WO2023145070A1 - Substrate conveyance device, component mounting device, substrate conveyance method, program, and recording medium - Google Patents
Substrate conveyance device, component mounting device, substrate conveyance method, program, and recording medium Download PDFInfo
- Publication number
- WO2023145070A1 WO2023145070A1 PCT/JP2022/003602 JP2022003602W WO2023145070A1 WO 2023145070 A1 WO2023145070 A1 WO 2023145070A1 JP 2022003602 W JP2022003602 W JP 2022003602W WO 2023145070 A1 WO2023145070 A1 WO 2023145070A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- substrate
- area
- head
- transport
- transport direction
- Prior art date
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 421
- 238000000034 method Methods 0.000 title claims description 19
- 238000011144 upstream manufacturing Methods 0.000 claims description 119
- 238000012546 transfer Methods 0.000 claims description 59
- 230000032258 transport Effects 0.000 description 123
- 238000012545 processing Methods 0.000 description 33
- 230000004048 modification Effects 0.000 description 15
- 238000012986 modification Methods 0.000 description 15
- 238000010586 diagram Methods 0.000 description 13
- 230000006870 function Effects 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 240000006829 Ficus sundaica Species 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 230000003028 elevating effect Effects 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K13/00—Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
- H05K13/04—Mounting of components, e.g. of leadless components
Definitions
- the present invention relates to a board transfer technique suitable for a component mounting apparatus that mounts components on a board using a head unit having a so-called in-line structure in which a plurality of heads are arranged in a predetermined arrangement direction.
- Patent Document 1 a component mounting apparatus using a head unit having an in-line structure (sometimes referred to as an in-line head unit) is known (Patent Document 1).
- the board is transported in a direction parallel to the direction in which the heads are arranged, and positioned at a position where components are to be mounted.
- a substrate transfer section is provided for this positioning.
- the component transfer section has a conveyor section, which carries in the board from the outside of the component mounting apparatus and transfers the board in a transfer direction parallel to the arrangement direction. Further, in order to position the substrate conveyed by the conveyor section at the target position, a stopper is provided that mechanically contacts the substrate.
- a plurality of stoppers are provided in the substrate transfer section to accommodate various substrate sizes. Each stopper is configured to mechanically abut and position the conveyed substrate. In addition, the plurality of stoppers are arranged so as to be retractable with respect to the transport path of the substrate at different target positions in the transport direction. A stopper corresponding to the size of the substrate conveyed by the conveyor advances into the conveying path and abuts on the substrate to position it. For example, for substrates up to a specific size, the first stopper operates to position the substrate at the first target position. 2 Positioned by a second stopper arranged at the target position. For this reason, as will be described in detail later with reference to FIG. 4, it is not possible to mount components using the entire inline head unit.
- head restriction There is a restriction (hereinafter referred to as “head restriction”) that it cannot be used.
- This head restriction is one of the main factors that increase the time required for component mounting (hereinafter referred to as “mounting cycle time"). Therefore, there has been a demand to reduce the number of heads subject to head restrictions.
- mounting cycle time the time required for component mounting
- the number of heads subject to head restrictions cannot be changed. Therefore, for example, when the substrate size in the transport direction is 1 mm longer than a specific size, it is necessary to position the substrate using the second stopper. As a result, the head is restricted in the same manner as when the substrate size is increased to the extent of the distance between the first stopper and the second stopper in the transport direction, and the same mounting cycle time is required.
- the present invention has been made in view of the above problems, and provides a component mounting apparatus using an in-line head unit, which enables efficient component mounting by suppressing an increase in mounting cycle time due to an increase in substrate size in the transport direction. It is an object of the present invention to provide a substrate transport technique capable of transporting and positioning a substrate in such a manner as to
- a first aspect of the present invention moves a plurality of heads collectively in a direction parallel to the arrangement direction within a first movable range while arranging a plurality of heads having nozzles attached to their tips along a predetermined arrangement direction.
- a component mounting apparatus having a first head unit capable of mounting a component on a first substrate positioned within a first mounting stage using the first head unit; a board transfer apparatus equipped in the component mounting apparatus; A substrate transport method for transporting a first substrate in the transport direction parallel to the arrangement direction in the component mounting apparatus, a program and a recording medium for transporting the first substrate in the transport direction parallel to the arrangement direction.
- a substrate transfer apparatus transfers the first substrate to the first mounting stage without mechanical contact with the contact member after transferring the first substrate in the transfer direction parallel to the arrangement direction. and a controller for controlling the first stopperless transporting unit, wherein when the first head unit is positioned at the most upstream position of the first movable range in the transporting direction A first upstream end position where the most downstream head in the transport direction among the plurality of heads is positioned, and the most upstream in the transport direction among the plurality of heads when the first head unit is positioned at the most downstream position in the first movable range.
- the control unit controls the first unconstrained area
- the control unit controls the first unconstrained area
- the first stopperless conveying unit is controlled such that the first substrate is stopped at a position offset by an offset amount that is equal to or less than a first excess amount that protrudes from the first unrestricted area and is greater than zero.
- a component mounting apparatus is characterized by including the substrate transfer apparatus.
- the most downstream head in the transport direction among the plurality of heads is and a first downstream end position where the most upstream head among the plurality of heads in the transport direction is positioned when the first head unit is positioned at the most downstream position in the first movable range.
- the first substrate is transported and positioned at a position offset by an offset amount equal to or less than a first excess amount and larger than zero, in a direction opposite to the direction of protrusion from the first reference stop position, to protrude from within the first unrestricted area. and a third step.
- the most downstream head in the transport direction among the plurality of heads is positioned. Sandwiched between the first upstream end position and the first downstream end position where the most upstream head among the plurality of heads in the transport direction is positioned when the first head unit is positioned at the most downstream position in the first movable range a first step of acquiring a region where the first head unconstrained area overlaps the first mounting stage as the first unconstrained area; and stopping the first substrate at a first reference stop position set within the first unconstrained area.
- the recording medium of the first aspect of the present invention is a non-transitory recording medium recording the above program.
- the first head unit has a so-called in-line structure, so head restrictions occur. Therefore, a first non-constrained area that is not subject to the head constraint is acquired.
- the first reference stop position is set. offset. The direction of the offset is opposite to the direction of protruding from the first reference stop position, and the offset amount is less than or equal to the first excess amount protruding from the first unrestricted area and greater than zero.
- the excess amount of the first substrate from the first unrestricted area is reduced, and the number of heads subject to head restrictions during component mounting is also reduced.
- the first substrate does not protrude from the first unconstrained area in the transport direction when the first substrate is stopped at the first reference stop position, the first substrate is stopped at the first reference stop position, Alternatively, the first substrate may be stopped at a position offset from the first reference stop position within a range not protruding from the first non-restricted area. As a result, the first substrate fits within the first non-restricted area, and the head is not restricted when mounting the components, so that the components can be mounted in an excellent mounting cycle time.
- the component mounting apparatus uses the first head unit to mount components on a second substrate positioned within a second mounting stage arranged downstream of the first mounting stage in the transport direction. While arranging a plurality of heads with nozzles attached to their tips along a predetermined arrangement direction, the plurality of heads can be collectively moved in a direction parallel to the arrangement direction within a second movable range that is the same as the first movable range.
- the second head unit is further provided, and components are mounted on the first board and the second board positioned on the first mounting stage and the second mounting stage, respectively, using the second head unit as follows. Additional configurations may be adopted.
- the second stopperless transfer section stops the second substrate transferred from the first mounting stage by the first stopperless transfer section in the second mounting stage without mechanical contact with the contact member. Further may be provided. Then, when the second substrate is stopped at a second reference stop position set within a second unconstrained area where the first head unconstrained range overlaps with the second mounting stage in the transport direction, the second substrate is placed in the second unconstrained area. If it protrudes from the area in the transport direction, the second reference stop position is offset.
- the direction of the offset is the direction opposite to the direction of protruding from the second reference stop position, and the offset amount is less than or equal to the second excess amount protruding from the second unrestricted area and greater than zero.
- the second movable range may differ from the first movable range.
- the first head-unrestricted range is narrower than the second head-unrestricted range in the transport direction
- the area where the first head-unrestricted range overlaps with the second mounting stage in the transport direction is defined as the second unrestricted area.
- the direction opposite to the direction of protruding from the second reference stop position is determined. It is preferable to control the second stopperless transport section so that the second substrate is stopped at a position offset by an offset amount that is equal to or less than the second excess amount and larger than zero, and which protrudes from the second unrestricted area. be.
- the second head-unrestricted range is narrower than the first head-unrestricted range in the transport direction
- the area where the second head-unrestricted range overlaps with the first mounting stage in the transport direction is defined as the first unrestricted area.
- the second movable range may differ from the first movable range, and while the first head unit is responsible for mounting components on the first board, the second head unit may be responsible for mounting components on the second board.
- the second stopperless transport is controlled such that the second substrate stops.
- the second stopperless conveying unit may be controlled so that the second substrate stops at a position offset from the second reference stop position within the range where the second substrate does not protrude from the second non-restricted area.
- the second substrate fits within the second non-restricted area, so that the head is not restricted when mounting the component, and the component can be mounted in an excellent mounting cycle time.
- the first reference stop position and the second reference stop position are offset as follows.
- the first substrate is stopped in a state where the upstream end of the first substrate in the transport direction coincides with the position of the upstream end of the first unrestricted area, and the downstream end of the second substrate in the transport direction is downstream of the second unrestricted area.
- the second substrate By stopping the second substrate in a state aligned with the end position, the distance between the first substrate and the second substrate in the transport direction can be widened.
- the first substrate is stopped in a state in which the downstream end of the first substrate in the transport direction coincides with the position of the downstream end of the first unrestricted area, and the upstream end of the second substrate in the transport direction is the second unrestricted area.
- a plurality of heads having nozzles attached to their tips are arranged along a predetermined arrangement direction, and the plurality of heads are collectively arranged in a direction parallel to the arrangement direction within a first movable range.
- the first head unit is mounted on a long substrate positioned straddling a first mounting stage and a second mounting stage spaced apart from each other in a direction parallel to the arrangement direction.
- a component mounting device that mounts components using a component mounting device, a substrate transport device equipped in the component mounting device, a substrate transport method for transporting a first substrate in the component mounting device in a transport direction parallel to an arrangement direction, a first substrate
- a program and recording medium for conveying in a conveying direction parallel to an arrangement direction.
- a substrate transport apparatus transports long substrates in a transport direction parallel to the arrangement direction, and thereafter, the first mounting stage and the second mounting stage are performed without mechanical contact with the contact member.
- a substrate transfer section for stopping the long substrate while straddling the stage and a control section for controlling the substrate transfer section are provided, and the first head unit is positioned at the most upstream position of the first movable range in the transfer direction.
- the controller controls the long substrate to stop in the first non-constrained area when the long substrate is stopped at the first reference stop position set within the first non-constrained area.
- a component mounting apparatus is characterized by including the board transfer apparatus.
- the most downstream head in the transport direction among the plurality of heads is and a first downstream end position where the most upstream head among the plurality of heads in the transport direction is positioned when the first head unit is positioned at the most downstream position in the first movable range.
- the most downstream head in the transport direction among the plurality of heads is positioned.
- Sandwiched between the first upstream end position and the first downstream end position where the most upstream head among the plurality of heads in the transport direction is positioned when the first head unit is positioned at the most downstream position in the first movable range a first step of acquiring, as the first unconstrained area, an area sandwiched between the most upstream position of the area where the first head unconstrained area overlaps with the first mounting stage and the most downstream position of the area where the first head unconstrained area overlaps with the second mounting stage; a second step of determining whether or not the long substrate protrudes from the first non-constrained area in the transport direction when the long substrate is stopped at a first reference stop position set within the first non-constrained area; When it is determined by the second step that the long substrate protrudes from the first non-con
- the recording medium of the second aspect of the present invention is a non-transitory recording medium recording the above program.
- the first head unit since the first head unit has a so-called in-line structure, head restrictions occur. Therefore, a first non-constrained area that is not subject to the head constraint is acquired. Then, when the long substrate protrudes from the first non-constrained area in the transport direction when the long substrate is stopped at the first reference stop position set within the first non-constrained area, the first reference stop position is set. offset. The direction of the offset is opposite to the direction of protruding from the first reference stop position, and the offset amount is less than or equal to the first excess amount protruding from the first unrestricted area and greater than zero.
- the amount of the long substrate that exceeds the first unrestricted area is reduced, and the number of heads subject to head restrictions during component mounting is also reduced.
- the amount of the substrate exceeding the non-restricted area can be reduced by the offset process, thereby reducing the mounting cycle time. It is possible to suppress an increase in the component mounting efficiency.
- FIG. 1 is a plan view showing a component mounting apparatus equipped with a first embodiment of a substrate transfer apparatus according to the present invention
- FIG. FIG. 2 is a plan view showing a board support portion in the component mounting apparatus shown in FIG. 1 with the head support member in FIG. 1 cut away
- 2 is a block diagram showing an electrical configuration for controlling the component mounting apparatus shown in FIG. 1
- FIG. 2 is a diagram showing the configuration of a head unit installed in the component mounting apparatus of FIG. 1
- FIG. FIG. 4 is a schematic diagram for explaining the relationship between the stop position of the substrate and head restrictions
- 2 is a flow chart showing an operation of setting a reference stop position in the component mounting apparatus shown in FIG.
- FIG. 10 is a plan view showing a component mounting apparatus equipped with a second embodiment of a board transfer apparatus according to the present invention
- FIG. 11 is a plan view showing a board support portion in the component mounting apparatus shown in FIG.
- FIG. 1 is a plan view showing a component mounting apparatus equipped with the first embodiment of the board transfer apparatus according to the present invention.
- FIG. 2 is a plan view showing a board support portion in the component mounting apparatus shown in FIG. 1, with the head support member in FIG. 1 cut away.
- 3 is a block diagram showing an electrical configuration for controlling the component mounting apparatus shown in FIG. 1.
- FIG. 1 In FIGS. 1, 2 and the following figures, XYZ Cartesian coordinates are shown where appropriate, with the Z direction parallel to the vertical direction and the X and Y directions respectively parallel to the horizontal direction.
- a component mounting apparatus 100 includes a base 1 , a board transfer section 2 and a board support section 3 .
- This substrate transfer section 2 corresponds to the first embodiment of the substrate transfer apparatus according to the present invention, and has a pair of conveyors 21, 21 provided on the base 1.
- the conveyors 21, 21 operate according to a transport command from the drive control section 43 of the control unit 4 that controls the entire apparatus, and transport the substrate S along the substrate transport path extending in the X direction. More specifically, the conveyors 21, 21 carry in the substrate S from the outside of the apparatus and transport it in the X direction (transport direction).
- the conveyors 21 and 21 transport the substrate according to a stop command from the drive control portion 43. to stop.
- the board S is positioned in the transport direction X at a target position suitable for component mounting.
- the conveyors 21, 21 have the function of accurately stopping the substrate S on the substrate conveying path without mechanical contact with contact members such as stoppers. It corresponds to an example of a "stopperless transport section".
- the target position is appropriately changed according to the dimension of the substrate S in the transport direction X (hereinafter referred to as "substrate size"). As a result, the number of heads subject to head restrictions is minimized.
- substrate size the dimension of the substrate S in the transport direction X
- the substrate support part 3 is provided on the base 1 so as to be positioned below the substrate transfer path.
- the substrate support part 3 has a function of supporting the substrate S positioned at the target position from below.
- the substrate support section 3 has a base member 31, a backup pin 32, and a pin elevating section (reference numeral 33 in FIG. 3).
- the base member 31 is arranged to cover the target position of the board S from below, and has a planar size approximately equal to the maximum size of the board S handled by the component mounting apparatus 100 .
- the space directly above the upper surface of the base member 31 corresponds to a mounting stage ST for positioning the board S and mounting components.
- Reference numerals PP1 and PP2 in FIG. 2 indicate the upstream end position and downstream end position of the mounting stage ST, respectively.
- a target position is set between the upstream end position PP1 and the downstream end position PP2, and the substrate S is positioned by the conveyors 21,21.
- a plurality of backup pins 32 are provided on the base member 31 to support the substrate S on the mounting stage ST from below.
- Each backup pin 32 is a stepped pin elongated in the vertical direction, and has a small diameter portion formed on the lower side and a support portion formed on the upper side (tip side).
- the support portion has a smaller diameter than the small diameter portion and extends straight upward.
- the support portion has a function of supporting the substrate S, and the upper end surface is a horizontal support surface.
- the pin elevating section 33 is connected to the base member 31 . Upon receiving a lift command from the drive control section 43, the pin lifting section 33 lifts the base member 31 and the backup pin 32 integrally. As a result, the substrate S positioned on the mounting stage ST is supported from below by the backup pins 32 .
- the head drive mechanism 6 is provided with a pair of Y-axis rails 61, 61 extending in the Y-direction, a Y-axis ball screw 62 extending in the Y-direction, and a Y-axis motor My for rotationally driving the Y-axis ball screw 62.
- 63 is fixed to a nut of a Y-axis ball screw 62 while being supported by a pair of Y-axis rails 61, 61 so as to be movable in the Y direction.
- An X-axis ball screw 64 extending in the X direction and an X-axis motor Mx for rotating the X-axis ball screw 64 are attached to the head support member 63, so that the head unit 5 can move in the X direction on the head support member 63. is fixed to the nut of the X-axis ball screw 64 while being supported by the Therefore, the Y-axis motor My rotates the Y-axis ball screw 62 to move the head unit 5 in the Y direction, or the X-axis motor Mx rotates the X-axis ball screw 64 to move the head unit 5 in the X direction. can.
- Two component supply units 7 are arranged in the X direction on each side of the pair of conveyors 21, 21 in the Y direction.
- a plurality of tape feeders 71 arranged in the X direction are detachably attached to each component supply section 7 .
- Each tape feeder 71 is provided with a reel wound with a tape containing chip-like components (chip electronic components) such as integrated circuits, transistors, and capacitors at predetermined intervals.
- the tape feeder 71 supplies the components in the tape to the component supply position 72 by intermittently feeding the tape to the head unit 5 side.
- the components supplied to the component supply position 72 are mounted on the board S by the head unit 5 .
- FIG. 4 is a diagram showing the configuration of a head unit installed in the component mounting apparatus of FIG.
- the head unit 5 has a plurality of (10 in this embodiment) heads 51 arranged in the X direction.
- Each head 51 has an elongated shape extending in the Z direction (vertical direction), and is configured to be capable of sucking and holding a component by means of a nozzle detachably attached to its lower end. That is, the head 51 moves above the tape feeder 71 and picks up the component supplied by the tape feeder 71 . Subsequently, the head 51 moves above the substrate S positioned at the target position, and mounts the component on the substrate S by canceling the suction of the component.
- the movable range MR in which the head unit 5 configured in this manner can move in the X direction is determined by the length of the X-axis ball screw 64, and cannot move beyond the movable range MR.
- its movement limit is as indicated by the one-dot chain line in the figure. Therefore, when the head unit 5 is positioned at the most upstream position of the movable range MR, the substrate S is present at a position directly below the upstream end position PH1 where the most downstream head 51a in the transport direction X among the plurality of heads 51 is positioned. , any head 51 can be positioned above the substrate S.
- any head 51 can be used to execute a component on the substrate S.
- FIG. Here, if the upstream end of the substrate S is located on the upstream side (right hand side in the drawing) of the upstream end position PH1, the most downstream head 51a cannot be located above the upstream end of the substrate S. Therefore, the head 51a cannot be used to mount components on the upstream end of the board S, that is, the head is restricted.
- This head constraint increases as the upstream end of the substrate S approaches the upstream end position PP1 of the mounting stage ST, and the number of heads 51 subject to the head constraint increases.
- the most upstream head 51j cannot be located above the downstream end of the substrate S. Therefore, the head 51j cannot be used to mount components on the downstream end of the substrate S, that is, the head is restricted.
- This head constraint increases as the downstream end of the substrate S approaches the downstream end position PP2 of the mounting stage ST, and the number of heads 51 subject to the head constraint increases.
- the substrate S is positioned between the upstream end position PH1 and the downstream end position PH2 in the transport direction X, basically all the heads 51 are used to carry out component processing without being subject to the above head restrictions. implementation can be done. Therefore, for convenience of explanation below, the range sandwiched between the upstream end position PH1 and the downstream end position PH2 in the transport direction X will be referred to as a "head unrestricted range AR".
- non-restrictive range AR an area in which the head unrestricted range AR and the mounting stage ST overlap
- NR an area in which the head unrestricted range AR and the mounting stage ST overlap
- the substrate S is positioned such that at least one of the upstream end portion and the downstream end portion of the substrate S protrudes from the non-restricted region NR, the amount protruding from the non-restricted region NR, the so-called excess amount, increases. Accordingly, the number of heads 51 subject to head restrictions increases. This has been a factor in increasing the mounting cycle time.
- FIG. 5 is a schematic diagram for explaining the relationship between the stop position of the substrate and the head restrictions.
- Column (a) of FIG. 1 schematically shows the operation of the device (comparative example 1) for positioning the substrate S by the mechanical stoppers at different positions PS1 and PS2 in the transport direction X, like the conventional device.
- the position PS1 at which the substrate S is stopped by the upstream mechanical stopper is set as the reference stop position, and when a substrate S having a relatively long substrate size is conveyed, the upstream mechanical stopper stops as shown in the same column. retreats downward from the substrate transport path, while the downstream mechanical stopper advances into the substrate transport path to position the substrate S.
- the downstream mechanical stopper mechanically positions the substrate S so that the downstream end of the substrate S is positioned at the position PS2. Therefore, when the substrate size is relatively long, the downstream end portion of the substrate S exceeds the downstream end position PH2 of the non-restricted area NR by the excess area ER and protrudes from the non-restricted area NR. Further, as shown in column (b) of the figure, the conveyors 21, 21 convey the substrate S, and the substrate is moved so that the downstream end of the substrate S is positioned at the reference stop position PS1, as with the mechanical stopper on the upstream side.
- the upstream end portion of the substrate S exceeds the upstream end position PH1 of the non-restricted area NR by the excess area ER and protrudes from the non-restricted area NR.
- the reference stop position PS1 is basically set inside both end positions PH1 and PH2 of the non-restricted area NR in consideration of the stop error of the substrate S by the conveyors 21 and 21 .
- the reference stop position PS1 is set at a position shifted toward the upstream end position PH1 from the downstream end position PH2 in the transport direction X by a distance DR.
- the substrate size is about the length of the non-restricted area NR in the transport direction X (hereinafter referred to as "non-restricted area length"), the entire substrate S fits within the non-restricted area NR. Further, even if the substrate size is longer than the length of the non-restricted range, although part of the substrate S protrudes from the non-restricted region NR in the transport direction X, the excess region ER is larger than that of Comparative Examples 1 and 2. less. Therefore, the number of heads 51 subject to head restrictions is smaller than in Comparative Examples 1 and 2, and an increase in mounting cycle time can be suppressed.
- control unit 4 controls the stop position of the substrate S on the mounting stage ST so as to reduce the amount of excess. Thereby, the control unit 4 attempts to minimize the number of heads 51 subject to head restrictions.
- the control unit 4 has an arithmetic processing unit 41, which is a processor configured by a CPU (Central Processing Unit) and memory, and a storage unit 42 configured by an HDD (Hard Disk Drive). are doing. Further, the control unit 4 includes a drive control unit 43 that controls the drive system of the component mounting apparatus 100 (conveyors 21, 21, pin lifting unit 33, X-axis motor Mx, Y-axis motor My, etc.) It has an imaging control section 44 that controls an imaging system (component recognition camera, etc.) and a reading section 45 .
- arithmetic processing unit 41 which is a processor configured by a CPU (Central Processing Unit) and memory
- HDD Hard Disk Drive
- the control unit 4 includes a drive control unit 43 that controls the drive system of the component mounting apparatus 100 (conveyors 21, 21, pin lifting unit 33, X-axis motor Mx, Y-axis motor My, etc.) It has an imaging control section 44 that controls an imaging system (component recognition camera, etc.) and
- the reading unit 45 reads from the recording medium RMa a control program for controlling each unit of the component mounting apparatus 100 and a stop setting program for reducing the excess amount by controlling the stop position of the board S. It has a function of writing to the storage unit 42 .
- This recording medium RMa is a computer-readable non-transitory recording medium such as a CD (Compact Disc), a DVD (Digital Versatile Disc), a USB (Universal Serial Bus) memory, or the like.
- the control unit 4 is connected to the host computer 900 via a communication line (not shown), and receives from the host computer 900 the production program created by the arithmetic processing section 901 of the host computer 900 .
- the component mounting apparatus 100 performs component mounting by controlling each part of the component mounting apparatus 100 including the board transfer section 2 according to the program read from the recording medium RMa.
- the control unit 4 performs the reference stop position setting process shown in FIG. to offset the reference stop position. The processing for setting the reference stop position will be described below with reference to FIGS. 5 and 6. FIG.
- FIG. 6 is a flow chart showing the operation of setting the reference stop position in the component mounting apparatus shown in FIG.
- the arithmetic processing section 41 of the control unit 4 controls each section of the device as follows according to the stop setting program for the reference stop position.
- the arithmetic processing unit 41 acquires the substrate size Lx of the substrate S transported by the substrate transporting unit 2 and the preset reference stop position PS1 (step S1). Further, the arithmetic processing unit 41 acquires both end positions of the non-restricted area NR in the transport direction X, that is, the upstream end position PH1 and the downstream end position PH2 (step S2).
- the arithmetic processing unit 41 calculates switching reference information Lf (step S3).
- the substrate size Lx exceeds the switching reference information Lf, as shown in column (b) of FIG.
- the upstream end of X is located upstream of the upstream end position PH1. That is, the rear end portion of the substrate S exceeds the non-restricted area NR by the excess area ER to the upstream side (right hand side in the figure).
- the rear end (upstream end in the transport direction X) of the substrate S stopped at the reference stop position PS1 as described above is placed upstream. It is positioned downstream of the end position PH1 or the upstream end position PH1. That is, the substrate S is positioned on the mounting stage ST in a state in which the excess area ER does not occur and the entire substrate S is contained within the non-restricted area NR.
- the arithmetic processing unit 41 offsets the reference stop position PS1 to the downstream side in the transport direction X by the offset amount OF (step S8). That is, as shown in columns (b) and (c) of FIG. 5, when the substrate S protrudes upstream from the non-restricted region NR, the direction opposite to the protruding direction (downstream in this embodiment) The trailing edge of the substrate S coincides with the upstream edge position PH1 due to the offset of the reference stop position PS1. As a result, the length of the excess area ER in which the substrate S positioned at the reference stop position PS1 protrudes from the non-restricted area NR in the transport direction X becomes shorter than before the offset. That is, the number of heads 51 subject to head restrictions is reduced.
- the preset reference stop position PS1 is maintained, and the substrate S is positioned at the reference stop position PS1.
- the reference stop position PS1 is offset as described above. are doing. Therefore, although the substrate S protrudes from the non-restricted area NR as the substrate S increases in size, the excess area ER is narrower than before the offset, and the number of heads 51 subject to head restriction is also reduced. As a result, it is possible to suppress an increase in the mounting cycle time due to an increase in the size of the substrate S, thereby enabling efficient component mounting.
- the substrate S is positioned such that the downstream end of the substrate S coincides with the reference stop position PS1.
- the above effects are achieved by offsetting the reference stop position PS1 set close to the downstream end position PH2 of the non-restricted area NR.
- this type of offset processing is referred to herein as "downstream offset processing.”
- the offset process may be performed in a manner different from the downstream offset process.
- the above effects may be achieved by offsetting the reference stop position PS1 set near the upstream end position PH1 of the non-restricted area NR.
- This type of offsetting is referred to as "upstream offsetting" to distinguish it from downstream offsetting.
- the content of this upstream offset process is the same as the downstream offset process except that the reference stop position PS1 is set close to the upstream end position PH1 of the non-restricted area NR. are the same as those shown in FIG.
- the direction opposite to the protruding direction control the substrate conveying part 2 so that the substrate S is stopped at a position offset from the reference stop position PS1 by an offset amount OF greater than zero and equal to or less than the excess amount Le (reference stop position PS1 after offset).
- the length of the non-restricted area NR changes accordingly. Sometimes. Therefore, it is desirable to execute the processing shown in FIG. 6 each time the head variation is changed.
- the conveyor 21 is stopped at the reference stop position PS1 without performing the offset, but is stopped at a position offset from the reference stop position PS1 within a range in which the substrate S does not protrude from the non-restricted area NR. , 21. This point also applies to modified examples and embodiments to be described later.
- step S2 identifies the head unrestricted area AR and the head unrestricted area NR.
- This is a step of acquiring information (upstream end position PH1 and downstream end position PH2) for the above, and corresponds to an example of the "first step” of the present invention.
- step S5 corresponds to an example of the "second step” of the present invention, and steps S6 and S7 and the transport and positioning of the substrate S to the reference stop position PS1 after the offset are an example of the "third step" of the present invention.
- the head unit 5 corresponds to an example of the "first head unit” of the invention
- the movable range MR of the head unit 5 corresponds to an example of the "first movable range” of the invention.
- the reference stop position PS1 corresponds to an example of the "first reference stop position" of the present invention.
- the head-unrestricted range AR and the head-unrestricted area NR correspond to examples of the "first head-unrestricted area” and the “first unrestricted area” of the present invention, respectively, and the upstream end position PH1 of the unrestricted area NR and the downstream end position PH2 respectively correspond to examples of the "first upstream end position" and the “first downstream end position” of the present invention.
- the length Le of the excess area ER corresponds to an example of the "first excess amount" of the present invention.
- the stop setting program is recorded on the recording medium RMa and provided to the control unit 4 via the recording medium RMa. may provide. Further, in the first embodiment, prior to component mounting processing based on the production program, processing for setting the reference stop position is performed according to the stop setting program. can be configured to That is, the arithmetic processing unit 901 of the host computer 900 may perform processing for setting the reference stop position based on a stop setting program provided via the recording medium RMa or a communication line, and the processing result may be reflected in the production program. . By providing the production program from the host computer 900 to the component mounting apparatus 100, the same effects as in the first embodiment can be obtained. These points also apply to the following embodiments.
- the present invention is applied to the component mounting apparatus 100 that mounts components on a single mounting stage ST.
- FIG. 9 is a diagram schematically showing a third modification of the first embodiment of the substrate transfer device according to the present invention.
- this component mounting apparatus 100 mounting stages ST1 and ST2 are provided apart from each other in the transport direction X.
- the substrate S1 is positioned by executing the "downstream offset process” shown.
- Such offset processing provides the same effects as those of the first embodiment.
- components are mounted on the substrates S1 and S2 positioned on the mounting stages ST1 and ST2 by the single head unit 5.
- the present invention can also be applied to additional devices (FIGS. 10 and 11).
- FIG. 10 is a plan view showing a component mounting apparatus equipped with the second embodiment of the board transfer apparatus according to the present invention.
- FIG. 11 is a plan view showing a board support portion in the component mounting apparatus shown in FIG. 10, with the head support member in FIG. 10 cut away.
- the component mounting apparatus 200 shown in FIGS. 10 and 11 is greatly different from the component mounting apparatus 100 in that two mounting stages ST1 and ST2 are provided by providing two substrate support sections 3a and 3b. , the configuration of the substrate transfer section 2 is changed accordingly, and two head units 5a and 5b are provided. Since the rest of the configuration is basically the same as that of the component mounting apparatus 100 shown in FIGS. 1 and 2, the following description will focus on the points of difference. do.
- the two board support sections 3a and 3b are arranged apart from each other in the transport direction X, and the spaces immediately above the board support sections 3a and 3b are located on the upstream side, respectively. It corresponds to one mounting stage ST1 and a downstream second mounting stage ST2.
- Reference numerals PP11 and PP12 in FIG. 11 indicate the upstream end position and downstream end position of the upstream mounting stage ST1, respectively.
- An upstream target position (corresponding to a reference stop position PS1, which will be described in detail later) is set between the upstream end position PP11 and the downstream end position PP12, and the substrate S is positioned by the substrate conveying section 2.
- a downstream target position (corresponding to a reference stop position PS2, which will be described in detail later) is set between the upstream end position PP21 and the downstream end position PP22, and the substrate S is positioned by the substrate conveying section 2.
- FIG. 1 A downstream target position (corresponding to a reference stop position PS2, which will be described in detail later) is set between the upstream end position PP21 and the downstream end position PP22, and the substrate S is positioned by the substrate conveying section 2.
- the board transfer section 2 has a pair of conveyors 21, 21, a pair of conveyors 22, 22, a pair of conveyors 23, 23, and a pair of conveyors 24, 24. These conveyors 21 to 24 are arranged in the conveying direction X in this order. Then, the conveyors 21 to 24 are operated in response to a transport command from the drive control unit 43, and the substrate S is carried in from the outside of the apparatus and transported in the X direction (transport direction). Then, when the substrate S is transported to the target position (corresponding to the reference stop position PS1 described later) of the mounting stage ST1, the conveyors 22 and 22 stop transporting the substrate according to the stop command from the drive control section 43.
- the substrate S is positioned in the transport direction X at a target position suitable for component mounting on the mounting stage ST1. Further, when the substrate S conveyed from the conveyors 22, 22 is conveyed to the target position (corresponding to the reference stop position PS2 described later) of the mounting stage ST2, the conveyors 23, 23 are stopped by the drive control unit 43. Stop substrate transfer according to the command. As a result, the substrate S is positioned in the transport direction X at a target position suitable for component mounting on the mounting stage ST2. As described above, the conveyors 22, 22 have the function of accurately stopping the substrate S on the substrate conveying path without mechanical contact with contact members such as stoppers. It corresponds to an example of a "stopperless transport section".
- the conveyors 23, 23 have a function of accurately stopping the substrate S on the substrate conveying path without mechanical contact with an abutment member such as a stopper. It corresponds to an example of a “conveyance unit”.
- the positioning of the substrates on the mounting stages ST1 and ST2 is performed in the same manner as in the first embodiment, and the details will be described later. Further, in order to distinguish between the substrates S positioned by the mounting stages ST1 and ST2, the substrate S positioned by the mounting stage ST1 is appropriately referred to as "substrate S1", while the substrate S positioned by the mounting stage ST2 is referred to as "substrate S1". S2”.
- the head unit 5a is provided corresponding to the component supply section 7 on the (-Y) direction side
- the head unit 5b is provided corresponding to the component supply section 7 on the (+Y) direction side.
- the component mounting apparatus 200 includes head support members 63a and 63b extending in the X direction to support the head units 5a and 5b, respectively.
- An X-axis ball screw 64 extending in the X direction and an X-axis motor Mxa for rotating the X-axis ball screw 64 are attached to the head support member 63a.
- the head unit 5a is fixed to the nut of the X-axis ball screw 64 while being supported by the head support member 63a so as to be movable in the X direction.
- the head unit 5a moves parallel to the transport direction X.
- the head support member 63B is similarly configured, and when the X-axis motor Mxb operates in response to a drive command from the drive control section 43 of the control unit 4, the head unit 5b moves parallel to the transport direction X.
- the moving ranges of the head units 5a and 5b are set to the same value, and similarly to the above-described first embodiment, from the upstream position P11 of the mounting stage ST1 to the upstream position of the mounting stage ST2.
- the head units 5a and 5b have an in-line structure and therefore have head unrestricted ranges AR1 and AR2, respectively.
- the apparatus shown in FIG. 9 it has two mounting stages ST1 and ST2 spaced apart from each other in the transport direction X.
- NR1, NR2 there are two unconstrained regions NR1, NR2. That is, there are a non-constrained area NR1 where the head non-constrained range AR1 and the first mounting stage ST1 overlap, and a non-constrained area NR2 where the head non-constrained range AR2 and the second mounting stage ST2 overlap.
- the head support members 63a and 63b configured in this way can be moved in the Y direction along the Y-axis rail 66 by a Y-axis motor (linear motor not shown). That is, field coils are attached to both ends of the head support members 63a and 63b as movers of linear motors.
- a Y-axis motor linear motor not shown
- a plurality of permanent magnets are arranged along the Y direction and function as a stator of the linear motor.
- each of the head units 5a and 5b can move above the substrate transfer section 2 in the XY directions.
- the head units 5a and 5b have the same configuration as the head unit 5 shown in FIG. That is, the head unit 5a has a plurality of (10 in this embodiment) heads 51 arranged in the X direction. As the head unit 5a moves toward the component supply section 7 in the ( ⁇ Y) direction, the head 51 moves above the tape feeder 71 attached to the component supply section 7, and is supplied by the tape feeder 71. Adsorb parts. Subsequently, as the head unit 5a moves to the mounting stages ST1 and ST2, the head 51 moves above the board S positioned on the mounting stages ST1 and ST2 to release the suction of the component. Implement parts.
- the head unit 5b moves toward the component supply section 7 in the (+Y) direction, the head 51 moves above the tape feeder 71 attached to the component supply section 7, and is supplied by the tape feeder 71. It picks up parts that have been Subsequently, as the head unit 5b moves to the mounting stages ST1 and ST2, the head 51 moves above the board S positioned on the mounting stages ST1 and ST2 to release the suction of the component.
- the head units 5a and 5b have the same variation of the head 51, and the movable ranges of the head units 5a and 5b are the "first movable range" and the "second movable range” of the present invention, respectively. , but they are identical. Therefore, the head-unrestricted ranges AR1 and AR2 have the same value AR.
- Components are mounted on the substrates S1 and S2 positioned on the mounting stages ST1 and ST2 in this way.
- this component mounting apparatus 200 if the target position for positioning the board S on the mounting stages ST1 and ST2 is fixed, as shown in the column (b) of FIG. An excess area ER occurs and the mounting cycle time increases.
- This point also applies to the second mounting stage ST2. That is, when the substrate S2 is stopped at the reference stop position PS2 set within the non-restricted region NR2, the substrate S2 does not protrude from the non-restricted region NR2 in the transport direction X. Therefore, as shown in FIG. The substrate S2 is stopped in a state in which the edge coincides with a preset reference stop position PS2.
- the length Le of the excess area ER on the second mounting stage ST2 side corresponds to an example of the "second excess amount" of the present invention.
- the substrates S1 and S2 are located within the non-restricted regions NR1 and NR2, respectively.
- the component mounting is performed in the state of being positioned at In other words, components can be mounted without being subject to head restrictions, so excellent mounting cycle time can be obtained.
- the offset amount OF when the substrate size Lx of the substrate S is equal to or smaller than the switching reference information Lf, the offset amount OF is set to zero, and the preset reference stop positions PS1 and PS2 are not offset. It may be offset accordingly, as shown in FIG. 12E.
- FIG. 12C is a diagram schematically showing the offset operation in the first modified example of the second embodiment of the substrate transfer device according to the present invention.
- the substrate size Lx of the substrate S is equal to or smaller than the switching reference information Lf, and the substrate S1 is moved while the upstream end of the substrate S1 in the transport direction X coincides with the upstream end position PH1 of the non-restricted region NR1.
- Conveyor 22 is controlled to stop.
- the conveyor 23 is controlled so that the substrate S2 stops in a state where the downstream end of the substrate S2 in the transport direction X coincides with the downstream end position PH2 of the non-restricted area NR2.
- the reference stop positions PS1 and PS2 are offset.
- the distance W between the substrates S1 and S2 in the transport direction X is widened.
- the waiting time for avoiding interference between the head units 5a and 5b in the direction parallel to the conveying direction X is reduced, and the mounting cycle time loss can be reduced.
- FIG. 12D is a diagram schematically showing the offset operation in the second modification of the second embodiment of the substrate transfer device according to the present invention.
- the substrate size Lx of the substrate S is equal to or smaller than the switching reference information Lf
- the component recognition cameras Ca and Cb are arranged near the connection positions of the conveyors 22 and 23. . That is, the conveyor 22 is controlled such that the substrate S1 stops with the downstream end of the substrate S1 in the transport direction X aligned with the downstream end position PH12 of the non-restricted area NR1.
- the conveyor 23 is controlled so that the substrate S2 stops in a state where the upstream end of the substrate S2 in the transport direction X coincides with the upstream end position PH21 of the non-restricted area NR2.
- the reference stop positions PS1 and PS2 are offset.
- the distance W between the substrates S1 and S2 in the transport direction X is narrowed.
- the distance that the head units 5a and 5b move to the board S via the component recognition cameras Ca and Cb is shortened, which works advantageously for improving the mounting cycle time.
- FIG. 12E is a diagram schematically showing the offset operation in the third modification of the second embodiment of the substrate transfer device according to the present invention.
- This third modification corresponds to variations of the heads 51 attached to the head units 5a and 5b.
- the reference stop position PS1 is offset so that the substrate S1 is positioned at the preferred position described above, and the upstream end of the substrate S1 is positioned so as to coincide with the reference stop position PS1 after the offset. .
- This point is the same when the head unit 5b is in charge of mounting components on the board S2.
- the substrates S1 and S2 respectively correspond to examples of the “first substrate” and the “second substrate” of the present invention
- the reference stop positions PS1 and PS2 respectively correspond to the " It corresponds to an example of "first reference stop position” and "second reference stop position”.
- the head-unrestricted ranges AR1 and AR2 have the same value AR. There may be cases where the ranges AR1 and AR2 are different.
- head units 5a and 5b may access both mounting stages ST1 and ST2 as in the modification shown in FIGS. 12C and 12D, or head units 5a and 5b may access both mounting stages ST1 and ST2 as shown in FIG. 12E. You may access only Therefore, when the head unrestricted ranges AR1 and AR2 are different from each other and the head units 5a and 5b access both the mounting stages ST1 and ST2 (third embodiment), the head unrestricted ranges AR1 and AR2 are different from each other. Also, a case (fourth embodiment) in which the head units 5a and 5b access only the mounting stages ST1 and ST2, respectively, will be sequentially described.
- FIG. 13 is a diagram schematically showing the offset operation in the third embodiment of the substrate transfer device according to the present invention.
- the head-unrestricted range AR2 is narrower than the head-unrestricted range AR1, and is included in the head-unrestricted range AR1 in the transport direction X.
- the head units 5a and 5b access both the mounting stages ST1 and ST2 to mount the components. Therefore, in this embodiment, the head-unrestricted range AR2 serves as a reference for determining the unrestricted area.
- the areas where the head unrestricted area AR2 and the mounting stages ST1 and ST2 overlap correspond to the unrestricted areas NR1 and NR2, respectively.
- the offset processing of the reference stop positions PS1 and PS2 is the same as that of the second embodiment and the modified example, so description thereof will be omitted.
- FIG. 14 is a diagram schematically showing the offset operation in the fourth embodiment of the substrate transfer device according to the present invention.
- the major difference between the fourth embodiment and the third embodiment is that the head units 5a and 5b access only the mounting stages ST1 and ST2, respectively, as indicated by the thick arrows in the figure.
- the criteria for determining the non-constrained area are different for each of the mounting stages ST1 and ST2. That is, since the head unit 5a is exclusively configured for component mounting on the mounting stage ST1, the overlapping area of the head non-restricted area AR1 of the head unit 5a and the mounting stage ST1 corresponds to the non-restricted area NR1.
- the head unit 5b is exclusively configured for component mounting on the mounting stage ST2
- the overlapping area of the head unrestricted area AR2 of the head unit 5b and the mounting stage ST2 corresponds to the unrestricted area NR2.
- the offset processing of the reference stop positions PS1 and PS2 is the same as that of the second embodiment and the modified example, so description thereof will be omitted.
- the size of the substrate in the transport direction X is increased in the same manner as in the second embodiment and the modified example. Efficient component mounting is possible by suppressing an increase in the mounting cycle time associated with the increase in the number of parts.
- the substrate size Lx of the substrate S is equal to or smaller than the switching reference information Lf and is relatively small
- the component mounting is executed while being accommodated in the non-restricted areas NR1 and NR2.
- components can be mounted without being subject to head restrictions, so excellent mounting cycle time can be obtained.
- FIGS. 12C to 12E by devising the arrangement of the relatively small substrates S1 and S2, the mounting cycle time can be reduced.
- FIG. 15 is a diagram schematically showing the offset operation in the fifth embodiment of the substrate transfer device according to the present invention.
- the basic configuration of this component mounting apparatus 200 is the same as that of the second embodiment. However, since components are mounted on a so-called long board S that is longer than the dimensions of the mounting stages ST1 and ST2 in the transport direction X, the conveyors 21 to 23 of the board transport section 2 operate synchronously, and the long board S is mounted. It is positioned across the mounting stages ST1 and ST2.
- the area sandwiched between the most upstream position PH1 of the area where the head unrestricted area AR overlaps the mounting stage ST1 and the most downstream position PH2 of the area overlapping the mounting stage ST2 is unconstrained. It is set as area NR.
- the reference stop position PS1 is offset as in the first embodiment, as shown in column (b) of FIG. Therefore, although the long substrate S protrudes from the non-restricted area NR as the long substrate S increases in size, the excess area ER becomes narrower than before the offset, and the number of heads 51 subject to head restriction is reduced. As a result, it is possible to suppress an increase in the mounting cycle time due to an increase in the size of the long substrate S, thereby enabling efficient component mounting.
- the present invention is not limited to the above embodiments, and various modifications can be made to the above without departing from the spirit of the present invention.
- the present invention is applied to component mounting apparatuses 100 and 200 having head units 5, 5a, and 5b having an in-line structure in which ten heads 51 are arranged in a line. is not limited to "10".
- the present invention is also applied to a component mounting apparatus using a head unit having an in-line structure in which a plurality of rows of heads arranged in a direction parallel to the conveying direction X are arranged in the Y direction perpendicular to the conveying direction X. can do.
- the present invention can be applied to general substrate transfer technology for transferring substrates in a component mounting apparatus that uses a head unit having a so-called in-line structure in which a plurality of heads are arranged in a predetermined arrangement direction to mount components on a substrate. can be done.
- Substrate transfer unit (substrate transfer device) 4... Control unit (control section) 5, 5a... (first) head unit 5b... second head unit 21, 22... conveyor (first stopperless transport unit) 23... Conveyor (second stopperless conveying unit) 41 ... Arithmetic processing unit (control unit) 51... Head 51a... (most downstream) head 51j... (most upstream) head 100, 200... Component mounter 900... Host computer AR, AR1... First head unrestricted area AR2... Second head unrestricted area ER... Excess area MR... First movable range NR, NR1... First non-constrained area NR2... Second non-constrained area OF...
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Supply And Installment Of Electrical Components (AREA)
Abstract
In the present invention, a region in which a head non-restricted range overlaps with a mounting stage in the conveyance direction is set as a non-restricted region, and it is determined whether or a substrate will protrude from the non-restricted region in the conveyance direction when the substrate is stopped at a reference stopping position set in the non-restricted region. When it is determined that protrusion will occur, the substrate is stopped at a position that is offset, from the reference stopping position and in the opposite direction from the direction of protrusion, by an offset amount which is greater than zero but not more than the amount of protrusion from the non-restricted region, and the substrate is positioned.
Description
この発明は、複数のヘッドを所定の配列方向に配列した、いわゆるインライン構造を有するヘッドユニットを用いて基板への部品の実装を行う部品実装装置に適した基板搬送技術に関するものである。
The present invention relates to a board transfer technique suitable for a component mounting apparatus that mounts components on a board using a head unit having a so-called in-line structure in which a plurality of heads are arranged in a predetermined arrangement direction.
従来、インライン構造を有するヘッドユニット(インラインヘッドユニットと称することもある)を用いた部品実装装置が知られている(特許文献1)。この部品実装装置では、ヘッドの配列方向と平行な方向に基板が搬送され、部品実装を行う位置に位置決めされる。この位置決めを行うために、基板搬送部が設けられている。部品搬送部はコンベア部を有しており、当該コンベア部によって部品実装装置の外部から基板を搬入し、基板を上記配列方向と平行な搬送方向に搬送する。また、コンベア部により搬送される基板を目標位置に位置決めするために、当該基板と機械的に当接するストッパが設けられている。
Conventionally, a component mounting apparatus using a head unit having an in-line structure (sometimes referred to as an in-line head unit) is known (Patent Document 1). In this component mounting apparatus, the board is transported in a direction parallel to the direction in which the heads are arranged, and positioned at a position where components are to be mounted. A substrate transfer section is provided for this positioning. The component transfer section has a conveyor section, which carries in the board from the outside of the component mounting apparatus and transfers the board in a transfer direction parallel to the arrangement direction. Further, in order to position the substrate conveyed by the conveyor section at the target position, a stopper is provided that mechanically contacts the substrate.
上記基板搬送部では、種々の基板サイズに対応するために、複数のストッパが設けられている。各ストッパは搬送されてくる基板と機械的に当接して位置決めするように構成されている。しかも、複数のストッパは、搬送方向において互いに異なる目標位置で基板の搬送経路に対して出退自在に配置されている。そして、コンベア部により搬送されてくる基板のサイズに対応したストッパが搬送経路に進出し、基板と当接して位置決めする。例えば特定サイズまでの基板については、第1ストッパが作動して第1目標位置で基板を位置決めするが、特定サイズよりも1mmでも長い基板については、第1ストッパから搬送方向に離れた次の第2目標位置に配置された第2ストッパにより位置決めされる。このため、後で図4を参照しつつ詳述するように、インラインヘッドユニットを構成する全部を用いて部品実装を行うことができない、換言すると、一部のヘッドについては物理的に部品実装に使用できないという制約(以下「ヘッド制約」という)が生じる。このヘッド制約は、部品実装に要する時間(以下「実装サイクルタイム」という)の増大を招く主要因のひとつである。したがって、ヘッド制約を受けるヘッドの本数を低減させたいという要望があった。しかしながら、従来の部品実装装置では、目標位置が固定されているため、ヘッド制約を受けるヘッドの本数を変更することができない。このため、例えば搬送方向における基板サイズが特定サイズよりも1mm長くなると、第2ストッパを用いて基板の位置決めを行う必要がある。その結果、搬送方向における第1ストッパと第2ストッパの間隔程度まで基板サイズが長くなった場合と同様のヘッド制約を受け、それと同様の実装サイクルタイムが必要となる。
A plurality of stoppers are provided in the substrate transfer section to accommodate various substrate sizes. Each stopper is configured to mechanically abut and position the conveyed substrate. In addition, the plurality of stoppers are arranged so as to be retractable with respect to the transport path of the substrate at different target positions in the transport direction. A stopper corresponding to the size of the substrate conveyed by the conveyor advances into the conveying path and abuts on the substrate to position it. For example, for substrates up to a specific size, the first stopper operates to position the substrate at the first target position. 2 Positioned by a second stopper arranged at the target position. For this reason, as will be described in detail later with reference to FIG. 4, it is not possible to mount components using the entire inline head unit. There is a restriction (hereinafter referred to as "head restriction") that it cannot be used. This head restriction is one of the main factors that increase the time required for component mounting (hereinafter referred to as "mounting cycle time"). Therefore, there has been a demand to reduce the number of heads subject to head restrictions. However, in the conventional component mounting apparatus, since the target position is fixed, the number of heads subject to head restrictions cannot be changed. Therefore, for example, when the substrate size in the transport direction is 1 mm longer than a specific size, it is necessary to position the substrate using the second stopper. As a result, the head is restricted in the same manner as when the substrate size is increased to the extent of the distance between the first stopper and the second stopper in the transport direction, and the same mounting cycle time is required.
この発明は上記課題に鑑みなされたものであり、インラインヘッドユニットを用いた部品実装装置において、搬送方向における基板の大型化に伴う実装サイクルタイムの増大を抑止して効率的な部品実装が可能となるように、基板を搬送して位置決めすることができる基板搬送技術を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and provides a component mounting apparatus using an in-line head unit, which enables efficient component mounting by suppressing an increase in mounting cycle time due to an increase in substrate size in the transport direction. It is an object of the present invention to provide a substrate transport technique capable of transporting and positioning a substrate in such a manner as to
本発明の第1態様は、先端にノズルが装着されたヘッドを所定の配列方向に沿って複数本配列しながら配列方向と平行な方向に複数のヘッドを一括して第1可動範囲内で移動可能な第1ヘッドユニットを有し、第1ヘッドユニットを用いて第1実装ステージ内に位置決めされた第1基板に部品を実装する部品実装装置、当該部品実装装置に装備される基板搬送装置、当該部品実装装置において第1基板を配列方向と平行な搬送方向に搬送する基板搬送方法、第1基板を配列方向と平行な搬送方向に搬送するためのプログラムおよび記録媒体である。
A first aspect of the present invention moves a plurality of heads collectively in a direction parallel to the arrangement direction within a first movable range while arranging a plurality of heads having nozzles attached to their tips along a predetermined arrangement direction. a component mounting apparatus having a first head unit capable of mounting a component on a first substrate positioned within a first mounting stage using the first head unit; a board transfer apparatus equipped in the component mounting apparatus; A substrate transport method for transporting a first substrate in the transport direction parallel to the arrangement direction in the component mounting apparatus, a program and a recording medium for transporting the first substrate in the transport direction parallel to the arrangement direction.
本発明の第1態様である基板搬送装置は、配列方向と平行な搬送方向に第1基板を搬送した後で、当接部材と機械的に当接させずに第1基板を第1実装ステージ内で停止させる第1ストッパレス搬送部と、第1ストッパレス搬送部を制御する制御部と、を備え、搬送方向において、第1可動範囲の最上流位置に第1ヘッドユニットが位置したときに複数のヘッドのうち搬送方向における最下流のヘッドが位置する第1上流端位置と、第1可動範囲の最下流位置に第1ヘッドユニットが位置したときに複数のヘッドのうち搬送方向における最上流のヘッドが位置する第1下流端位置とで挟まれた第1ヘッド非制約範囲が、第1実装ステージと重なる領域を第1非制約領域と定義したとき、制御部は、第1非制約領域内に設定した第1基準停止位置で第1基板を停止させたときに第1基板が第1非制約領域から搬送方向にはみ出ると判定すると、第1基準停止位置をはみ出る方向と反対の方向に第1非制約領域内からはみ出る第1超過量以下でかつゼロよりも大きいオフセット量だけオフセットさせた位置で第1基板が停止するように、第1ストッパレス搬送部を制御することを特徴としている。
A substrate transfer apparatus according to a first aspect of the present invention transfers the first substrate to the first mounting stage without mechanical contact with the contact member after transferring the first substrate in the transfer direction parallel to the arrangement direction. and a controller for controlling the first stopperless transporting unit, wherein when the first head unit is positioned at the most upstream position of the first movable range in the transporting direction A first upstream end position where the most downstream head in the transport direction among the plurality of heads is positioned, and the most upstream in the transport direction among the plurality of heads when the first head unit is positioned at the most downstream position in the first movable range. When the first unconstrained area sandwiched between the first downstream end position where the head is located and the area where the first mounting stage overlaps is defined as the first unconstrained area, the control unit controls the first unconstrained area When it is determined that the first substrate protrudes from the first unrestricted area in the transport direction when the first substrate is stopped at the first reference stop position set within the The first stopperless conveying unit is controlled such that the first substrate is stopped at a position offset by an offset amount that is equal to or less than a first excess amount that protrudes from the first unrestricted area and is greater than zero. .
また、本発明の第1態様である部品実装装置は、上記基板搬送装置を備えることを特徴としている。
A component mounting apparatus according to a first aspect of the present invention is characterized by including the substrate transfer apparatus.
また、本発明の第1態様である基板搬送方法は、搬送方向において、第1可動範囲の最上流位置に第1ヘッドユニットが位置したときに複数のヘッドのうち搬送方向における最下流のヘッドが位置する第1上流端位置と、第1可動範囲の最下流位置に第1ヘッドユニットが位置したときに複数のヘッドのうち搬送方向における最上流のヘッドが位置する第1下流端位置とに挟まれた第1ヘッド非制約範囲が、第1実装ステージと重なる領域を第1非制約領域として取得する第1工程と、第1非制約領域内に設定した第1基準停止位置で第1基板を停止させたときに第1基板が第1非制約領域から搬送方向にはみ出るか否かを判定する第2工程と、第2工程により第1基板が第1非制約領域内からはみ出ると判定されるときには、第1基準停止位置をはみ出る方向と反対の方向に第1非制約領域内からはみ出る第1超過量以下でかつゼロよりも大きいオフセット量だけオフセットさせた位置に第1基板を搬送して位置決めする第3工程と、を備えることを特徴としている。
Further, in the substrate transport method according to the first aspect of the present invention, when the first head unit is positioned at the most upstream position in the first movable range in the transport direction, the most downstream head in the transport direction among the plurality of heads is and a first downstream end position where the most upstream head among the plurality of heads in the transport direction is positioned when the first head unit is positioned at the most downstream position in the first movable range. a first step of obtaining, as a first unconstrained area, a region in which the first head unconstrained range overlaps with the first mounting stage; a second step of determining whether or not the first substrate protrudes from the first unrestricted area in the transport direction when stopped; and the second step determines that the first substrate protrudes from the first unrestricted area. Sometimes, the first substrate is transported and positioned at a position offset by an offset amount equal to or less than a first excess amount and larger than zero, in a direction opposite to the direction of protrusion from the first reference stop position, to protrude from within the first unrestricted area. and a third step.
また、本発明の第1態様であるプログラムは、搬送方向において、第1可動範囲の最上流位置に第1ヘッドユニットが位置したときに複数のヘッドのうち搬送方向における最下流のヘッドが位置する第1上流端位置と、第1可動範囲の最下流位置に第1ヘッドユニットが位置したときに複数のヘッドのうち搬送方向における最上流のヘッドが位置する第1下流端位置とに挟まれた第1ヘッド非制約範囲が、第1実装ステージと重なる領域を第1非制約領域として取得する第1工程と、第1非制約領域内に設定した第1基準停止位置で第1基板を停止させたときに第1基板が第1非制約領域から搬送方向にはみ出るか否かを判定する第2工程と、第2工程により第1基板が第1非制約領域内からはみ出ると判定されるときには、第1基準停止位置をはみ出る方向と反対の方向に第1非制約領域内からはみ出る第1超過量以下でかつゼロよりも大きいオフセット量だけオフセットさせた位置に第1基板を搬送して位置決めする第3工程と、をコンピュータに実現させることを特徴としている。
Further, in the program according to the first aspect of the present invention, when the first head unit is positioned at the most upstream position in the first movable range in the transport direction, the most downstream head in the transport direction among the plurality of heads is positioned. Sandwiched between the first upstream end position and the first downstream end position where the most upstream head among the plurality of heads in the transport direction is positioned when the first head unit is positioned at the most downstream position in the first movable range a first step of acquiring a region where the first head unconstrained area overlaps the first mounting stage as the first unconstrained area; and stopping the first substrate at a first reference stop position set within the first unconstrained area. a second step of determining whether or not the first substrate protrudes from the first non-constrained area in the transport direction when the first substrate protrudes from the first non-constrained area when the second step determines that the first substrate protrudes from the first non-constrained area; transporting and positioning the first substrate to a position offset by an offset amount equal to or less than a first excess amount protruding from the first unrestricted area in a direction opposite to the direction of protruding from the first reference stop position and an offset amount greater than zero; 3 steps are realized by a computer.
さらに、本発明の第1態様である記録媒体は、上記プログラムを記録した非一過性の記録媒体である。
Furthermore, the recording medium of the first aspect of the present invention is a non-transitory recording medium recording the above program.
このように構成された第1態様に係る発明では、第1ヘッドユニットがいわゆるインライン構造を有しているため、ヘッド制約が発生する。そこで、当該ヘッド制約を受けない第1非制約領域が取得される。そして、第1非制約領域内に設定した第1基準停止位置で第1基板を停止させたときに第1基板が第1非制約領域から搬送方向にはみ出る場合には、第1基準停止位置をオフセットさせる。そのオフセットの方向は、第1基準停止位置をはみ出る方向と反対の方向であり、しかもオフセット量は第1非制約領域内からはみ出る第1超過量以下でかつゼロよりも大きい値である。これによって、第1非制約領域からの第1基板の超過量は減少し、部品実装する際にヘッド制約を受けるヘッドの本数も少なくなる。その結果、第1基板の大型化に伴う実装サイクルタイムの増大を抑止して効率的な部品実装が可能となる。
In the invention according to the first aspect configured in this way, the first head unit has a so-called in-line structure, so head restrictions occur. Therefore, a first non-constrained area that is not subject to the head constraint is acquired. When the first substrate protrudes from the first unrestricted area in the transport direction when the first substrate is stopped at the first reference stop position set within the first unrestricted area, the first reference stop position is set. offset. The direction of the offset is opposite to the direction of protruding from the first reference stop position, and the offset amount is less than or equal to the first excess amount protruding from the first unrestricted area and greater than zero. As a result, the excess amount of the first substrate from the first unrestricted area is reduced, and the number of heads subject to head restrictions during component mounting is also reduced. As a result, it is possible to efficiently mount components by suppressing an increase in mounting cycle time due to an increase in the size of the first substrate.
ここで、第1基準停止位置で第1基板を停止させたときに第1基板が第1非制約領域から搬送方向にはみ出ない場合には、第1基板を第1基準停止位置で停止させる、または第1非制約領域からはみ出ない範囲で第1基準停止位置をオフセットさせた位置で第1基板を停止させるように構成してもよい。これにより、第1基板は第1非制約領域内に収まり、部品実装する際にヘッド制約を受けず、優れた実装サイクルタイムで部品実装を行うことができる。
Here, if the first substrate does not protrude from the first unconstrained area in the transport direction when the first substrate is stopped at the first reference stop position, the first substrate is stopped at the first reference stop position, Alternatively, the first substrate may be stopped at a position offset from the first reference stop position within a range not protruding from the first non-restricted area. As a result, the first substrate fits within the first non-restricted area, and the head is not restricted when mounting the components, so that the components can be mounted in an excellent mounting cycle time.
また、部品実装装置が、搬送方向において第1実装ステージの下流側に配置された第2実装ステージ内に位置決めされた第2基板に対しても、第1ヘッドユニットを用いて部品を実装するとともに、先端にノズルが装着されたヘッドを所定の配列方向に沿って複数本配列しながら配列方向と平行な方向に複数のヘッドを一括して第1可動範囲と同じ第2可動範囲内で移動可能な第2ヘッドユニットをさらに有し、第1実装ステージおよび第2実装ステージにそれぞれ位置決めされた第1基板および第2基板に対し、第2ヘッドユニットを用いて部品を実装するときには、次のような構成を追加採用してもよい。すなわち、第1ストッパレス搬送部により第1実装ステージから搬送されてきた第2基板を、当接部材と機械的に当接させずに第2実装ステージ内で停止させる第2ストッパレス搬送部をさらに設けてもよい。そして、搬送方向において第1ヘッド非制約範囲が第2実装ステージと重なる第2非制約領域内に設定した第2基準停止位置で第2基板を停止させたときに第2基板が第2非制約領域から搬送方向にはみ出る場合には、第2基準停止位置をオフセットさせる。そのオフセットの方向は、第2基準停止位置をはみ出る方向と反対の方向であり、しかもオフセット量は第2非制約領域内からはみ出る第2超過量以下でかつゼロよりも大きい値である。これによって、第2非制約領域からの第2基板の超過量は減少し、部品実装する際にヘッド制約を受けるヘッドの本数も少なくなる。その結果、第2基板の大型化に伴う実装サイクルタイムの増大を抑止して効率的な部品実装が可能となる。
In addition, the component mounting apparatus uses the first head unit to mount components on a second substrate positioned within a second mounting stage arranged downstream of the first mounting stage in the transport direction. While arranging a plurality of heads with nozzles attached to their tips along a predetermined arrangement direction, the plurality of heads can be collectively moved in a direction parallel to the arrangement direction within a second movable range that is the same as the first movable range. The second head unit is further provided, and components are mounted on the first board and the second board positioned on the first mounting stage and the second mounting stage, respectively, using the second head unit as follows. Additional configurations may be adopted. In other words, the second stopperless transfer section stops the second substrate transferred from the first mounting stage by the first stopperless transfer section in the second mounting stage without mechanical contact with the contact member. Further may be provided. Then, when the second substrate is stopped at a second reference stop position set within a second unconstrained area where the first head unconstrained range overlaps with the second mounting stage in the transport direction, the second substrate is placed in the second unconstrained area. If it protrudes from the area in the transport direction, the second reference stop position is offset. The direction of the offset is the direction opposite to the direction of protruding from the second reference stop position, and the offset amount is less than or equal to the second excess amount protruding from the second unrestricted area and greater than zero. As a result, the excess amount of the second substrate from the second unrestricted area is reduced, and the number of heads subject to head restrictions during component mounting is also reduced. As a result, it is possible to efficiently mount components by suppressing an increase in the mounting cycle time due to an increase in the size of the second substrate.
また、第2可動範囲が第1可動範囲と異なることがある。この場合には、次のように構成するのが望ましく、これによって実装サイクルタイムの増大を抑止して効率的な部品実装が可能となる。すなわち、第1ヘッド非制約範囲と第2ヘッド非制約範囲との大小関係により、以下のように制御するのが望ましい。第1ヘッド非制約範囲が搬送方向において第2ヘッド非制約範囲よりも狭いときには、搬送方向において第1ヘッド非制約範囲が第2実装ステージと重なる領域を第2非制約領域とし、第2非制約領域内に設定した第2基準停止位置で第2基板を停止させたときに第2基板が第2非制約領域から搬送方向にはみ出ると判定すると、第2基準停止位置をはみ出る方向と反対の方向に第2非制約領域内からはみ出る第2超過量以下でかつゼロよりも大きいオフセット量だけオフセットさせた位置で第2基板が停止するように、第2ストッパレス搬送部を制御するのが好適である。一方、第2ヘッド非制約範囲が搬送方向において第1ヘッド非制約範囲よりも狭いときには、搬送方向において第2ヘッド非制約範囲が第1実装ステージと重なる領域を第1非制約領域とし、第2非制約領域内に設定した第2基準停止位置で第2基板を停止させたときに第2基板が第2非制約領域から搬送方向にはみ出ると判定すると、第2基準停止位置をはみ出る方向と反対の方向に第2非制約領域内からはみ出る第2超過量以下でかつゼロよりも大きいオフセット量だけオフセットさせた位置で第2基板が停止するように、第2ストッパレス搬送部を制御するのが好適である。
Also, the second movable range may differ from the first movable range. In this case, it is desirable to configure as follows, whereby an increase in mounting cycle time can be suppressed and efficient component mounting becomes possible. That is, it is desirable to control as follows according to the magnitude relationship between the first head-unrestricted range and the second head-unrestricted range. When the first head-unrestricted range is narrower than the second head-unrestricted range in the transport direction, the area where the first head-unrestricted range overlaps with the second mounting stage in the transport direction is defined as the second unrestricted area. When it is determined that the second board protrudes from the second unrestricted area in the transport direction when the second board is stopped at the second reference stop position set within the area, the direction opposite to the direction of protruding from the second reference stop position is determined. It is preferable to control the second stopperless transport section so that the second substrate is stopped at a position offset by an offset amount that is equal to or less than the second excess amount and larger than zero, and which protrudes from the second unrestricted area. be. On the other hand, when the second head-unrestricted range is narrower than the first head-unrestricted range in the transport direction, the area where the second head-unrestricted range overlaps with the first mounting stage in the transport direction is defined as the first unrestricted area. When it is determined that the second board protrudes from the second non-constrained area in the transport direction when the second board is stopped at the second reference stop position set within the non-constrained area, the direction opposite to the direction of protruding from the second reference stop position The second stopperless transport unit is controlled such that the second substrate stops at a position offset by an offset amount that is equal to or less than the second excess amount and larger than zero in the direction of the second non-restricted area. preferred.
また、第2可動範囲が第1可動範囲と異なるとともに、第1ヘッドユニットが第1基板への部品実装を担う一方、第2ヘッドユニットが第2基板への部品実装を担うことがある。このような場合には、次のように構成するのが望ましく、これによって実装サイクルタイムの増大を抑止して効率的な部品実装が可能となる。すなわち、搬送方向において第2ヘッド非制約範囲が第2実装ステージと重なる第2非制約領域内に設定した第2基準停止位置で第2基板を停止させたときに第2基板が第2非制約領域から搬送方向にはみ出ると判定すると、第2基準停止位置をはみ出る方向と反対の方向に第2非制約領域内からはみ出る第2超過量以下でかつゼロよりも大きいオフセット量だけオフセットさせた位置で第2基板が停止するように、第2ストッパレス搬送部を制御するのが好適である。
Also, the second movable range may differ from the first movable range, and while the first head unit is responsible for mounting components on the first board, the second head unit may be responsible for mounting components on the second board. In such a case, it is desirable to configure as follows, whereby an increase in mounting cycle time can be suppressed and efficient component mounting becomes possible. That is, when the second substrate is stopped at the second reference stop position set within the second unconstrained area where the second head unconstrained range overlaps with the second mounting stage in the transport direction, the second substrate is placed in the second unconstrained area. When it is determined to protrude from the area in the conveying direction, it protrudes from the second non-restricted area in the direction opposite to the direction of protruding from the second reference stop position at a position offset by an offset amount that is less than or equal to the second excess amount and greater than zero. Preferably, the second stopperless transport is controlled such that the second substrate stops.
また、第2基準停止位置で第2基板を停止させたときに第2基板が第2非制約領域から搬送方向にはみ出ない場合には、第2基板が第2基準停止位置で停止する、または第2基板が第2非制約領域からはみ出ない範囲で第2基準停止位置をオフセットさせた位置で停止するように、第2ストッパレス搬送部を制御してもよい。これにより、第2基板は第2非制約領域内に収まり、部品実装する際にヘッド制約を受けず、優れた実装サイクルタイムで部品実装を行うことができる。
If the second substrate does not protrude from the second non-restricted area in the transport direction when the second substrate is stopped at the second reference stop position, the second substrate stops at the second reference stop position, or The second stopperless conveying unit may be controlled so that the second substrate stops at a position offset from the second reference stop position within the range where the second substrate does not protrude from the second non-restricted area. As a result, the second substrate fits within the second non-restricted area, so that the head is not restricted when mounting the component, and the component can be mounted in an excellent mounting cycle time.
さらに、第1基板および第2基板をそれぞれ第1非制約領域内および第2非制約領域内で収めるという条件を満足しつつ第1基準停止位置および第2基準停止位置から以下のようにオフセットしてもよい。例えば搬送方向における第1基板の上流端が第1非制約領域の上流端位置と一致した状態で第1基板を停止させるとともに、搬送方向における第2基板の下流端が第2非制約領域の下流端位置と一致した状態で第2基板を停止させることで、搬送方向における第1基板と第2基板の間隔を広げることができる。逆に、搬送方向における第1基板の下流端が第1非制約領域の下流端位置と一致した状態で第1基板を停止するとともに、搬送方向における第2基板の上流端が第2非制約領域の上流端位置と一致した状態で第2基板を停止させることで、上記間隔を狭めることができる。
Furthermore, while satisfying the condition that the first substrate and the second substrate are contained within the first unconstrained area and the second unconstrained area, respectively, the first reference stop position and the second reference stop position are offset as follows. may For example, the first substrate is stopped in a state where the upstream end of the first substrate in the transport direction coincides with the position of the upstream end of the first unrestricted area, and the downstream end of the second substrate in the transport direction is downstream of the second unrestricted area. By stopping the second substrate in a state aligned with the end position, the distance between the first substrate and the second substrate in the transport direction can be widened. Conversely, the first substrate is stopped in a state in which the downstream end of the first substrate in the transport direction coincides with the position of the downstream end of the first unrestricted area, and the upstream end of the second substrate in the transport direction is the second unrestricted area. By stopping the second substrate in a state aligned with the position of the upstream end of the , the above-described interval can be narrowed.
また、本発明の第2態様は、先端にノズルが装着されたヘッドを所定の配列方向に沿って複数本配列しながら配列方向と平行な方向に複数のヘッドを一括して第1可動範囲内で移動可能な第1ヘッドユニットを有し、配列方向と平行な方向において互いに離間して配置された第1実装ステージおよび第2実装ステージに跨って位置決めされた長尺基板に第1ヘッドユニットを用いて部品を実装する部部品実装装置、当該部品実装装置に装備される基板搬送装置、当該部品実装装置において第1基板を配列方向と平行な搬送方向に搬送する基板搬送方法、第1基板を配列方向と平行な搬送方向に搬送するためのプログラムおよび記録媒体である。
In a second aspect of the present invention, a plurality of heads having nozzles attached to their tips are arranged along a predetermined arrangement direction, and the plurality of heads are collectively arranged in a direction parallel to the arrangement direction within a first movable range. The first head unit is mounted on a long substrate positioned straddling a first mounting stage and a second mounting stage spaced apart from each other in a direction parallel to the arrangement direction. A component mounting device that mounts components using a component mounting device, a substrate transport device equipped in the component mounting device, a substrate transport method for transporting a first substrate in the component mounting device in a transport direction parallel to an arrangement direction, a first substrate A program and recording medium for conveying in a conveying direction parallel to an arrangement direction.
本発明の第2態様である基板搬送装置は、配列方向と平行な搬送方向に長尺基板を搬送した後で、当接部材と機械的に当接させずに第1実装ステージおよび第2実装ステージに跨った状態で長尺基板を停止させる基板搬送部と、基板搬送部を制御する制御部と、を備え、搬送方向において、第1可動範囲の最上流位置に第1ヘッドユニットが位置したときに複数のヘッドのうち搬送方向における最下流のヘッドが位置する第1上流端位置と、第1可動範囲の最下流位置に第1ヘッドユニットが位置したときに複数のヘッドのうち搬送方向における最上流のヘッドが位置する第1下流端位置とで挟まれた第1ヘッド非制約範囲が第1実装ステージと重なる領域の最上流位置と第2実装ステージと重なる領域の最下流位置とで挟まれた領域を第1非制約領域と定義したとき、制御部は、第1非制約領域内に設定した第1基準停止位置で長尺基板を停止させたときに長尺基板が第1非制約領域から搬送方向にはみ出ると判定すると、第1基準停止位置をはみ出る方向と反対の方向に第1非制約領域内からはみ出る第1超過量以下でかつゼロよりも大きいオフセット量だけオフセットさせた位置で長尺基板が停止するように、基板搬送部を制御することを特徴としている。
A substrate transport apparatus according to a second aspect of the present invention transports long substrates in a transport direction parallel to the arrangement direction, and thereafter, the first mounting stage and the second mounting stage are performed without mechanical contact with the contact member. A substrate transfer section for stopping the long substrate while straddling the stage and a control section for controlling the substrate transfer section are provided, and the first head unit is positioned at the most upstream position of the first movable range in the transfer direction. When the first upstream end position where the most downstream head in the transport direction among the plurality of heads is positioned, and when the first head unit is located at the most downstream position in the first movable range, the position of the plurality of heads in the transport direction A first head-unrestricted range sandwiched between a first downstream end position where the most upstream head is located is sandwiched between the most upstream position of an area overlapping with the first mounting stage and the most downstream position of an area overlapping with the second mounting stage. defined as a first non-constrained area, the controller controls the long substrate to stop in the first non-constrained area when the long substrate is stopped at the first reference stop position set within the first non-constrained area. When it is determined to protrude from the area in the conveying direction, at a position offset by an offset amount equal to or less than the first excess amount and larger than zero, which protrudes from the first non-restricted area in the direction opposite to the direction of protruding from the first reference stop position. It is characterized by controlling the board transfer part so that the long board stops.
また、本発明の第2態様である部品実装装置は、上記基板搬送装置を備えることを特徴としている。
A component mounting apparatus according to a second aspect of the present invention is characterized by including the board transfer apparatus.
また、本発明の第2態様である基板搬送方法は、搬送方向において、第1可動範囲の最上流位置に第1ヘッドユニットが位置したときに複数のヘッドのうち搬送方向における最下流のヘッドが位置する第1上流端位置と、第1可動範囲の最下流位置に第1ヘッドユニットが位置したときに複数のヘッドのうち搬送方向における最上流のヘッドが位置する第1下流端位置とに挟まれた第1ヘッド非制約範囲が第1実装ステージと重なる領域の最上流位置と第2実装ステージと重なる領域の最下流位置とで挟まれた領域を第1非制約領域として取得する第1工程と、第1非制約領域内に設定した第1基準停止位置で長尺基板を停止させたときに長尺基板が第1非制約領域から搬送方向にはみ出るか否かを判定する第2工程と、第2工程により長尺基板が第1非制約領域内からはみ出ると判定されるときには、第1基準停止位置をはみ出る方向と反対の方向に第1非制約領域内からはみ出る第1超過量以下でかつゼロよりも大きいオフセット量だけオフセットさせた位置に長尺基板を搬送して位置決めする第3工程と、を備えることを特徴としている。
Further, in the substrate transport method according to the second aspect of the present invention, when the first head unit is positioned at the most upstream position of the first movable range in the transport direction, the most downstream head in the transport direction among the plurality of heads is and a first downstream end position where the most upstream head among the plurality of heads in the transport direction is positioned when the first head unit is positioned at the most downstream position in the first movable range. a first step of acquiring, as the first unconstrained area, an area sandwiched between the most upstream position of the area where the first head unconstrained area overlaps the first mounting stage and the most downstream position of the area where the second mounting stage overlaps and a second step of determining whether or not the long substrate protrudes from the first non-constrained area in the transport direction when the long substrate is stopped at the first reference stop position set within the first non-constrained area. , when it is determined in the second step that the long substrate protrudes from the first non-restricted area, the length of the substrate protruding from the first non-restricted area in the direction opposite to the direction of protruding from the first reference stop position is less than or equal to the first excess amount. and a third step of transporting and positioning the long substrate to a position offset by an offset amount larger than zero.
また、本発明の第2態様であるプログラムは、搬送方向において、第1可動範囲の最上流位置に第1ヘッドユニットが位置したときに複数のヘッドのうち搬送方向における最下流のヘッドが位置する第1上流端位置と、第1可動範囲の最下流位置に第1ヘッドユニットが位置したときに複数のヘッドのうち搬送方向における最上流のヘッドが位置する第1下流端位置とに挟まれた第1ヘッド非制約範囲が第1実装ステージと重なる領域の最上流位置と第2実装ステージと重なる領域の最下流位置とで挟まれた領域を第1非制約領域として取得する第1工程と、第1非制約領域内に設定した第1基準停止位置で長尺基板を停止させたときに長尺基板が第1非制約領域から搬送方向にはみ出るか否かを判定する第2工程と、第2工程により長尺基板が第1非制約領域内からはみ出ると判定されるときには、第1基準停止位置をはみ出る方向と反対の方向に第1非制約領域内からはみ出る第1超過量以下でかつゼロよりも大きいオフセット量だけオフセットさせた位置に長尺基板を搬送して位置決めする第3工程と、をコンピュータに実現させることを特徴としている。
Further, in the program according to the second aspect of the present invention, when the first head unit is positioned at the most upstream position in the first movable range in the transport direction, the most downstream head in the transport direction among the plurality of heads is positioned. Sandwiched between the first upstream end position and the first downstream end position where the most upstream head among the plurality of heads in the transport direction is positioned when the first head unit is positioned at the most downstream position in the first movable range a first step of acquiring, as the first unconstrained area, an area sandwiched between the most upstream position of the area where the first head unconstrained area overlaps with the first mounting stage and the most downstream position of the area where the first head unconstrained area overlaps with the second mounting stage; a second step of determining whether or not the long substrate protrudes from the first non-constrained area in the transport direction when the long substrate is stopped at a first reference stop position set within the first non-constrained area; When it is determined by the second step that the long substrate protrudes from the first non-constrained area, the amount of excess protruding from the first non-constrained area in the direction opposite to the direction of protruding from the first reference stop position is equal to or less than the first excess amount and is zero. and a third step of transporting and positioning the long substrate to a position offset by an offset amount larger than the offset amount.
さらに、本発明の第2態様である記録媒体は、上記プログラムを記録した非一過性の記録媒体である。
Furthermore, the recording medium of the second aspect of the present invention is a non-transitory recording medium recording the above program.
このように構成された第2態様に係る発明では、第1態様に係る発明と同様に、第1ヘッドユニットがいわゆるインライン構造を有しているため、ヘッド制約が発生する。そこで、当該ヘッド制約を受けない第1非制約領域が取得される。そして、第1非制約領域内に設定した第1基準停止位置で長尺基板を停止させたときに長尺基板が第1非制約領域から搬送方向にはみ出る場合には、第1基準停止位置をオフセットさせる。そのオフセットの方向は、第1基準停止位置をはみ出る方向と反対の方向であり、しかもオフセット量は第1非制約領域内からはみ出る第1超過量以下でかつゼロよりも大きい値である。これによって、第1非制約領域からの長尺基板の超過量は減少し、部品実装する際にヘッド制約を受けるヘッドの本数も少なくなる。その結果、長尺基板の大型化に伴う実装サイクルタイムの増大を抑止して効率的な部品実装が可能となる。
In the invention according to the second aspect configured in this way, as in the invention according to the first aspect, since the first head unit has a so-called in-line structure, head restrictions occur. Therefore, a first non-constrained area that is not subject to the head constraint is acquired. Then, when the long substrate protrudes from the first non-constrained area in the transport direction when the long substrate is stopped at the first reference stop position set within the first non-constrained area, the first reference stop position is set. offset. The direction of the offset is opposite to the direction of protruding from the first reference stop position, and the offset amount is less than or equal to the first excess amount protruding from the first unrestricted area and greater than zero. As a result, the amount of the long substrate that exceeds the first unrestricted area is reduced, and the number of heads subject to head restrictions during component mounting is also reduced. As a result, it is possible to efficiently mount components by suppressing an increase in the mounting cycle time due to an increase in the size of the long substrate.
上記のように構成された発明では、基板の大型化により非制約領域から基板がはみ出す場合であっても、オフセット処理に非制約領域からの基板の超過量を減少させることができ、実装サイクルタイムの増大を抑止して部品実装を効率的に行うことができる。
In the invention configured as described above, even if the substrate protrudes from the non-restricted area due to the increase in size of the substrate, the amount of the substrate exceeding the non-restricted area can be reduced by the offset process, thereby reducing the mounting cycle time. It is possible to suppress an increase in the component mounting efficiency.
図1は本発明に係る基板搬送装置の第1実施形態を装備する部品実装装置を示す平面図である。図2は図1中のヘッド支持部材を切り欠き、図1に示す部品実装装置における基板支持部を示す平面図である。図3は図1に示す部品実装装置を制御するための電気的構成を示すブロック図である。図1、図2および以下の図では、鉛直方向に平行なZ方向、それぞれ水平方向に平行なX方向およびY方向からなるXYZ直交座標を適宜示す。
FIG. 1 is a plan view showing a component mounting apparatus equipped with the first embodiment of the board transfer apparatus according to the present invention. FIG. 2 is a plan view showing a board support portion in the component mounting apparatus shown in FIG. 1, with the head support member in FIG. 1 cut away. 3 is a block diagram showing an electrical configuration for controlling the component mounting apparatus shown in FIG. 1. FIG. In FIGS. 1, 2 and the following figures, XYZ Cartesian coordinates are shown where appropriate, with the Z direction parallel to the vertical direction and the X and Y directions respectively parallel to the horizontal direction.
部品実装装置100は、基台1と、基板搬送部2と、基板支持部3とを備えている。この基板搬送部2は、本発明に係る基板搬送装置の第1実施形態に相当しており、基台1の上に設けられた一対のコンベア21、21を有する。コンベア21、21は、装置全体を制御する制御ユニット4の駆動制御部43からの搬送指令に応じて作動し、X方向に延びる基板搬送経路に沿って基板Sを搬送する。より具体的には、コンベア21、21は、装置外部から基板Sを搬入し、X方向(搬送方向)に搬送する。そして、基板支持部3の上方に位置する目標位置(後で説明する基準停止位置に相当)に基板Sが搬送されると、コンベア21、21は駆動制御部43からの停止指令にしたがって基板搬送を停止する。これにより、基板Sは、搬送方向Xにおいて部品実装に適した目標位置に位置決めされる。このように、コンベア21、21は、ストッパ等の当接部材と機械的に当接させずに基板Sを基板搬送経路上に正確に停止させる機能を有しており、本発明の「第1ストッパレス搬送部」の一例に相当している。なお、上記目標位置は、搬送方向Xにおける基板Sの寸法(以下「基板サイズ」と称する)に応じて適宜変更される。これによって、ヘッド制約を受けるヘッド本数の最小化が図られている。目標位置の技術的意味および目標位置の変更については、後で詳述する。
A component mounting apparatus 100 includes a base 1 , a board transfer section 2 and a board support section 3 . This substrate transfer section 2 corresponds to the first embodiment of the substrate transfer apparatus according to the present invention, and has a pair of conveyors 21, 21 provided on the base 1. As shown in FIG. The conveyors 21, 21 operate according to a transport command from the drive control section 43 of the control unit 4 that controls the entire apparatus, and transport the substrate S along the substrate transport path extending in the X direction. More specifically, the conveyors 21, 21 carry in the substrate S from the outside of the apparatus and transport it in the X direction (transport direction). When the substrate S is transported to a target position (corresponding to a reference stop position to be described later) positioned above the substrate support portion 3, the conveyors 21 and 21 transport the substrate according to a stop command from the drive control portion 43. to stop. As a result, the board S is positioned in the transport direction X at a target position suitable for component mounting. As described above, the conveyors 21, 21 have the function of accurately stopping the substrate S on the substrate conveying path without mechanical contact with contact members such as stoppers. It corresponds to an example of a "stopperless transport section". The target position is appropriately changed according to the dimension of the substrate S in the transport direction X (hereinafter referred to as "substrate size"). As a result, the number of heads subject to head restrictions is minimized. The technical meaning of the target position and change of the target position will be detailed later.
基板支持部3は、図2に示すように、基板搬送経路の下方に位置するように、基台1に設けられている。基板支持部3は、目標位置に位置決めされた基板Sを下方から支持する機能を有している。基板支持部3は、図2に示すように、ベース部材31と、バックアップピン32と、ピン昇降部(図3中の符号33)とを有している。
As shown in FIG. 2, the substrate support part 3 is provided on the base 1 so as to be positioned below the substrate transfer path. The substrate support part 3 has a function of supporting the substrate S positioned at the target position from below. As shown in FIG. 2, the substrate support section 3 has a base member 31, a backup pin 32, and a pin elevating section (reference numeral 33 in FIG. 3).
ベース部材31は基板Sの目標位置を下方から覆うように配置されており、部品実装装置100で取り扱う基板Sの最大サイズと同程度の平面サイズを有している。このベース部材31の上面の直上空間が基板Sを位置決めして部品実装を行う実装ステージSTに相当している。図2中の符号PP1、PP2がそれぞれ実装ステージSTの上流端位置および下流端位置を示している。そして、これら上流端位置PP1および下流端位置PP2の間で目標位置が設定され、コンベア21、21により基板Sは位置決めされる。
The base member 31 is arranged to cover the target position of the board S from below, and has a planar size approximately equal to the maximum size of the board S handled by the component mounting apparatus 100 . The space directly above the upper surface of the base member 31 corresponds to a mounting stage ST for positioning the board S and mounting components. Reference numerals PP1 and PP2 in FIG. 2 indicate the upstream end position and downstream end position of the mounting stage ST, respectively. A target position is set between the upstream end position PP1 and the downstream end position PP2, and the substrate S is positioned by the conveyors 21,21.
また、実装ステージST上の基板Sを下方から支持するために、複数のバックアップピン32がベース部材31に設けられている。各バックアップピン32は、上下方向に長い形状をした、段付きピンであり、下側に小径部位を形成し、上側(先端側)に支持部位を形成している。支持部位は、小径部位よりも更に細径であり、上方に真っ直ぐに延びている。支持部位は、基板Sを支持する機能を果たすものであり、上端面は水平な支持面となっている。
A plurality of backup pins 32 are provided on the base member 31 to support the substrate S on the mounting stage ST from below. Each backup pin 32 is a stepped pin elongated in the vertical direction, and has a small diameter portion formed on the lower side and a support portion formed on the upper side (tip side). The support portion has a smaller diameter than the small diameter portion and extends straight upward. The support portion has a function of supporting the substrate S, and the upper end surface is a horizontal support surface.
ピン昇降部33は、ベース部材31と接続されている。このピン昇降部33は、駆動制御部43から上昇指令を受けると、ベース部材31とバックアップピン32とを一体的に上昇させる。これによって、実装ステージSTに位置決めされた基板Sがバックアップピン32により下方から支持される。
The pin elevating section 33 is connected to the base member 31 . Upon receiving a lift command from the drive control section 43, the pin lifting section 33 lifts the base member 31 and the backup pin 32 integrally. As a result, the substrate S positioned on the mounting stage ST is supported from below by the backup pins 32 .
このように構成された基板支持部3の上方には、図1に示すように、インラインヘッドユニット(以下、単に「ヘッドユニット」と称する)5を水平方向X、Yに移動させるためのヘッド駆動機構6が設けられている。ヘッド駆動機構6は、Y方向に延びる一対のY軸レール61、61と、Y方向に延びるY軸ボールネジ62と、Y軸ボールネジ62を回転駆動するY軸モーターMyとが設けられ、ヘッド支持部材63が一対のY軸レール61、61にY方向に移動可能に支持された状態でY軸ボールネジ62のナットに固定されている。ヘッド支持部材63には、X方向に延びるX軸ボールネジ64と、X軸ボールネジ64を回転駆動するX軸モーターMxとが取り付けられており、ヘッドユニット5がヘッド支持部材63にX方向に移動可能に支持された状態でX軸ボールネジ64のナットに固定されている。したがって、Y軸モーターMyによりY軸ボールネジ62を回転させてヘッドユニット5をY方向に移動させ、あるいはX軸モーターMxによりX軸ボールネジ64を回転させてヘッドユニット5をX方向に移動させることができる。
Above the substrate support section 3 configured as described above, as shown in FIG. A mechanism 6 is provided. The head drive mechanism 6 is provided with a pair of Y- axis rails 61, 61 extending in the Y-direction, a Y-axis ball screw 62 extending in the Y-direction, and a Y-axis motor My for rotationally driving the Y-axis ball screw 62. 63 is fixed to a nut of a Y-axis ball screw 62 while being supported by a pair of Y- axis rails 61, 61 so as to be movable in the Y direction. An X-axis ball screw 64 extending in the X direction and an X-axis motor Mx for rotating the X-axis ball screw 64 are attached to the head support member 63, so that the head unit 5 can move in the X direction on the head support member 63. is fixed to the nut of the X-axis ball screw 64 while being supported by the Therefore, the Y-axis motor My rotates the Y-axis ball screw 62 to move the head unit 5 in the Y direction, or the X-axis motor Mx rotates the X-axis ball screw 64 to move the head unit 5 in the X direction. can.
一対のコンベア21、21のY方向の両側それぞれでは、2つの部品供給部7がX方向に並んでいる。各部品供給部7に対しては、X方向に並ぶ複数のテープフィーダー71が着脱可能に装着されている。各テープフィーダー71には、集積回路、トランジスター、コンデンサ等の小片状の部品(チップ電子部品)を所定間隔おきに収納したテープが巻かれたリールが配置されている。テープフィーダー71は、テープをヘッドユニット5側に間欠的に送り出すことによって、テープ内の部品を部品供給位置72に供給する。この部品供給位置72に供給された部品がヘッドユニット5により基板Sに実装される。
Two component supply units 7 are arranged in the X direction on each side of the pair of conveyors 21, 21 in the Y direction. A plurality of tape feeders 71 arranged in the X direction are detachably attached to each component supply section 7 . Each tape feeder 71 is provided with a reel wound with a tape containing chip-like components (chip electronic components) such as integrated circuits, transistors, and capacitors at predetermined intervals. The tape feeder 71 supplies the components in the tape to the component supply position 72 by intermittently feeding the tape to the head unit 5 side. The components supplied to the component supply position 72 are mounted on the board S by the head unit 5 .
図4は図1の部品実装装置に装備されるヘッドユニットの構成を示す図である。ヘッドユニット5は、X方向に並ぶ複数(本実施形態では10本)のヘッド51を有する。各ヘッド51はZ方向(鉛直方向)に延びた長尺形状を有し、その下端に係脱可能に取り付けられたノズルによって部品を吸着・保持可能に構成されている。つまり、ヘッド51はテープフィーダー71の上方へ移動して、テープフィーダー71により供給された部品を吸着する。続いて、ヘッド51は目標位置に位置決めされた基板Sの上方に移動して部品の吸着を解除することで、基板Sに部品を実装する。
FIG. 4 is a diagram showing the configuration of a head unit installed in the component mounting apparatus of FIG. The head unit 5 has a plurality of (10 in this embodiment) heads 51 arranged in the X direction. Each head 51 has an elongated shape extending in the Z direction (vertical direction), and is configured to be capable of sucking and holding a component by means of a nozzle detachably attached to its lower end. That is, the head 51 moves above the tape feeder 71 and picks up the component supplied by the tape feeder 71 . Subsequently, the head 51 moves above the substrate S positioned at the target position, and mounts the component on the substrate S by canceling the suction of the component.
このように構成されたヘッドユニット5がX方向において移動できる可動範囲MRはX軸ボールネジ64の長さによって決まっており、当該可動範囲MRを超えて移動できない。例えばヘッドユニット5がX方向の上流側(同図の右手側)に移動したとき、その移動限界は同図の1点鎖線に示す通りである。したがって、可動範囲MRの最上流位置にヘッドユニット5が位置したときに複数のヘッド51のうち搬送方向Xにおける最下流のヘッド51aが位置する上流端位置PH1の直下位置に基板Sが存在する場合、いずれのヘッド51も基板Sの上方に位置可能である。つまり、いずれのヘッド51を用いても基板Sに部品を実行することができる。ここで、仮に基板Sの上流端が上流端位置PH1よりも上流側(同図における右手側)に位置すると、最下流のヘッド51aを基板Sの上流端の上方に位置させることができない。そのため、ヘッド51aを使用して基板Sの上流端に部品を実装することができない、つまりヘッド制約を受ける。このヘッド制約は、基板Sの上流端が実装ステージSTの上流端位置PP1に近づくにしたがって増大し、ヘッド制約を受けるヘッド51の本数が増える。
The movable range MR in which the head unit 5 configured in this manner can move in the X direction is determined by the length of the X-axis ball screw 64, and cannot move beyond the movable range MR. For example, when the head unit 5 moves to the upstream side in the X direction (right hand side in the figure), its movement limit is as indicated by the one-dot chain line in the figure. Therefore, when the head unit 5 is positioned at the most upstream position of the movable range MR, the substrate S is present at a position directly below the upstream end position PH1 where the most downstream head 51a in the transport direction X among the plurality of heads 51 is positioned. , any head 51 can be positioned above the substrate S. FIG. That is, any head 51 can be used to execute a component on the substrate S. FIG. Here, if the upstream end of the substrate S is located on the upstream side (right hand side in the drawing) of the upstream end position PH1, the most downstream head 51a cannot be located above the upstream end of the substrate S. Therefore, the head 51a cannot be used to mount components on the upstream end of the board S, that is, the head is restricted. This head constraint increases as the upstream end of the substrate S approaches the upstream end position PP1 of the mounting stage ST, and the number of heads 51 subject to the head constraint increases.
このようなヘッド制約は、下流側(同図の左手側)においても同様である。すなわち、ヘッドユニット5がX方向の下流側に移動したとき、その移動限界は同図の2点鎖線に示す通りである。したがって、可動範囲MRの最下流位置にヘッドユニット5が位置したときに複数のヘッド51のうち搬送方向Xにおける最上流のヘッド51jが位置する下流端位置PH2の直下位置に基板Sが存在する場合、いずれのヘッド51も基板Sの上方に位置可能である。つまり、いずれのヘッド51を用いても基板Sに部品を実行することができる。ここで、仮に基板Sの下流端が下流端位置PH2よりも下流側(同図における左手側)に位置すると、最上流のヘッド51jを基板Sの下流端の上方に位置させることができない。そのため、ヘッド51jを使用して基板Sの下流端に部品を実装することができない、つまりヘッド制約を受ける。このヘッド制約は、基板Sの下流端が実装ステージSTの下流端位置PP2に近づくにしたがって増大し、ヘッド制約を受けるヘッド51の本数が増える。
Such head restrictions are the same on the downstream side (left hand side in the figure). That is, when the head unit 5 moves to the downstream side in the X direction, its movement limit is as indicated by the chain double-dashed line in FIG. Therefore, when the head unit 5 is positioned at the most downstream position of the movable range MR, the substrate S exists at a position directly below the downstream end position PH2 where the most upstream head 51j in the transport direction X among the plurality of heads 51 is positioned. , any head 51 can be positioned above the substrate S. FIG. That is, any head 51 can be used to execute a component on the substrate S. FIG. Here, if the downstream end of the substrate S is located downstream of the downstream end position PH2 (left hand side in the figure), the most upstream head 51j cannot be located above the downstream end of the substrate S. Therefore, the head 51j cannot be used to mount components on the downstream end of the substrate S, that is, the head is restricted. This head constraint increases as the downstream end of the substrate S approaches the downstream end position PP2 of the mounting stage ST, and the number of heads 51 subject to the head constraint increases.
一方、基板Sが搬送方向Xにおいて上流端位置PH1と下流端位置PH2との間に位置している限りにおいては、上記ヘッド制約を受けることなく、基本的には全ヘッド51を使用して部品実装を行うことができる。そこで、以下の説明の便宜から、搬送方向Xにおいて上流端位置PH1および下流端位置PH2で挟まれた範囲を「ヘッド非制約範囲AR」と称する。
On the other hand, as long as the substrate S is positioned between the upstream end position PH1 and the downstream end position PH2 in the transport direction X, basically all the heads 51 are used to carry out component processing without being subject to the above head restrictions. implementation can be done. Therefore, for convenience of explanation below, the range sandwiched between the upstream end position PH1 and the downstream end position PH2 in the transport direction X will be referred to as a "head unrestricted range AR".
上記説明をまとめると、部品実装装置100により基板Sに部品を良好に実装するためには、基本的に搬送方向Xにおいて、上記ヘッド非制約範囲ARと実装ステージSTとが重なる領域(以下「非制約領域」という)NRに基板Sを入るように位置決めする必要がある。なお、第1実施形態では、図4に示すように、ヘッド非制約範囲AR全体が実装ステージST内に含まれており、非制約領域NRはヘッド非制約範囲ARと一致している。そして、搬送方向Xにおいて、基板S全体を非制約領域NR(=上流端位置PH1と下流端位置PH2とで挟まれた範囲)に入るように位置決めすると、ヘッド制約を受けることなく部品実装を行うことができ、実装サイクルタイムの最小化を図ることができる。これに対し、基板Sの上流端部および下流端部の少なくとも一方が非制約領域NRからはみ出るように、基板Sが位置決めされると、非制約領域NRからはみ出した量、いわゆる超過量が多くなるにしたがってヘッド制約を受けるヘッド51の本数が増える。これが実装サイクルタイムを増大させる要因となっていた。
To summarize the above description, in order for the component mounting apparatus 100 to mount a component on the substrate S satisfactorily, basically, in the transport direction X, an area in which the head unrestricted range AR and the mounting stage ST overlap (hereinafter referred to as “non-restrictive range AR”). It is necessary to position the substrate S so that it enters the NR (referred to as "restricted area"). In the first embodiment, as shown in FIG. 4, the entire head-unrestricted range AR is included in the mounting stage ST, and the non-restricted area NR matches the head-unrestricted range AR. Then, when the entire substrate S is positioned within the non-restricted area NR (=the range sandwiched between the upstream end position PH1 and the downstream end position PH2) in the transport direction X, components are mounted without being subject to head restrictions. It is possible to minimize the mounting cycle time. On the other hand, when the substrate S is positioned such that at least one of the upstream end portion and the downstream end portion of the substrate S protrudes from the non-restricted region NR, the amount protruding from the non-restricted region NR, the so-called excess amount, increases. Accordingly, the number of heads 51 subject to head restrictions increases. This has been a factor in increasing the mounting cycle time.
この点をより明確にするため、比較的長い基板Sを位置決めする際に、従来のように当接部材と機械的に当接させて基板Sを位置決めするメカストッパを用いる場合(比較例1)と、予め設定された基準停止位置に基板を停止させる場合(比較例2)と、後で詳述するように超過量に応じて基準停止位置を搬送方向にオフセットする場合(第1実施形態)とを比較しながら説明する。
In order to make this point clearer, when positioning a relatively long substrate S, a conventional mechanical stopper that is brought into mechanical contact with a contact member to position the substrate S is used (comparative example 1). , a case where the substrate is stopped at a preset reference stop position (comparative example 2), and a case where the reference stop position is offset in the transport direction according to the excess amount as will be described in detail later (first embodiment). will be explained by comparing the
図5は基板の停止位置とヘッド制約との関係を説明するための模式図である。同図の(a)欄は、従来装置と同様に、搬送方向Xにおいて互いに異なる位置PS1、PS2でメカストッパにより基板Sを位置決めする装置の動作(比較例1)を模式的に示している。この比較例1では、上流側のメカストッパにより基板Sを停止させる位置PS1を基準停止位置とし、基板サイズが比較的長い基板Sが搬送されてきた場合、同欄に示すように、上流側のメカストッパが基板搬送経路から下方に後退する一方で、下流側のメカストッパが基板搬送経路に進出して基板Sを位置決めする。つまり、基板Sの下流端が位置PS2に位置するように下流側のメカストッパは基板Sを機械的に位置決めする。このため、基板サイズが比較的長い場合には、基板Sの下流端部は非制約領域NRの下流端位置PH2を超過領域ERだけ超え、非制約領域NRからはみ出してしまう。また、同図の(b)欄に示すように、コンベア21、21が、基板Sを搬送し、上流側のメカストッパと同様に、基板Sの下流端が基準停止位置PS1に位置するように基板Sを位置決めする場合(比較例2)、基板Sの上流端部が非制約領域NRの上流端位置PH1を超過領域ERだけ超え、非制約領域NRからはみ出してしまう。なお、基準停止位置PS1は、基本的にはコンベア21、21による基板Sの停止誤差を考慮し、非制約領域NRの両端位置PH1、PH2よりも内側に設定されている。ここでは、搬送方向Xにおいて距離DRだけ下流端位置PH2よりも上流端位置PH1側にシフトした位置に基準停止位置PS1が設定されている。
FIG. 5 is a schematic diagram for explaining the relationship between the stop position of the substrate and the head restrictions. Column (a) of FIG. 1 schematically shows the operation of the device (comparative example 1) for positioning the substrate S by the mechanical stoppers at different positions PS1 and PS2 in the transport direction X, like the conventional device. In this comparative example 1, the position PS1 at which the substrate S is stopped by the upstream mechanical stopper is set as the reference stop position, and when a substrate S having a relatively long substrate size is conveyed, the upstream mechanical stopper stops as shown in the same column. retreats downward from the substrate transport path, while the downstream mechanical stopper advances into the substrate transport path to position the substrate S. That is, the downstream mechanical stopper mechanically positions the substrate S so that the downstream end of the substrate S is positioned at the position PS2. Therefore, when the substrate size is relatively long, the downstream end portion of the substrate S exceeds the downstream end position PH2 of the non-restricted area NR by the excess area ER and protrudes from the non-restricted area NR. Further, as shown in column (b) of the figure, the conveyors 21, 21 convey the substrate S, and the substrate is moved so that the downstream end of the substrate S is positioned at the reference stop position PS1, as with the mechanical stopper on the upstream side. When positioning S (Comparative Example 2), the upstream end portion of the substrate S exceeds the upstream end position PH1 of the non-restricted area NR by the excess area ER and protrudes from the non-restricted area NR. Note that the reference stop position PS1 is basically set inside both end positions PH1 and PH2 of the non-restricted area NR in consideration of the stop error of the substrate S by the conveyors 21 and 21 . Here, the reference stop position PS1 is set at a position shifted toward the upstream end position PH1 from the downstream end position PH2 in the transport direction X by a distance DR.
これに対し、第1実施形態では、同図の(c)欄に示すように、比較例2において生じる超過領域ERの長さと同じオフセット量OFだけ基準停止位置PS1をはみ出た方向(同図では-X方向)と反対方向(同図では+X方向)にオフセットする。これによって、基板サイズが搬送方向Xにおける非制約領域NRの長さ(以下「非制約範囲長さ」という)程度であれば、基板Sの全部が非制約領域NRに収まる。また、基板サイズが非制約範囲長さよりも長い場合であっても、搬送方向Xにおいて基板Sの一部は非制約領域NRからはみ出るものの、その超過領域ERは、比較例1、2に比べて少なくなる。したがって、ヘッド制約を受けるヘッド51の本数は比較例1、2よりも少なくなり、実装サイクルタイムの増大を抑制することができる。
On the other hand, in the first embodiment, as shown in column (c) of the figure, the direction (in the figure, −X direction) and the opposite direction (+X direction in the figure). Accordingly, if the substrate size is about the length of the non-restricted area NR in the transport direction X (hereinafter referred to as "non-restricted area length"), the entire substrate S fits within the non-restricted area NR. Further, even if the substrate size is longer than the length of the non-restricted range, although part of the substrate S protrudes from the non-restricted region NR in the transport direction X, the excess region ER is larger than that of Comparative Examples 1 and 2. less. Therefore, the number of heads 51 subject to head restrictions is smaller than in Comparative Examples 1 and 2, and an increase in mounting cycle time can be suppressed.
そこで、本実施形態では、このような技術事項に基づき、制御ユニット4は、上記超過量が少なくなるように実装ステージSTにおける基板Sの停止位置を制御している。これによって、制御ユニット4は、ヘッド制約を受けるヘッド51の本数の最小化を図っている。
Therefore, in this embodiment, based on such technical matters, the control unit 4 controls the stop position of the substrate S on the mounting stage ST so as to reduce the amount of excess. Thereby, the control unit 4 attempts to minimize the number of heads 51 subject to head restrictions.
制御ユニット4は、図3に示すように、CPU(Central Processing Unit)やメモリーで構成されたプロセッサーである演算処理部41と、HDD(Hard Disk Drive)などで構成された記憶部42とを有している。さらに、制御ユニット4は、部品実装装置100の駆動系(コンベア21、21、ピン昇降部33、X軸モーターMx、Y軸モーターMy等)を制御する駆動制御部43と、部品実装装置100の撮像系(部品認識カメラ等)を制御する撮像制御部44と、読取部45とを有している。特に、読取部45は、部品実装装置100の各部を制御するための制御プログラムおよび基板Sの停止位置を制御することで上記超過量の低減を図るための停止設定プログラムを記録媒体RMaから読み出し、記憶部42に書き込む機能を有している。この記録媒体RMaは、CD(Compact Disc)、DVD(Digital Versatile Disc)、USB(Universal Serial Bus)メモリー等のコンピュータ読み取り可能な非一過性の記録媒体である。
As shown in FIG. 3, the control unit 4 has an arithmetic processing unit 41, which is a processor configured by a CPU (Central Processing Unit) and memory, and a storage unit 42 configured by an HDD (Hard Disk Drive). are doing. Further, the control unit 4 includes a drive control unit 43 that controls the drive system of the component mounting apparatus 100 ( conveyors 21, 21, pin lifting unit 33, X-axis motor Mx, Y-axis motor My, etc.) It has an imaging control section 44 that controls an imaging system (component recognition camera, etc.) and a reading section 45 . In particular, the reading unit 45 reads from the recording medium RMa a control program for controlling each unit of the component mounting apparatus 100 and a stop setting program for reducing the excess amount by controlling the stop position of the board S. It has a function of writing to the storage unit 42 . This recording medium RMa is a computer-readable non-transitory recording medium such as a CD (Compact Disc), a DVD (Digital Versatile Disc), a USB (Universal Serial Bus) memory, or the like.
この制御ユニット4は、図示を省略する通信回線を介してホストコンピュータ900と接続されており、ホストコンピュータ900の演算処理部901で作成された生産プログラムをホストコンピュータ900から受け取る。また、部品実装装置100は、記録媒体RMaから読み出したプログラムに従って、基板搬送部2をはじめとし、部品実装装置100の各部を制御して部品実装を行う。特に、本実施形態では、制御ユニット4は、生産プログラムにしたがった部品実装処理に先立って、図6に示す基準停止位置の設定処理を設定プログラムにしたがって行い、基板サイズが切替基準情報を超える場合に基準停止位置をオフセットさせる。以下、図5および図6を参照しつつ基準停止位置の設定処理について説明する。
The control unit 4 is connected to the host computer 900 via a communication line (not shown), and receives from the host computer 900 the production program created by the arithmetic processing section 901 of the host computer 900 . In addition, the component mounting apparatus 100 performs component mounting by controlling each part of the component mounting apparatus 100 including the board transfer section 2 according to the program read from the recording medium RMa. In particular, in this embodiment, the control unit 4 performs the reference stop position setting process shown in FIG. to offset the reference stop position. The processing for setting the reference stop position will be described below with reference to FIGS. 5 and 6. FIG.
図6は図1に示す部品実装装置における基準停止位置を設定する動作を示すフローチャートである。制御ユニット4の演算処理部41は、基準停止位置の停止設定プログラムにしたがって、装置各部を以下のように制御する。まず、演算処理部41は、基板搬送部2により搬送される基板Sの基板サイズLxと、予め設定されている基準停止位置PS1とを取得する(ステップS1)。また、演算処理部41は、搬送方向Xにおける非制約領域NRの両端位置、つまり上流端位置PH1および下流端位置PH2を取得する(ステップS2)。
FIG. 6 is a flow chart showing the operation of setting the reference stop position in the component mounting apparatus shown in FIG. The arithmetic processing section 41 of the control unit 4 controls each section of the device as follows according to the stop setting program for the reference stop position. First, the arithmetic processing unit 41 acquires the substrate size Lx of the substrate S transported by the substrate transporting unit 2 and the preset reference stop position PS1 (step S1). Further, the arithmetic processing unit 41 acquires both end positions of the non-restricted area NR in the transport direction X, that is, the upstream end position PH1 and the downstream end position PH2 (step S2).
これらの情報に基づいて演算処理部41は、切替基準情報Lfを算出する(ステップS3)。この切替基準情報Lfは、基板Sの先端、つまり搬送方向Xにおける下流端が基準停止位置PS1に位置するように基板Sを停止させたときに基板S全体が非制約領域NRに収まるか否かの判断基準となる情報、つまり予め設定されている基準停止位置PS1と上流端位置PH1とで挟まれた範囲FRの距離に相当している。より具体的には、演算処理部41は、次式
Lf=PS1-PH1
に基づいて算出されるX方向における長さ情報を切替基準情報Lfとして記憶する。ここで、切替基準情報Lfに対し、基板サイズLxが上回っている場合には、図5の(b)欄に示すように、基準停止位置PS1で位置決めされた基板Sの後端、つまり搬送方向Xにおける上流端が上流端位置PH1よりも上流側に位置する。すなわち、当該基板Sの後端部が非制約領域NRから上流側(同図の右手側)に超過領域ERだけ超過している。逆に、切替基準情報Lfに対し、基板サイズLxが同じまたは下回っている場合には、上記のように基準停止位置PS1で停止された基板Sの後端(搬送方向Xにおける上流端)が上流端位置PH1または上流端位置PH1よりも下流側に位置する。すなわち、超過領域ERは発生せず、当該基板Sの全体が非制約領域NRに収まった状態で実装ステージSTに位置決めされる。 Based on these pieces of information, the arithmetic processing unit 41 calculates switching reference information Lf (step S3). This switching reference information Lf is whether or not the entire substrate S can be accommodated in the non-restricted area NR when the substrate S is stopped so that the leading edge of the substrate S, that is, the downstream end in the transport direction X is positioned at the reference stop position PS1. , that is, the distance of the range FR sandwiched between the preset reference stop position PS1 and the upstream end position PH1. More specifically, the arithmetic processing unit 41 uses the following formula Lf=PS1−PH1
The length information in the X direction calculated based on is stored as switching reference information Lf. Here, when the substrate size Lx exceeds the switching reference information Lf, as shown in column (b) of FIG. The upstream end of X is located upstream of the upstream end position PH1. That is, the rear end portion of the substrate S exceeds the non-restricted area NR by the excess area ER to the upstream side (right hand side in the figure). Conversely, when the substrate size Lx is equal to or smaller than the switching reference information Lf, the rear end (upstream end in the transport direction X) of the substrate S stopped at the reference stop position PS1 as described above is placed upstream. It is positioned downstream of the end position PH1 or the upstream end position PH1. That is, the substrate S is positioned on the mounting stage ST in a state in which the excess area ER does not occur and the entire substrate S is contained within the non-restricted area NR.
Lf=PS1-PH1
に基づいて算出されるX方向における長さ情報を切替基準情報Lfとして記憶する。ここで、切替基準情報Lfに対し、基板サイズLxが上回っている場合には、図5の(b)欄に示すように、基準停止位置PS1で位置決めされた基板Sの後端、つまり搬送方向Xにおける上流端が上流端位置PH1よりも上流側に位置する。すなわち、当該基板Sの後端部が非制約領域NRから上流側(同図の右手側)に超過領域ERだけ超過している。逆に、切替基準情報Lfに対し、基板サイズLxが同じまたは下回っている場合には、上記のように基準停止位置PS1で停止された基板Sの後端(搬送方向Xにおける上流端)が上流端位置PH1または上流端位置PH1よりも下流側に位置する。すなわち、超過領域ERは発生せず、当該基板Sの全体が非制約領域NRに収まった状態で実装ステージSTに位置決めされる。 Based on these pieces of information, the arithmetic processing unit 41 calculates switching reference information Lf (step S3). This switching reference information Lf is whether or not the entire substrate S can be accommodated in the non-restricted area NR when the substrate S is stopped so that the leading edge of the substrate S, that is, the downstream end in the transport direction X is positioned at the reference stop position PS1. , that is, the distance of the range FR sandwiched between the preset reference stop position PS1 and the upstream end position PH1. More specifically, the arithmetic processing unit 41 uses the following formula Lf=PS1−PH1
The length information in the X direction calculated based on is stored as switching reference information Lf. Here, when the substrate size Lx exceeds the switching reference information Lf, as shown in column (b) of FIG. The upstream end of X is located upstream of the upstream end position PH1. That is, the rear end portion of the substrate S exceeds the non-restricted area NR by the excess area ER to the upstream side (right hand side in the figure). Conversely, when the substrate size Lx is equal to or smaller than the switching reference information Lf, the rear end (upstream end in the transport direction X) of the substrate S stopped at the reference stop position PS1 as described above is placed upstream. It is positioned downstream of the end position PH1 or the upstream end position PH1. That is, the substrate S is positioned on the mounting stage ST in a state in which the excess area ER does not occur and the entire substrate S is contained within the non-restricted area NR.
そこで、演算処理部41は、次式
Le=Lx-Lf
に基づいて搬送方向Xにおける超過領域ERの長さ、つまり超過量Leを算出し(ステップS4)、ゼロよりも大きいか否かを判定する(ステップS5)。このステップS5で「YES」と判定すると、演算処理部41はオフセット量OFを超過量Leに設定する(ステップS6)。一方、ステップS5で「NO」と判定すると、演算処理部41はオフセット量OFをゼロに設定する(ステップS7)。 Therefore, the arithmetic processing unit 41 uses the following equation Le=Lx−Lf
The length of the excess area ER in the transport direction X, that is, the excess amount Le is calculated based on (step S4), and it is determined whether or not it is greater than zero (step S5). If it is determined "YES" in step S5, the arithmetic processing unit 41 sets the offset amount OF to the excess amount Le (step S6). On the other hand, if it is determined "NO" in step S5, the arithmetic processing unit 41 sets the offset amount OF to zero (step S7).
Le=Lx-Lf
に基づいて搬送方向Xにおける超過領域ERの長さ、つまり超過量Leを算出し(ステップS4)、ゼロよりも大きいか否かを判定する(ステップS5)。このステップS5で「YES」と判定すると、演算処理部41はオフセット量OFを超過量Leに設定する(ステップS6)。一方、ステップS5で「NO」と判定すると、演算処理部41はオフセット量OFをゼロに設定する(ステップS7)。 Therefore, the arithmetic processing unit 41 uses the following equation Le=Lx−Lf
The length of the excess area ER in the transport direction X, that is, the excess amount Le is calculated based on (step S4), and it is determined whether or not it is greater than zero (step S5). If it is determined "YES" in step S5, the arithmetic processing unit 41 sets the offset amount OF to the excess amount Le (step S6). On the other hand, if it is determined "NO" in step S5, the arithmetic processing unit 41 sets the offset amount OF to zero (step S7).
こうしてオフセット量OFの設定が完了すると、演算処理部41は基準停止位置PS1を搬送方向Xにおいてオフセット量OFだけ下流側にオフセットする(ステップS8)。すなわち、図5の(b)および(c)欄に示すように、基板Sが非制約領域NRから上流側にはみ出している場合、はみ出した方向と反対方向(本実施形態では下流側)への基準停止位置PS1のオフセットにより基板Sの後端が上流端位置PH1と一致する。これによって、基準停止位置PS1に位置決めされた基板Sが搬送方向Xにおいて非制約領域NRからはみ出した超過領域ERの長さはオフセット前よりも短くなる。つまり、ヘッド制約を受けるヘッド51の本数が低減される。
When the setting of the offset amount OF is completed in this way, the arithmetic processing unit 41 offsets the reference stop position PS1 to the downstream side in the transport direction X by the offset amount OF (step S8). That is, as shown in columns (b) and (c) of FIG. 5, when the substrate S protrudes upstream from the non-restricted region NR, the direction opposite to the protruding direction (downstream in this embodiment) The trailing edge of the substrate S coincides with the upstream edge position PH1 due to the offset of the reference stop position PS1. As a result, the length of the excess area ER in which the substrate S positioned at the reference stop position PS1 protrudes from the non-restricted area NR in the transport direction X becomes shorter than before the offset. That is, the number of heads 51 subject to head restrictions is reduced.
一方、オフセット量OFがゼロに設定されている場合、上記オフセット動作を実行しないのと等価であり、予め設定されている基準停止位置PS1が維持され、当該基準停止位置PS1で基板Sは位置決めされる。つまり、基板S全体が非制約領域NR(=非制約領域NR)に収まるように位置決めされる。
On the other hand, when the offset amount OF is set to zero, it is equivalent to not executing the offset operation, the preset reference stop position PS1 is maintained, and the substrate S is positioned at the reference stop position PS1. be. That is, the substrate S as a whole is positioned within the non-restricted area NR (=non-restricted area NR).
以上のように、第1実施形態では、予め設定されている基準停止位置PS1で基板Sを位置決めした際に、基板Sが非制約領域NRからはみ出るときには、上記のように基準停止位置PS1をオフセットしている。このため、基板Sの大型化に伴い基板Sが非制約領域NRからはみ出すものの、超過領域ERがオフセット前よりも狭まり、ヘッド制約を受けるヘッド51の本数も少なくなる。その結果、基板Sの大型化に伴う実装サイクルタイムの増大を抑止して効率的な部品実装が可能となる。
As described above, in the first embodiment, when the substrate S is positioned at the preset reference stop position PS1 and the substrate S protrudes from the non-restricted area NR, the reference stop position PS1 is offset as described above. are doing. Therefore, although the substrate S protrudes from the non-restricted area NR as the substrate S increases in size, the excess area ER is narrower than before the offset, and the number of heads 51 subject to head restriction is also reduced. As a result, it is possible to suppress an increase in the mounting cycle time due to an increase in the size of the substrate S, thereby enabling efficient component mounting.
また、基板Sの基板サイズLxが切替基準情報Lf以下であり、比較的小さい場合には、非制約領域NRに収められた状態で部品実装が実行される。つまり、ヘッド制約を受けることなく、部品実装を行うことができるため、優れた実装サイクルタイムが得られる。 なお、第1実施形態では、演算処理部41は、ステップS5で「YES」と判定した際のオフセット量OFを超過量Leに設定しているが、オフセット量OFはこれに限定されるものでない。すなわち、オフセット量OFをゼロよりも大きく、かつ超過量Leよりも短い距離、例えば超過量Leの半分の値(=Le/2)をオフセット量OFとして設定しても同様の作用効果が得られる(図7参照)。
Also, when the board size Lx of the board S is equal to or smaller than the switching reference information Lf and is relatively small, the component mounting is executed while being accommodated in the non-restricted area NR. In other words, components can be mounted without being subject to head restrictions, so excellent mounting cycle time can be obtained. Note that in the first embodiment, the arithmetic processing unit 41 sets the offset amount OF to the excess amount Le when it is determined "YES" in step S5, but the offset amount OF is not limited to this. . That is, the same effect can be obtained by setting the offset amount OF to a distance larger than zero and shorter than the excess amount Le, for example, a half value of the excess amount Le (=Le/2) as the offset amount OF. (See FIG. 7).
また、上記実施形態では、図5に基づき説明したように、基準停止位置PS1に基板Sの下流端が一致するように基板Sの位置決めを行っている。つまり、非制約領域NRの下流端位置PH2に近接して設定された基準停止位置PS1をオフセット処理することで上記作用効果を達成している。以下の発明内容の説明の便宜から、このタイプのオフセット処理を本明細書では、「下流側オフセット処理」と称することとする。ここで、着目すべき点は、基板搬送部2により基板Sを搬送することから、下流側オフセット処理と異なる態様でオフセット処理を行ってもよい点である。つまり、基準停止位置PS1を非制約領域NRの上流端位置PH1に近接して設定し、当該基準停止位置PS1に基板Sの上流端が一致するように基板Sの位置決めを行う場合にも、本発明を適用することができる。例えば図8に示すように、非制約領域NRの上流端位置PH1に近接して設定された基準停止位置PS1をオフセット処理することで上記作用効果を達成するように構成してもよい。このタイプのオフセット処理を、下流側オフセット処理と区別するために、「上流側オフセット処理」と称する。この上流側オフセット処理の内容は、基準停止位置PS1が非制約領域NRの上流端位置PH1に近接して設定されている点を除き、下流側オフセット処理と同一であり、上流側オフセット処理の動作は図6に示すものと同一である。
Further, in the above embodiment, as described with reference to FIG. 5, the substrate S is positioned such that the downstream end of the substrate S coincides with the reference stop position PS1. In other words, the above effects are achieved by offsetting the reference stop position PS1 set close to the downstream end position PH2 of the non-restricted area NR. For the convenience of the discussion below, this type of offset processing is referred to herein as "downstream offset processing." Here, it should be noted that since the substrate S is transported by the substrate transport section 2, the offset process may be performed in a manner different from the downstream offset process. That is, even when the reference stop position PS1 is set close to the upstream end position PH1 of the non-restricted area NR and the substrate S is positioned such that the upstream end of the substrate S coincides with the reference stop position PS1, this The invention can be applied. For example, as shown in FIG. 8, the above effects may be achieved by offsetting the reference stop position PS1 set near the upstream end position PH1 of the non-restricted area NR. This type of offsetting is referred to as "upstream offsetting" to distinguish it from downstream offsetting. The content of this upstream offset process is the same as the downstream offset process except that the reference stop position PS1 is set close to the upstream end position PH1 of the non-restricted area NR. are the same as those shown in FIG.
要は、非制約領域NR内に設定した基準停止位置PS1で基板Sを停止させたときに基板Sが非制約領域NRから搬送方向Xにおいて超過量Leはみ出す場合には、はみ出す方向と反対の方向に基準停止位置PS1からゼロよりも大きくかつ超過量Le以下のオフセット量OFだけオフセットさせた位置(オフセット後の基準停止位置PS1)で基板Sが停止するように、基板搬送部2を制御することで、上記作用効果が得られる。
In short, when the substrate S is stopped at the reference stop position PS1 set within the non-restricted area NR, if the substrate S protrudes from the non-restricted area NR in the transport direction X by an excess amount Le, the direction opposite to the protruding direction control the substrate conveying part 2 so that the substrate S is stopped at a position offset from the reference stop position PS1 by an offset amount OF greater than zero and equal to or less than the excess amount Le (reference stop position PS1 after offset). , the above effects can be obtained.
また、ヘッドユニット5を構成するヘッド51に装着されるノズルの組み合わせ、いわゆるヘッドバリエーションが変更されると、ヘッド非制約範囲ARが代わりに、これに伴って非制約領域NRの長さが変動することがある。したがって、ヘッドバリエーションが変更される毎に、図6に示す処理を実行するのが望ましい。
Further, when the combination of nozzles attached to the heads 51 constituting the head unit 5, that is, the so-called head variation is changed, instead of the head non-restricted range AR, the length of the non-restricted area NR changes accordingly. Sometimes. Therefore, it is desirable to execute the processing shown in FIG. 6 each time the head variation is changed.
さらに、上記第1実施形態では、予め設定されている基準停止位置PS1で基板Sを停止させたときに基板Sが非制約領域NRから搬送方向Xにはみ出ないとき(ステップS5で「NO」のとき)、オフセットを行わずに上記基準停止位置PS1で停止しているが、基板Sが非制約領域NRからはみ出ない範囲で上記基準停止位置PS1をオフセットさせた位置で停止するように、コンベア21、21を制御するように構成してもよい。この点は後で説明する変形例や実施形態においても同様である。
Further, in the first embodiment, when the substrate S does not protrude from the non-restricted area NR in the transport direction X when the substrate S is stopped at the preset reference stop position PS1 ("NO" in step S5). ), the conveyor 21 is stopped at the reference stop position PS1 without performing the offset, but is stopped at a position offset from the reference stop position PS1 within a range in which the substrate S does not protrude from the non-restricted area NR. , 21. This point also applies to modified examples and embodiments to be described later.
このように第1実施形態では、基板搬送部2と、制御ユニット4との組み合わせが本発明の「基板搬送装置」として機能し、ステップS2がヘッド非制約範囲ARおよび非制約領域NRを特定するための情報(上流端位置PH1および下流端位置PH2)を取得する工程であり、本発明の「第1工程」の一例に相当している。また、ステップS5が本発明の「第2工程」の一例に相当し、ステップS6、S7およびオフセット後の基準停止位置PS1への基板Sの搬送・位置決めが本発明の「第3工程」の一例に相当している。また、ヘッドユニット5が本発明の「第1ヘッドユニット」の一例に相当し、ヘッドユニット5の可動範囲MRが本発明の「第1可動範囲」の一例に相当している。また、基準停止位置PS1が本発明の「第1基準停止位置」の一例に相当している。また、ヘッド非制約範囲ARおよび非制約領域NRが、それぞれ本発明の「第1ヘッド非制約範囲」および「第1非制約領域」の一例に相当するとともに、非制約領域NRの上流端位置PH1および下流端位置PH2が、それぞれ本発明の「第1上流端位置」および「第1下流端位置」の一例に相当している。また、超過領域ERの長さLeが本発明の「第1超過量」の一例に相当している。
Thus, in the first embodiment, the combination of the substrate transport section 2 and the control unit 4 functions as the "substrate transport apparatus" of the present invention, and step S2 identifies the head unrestricted area AR and the head unrestricted area NR. This is a step of acquiring information (upstream end position PH1 and downstream end position PH2) for the above, and corresponds to an example of the "first step" of the present invention. Further, step S5 corresponds to an example of the "second step" of the present invention, and steps S6 and S7 and the transport and positioning of the substrate S to the reference stop position PS1 after the offset are an example of the "third step" of the present invention. is equivalent to Further, the head unit 5 corresponds to an example of the "first head unit" of the invention, and the movable range MR of the head unit 5 corresponds to an example of the "first movable range" of the invention. Also, the reference stop position PS1 corresponds to an example of the "first reference stop position" of the present invention. Further, the head-unrestricted range AR and the head-unrestricted area NR correspond to examples of the "first head-unrestricted area" and the "first unrestricted area" of the present invention, respectively, and the upstream end position PH1 of the unrestricted area NR and the downstream end position PH2 respectively correspond to examples of the "first upstream end position" and the "first downstream end position" of the present invention. Also, the length Le of the excess area ER corresponds to an example of the "first excess amount" of the present invention.
なお、上記第1実施形態では、記録媒体RMaに停止設定プログラムを記録しておき、記録媒体RMaを介して制御ユニット4に提供しているが、記録媒体RMa以外に、電気通信回線を介して提供してもよい。また、第1実施形態では、生産プログラムに基づく部品実装処理に先立って、停止設定プログラムにしたがって基準停止位置の設定処理を行っているが、ホストコンピュータ900側で基準停止位置の設定処理を行うように構成してもよい。すなわち、記録媒体RMaや通信回線などを介して提供される停止設定プログラムに基づきホストコンピュータ900の演算処理部901が基準停止位置の設定処理を行い、その処理結果を生産プログラムに反映させてもよい。当該生産プログラムをホストコンピュータ900が部品実装装置100に提供することで第1実施形態と同様に作用効果が得られる。これらの点については、以下の実施形態においても同様である。
In the first embodiment, the stop setting program is recorded on the recording medium RMa and provided to the control unit 4 via the recording medium RMa. may provide. Further, in the first embodiment, prior to component mounting processing based on the production program, processing for setting the reference stop position is performed according to the stop setting program. can be configured to That is, the arithmetic processing unit 901 of the host computer 900 may perform processing for setting the reference stop position based on a stop setting program provided via the recording medium RMa or a communication line, and the processing result may be reflected in the production program. . By providing the production program from the host computer 900 to the component mounting apparatus 100, the same effects as in the first embodiment can be obtained. These points also apply to the following embodiments.
また、第1実施形態では、単一の実装ステージSTで部品実装を行う部品実装装置100に対して本発明を適用しているが、例えば図9に示すように、複数の実装ステージST1、ST2を搬送方向Xに並設した部品実装装置にも適用することができる。
In addition, in the first embodiment, the present invention is applied to the component mounting apparatus 100 that mounts components on a single mounting stage ST. can be applied to a component mounting apparatus in which are arranged side by side in the transport direction X.
図9は本発明に係る基板搬送装置の第1実施形態の第3変形例を模式的に示す図である。この部品実装装置100では、実装ステージST1、ST2が搬送方向Xに互いに離間して設けられている。このため、2つの非制約領域NR1、NR2が存在する。すなわち、これら非制約領域NR1、NR2は、それぞれ本発明の「第1非制約領域」および「第2非制約領域」の一例に相当するものであり、ヘッド非制約範囲ARと第1実装ステージST1とが重なる領域が非制約領域NR1であり、ヘッド非制約範囲ARと第2実装ステージST2とが重なる領域が非制約領域NR2である。したがって、非制約領域NR1、NR2毎にオフセット処理を行う必要がある。より具体的には、第1実装ステージST1では図8に示す「上流側オフセット処理」を実行して基板S1を位置決めし、第2実装ステージST2では図5の(b)および(c)欄に示す「下流側オフセット処理」を実行して基板S2を位置決めするのが好適である。このようなオフセット処理によって、第1実施形態と同様の作用効果が得られる。
FIG. 9 is a diagram schematically showing a third modification of the first embodiment of the substrate transfer device according to the present invention. In this component mounting apparatus 100, mounting stages ST1 and ST2 are provided apart from each other in the transport direction X. As shown in FIG. Therefore, there are two non-restricted regions NR1 and NR2. That is, these non-constrained areas NR1 and NR2 correspond to examples of the "first non-constrained area" and the "second non-constrained area" of the present invention, respectively, and the head non-constrained area AR and the first mounting stage ST1 is a non-restricted area NR1, and the area where the head non-restricted range AR and the second mounting stage ST2 overlap is a non-restricted area NR2. Therefore, it is necessary to perform offset processing for each of the non-restricted areas NR1 and NR2. More specifically, in the first mounting stage ST1, the "upstream side offset processing" shown in FIG. 8 is executed to position the substrate S1, and in the second mounting stage ST2, the positions shown in columns (b) and (c) of FIG. Preferably, the substrate S2 is positioned by executing the "downstream offset process" shown. Such offset processing provides the same effects as those of the first embodiment.
また、図9に示す部品実装装置100では、単一のヘッドユニット5により実装ステージST1、ST2に位置決めされた基板S1、S2に対して部品実装を行っているが、例えばヘッドユニットをさらに1個追加した装置にも本発明を適用することができる(図10、図11)。
In the component mounting apparatus 100 shown in FIG. 9, components are mounted on the substrates S1 and S2 positioned on the mounting stages ST1 and ST2 by the single head unit 5. The present invention can also be applied to additional devices (FIGS. 10 and 11).
図10は本発明に係る基板搬送装置の第2実施形態を装備する部品実装装置を示す平面図である。図11は図10中のヘッド支持部材を切り欠き、図10に示す部品実装装置における基板支持部を示す平面図である。図10および図11に示す部品実装装置200が、部品実装装置100と大きく相違する点は、2つの基板支持部3a、3bを設けることで2つの実装ステージST1、ST2が設けられている点と、それに対応して基板搬送部2の構成を変更した点と、2つのヘッドユニット5a、5bが設けられている点とである。なお、その他の構成は基本的に図1および図2に示す部品実装装置100と同一であるため、以下においては相違点を中心に説明し、同一構成については同一符号を付して説明を省略する。
FIG. 10 is a plan view showing a component mounting apparatus equipped with the second embodiment of the board transfer apparatus according to the present invention. FIG. 11 is a plan view showing a board support portion in the component mounting apparatus shown in FIG. 10, with the head support member in FIG. 10 cut away. The component mounting apparatus 200 shown in FIGS. 10 and 11 is greatly different from the component mounting apparatus 100 in that two mounting stages ST1 and ST2 are provided by providing two substrate support sections 3a and 3b. , the configuration of the substrate transfer section 2 is changed accordingly, and two head units 5a and 5b are provided. Since the rest of the configuration is basically the same as that of the component mounting apparatus 100 shown in FIGS. 1 and 2, the following description will focus on the points of difference. do.
部品実装装置200では、図11に示すように、2つの基板支持部3a、3bが搬送方向Xに互いに離間して配置されており、基板支持部3a、3bの直上空間がそれぞれ上流側の第1実装ステージST1および下流側の第2実装ステージST2に相当している。図11中の符号PP11、PP12がそれぞれ上流実装ステージST1の上流端位置および下流端位置を示している。そして、これら上流端位置PP11および下流端位置PP12の間で上流側の目標位置(後で詳述する基準停止位置PS1に相当)が設定され、基板搬送部2により基板Sは位置決めされる。また、図11中の符号PP21、PP22がそれぞれ下流実装ステージST2の上流端位置および下流端位置を示している。そして、これら上流端位置PP21および下流端位置PP22の間で下流側の目標位置(後で詳述する基準停止位置PS2に相当)が設定され、基板搬送部2により基板Sは位置決めされる。
In the component mounting apparatus 200, as shown in FIG. 11, the two board support sections 3a and 3b are arranged apart from each other in the transport direction X, and the spaces immediately above the board support sections 3a and 3b are located on the upstream side, respectively. It corresponds to one mounting stage ST1 and a downstream second mounting stage ST2. Reference numerals PP11 and PP12 in FIG. 11 indicate the upstream end position and downstream end position of the upstream mounting stage ST1, respectively. An upstream target position (corresponding to a reference stop position PS1, which will be described in detail later) is set between the upstream end position PP11 and the downstream end position PP12, and the substrate S is positioned by the substrate conveying section 2. FIG. Reference numerals PP21 and PP22 in FIG. 11 indicate the upstream end position and downstream end position of the downstream mounting stage ST2, respectively. A downstream target position (corresponding to a reference stop position PS2, which will be described in detail later) is set between the upstream end position PP21 and the downstream end position PP22, and the substrate S is positioned by the substrate conveying section 2. FIG.
基板搬送部2は、一対のコンベア21、21と、一対のコンベア22、22と、一対のコンベア23、23と、一対のコンベア24、24とを有している。これらのコンベア21~24は搬送方向Xにこの順で配設されている。そして、駆動制御部43から搬送指令に応じてコンベア21~24が作動し、装置外部から基板Sを搬入し、X方向(搬送方向)に搬送する。そして、実装ステージST1の目標位置(後で説明する基準停止位置PS1に相当)に基板Sが搬送されると、コンベア22、22は駆動制御部43からの停止指令にしたがって基板搬送を停止する。これにより、実装ステージST1では、基板Sが搬送方向Xにおいて部品実装に適した目標位置に位置決めされる。また、コンベア22、22から搬送されてきた基板Sが実装ステージST2の目標位置(後で説明する基準停止位置PS2に相当)に搬送されると、コンベア23、23は駆動制御部43からの停止指令にしたがって基板搬送を停止する。これにより、実装ステージST2では、基板Sが搬送方向Xにおいて部品実装に適した目標位置に位置決めされる。このように、コンベア22、22は、ストッパ等の当接部材と機械的に当接させずに基板Sを基板搬送経路上に正確に停止させる機能を有しており、本発明の「第1ストッパレス搬送部」の一例に相当している。また、コンベア23、23は、ストッパ等の当接部材と機械的に当接させずに基板Sを基板搬送経路上に正確に停止させる機能を有しており、本発明の「第2ストッパレス搬送部」の一例に相当している。なお、実装ステージST1、ST2での基板の位置決めについては、それぞれ第1実施形態と同様にして実行されるが、その詳細については後で述べる。また、実装ステージST1、ST2で位置決めされる基板Sを区別するため、適宜、実装ステージST1で位置決めされる基板Sを「基板S1」と称する一方、実装ステージST2で位置決めされる基板Sを「基板S2」と称する。
The board transfer section 2 has a pair of conveyors 21, 21, a pair of conveyors 22, 22, a pair of conveyors 23, 23, and a pair of conveyors 24, 24. These conveyors 21 to 24 are arranged in the conveying direction X in this order. Then, the conveyors 21 to 24 are operated in response to a transport command from the drive control unit 43, and the substrate S is carried in from the outside of the apparatus and transported in the X direction (transport direction). Then, when the substrate S is transported to the target position (corresponding to the reference stop position PS1 described later) of the mounting stage ST1, the conveyors 22 and 22 stop transporting the substrate according to the stop command from the drive control section 43. As a result, the substrate S is positioned in the transport direction X at a target position suitable for component mounting on the mounting stage ST1. Further, when the substrate S conveyed from the conveyors 22, 22 is conveyed to the target position (corresponding to the reference stop position PS2 described later) of the mounting stage ST2, the conveyors 23, 23 are stopped by the drive control unit 43. Stop substrate transfer according to the command. As a result, the substrate S is positioned in the transport direction X at a target position suitable for component mounting on the mounting stage ST2. As described above, the conveyors 22, 22 have the function of accurately stopping the substrate S on the substrate conveying path without mechanical contact with contact members such as stoppers. It corresponds to an example of a "stopperless transport section". In addition, the conveyors 23, 23 have a function of accurately stopping the substrate S on the substrate conveying path without mechanical contact with an abutment member such as a stopper. It corresponds to an example of a “conveyance unit”. The positioning of the substrates on the mounting stages ST1 and ST2 is performed in the same manner as in the first embodiment, and the details will be described later. Further, in order to distinguish between the substrates S positioned by the mounting stages ST1 and ST2, the substrate S positioned by the mounting stage ST1 is appropriately referred to as "substrate S1", while the substrate S positioned by the mounting stage ST2 is referred to as "substrate S1". S2”.
第2実施形態では、ヘッドユニット5aが(-Y)方向側の部品供給部7に対応して設けられるとともに、ヘッドユニット5bが(+Y)方向側の部品供給部7に対応して設けられている。部品実装装置200は、ヘッドユニット5a、5bを支持するために、それぞれX方向に延設されたヘッド支持部材63a、63bを備えている。ヘッド支持部材63aには、X方向に延びるX軸ボールネジ64と、X軸ボールネジ64を回転駆動するX軸モーターMxaとが取り付けられている。そして、ヘッドユニット5aがヘッド支持部材63aにX方向に移動可能に支持された状態でX軸ボールネジ64のナットに固定されている。このため、制御ユニット4の駆動制御部43からの駆動指令に応じてX軸モーターMxaが作動すると、ヘッドユニット5aは搬送方向Xと平行に移動する。また、ヘッド支持部材63Bも同様に構成されており、制御ユニット4の駆動制御部43からの駆動指令に応じてX軸モーターMxbが作動すると、ヘッドユニット5bは搬送方向Xと平行に移動する。なお、部品実装装置200では、ヘッドユニット5a、5bの移動範囲は同一値に設定されており、上記第1実施形態と同様に、実装ステージST1の上流端位置P11の上流位置から実装ステージST2の下流端位置P22の下流位置までの比較的広い範囲を移動可能となっている。ただし、後で詳述するが、ヘッドユニット5a、5bはインライン構造を有しているため、それぞれヘッド非制約範囲AR1、AR2を有している。しかも、図9に示す装置と同様に、搬送方向Xにおいて互いに離間して配置された2つの実装ステージST1、ST2を有している。したがって、2つの非制約領域NR1、NR2が存在する。すなわち、ヘッド非制約範囲AR1と第1実装ステージST1とが重なる非制約領域NR1と、ヘッド非制約範囲AR2と第2実装ステージST2とが重なる非制約領域NR2とが存在する。
In the second embodiment, the head unit 5a is provided corresponding to the component supply section 7 on the (-Y) direction side, and the head unit 5b is provided corresponding to the component supply section 7 on the (+Y) direction side. there is The component mounting apparatus 200 includes head support members 63a and 63b extending in the X direction to support the head units 5a and 5b, respectively. An X-axis ball screw 64 extending in the X direction and an X-axis motor Mxa for rotating the X-axis ball screw 64 are attached to the head support member 63a. The head unit 5a is fixed to the nut of the X-axis ball screw 64 while being supported by the head support member 63a so as to be movable in the X direction. Therefore, when the X-axis motor Mxa operates in response to a drive command from the drive control section 43 of the control unit 4, the head unit 5a moves parallel to the transport direction X. As shown in FIG. The head support member 63B is similarly configured, and when the X-axis motor Mxb operates in response to a drive command from the drive control section 43 of the control unit 4, the head unit 5b moves parallel to the transport direction X. In the component mounting apparatus 200, the moving ranges of the head units 5a and 5b are set to the same value, and similarly to the above-described first embodiment, from the upstream position P11 of the mounting stage ST1 to the upstream position of the mounting stage ST2. It is movable in a relatively wide range up to a position downstream of the downstream end position P22. However, as will be described in detail later, the head units 5a and 5b have an in-line structure and therefore have head unrestricted ranges AR1 and AR2, respectively. Moreover, like the apparatus shown in FIG. 9, it has two mounting stages ST1 and ST2 spaced apart from each other in the transport direction X. As shown in FIG. Therefore, there are two unconstrained regions NR1, NR2. That is, there are a non-constrained area NR1 where the head non-constrained range AR1 and the first mounting stage ST1 overlap, and a non-constrained area NR2 where the head non-constrained range AR2 and the second mounting stage ST2 overlap.
このように構成されたヘッド支持部材63a、63bは、Y軸モーター(図示省略のリニアモータ)によってY軸レール66に沿ってY方向に移動可能である。すなわち、ヘッド支持部材63a、63bの両端部には、界磁コイルがリニアモータの可動子として取り付けられている。一方、Y軸レール66では、複数の永久磁石がY方向に沿って配列されてリニアモータの固定子として機能する。そして、ヘッド支持部材63aの可動子に電流が供給されると、ヘッド支持部材63aがヘッドユニット5aを伴ってY方向に移動する。また、ヘッド支持部材63bの可動子に電流が供給されると、ヘッド支持部材63bがヘッドユニット5bを伴ってY方向に移動する。こうして、ヘッドユニット5a、5bのそれぞれは、基板搬送部2の上方をXY方向に移動可能となっている。
The head support members 63a and 63b configured in this way can be moved in the Y direction along the Y-axis rail 66 by a Y-axis motor (linear motor not shown). That is, field coils are attached to both ends of the head support members 63a and 63b as movers of linear motors. On the Y-axis rail 66, on the other hand, a plurality of permanent magnets are arranged along the Y direction and function as a stator of the linear motor. When current is supplied to the mover of the head support member 63a, the head support member 63a moves in the Y direction together with the head unit 5a. Further, when a current is supplied to the mover of the head support member 63b, the head support member 63b moves in the Y direction together with the head unit 5b. Thus, each of the head units 5a and 5b can move above the substrate transfer section 2 in the XY directions.
ヘッドユニット5a、5bは、図1に示すヘッドユニット5と同様の構成を有している。すなわち、ヘッドユニット5aはX方向に並ぶ複数(本実施形態では10本)のヘッド51を有する。ヘッドユニット5aの(-Y)方向側の部品供給部7への移動に伴ってヘッド51が同部品供給部7に装着されたテープフィーダー71の上方へ移動して、テープフィーダー71により供給された部品を吸着する。続いて、ヘッドユニット5aの実装ステージST1、ST2への移動に伴ってヘッド51が実装ステージST1、ST2に位置決めされた基板Sの上方に移動して部品の吸着を解除することで、基板Sに部品を実装する。一方、ヘッドユニット5bの(+Y)方向側の部品供給部7への移動に伴ってヘッド51が同部品供給部7に装着されたテープフィーダー71の上方へ移動して、テープフィーダー71により供給された部品を吸着する。続いて、ヘッドユニット5bの実装ステージST1、ST2への移動に伴ってヘッド51が実装ステージST1、ST2に位置決めされた基板Sの上方に移動して部品の吸着を解除することで、基板Sに部品を実装する。なお、ここでは、ヘッドユニット5a、5bに装着されたヘッド51のバリエーションが同一であり、しかもヘッドユニット5a、5bの可動範囲はそれぞれ本発明の「第1可動範囲」および「第2可動範囲」に相当するが、これらは同一である。このため、ヘッド非制約範囲AR1、AR2は同一値ARである。
The head units 5a and 5b have the same configuration as the head unit 5 shown in FIG. That is, the head unit 5a has a plurality of (10 in this embodiment) heads 51 arranged in the X direction. As the head unit 5a moves toward the component supply section 7 in the (−Y) direction, the head 51 moves above the tape feeder 71 attached to the component supply section 7, and is supplied by the tape feeder 71. Adsorb parts. Subsequently, as the head unit 5a moves to the mounting stages ST1 and ST2, the head 51 moves above the board S positioned on the mounting stages ST1 and ST2 to release the suction of the component. Implement parts. On the other hand, as the head unit 5b moves toward the component supply section 7 in the (+Y) direction, the head 51 moves above the tape feeder 71 attached to the component supply section 7, and is supplied by the tape feeder 71. It picks up parts that have been Subsequently, as the head unit 5b moves to the mounting stages ST1 and ST2, the head 51 moves above the board S positioned on the mounting stages ST1 and ST2 to release the suction of the component. Implement parts. Here, the head units 5a and 5b have the same variation of the head 51, and the movable ranges of the head units 5a and 5b are the "first movable range" and the "second movable range" of the present invention, respectively. , but they are identical. Therefore, the head-unrestricted ranges AR1 and AR2 have the same value AR.
このようにして実装ステージST1、ST2において位置決めされた基板S1、S2に対する部品実装が実行される。この部品実装装置200においても、実装ステージST1、ST2で基板Sを位置決めするための目標位置を固定化すると、図5の(b)欄で示したように、基板Sの大型化によって比較的大きな超過領域ERが発生し、実装サイクルタイムが増大する。
Components are mounted on the substrates S1 and S2 positioned on the mounting stages ST1 and ST2 in this way. In this component mounting apparatus 200 as well, if the target position for positioning the board S on the mounting stages ST1 and ST2 is fixed, as shown in the column (b) of FIG. An excess area ER occurs and the mounting cycle time increases.
そこで、第2実施形態では、第1実施形態と同様に、演算処理部41が、実装ステージST1について、次式
Le=Lx-Lf
に基づいて搬送方向Xにおける超過領域ERの長さ、つまり超過量Leを算出し、ゼロよりも大きいか否かを判定する。つまり、非制約領域NR1内に設定した基準停止位置PS1で基板S1を停止させたときに基板S1が非制約領域NR1から搬送方向Xにはみ出るか否かを演算処理部41が判定する。そして、例えば図12Aに示すように、基板S1が非制約領域NR1内に収まっている場合には、基板S1の下流端を予め設定した基準停止位置PS1と一致する状態で基板S1を停止させる(オフセット量OF=ゼロ)。この点については、第2実装ステージST2についても同様である。すなわち、非制約領域NR2内に設定した基準停止位置PS2で基板S2を停止させたときに基板S2が非制約領域NR2から搬送方向Xにはみ出ないため、図12Aに示すように、基板S2の上流端を予め設定した基準停止位置PS2と一致する状態で基板S2を停止させる。 Therefore, in the second embodiment, similarly to the first embodiment, the arithmetic processing unit 41 performs the following equation Le=Lx−Lf for the mounting stage ST1.
, the length of the excess area ER in the transport direction X, that is, the excess amount Le is calculated, and it is determined whether or not it is greater than zero. That is, the arithmetic processing unit 41 determines whether or not the substrate S1 protrudes in the transport direction X from the non-restricted area NR1 when the substrate S1 is stopped at the reference stop position PS1 set within the non-restricted area NR1. Then, for example, as shown in FIG. 12A, when the substrate S1 is within the non-restricted region NR1, the substrate S1 is stopped in a state where the downstream end of the substrate S1 coincides with the preset reference stop position PS1 ( offset amount OF=zero). This point also applies to the second mounting stage ST2. That is, when the substrate S2 is stopped at the reference stop position PS2 set within the non-restricted region NR2, the substrate S2 does not protrude from the non-restricted region NR2 in the transport direction X. Therefore, as shown in FIG. The substrate S2 is stopped in a state in which the edge coincides with a preset reference stop position PS2.
Le=Lx-Lf
に基づいて搬送方向Xにおける超過領域ERの長さ、つまり超過量Leを算出し、ゼロよりも大きいか否かを判定する。つまり、非制約領域NR1内に設定した基準停止位置PS1で基板S1を停止させたときに基板S1が非制約領域NR1から搬送方向Xにはみ出るか否かを演算処理部41が判定する。そして、例えば図12Aに示すように、基板S1が非制約領域NR1内に収まっている場合には、基板S1の下流端を予め設定した基準停止位置PS1と一致する状態で基板S1を停止させる(オフセット量OF=ゼロ)。この点については、第2実装ステージST2についても同様である。すなわち、非制約領域NR2内に設定した基準停止位置PS2で基板S2を停止させたときに基板S2が非制約領域NR2から搬送方向Xにはみ出ないため、図12Aに示すように、基板S2の上流端を予め設定した基準停止位置PS2と一致する状態で基板S2を停止させる。 Therefore, in the second embodiment, similarly to the first embodiment, the arithmetic processing unit 41 performs the following equation Le=Lx−Lf for the mounting stage ST1.
, the length of the excess area ER in the transport direction X, that is, the excess amount Le is calculated, and it is determined whether or not it is greater than zero. That is, the arithmetic processing unit 41 determines whether or not the substrate S1 protrudes in the transport direction X from the non-restricted area NR1 when the substrate S1 is stopped at the reference stop position PS1 set within the non-restricted area NR1. Then, for example, as shown in FIG. 12A, when the substrate S1 is within the non-restricted region NR1, the substrate S1 is stopped in a state where the downstream end of the substrate S1 coincides with the preset reference stop position PS1 ( offset amount OF=zero). This point also applies to the second mounting stage ST2. That is, when the substrate S2 is stopped at the reference stop position PS2 set within the non-restricted region NR2, the substrate S2 does not protrude from the non-restricted region NR2 in the transport direction X. Therefore, as shown in FIG. The substrate S2 is stopped in a state in which the edge coincides with a preset reference stop position PS2.
一方、超過量Leがゼロを超えている、つまり非制約領域NR1内に設定した基準停止位置PS1で基板S1を停止させたときに基板S1が非制約領域NR1から搬送方向Xにはみ出る場合には、図12Bに示すように、上流側オフセット処理が実行される。この点については、第2実装ステージST2についても同様である。すなわち、非制約領域NR2内に設定した基準停止位置PS2で基板S2を停止させたときに基板S2が非制約領域NR2から搬送方向Xにはみ出るため、図12Bに示すように、下流側オフセット処理が実行される。その結果、基板Sの大型化に伴う実装サイクルタイムの増大を抑止して効率的な部品実装が可能となる。なお、第2実装ステージST2側での超過領域ERの長さLeが本発明の「第2超過量」の一例に相当している。
On the other hand, when the excess amount Le exceeds zero, that is, when the substrate S1 is stopped at the reference stop position PS1 set within the non-restricted area NR1, the substrate S1 protrudes from the non-restricted area NR1 in the transport direction X. , upstream offset processing is performed as shown in FIG. 12B. This point also applies to the second mounting stage ST2. That is, when the substrate S2 is stopped at the reference stop position PS2 set within the non-restricted area NR2, the substrate S2 protrudes from the non-restricted area NR2 in the transport direction X. Therefore, as shown in FIG. 12B, the downstream offset process is performed. executed. As a result, it is possible to suppress an increase in the mounting cycle time due to an increase in the size of the substrate S, thereby enabling efficient component mounting. Note that the length Le of the excess area ER on the second mounting stage ST2 side corresponds to an example of the "second excess amount" of the present invention.
また、第2実施形態では、図12Aに示すように、基板Sの基板サイズLxが切替基準情報Lf以下であり、比較的小さい場合には、基板S1、S2はそれぞれ非制約領域NR1、NR2内に位置決めされた状態で部品実装が実行される。つまり、ヘッド制約を受けることなく、部品実装を行うことができるため、優れた実装サイクルタイムが得られる。
Further, in the second embodiment, as shown in FIG. 12A, when the substrate size Lx of the substrate S is equal to or smaller than the switching reference information Lf and is relatively small, the substrates S1 and S2 are located within the non-restricted regions NR1 and NR2, respectively. The component mounting is performed in the state of being positioned at In other words, components can be mounted without being subject to head restrictions, so excellent mounting cycle time can be obtained.
この第2実施形態では、基板Sの基板サイズLxが切替基準情報Lf以下の場合、オフセット量OFをゼロに設定し、予め設定した基準停止位置PS1、PS2からオフセットしていないが、図12Cないし図12Eに示すように、適宜オフセットしてもよい。
In the second embodiment, when the substrate size Lx of the substrate S is equal to or smaller than the switching reference information Lf, the offset amount OF is set to zero, and the preset reference stop positions PS1 and PS2 are not offset. It may be offset accordingly, as shown in FIG. 12E.
図12Cは本発明に係る基板搬送装置の第2実施形態の第1変形例におけるオフセット動作を模式的に示す図である。この第1変形例では、基板Sの基板サイズLxが切替基準情報Lf以下であるもの、搬送方向Xにおける基板S1の上流端が非制約領域NR1の上流端位置PH1と一致した状態で基板S1が停止するようにコンベア22が制御される。また、搬送方向Xにおける基板S2の下流端が非制約領域NR2の下流端位置PH2と一致した状態で基板S2が停止するようにコンベア23が制御される。このように、基準停止位置PS1、PS2がオフセットされている。これによって、搬送方向Xにおける基板S1、S2の間隔Wが広がる。その結果、搬送方向Xと平行な方向におけるヘッドユニット5a、5b同士の干渉を回避するための待ち時間が少なくなり、実装サイクルタイムのロスを削減することができる。
FIG. 12C is a diagram schematically showing the offset operation in the first modified example of the second embodiment of the substrate transfer device according to the present invention. In this first modification, the substrate size Lx of the substrate S is equal to or smaller than the switching reference information Lf, and the substrate S1 is moved while the upstream end of the substrate S1 in the transport direction X coincides with the upstream end position PH1 of the non-restricted region NR1. Conveyor 22 is controlled to stop. Further, the conveyor 23 is controlled so that the substrate S2 stops in a state where the downstream end of the substrate S2 in the transport direction X coincides with the downstream end position PH2 of the non-restricted area NR2. Thus, the reference stop positions PS1 and PS2 are offset. As a result, the distance W between the substrates S1 and S2 in the transport direction X is widened. As a result, the waiting time for avoiding interference between the head units 5a and 5b in the direction parallel to the conveying direction X is reduced, and the mounting cycle time loss can be reduced.
図12Dは本発明に係る基板搬送装置の第2実施形態の第2変形例におけるオフセット動作を模式的に示す図である。この第2変形例では、基板Sの基板サイズLxが切替基準情報Lf以下であるもの、コンベア22、23の接続近傍位置に部品認識カメラCa、Cbが配置されていることに対応したものである。すなわち、搬送方向Xにおける基板S1の下流端が非制約領域NR1の下流端位置PH12と一致した状態で基板S1が停止するようにコンベア22が制御される。また、搬送方向Xにおける基板S2の上流端が非制約領域NR2の上流端位置PH21と一致した状態で基板S2が停止するようにコンベア23が制御される。このように、基準停止位置PS1、PS2がオフセットされている。これによって、搬送方向Xにおける基板S1、S2の間隔Wが狭まる。その結果、ヘッドユニット5a、5bがそれぞれ部品認識カメラCa、Cbを経由して基板Sに移動する距離が短縮され、実装サイクルタイムの向上に有利に作用する。
FIG. 12D is a diagram schematically showing the offset operation in the second modification of the second embodiment of the substrate transfer device according to the present invention. In this second modification, the substrate size Lx of the substrate S is equal to or smaller than the switching reference information Lf, and the component recognition cameras Ca and Cb are arranged near the connection positions of the conveyors 22 and 23. . That is, the conveyor 22 is controlled such that the substrate S1 stops with the downstream end of the substrate S1 in the transport direction X aligned with the downstream end position PH12 of the non-restricted area NR1. Further, the conveyor 23 is controlled so that the substrate S2 stops in a state where the upstream end of the substrate S2 in the transport direction X coincides with the upstream end position PH21 of the non-restricted area NR2. Thus, the reference stop positions PS1 and PS2 are offset. As a result, the distance W between the substrates S1 and S2 in the transport direction X is narrowed. As a result, the distance that the head units 5a and 5b move to the board S via the component recognition cameras Ca and Cb is shortened, which works advantageously for improving the mounting cycle time.
図12Eは本発明に係る基板搬送装置の第2実施形態の第3変形例におけるオフセット動作を模式的に示す図である。この第3変形例では、ヘッドユニット5a、5bに装着されたヘッド51のバリエーションに対応したものである。例えばヘッドユニット5aが基板S1への部品実装を担当する場合、図12Eに示すように、ヘッドユニット5aに装着されたヘッド51を用いた基板S1への部品実装の好適な位置に基板S1を位置決めするのが望ましい。そこで、第3変形例では、上記好適な位置に基板S1が位置決めされるように基準停止位置PS1がオフセットされ、オフセット後の基準停止位置PS1に基板S1の上流端が一致するように位置決めされる。この点については、ヘッドユニット5bが基板S2への部品実装を担当する場合も同様である。このようなオフセット処理によって、ヘッドユニット5aによる基板S1への部品実装と、ヘッドユニット5bによる基板S2への部品実装とが効率的に行われ、実装サイクルタイムの向上に有利に作用する。
FIG. 12E is a diagram schematically showing the offset operation in the third modification of the second embodiment of the substrate transfer device according to the present invention. This third modification corresponds to variations of the heads 51 attached to the head units 5a and 5b. For example, when the head unit 5a is in charge of mounting components on the board S1, as shown in FIG. It is desirable to Therefore, in the third modified example, the reference stop position PS1 is offset so that the substrate S1 is positioned at the preferred position described above, and the upstream end of the substrate S1 is positioned so as to coincide with the reference stop position PS1 after the offset. . This point is the same when the head unit 5b is in charge of mounting components on the board S2. By such offset processing, component mounting on the board S1 by the head unit 5a and component mounting on the board S2 by the head unit 5b are efficiently carried out, which is advantageous in improving the mounting cycle time.
上記した第2実施形態およびその変形例では、基板S1、S2がそれぞれ本発明の「第1基板」および「第2基板」の一例に相当し、基準停止位置PS1、PS2がそれぞれ本発明の「第1基準停止位置」および「第2基準停止位置」の一例に相当している。
In the above-described second embodiment and its modification, the substrates S1 and S2 respectively correspond to examples of the "first substrate" and the "second substrate" of the present invention, and the reference stop positions PS1 and PS2 respectively correspond to the " It corresponds to an example of "first reference stop position" and "second reference stop position".
上記第2実施形態では、ヘッド非制約範囲AR1、AR2は同一値ARであったが、例えばヘッドユニット5a、5bに装着されたヘッド51のバリエーションが大きく相違している等の理由によりヘッド非制約範囲AR1、AR2が異なる場合も存在する。また、図12Cや図12Dに示す変形例のようにヘッドユニット5a、5bが実装ステージST1、ST2の両方にアクセスしたり、図12Eに示すようにヘッドユニット5a、5bがそれぞれ実装ステージST1、ST2のみにアクセスしたりすることがある。そこで、ヘッド非制約範囲AR1、AR2が相互に異なるとともにヘッドユニット5a、5bが実装ステージST1、ST2の両方にアクセスする場合(第3実施形態)と、ヘッド非制約範囲AR1、AR2が相互に異なるとともにヘッドユニット5a、5bがそれぞれ実装ステージST1、ST2のみにアクセスする場合(第4実施形態)とについて、順次説明する。
In the second embodiment, the head-unrestricted ranges AR1 and AR2 have the same value AR. There may be cases where the ranges AR1 and AR2 are different. Alternatively, head units 5a and 5b may access both mounting stages ST1 and ST2 as in the modification shown in FIGS. 12C and 12D, or head units 5a and 5b may access both mounting stages ST1 and ST2 as shown in FIG. 12E. You may access only Therefore, when the head unrestricted ranges AR1 and AR2 are different from each other and the head units 5a and 5b access both the mounting stages ST1 and ST2 (third embodiment), the head unrestricted ranges AR1 and AR2 are different from each other. Also, a case (fourth embodiment) in which the head units 5a and 5b access only the mounting stages ST1 and ST2, respectively, will be sequentially described.
図13は本発明に係る基板搬送装置の第3実施形態におけるオフセット動作を模式的に示す図である。同図では、ヘッド非制約範囲AR2がヘッド非制約範囲AR1よりも狭く、しかも搬送方向Xにおいてヘッド非制約範囲AR1に包含されている。しかも、同図中の太矢印で示すように、ヘッドユニット5a、5bが実装ステージST1、ST2の両方にアクセスして部品実装を行う。そこで、本実施形態では、ヘッド非制約範囲AR2が非制約領域を決定するための基準となる。つまり、ヘッド非制約範囲AR2と実装ステージST1、ST2の重なる領域がそれぞれ非制約領域NR1、NR2に相当する。なお、基準停止位置PS1、PS2のオフセット処理については、上記第2実施形態および変形例と同一であるため、説明を省略する。
FIG. 13 is a diagram schematically showing the offset operation in the third embodiment of the substrate transfer device according to the present invention. In the figure, the head-unrestricted range AR2 is narrower than the head-unrestricted range AR1, and is included in the head-unrestricted range AR1 in the transport direction X. FIG. Moreover, as indicated by the thick arrows in the figure, the head units 5a and 5b access both the mounting stages ST1 and ST2 to mount the components. Therefore, in this embodiment, the head-unrestricted range AR2 serves as a reference for determining the unrestricted area. That is, the areas where the head unrestricted area AR2 and the mounting stages ST1 and ST2 overlap correspond to the unrestricted areas NR1 and NR2, respectively. Note that the offset processing of the reference stop positions PS1 and PS2 is the same as that of the second embodiment and the modified example, so description thereof will be omitted.
図14は本発明に係る基板搬送装置の第4実施形態におけるオフセット動作を模式的に示す図である。この第4実施形態が第3実施形態と大きく相違している点は、同図中の太矢印で示すように、ヘッドユニット5a、5bがそれぞれ実装ステージST1、ST2のみにアクセスする点である。この第4実施形態では、実装ステージST1、ST2毎に非制約領域を決定するための基準が異なっている。つまり、ヘッドユニット5aが実装ステージST1での部品実装の専用構成であるため、ヘッドユニット5aのヘッド非制約範囲AR1と実装ステージST1の重なる領域が非制約領域NR1に相当する。一方、ヘッドユニット5bが実装ステージST2での部品実装の専用構成であるため、ヘッドユニット5bのヘッド非制約範囲AR2と実装ステージST2の重なる領域が非制約領域NR2に相当する。なお、基準停止位置PS1、PS2のオフセット処理については、上記第2実施形態および変形例と同一であるため、説明を省略する。
FIG. 14 is a diagram schematically showing the offset operation in the fourth embodiment of the substrate transfer device according to the present invention. The major difference between the fourth embodiment and the third embodiment is that the head units 5a and 5b access only the mounting stages ST1 and ST2, respectively, as indicated by the thick arrows in the figure. In this fourth embodiment, the criteria for determining the non-constrained area are different for each of the mounting stages ST1 and ST2. That is, since the head unit 5a is exclusively configured for component mounting on the mounting stage ST1, the overlapping area of the head non-restricted area AR1 of the head unit 5a and the mounting stage ST1 corresponds to the non-restricted area NR1. On the other hand, since the head unit 5b is exclusively configured for component mounting on the mounting stage ST2, the overlapping area of the head unrestricted area AR2 of the head unit 5b and the mounting stage ST2 corresponds to the unrestricted area NR2. Note that the offset processing of the reference stop positions PS1 and PS2 is the same as that of the second embodiment and the modified example, so description thereof will be omitted.
以上のように、第3実施形態および第4実施形態では、ヘッド非制約範囲AR1、AR2が相互に異なっているものの、上記第2実施形態および変形例と同様に、搬送方向Xにおける基板の大型化に伴う実装サイクルタイムの増大を抑止して効率的な部品実装が可能となる。また、基板Sの基板サイズLxが切替基準情報Lf以下であり、比較的小さい場合には、非制約領域NR1、NR2に収められた状態で部品実装が実行される。つまり、ヘッド制約を受けることなく、部品実装を行うことができるため、優れた実装サイクルタイムが得られる。さらに、図12Cないし図12Eに示すように、上記比較的小さな基板S1、S2の配置を工夫することで、実装サイクルタイムの削減を図ることができる。
As described above, in the third embodiment and the fourth embodiment, although the head-unrestricted ranges AR1 and AR2 are different from each other, the size of the substrate in the transport direction X is increased in the same manner as in the second embodiment and the modified example. Efficient component mounting is possible by suppressing an increase in the mounting cycle time associated with the increase in the number of parts. Further, when the substrate size Lx of the substrate S is equal to or smaller than the switching reference information Lf and is relatively small, the component mounting is executed while being accommodated in the non-restricted areas NR1 and NR2. In other words, components can be mounted without being subject to head restrictions, so excellent mounting cycle time can be obtained. Furthermore, as shown in FIGS. 12C to 12E, by devising the arrangement of the relatively small substrates S1 and S2, the mounting cycle time can be reduced.
図15は本発明に係る基板搬送装置の第5実施形態におけるオフセット動作を模式的に示す図である。この部品実装装置200の基本構成は第2実施形態と同一である。ただし、搬送方向Xにおける実装ステージST1、ST2の寸法よりも長い、いわゆる長尺基板Sについて部品実装を行うため、基板搬送部2のコンベア21~23が同期して作動し、長尺基板Sが実装ステージST1、ST2に跨って位置決めされる。そこで、第5実施形態では、搬送方向Xにおいてヘッド非制約範囲ARが実装ステージST1と重なる領域の最上流位置PH1と実装ステージST2と重なる領域の最下流位置PH2とで挟まれた領域を非制約領域NRとして設定している。
FIG. 15 is a diagram schematically showing the offset operation in the fifth embodiment of the substrate transfer device according to the present invention. The basic configuration of this component mounting apparatus 200 is the same as that of the second embodiment. However, since components are mounted on a so-called long board S that is longer than the dimensions of the mounting stages ST1 and ST2 in the transport direction X, the conveyors 21 to 23 of the board transport section 2 operate synchronously, and the long board S is mounted. It is positioned across the mounting stages ST1 and ST2. Therefore, in the fifth embodiment, in the transport direction X, the area sandwiched between the most upstream position PH1 of the area where the head unrestricted area AR overlaps the mounting stage ST1 and the most downstream position PH2 of the area overlapping the mounting stage ST2 is unconstrained. It is set as area NR.
予め設定されている基準停止位置PS1で長尺基板Sを位置決めした際に、例えば図15の(a)欄に示すように、長尺基板Sが非制約領域NRに収まっている場合には、非制約領域NRに収められた状態で部品実装が実行される。つまり、ヘッド制約を受けることなく、部品実装を行うことができるため、優れた実装サイクルタイムが得られる。
When the long substrate S is positioned at the preset reference stop position PS1, for example, as shown in column (a) of FIG. Component mounting is performed in a state that the part is contained in the non-restricted area NR. In other words, components can be mounted without being subject to head restrictions, so excellent mounting cycle time can be obtained.
一方、長尺基板Sが非制約領域NRからはみ出るときには、図15の(b)欄に示すように、第1実施形態と同様に基準停止位置PS1をオフセットしている。このため、長尺基板Sの大型化に伴い長尺基板Sが非制約領域NRからはみ出すものの、超過領域ERがオフセット前よりも狭まり、ヘッド制約を受けるヘッド51の本数も少なくなる。その結果、長尺基板Sの大型化に伴う実装サイクルタイムの増大を抑止して効率的な部品実装が可能となる。
On the other hand, when the long substrate S protrudes from the non-restricted area NR, the reference stop position PS1 is offset as in the first embodiment, as shown in column (b) of FIG. Therefore, although the long substrate S protrudes from the non-restricted area NR as the long substrate S increases in size, the excess area ER becomes narrower than before the offset, and the number of heads 51 subject to head restriction is reduced. As a result, it is possible to suppress an increase in the mounting cycle time due to an increase in the size of the long substrate S, thereby enabling efficient component mounting.
なお、本発明は上記実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて上述したものに対して種々の変更を加えることが可能である。例えば、上記実施形態では、10本のヘッド51を一列に配置したインライン構造を有するヘッドユニット5、5a、5bを有する部品実装装置100、200に対して本発明を適用しているが、ヘッド51の本数は「10」に限定されるものでない。また、搬送方向Xに平行な方向に配列されたヘッド列が搬送方向Xと直交するY方向に複数個配列されたインライン構造を有するヘッドユニットを用いた部品実装装置に対しても本発明を適用することができる。
It should be noted that the present invention is not limited to the above embodiments, and various modifications can be made to the above without departing from the spirit of the present invention. For example, in the above embodiments, the present invention is applied to component mounting apparatuses 100 and 200 having head units 5, 5a, and 5b having an in-line structure in which ten heads 51 are arranged in a line. is not limited to "10". The present invention is also applied to a component mounting apparatus using a head unit having an in-line structure in which a plurality of rows of heads arranged in a direction parallel to the conveying direction X are arranged in the Y direction perpendicular to the conveying direction X. can do.
この発明は、複数のヘッドを所定の配列方向に配列した、いわゆるインライン構造を有するヘッドユニットを用いて基板への部品の実装を行う部品実装装置において基板を搬送する基板搬送技術全般に適用することができる。
INDUSTRIAL APPLICABILITY The present invention can be applied to general substrate transfer technology for transferring substrates in a component mounting apparatus that uses a head unit having a so-called in-line structure in which a plurality of heads are arranged in a predetermined arrangement direction to mount components on a substrate. can be done.
2…基板搬送部(基板搬送装置)
4…制御ユニット(制御部)
5,5a…(第1)ヘッドユニット
5b…第2ヘッドユニット
21、22…コンベア(第1ストッパレス搬送部)
23…コンベア(第2ストッパレス搬送部)
41…演算処理部(制御部)
51…ヘッド
51a…(最下流の)ヘッド
51j…(最上流の)ヘッド
100,200…部品実装装置
900…ホストコンピュータ
AR,AR1…第1ヘッド非制約範囲
AR2…第2ヘッド非制約範囲
ER…超過領域
MR…第1可動範囲
NR,NR1…第1非制約領域
NR2…第2非制約領域
OF…オフセット量
PH1、PH1a、PH1b…(ヘッド非制約範囲、非制約領域の)上流端位置
PH2、PH2a、PH2a…(ヘッド非制約範囲、非制約領域の)下流端位置
PP11…(第1実装ステージの)上流端位置
PP12…(第1実装ステージの)下流端位置
PP21…(第2実装ステージの)上流端位置
PP22…(第2実装ステージの)下流端位置
PS1…第1基準停止位置
PS2…第2基準停止位置
RMa…記録媒体
S,S1,S2…基板、長尺基板
ST1…第1実装ステージ
ST2…第2実装ステージ
X…搬送方向、配列方向
2... Substrate transfer unit (substrate transfer device)
4... Control unit (control section)
5, 5a... (first)head unit 5b... second head unit 21, 22... conveyor (first stopperless transport unit)
23... Conveyor (second stopperless conveying unit)
41 ... Arithmetic processing unit (control unit)
51...Head 51a... (most downstream) head 51j... (most upstream) head 100, 200... Component mounter 900... Host computer AR, AR1... First head unrestricted area AR2... Second head unrestricted area ER... Excess area MR... First movable range NR, NR1... First non-constrained area NR2... Second non-constrained area OF... Offset amount PH1, PH1a, PH1b... (Head unconstrained area, non-constrained area) upstream end position PH2, PH2a, PH2a... (head unrestricted range, unrestricted area) downstream end position PP11 (first mounting stage) upstream end position PP12 (first mounting stage) downstream end position PP21 (second mounting stage) ) Upstream end position PP22: Downstream end position (of second mounting stage) PS1: First reference stop position PS2: Second reference stop position RMa: Recording medium S, S1, S2: Substrate, long substrate ST1: First mounting Stage ST2...Second mounting stage X...Transport direction, arrangement direction
4…制御ユニット(制御部)
5,5a…(第1)ヘッドユニット
5b…第2ヘッドユニット
21、22…コンベア(第1ストッパレス搬送部)
23…コンベア(第2ストッパレス搬送部)
41…演算処理部(制御部)
51…ヘッド
51a…(最下流の)ヘッド
51j…(最上流の)ヘッド
100,200…部品実装装置
900…ホストコンピュータ
AR,AR1…第1ヘッド非制約範囲
AR2…第2ヘッド非制約範囲
ER…超過領域
MR…第1可動範囲
NR,NR1…第1非制約領域
NR2…第2非制約領域
OF…オフセット量
PH1、PH1a、PH1b…(ヘッド非制約範囲、非制約領域の)上流端位置
PH2、PH2a、PH2a…(ヘッド非制約範囲、非制約領域の)下流端位置
PP11…(第1実装ステージの)上流端位置
PP12…(第1実装ステージの)下流端位置
PP21…(第2実装ステージの)上流端位置
PP22…(第2実装ステージの)下流端位置
PS1…第1基準停止位置
PS2…第2基準停止位置
RMa…記録媒体
S,S1,S2…基板、長尺基板
ST1…第1実装ステージ
ST2…第2実装ステージ
X…搬送方向、配列方向
2... Substrate transfer unit (substrate transfer device)
4... Control unit (control section)
5, 5a... (first)
23... Conveyor (second stopperless conveying unit)
41 ... Arithmetic processing unit (control unit)
51...
Claims (16)
- 先端にノズルが装着されたヘッドを所定の配列方向に沿って複数本配列しながら前記配列方向と平行な方向に前記複数のヘッドを一括して第1可動範囲内で移動可能な第1ヘッドユニットを有し、前記第1ヘッドユニットを用いて第1実装ステージ内に位置決めされた第1基板に部品を実装する、部品実装装置に装備される基板搬送装置であって、
前記配列方向と平行な搬送方向に前記第1基板を搬送した後で、当接部材と機械的に当接させずに前記第1基板を前記第1実装ステージ内で停止させる第1ストッパレス搬送部と、
前記第1ストッパレス搬送部を制御する制御部と、を備え、
前記搬送方向において、前記第1可動範囲の最上流位置に前記第1ヘッドユニットが位置したときに前記複数のヘッドのうち前記搬送方向における最下流のヘッドが位置する第1上流端位置と、前記第1可動範囲の最下流位置に前記第1ヘッドユニットが位置したときに前記複数のヘッドのうち前記搬送方向における最上流のヘッドが位置する第1下流端位置とに挟まれた第1ヘッド非制約範囲が、前記第1実装ステージと重なる領域を第1非制約領域と定義したとき、
前記制御部は、前記第1非制約領域内に設定した第1基準停止位置で前記第1基板を停止させたときに前記第1基板が前記第1非制約領域から前記搬送方向にはみ出ると判定すると、前記第1基準停止位置をはみ出る方向と反対の方向に前記第1非制約領域内からはみ出る第1超過量以下でかつゼロよりも大きいオフセット量だけオフセットさせた位置で前記第1基板が停止するように、前記第1ストッパレス搬送部を制御することを特徴とする基板搬送装置。 A first head unit capable of moving collectively within a first movable range in a direction parallel to the arrangement direction while arranging a plurality of heads having nozzles attached to their tips along a predetermined arrangement direction. and mounting a component on a first substrate positioned within a first mounting stage using the first head unit, the substrate conveying device being installed in a component mounting apparatus,
A first stopperless transport for stopping the first substrate in the first mounting stage without mechanical contact with the contact member after transporting the first substrate in the transport direction parallel to the arrangement direction. Department and
a control unit that controls the first stopperless transport unit,
a first upstream end position at which the most downstream head among the plurality of heads in the transport direction is positioned when the first head unit is positioned at the most upstream position of the first movable range in the transport direction; A first head unit sandwiched between a first downstream end position where the most upstream head of the plurality of heads in the transport direction is positioned when the first head unit is positioned at the most downstream position in the first movable range, and When the constraint range defines the region overlapping the first mounting stage as the first unconstrained region,
The control unit determines that the first substrate protrudes from the first unrestricted area in the transport direction when the first substrate is stopped at a first reference stop position set within the first unrestricted area. Then, the first substrate is stopped at a position offset by an offset amount equal to or less than a first excess amount and larger than zero in the direction opposite to the direction of protrusion from the first reference stop position. A substrate conveying apparatus, wherein the first stopperless conveying section is controlled so as to do so. - 請求項1に記載の基板搬送装置であって、
前記制御部は、前記第1基準停止位置で前記第1基板を停止させたときに前記第1基板が前記第1非制約領域から前記搬送方向にはみ出ないと判定すると、前記第1基板が前記第1基準停止位置で停止する、または前記第1基板が前記第1非制約領域からはみ出ない範囲で前記第1基準停止位置をオフセットさせた位置で停止するように、前記第1ストッパレス搬送部を制御する基板搬送装置。 The substrate transfer apparatus according to claim 1,
When the control unit determines that the first substrate does not protrude from the first non-restricted area in the transport direction when the first substrate is stopped at the first reference stop position, the first substrate stops at the first reference stop position. The first stopperless transport unit stops at a first reference stop position, or stops at a position offset from the first reference stop position within a range in which the first substrate does not protrude from the first non-restricted area. A substrate transport device that controls the - 請求項1または2に記載の基板搬送装置であって、
前記部品実装装置が、
前記搬送方向において前記第1実装ステージの下流側に配置された第2実装ステージ内に位置決めされた第2基板に対しても、前記第1ヘッドユニットを用いて部品を実装するとともに、
先端にノズルが装着されたヘッドを所定の配列方向に沿って複数本配列しながら前記配列方向と平行な方向に前記複数のヘッドを一括して前記第1可動範囲と同じ第2可動範囲内で移動可能な第2ヘッドユニットをさらに有し、前記第1実装ステージおよび前記第2実装ステージにそれぞれ位置決めされた前記第1基板および前記第2基板に対し、前記第2ヘッドユニットを用いて部品を実装するとき、
前記第1ストッパレス搬送部により前記第1実装ステージから搬送されてきた前記第2基板を、当接部材と機械的に当接させずに前記第2実装ステージ内で停止させる第2ストッパレス搬送部をさらに備え、
前記搬送方向において前記第1ヘッド非制約範囲が前記第2実装ステージと重なる領域を第2非制約領域と定義したとき、
前記制御部は、前記第2非制約領域内に設定した第2基準停止位置で前記第2基板を停止させたときに前記第2基板が前記第2非制約領域から前記搬送方向にはみ出ると判定すると、前記第2基準停止位置をはみ出る方向と反対の方向に前記第2非制約領域内からはみ出る第2超過量以下でかつゼロよりも大きいオフセット量だけオフセットさせた位置で前記第2基板が停止するように、前記第2ストッパレス搬送部を制御する基板搬送装置。 The substrate transfer apparatus according to claim 1 or 2,
The component mounting device
Mounting a component using the first head unit also on a second substrate positioned in a second mounting stage arranged downstream of the first mounting stage in the transport direction, and
While arranging a plurality of heads having nozzles attached to their tips along a predetermined arrangement direction, the plurality of heads are collectively arranged in a direction parallel to the arrangement direction within a second movable range that is the same as the first movable range. further comprising a movable second head unit, and using the second head unit to mount components on the first substrate and the second substrate respectively positioned on the first mounting stage and the second mounting stage; When implementing
A second stopperless transport for stopping the second substrate transported from the first mounting stage by the first stopperless transport unit within the second mounting stage without mechanical contact with a contact member. further comprising the
When the area in which the first head unrestricted area overlaps with the second mounting stage in the transport direction is defined as a second unrestricted area,
The control unit determines that the second substrate protrudes from the second unconstrained area in the transport direction when the second substrate is stopped at a second reference stop position set within the second unconstrained area. Then, the second substrate is stopped at a position offset by an offset amount equal to or less than a second excess amount and larger than zero in the direction opposite to the direction of protrusion from the second reference stop position. a substrate transport apparatus for controlling the second stopperless transport section so as to - 請求項1または2に記載の基板搬送装置であって、
前記部品実装装置が、前記搬送方向において前記第1実装ステージの下流側に配置された第2実装ステージ内に位置決めされた第2基板に対しても、前記第1ヘッドユニットを用いて部品を実装するとともに、先端にノズルが装着されたヘッドを所定の配列方向に沿って複数本配列しながら前記配列方向と平行な方向に前記複数のヘッドを一括して前記第1可動範囲と異なる第2可動範囲内で移動可能な第2ヘッドユニットをさらに有し、前記第1実装ステージおよび前記第2実装ステージにそれぞれ位置決めされた前記第1基板および前記第2基板に対し、前記第2ヘッドユニットを用いて部品を実装するとき、
前記第1ストッパレス搬送部により前記第1実装ステージから搬送されてきた前記第2基板を、当接部材と機械的に当接させずに前記第2実装ステージ内で停止させる第2ストッパレス搬送部をさらに備え、
前記搬送方向において、前記第2可動範囲の最上流位置に前記第2ヘッドユニットが位置したときに前記複数のヘッドのうち前記搬送方向における最下流のヘッドが位置する上流端位置と、前記第2可動範囲の最下流位置に前記第2ヘッドユニットが位置したときに前記複数のヘッドのうち前記搬送方向における最上流のヘッドが位置する下流端位置とに挟まれた範囲を第2ヘッド非制約範囲と定義し、
前記制御部は、
前記第1ヘッド非制約範囲が前記搬送方向において前記第2ヘッド非制約範囲よりも狭いときには、前記搬送方向において前記第1ヘッド非制約範囲が前記第2実装ステージと重なる領域を第2非制約領域とし、前記第2非制約領域内に設定した第2基準停止位置で前記第2基板を停止させたときに前記第2基板が前記第2非制約領域から前記搬送方向にはみ出ると判定すると、前記第2基準停止位置をはみ出る方向と反対の方向に前記第2非制約領域内からはみ出る第2超過量以下でかつゼロよりも大きいオフセット量だけオフセットさせた位置で前記第2基板が停止するように、前記第2ストッパレス搬送部を制御する一方、
前記第2ヘッド非制約範囲が前記搬送方向において前記第1ヘッド非制約範囲よりも狭いときには、前記搬送方向において前記第2ヘッド非制約範囲が前記第1実装ステージと重なる領域を前記第1非制約領域とし、前記第2非制約領域内に設定した第2基準停止位置で前記第2基板を停止させたときに前記第2基板が前記第2非制約領域から前記搬送方向にはみ出ると判定すると、前記第2基準停止位置をはみ出る方向と反対の方向に前記第2非制約領域内からはみ出る第2超過量以下でかつゼロよりも大きいオフセット量だけオフセットさせた位置で前記第2基板が停止するように、前記第2ストッパレス搬送部を制御する基板搬送装置。 The substrate transfer apparatus according to claim 1 or 2,
The component mounting apparatus uses the first head unit to mount components also on a second substrate positioned within a second mounting stage arranged downstream of the first mounting stage in the transport direction. While a plurality of heads having nozzles attached to their tips are arranged along a predetermined arrangement direction, the plurality of heads are collectively moved in a direction parallel to the arrangement direction in a second movable range different from the first movable range. further comprising a second head unit movable within a range, wherein the second head unit is used for the first substrate and the second substrate respectively positioned on the first mounting stage and the second mounting stage; When mounting parts by
A second stopperless transport for stopping the second substrate transported from the first mounting stage by the first stopperless transport unit within the second mounting stage without mechanical contact with a contact member. further comprising the
an upstream end position where the most downstream head among the plurality of heads in the transport direction is positioned when the second head unit is positioned at the most upstream position of the second movable range in the transport direction; When the second head unit is positioned at the most downstream position of the movable range, the range sandwiched between the downstream end position where the most upstream head among the plurality of heads in the transport direction is positioned is defined as a second head unrestricted range. and
The control unit
When the first head-unrestricted range is narrower than the second head-unrestricted range in the transport direction, the area where the first head-unrestricted range overlaps with the second mounting stage in the transport direction is defined as a second unrestricted area. and when it is determined that the second substrate protrudes from the second non-constrained area in the transport direction when the second substrate is stopped at a second reference stop position set within the second non-constrained area, the The second substrate is stopped at a position offset by an offset amount equal to or less than a second excess amount protruding from the second unrestricted area in a direction opposite to the direction of protruding from the second reference stop position and larger than zero. , while controlling the second stopperless transport section;
When the second head-unrestricted range is narrower than the first head-unrestricted range in the transport direction, a region in which the second head-unrestricted range overlaps with the first mounting stage in the transport direction is defined as the first unrestricted range. when it is determined that the second substrate protrudes from the second unrestricted area in the transport direction when the second substrate is stopped at a second reference stop position set within the second unrestricted area, The second substrate is stopped at a position offset by an offset amount equal to or less than a second excess amount protruding from the second unrestricted area in a direction opposite to the direction of protruding from the second reference stop position and larger than zero. and a substrate transfer device for controlling the second stopperless transfer section. - 請求項1または2に記載の基板搬送装置であって、
前記部品実装装置が、先端にノズルが装着されたヘッドを所定の配列方向に沿って複数本配列しながら前記配列方向と平行な方向に前記複数のヘッドを一括して前記第1可動範囲と異なる第2可動範囲内で移動可能な第2ヘッドユニットをさらに有し、前記搬送方向において前記第1実装ステージの下流側に配置された第2実装ステージ内に位置決めされた第2基板に前記第2ヘッドユニットを用いて部品を実装するとき、
前記第1ストッパレス搬送部により前記第1実装ステージから搬送されてきた前記第2基板を、当接部材と機械的に当接させずに前記第2実装ステージ内で停止させる第2ストッパレス搬送部をさらに備え、
前記搬送方向において、前記第2可動範囲の最上流位置に前記第2ヘッドユニットが位置したときに前記複数のヘッドのうち前記搬送方向における最下流のヘッドが位置する第2上流端位置と、前記第2可動範囲の最下流位置に前記第2ヘッドユニットが位置したときに前記複数のヘッドのうち前記搬送方向における最上流のヘッドが位置する第2下流端位置とに挟まれた範囲を第2ヘッド非制約範囲と定義し、前記搬送方向において前記第2ヘッド非制約範囲が前記第2実装ステージと重なる領域を第2非制約領域と定義したとき、
前記制御部は、前記第2非制約領域内に設定した第2基準停止位置で前記第2基板を停止させたときに前記第2基板が前記第2非制約領域から前記搬送方向にはみ出ると判定すると、前記第2基準停止位置をはみ出る方向と反対の方向に前記第2非制約領域内からはみ出る第2超過量以下でかつゼロよりも大きいオフセット量だけオフセットさせた位置で前記第2基板が停止するように、前記第2ストッパレス搬送部を制御する基板搬送装置。 The substrate transfer apparatus according to claim 1 or 2,
The component mounting apparatus arranges a plurality of heads having nozzles attached to their tips along a predetermined arrangement direction, and collectively aligns the plurality of heads in a direction parallel to the arrangement direction so as to differ from the first movable range. a second head unit that is movable within a second movable range; When mounting components using the head unit,
A second stopperless transport for stopping the second substrate transported from the first mounting stage by the first stopperless transport unit within the second mounting stage without mechanical contact with a contact member. further comprising the
a second upstream end position at which the most downstream head among the plurality of heads in the transport direction is positioned when the second head unit is positioned at the most upstream position of the second movable range in the transport direction; When the second head unit is positioned at the most downstream position in the second movable range, the range sandwiched between the second downstream end position where the most upstream head among the plurality of heads in the transport direction is positioned is the second movable range. defined as a head unconstrained area, and defining an area where the second head unconstrained area overlaps the second mounting stage in the transport direction as a second unconstrained area,
The control unit determines that the second substrate protrudes from the second unconstrained area in the transport direction when the second substrate is stopped at a second reference stop position set within the second unconstrained area. Then, the second substrate is stopped at a position offset by an offset amount equal to or less than a second excess amount and larger than zero in the direction opposite to the direction of protrusion from the second reference stop position. a substrate transport apparatus for controlling the second stopperless transport section so as to - 請求項3ないし5のいずれか一項に記載の基板搬送装置であって、
前記制御部は、前記第2基準停止位置で前記第2基板を停止させたときに前記第2基板が前記第2非制約領域から前記搬送方向にはみ出ないと判定すると、前記第2基板が前記第2基準停止位置で停止する、または前記第2基板が前記第2非制約領域からはみ出ない範囲で前記第2基準停止位置をオフセットさせた位置で停止するように、前記第2ストッパレス搬送部を制御する基板搬送装置。 The substrate transfer apparatus according to any one of claims 3 to 5,
When the control unit determines that the second substrate does not protrude from the second non-restricted area in the transport direction when the second substrate is stopped at the second reference stop position, the second substrate stops at the second reference stop position. The second stopperless transport unit stops at a second reference stop position, or stops at a position offset from the second reference stop position within a range in which the second substrate does not protrude from the second non-restricted area. A substrate transport device that controls the - 請求項6に記載の基板搬送装置であって、
前記制御部は、
前記第1基板および前記第2基板がそれぞれ前記第1非制約領域および前記第2非制約領域からはみ出ないと判定すると、
前記搬送方向における前記第1基板の上流端が前記第1非制約領域の上流端位置と一致した状態で前記第1基板が停止するように前記第1ストッパレス搬送部を制御するとともに、
前記搬送方向における前記第2基板の下流端が前記第2非制約領域の下流端位置と一致した状態で前記第2基板が停止するように前記第2ストッパレス搬送部を制御する基板搬送装置。 The substrate transfer apparatus according to claim 6,
The control unit
When determining that the first substrate and the second substrate do not protrude from the first unconstrained area and the second unconstrained area, respectively,
controlling the first stopperless transport section so that the first substrate stops in a state where the upstream end of the first substrate in the transport direction is aligned with the position of the upstream end of the first unrestricted area;
A substrate transport apparatus for controlling the second stopperless transport section so that the second substrate stops in a state where the downstream end of the second substrate in the transport direction coincides with the position of the downstream end of the second non-restricted area. - 請求項6に記載の基板搬送装置であって、
前記制御部は、
前記第1基板および前記第2基板がそれぞれ前記第1非制約領域および前記第2非制約領域からはみ出ないと判定すると、
前記搬送方向における前記第1基板の下流端が前記第1非制約領域の下流端位置と一致した状態で前記第1基板が停止するように前記第1ストッパレス搬送部を制御するとともに、
前記搬送方向における前記第2基板の上流端が前記第2非制約領域の上流端位置と一致した状態で前記第2基板が停止するように前記第2ストッパレス搬送部を制御する基板搬送装置。 The substrate transfer apparatus according to claim 6,
The control unit
When determining that the first substrate and the second substrate do not protrude from the first unconstrained area and the second unconstrained area, respectively,
controlling the first stopperless transport section so that the first substrate stops with a downstream end of the first substrate in the transport direction aligned with a position of a downstream end of the first unrestricted area;
A substrate transport apparatus for controlling the second stopperless transport section so that the second substrate stops in a state where the upstream end of the second substrate in the transport direction coincides with the position of the upstream end of the second non-restricted area. - 先端にノズルが装着されたヘッドを所定の配列方向に沿って複数本配列しながら前記配列方向と平行な方向に前記複数のヘッドを一括して第1可動範囲内で移動可能な第1ヘッドユニットを有し、前記配列方向と平行な方向において互いに離間して配置された第1実装ステージおよび第2実装ステージに跨って位置決めされた長尺基板に前記第1ヘッドユニットを用いて部品を実装する、部品実装装置に装備される基板搬送装置であって、
前記配列方向と平行な搬送方向に前記長尺基板を搬送した後で、当接部材と機械的に当接させずに前記第1実装ステージおよび第2実装ステージに跨った状態で前記長尺基板を停止させる基板搬送部と、
前記基板搬送部を制御する制御部と、を備え、
前記搬送方向において、前記第1可動範囲の最上流位置に前記第1ヘッドユニットが位置したときに前記複数のヘッドのうち前記搬送方向における最下流のヘッドが位置する第1上流端位置と、前記第1可動範囲の最下流位置に前記第1ヘッドユニットが位置したときに前記複数のヘッドのうち前記搬送方向における最上流のヘッドが位置する第1下流端位置とに挟まれた第1ヘッド非制約範囲が前記第1実装ステージと重なる領域の最上流位置と前記第2実装ステージと重なる領域の最下流位置とで挟まれた領域を第1非制約領域と定義したとき、
前記制御部は、前記第1非制約領域内に設定した第1基準停止位置で前記長尺基板を停止させたときに前記長尺基板が前記第1非制約領域から前記搬送方向にはみ出ると判定すると、前記第1基準停止位置をはみ出る方向と反対の方向に前記第1非制約領域内からはみ出る第1超過量以下でかつゼロよりも大きいオフセット量だけオフセットさせた位置で前記長尺基板が停止するように、前記基板搬送部を制御することを特徴とする基板搬送装置。 A first head unit capable of moving collectively within a first movable range in a direction parallel to the arrangement direction while arranging a plurality of heads having nozzles attached to their tips along a predetermined arrangement direction. using the first head unit to mount components on a long substrate positioned across a first mounting stage and a second mounting stage spaced apart from each other in a direction parallel to the arrangement direction. , a board transfer device installed in a component mounting device,
After transporting the long substrate in the transport direction parallel to the arrangement direction, the long substrate straddles the first mounting stage and the second mounting stage without mechanical contact with the contact member. A board transfer unit that stops the
A control unit that controls the substrate transport unit,
a first upstream end position at which the most downstream head among the plurality of heads in the transport direction is positioned when the first head unit is positioned at the most upstream position of the first movable range in the transport direction; A first head unit sandwiched between a first downstream end position where the most upstream head of the plurality of heads in the transport direction is positioned when the first head unit is positioned at the most downstream position in the first movable range, and When the region sandwiched between the most upstream position of the region where the constraint range overlaps with the first mounting stage and the most downstream position of the region where the constraint range overlaps with the second mounting stage is defined as a first unconstrained region,
The control unit determines that the long substrate protrudes from the first unconstrained area in the transport direction when the long substrate is stopped at a first reference stop position set within the first unconstrained area. Then, the long substrate is stopped at a position offset by an offset amount equal to or smaller than a first excess amount and larger than zero, in a direction opposite to the direction of protruding from the first reference stop position. A substrate transfer apparatus, wherein the substrate transfer section is controlled so as to - 先端にノズルが装着されたヘッドを所定の配列方向に沿って複数本配列しながら前記配列方向と平行な方向に前記複数のヘッドを一括して第1可動範囲内で移動可能な第1ヘッドユニットを有し、前記第1ヘッドユニットを用いて第1実装ステージ内に位置決めされた第1基板に部品を実装する部品実装装置であって、
請求項1ないし8のいずれか一項に記載の基板搬送装置を備えることを特徴とする部品実装装置。 A first head unit capable of moving collectively within a first movable range in a direction parallel to the arrangement direction while arranging a plurality of heads having nozzles attached to their tips along a predetermined arrangement direction. and mounting a component on a first substrate positioned within a first mounting stage using the first head unit,
A component mounting apparatus comprising the substrate transfer apparatus according to any one of claims 1 to 8. - 先端にノズルが装着されたヘッドを所定の配列方向に沿って複数本配列しながら前記配列方向と平行な方向に前記複数のヘッドを一括して第1可動範囲内で移動可能な第1ヘッドユニットを有し、前記配列方向と平行な方向において互いに離間して配置された第1実装ステージおよび第2実装ステージに跨って位置決めされた長尺基板に前記第1ヘッドユニットを用いて部品を実装する、部品実装装置であって、
請求項9に記載の基板搬送装置を備えることを特徴とする部品実装装置。 A first head unit capable of moving collectively within a first movable range in a direction parallel to the arrangement direction while arranging a plurality of heads having nozzles attached to their tips along a predetermined arrangement direction. using the first head unit to mount components on a long substrate positioned across a first mounting stage and a second mounting stage spaced apart from each other in a direction parallel to the arrangement direction. , a component mounting device,
A component mounting apparatus comprising the board transfer apparatus according to claim 9 . - 先端にノズルが装着されたヘッドを所定の配列方向に沿って複数本配列しながら前記配列方向と平行な方向に前記複数のヘッドを一括して第1可動範囲内で移動可能な第1ヘッドユニットを有し、前記第1ヘッドユニットを用いて第1実装ステージ内に位置決めされた第1基板に部品を実装する、部品実装装置において、前記第1基板を前記配列方向と平行な搬送方向に搬送する基板搬送方法であって、
前記搬送方向において、前記第1可動範囲の最上流位置に前記第1ヘッドユニットが位置したときに前記複数のヘッドのうち前記搬送方向における最下流のヘッドが位置する第1上流端位置と、前記第1可動範囲の最下流位置に前記第1ヘッドユニットが位置したときに前記複数のヘッドのうち前記搬送方向における最上流のヘッドが位置する第1下流端位置とに挟まれた第1ヘッド非制約範囲が、前記第1実装ステージと重なる領域を第1非制約領域として取得する第1工程と、
前記第1非制約領域内に設定した第1基準停止位置で前記第1基板を停止させたときに前記第1基板が前記第1非制約領域から前記搬送方向にはみ出るか否かを判定する第2工程と、
前記第2工程により前記第1基板が前記第1非制約領域内からはみ出ると判定されるときには、前記第1基準停止位置をはみ出る方向と反対の方向に前記第1非制約領域内からはみ出る第1超過量以下でかつゼロよりも大きいオフセット量だけオフセットさせた位置に前記第1基板を搬送して位置決めする第3工程と、
を備えることを特徴とする基板搬送方法。 A first head unit capable of moving collectively within a first movable range in a direction parallel to the arrangement direction while arranging a plurality of heads having nozzles attached to their tips along a predetermined arrangement direction. for mounting components on a first substrate positioned within a first mounting stage using the first head unit, wherein the first substrate is transported in a transport direction parallel to the arrangement direction. A substrate transfer method for
a first upstream end position at which the most downstream head among the plurality of heads in the transport direction is positioned when the first head unit is positioned at the most upstream position of the first movable range in the transport direction; A first head unit sandwiched between a first downstream end position where the most upstream head of the plurality of heads in the transport direction is positioned when the first head unit is positioned at the most downstream position in the first movable range, and a first step of obtaining a region where a restricted range overlaps with the first mounting stage as a first non-restricted region;
determining whether or not the first substrate protrudes from the first unrestricted area in the transport direction when the first substrate is stopped at a first reference stop position set within the first unrestricted area; 2 steps;
When it is determined in the second step that the first substrate protrudes from the first non-restricted area, the first substrate protrudes from the first non-restricted area in a direction opposite to the direction of protruding from the first reference stop position. a third step of transporting and positioning the first substrate to a position offset by an offset amount equal to or less than the excess amount and greater than zero;
A substrate transfer method, comprising: - 先端にノズルが装着されたヘッドを所定の配列方向に沿って複数本配列しながら前記配列方向と平行な方向に前記複数のヘッドを一括して第1可動範囲内で移動可能な第1ヘッドユニットを有し、前記配列方向と平行な方向において互いに離間して配置された第1実装ステージおよび第2実装ステージに跨って位置決めされた長尺基板に前記第1ヘッドユニットを用いて部品を実装する、部品実装装置において、前記第1基板を前記配列方向と平行な搬送方向に搬送する基板搬送方法であって、
前記搬送方向において、前記第1可動範囲の最上流位置に前記第1ヘッドユニットが位置したときに前記複数のヘッドのうち前記搬送方向における最下流のヘッドが位置する第1上流端位置と、前記第1可動範囲の最下流位置に前記第1ヘッドユニットが位置したときに前記複数のヘッドのうち前記搬送方向における最上流のヘッドが位置する第1下流端位置とに挟まれた第1ヘッド非制約範囲が前記第1実装ステージと重なる領域の最上流位置と前記第2実装ステージと重なる領域の最下流位置とで挟まれた領域を第1非制約領域として取得する第1工程と、
前記第1非制約領域内に設定した第1基準停止位置で前記長尺基板を停止させたときに前記長尺基板が前記第1非制約領域から前記搬送方向にはみ出るか否かを判定する第2工程と、
前記第2工程により前記長尺基板が前記第1非制約領域内からはみ出ると判定されるときには、前記第1基準停止位置をはみ出る方向と反対の方向に前記第1非制約領域内からはみ出る第1超過量以下でかつゼロよりも大きいオフセット量だけオフセットさせた位置に前記長尺基板を搬送して位置決めする第3工程と、
を備えることを特徴とする基板搬送方法。 A first head unit capable of moving collectively within a first movable range in a direction parallel to the arrangement direction while arranging a plurality of heads having nozzles attached to their tips along a predetermined arrangement direction. using the first head unit to mount components on a long substrate positioned across a first mounting stage and a second mounting stage spaced apart from each other in a direction parallel to the arrangement direction. A substrate transport method for transporting the first substrate in a transport direction parallel to the arrangement direction in a component mounting apparatus,
a first upstream end position at which the most downstream head among the plurality of heads in the transport direction is positioned when the first head unit is positioned at the most upstream position of the first movable range in the transport direction; A first head unit sandwiched between a first downstream end position where the most upstream head of the plurality of heads in the transport direction is positioned when the first head unit is positioned at the most downstream position in the first movable range, and a first step of acquiring, as a first non-constrained area, an area sandwiched between a most upstream position of an area where a restricted range overlaps with the first mounting stage and a most downstream position of an area where the restricted range overlaps with the second mounting stage;
determining whether or not the long substrate protrudes from the first non-constrained area in the transport direction when the long substrate is stopped at a first reference stop position set within the first non-constrained area; 2 steps;
When it is determined in the second step that the long substrate protrudes from the first non-restricted area, a first non-restricted area protrudes from the first non-restricted area in a direction opposite to the direction of protruding from the first reference stop position. a third step of transporting and positioning the long substrate to a position offset by an offset amount equal to or less than the excess amount and greater than zero;
A substrate transfer method, comprising: - 先端にノズルが装着されたヘッドを所定の配列方向に沿って複数本配列しながら前記配列方向と平行な方向に前記複数のヘッドを一括して第1可動範囲内で移動可能な第1ヘッドユニットを有し、前記第1ヘッドユニットを用いて第1実装ステージ内に位置決めされた第1基板に部品を実装する、部品実装装置において、前記第1基板を前記配列方向と平行な搬送方向に搬送するためのプログラムであって、
前記搬送方向において、前記第1可動範囲の最上流位置に前記第1ヘッドユニットが位置したときに前記複数のヘッドのうち前記搬送方向における最下流のヘッドが位置する第1上流端位置と、前記第1可動範囲の最下流位置に前記第1ヘッドユニットが位置したときに前記複数のヘッドのうち前記搬送方向における最上流のヘッドが位置する第1下流端位置とに挟まれた第1ヘッド非制約範囲が、前記第1実装ステージと重なる領域を第1非制約領域として取得する第1工程と、
前記第1非制約領域内に設定した第1基準停止位置で前記第1基板を停止させたときに前記第1基板が前記第1非制約領域から前記搬送方向にはみ出るか否かを判定する第2工程と、
前記第2工程により前記第1基板が前記第1非制約領域内からはみ出ると判定されるときには、前記第1基準停止位置をはみ出る方向と反対の方向に前記第1非制約領域内からはみ出る第1超過量以下でかつゼロよりも大きいオフセット量だけオフセットさせた位置に前記第1基板を搬送して位置決めする第3工程と、
をコンピュータに実現させることを特徴とする、プログラム。 A first head unit capable of moving collectively within a first movable range in a direction parallel to the arrangement direction while arranging a plurality of heads having nozzles attached to their tips along a predetermined arrangement direction. for mounting components on a first substrate positioned within a first mounting stage using the first head unit, wherein the first substrate is transported in a transport direction parallel to the arrangement direction. A program for
a first upstream end position at which the most downstream head among the plurality of heads in the transport direction is positioned when the first head unit is positioned at the most upstream position of the first movable range in the transport direction; A first head unit sandwiched between a first downstream end position where the most upstream head of the plurality of heads in the transport direction is positioned when the first head unit is positioned at the most downstream position in the first movable range, and a first step of obtaining a region where a restricted range overlaps with the first mounting stage as a first non-restricted region;
determining whether or not the first substrate protrudes from the first unrestricted area in the transport direction when the first substrate is stopped at a first reference stop position set within the first unrestricted area; 2 steps;
When it is determined in the second step that the first substrate protrudes from the first non-restricted area, the first substrate protrudes from the first non-restricted area in a direction opposite to the direction of protruding from the first reference stop position. a third step of transporting and positioning the first substrate to a position offset by an offset amount equal to or less than the excess amount and greater than zero;
A program characterized by realizing on a computer. - 先端にノズルが装着されたヘッドを所定の配列方向に沿って複数本配列しながら前記配列方向と平行な方向に前記複数のヘッドを一括して第1可動範囲内で移動可能な第1ヘッドユニットを有し、前記配列方向と平行な方向において互いに離間して配置された第1実装ステージおよび第2実装ステージに跨って位置決めされた長尺基板に前記第1ヘッドユニットを用いて部品を実装する、部品実装装置において、前記基板を前記配列方向と平行な搬送方向に搬送するためのプログラムであって、
前記搬送方向において、前記第1可動範囲の最上流位置に前記第1ヘッドユニットが位置したときに前記複数のヘッドのうち前記搬送方向における最下流のヘッドが位置する第1上流端位置と、前記第1可動範囲の最下流位置に前記第1ヘッドユニットが位置したときに前記複数のヘッドのうち前記搬送方向における最上流のヘッドが位置する第1下流端位置とに挟まれた第1ヘッド非制約範囲が前記第1実装ステージと重なる領域の最上流位置と前記第2実装ステージと重なる領域の最下流位置とで挟まれた領域を第1非制約領域として取得する第1工程と、
前記第1非制約領域内に設定した第1基準停止位置で前記長尺基板を停止させたときに前記長尺基板が前記第1非制約領域から前記搬送方向にはみ出るか否かを判定する第2工程と、
前記第2工程により前記長尺基板が前記第1非制約領域内からはみ出ると判定されるときには、前記第1基準停止位置をはみ出る方向と反対の方向に前記第1非制約領域内からはみ出る第1超過量以下でかつゼロよりも大きいオフセット量だけオフセットさせた位置に前記長尺基板を搬送して位置決めする第3工程と、
をコンピュータに実現させることを特徴とする、プログラム。 A first head unit capable of moving collectively within a first movable range in a direction parallel to the arrangement direction while arranging a plurality of heads having nozzles attached to their tips along a predetermined arrangement direction. using the first head unit to mount components on a long substrate positioned across a first mounting stage and a second mounting stage spaced apart from each other in a direction parallel to the arrangement direction. A program for transporting the board in a transport direction parallel to the arrangement direction in a component mounting apparatus,
a first upstream end position at which the most downstream head among the plurality of heads in the transport direction is positioned when the first head unit is positioned at the most upstream position of the first movable range in the transport direction; A first head unit sandwiched between a first downstream end position where the most upstream head of the plurality of heads in the transport direction is positioned when the first head unit is positioned at the most downstream position in the first movable range, and a first step of acquiring, as a first non-constrained area, an area sandwiched between a most upstream position of an area where a restricted range overlaps with the first mounting stage and a most downstream position of an area where the restricted range overlaps with the second mounting stage;
determining whether or not the long substrate protrudes from the first non-constrained area in the transport direction when the long substrate is stopped at a first reference stop position set within the first non-constrained area; 2 steps;
When it is determined in the second step that the long substrate protrudes from the first non-restricted area, a first non-restricted area protrudes from the first non-restricted area in a direction opposite to the direction of protruding from the first reference stop position. a third step of transporting and positioning the long substrate to a position offset by an offset amount equal to or less than the excess amount and greater than zero;
A program characterized by realizing on a computer. - 請求項14または15に記載のプログラムを記録した非一過性の記録媒体。
A non-transitory recording medium recording the program according to claim 14 or 15.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023576581A JP7560683B2 (en) | 2022-01-31 | 2022-01-31 | SUBSTRATE TRANSFER APPARATUS, COMPONENT MOUNTING APPARATUS, SUBSTRATE TRANSFER METHOD, PROGRAM, AND RECORDING MEDIUM |
CN202280089677.XA CN118592105A (en) | 2022-01-31 | 2022-01-31 | Substrate conveying device, component mounting device, substrate conveying method, program, and recording medium |
PCT/JP2022/003602 WO2023145070A1 (en) | 2022-01-31 | 2022-01-31 | Substrate conveyance device, component mounting device, substrate conveyance method, program, and recording medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/003602 WO2023145070A1 (en) | 2022-01-31 | 2022-01-31 | Substrate conveyance device, component mounting device, substrate conveyance method, program, and recording medium |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023145070A1 true WO2023145070A1 (en) | 2023-08-03 |
Family
ID=87470971
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/003602 WO2023145070A1 (en) | 2022-01-31 | 2022-01-31 | Substrate conveyance device, component mounting device, substrate conveyance method, program, and recording medium |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7560683B2 (en) |
CN (1) | CN118592105A (en) |
WO (1) | WO2023145070A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012094571A (en) * | 2010-10-25 | 2012-05-17 | Panasonic Corp | Component mounting device |
JP2013143544A (en) * | 2012-01-12 | 2013-07-22 | Yamaha Motor Co Ltd | Surface mounting machine |
WO2014207861A1 (en) * | 2013-06-27 | 2014-12-31 | 富士機械製造株式会社 | Component mounting machine |
JP2015038930A (en) * | 2013-08-19 | 2015-02-26 | パナソニック株式会社 | Component mount method and component mounting apparatus |
JP2016025279A (en) * | 2014-07-23 | 2016-02-08 | Juki株式会社 | Electronic component packaging system and electronic component packaging method |
-
2022
- 2022-01-31 CN CN202280089677.XA patent/CN118592105A/en active Pending
- 2022-01-31 JP JP2023576581A patent/JP7560683B2/en active Active
- 2022-01-31 WO PCT/JP2022/003602 patent/WO2023145070A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012094571A (en) * | 2010-10-25 | 2012-05-17 | Panasonic Corp | Component mounting device |
JP2013143544A (en) * | 2012-01-12 | 2013-07-22 | Yamaha Motor Co Ltd | Surface mounting machine |
WO2014207861A1 (en) * | 2013-06-27 | 2014-12-31 | 富士機械製造株式会社 | Component mounting machine |
JP2015038930A (en) * | 2013-08-19 | 2015-02-26 | パナソニック株式会社 | Component mount method and component mounting apparatus |
JP2016025279A (en) * | 2014-07-23 | 2016-02-08 | Juki株式会社 | Electronic component packaging system and electronic component packaging method |
Also Published As
Publication number | Publication date |
---|---|
JP7560683B2 (en) | 2024-10-02 |
JPWO2023145070A1 (en) | 2023-08-03 |
CN118592105A (en) | 2024-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023145070A1 (en) | Substrate conveyance device, component mounting device, substrate conveyance method, program, and recording medium | |
JP4922863B2 (en) | Surface mount equipment | |
JP4354845B2 (en) | Electronic component mounting device | |
JP5358529B2 (en) | Mounting machine | |
JP6132654B2 (en) | Surface mount machine | |
JP2009295709A (en) | Mark recognition system, mark recognition method, and surface mount machine | |
JP2012248839A (en) | Apparatus for supplying substrates with semiconductor component during manufacturing of semiconductor package | |
JP5279666B2 (en) | Component mounter | |
JP6653562B2 (en) | Processing equipment | |
JP2006080158A (en) | Surface mounting apparatus | |
JP6110305B2 (en) | Component mounting apparatus and component mounting method | |
JP3205980U (en) | A fork positioning jig, a fork for supporting a substrate, and a substrate transport device for transporting a substrate having a plurality of forks | |
JP2013084646A (en) | Substrate processing system, substrate supply order determination method, program and storage medium | |
JP2002026592A (en) | Mounting device and mounting method for electronic part | |
JP5244049B2 (en) | Component mounting machine, component mounting method | |
JP6957364B2 (en) | Parts mounting machine, parts mounting method | |
JP4523550B2 (en) | Component mounting method | |
JP2020034362A (en) | Recognition device, surface mount machine, and method for recognizing position of recognition object | |
US20070067974A1 (en) | Depaneling system having fixture pallets that tilt toward an operator | |
JP6606465B2 (en) | Component mounting machine, component mounting method | |
WO2024023926A1 (en) | Surface mounter and surface mounting method | |
JP6666832B2 (en) | Component mounting machine, board transfer device | |
US20180032773A1 (en) | Reading device | |
JP6833287B2 (en) | Substrate processing equipment, substrate transfer equipment | |
JP7017574B2 (en) | Component mounting method and component mounting device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22923933 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023576581 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |