aを、図6および図7を参照して説明する。
なお、この第2実施形態においては、第1実施形態における構成要素と同一の部分については同一の符号を付し、その説明を省略し、異なる点についてのみ説明する。 (Second embodiment)
Next, aterahertz bandpass polarizer 100A of a second embodiment according to the present invention will be described with reference to FIGS. 6 and 7. FIG.
In the second embodiment, the same reference numerals are assigned to the same components as in the first embodiment, the description thereof is omitted, and only the different points will be described.
次に、本発明に係る第2実施形態のテラヘルツ帯バンドパス偏光子100Aを、図6および図7を参照して説明する。
なお、この第2実施形態においては、第1実施形態における構成要素と同一の部分については同一の符号を付し、その説明を省略し、異なる点についてのみ説明する。 (Second embodiment)
Next, a
In the second embodiment, the same reference numerals are assigned to the same components as in the first embodiment, the description thereof is omitted, and only the different points will be described.
図6は、本発明の一実施形態に係るテラヘルツ帯バンドパス偏光子100Aの平面図である。図7は、図6に示されたB-B線に沿う断面図である。図6および図7に示すように、第2実施形態に係るテラヘルツ帯バンドパス偏光子100Aは、基板10と、基板10上に設けられ、互いに一定の間隔で略平行に配置された複数の直線状の導電体細線20Aとを備える。以下、各部について説明する。
FIG. 6 is a plan view of a terahertz bandpass polarizer 100A according to one embodiment of the present invention. FIG. 7 is a cross-sectional view taken along line BB shown in FIG. As shown in FIGS. 6 and 7, the terahertz-band bandpass polarizer 100A according to the second embodiment includes a substrate 10 and a plurality of straight lines provided on the substrate 10 and arranged substantially parallel to each other at regular intervals. and a conductive thin wire 20A. Each part will be described below.
「導電体細線」
導電体細線20Aは、基板10上に設けられる。また、導電体細線20Aは、互いに一定の間隔で略平行に複数配置される。図6に示す通り、導電体細線20Aは、例えば、導電体細線20Aの延在方向(Y方向)と直交する幅方向(X方向)に間隔ε2で離れて設けられる。間隔ε2の間隔を変えることで、透過するS偏光の周波数を制御することができる。間隔ε2は、20μm~300μmである。各導電体細線20A間の間隔は略同一である。なお、導電体細線20Aの間隔ε2は、導電体細線20Aの幅方向の中心と隣接する導電体細線20Aの幅方向の中心との間の長さをいう。 "Conductor thin wire"
Thethin conductor wires 20A are provided on the substrate 10 . In addition, a plurality of thin conductor wires 20A are arranged substantially parallel to each other at regular intervals. As shown in FIG. 6, the fine conductor wires 20A are provided, for example, at an interval ε2 in the width direction (X direction) orthogonal to the extending direction (Y direction) of the fine conductor wires 20A. By changing the interval ε2, the frequency of transmitted S-polarized light can be controlled. The interval ε2 is 20 μm to 300 μm. The intervals between the thin conductor wires 20A are substantially the same. The interval ε2 between the thin conductor wires 20A refers to the length between the center of the thin conductor wire 20A in the width direction and the center of the adjacent thin conductor wire 20A in the width direction.
導電体細線20Aは、基板10上に設けられる。また、導電体細線20Aは、互いに一定の間隔で略平行に複数配置される。図6に示す通り、導電体細線20Aは、例えば、導電体細線20Aの延在方向(Y方向)と直交する幅方向(X方向)に間隔ε2で離れて設けられる。間隔ε2の間隔を変えることで、透過するS偏光の周波数を制御することができる。間隔ε2は、20μm~300μmである。各導電体細線20A間の間隔は略同一である。なお、導電体細線20Aの間隔ε2は、導電体細線20Aの幅方向の中心と隣接する導電体細線20Aの幅方向の中心との間の長さをいう。 "Conductor thin wire"
The
導電体細線20Aの形状は、直線状である。導電体細線20Aの幅方向の長さd2は20μm~300μmであることが好ましい。導電体細線20Aの幅方向の長さd2を変えることで、透過するS偏光の周波数を制御することができる。
The shape of the thin conductor wire 20A is linear. The length d2 in the width direction of the thin conductor wire 20A is preferably 20 μm to 300 μm. By changing the length d2 in the width direction of the thin conductor wire 20A, the frequency of the transmitted S-polarized light can be controlled.
導電体細線20AのZ方向の平均厚さは、例えば、300nm~3000nmである。導電体細線20AのZ方向の平均厚さは、好ましくは、600nm~2000nmである。カーボンナノチューブを用いる場合は、好ましくは、600nm~1000nmである。
The average thickness in the Z direction of the thin conductor wires 20A is, for example, 300 nm to 3000 nm. The average thickness in the Z direction of the thin conductor wires 20A is preferably 600 nm to 2000 nm. When using carbon nanotubes, it is preferably 600 nm to 1000 nm.
導電体細線20Aの延在方向(Y方向)の長さは、例えば、0.5mm~20mmである。
The length of the thin conductor wire 20A in the extending direction (Y direction) is, for example, 0.5 mm to 20 mm.
基板10の板厚方向に平行であり、導電体細線20Aの幅方向に平行な断面において、導電体細線20Aは、幅方向の端部に凸部21Aを有していても良い。凸部21Aの高さh2は、例えば、導電体細線20の厚さが1000nmであれば、500nm~5000μmである。凸部21Aは、導電体細線20Aの幅方向の両端にあることが好ましい。
In a cross section parallel to the thickness direction of the substrate 10 and parallel to the width direction of the thin conductor wire 20A, the thin conductor wire 20A may have a protrusion 21A at the end in the width direction. The height h2 of the convex portion 21A is, for example, 500 nm to 5000 μm if the thin conductor wire 20 has a thickness of 1000 nm. It is preferable that the convex portions 21A are present at both ends in the width direction of the thin conductor wire 20A.
第2実施形態の導電体細線20Aの材質は、導電性を有し、かつ、テラヘルツ帯の電磁波を吸収可能であり、かつ、電磁波を吸収して発生した熱から電気信号を発生可能な材料(電磁波吸収熱電材料)であれば特に限定されない。当該材料がテラヘルツ帯の電磁波を熱として吸収し、発生した熱勾配を電気信号へと変換することで、テラヘルツ帯の電磁波を検知することができる。導電体細線20Aの材質としては、例えば、カーボンナノチューブである。カーボンナノチューブを用いた場合、P偏光をカーボンナノチューブが吸収し、温度勾配が発生する。その温度差が電圧に変換されることで(光熱起電力効果)、テラヘルツ帯の電磁波を検出することができる。
The material of the conductor thin wire 20A of the second embodiment is a material that has conductivity, can absorb electromagnetic waves in the terahertz band, and can generate an electric signal from the heat generated by absorbing the electromagnetic waves ( It is not particularly limited as long as it is an electromagnetic wave absorbing thermoelectric material). The material absorbs electromagnetic waves in the terahertz band as heat and converts the generated thermal gradient into an electrical signal, so that the electromagnetic waves in the terahertz band can be detected. The material of the thin conductor wire 20A is, for example, a carbon nanotube. When carbon nanotubes are used, the carbon nanotubes absorb the P-polarized light and generate a temperature gradient. By converting the temperature difference into voltage (photothermoelectromotive force effect), electromagnetic waves in the terahertz band can be detected.
導電体細線20Aに用いるカーボンナノチューブとしては、多層カーボンナノチューブまたは単層カーボンナノチューブが挙げられる。カーボンナノチューブとしては、単層カーボンナノチューブが好ましい。
Carbon nanotubes used for the thin conductor wires 20A include multi-walled carbon nanotubes and single-walled carbon nanotubes. Single-walled carbon nanotubes are preferred as the carbon nanotubes.
電気的性質(カイラリティ)の観点では、導電体細線20Aに用いるカーボンナノチューブとして、金属型カーボンナノチューブ、半導体型カーボンナノチューブを用いることができる。カーボンナノチューブとしては、半導体型カーボンナノチューブが好ましい。
From the viewpoint of electrical properties (chirality), metallic carbon nanotubes and semiconducting carbon nanotubes can be used as the carbon nanotubes used for the thin conductor wires 20A. A semiconducting carbon nanotube is preferable as the carbon nanotube.
導電体細線20A中のカーボンナノチューブの含有量は50質量%以上であることが好ましい。より好ましくはカーボンナノチューブの含有量は80質量%以上である。さらに好ましくは、カーボンナノチューブの含有量は90質量%以上である。導電体細線20A中のカーボンナノチューブの含有量が高いほど好ましい。そのため、カーボンナノチューブの含有量の上限は100質量%である。
The content of carbon nanotubes in the fine conductor wires 20A is preferably 50% by mass or more. More preferably, the content of carbon nanotubes is 80% by mass or more. More preferably, the content of carbon nanotubes is 90% by mass or more. The higher the content of carbon nanotubes in the fine conductor wires 20A, the better. Therefore, the upper limit of the carbon nanotube content is 100% by mass.
以上、第2実施形態に係るテラヘルツ帯バンドパス偏光子100Aについて説明した。第2実施形態に係るテラヘルツ帯バンドパス偏光子100Aは、導電体細線20Aの間隔ε2等によって定まる共振点付近で、S偏光のみを透過し、P偏光を遮断する。即ち、テラヘルツ帯バンドパス偏光子100Aは、偏光機能およびバンドパス機能を兼ね備える。また、第2実施形態に係るテラヘルツ帯バンドパス偏光子100Aは、導電体細線20Aがテラヘルツ帯の電磁波を吸収可能な電磁波吸収熱電材料からなる。そのため、テラヘルツ帯バンドパス偏光子100Aは、さらにテラヘルツ帯の電磁波を検知することができる。
The terahertz-band bandpass polarizer 100A according to the second embodiment has been described above. The terahertz-band bandpass polarizer 100A according to the second embodiment transmits only S-polarized light and blocks P-polarized light in the vicinity of the resonance point determined by the spacing ε2 of the thin conductor wires 20A. That is, the terahertz-band bandpass polarizer 100A has both a polarizing function and a bandpass function. In the terahertz-band bandpass polarizer 100A according to the second embodiment, the thin conductor wires 20A are made of an electromagnetic wave absorbing thermoelectric material capable of absorbing terahertz-band electromagnetic waves. Therefore, the terahertz band-pass polarizer 100A can further detect electromagnetic waves in the terahertz band.
次に、テラヘルツ帯バンドパス偏光子100Aの製造方法について、図8および図9を用いて説明する。図8は、第1実施形態に係るテラヘルツ帯バンドパス偏光子の製造方法のフローチャートである。図9は、レーザーを照射する積層体120Aの断面模式図である。テラヘルツ帯バンドパス偏光子の製造方法は、ポリイミド、ポリアミド、またはセルロースアセテートからなる基板10上に、導電層25Aを形成することで、図9に示す積層体120Aを得る電磁波吸収熱電材料層形成工程S10Aと、基板10上に設けられる導電層25Aと、を備える積層体120Aに対し、レーザーを照射することで、導電層25Aの一部を除去し、互いに一定の間隔で略平行に配置された複数の直線状の導電体細線を形成する、導電体細線形成工程S20と、を備える。
Next, a method for manufacturing the terahertz-band bandpass polarizer 100A will be described with reference to FIGS. 8 and 9. FIG. FIG. 8 is a flow chart of a method for manufacturing a terahertz bandpass polarizer according to the first embodiment. FIG. 9 is a schematic cross-sectional view of a laminate 120A irradiated with laser. The manufacturing method of the terahertz band-pass polarizer is an electromagnetic wave absorbing thermoelectric material layer forming step of obtaining the laminate 120A shown in FIG. 9 by forming the conductive layer 25A on the substrate 10 made of polyimide, polyamide or cellulose acetate. By irradiating a laminate 120A including S10A and a conductive layer 25A provided on the substrate 10 with a laser, a part of the conductive layer 25A is removed, and the conductive layers 25A are arranged substantially parallel to each other at regular intervals. and a conductor thin wire forming step S20 for forming a plurality of straight conductor thin wires.
「電磁波吸収熱電材料層形成工程S10A」
電磁波吸収熱電材料層形成工程S10Aでは、基板10上に、導電層25Aを形成することで、積層体120Aを得る。第2実施形態の導電層25Aは、電磁波吸収熱電材料からなる層である。 "Electromagnetic wave absorbing thermoelectric material layer forming step S10A"
In the electromagnetic wave absorbing thermoelectric material layer forming step S10A, thelaminate 120A is obtained by forming the conductive layer 25A on the substrate 10 . The conductive layer 25A of the second embodiment is a layer made of an electromagnetic wave absorbing thermoelectric material.
電磁波吸収熱電材料層形成工程S10Aでは、基板10上に、導電層25Aを形成することで、積層体120Aを得る。第2実施形態の導電層25Aは、電磁波吸収熱電材料からなる層である。 "Electromagnetic wave absorbing thermoelectric material layer forming step S10A"
In the electromagnetic wave absorbing thermoelectric material layer forming step S10A, the
基板
基板10は、ポリイミド、ポリアミド、またはセルロースアセテートからなる。基板10の厚さは、例えば、5μm~50μmである。基板10の形状としては、例えば、フィルム状である。 Substrate Thesubstrate 10 is made of polyimide, polyamide, or cellulose acetate. The thickness of the substrate 10 is, for example, 5 μm to 50 μm. The shape of the substrate 10 is, for example, a film shape.
基板10は、ポリイミド、ポリアミド、またはセルロースアセテートからなる。基板10の厚さは、例えば、5μm~50μmである。基板10の形状としては、例えば、フィルム状である。 Substrate The
導電層
第2実施形態の導電層25Aの材質は、導電性を有し、かつ、テラヘルツ帯の電磁波を吸収可能であり、かつ、電磁波を吸収して発生した熱から電気信号を発生可能な材料(電磁波吸収熱電材料)であれば特に限定されない。当該材料がテラヘルツ帯の電磁波を熱として吸収し、発生した熱勾配を電気信号へと変換することで、テラヘルツ帯の電磁波を検知することができる。導電体細線20Aの材質としては、例えば、カーボンナノチューブである。カーボンナノチューブを用いた場合、P偏光をカーボンナノチューブが吸収し、温度勾配が発生する。その温度差が電圧に変換されることで(光熱起電力効果)、テラヘルツ帯の電磁波を検出することができる。 Conductive Layer The material of theconductive layer 25A of the second embodiment is a material that has conductivity, is capable of absorbing electromagnetic waves in the terahertz band, and is capable of generating an electrical signal from heat generated by absorbing the electromagnetic waves. (Electromagnetic wave absorption thermoelectric material) is not particularly limited. The material absorbs electromagnetic waves in the terahertz band as heat and converts the generated thermal gradient into an electrical signal, so that the electromagnetic waves in the terahertz band can be detected. The material of the thin conductor wire 20A is, for example, a carbon nanotube. When carbon nanotubes are used, the carbon nanotubes absorb the P-polarized light and generate a temperature gradient. By converting the temperature difference into voltage (photothermoelectromotive force effect), electromagnetic waves in the terahertz band can be detected.
第2実施形態の導電層25Aの材質は、導電性を有し、かつ、テラヘルツ帯の電磁波を吸収可能であり、かつ、電磁波を吸収して発生した熱から電気信号を発生可能な材料(電磁波吸収熱電材料)であれば特に限定されない。当該材料がテラヘルツ帯の電磁波を熱として吸収し、発生した熱勾配を電気信号へと変換することで、テラヘルツ帯の電磁波を検知することができる。導電体細線20Aの材質としては、例えば、カーボンナノチューブである。カーボンナノチューブを用いた場合、P偏光をカーボンナノチューブが吸収し、温度勾配が発生する。その温度差が電圧に変換されることで(光熱起電力効果)、テラヘルツ帯の電磁波を検出することができる。 Conductive Layer The material of the
導電層25Aに用いるカーボンナノチューブとしては、多層カーボンナノチューブまたは単層カーボンナノチューブが挙げられる。カーボンナノチューブとしては、単層カーボンナノチューブが好ましい。
Carbon nanotubes used for the conductive layer 25A include multi-walled carbon nanotubes and single-walled carbon nanotubes. Single-walled carbon nanotubes are preferred as the carbon nanotubes.
電気的性質(カイラリティ)の観点では、導電層25Aに用いるカーボンナノチューブとして、金属型カーボンナノチューブ、半導体型カーボンナノチューブを用いることができる。カーボンナノチューブとしては、半導体型カーボンナノチューブが好ましい。
From the viewpoint of electrical properties (chirality), metallic carbon nanotubes and semiconducting carbon nanotubes can be used as the carbon nanotubes used for the conductive layer 25A. A semiconducting carbon nanotube is preferable as the carbon nanotube.
導電層25A中のカーボンナノチューブの含有量は50質量%以上であることが好ましい。より好ましくはカーボンナノチューブの含有量は80質量%以上である。さらに好ましくは、カーボンナノチューブの含有量は90質量%以上である。導電層25A中のカーボンナノチューブの含有量が高いほど好ましい。そのため、カーボンナノチューブの含有量の上限は100質量%である。
The content of carbon nanotubes in the conductive layer 25A is preferably 50% by mass or more. More preferably, the content of carbon nanotubes is 80% by mass or more. More preferably, the content of carbon nanotubes is 90% by mass or more. The higher the content of carbon nanotubes in the conductive layer 25A, the better. Therefore, the upper limit of the carbon nanotube content is 100% by mass.
導電層25Aの厚さは、例えば、300nm~3000nmである。導電層25AのZ方向の平均厚さは、好ましくは、600nm~2000nmである。
The thickness of the conductive layer 25A is, for example, 300 nm to 3000 nm. The average thickness of the conductive layer 25A in the Z direction is preferably 600 nm to 2000 nm.
導電層25Aの形成方法は、特に限定されない。例えば、カーボンナノチューブなどの電磁波吸収熱電材料が分散した分散液を濾過することで、電磁波吸収熱電材料フィルム(例えば、カーボンナノチューブフィルム)を作製し、作製した電磁波吸収熱電材料フィルムを基板10に転写することで導電層25Aを形成してもよい。また、カーボンナノチューブなどの電磁波吸収熱電材料が分散した分散液を基板10に塗布することで、導電層25Aを形成してもよい。
The method of forming the conductive layer 25A is not particularly limited. For example, an electromagnetic wave absorbing thermoelectric material film (for example, a carbon nanotube film) is produced by filtering a dispersion liquid in which an electromagnetic wave absorbing thermoelectric material such as carbon nanotubes is dispersed, and the produced electromagnetic wave absorbing thermoelectric material film is transferred to the substrate 10. Thus, the conductive layer 25A may be formed. Alternatively, the conductive layer 25A may be formed by coating the substrate 10 with a dispersion liquid in which an electromagnetic wave absorbing thermoelectric material such as carbon nanotubes is dispersed.
「導電体細線形成工程S20」
導電体細線形成工程S20では、第1実施形態と同様の方法で、積層体120Aに対し、レーザーを照射することで、導電層25Aの一部を除去し、互いに一定の間隔で略平行に配置された複数の直線状の導電体細線20Aを形成する。 "Conductor thin wire forming step S20"
In the fine conductor wire forming step S20, thelaminated body 120A is irradiated with a laser in the same manner as in the first embodiment, thereby removing part of the conductive layer 25A and arranging them substantially parallel to each other at regular intervals. to form a plurality of straight thin conductor wires 20A.
導電体細線形成工程S20では、第1実施形態と同様の方法で、積層体120Aに対し、レーザーを照射することで、導電層25Aの一部を除去し、互いに一定の間隔で略平行に配置された複数の直線状の導電体細線20Aを形成する。 "Conductor thin wire forming step S20"
In the fine conductor wire forming step S20, the
以上、第2実施形態に係るテラヘルツ帯バンドパス偏光子の製造方法S100Aを説明した。本実施形態では、電磁波吸収熱電材料層形成工程S10Aを備えていたが、積層体120Aを別に用意できれば、電磁波吸収熱電材料層形成工程S10Aを備えていなくてもよい。
The manufacturing method S100A of the terahertz-band bandpass polarizer according to the second embodiment has been described above. Although the present embodiment includes the electromagnetic wave absorbing thermoelectric material layer forming step S10A, the electromagnetic wave absorbing thermoelectric material layer forming step S10A may not be provided if the laminate 120A can be prepared separately.
本実施形態では、凸部21Aがある場合を説明したが、凸部21Aは無くてもよい。
In the present embodiment, the case where the convex portion 21A is present has been described, but the convex portion 21A may be omitted.
なお、本発明の技術的範囲は前記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。その他、本発明の趣旨に逸脱しない範囲で、前記実施形態における構成要素を周知の構成要素に置き換えることは適宜可能である。
It should be noted that the technical scope of the present invention is not limited to the above embodiments, and various modifications can be made without departing from the scope of the present invention. In addition, it is possible to appropriately replace the constituent elements in the above-described embodiments with well-known constituent elements without departing from the gist of the present invention.
次に、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。
Next, examples of the present invention will be described. The conditions in the examples are one example of conditions adopted for confirming the feasibility and effect of the present invention, and the present invention is based on this one example of conditions. It is not limited. Various conditions can be adopted in the present invention as long as the objects of the present invention are achieved without departing from the gist of the present invention.
(金属積層体の作製)
基板としてカプトン(登録商標)50EN(厚さ12.5μm、比誘電率 3.2(1MHz)、誘電正接0.0070(1MHz))、ユニアミド(登録商標)EX(厚さ25μm)、またはセルロースアセテートメンブレン(厚さ125μm)を用いた。真空蒸着法を用いて基板上にAu膜を50nmの膜厚で形成し金属積層体を得た。 (Preparation of metal laminate)
Kapton (registered trademark) 50EN (thickness 12.5 μm, dielectric constant 3.2 (1 MHz), dielectric loss tangent 0.0070 (1 MHz)), Uniamide (registered trademark) EX (thickness 25 μm), or cellulose acetate as a substrate A membrane (125 μm thick) was used. A metal laminate was obtained by forming an Au film with a film thickness of 50 nm on a substrate using a vacuum deposition method.
基板としてカプトン(登録商標)50EN(厚さ12.5μm、比誘電率 3.2(1MHz)、誘電正接0.0070(1MHz))、ユニアミド(登録商標)EX(厚さ25μm)、またはセルロースアセテートメンブレン(厚さ125μm)を用いた。真空蒸着法を用いて基板上にAu膜を50nmの膜厚で形成し金属積層体を得た。 (Preparation of metal laminate)
Kapton (registered trademark) 50EN (thickness 12.5 μm, dielectric constant 3.2 (1 MHz), dielectric loss tangent 0.0070 (1 MHz)), Uniamide (registered trademark) EX (
(CNT積層体の作製)
基板としてカプトン(登録商標)50ENを用いた。メンブレンでカーボンナノチューブ分散液を濾過し、カーボンナノチューブフィルムを得た(膜厚1μm)。得られたカーボンナノチューブフィルムを基板に転写し、CNT積層体を得た。 (Production of CNT laminate)
Kapton (registered trademark) 50EN was used as the substrate. The carbon nanotube dispersion was filtered through a membrane to obtain a carbon nanotube film (thickness: 1 μm). The obtained carbon nanotube film was transferred to a substrate to obtain a CNT laminate.
基板としてカプトン(登録商標)50ENを用いた。メンブレンでカーボンナノチューブ分散液を濾過し、カーボンナノチューブフィルムを得た(膜厚1μm)。得られたカーボンナノチューブフィルムを基板に転写し、CNT積層体を得た。 (Production of CNT laminate)
Kapton (registered trademark) 50EN was used as the substrate. The carbon nanotube dispersion was filtered through a membrane to obtain a carbon nanotube film (thickness: 1 μm). The obtained carbon nanotube film was transferred to a substrate to obtain a CNT laminate.
(実施例1)
導電体細線の形成には、図5に示すテラヘルツ帯バンドパス偏光子の製造装置(対物レンズ:10倍)を用いた。カプトン基板上の金属積層体のAu膜に対し、パルスレーザー(波長532nm)を照射しながら、導電体細線間隔200μm、導電体細線の幅200μmとなるようにXYZステージを動かし、実施例1のテラヘルツ帯バンドパス偏光子を得た。なお、レーザー照射条件は以下の条件で行った。
Pulse width: 3 ns
Pulse energy: 50 nJ
Repetition rate: 1 kHz
Beam diameter: f2 mm
Overlap ratio: 15% (Example 1)
A terahertz-band bandpass polarizer manufacturing apparatus (objective lens: 10×) shown in FIG. 5 was used to form the thin conductor wires. While irradiating the Au film of the metal laminate on the Kapton substrate with a pulse laser (wavelength 532 nm), the XYZ stage was moved so that the conductor fine line spacing was 200 μm and the conductor fine line width was 200 μm. A zonal bandpass polarizer was obtained. In addition, the laser irradiation conditions were performed under the following conditions.
Pulse width: 3ns
Pulse energy: 50nJ
Repetition rate: 1kHz
Beam diameter: f2mm
Overlap ratio: 15%
導電体細線の形成には、図5に示すテラヘルツ帯バンドパス偏光子の製造装置(対物レンズ:10倍)を用いた。カプトン基板上の金属積層体のAu膜に対し、パルスレーザー(波長532nm)を照射しながら、導電体細線間隔200μm、導電体細線の幅200μmとなるようにXYZステージを動かし、実施例1のテラヘルツ帯バンドパス偏光子を得た。なお、レーザー照射条件は以下の条件で行った。
Pulse width: 3 ns
Pulse energy: 50 nJ
Repetition rate: 1 kHz
Beam diameter: f2 mm
Overlap ratio: 15% (Example 1)
A terahertz-band bandpass polarizer manufacturing apparatus (objective lens: 10×) shown in FIG. 5 was used to form the thin conductor wires. While irradiating the Au film of the metal laminate on the Kapton substrate with a pulse laser (wavelength 532 nm), the XYZ stage was moved so that the conductor fine line spacing was 200 μm and the conductor fine line width was 200 μm. A zonal bandpass polarizer was obtained. In addition, the laser irradiation conditions were performed under the following conditions.
Pulse width: 3ns
Pulse energy: 50nJ
Repetition rate: 1kHz
Beam diameter: f2mm
Overlap ratio: 15%
(実施例2)
カプトン基板上の金属積層体のAu膜に対し、実施例1と同様の条件でレーザーを照射しながら、導電体細線間隔100μm、導電体細線の幅100μmとなるようにXYZステージを動かし、実施例2のテラヘルツ帯バンドパス偏光子を得た。 (Example 2)
While irradiating the Au film of the metal laminate on the Kapton substrate with a laser under the same conditions as in Example 1, the XYZ stage was moved so that the conductor fine line spacing was 100 μm and the conductor fine line width was 100 μm. No. 2 terahertz bandpass polarizer was obtained.
カプトン基板上の金属積層体のAu膜に対し、実施例1と同様の条件でレーザーを照射しながら、導電体細線間隔100μm、導電体細線の幅100μmとなるようにXYZステージを動かし、実施例2のテラヘルツ帯バンドパス偏光子を得た。 (Example 2)
While irradiating the Au film of the metal laminate on the Kapton substrate with a laser under the same conditions as in Example 1, the XYZ stage was moved so that the conductor fine line spacing was 100 μm and the conductor fine line width was 100 μm. No. 2 terahertz bandpass polarizer was obtained.
(実施例3)
カプトン基板上の金属積層体のAu膜に対し、実施例1と同様の条件でレーザーを照射しながら、導電体細線間隔60μm、導電体細線の幅60μmとなるようにXYZステージを動かし、実施例3のテラヘルツ帯バンドパス偏光子を得た。 (Example 3)
While irradiating the Au film of the metal laminate on the Kapton substrate with a laser under the same conditions as in Example 1, the XYZ stage was moved so that the conductor fine line spacing was 60 μm and the conductor fine line width was 60 μm. No. 3 terahertz bandpass polarizer was obtained.
カプトン基板上の金属積層体のAu膜に対し、実施例1と同様の条件でレーザーを照射しながら、導電体細線間隔60μm、導電体細線の幅60μmとなるようにXYZステージを動かし、実施例3のテラヘルツ帯バンドパス偏光子を得た。 (Example 3)
While irradiating the Au film of the metal laminate on the Kapton substrate with a laser under the same conditions as in Example 1, the XYZ stage was moved so that the conductor fine line spacing was 60 μm and the conductor fine line width was 60 μm. No. 3 terahertz bandpass polarizer was obtained.
(実施例4)
カプトン基板上の金属積層体のAu膜に対し、実施例1と同様の条件でレーザーを照射しながら、導電体細線間隔40μm、導電体細線の幅40μmとなるようにXYZステージを動かし、実施例4のテラヘルツ帯バンドパス偏光子を得た。 (Example 4)
While irradiating the Au film of the metal laminate on the Kapton substrate with a laser under the same conditions as in Example 1, the XYZ stage was moved so that the conductor fine line spacing was 40 μm and the conductor fine line width was 40 μm. No. 4 terahertz bandpass polarizer was obtained.
カプトン基板上の金属積層体のAu膜に対し、実施例1と同様の条件でレーザーを照射しながら、導電体細線間隔40μm、導電体細線の幅40μmとなるようにXYZステージを動かし、実施例4のテラヘルツ帯バンドパス偏光子を得た。 (Example 4)
While irradiating the Au film of the metal laminate on the Kapton substrate with a laser under the same conditions as in Example 1, the XYZ stage was moved so that the conductor fine line spacing was 40 μm and the conductor fine line width was 40 μm. No. 4 terahertz bandpass polarizer was obtained.
(実施例5)
ユニアミド基板上の金属積層体のAu膜に対し、導電体細線間隔200μm、導電体細線の幅200μmとなるシャドーマスクを使用した真空蒸着法により、実施例5のテラヘルツ帯バンドパス偏光子を得た。 (Example 5)
A terahertz bandpass polarizer of Example 5 was obtained by vacuum deposition using a shadow mask with a conductor fine line spacing of 200 μm and a conductor fine line width of 200 μm for the Au film of the metal laminate on the uniamide substrate. .
ユニアミド基板上の金属積層体のAu膜に対し、導電体細線間隔200μm、導電体細線の幅200μmとなるシャドーマスクを使用した真空蒸着法により、実施例5のテラヘルツ帯バンドパス偏光子を得た。 (Example 5)
A terahertz bandpass polarizer of Example 5 was obtained by vacuum deposition using a shadow mask with a conductor fine line spacing of 200 μm and a conductor fine line width of 200 μm for the Au film of the metal laminate on the uniamide substrate. .
(実施例6)
セルロースアセテートメンブレン基板上の金属積層体のAu膜に対し、導電体細線間隔100μm、導電体細線の幅100μmとなるシャドーマスクを使用した真空蒸着法により、実施例6のテラヘルツ帯バンドパス偏光子を得た。 (Example 6)
The terahertz bandpass polarizer of Example 6 was applied to the Au film of the metal laminate on the cellulose acetate membrane substrate by a vacuum deposition method using a shadow mask having a fine conductor line spacing of 100 μm and a conductor fine line width of 100 μm. Obtained.
セルロースアセテートメンブレン基板上の金属積層体のAu膜に対し、導電体細線間隔100μm、導電体細線の幅100μmとなるシャドーマスクを使用した真空蒸着法により、実施例6のテラヘルツ帯バンドパス偏光子を得た。 (Example 6)
The terahertz bandpass polarizer of Example 6 was applied to the Au film of the metal laminate on the cellulose acetate membrane substrate by a vacuum deposition method using a shadow mask having a fine conductor line spacing of 100 μm and a conductor fine line width of 100 μm. Obtained.
(実施例7)
CNT積層体に対し、実施例1と同様の条件でレーザーを照射し、導電体細線間隔200μm、導電体細線の幅200μmとなるようにXYZステージを動かし、実施例7のテラヘルツ帯バンドパス偏光子を得た。 (Example 7)
The CNT laminate was irradiated with a laser under the same conditions as in Example 1, and the XYZ stage was moved so that the conductor fine line spacing was 200 μm and the conductor fine line width was 200 μm. got
CNT積層体に対し、実施例1と同様の条件でレーザーを照射し、導電体細線間隔200μm、導電体細線の幅200μmとなるようにXYZステージを動かし、実施例7のテラヘルツ帯バンドパス偏光子を得た。 (Example 7)
The CNT laminate was irradiated with a laser under the same conditions as in Example 1, and the XYZ stage was moved so that the conductor fine line spacing was 200 μm and the conductor fine line width was 200 μm. got
(実施例8)
CNT積層体に対し、実施例1と同様の条件でレーザーを照射し、導電体細線間隔100μm、導電体細線の幅100μmとなるようにXYZステージを動かし、実施例8のテラヘルツ帯バンドパス偏光子を得た。 (Example 8)
The CNT laminate was irradiated with a laser under the same conditions as in Example 1, and the XYZ stage was moved so that the conductor fine line spacing was 100 μm and the conductor fine line width was 100 μm. got
CNT積層体に対し、実施例1と同様の条件でレーザーを照射し、導電体細線間隔100μm、導電体細線の幅100μmとなるようにXYZステージを動かし、実施例8のテラヘルツ帯バンドパス偏光子を得た。 (Example 8)
The CNT laminate was irradiated with a laser under the same conditions as in Example 1, and the XYZ stage was moved so that the conductor fine line spacing was 100 μm and the conductor fine line width was 100 μm. got
(実施例9)
CNT積層体に対し、実施例1と同様の条件でレーザーを照射し、導電体細線間隔60μm、導電体細線の幅60μmとなるようにXYZステージを動かし、実施例9のテラヘルツ帯バンドパス偏光子を得た。 (Example 9)
The CNT laminate was irradiated with a laser under the same conditions as in Example 1, and the XYZ stage was moved so that the conductor fine line spacing was 60 μm and the conductor fine line width was 60 μm. got
CNT積層体に対し、実施例1と同様の条件でレーザーを照射し、導電体細線間隔60μm、導電体細線の幅60μmとなるようにXYZステージを動かし、実施例9のテラヘルツ帯バンドパス偏光子を得た。 (Example 9)
The CNT laminate was irradiated with a laser under the same conditions as in Example 1, and the XYZ stage was moved so that the conductor fine line spacing was 60 μm and the conductor fine line width was 60 μm. got
(実施例10)
CNT積層体に対し、実施例1と同様の条件でレーザーを照射し、導電体細線間隔40μm、導電体細線の幅40μmとなるようにXYZステージを動かし、実施例10のテラヘルツ帯バンドパス偏光子を得た。 (Example 10)
The CNT laminate was irradiated with a laser under the same conditions as in Example 1, and the XYZ stage was moved so that the conductor fine line spacing was 40 μm and the conductor fine line width was 40 μm. got
CNT積層体に対し、実施例1と同様の条件でレーザーを照射し、導電体細線間隔40μm、導電体細線の幅40μmとなるようにXYZステージを動かし、実施例10のテラヘルツ帯バンドパス偏光子を得た。 (Example 10)
The CNT laminate was irradiated with a laser under the same conditions as in Example 1, and the XYZ stage was moved so that the conductor fine line spacing was 40 μm and the conductor fine line width was 40 μm. got
(透過スペクトル測定)
各実施例のS偏光およびP偏光の透過スペクトルを測定した。測定には、アドバンテスト社製TAS7500シリーズを用いた。測定は以下の条件で行った。
周波数レンジ:0.5THz~4.5THz
周波数分解能:3.8 GHz
積算回数:1028回
測定系:透過型
雰囲気:乾燥空気パージ (Transmission spectrum measurement)
The transmission spectra of S-polarized light and P-polarized light of each example were measured. TAS7500 series manufactured by Advantest was used for the measurement. Measurement was performed under the following conditions.
Frequency range: 0.5THz to 4.5THz
Frequency resolution: 3.8 GHz
Cumulative number of times: 1028 times Measurement system: transmission type Atmosphere: dry air purge
各実施例のS偏光およびP偏光の透過スペクトルを測定した。測定には、アドバンテスト社製TAS7500シリーズを用いた。測定は以下の条件で行った。
周波数レンジ:0.5THz~4.5THz
周波数分解能:3.8 GHz
積算回数:1028回
測定系:透過型
雰囲気:乾燥空気パージ (Transmission spectrum measurement)
The transmission spectra of S-polarized light and P-polarized light of each example were measured. TAS7500 series manufactured by Advantest was used for the measurement. Measurement was performed under the following conditions.
Frequency range: 0.5THz to 4.5THz
Frequency resolution: 3.8 GHz
Cumulative number of times: 1028 times Measurement system: transmission type Atmosphere: dry air purge
(高さプロファイル測定)
実施例4の高さプロファイルを測定した。測定には、キーエンス社製VK-X1000シリーズを用いた。測定条件は対物レンズ100倍とした。 (height profile measurement)
The height profile of Example 4 was measured. VK-X1000 series manufactured by Keyence Corporation was used for the measurement. Measurement conditions were an objective lens of 100 times.
実施例4の高さプロファイルを測定した。測定には、キーエンス社製VK-X1000シリーズを用いた。測定条件は対物レンズ100倍とした。 (height profile measurement)
The height profile of Example 4 was measured. VK-X1000 series manufactured by Keyence Corporation was used for the measurement. Measurement conditions were an objective lens of 100 times.
実施例1のテラヘルツ帯バンドパス偏光子の透過スペクトルを図10に示す。縦軸は透過率を示し、横軸は周波数(THz)を示す。実施例1のテラヘルツ帯バンドパス偏光子は、共振点0.7THz付近でS偏光が透過し、P偏光が遮断していることが確認された。
The transmission spectrum of the terahertz-band bandpass polarizer of Example 1 is shown in FIG. The vertical axis indicates transmittance, and the horizontal axis indicates frequency (THz). It was confirmed that the terahertz-band bandpass polarizer of Example 1 transmits S-polarized light and blocks P-polarized light near the resonance point of 0.7 THz.
実施例2のテラヘルツ帯バンドパス偏光子の透過スペクトルを図11に示す。縦軸は透過率を示し、横軸は周波数(THz)を示す。実施例2のテラヘルツ帯バンドパス偏光子は、共振点1.3THz付近でS偏光が透過し、P偏光が遮断していることが確認された。
The transmission spectrum of the terahertz-band bandpass polarizer of Example 2 is shown in FIG. The vertical axis indicates transmittance, and the horizontal axis indicates frequency (THz). It was confirmed that the terahertz-band bandpass polarizer of Example 2 transmits S-polarized light and blocks P-polarized light near the resonance point of 1.3 THz.
実施例3のテラヘルツ帯バンドパス偏光子の透過スペクトルを図12に示す。縦軸は透過率を示し、横軸は周波数(THz)を示す。実施例3のテラヘルツ帯バンドパス偏光子は、共振点2THz付近でS偏光が透過し、P偏光が遮断していることが確認された。
The transmission spectrum of the terahertz-band bandpass polarizer of Example 3 is shown in FIG. The vertical axis indicates transmittance, and the horizontal axis indicates frequency (THz). It was confirmed that the terahertz-band bandpass polarizer of Example 3 transmits S-polarized light and blocks P-polarized light near the resonance point of 2 THz.
実施例4のテラヘルツ帯バンドパス偏光子の透過スペクトルを図13に示す。縦軸は透過率を示し、横軸は周波数(THz)を示す。実施例4のテラヘルツ帯バンドパス偏光子は、共振点2.6THz付近でS偏光が透過し、P偏光が遮断していることが確認された。
The transmission spectrum of the terahertz-band bandpass polarizer of Example 4 is shown in FIG. The vertical axis indicates transmittance, and the horizontal axis indicates frequency (THz). It was confirmed that the terahertz-band bandpass polarizer of Example 4 transmits S-polarized light and blocks P-polarized light near the resonance point of 2.6 THz.
実施例5のテラヘルツ帯バンドパス偏光子の透過スペクトルを図14に示す。縦軸は透過率を示し、横軸は周波数(THz)を示す。実施例1のテラヘルツ帯バンドパス偏光子は、共振点0.7THz付近でS偏光が透過し、P偏光が遮断していることが確認された。
The transmission spectrum of the terahertz-band bandpass polarizer of Example 5 is shown in FIG. The vertical axis indicates transmittance, and the horizontal axis indicates frequency (THz). It was confirmed that the terahertz-band bandpass polarizer of Example 1 transmits S-polarized light and blocks P-polarized light near the resonance point of 0.7 THz.
実施例6のテラヘルツ帯バンドパス偏光子の透過スペクトルを図15に示す。縦軸は透過率を示し、横軸は周波数(THz)を示す。実施例1のテラヘルツ帯バンドパス偏光子は、共振点1.3THz付近でS偏光が透過し、P偏光が遮断していることが確認された。
The transmission spectrum of the terahertz-band bandpass polarizer of Example 6 is shown in FIG. The vertical axis indicates transmittance, and the horizontal axis indicates frequency (THz). It was confirmed that the terahertz-band bandpass polarizer of Example 1 transmits S-polarized light and blocks P-polarized light near the resonance point of 1.3 THz.
図10~図15に示されたように、実施例1~6のテラヘルツ帯バンドパス偏光子は、特定の周波数付近でS偏光を透過し、P偏光を遮断できることが確認された。また、導電体細線の間隔を小さくすることで、透過する周波数を高周波数側にシフトできることが確認された。
As shown in FIGS. 10 to 15, it was confirmed that the terahertz bandpass polarizers of Examples 1 to 6 can transmit S-polarized light and block P-polarized light in the vicinity of specific frequencies. Moreover, it was confirmed that the transmission frequency can be shifted to the high frequency side by reducing the distance between the conductor thin wires.
実施例7のテラヘルツ帯バンドパス偏光子の透過スペクトルを図16に示す。縦軸は透過率を示し、横軸は周波数(THz)を示す。実施例7のテラヘルツ帯バンドパス偏光子は、共振点0.7THz付近でS偏光が透過し、P偏光が遮断していることが確認された。
The transmission spectrum of the terahertz-band bandpass polarizer of Example 7 is shown in FIG. The vertical axis indicates transmittance, and the horizontal axis indicates frequency (THz). It was confirmed that the terahertz-band bandpass polarizer of Example 7 transmits S-polarized light and blocks P-polarized light near the resonance point of 0.7 THz.
実施例8のテラヘルツ帯バンドパス偏光子の透過スペクトルを図17に示す。縦軸は透過率を示し、横軸は周波数(THz)を示す。実施例8のテラヘルツ帯バンドパス偏光子は、共振点1.3THz付近でS偏光が透過し、P偏光が遮断していることが確認された。
The transmission spectrum of the terahertz-band bandpass polarizer of Example 8 is shown in FIG. The vertical axis indicates transmittance, and the horizontal axis indicates frequency (THz). It was confirmed that the terahertz-band bandpass polarizer of Example 8 transmits S-polarized light and blocks P-polarized light near the resonance point of 1.3 THz.
実施例9のテラヘルツ帯バンドパス偏光子の透過スペクトルを図18に示す。縦軸は透過率を示し、横軸は周波数(THz)を示す。実施例9のテラヘルツ帯バンドパス偏光子は、共振点2THz付近でS偏光が透過し、P偏光が遮断していることが確認された。
The transmission spectrum of the terahertz-band bandpass polarizer of Example 9 is shown in FIG. The vertical axis indicates transmittance, and the horizontal axis indicates frequency (THz). It was confirmed that the terahertz-band bandpass polarizer of Example 9 transmits S-polarized light and blocks P-polarized light near the resonance point of 2 THz.
実施例10のテラヘルツ帯バンドパス偏光子の透過スペクトルを図19に示す。縦軸は透過率を示し、横軸は周波数(THz)を示す。実施例10のテラヘルツ帯バンドパス偏光子は、共振点3THz付近でS偏光が透過し、P偏光が遮断していることが確認された。
The transmission spectrum of the terahertz-band bandpass polarizer of Example 10 is shown in FIG. The vertical axis indicates transmittance, and the horizontal axis indicates frequency (THz). It was confirmed that the terahertz-band bandpass polarizer of Example 10 transmits S-polarized light and blocks P-polarized light near the resonance point of 3 THz.
図16~図19から示されるように、実施例7~10のテラヘルツ帯バンドパス偏光子は、特定の周波数付近でS偏光を透過し、P偏光を遮断できることが確認された。また、導電体細線の間隔を小さくすることで、透過する周波数を高周波数側にシフトできることが確認された。なお、実施例7~10のテラヘルツ帯バンドパス偏光子は、実施例1~6のテラヘルツ帯バンドパス偏光子よりも透過率が低かった。これは、カーボンナノチューブのプラズモン共鳴によるものだと考えられる。
As shown in FIGS. 16 to 19, it was confirmed that the terahertz bandpass polarizers of Examples 7 to 10 can transmit S-polarized light and block P-polarized light in the vicinity of specific frequencies. Moreover, it was confirmed that the transmission frequency can be shifted to the high frequency side by reducing the distance between the conductor thin wires. The terahertz band-pass polarizers of Examples 7-10 had lower transmittances than the terahertz-band band-pass polarizers of Examples 1-6. This is believed to be due to plasmon resonance of carbon nanotubes.
図20に実施例4の高さプロファイルを示す。縦軸は高さ(nm)を示し、横軸はX方向の変位(μm)を示す。実施例4のテラヘルツ帯バンドパス偏光子は、幅方向の両端に凸部(バリ)を有することが確認された。図20の場合では、40nm以上の凸部が確認できた。
The height profile of Example 4 is shown in FIG. The vertical axis indicates height (nm), and the horizontal axis indicates displacement (μm) in the X direction. It was confirmed that the terahertz bandpass polarizer of Example 4 had protrusions (burrs) at both ends in the width direction. In the case of FIG. 20, convex portions of 40 nm or more were confirmed.
本開示のテラヘルツ帯バンドパス偏光子は、偏光機能およびバンドパス機能を兼ね備えるため、光学素子の数を低減できる。そのため、本開示のテラヘルツ帯バンドパス偏光子は、産業上の利用可能性が高い。
The terahertz-band bandpass polarizer of the present disclosure has both a polarization function and a bandpass function, so the number of optical elements can be reduced. Therefore, the terahertz bandpass polarizer of the present disclosure has high industrial applicability.
10 基板、20 導電体細線、100 テラヘルツ帯バンドパス偏光子
10 Substrate, 20 Conductive thin wire, 100 Terahertz band-pass polarizer
Claims (23)
- ポリイミド、ポリアミド、またはセルロースアセテートからなる基板と、
前記基板上に設けられ、互いに一定の間隔で略平行に配置された複数の直線状の導電体細線と、
を備え、
前記導電体細線の延在方向と直交する幅方向の前記間隔が20μm~300μmである、テラヘルツ帯バンドパス偏光子。 a substrate made of polyimide, polyamide, or cellulose acetate;
a plurality of linear thin conductor wires provided on the substrate and arranged substantially parallel to each other at regular intervals;
with
A terahertz-band bandpass polarizer, wherein the spacing in the width direction orthogonal to the extending direction of the conductor thin wires is 20 μm to 300 μm. - 前記基板の厚さが5μm~50μmである、請求項1に記載のテラヘルツ帯バンドパス偏光子。 The terahertz bandpass polarizer according to claim 1, wherein the substrate has a thickness of 5 μm to 50 μm.
- 前記基板の比誘電率が3.0~5.0である、請求項1または2に記載のテラヘルツ帯バンドパス偏光子。 The terahertz bandpass polarizer according to claim 1 or 2, wherein the substrate has a dielectric constant of 3.0 to 5.0.
- 前記基板の誘電正接は、0.0010~0.0300である、請求項1~3のいずれか1項に記載のテラヘルツ帯バンドパス偏光子。 The terahertz-band bandpass polarizer according to any one of claims 1 to 3, wherein the substrate has a dielectric loss tangent of 0.0010 to 0.0300.
- 前記導電体細線の前記幅方向の長さが20μm~300μmである、請求項1~4のいずれか1項に記載のテラヘルツ帯バンドパス偏光子。 The terahertz-band bandpass polarizer according to any one of claims 1 to 4, wherein the length of the conductor fine wire in the width direction is 20 µm to 300 µm.
- 前記導電体細線が金属からなる、請求項1~5のいずれか1項に記載のテラヘルツ帯バンドパス偏光子。 The terahertz-band bandpass polarizer according to any one of claims 1 to 5, wherein the fine conductor wires are made of metal.
- 前記金属が、Au、Al、Cu、またはAgである、請求項6に記載のテラヘルツ帯バンドパス偏光子。 The terahertz bandpass polarizer according to claim 6, wherein the metal is Au, Al, Cu, or Ag.
- 前記導電体細線がテラヘルツ帯の電磁波を吸収可能であり、かつ、前記電磁波を吸収して発生した熱から電気信号を発生可能な電磁波吸収熱電材料からなる、請求項1~5のいずれか1項に記載のテラヘルツ帯バンドパス偏光子。 6. The conductor thin wire is made of an electromagnetic wave absorbing thermoelectric material capable of absorbing electromagnetic waves in the terahertz band and generating an electric signal from the heat generated by absorbing the electromagnetic waves. The terahertz-band bandpass polarizer according to .
- 前記電磁波吸収熱電材料が、カーボンナノチューブである請求項8に記載のテラヘルツ帯バンドパス偏光子。 The terahertz bandpass polarizer according to claim 8, wherein the electromagnetic wave absorbing thermoelectric material is a carbon nanotube.
- 前記基板の板厚方向に平行であり、前記導電体細線の前記幅方向に平行な断面において、
前記導電体細線の幅方向の端部に凸部を有する、請求項1~9のいずれか1項に記載のテラヘルツ帯バンドパス偏光子。 In a cross section parallel to the thickness direction of the substrate and parallel to the width direction of the conductor fine wire,
The terahertz-band bandpass polarizer according to any one of claims 1 to 9, wherein the conductor thin wire has a convex portion at an end portion in the width direction. - 前記凸部の高さが、20nm~2μmである、請求項10に記載のテラヘルツ帯バンドパス偏光子。 The terahertz bandpass polarizer according to claim 10, wherein the height of the convex portion is 20 nm to 2 µm.
- ポリイミド、ポリアミド、またはセルロースアセテートからなる基板と、
前記基板上に設けられる導電層と、
を備える積層体に対し、レーザーを照射することで、
前記導電層の一部を除去し、互いに一定の間隔で略平行に配置された複数の直線状の導電体細線を形成する、導電体細線形成工程を備える、テラヘルツ帯バンドパス偏光子の製造方法。 a substrate made of polyimide, polyamide, or cellulose acetate;
a conductive layer provided on the substrate;
By irradiating the laminate with a laser,
A method for producing a terahertz band bandpass polarizer, comprising a step of forming a plurality of thin conductor wires arranged substantially parallel to each other at regular intervals by removing part of the conductive layer. . - 前記基板の厚さが5μm~50μmである、請求項12に記載のテラヘルツ帯バンドパス偏光子の製造方法。 The method for producing a terahertz bandpass polarizer according to claim 12, wherein the substrate has a thickness of 5 µm to 50 µm.
- 前記基板の比誘電率が3.0~5.0である、請求項12または13に記載のテラヘルツ帯バンドパス偏光子の製造方法。 The method for producing a terahertz bandpass polarizer according to claim 12 or 13, wherein the substrate has a dielectric constant of 3.0 to 5.0.
- 前記基板の誘電正接は、0.0010~0.0300である、請求項12~14のいずれか1項に記載のテラヘルツ帯バンドパス偏光子の製造方法。 The method for producing a terahertz bandpass polarizer according to any one of claims 12 to 14, wherein the substrate has a dielectric loss tangent of 0.0010 to 0.0300.
- 前記導電体細線の延在方向と直交する幅方向の前記間隔が20μm~300μmである、請求項12~15のいずれか1項に記載のテラヘルツ帯バンドパス偏光子の製造方法。 The method for producing a terahertz bandpass polarizer according to any one of claims 12 to 15, wherein the spacing in the width direction orthogonal to the extending direction of the conductor thin wires is 20 µm to 300 µm.
- 前記導電体細線の延在方向と直交する幅方向の長さが20μm~300μmである、請求項12~16のいずれか1項に記載のテラヘルツ帯バンドパス偏光子の製造方法。 The method for producing a terahertz bandpass polarizer according to any one of claims 12 to 16, wherein the length of the width direction perpendicular to the extending direction of the conductor thin wire is 20 µm to 300 µm.
- 前記導電層が金属からなる、請求項12~17のいずれか1項に記載のテラヘルツ帯バンドパス偏光子の製造方法。 The method for producing a terahertz bandpass polarizer according to any one of claims 12 to 17, wherein the conductive layer is made of metal.
- 前記金属が、Au、Al、Cu、またはAgである、請求項18に記載のテラヘルツ帯バンドパス偏光子の製造方法。 The method for producing a terahertz bandpass polarizer according to claim 18, wherein the metal is Au, Al, Cu, or Ag.
- 前記基板上に蒸着によって導電層を形成する金属導電層形成工程を、更に備える、請求項18または19に記載のテラヘルツ帯バンドパス偏光子の製造方法。 The method for producing a terahertz band-pass polarizer according to claim 18 or 19, further comprising a metal conductive layer forming step of forming a conductive layer on the substrate by vapor deposition.
- 前記導電層がテラヘルツ帯の電磁波を吸収可能であり、かつ、前記電磁波を吸収して発生した熱から電気信号を発生可能な電磁波吸収熱電材料からなる、請求項12~17のいずれか1項に記載のテラヘルツ帯バンドパス偏光子の製造方法。 According to any one of claims 12 to 17, the conductive layer is made of an electromagnetic wave absorbing thermoelectric material capable of absorbing electromagnetic waves in the terahertz band and generating an electric signal from heat generated by absorbing the electromagnetic waves. A method for producing the described terahertz-band bandpass polarizer.
- 前記電磁波吸収熱電材料がカーボンナノチューブである、請求項21に記載のテラヘルツ帯バンドパス偏光子の製造方法。 The method for producing a terahertz bandpass polarizer according to claim 21, wherein the electromagnetic wave absorbing thermoelectric material is a carbon nanotube.
- カーボンナノチューブ分散液を濾過することで、カーボンナノチューブフィルムを作製し、前記カーボンナノチューブフィルムを前記基板に転写することで、前記導電層を形成する電磁波吸収熱電材料層形成工程をさらに備える、請求項22に記載のテラヘルツ帯バンドパス偏光子の製造方法。 22. Further comprising an electromagnetic wave absorbing thermoelectric material layer forming step of filtering a carbon nanotube dispersion to form a carbon nanotube film and transferring the carbon nanotube film to the substrate to form the conductive layer. The method for manufacturing the terahertz band-pass polarizer according to 1.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-011423 | 2022-01-28 | ||
JP2022011423A JP2023110163A (en) | 2022-01-28 | 2022-01-28 | Terahertz-band bandpass polarizer and manufacturing method therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023145143A1 true WO2023145143A1 (en) | 2023-08-03 |
Family
ID=87471066
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/037618 WO2023145143A1 (en) | 2022-01-28 | 2022-10-07 | Terahertz bandpass polarizer and method for manufacturing terahertz bandpass polarizer |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2023110163A (en) |
WO (1) | WO2023145143A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008075624A1 (en) * | 2006-12-19 | 2008-06-26 | Murata Manufacturing Co., Ltd. | Optical component for terahertz band |
JP2011180568A (en) * | 2010-02-05 | 2011-09-15 | Asahi Kasei E-Materials Corp | Wire grid polarizing plate for terahertz band optical element, and electromagnetic wave processor |
JP2014163674A (en) * | 2013-02-21 | 2014-09-08 | Seiko Epson Corp | Terahertz wave detection apparatus, camera, imaging device, and measuring device |
US20170146453A1 (en) * | 2014-08-06 | 2017-05-25 | University Of Massachusetts | Single channel terahertz endoscopy |
WO2019244841A1 (en) * | 2018-06-18 | 2019-12-26 | 株式会社東海理化電機製作所 | Method for processing reflective polarizing member, and reflective polarizing member |
-
2022
- 2022-01-28 JP JP2022011423A patent/JP2023110163A/en active Pending
- 2022-10-07 WO PCT/JP2022/037618 patent/WO2023145143A1/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008075624A1 (en) * | 2006-12-19 | 2008-06-26 | Murata Manufacturing Co., Ltd. | Optical component for terahertz band |
JP2011180568A (en) * | 2010-02-05 | 2011-09-15 | Asahi Kasei E-Materials Corp | Wire grid polarizing plate for terahertz band optical element, and electromagnetic wave processor |
JP2014163674A (en) * | 2013-02-21 | 2014-09-08 | Seiko Epson Corp | Terahertz wave detection apparatus, camera, imaging device, and measuring device |
US20170146453A1 (en) * | 2014-08-06 | 2017-05-25 | University Of Massachusetts | Single channel terahertz endoscopy |
WO2019244841A1 (en) * | 2018-06-18 | 2019-12-26 | 株式会社東海理化電機製作所 | Method for processing reflective polarizing member, and reflective polarizing member |
Also Published As
Publication number | Publication date |
---|---|
JP2023110163A (en) | 2023-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Bilal et al. | Wideband microwave absorber comprising metallic split-ring resonators surrounded with E-shaped fractal metamaterial | |
US8968525B2 (en) | Methods of flash reduction and patterning of graphite oxide and its polymer composites | |
US20120206805A1 (en) | Nanowire grid polarizers and methods for fabricating the same | |
KR102563188B1 (en) | A Simple Route from Carbon Nanoparticles to Highly Conductive Porous Graphene for Supercapacitor Applications | |
KR101324523B1 (en) | carbon nanotube sheets and polarizer using thereof | |
US10355348B2 (en) | Optically transparent microwave polarizer based on quasi-metallic graphene | |
CN113004532B (en) | Metamaterial based on covalent organic framework and application of metamaterial in optical device | |
Li et al. | Polarization-sensitive multi-frequency switches and high-performance slow light based on quadruple plasmon-induced transparency in a patterned graphene-based terahertz metamaterial | |
JP2010192581A (en) | Electromagnetic wave radiator and electromagnetic wave absorber | |
Omeis et al. | Metal-insulator-metal antennas in the far-infrared range based on highly doped InAsSb | |
Dincer et al. | Investigation of optical and dispersion parameters of electrospinning grown activated carbon nanofiber (ACNF) layer | |
WO2023145143A1 (en) | Terahertz bandpass polarizer and method for manufacturing terahertz bandpass polarizer | |
Xiong et al. | Graphene-metasurface for wide-incident-angle terahertz absorption | |
CN103091777B (en) | Multiple-filter wave tunable band-pass filter and adjustment method | |
CN108196326B (en) | Broadband wave absorber based on black phosphorus and super surface | |
Huang et al. | A direct laser-synthesized magnetic metamaterial for low-frequency wideband passive microwave absorption | |
KR101744340B1 (en) | Flexible Bandstop filter having and manufacturing method thereof | |
Kastorp et al. | Growth and electronic properties of bi-and trilayer graphene on Ir (111) | |
US20170130327A1 (en) | Vacuum evaporation apparatus | |
Houeix et al. | Novel frequency selective surface made of laser-induced graphene | |
US20170130326A1 (en) | Evaporating source for vacuum evaporation | |
US20170130325A1 (en) | Vacuum evaporation method | |
CN114895394A (en) | Sub-wavelength grating structure with wide-band optical energy storage characteristic and preparation method thereof | |
Rehman et al. | Fragmented graphene synthesized on a dielectric substrate for THz applications | |
Gholipur et al. | Flexible MWCNT/PVA/Mn Ferrite/AC metacomposites with tunable negative permittivity for low-frequency reflectors and optical sensors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22924001 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |