WO2023143485A1 - 电子设备及控制方法 - Google Patents

电子设备及控制方法 Download PDF

Info

Publication number
WO2023143485A1
WO2023143485A1 PCT/CN2023/073503 CN2023073503W WO2023143485A1 WO 2023143485 A1 WO2023143485 A1 WO 2023143485A1 CN 2023073503 W CN2023073503 W CN 2023073503W WO 2023143485 A1 WO2023143485 A1 WO 2023143485A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery assembly
electric quantity
control switch
housing
battery
Prior art date
Application number
PCT/CN2023/073503
Other languages
English (en)
French (fr)
Inventor
朱娜涛
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2023143485A1 publication Critical patent/WO2023143485A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/244Secondary casings; Racks; Suspension devices; Carrying devices; Holders characterised by their mounting method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of electronic equipment, in particular to an electronic equipment and a control method.
  • an electronic device includes a first casing and a second casing, and the first casing is movably connected with the second casing, so that the electronic device can be folded or unfolded.
  • Battery packs are often provided in electronic equipment. During the process of charging the electronic equipment, the heat dissipation of the charging circuit in the electronic equipment is large.
  • Embodiments of the present application provide an electronic device and a control method, so as to solve the problem in the related art that the charging circuit in the electronic device has a large heat dissipation during the process of charging the electronic device.
  • an embodiment of the present application provides an electronic device, the electronic device comprising: a first housing, a second housing, a first battery assembly, a second battery assembly, and a charging management module;
  • the first shell is movably connected to the second shell, so that the first shell and the second shell have a stacked state and an unfolded state;
  • the first battery assembly is located in the first housing
  • the second battery assembly is located in the second housing
  • the charging management module is located in the first housing or the second housing ;
  • the charging management module is electrically connected to the positive pole of the first battery assembly, the negative pole of the first battery assembly is electrically connected to the positive pole of the second battery assembly, and the negative pole of the second battery assembly is grounded.
  • the embodiment of the present application provides a control method, which is applied to the electronic device described in the first aspect above, and the method includes
  • the power of the first battery component is greater than or equal to the power of the second battery component, adjust the power of the first battery component and the second battery component so that the power of the first battery component
  • the electric quantity is equal to the electric quantity of the second battery assembly, or the difference between the electric quantity of the first battery assembly and the electric quantity of the second battery assembly is less than a preset electric quantity threshold;
  • the power of the second battery component When the power of the second battery component is greater than or equal to the power of the first battery component, adjust the power of the first battery component and the second battery component so that the power of the first battery component
  • the electric quantity is equal to the electric quantity of the second battery assembly, or the difference between the electric quantity of the first battery assembly and the electric quantity of the second battery assembly is smaller than a preset electric quantity threshold.
  • the first casing and the second casing are movably connected, the first casing and the second casing can approach or move away from each other, so that the electronic device can be stacked or unfolded. Since the first battery assembly is located in the first housing and the second battery assembly is located in the second housing, the first battery assembly can provide electrical energy to the devices in the first housing, and the second battery assembly can supply power to the second housing. The devices in the body provide electrical energy. Since the charging management module is electrically connected to the positive pole of the first battery assembly, the first battery assembly can be charged through the charging management module.
  • the first battery assembly and the second battery assembly are equivalent to being connected in series.
  • the first battery component can transfer electric energy to the second battery component, so that the first battery component and the second battery component can be charged by the charging management module.
  • the impedance in the charging circuit increases, thereby reducing the current in the charging circuit and reducing the heat dissipation in the charging circuit. That is, in the embodiment of the present application, by connecting the first battery assembly and the second battery assembly in series, the heat dissipation of the charging circuit can be reduced when the electronic device is charged.
  • FIG. 1 shows a schematic diagram of an electronic device provided by an embodiment of the present application
  • FIG. 2 shows a schematic diagram of an electronic device provided in an embodiment of the present application
  • Fig. 3 shows a flow chart of a control method provided by an embodiment of the present application.
  • 10 first casing; 20: second casing; 30: first battery assembly; 40: second battery assembly; 50: charging management module; 60: first shunt; 70: second shunt; 80: 90: second control switch; 100: controller; 110: fuel gauge; 120: control module; 130: shaft assembly; 140: first circuit board; 150: second circuit board; 160: conductive connection pieces.
  • FIG. 1 it shows a schematic diagram of an electronic device provided in an embodiment of the present application
  • FIG. 2 it shows a schematic diagram of an electronic device provided in an embodiment of the present application.
  • the electronic device includes: a first housing 10 , a second housing 20 , a first battery assembly 30 , a second battery assembly 40 , and a charging management module 50 .
  • the first casing 10 is movably connected with the second casing 20 so that the first casing and the second casing have a stacked state and an unfolded state.
  • the first battery assembly 30 is located in the first housing 10
  • the second battery assembly 40 is located in the second housing 20
  • the charging management module 50 is located in the first housing 10 or the second housing 20 .
  • the charging management module 50 is electrically connected to the positive pole of the first battery assembly 30
  • the negative pole of the first battery assembly 30 is electrically connected to the positive pole of the second battery assembly 40
  • the negative pole of the second battery assembly 40 is grounded.
  • the first housing 10 and the second housing 20 are movably connected, the first housing 10 and the second housing 20 can approach or move away from each other, so that the electronic equipment can be stacked or unfolded. . Since the first battery pack 30 is located in the first case 10, the second battery pack 40 Located in the second housing 20 , therefore, the first battery assembly 30 can provide electrical energy to the devices in the first housing 10 , and the second battery assembly 40 can provide electrical energy to the devices in the second housing 20 . Since the charging management module 50 is electrically connected to the positive electrode of the first battery assembly 30 , the first battery assembly 30 can be charged through the charging management module 50 .
  • the first battery assembly 30 and the second battery assembly 40 are equivalent to being connected in series.
  • the module 50 charges the first battery assembly 30
  • the first battery assembly 30 can transfer electric energy to the second battery assembly 40 , so that the first battery assembly 30 and the second battery assembly 40 can be charged by the charging management module 50 .
  • the impedance in the charging circuit increases, so that the current in the charging circuit decreases, and the heat dissipation in the charging circuit decreases. That is, in the embodiment of the present application, by connecting the first battery assembly 30 and the second battery assembly 40 in series, the heat dissipation of the charging circuit can be reduced when the electronic device is charged.
  • the electronic equipment includes a first casing 10, a second casing 20, a first battery assembly 30 and a second battery assembly 40, and the first battery assembly 30 and the second battery assembly 40 are respectively located in the first casing 10. And in the second casing 20, the first battery assembly 30 and the second battery assembly 40 are connected in parallel, so that the impedance in the charging circuit is small, so that the current in the charging circuit is relatively large, and the heat dissipated in the charging circuit is the charging circuit.
  • the product of the square of the current in the circuit and the resistance makes the heat dissipated by the charging circuit larger when charging the electronic device.
  • the positive pole of the first battery assembly 30 is electrically connected to the charging management module 50
  • the negative pole of the first battery assembly 30 is electrically connected to the positive pole of the second battery assembly 40, which is equivalent to the connection between the first battery assembly 30 and the charging management module 50.
  • the second battery assembly 40 is connected in series, so that when a charger with the same power is used to charge the electronic device, the current in the charging circuit is reduced, so that the heat dissipation of the charging circuit is reduced.
  • a 40W charger is used to charge an electronic device.
  • the first battery assembly 30 and the second battery assembly 40 are connected in parallel, the impedance in the charging circuit is small, and the current is relatively large.
  • the current may be 10A, so that the charging circuit Larger heat dissipation.
  • the first battery assembly 30 is connected in series with the second battery assembly 40 , the impedance in the charging circuit is relatively large, and the current is relatively small.
  • the current may be 5A, so the heat dissipation of the charging circuit is relatively small.
  • the electronic device may further include a first shunt 60 , a second shunt 70 , a first control switch 80 and a second control switch 90 .
  • the first shunt 60 is located in the first housing 10 or the second housing 20
  • the second shunt 70 is located in the first housing 10 or the second housing 20
  • the first control switch 80 is located in the first housing 10 or the second housing 20.
  • the second control switch 90 is located in the first housing 10 or the second housing 20 .
  • the first end of the first shunt 60 is electrically connected to the positive pole of the first battery assembly 30, the second end of the first shunt 60 is electrically connected to the first end of the first control switch 80, and the second end of the first control switch 80 terminals are respectively electrically connected to the first end of the second control switch 90 and the first end of the second shunt 70, the second end of the second shunt 70 is electrically connected to the positive pole of the second battery assembly 40, and the second control switch 90 The second terminal is electrically connected to the negative electrode of the second battery assembly 40 .
  • the first control switch 80 When the electric quantity of the first battery assembly 30 is greater than the electric quantity of the second battery assembly 40, the first control switch 80 is in an on state, and the second control switch 90 is in an off state; In the case of a battery pack 30 , the first control switch 80 is in the off state, and the second control switch 90 is in the on state.
  • the second end of the first shunt 60 is electrically connected to the first end of the first control switch 80, and the second end of the first control switch 80
  • the two ends are respectively electrically connected to the first end of the second control switch 90 and the first end of the second shunt 70, and the second end of the second shunt 70 is electrically connected to the positive pole of the second battery assembly.
  • the second end of the second shunt 70 is electrically connected to the positive pole of the second battery assembly 40
  • the first end of the second control switch 90 is electrically connected to the second end of the first control switch 80
  • the first end of the second shunt 70 end is electrically connected to the second end of the first control switch 80
  • the second end of the second control switch 90 is electrically connected to the negative pole of the second battery assembly 40, therefore, when the second control switch 90 is in the conduction state, at this time , which means that the second shunt 70 is connected in parallel with the second battery assembly 40 , so that after the positive electrode of the second battery assembly 40 inputs current, the second shunt 70 will divert part of the current input into the second battery assembly 40 .
  • first battery assembly 30 and the second battery assembly 40 are equivalent to being connected in series, therefore, it may be due to the manufacturing difference between the first battery assembly 30 and the second battery assembly 40, or as the first battery assembly 30 and the second battery assembly After the battery assembly 40 is used, when the electronic equipment is charged, that is, the first pair of battery assemblies and the second battery assembly 40 are charged, the battery capacities of the first battery assembly 30 and the second battery assembly 40 are different, so that the first battery assembly 30 The power on the battery is different from the power on the second battery assembly 40, which affects the use of electronic equipment.
  • the first control switch 80 in the process of charging the electronic device, when the electric quantity of the first battery assembly 30 is greater than that of the second battery assembly 40, the first control switch 80 can be set to In the conduction state, the second control switch 90 is in the off state, which is equivalent to that the first shunt 60 is connected in series with the second shunt 70, and the first shunt 60 and the second shunt 70 are connected in series with the first battery assembly 30 Connected in parallel, the first shunt 60 and the second shunt 70 can split the current input into the positive electrode of the first battery assembly 30 .
  • the first battery assembly 30 is connected in series with the second battery assembly 40, which means that the first shunt 60 and the second shunt 70 are connected in parallel with the first battery assembly 30, and then connected in series with the second battery assembly 40. Therefore, the input The current in the second battery assembly 40 is the sum of the current on the first battery assembly 30 and the current on the first shunt 60, so that the current on the first battery assembly 30 is smaller than the current on the second battery assembly 40, so that During the charging process, the amount of electricity charged to the first battery assembly 30 is small, and the amount of electricity charged to the second battery assembly 40 is large, so that after charging or during the charging process, the amount of electricity in the first battery assembly 30 It is equal to the electric quantity in the second battery assembly 40 .
  • the first control switch 80 can be turned off and the second control switch 90 can be turned on, which is equivalent to the second shunt 70 It is connected in parallel with the second battery assembly 40 .
  • the first battery assembly 30 is connected in series with the second battery assembly 40, which means that the second battery assembly 40 is connected in parallel with the second shunt 70 and then connected in series with the first battery assembly 30, so that the current output from the first battery assembly 30 flows into the second battery assembly 30.
  • the current will be partly diverted by the second shunt 70, so that the current on the second battery pack 40 is smaller than the current on the first battery pack 30, so that in the process of charging, the current to the first battery pack 30
  • the amount of electricity charged is more, and the amount of electricity charged to the second battery assembly 40 is less, so that after charging, or during charging, the electricity in the first battery assembly 30 is different from the electricity in the second battery assembly 40 equal.
  • the first shunt 60 is connected in series with the second shunt 70, Then it is connected in parallel with the first battery assembly 30, and the current flowing through the first shunt 60 is I1 , then the current flowing into the first battery assembly 30 is II1 , and the current flowing into the second battery assembly 40 is I, thus The current I flowing into the second battery assembly 40 is greater than the current II 1 flowing into the first battery assembly 30, and then the first control switch 80 can be continuously kept in the on state, and the second control switch 90 is in the off state, so that After the electronic device is charged, or in the process of charging the electronic device, the electric quantity on the first battery assembly 30 is equal to the electric quantity on the second battery assembly 40 .
  • the second control switch 90 is in the on state, and the flow of the current is shown in FIG. 2
  • the current path indicated by B at this time, the second shunt 70 is connected in parallel with the second battery assembly 40, and the current flowing through the second shunt 70 is I 2 , then the current flowing in the second battery assembly 40 is II 2 , so that the current I flowing into the first battery assembly 30 is greater than the current II 2 flowing into the second battery assembly 40, and then the first control switch 80 can be continuously kept in the off state, and the second control switch 90 is in the on state, thus After the electronic device is charged, or during the process of charging the electronic device, the electric quantity on the first battery assembly 30 is equal to the electric quantity on the second battery assembly 40 .
  • the sizes of I 1 and I 2 may be equal, and of course, the sizes of I 1 and I 2 may also be unequal.
  • the magnitude of the current flowing through the first shunt 60 can be determined by adjusting the impedance of the first shunt 60.
  • the impedance of the second shunt 70 can also be adjusted to determine the current flowing through the second shunt. The size of the current of 70.
  • the electric quantity of the first battery assembly 30 is greater than the electric quantity of the second battery assembly 40, and the difference between the electric quantity of the first battery assembly 30 and the electric quantity of the second battery assembly 40 is greater than the preset electric quantity threshold
  • the first control switch 80 is in the on state, and the second control switch 90 is in the off state, so that the electric quantity of the first battery assembly 30 and the electric quantity of the second battery assembly 40 are between The difference is less than or equal to the preset electric quantity threshold; the electric quantity of the second battery assembly 40 is greater than the electric quantity of the first battery assembly 30, and the difference between the electric quantity of the second battery assembly 40 and the first battery assembly 30 is greater than the preset electric quantity
  • the first control switch 80 is in the off state, and the second control switch 90 is in the on state, so that the difference between the power of the second battery assembly 40 and the power of the first battery assembly 30 is less than Or equal to the preset power threshold.
  • the first control switch 80 is in the on state, and the second control switch 90 is in the off state, so that the first shunt 60 and the second separator can be connected in series, and then connected in parallel with the first battery assembly 30, so that the flow through the first
  • the current of the battery assembly 30 is smaller than the current flowing through the second battery assembly 40, so that after charging or during charging, the difference between the electric quantity of the first battery assembly 30 and the electric quantity of the second battery assembly 40 is less than the preset value.
  • the first The control switch 80 is in the off state, and the second control switch 90 is in the on state, so that the second shunt 70 can be connected in parallel with the second battery assembly 40, so that the current flowing through the first battery assembly 30 is greater than that flowing through the second battery assembly 30.
  • the current of the battery assembly 40 can make the difference between the electric quantity of the first battery assembly 30 and the electric quantity of the second battery assembly 40 less than or equal to the preset electric quantity threshold after charging or during charging.
  • the preset power threshold can be set according to actual needs.
  • the preset power threshold can be 20mv.
  • the preset power threshold can also be other values.
  • the embodiment of the present application does not do it here. limited.
  • the time can be determined after the current and the electric quantity are determined, so that the time for controlling the first control switch 80 and the second control switch 90 can be determined.
  • the current output by the charge management module 50 is 1, if the electric quantity of the first battery assembly 30 is greater than the electric quantity of the second battery assembly 40, the first shunt 60 is connected in series with the second shunt 70, and then connected with the second shunt 70.
  • the first battery assembly 30 is connected in parallel, the current flowing through the first shunt 60 is I 1 , the current flowing through the first battery assembly 30 is II 1 , and the current on the second battery assembly 40 is I, at the same time t
  • the amount of electricity charged into the second battery assembly 40 will be I 1 *t more than the amount of electricity charged into the first battery assembly 30 .
  • the difference between the electric quantity of the first battery assembly 30 and the electric quantity of the second battery assembly 40 is Z, and Z is greater than or equal to the preset electric quantity threshold value, and the preset electric quantity threshold value is X, during the charging process, it is necessary to control at least
  • the time for the first control switch 80 and the second control switch 90 is (ZX)/I 1 , that is, the time for controlling the first control switch 80 to be in the on state and the time for the second control switch 90 to be in the off state is (ZX)/ I 1 , may make the difference between the electric quantity on the first battery assembly 30 and the electric quantity on the second battery assembly 40 less than or equal to the preset electric quantity threshold.
  • the preset electric quantity threshold is 20, and I1 is 0.05
  • the time for controlling the switch 80 and the second control switch 90 is (30-20)/0.05, that is, the time for controlling the first control switch 80 to be in the on state and the time for the second control switch 90 to be in the off state is (30-20) /0.05.
  • the second shunt 70 is connected in parallel with the second battery assembly 40, and the current flowing through the second shunt 70 is I 2 , and flows through the second The electric current on the battery assembly 40 is II 2 , and the electric current on the first battery assembly 30 is I.
  • the electric quantity charged on the first battery assembly 30 will be more than the electric quantity charged on the second battery assembly 40 More than I 2 *t.
  • the difference between the electric quantity of the second battery assembly 40 and the electric quantity of the first battery assembly 30 is Z, and Z is greater than or equal to the preset electric quantity threshold value, and the preset electric quantity threshold value is X
  • the time between the first control switch 80 and the second control switch 90 is (ZX)/I 2 , that is, it is necessary to control the first control switch 80 to be in the off state, and the time for the second control switch 90 to be in the on state is (ZX)/I I 2 , may make the difference between the electric quantity on the first battery assembly 30 and the electric quantity on the second battery assembly 40 less than or equal to the preset electric quantity threshold.
  • the preset electric quantity threshold is 20, and I1 is 0.05
  • the first battery assembly 30 needs to be controlled.
  • the time for controlling the switch 80 and the second control switch 90 is (30-20)/0.05, that is, the time for controlling the first control switch 80 to be in the off state and the time for the second control switch 90 to be in the on state is (30-20) /0.05.
  • the electronic device may further include a controller 100 and a power gauge 110 .
  • the controller 100 is located in the first housing 10 or the second housing 20
  • the fuel gauge 110 is located in the first housing 10 or the second housing 20 .
  • the power collection end of the fuel gauge 110 is electrically connected to the positive pole of the first battery assembly 30 and the positive pole of the second battery pack 40 respectively
  • the output terminal of the fuel gauge 110 is electrically connected to the controller 100
  • the ground terminal of the fuel gauge 110 is grounded
  • the controller 100 are respectively electrically connected to the control terminal of the first control switch 80 and the control terminal of the second control switch 90 .
  • the fuel gauge 110 is used to collect the electric quantity of the first battery assembly 30 and the electric quantity of the second battery assembly 40
  • the controller 100 is used for receiving the electric quantity of the first battery assembly 30 and the electric quantity of the second battery assembly 40, and
  • the first control switch 80 is controlled to be in a conducting state, and the second control switch 90 is in an off state; when the electric quantity of the second battery assembly 40 is greater than that of the first battery assembly 30 In the case of the amount of electricity, the first control switch 80 is controlled to be in the off state, and the second control switch 90 is in the on state, so that the difference between the electricity quantity of the second battery assembly 40 and the electricity quantity of the first battery assembly 30 is less than Preset power threshold.
  • the fuel gauge 110 can collect the first The power of the first battery component 30 and the second battery component 40 , and send the power of the first battery component 30 and the power of the second battery component 40 to the controller 100 .
  • the controller 100 Since the controller 100 is electrically connected to the control terminal of the first control switch 80 and the control terminal of the second control switch 90 respectively, after the controller 100 receives the electric quantity of the first battery assembly 30 and the electric quantity of the second battery assembly 40 , the controller 100 can determine the electric quantity of the first battery assembly 30 and the electric quantity of the second battery assembly 40, thereby controlling the first control switch 80 according to the electric quantity of the first battery assembly 30 and the electric quantity of the second battery assembly 40 And the second control switch 90 is controlled.
  • the first control switch 80 when the electric quantity of the first battery assembly 30 is greater than the electric quantity of the second battery assembly 40, the first control switch 80 is controlled to be in the on state, and the second control switch 90 is in the off state;
  • the first control switch 80 When the electric quantity is greater than the electric quantity of the first battery assembly 30, the first control switch 80 is controlled to be in an off state, and the second control switch 90 is in an on state, so that the electric quantity of the second battery assembly 40 is equal to that of the first battery assembly 30
  • the difference between the power levels is smaller than the preset power threshold.
  • the controller 100 can also facilitate the control of the first control switch 80 and the second control switch 90 .
  • the electronic device may further include a control module 120, the receiving end of the control module 120 is electrically connected to the controller 100, and the control end of the control module 120 is respectively connected to the control end of the first control switch 80, the second The control end of the control switch 90 is electrically connected, and the ground end of the control module 120 is grounded.
  • the control terminal of the control module 120 When the receiving terminal of the control module 120 is electrically connected to the controller 100, and the control terminal of the control module 120 is respectively electrically connected to the control terminal of the first control switch 80 and the control terminal of the second control switch 90, at this moment, the control terminal of the control module 120
  • the receiving end can receive the control instruction sent by the controller 100, so that the control module 120 can control the first control switch 80 to be in the on state and the second control switch 90 to be in the off state according to the control instruction, or control the first control switch 80 to be in the In the off state, the second control switch 90 is in the on state. That is, by setting the control module 120 , it is convenient for the controller 100 to control the first control switch 80 and the second control switch 90 .
  • the electronic device may further include a shaft assembly 130 .
  • the first housing 10 and the second housing 20 are movably connected through a shaft assembly 130 .
  • the shaft assembly 130 When the first housing 10 and the second housing 20 are movably connected through the shaft assembly 130, at this time, when the first housing 10 and the second housing 20 are far away from each other, or the first housing 10 is far away from the second housing 20 , the shaft assembly 130 will rotate relative to each other, so that the first housing 10 and the second housing 20 can move away from each other, or the first housing 10 can move away from the second housing 20 .
  • first housing 10 is movably connected to the second housing 20
  • first housing 10 and the second housing 20 are movably connected through a hinge assembly.
  • first casing 10 and the second casing 20 can overlap or unfold through a sliding assembly.
  • the electronic device may further include a first circuit board 140 and a second circuit board 150 .
  • the first circuit board 140 is located in the first housing 10, and the second circuit board 150 is located in the second housing.
  • the negative electrode of the first battery assembly 30 is electrically connected to the first circuit board 140
  • the first circuit board 140 is electrically connected to the second circuit board 150
  • the second circuit board 150 is electrically connected to the positive electrode of the second battery assembly 40 .
  • the negative pole of the first battery assembly 30 When the negative pole of the first battery assembly 30 is electrically connected to the first circuit board 140, the first circuit board 140 is electrically connected to the second circuit board 150, and the second circuit board 150 is electrically connected to the positive pole of the second battery assembly 40, at this time , after the positive pole of the first battery assembly 30 receives the current from the charging management module 50, the negative pole of the first battery assembly 30 can deliver the current to the first circuit board 140, so that the first circuit board 140 can deliver the current to the second circuit plate 150, the second circuit board 150 transmits the current to the positive pole of the second battery assembly 40, so that the negative pole of the first battery assembly 30 is electrically connected to the positive pole of the second battery assembly 40, so that the first battery assembly 30 and the second battery assembly
  • the components 40 are connected in series.
  • the first battery assembly 30 is directly electrically connected to the first circuit board 140
  • the second battery assembly 40 is electrically connected to the second circuit board 150
  • the second A circuit board 140 is electrically connected to the second circuit board 150 , so that the first battery assembly 30 and the second battery assembly 40 can be connected in series.
  • both the first circuit board 140 and the second circuit board 150 can be printed circuit boards (Printed Circuit Board, PCB), of course, the first circuit board 140 and the second circuit board 150 can also be a flexible printed circuit (Flexible Printed Circuit, FPC), which is not limited in this embodiment of the present application.
  • PCB printed Circuit Board
  • FPC Flexible Printed Circuit
  • the electronic device may further include a conductive connector 160 .
  • One end of the conductive connector 160 is electrically connected to the first circuit board 140
  • the other end of the conductive connector 160 is electrically connected to the second circuit board 150 .
  • the first battery assembly 30 When one end of the conductive connector 160 is electrically connected to the first circuit board 140, and the other end of the conductive connector 160 is electrically connected to the second circuit board 150, at this time, when the first battery assembly 30 receives After the current flow, the first battery assembly 30 transmits the current to the first circuit board 140, and the first circuit board 140 transmits the current to the conductive connector 160, and the conductive connector 160 transmits the current to the second circuit board 150, and the second circuit board 150 transmits the current to the positive pole of the second battery assembly 40 , thereby realizing the series connection of the first battery assembly 30 and the second battery assembly 40 . Additionally, by setting The conductive connector 160 can facilitate the electrical connection between the first circuit board 140 and the second circuit board 150 , so as to facilitate the series connection of the first battery assembly 30 and the second battery assembly 40 .
  • the conductive connector 160 can be a flexible circuit board (Flexible Printed Circuit, PFC), of course, the conductive connector 160 can also be other conductive devices, such as wires, for conductive connection
  • PFC Flexible Printed Circuit
  • the conductive connector 160 can also be other conductive devices, such as wires, for conductive connection
  • the specific type of the component 160 is not limited in this embodiment of the present application.
  • both the first control switch and the second control switch 90 may be MOS transistors.
  • the controller 100 can be convenient to control the first control switch 80 and the second control switch 90, so that The first control switch 80 is turned on or off, or the second control switch 90 is turned on or off.
  • the first terminal of the first control switch 80 can be the source of the MOS transistor, and the first terminal of the first control switch 80 can be the source of the MOS transistor.
  • the two ends can be the drain of the MOS tube, the control terminal of the first control switch 80 can be the gate of the MOS tube; the first end of the second control switch 90 can be the source of the MOS tube, and the first end of the second control switch 90 can be The two terminals can be the drain of the MOS transistor, and the control terminal of the second control switch 90 can be the gate of the MOS transistor.
  • first control switch 80 and the second control switch 90 can also be other switches with on and off functions, for example, the first control switch 80 and the second control switch 90 can also be relays, triodes, etc.
  • the specific types of the first control switch 80 and the second control switch 90 are not limited in this embodiment of the present application.
  • the electronic device includes but is not limited to a mobile phone, a notebook computer, and the like.
  • the first housing 10 and the second housing 20 are movably connected, the first housing 10 and the second housing 20 can approach or move away from each other, so that the electronic equipment can be stacked or unfolded. . Since the first battery pack 30 is located in the first case 10, the second battery pack 40 Located in the second housing 20 , therefore, the first battery assembly 30 can provide electrical energy to the devices in the first housing 10 , and the second battery assembly 40 can provide electrical energy to the devices in the second housing 20 . Since the charging management module 50 is electrically connected to the positive electrode of the first battery assembly 30 , the first battery assembly 30 can be charged through the charging management module 50 .
  • the first battery assembly 30 and the second battery assembly 40 are equivalent to being connected in series.
  • the module 50 charges the first battery assembly 30
  • the first battery assembly 30 can transfer electric energy to the second battery assembly 40 , so that the first battery assembly 30 and the second battery assembly 40 can be charged by the charging management module 50 .
  • the impedance in the charging circuit increases, so that the current in the charging circuit decreases, and the heat dissipation in the charging circuit decreases. That is, in the embodiment of the present application, by connecting the first battery assembly 30 and the second battery assembly 40 in series, the heat dissipation of the charging circuit can be reduced when the electronic device is charged.
  • FIG. 3 it shows a flow chart of a control method provided by an embodiment of the present application.
  • the control method is applied to the electronic device in any of the above embodiments.
  • the method includes:
  • Step 301 Obtain the electric quantity of the first battery assembly and the electric quantity of the second battery assembly.
  • the fuel gauge can directly measure the power of the first battery component and the power of the second battery component, so that the fuel gauge sends the power of the first battery component and the power of the second battery component to the controller for control
  • the device can obtain the electric quantity of the first battery assembly and the electric quantity of the second battery assembly.
  • Step 302 When the power of the first battery component is greater than the power of the second battery component, adjust the power of the first battery component and the second battery component so that the power of the first battery component is equal to the power of the second battery component, Or, the difference between the electric quantity of the first battery assembly and the electric quantity of the second battery assembly is less than or equal to the preset electric quantity threshold.
  • the controller can control the first control switch to be in the on state, the second control switch to be in the off state, and control the time After a certain period of time, the electric quantity of the first battery assembly is equal to the electric quantity of the second battery assembly, or the difference between the electric quantity of the first battery assembly and the electric quantity of the second battery assembly is less than or equal to the preset electric quantity threshold.
  • Step 303 When the power of the second battery component is greater than the power of the first battery component, adjust the power of the first battery component and the second battery component so that the power of the second battery component is equal to the power of the first battery component, Or, the difference between the electric quantity of the second battery assembly and the electric quantity of the first battery assembly is less than or equal to the preset electric quantity threshold.
  • the controller can control the first control switch to be in the off state, the second control switch to be in the on state, and after the control time reaches a certain time, the second The electric quantity of a battery assembly is equal to the electric quantity of the second battery assembly, or the difference between the electric quantity of the second battery assembly and the electric quantity of the first battery assembly is less than or equal to the preset electric quantity threshold.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本申请实施例提供了一种电子设备及控制方法。该电子设备包括:第一壳体、第二壳体、第一电池组件、第二电池组件、充电管理模块;第一壳体与第二壳体活动连接,以使第一壳体与第二壳体具有叠置状态和展开状态;第一电池组件位于第一壳体中,第二电池组件位于第二壳体中,充电管理模块位于第一壳体或第二壳体中;充电管理模块与第一电池组件的正极电连接,第一电池组件的负极与第二电池组件的正极电连接,第二电池组件的负极接地。

Description

电子设备及控制方法
相关申请的交叉引用
本申请要求在2022年01月29日提交中国专利局、申请号为202210114021.0、名称为“电子设备及控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子设备技术领域,具体涉及一种电子设备及控制方法。
背景技术
随着科技的发展,电子设备的应用越来越广泛。通常电子设备包括第一壳体和第二壳体,第一壳体与第二壳体活动连接,从而使得电子设备可以折叠或展开。电子设备中通常设置电池组件。在对电子设备充电的过程中,电子设备中的充电回路的散热较大。
申请内容
本申请实施例提供了一种电子设备及控制方法,以解决相关技术中对电子设备充电的过程中,电子设备中的充电回路的散热较大的问题。
第一方面,本申请实施例提供了一种电子设备,所述电子设备包括:第一壳体、第二壳体、第一电池组件、第二电池组件、充电管理模块;
所述第一壳体与所述第二壳体活动连接,以使所述第一壳体与所述第二壳体具有叠置状态和展开状态;
所述第一电池组件位于所述第一壳体中,所述第二电池组件位于所述第二壳体中,所述充电管理模块位于所述第一壳体或所述第二壳体中;
所述充电管理模块与所述第一电池组件的正极电连接,所述第一电池组件的负极与所述第二电池组件的正极电连接,所述第二电池组件的负极接地。
第二方面,本申请实施例提供了一种控制方法,应用于上述第一方面中所述的电子设备中,所述方法包括
获取所述第一电池组件的电量以及所述第二电池组件的电量;
在所述第一电池组件的电量大于或等于所述第二电池组件的电量的情况下,调整所述第一电池组件以及所述第二电池组件的电量,以使所述第一电池组件的电量等于所述第二电池组件的电量,或,所述第一电池组件的电量与所述第二电池组件的电量之间的差值小于预设电量阈值;
在所述第二电池组件的电量大于或等于所述第一电池组件的电量的情况下,调整所述第一电池组件以及所述第二电池组件的电量,以使所述第一电池组件的电量等于所述第二电池组件的电量,或,所述第一电池组件的电量与所述第二电池组件的电量之间的差值小于预设电量阈值。
在本申请实施例中,由于第一壳体与第二壳体活动连接,因此,第一壳体与第二壳体可以相互靠近或者相互远离,从而使得电子设备叠置或者展开。由于第一电池组件位于第一壳体中,第二电池组件位于第二壳体中,因此,第一电池组件可以向第一壳体中的器件提供电能,第二电池组件可以向第二壳体中的器件提供电能。由于充电管理模块与第一电池组件的正极电连接,因此,通过充电管理模块可以向第一电池组件充电。由于第一电池组件的负极与第二电池组件的正极电连接,第二电池组件的负极接地,因此,第一电池组件与第二电池组件相当于串联,从而在通过充电管理模块向第一电池组件充电时,第一电池组件可以将电能传递至第二电池组件,从而通过充电管理模块可以向第一电池组件与第二电池组件充电。另外,由于第一电池组件与第二电池组件串联,因此,充电回路中的阻抗增加,从而使得充电回路中的电流降低,使得充电回路中的散热减小。也即是,在本申请实施例中,通过将第一电池组件与第二电池组件串联,可以使得在对电子设备充电时,充电回路的散热减小。
附图说明
图1表示本申请实施例提供的一种电子设备的示意图;
图2表示本申请实施例提供的一种电子设备的原理图;
图3表示本申请实施例提供的一种控制方法的流程图。
附图标记:
10:第一壳体;20:第二壳体;30:第一电池组件;40:第二电池组件;50:充电管理模块;60:第一分流器;70:第二分流器;80:第一控制开关;90:第二控制开关;100:控制器;110:电量计;120:控制模块;130:转轴组件;140:第一电路板;150:第二电路板;160:导电连接件。
具体实施例
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。
参照图1,示出了本申请实施例提供的一种电子设备的示意图;参照图2,示出了本申请实施例提供的一种电子设备的原理图。如图1和图2所示,该电子设备包括:第一壳体10、第二壳体20、第一电池组件30、第二电池组件40、充电管理模块50。
第一壳体10与第二壳体20活动连接,以使第一壳体与第二壳体具有叠置状态和展开状态。第一电池组件30位于第一壳体10中,第二电池组件40位于第二壳体20中,充电管理模块50位于第一壳体10或第二壳体20中。充电管理模块50与第一电池组件30的正极电连接,第一电池组件30的负极与第二电池组件40的正极电连接,第二电池组件40的负极接地。
在本申请实施例中,由于第一壳体10与第二壳体20活动连接,因此,第一壳体10与第二壳体20可以相互靠近或者相互远离,从而使得电子设备叠置或者展开。由于第一电池组件30位于第一壳体10中,第二电池组件40 位于第二壳体20中,因此,第一电池组件30可以向第一壳体10中的器件提供电能,第二电池组件40可以向第二壳体20中的器件提供电能。由于充电管理模块50与第一电池组件30的正极电连接,因此,通过充电管理模块50可以向第一电池组件30充电。由于第一电池组件30的负极与第二电池组件40的正极电连接,第二电池组件40的负极接地,因此,第一电池组件30与第二电池组件40相当于串联,从而在通过充电管理模块50向第一电池组件30充电时,第一电池组件30可以将电能传递至第二电池组件40,从而通过充电管理模块50可以向第一电池组件30与第二电池组件40充电。另外,由于第一电池组件30与第二电池组件40串联,因此,充电回路中的阻抗增加,从而使得充电回路中的电流降低,使得充电回路中的散热减小。也即是,在本申请实施例中,通过将第一电池组件30与第二电池组件40串联,可以使得在对电子设备充电时,充电回路的散热减小。
在相关技术中,电子设备包括第一壳体10、第二壳体20、第一电池组件30以及第二电池组件40,第一电池组件30与第二电池组件40分别位于第一壳体10和第二壳体20中,第一电池组件30与第二电池组件40并联,从而充电回路中的阻抗较小,使得充电回路中的电流较大,而充电回路中的散发的热量为充电回路中的电流的平方与阻挡的乘积,使得在对电子设备充电时,充电回路散发的热量较大。
而在本申请实施例中,将第一电池组件30的正极与充电管理模块50电连接,第一电池组件30的负极与第二电池组件40的正极电连接,相当于第一电池组件30与第二电池组件40串联,从而使得在使用相同功率的充电器对电子设备充电时,充电回路中的电流减小,使得充电回路的散热减小。
例如,通过40W的充电器对电子设备充电,在相关技术中,第一电池组件30与第二电池组件40并联,充电回路中的阻抗较小,电流较大,电流可能是10A,从而充电回路散热较大。而在本申请中,第一电池组件30与第二电池组件40串联,充电回路中的阻抗较大,电流较小,电流可能是5A,从而充电回路散热较小。
另外,在一些实施例中,电子设备还可以包括第一分流器60、第二分流器70、第一控制开关80以及第二控制开关90。第一分流器60位于第一壳体10或第二壳体20中,第二分流器70位于第一壳体10或第二壳体20中,第一控制开关80位于第一壳体10或第二壳体20中,第二控制开关90位于第一壳体10或第二壳体20中。第一分流器60的第一端与第一电池组件30的正极电连接,第一分流器60的第二端与第一控制开关80的第一端电连接,第一控制开关80的第二端分别与第二控制开关90的第一端、第二分流器70的第一端电连接,第二分流器70的第二端与第二电池组件40的正极电连接,第二控制开关90的第二端与第二电池组件40的负极电连接。在第一电池组件30的电量大于第二电池组件40的电量的情况下,第一控制开关80处于导通状态,第二控制开关90处于断开状态;在第二电池组件40的电量大于第一电池组件30的电量的情况下,第一控制开关80处于断开状态,第二控制开关90处于导通状态。
由于第一分流器60的第一端与第一电池组件30的正极电连接,第一分流器60的第二端与第一控制开关80的第一端电连接,第一控制开关80的第二端分别与第二控制开关90的第一端、第二分流器70的第一端电连接,第二分流器70的第二端与第二电池组件的正极电连接,因此,在第一控制开关80处于导通状态时,此时,相当于第一分流器60与第二分流器70串联,且第一分流器60与第二分流器70均与第一电池组件30并联,从而在第一电池组件30的正极输入电流之后,第一分流器60以及第二分流器70会分走输入第一电池组件30的部分电流。由于第二分流器70第二端与第二电池组件40的正极电连接,第二控制开关90的第一端与第一控制开关80的第二端电连接,第二分流器70的第一端与第一控制开关80的第二端电连接,第二控制开关90的第二端与第二电池组件40的负极电连接,因此,在第二控制开关90处于导通状态时,此时,相当于第二分流器70与第二电池组件40并联,从而在第二电池组件40正极输入电流之后,第二分流器70会分走输入第二电池组件40的部分电流。
另外,由于第一电池组件30与第二电池组件40相当于串联,因此,可能由于第一电池组件30与第二电池组件40在制造上的差异,或者随着第一电池组件30与第二电池组件40使用之后,在对电子设备充电时,即第一对电池组件与第二电池组件40充电,第一电池组件30与第二电池组件40的电池容量不同,从而使得第一电池组件30上的电量与第二电池组件40上的电量不同,影响电子设备的使用。为了避免这种问题,在本申请实施例中,在对电子设备充电的过程中,在第一电池组件30的电量大于第二电池组件40的电量的情况下,可以使得第一控制开关80处于导通状态,第二控制开关90处于断开状态,从而相当于第一分流器60与第二分流器70串联,且第一分流器60与第二分流器70串联之后与第一电池组件30并联,第一分流器60与第二分流器70会分走输入第一电池组件30的正极中的电流。但第一电池组件30与第二电池组件40串联,相当于第一分流器60与第二分流器70串联之后与第一电池组件30并联,之后在与第二电池组件40串联,因此,输入第二电池组件40的中的电流为第一电池组件30上的电流与第一分流器60上的电流之和,从而第一电池组件30上的电流小于第二电池组件40上的电流,使得在充电的过程中,向第一电池组件30充的电量较少,向第二电池组件40充的电量较多,从而在充电之后,或者在充电的过程中,第一电池组件30中的电量与第二电池组件40中的电量相等。
在第二电池组件40的电量大于第一电池组件30的电量的情况下,可以使得第一控制开关80处于断开状态,第二控制开关90处于导通状态,从而相当于第二分流器70与第二电池组件40并联。但第一电池组件30与第二电池组件40串联,相当于第二电池组件40与第二分流器70并联之后与第一电池组件30串联,从而从第一电池组件30输出的电流流入第二电池组件40之后,该电流会被第二分流器70分走部分,从而第二电池组件40上的电流小于第一电池组件30上的电流,使得在充电的过程中,向第一电池组件30充的电量较多,向第二电池组件40充的电量较少,从而在充电之后,或者在充电的过程中,第一电池组件30中的电量与第二电池组件40中的电量 相等。
例如,如图2所示,在对电子设备充电的过程中,若从充电管理模块50流出的电流大小为I,在第一电池组件30的电量大于第二电池组件40的电量的情况下,第一控制开关80处于导通状态,第二控制开关90处于断开状态,电流的流向如图2中A所指的电流路径,此时,第一分流器60与第二分流器70串联,之后与第一电池组件30并联,且流经第一分流器60的电流为I1,则流入第一电池组件30中的电流为I-I1,流入第二电池组件40中的电流为I,从而流入第二电池组件40中的电流I大于流入第一电池组件30中的电流I-I1,之后可以持续保持第一控制开关80处于导通状态,第二控制开关90处于断开状态,从而在对电子设备充电之后,或者在对电子设备充电的过程中,使得第一电池组件30上的电量等于第二电池组件40上的电量。
同理,在第二电池组件40的电量大于第一电池组件30的电量的情况下,第一控制开关80处于断开状态,第二控制开关90处于导通状态,电流的流向如图2中B所指的电流路径,此时,第二分流器70与第二电池组件40并联,且流经第二分流器70的电流为I2,则流入第二电池组件40中的电流为I-I2,从而流入第一电池组件30中的电流I大于流入第二电池组件40中的电流I-I2,之后可以持续保持第一控制开关80处于断开状态,第二控制开关90处于导通状态,从而在对电子设备充电之后,或者在对电子设备充电的过程中,使得第一电池组件30上的电量等于第二电池组件40上的电量。
需要说明的是,I1与I2的大小可以相等,当然I1与I2的大小也可以不相等。另外,可以通过调整第一分流器60的阻抗,从而确定流经第一分流器60的电流的大小,同理,也可以通过调整第二分流器70的阻抗,从而确定流经第二分流器70的电流的大小。
另外,在一些实施例中,在第一电池组件30的电量大于第二电池组件40的电量,且第一电池组件30的电量与第二电池组件40的之间的差值大于预设电量阈值的情况下,第一控制开关80处于导通状态,第二控制开关90处于断开状态,以使第一电池组件30的电量与第二电池组件40的电量之间 的差值小于或等于预设电量阈值;在第二电池组件40的电量大于第一电池组件30的电量,且第二电池组件40的电量与第一电池组件30的之间的差值大于预设电量阈值的情况下,第一控制开关80处于断开状态,第二控制开关90处于导通状态,以使第二电池组件40的电量与第一电池组件30的电量之间的差值小于或等于预设电量阈值。
在第一电池组件30的电量大于第二电池组件40的电量,且第一电池组件30的电量与第二电池组件40的之间的差值大于或等于预设电量阈值的情况下,可以使得第一控制开关80处于导通状态,第二控制开关90处于断开状态,从而可以使得第一分流器60和第二分离器串联,之后与第一电池组件30并联,从而使得流经第一电池组件30的电流小于流经第二电池组件40的电流,从而可以使得在充电之后,或者在充电的过程中,第一电池组件30的电量与第二电池组件40的电量的差值小于预设电量阈值。在第二电池组件40的电量大于第一电池组件30的电量,且第二电池组件40的电量与第一电池组件30的之间的差值大于预设电量阈值的情况下,可以使得第一控制开关80处于断开状态,第二控制开关90处于导通状态,从而可以使得第二分流器70与第二电池组件40并联,从而使得流经第一电池组件30的电流大于流经第二电池组件40的电流,从而可以使得在充电之后,或者在充电的过程中,第一电池组件30的电量与第二电池组件40的电量的差值小于或等于预设电量阈值。
需要说明的是,预设电量阈值可以根据实际需要进行设定,例如,预设电量阈值可以为20mv,当然,预设电量阈值还可以为其他数值,对此,本申请实施例在此不做限定。
另外,由于电量等于电流与时间的乘积,因此,在确定了电流以及电量之后,便可以确定时间,从而可以确定控制第一控制开关80以及第二控制开关90的时间。
例如,充电管理模块50输出的电流为I,若第一电池组件30的电量大于第二电池组件40的电量,第一分流器60与第二分流器70串联,之后与 第一电池组件30并联,流经第一分流器60的电流为I1,流经第一电池组件30上的电流为I-I1,第二电池组件40上的电流为I,在同样的时间t内,充入第二电池组件40上的电量会比充入第一电池组件30上的电量多I1*t。若第一电池组件30的电量与第二电池组件40的电量之间的差值为Z,且Z大于或等于预设电量阈值,预设电量阈值为X,在充电的过程中,需要至少控制第一控制开关80以及第二控制开关90的时间为(Z-X)/I1,即需要控制第一控制开关80处于导通状态,第二控制开关90处于断开状态的时间为(Z-X)/I1,可以使得第一电池组件30上的电量与第二电池组件40上的电量之间的差值小于或等于预设电量阈值。再例如,第一电池组件30的电量与第二电池组件40的电量之间的差值为30,预设电量阈值为20,I1为0.05,则在充电的过程中,需要至少控制第一控制开关80以及第二控制开关90的时间为(30-20)/0.05,即需要控制第一控制开关80处于导通状态,第二控制开关90处于断开状态的时间为(30-20)/0.05。
同理,若第二电池组件40的电量大于第一电池组件30的电量,第二分流器70与第二电池组件40并联,流经第二分流器70的电流为I2,流经第二电池组件40上的电流为I-I2,第一电池组件30上的电流为I,在同样的时间t内,充入第一电池组件30上的电量会比充入第二电池组件40上的电量多I2*t。若第二电池组件40的电量与第一电池组件30的电量之间的差值为Z,且Z大于或等于预设电量阈值,预设电量阈值为X,在充电的过程中,需要至少控制第一控制开关80以及第二控制开关90的时间为(Z-X)/I2,即需要控制第一控制开关80处于断开状态,第二控制开关90处于导通状态的时间为(Z-X)/I2,可以使得第一电池组件30上的电量与第二电池组件40上的电量之间的差值小于或等于预设电量阈值。再例如,第二电池组件40的电量与第一电池组件30的电量之间的差值为30,预设电量阈值为20,I1为0.05,则在充电的过程中,需要至少控制第一控制开关80以及第二控制开关90的时间为(30-20)/0.05,即需要控制第一控制开关80处于断开状态,第二控制开关90处于导通状态的时间为(30-20)/0.05。
另外,在一些实施例中,电子设备还可以包括控制器100以及电量计110。控制器100位于第一壳体10或第二壳体20中,电量计110位于第一壳体10或第二壳体20中。电量计110的电量采集端分别与第一电池组件30的正极、第二电池组件40的正极电连接,电量计110的输出端与控制器100电连接,电量计110的接地端接地,控制器100分别与第一控制开关80的控制端、第二控制开关90的控制端电连接。电量计110用于采集第一电池组件30的电量以及第二电池组件40的电量,控制器100用于接收第一电池组件30的电量以及第二电池组件40的电量,并在第一电池组件30的电量大于第二电池组件40的电量的情况下,控制第一控制开关80处于导通状态,第二控制开关90处于断开状态;在第二电池组件40的电量大于第一电池组件30的电量的情况下,控制第一控制开关80处于断开状态,第二控制开关90处于导通状态,以使第二电池组件40的电量与第一电池组件30的电量之间的差值小于预设电量阈值。
由于电量计110的电量采集端分别与第一电池组件30的正极、第二电池组件40的正极电连接,电量计110的输出端与控制器100电连接,因此,电量计110可以采集到第一电池组件30与第二电池组件40的电量,并将第一电池组件30的电量以及第二电池组件40的电量发送至控制器100。由于控制器100分别与第一控制开关80的控制端、第二控制开关90的控制端电连接,因此,控制器100在接收到第一电池组件30的电量以及第二电池组件40的电量之后,控制器100便可以确定第一电池组件30的电量与第二电池组件40的电量的大小,从而根据第一电池组件30的电量与第二电池组件40的电量的大小对第一控制开关80以及第二控制开关90进行控制。具体的,在第一电池组件30的电量大于第二电池组件40的电量的情况下,控制第一控制开关80处于导通状态,第二控制开关90处于断开状态;在第二电池组件40的电量大于第一电池组件30的电量的情况下,控制第一控制开关80处于断开状态,第二控制开关90处于导通状态,以使第二电池组件40的电量与第一电池组件30的电量之间的差值小于预设电量阈值。
另外,通过设置电量计110,还可以便于控制器100获取第一电池组件30与第二电池组件40的电量,从而便于控制器100根据第一电池组件30的电量以及第二电池组件40的电量,对第一控制开关80以及第二控制开关90进行控制。另外,设置控制器100,还可以便于控制第一控制开关80以及第二控制开关90。
另外,在一些实施例中,电子设备还可以包括控制模块120,控制模块120的接收端与控制器100电连接,且控制模块120的控制端分别与第一控制开关80的控制端、第二控制开关90的控制端电连接,控制模块120的接地端接地。
当控制模块120的接收端与控制器100电连接,控制模块120的控制端分别与第一控制开关80的控制端,第二控制开关90的控制端电连接时,此时,控制模块120的接收端可以接收到控制器100发送的控制指令,从而控制模块120可以根据控制指令控制第一控制开关80处于导通状态,第二控制开关90处于断开状态,或者控制第一控制开关80处于断开状态,第二控制开关90处于导通状态。也即是,通过设置控制模块120,可以便于控制器100对第一控制开关80以及第二控制开关90进行控制。
另外,在一些实施例中,电子设备还可以包括转轴组件130。第一壳体10以及第二壳体20通过转轴组件130活动连接。
当第一壳体10以及第二壳体20通过转轴组件130活动连接时,此时,在第一壳体10与第二壳体20相互远离,或者第一壳体10远离第二壳体20时,转轴组件130会相对转动,从而使得第一壳体10与第二壳体20可以相互远离,或者第一壳体10远离第二壳体20。
需要说明的是,第一壳体10与第二壳体20活动连接的方式还可以为:第一壳体10与第二壳体20通过铰链组件活动连接。或第一壳体10与第二壳体20通过滑动组件,实现两者的重叠或展开。
另外,在一些实施例中,电子设备还可以包括第一电路板140和第二电路板150。第一电路板140位于第一壳体10中,第二电路板150位于第二壳 体20中,第一电池组件30的负极与第一电路板140电连接,第一电路板140与第二电路板150电连接,第二电路板150与第二电池组件40的正极电连接。
当第一电池组件30的负极与第一电路板140电连接,第一电路板140与第二电路板150电连接,第二电路板150与第二电池组件40的正极电连接时,此时,在第一电池组件30的正极受到充电管理模块50的电流之后,第一电池组件30的负极可以将电流传递至第一电路板140,从而第一电路板140可以将电流传递至第二电路板150,第二电路板150将电流传递至第二电池组件40的正极,从而使得第一电池组件30的负极与第二电池组件40的正极电连接,使得第一电池组件30与第二电池组件40实现串联。另外,通过设置第一电路板140以及第二电路板150,直接将第一电池组件30与第一电路板140电连接,将第二电池组件40与第二电路板150电连接,之后将第一电路板140与第二电路板150电连接,从而可以便于第一电池组件30与第二电池组件40串联。
需要说明的是,在本申请实施例中,第一电路板140与第二电路板150均可以为印制电路板(Printed Circuit Board,PCB),当然,第一电路板140与第二电路板150还均可以为柔性电路板(Flexible Printed Circuit,FPC),对此,本申请实施例在此不作限定。
另外,在一些实施例中,电子设备还可以包括导电连接件160。导电连接件160的一端与第一电路板140电连接,导电连接件160的另一端与第二电路板150电连接。
当导电连接件160的一端与第一电路板140电连接,导电连接件160的另一端与第二电路板150电连接时,此时,在第一电池组件30接收到充电管理模块50传递的电流之后,第一电池组件30将电流传递至第一电路板140,第一电路板140将电流传递至导电连接件160,导电连接件160将电流传递至第二电路板150,第二电路板150将电流传递至第二电池组件40的正极,从而实现第一电池组件30与第二电池组件40的串联。另外,通过设置 导电连接件160,可以便于第一电路板140与第二电路板150电连接,从而便于第一电池组件30与第二电池组件40串联。
需要明的是,在本申请实施例中,导电连接件160可以为柔性电路板(Flexible Printed Circuit,PFC),当然,导电连接件160还可以为其他可以导电的器件,比如导线,对于导电连接件160的具体类型,本申请实施例在此不做限定。
另外,在一些实施例中,第一控制开以及第二控制开关90均可以为MOS管。
当第一控制开关80以及第二控制开关90均为MOS管时,此时,由于MOS管便于控制,从而可以使得控制器100便于对第一控制开关80以及第二控制开关90进行控制,使得第一控制开关80导通或断开,或者使得第二控制开关90导通或断开。
需要说明的是,当第一控制开关80以及第二控制开关90均为MOS管时,此时,第一控制开关80的第一端可以为MOS管的源极,第一控制开关80的第二端可以为MOS管的漏极,第一控制开关80的控制端可以为MOS管的栅极;第二控制开关90的第一端可以为MOS管的源极,第二控制开关90的第二端可以为MOS管的漏极,第二控制开关90的控制端可以为MOS管的栅极。
当然,第一控制开关80以及第二控制开关90还可以为其他具有导通与关断功能的开关,例如,第一控制开关80以及第二控制开关90还可以为继电器、三极管等,对于第一控制开关80以及第二控制开关90的具体类型,本申请实施例在此不作限定。
还需要说明的是,在本申请实施例中,电子设备包括但不限于手机、笔记本电脑等。
在本申请实施例中,由于第一壳体10与第二壳体20活动连接,因此,第一壳体10与第二壳体20可以相互靠近或者相互远离,从而使得电子设备叠置或者展开。由于第一电池组件30位于第一壳体10中,第二电池组件40 位于第二壳体20中,因此,第一电池组件30可以向第一壳体10中的器件提供电能,第二电池组件40可以向第二壳体20中的器件提供电能。由于充电管理模块50与第一电池组件30的正极电连接,因此,通过充电管理模块50可以向第一电池组件30充电。由于第一电池组件30的负极与第二电池组件40的正极电连接,第二电池组件40的负极接地,因此,第一电池组件30与第二电池组件40相当于串联,从而在通过充电管理模块50向第一电池组件30充电时,第一电池组件30可以将电能传递至第二电池组件40,从而通过充电管理模块50可以向第一电池组件30与第二电池组件40充电。另外,由于第一电池组件30与第二电池组件40串联,因此,充电回路中的阻抗增加,从而使得充电回路中的电流降低,使得充电回路中的散热减小。也即是,在本申请实施例中,通过将第一电池组件30与第二电池组件40串联,可以使得在对电子设备充电时,充电回路的散热减小。
参照图3,示出了本申请实施例提供的一种控制方法的流程图,该控制方法应用于上述实施例中任一实施例中的电子设备中,如图3所示,该方法包括:
步骤301:获取第一电池组件的电量以及第二电池组件的电量。
当电子设备包括电量计时,电量计便可以直接测量第一电池组件的电量以及第二电池组件的电量,从而电量计将第一电池组件的电量以及第二电池组件的电量发送至控制器,控制器便可以获取第一电池组件的电量以及第二电池组件的电量。
步骤302:在第一电池组件的电量大于第二电池组件的电量的情况下,调整第一电池组件以及第二电池组件的电量,以使第一电池组件的电量等于第二电池组件的电量,或,第一电池组件的电量与第二电池组件的电量之间的差值小于或等于预设电量阈值。
当第一电池组件的电量大于第二电池组件的电量时,此时,控制器可以控制第一控制开关处于导通状态,第二控制开关处于断开状态,且控制时间 达到一定时间之后,第一电池组件的电量等于第二电池组件的电量,或,第一电池组件的电量与第二电池组件的电量之间的差值小于或等于预设电量阈值。
步骤303:在第二电池组件的电量大于第一电池组件的电量的情况下,调整第一电池组件以及第二电池组件的电量,以使第二电池组件的电量等于第一电池组件的电量,或,第二电池组件的电量与第一电池组件的电量之间的差值小于或等于预设电量阈值。
当第二电池组件的电量大于第一电池组件的电量时,此时,控制器可以控制第一控制开关处于断开状态,第二控制开关处于导通状态,且控制时间达到一定时间之后,第一电池组件的电量等于第二电池组件的电量,或,第二电池组件的电量与第一电池组件的电量之间的差值小于或等于预设电量阈值。
需要说明的是,本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
尽管已描述了本申请实施例的可选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括可选实施例以及落入本申请实施例范围的所有变更和修改。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体与另一个实体区分开来,而不一定要求或者暗示这些实体之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的物品或者终端设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种物品或者终端设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括要素的物品或者终 端设备中还存在另外的相同要素。
以上对本申请所提供的技术方案进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,同时,对于本领域的一般技术人员,依据本申请的原理及实现方式,在具体实施方式及应用范围上均会有改变之处,综上,本说明书内容不应理解为对本申请的限制。

Claims (10)

  1. 一种电子设备,其中,所述电子设备包括:第一壳体、第二壳体、第一电池组件、第二电池组件、充电管理模块;
    所述第一壳体与所述第二壳体活动连接,以使所述第一壳体与所述第二壳体具有叠置状态和展开状态;
    所述第一电池组件位于所述第一壳体中,所述第二电池组件位于所述第二壳体中,所述充电管理模块位于所述第一壳体或所述第二壳体中;
    所述充电管理模块与所述第一电池组件的正极电连接,所述第一电池组件的负极与所述第二电池组件的正极电连接,所述第二电池组件的负极接地。
  2. 根据权利要求1所述的电子设备,其中,所述电子设备还包括第一分流器、第二分流器、第一控制开关以及第二控制开关;
    所述第一分流器位于所述第一壳体或所述第二壳体中,所述第二分流器位于所述第一壳体或所述第二壳体中,所述第一控制开关位于所述第一壳体或所述第二壳体中,所述第二控制开关位于所述第一壳体或所述第二壳体中;
    所述第一分流器的第一端与所述第一电池组件的正极电连接,所述第一分流器的第二端与所述第一控制开关的第一端电连接,所述第一控制开关的第二端分别与所述第二控制开关的第一端、所述第二分流器的第一端电连接,所述第二分流器的第二端与所述第二电池组件的正极电连接,所述第二控制开关的第二端与所述第二电池组件的负极电连接;
    在所述第一电池组件的电量大于所述第二电池组件的电量的情况下,所述第一控制开关处于导通状态,所述第二控制开关处于断开状态;
    在所述第二电池组件的电量大于所述第一电池组件的电量的情况下,所述第一控制开关处于断开状态,所述第二控制开关处于导通状态。
  3. 根据权利要求2所述的电子设备,其中,在所述第一电池组件的电量大于所述第二电池组件的电量,且所述第一电池组件的电量与所述第二电池组件的之间的差值大于预设电量阈值的情况下,所述第一控制开关处于导通状态,所述第二控制开关处于断开状态,以使所述第一电池组件的电量与所述第二电池组件的电量之间的差值小于或等于所述预设电量阈值;
    在所述第二电池组件的电量大于所述第一电池组件的电量,且所述第二电池组件的电量与所述第一电池组件的之间的差值大于预设电量阈值的情况下,所述第一控制开关处于断开状态,所述第二控制开关处于导通状态,以使所述第二电池组件的电量与所述第一电池组件的电量之间的差值小于或等于所述预设电量阈值。
  4. 根据权利要求2所述的电子设备,其中,所述电子设备还包括控制器以及电量计;
    所述控制器位于所述第一壳体或所述第二壳体中,所述电量计位于所述第一壳体或所述第二壳体中;
    所述电量计的电量采集端分别与所述第一电池组件的正极、所述第二电池组件的正极电连接,所述电量计的输出端与所述控制器电连接,所述电量计的接地端接地,所述控制器分别与所述第一控制开关的控制端、所述第二控制开关的控制端电连接;
    所述电量计用于采集所述第一电池组件的电量以及所述第二电池组件的电量,所述控制器用于接收所述第一电池组件的电量以及所述第二电池组件的电量,并在所述第一电池组件的电量大于所述第二电池组件的电量的情况下,控制所述第一控制开关处于导通状态,所述第二控制开关处于断开状态;在所述第二电池组件的电量大于所述第一电池组件的电量的情况下,控制所述第一控制开关处于断开状态,所述第二控制开关处于导通状态,以使所述第二电池组件的电量与所述第一电池组件的电量之间的差值小于所述预设电量阈值。
  5. 根据权利要求4所述的电子设备,其中,所述电子设备还包括控制模块,所述控制模块的接收端与所述控制器电连接,且所述控制模块的控制端分别与所述第一控制开关的控制端、所述第二控制开关的控制端电连接,所述控制模块的接地端接地。
  6. 根据权利要求1所述的电子设备,其中,所述电子设备还包括转轴组件;
    所述第一壳体以及所述第二壳体通过所述转轴组件活动连接。
  7. 根据权利要求1所述的电子设备,其中,所述电子设备还包括第一电路板和第二电路板;
    所述第一电路板位于所述第一壳体中,所述第二电路板位于所述第二壳体中,所述第一电池组件的负极与所述第一电路板电连接,所述第一电路板与所述第二电路板电连接,所述第二电路板与所述第二电池组件的正极电连接。
  8. 根据权利要求7所述的电子设备,其中,所述电子设备还包括导电连接件;
    所述导电连接件的一端与所述第一电路板电连接,所述导电连接件的另一端与所述第二电路板电连接。
  9. 根据权利要求2所述的电子设备,其中,所述第一控制开以及所述第二控制开关均为MOS管。
  10. 一种控制方法,应用于权利要求1-9中任一项所述的电子设备中,其中,所述方法包括:
    获取所述第一电池组件的电量以及所述第二电池组件的电量;
    在所述第一电池组件的电量大于或等于所述第二电池组件的电量的情况下,调整所述第一电池组件以及所述第二电池组件的电量,以使所述第一电池组件的电量等于所述第二电池组件的电量,或,所述第一电池组件的电量与所述第二电池组件的电量之间的差值小于预设电量阈值;
    在所述第二电池组件的电量大于或等于所述第一电池组件的电量的情况下,调整所述第一电池组件以及所述第二电池组件的电量,以使所述第一电池组件的电量等于所述第二电池组件的电量,或,所述第一电池组件的电量与所述第二电池组件的电量之间的差值小于预设电量阈值。
PCT/CN2023/073503 2022-01-29 2023-01-28 电子设备及控制方法 WO2023143485A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210114021.0A CN114447491B (zh) 2022-01-29 2022-01-29 电子设备及控制方法
CN202210114021.0 2022-01-29

Publications (1)

Publication Number Publication Date
WO2023143485A1 true WO2023143485A1 (zh) 2023-08-03

Family

ID=81371892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/073503 WO2023143485A1 (zh) 2022-01-29 2023-01-28 电子设备及控制方法

Country Status (2)

Country Link
CN (1) CN114447491B (zh)
WO (1) WO2023143485A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114447491B (zh) * 2022-01-29 2024-07-23 维沃移动通信有限公司 电子设备及控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08213055A (ja) * 1995-02-08 1996-08-20 Honda Motor Co Ltd 組電池の充電方法及びその装置
JP2004135424A (ja) * 2002-10-10 2004-04-30 Nissan Motor Co Ltd 組電池の充電量調整装置
US20200036198A1 (en) * 2018-07-26 2020-01-30 Samsung Electronics Co., Ltd. Electronic device and method for managing battery thereof
CN113541250A (zh) * 2021-07-14 2021-10-22 维沃移动通信有限公司 电池充电控制电路及电子设备
CN114447491A (zh) * 2022-01-29 2022-05-06 维沃移动通信有限公司 电子设备及控制方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112701735B (zh) * 2019-10-22 2024-07-19 华为技术有限公司 一种电子设备、充电方法及充电系统
KR20210067129A (ko) * 2019-11-29 2021-06-08 삼성전자주식회사 직렬로 연결되는 다수 개의 배터리를 관리하기 위한 전자 장치 및 그의 동작 방법
CN113746150A (zh) * 2020-05-27 2021-12-03 北京小米移动软件有限公司 充电系统、方法、装置和终端设备
CN113746149A (zh) * 2020-05-27 2021-12-03 北京小米移动软件有限公司 充电系统、方法、装置和终端设备
CN113098998A (zh) * 2021-03-30 2021-07-09 维沃移动通信有限公司 电子设备
CN113036880A (zh) * 2021-04-09 2021-06-25 Oppo广东移动通信有限公司 充电装置、电子设备及充电方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08213055A (ja) * 1995-02-08 1996-08-20 Honda Motor Co Ltd 組電池の充電方法及びその装置
JP2004135424A (ja) * 2002-10-10 2004-04-30 Nissan Motor Co Ltd 組電池の充電量調整装置
US20200036198A1 (en) * 2018-07-26 2020-01-30 Samsung Electronics Co., Ltd. Electronic device and method for managing battery thereof
CN113541250A (zh) * 2021-07-14 2021-10-22 维沃移动通信有限公司 电池充电控制电路及电子设备
CN114447491A (zh) * 2022-01-29 2022-05-06 维沃移动通信有限公司 电子设备及控制方法

Also Published As

Publication number Publication date
CN114447491A (zh) 2022-05-06
CN114447491B (zh) 2024-07-23

Similar Documents

Publication Publication Date Title
WO2019223312A1 (zh) 加热模块和电池组加热方法、加热系统
TW571452B (en) Charging-type electrical potential balance device
CN102842292A (zh) 电源管理电路及使用该电路的显示装置
WO2023143485A1 (zh) 电子设备及控制方法
CN115085302A (zh) 双电池充放电电路及控制方法、电子设备
CN112821497B (zh) 锂电池保护系统和锂电池
WO2022213767A1 (zh) 充电装置、电子设备及充电方法
CN106684829A (zh) 一种基于电子设备主板的电池保护电路以及电子设备
CN206547012U (zh) 充电电路及电子设备
TWI680894B (zh) 充電站系統及輸出電能上限管理方法
CN201167243Y (zh) 充电电路及具有所述充电电路的移动通信设备
CN107994684A (zh) 无线充电接收线圈电路
CN110400982A (zh) 一种充放电方法及电子设备
CN206628847U (zh) 一种充电电路及移动终端
CN115173523A (zh) 充电电路、充电控制方法和电子设备
CN106300466A (zh) 一种otg快速充电的方法、装置及终端
CN214280983U (zh) 串联电池组的均衡芯片及电池管理系统
CN201041948Y (zh) 一种电源设备
US20060108976A1 (en) Non-contact charging device
CN206595885U (zh) 电源电器功能扩充模块
CN207010214U (zh) 一种电池多重过流保护电路
CN114696378A (zh) 一种电池快充装置、锂离子电池和电子设备
CN219181211U (zh) 电子设备
CN218920024U (zh) 充电控制电路、充电模块及电子设备
CN213484531U (zh) 一种电池化成分容的主动均衡电压电路及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23746363

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE