WO2023143410A1 - 动态资源共享 - Google Patents

动态资源共享 Download PDF

Info

Publication number
WO2023143410A1
WO2023143410A1 PCT/CN2023/073271 CN2023073271W WO2023143410A1 WO 2023143410 A1 WO2023143410 A1 WO 2023143410A1 CN 2023073271 W CN2023073271 W CN 2023073271W WO 2023143410 A1 WO2023143410 A1 WO 2023143410A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
network node
information
cbsd
ris
Prior art date
Application number
PCT/CN2023/073271
Other languages
English (en)
French (fr)
Inventor
王硕
孙晨
Original Assignee
索尼集团公司
王硕
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼集团公司, 王硕 filed Critical 索尼集团公司
Publication of WO2023143410A1 publication Critical patent/WO2023143410A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • H04W16/16Spectrum sharing arrangements between different networks for PBS [Private Base Station] arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the present disclosure generally relates to communication technologies, and more particularly, the present disclosure relates to methods, devices and systems for dynamic resource sharing.
  • the deployment of network nodes is more intensive, and the number of terminals in various forms such as mobile phones, Internet of Things devices, and wearable devices is increasing rapidly, and the demand for spectrum resources is increasing. Due to the heterogeneous and dynamic nature of services, the traditional static spectrum management solution has low spectrum utilization and wastes precious spectrum resources. Therefore, a cognitive radio technology is proposed.
  • the secondary user discovers the idle spectrum of the primary user through spectrum sensing, for example, and uses the idle spectrum for transmission, so as to improve spectrum utilization.
  • the spectrum management device requires a large amount of computing resources, the synchronization frequency between spectrum management devices is low, and the real-time performance of spectrum management is not high.
  • a method performed by a network node including: determining a resource margin of the network node; and uploading information of the resource margin to a block chain.
  • said network nodes may be equipped with a reconfigurable smart surface ((Reconfigurable Intelligent Surface, RIS), the method may further include: increasing the resource margin of the network node by adjusting RIS configuration parameters.
  • RIS reconfigurable Intelligent Surface
  • the resource headroom of the network node may include power headroom and/or bandwidth headroom.
  • uploading the information of the resource balance to the block chain may further include: broadcasting the information of the resource balance to standard network nodes in the network, so that each standard network node A large amount of information is stored in their respective local ledgers.
  • the method may further include: reporting resource usage information to a resource management device, wherein the resource usage information includes information related to the RIS configuration of the network node, and the resource usage information is managed by the resource Device used to update the coverage overlay.
  • the information related to the RIS configuration may include: a direction and power of a reflected signal reflected by the RIS.
  • the method may further include: sending a registration request for the blockchain to the resource management device, wherein the registration request includes information indicating at least one of the following: whether the network node supports blockchain chain function; and whether the type of the network node is a lightweight network node or a standard network node.
  • the method may further include: sending a resource headroom query request to another network node; and receiving a resource headroom query response from the another network node, the resource headroom query response including the region Information about the resource balance currently available on the blockchain.
  • the method may further include: sending a resource bidding request to another network node, wherein the other network node is a standard network node, the resource bidding request including information indicating the resource bid for; A resource bidding response from another network node, the resource bidding response indicating authorization to use information on the bid resource; adjusting transmission parameters to use the bid resource; and reporting the adjusted resource usage information to the resource management device, for updating the overlay map by the resource management device.
  • the network node is a standard network node
  • the method may further include: receiving a resource headroom query request from another network node; in response to the resource headroom query request, from and to the block
  • the local ledger associated with the chain acquires the information of the currently available resource balance; and sends a resource balance query response to the other network node, wherein the resource balance query response includes the information of the currently available resource balance.
  • the method may further include: receiving a resource bidding request from another network node, the resource bidding request including information indicating the resource being bid for; in response to the resource bidding request, obtaining the current resource bidding request from the resource management device an overlay map; at least based on the current overlay map, for the resources involved in the auction request verifying the corresponding transaction; and in response to successful verification, sending a resource auction response to the other network node.
  • the method may further include: uploading the transaction record to the blockchain to update the resource balance information of the blockchain.
  • the operation of uploading the record of the transaction to the blockchain may further: record the record of the transaction in the local ledger associated with the blockchain of the network node ; and broadcasting a record of the transaction to other standard network nodes within the network.
  • the operation of verifying the transaction to which the resource bid request relates may further: determine whether the transaction satisfies interference protection requirements for the protected network node.
  • a network node including: a memory storing computer-executable instructions; and a processor, coupled to the memory, configured to execute the computer-executable instructions to perform the method as described above .
  • a method performed by a resource management device comprising: receiving from a RIS-equipped network node information related to an RIS configuration of the network node; and based on the received information about the network node's RIS configuration, Information related to the above RIS configuration is used to update the overlay map.
  • the information related to the RIS configuration of the network node may include a first signal direction of a reflected signal of the network node after being reflected by the RIS.
  • the method may further comprise: receiving from another network node information related to a transmission signal of the other network node, the information indicating at least a second signal direction of the transmission signal, wherein the The network node and the other network node do not belong to the same ICG or CCG.
  • the method may further include updating the coverage overlap map by: judging whether the first signal direction intersects the second signal direction; if the first signal direction does not intersect the second signal direction, not forming the network node and the other An edge between network nodes; and if the first signal direction intersects with the second signal direction, determining whether the interfering signal power at the intersection exceeds a threshold, wherein, in response to determining that the interfering signal power at the intersection exceeds the threshold, forming the An edge between the network node and the other network node is formed, otherwise, no edge is formed between the network node and the other network node.
  • the method may further comprise: receiving a request for a coverage overlay from a standard network node; and sending the latest coverage overlay to said standard network node.
  • a resource management device comprising: a memory storing computer-executable instructions; and a processor, coupled to the memory, configured to execute the computer-executable instructions to perform the above-mentioned Methods.
  • FIG. 1 is an exemplary system structure diagram showing a network according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic diagram illustrating that an RIS controller controls an RIS reflection coefficient according to an embodiment of the present disclosure.
  • Fig. 3 is a flowchart illustrating an exemplary signaling interaction process of a dynamic resource management method according to an embodiment of the present disclosure.
  • Fig. 4 is a schematic diagram illustrating releasing resource margin by configuring RIS reflection coefficients according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram illustrating a block structure of a block according to an embodiment of the present disclosure.
  • 6A and 6B are schematic diagrams illustrating overlay map updating according to an embodiment of the present disclosure.
  • Fig. 7 is an exemplary flowchart illustrating a method performed by a network node according to an embodiment of the present disclosure.
  • Fig. 8 is an exemplary flowchart illustrating another method performed by a network node according to an embodiment of the present disclosure.
  • Fig. 9 is an exemplary flowchart illustrating still another method performed by a network node according to an embodiment of the present disclosure.
  • FIG. 10 is an exemplary flowchart illustrating a method performed by a resource management device according to an embodiment of the present disclosure.
  • Fig. 11 is a block diagram showing a first example of a schematic configuration of a base station to which the technology of the present disclosure can be applied.
  • Fig. 12 is a block diagram showing a second example of a schematic configuration of a base station to which the technology of the present disclosure can be applied.
  • FIG. 13 is a block diagram showing an example of a schematic configuration of a smartphone to which the technology of the present disclosure can be applied.
  • FIG. 14 is a block diagram showing an example of a schematic configuration of a car navigation device to which the technology of the present disclosure can be applied.
  • a block chain is established between network nodes (such as base stations) in the network, and the block chain is used to record dynamic changes of resource margins and spectrum transaction records of each network node in the network.
  • a network node can either release resource margins (such as power margins or bandwidth margins) for use by other network nodes in the network (such as nearby network nodes), or obtain resources from other network nodes.
  • Network nodes can upload resource balance information to the blockchain, and can also query the current available resource balance on the blockchain. In the case that two network nodes complete the resource balance transaction, the transaction record can also be uploaded to the blockchain to update the resource balance information on the blockchain.
  • the dynamic sharing of the resource margin between the network nodes can be realized in a safe and flexible manner, the communication service quality of each network node can be improved and the resource utilization of the network can be improved Rate.
  • This disclosure considers that the distributed network nodes are responsible for the maintenance of the blockchain, the verification of resource transactions, etc., so that at least part of the resource management functions that were originally concentrated at the resource management device are transferred to the network nodes, resulting in a more effective, More flexible and secure resource sharing.
  • each network node can obtain resource margin by adopting a reconfigurable intelligent surface (Reconfigurable Intelligent Surface, RIS) or adjusting the configuration of the RIS. This can not only improve resource utilization and communication service quality at network nodes, but also improve resource utilization and communication service quality of the entire network.
  • RIS reconfigurable Intelligent Surface
  • each network node may report the adjusted resource usage information to the resource management device (eg, spectrum management device) in real time when resource usage adjustments (such as adjusting RIS configuration, adjusting transmission parameters, etc.) occur, so as to use for updating the coverage overlay map of the network by the resource management device.
  • resource management device eg, spectrum management device
  • resource usage adjustments such as adjusting RIS configuration, adjusting transmission parameters, etc.
  • the resource usage information may include RIS configuration-related information, and the resource management device may generate a more accurate coverage overlap map according to the RIS configuration-related information.
  • the present disclosure also considers that when two network nodes conduct a resource balance transaction, the latest overlay map can be used to verify the transaction, so as to prevent the transaction from causing damage to other protected network nodes in the network (such as the master Undesired interference of network nodes of the system).
  • FIG. 1 is an exemplary system structure diagram illustrating a network 100 according to an embodiment of the present disclosure.
  • Network 100 may include primary systems and secondary systems.
  • citizens Broadband Radio Service Radio Services, CBRS citizens Broadband Radio Service Radio Services
  • the main system can include existing users such as radar (Incumbents) or Priority Access License (Priority Access License, PAL) network nodes, for example, radar or PAL Citizens Broadband Radio Service equipment (Citizens Broadband Radio Service Device, CBSD) 102.
  • the secondary system may include General Authorized Access (GAA) network nodes, eg, GAA CBSD 104 , 106 and 108 .
  • GAA General Authorized Access
  • Each CBSD provides services for its own users, ie user equipment UE.
  • GAA users in the secondary system cannot affect radar or PAL users in the primary system.
  • a secondary system may include several GAA network nodes within a certain area. Dynamic resource sharing can be realized between various network nodes in the subsystem. Blockchain technology can be applied to dynamic resource sharing in subsystems, such as establishing a blockchain between these GAA network nodes. Each network node 106-108 can upload its own resource balance information or resource usage information or the changes of these information to the block chain in real time, thus allowing each network node to query the information on the available resource margin in the network and perform Resource transactions to achieve more efficient, safer and more flexible resource sharing.
  • CBSD 104 and 106 are each equipped with a reconfigurable intelligent surface (Reconfigurable Intelligent Surface, RIS) and a RIS controller RIS-C for controlling the RIS.
  • RIS reconfigurable Intelligent Surface
  • the RIS controller can be wired to the CBSD.
  • RIS can be deployed on the CBSD side, relay side or user side.
  • CBSD can control the reflection coefficient of RIS in real time via the RIS controller (such as the ) to dynamically construct reflection paths as needed.
  • FIG. 2 is a schematic diagram illustrating that an RIS controller controls an RIS reflection coefficient according to an embodiment of the present disclosure. As shown in Figure 2, the RIS controller can control the phase offset of each reflection unit of the RIS to adjust the outgoing direction of the incident wave (for example, the outgoing angle ⁇ ).
  • RIS can include multiple RIS units, and each unit can be independently controlled, for example, each unit’s Can be set independently. In some embodiments, for each unit's Set the same value to achieve the same phase shift for the received incident signal. In other embodiments, for each unit's Set different values to achieve different phase shifts for different incident signals.
  • FIG. 2 only illustrates an example where the reflection coefficient is a phase shift.
  • the reflection coefficient of the RIS which can be controlled via the RIS controller, can also include amplitude offset, frequency, polarization, and the like.
  • CBSD can be divided into two categories: one is lightweight CBSD, which can only record its own resource usage and transaction records; the other is standard CBSD, which can store data on the blockchain. All currently available resource information and recent resource usage information can verify the latest generated block information to be confirmed, It can serve the local lightweight CBSD and provide the information it needs.
  • the blockchain which has been verified and becomes historical information, can be stored on the resource management device.
  • the resource management device is, for example, a coexistence manager (Coexistence Manager, CxM), a spectrum access system (Spectrum Access System, SAS), or a CSAS (SAS+CxM).
  • the resource management device may be a spectrum management device or device.
  • Fig. 3 is a flowchart showing an exemplary signaling interaction process 300 of the dynamic resource management method according to an embodiment of the present disclosure.
  • FIG 3 shows CBSD 1, CBSD 2, standard CBSD and CxM.
  • CBSD 1 is a lightweight CBSD and is equipped with RIS and RIS controllers
  • CBSD 2 is a lightweight CBSD
  • the standard CBSD is one of multiple standard CBSDs associated with the blockchain and saves the local Ledger
  • CxM is a resource management device.
  • Standard CBSD can generate blocks.
  • process 300 includes step 1, in which step, CBSD 1, CBSD 2 and standard CBSD can send a registration request to CxM to establish a blockchain for dynamic resource sharing among CBSDs.
  • a blockchain may have been established previously, and when a new CBSD wants to join the blockchain, a registration request may be sent to the CxM.
  • the registration request may indicate whether the registered CBSD supports blockchain functions, whether the type of the CBSD is a lightweight node or a standard node, and so on.
  • the information registered by CBSD can include one or more of the following information: geographic location, maximum Effective Isotropic Radiated Power (EIRP) or requested EIRP, antenna height, CBSD category (indicating the category of indoor low-power devices A or class B) indicating outdoor high power equipment, authorization status (PAL or GAA), ID number, user contact information, air interface technology, serial number, sensing capabilities (if supported), other deployment configurations (such as antenna gain, Beam width, azimuth, downtilt for category B), grouping information, node type (lightweight or standard), whether to support blockchain functions, whether to configure RIS, and RIS configuration parameters (if RIS is configured).
  • EIRP Effective Isotropic Radiated Power
  • PAL or GAA authorization status
  • ID number indicating the category of indoor low-power devices A or class B
  • user contact information indicating outdoor high power equipment
  • air interface technology indicating outdoor high power equipment
  • serial number PAL or GAA
  • sensing capabilities if supported
  • other deployment configurations such as antenna gain, Beam width, azi
  • the process 300 may include a step 2a, in which the CBSD 1 adjusts the configuration of the equipped RIS, such as adjusting the reflection coefficient of the RIS.
  • CBSD 1 can adjust the configuration of RIS according to the main system information, user mobility, user QoS requirements, etc., so that the adjusted transmission signal can meet the service requirements of users, and can also meet the needs of protected nodes (such as CBSD and / or other protected CBSD) while using fewer resources (eg, using lower power and/or using less bandwidth) than before the adjustment.
  • the primary system information may include the maximum amount of interference that the primary system can tolerate.
  • CBSD may send control signals to its associated RIS controller RIS-C to control the RIS to adjust configuration parameters such as reflection coefficient.
  • the process 300 may also include step 2b, in which step, CBSD 1 determines the resource margin obtained/increased by adjusting the configuration parameters of the RIS.
  • CBSD 1 can determine the gain obtained/increased by adjusting the RIS configuration.
  • the resource margin of CBSD 1 can be determined by the obtained/increased gain, for example, the power margin that can be reduced or the channel resources that can be released.
  • FIG. 4 is a schematic diagram illustrating releasing resource margin by configuring RIS reflection coefficients according to an embodiment of the present disclosure. For simplicity of description, FIG. 4 compares the case of using RIS with the case of not using RIS. Assume that there are only two secondary systems, CBSD1 and CBSD2, in the protected area of the main system.
  • the left side of Figure 4 shows the situation when CBSD 1 is not using RIS, where transmissions by CBSD 1 to UE 1 cause interference to the primary system (represented by PZ/PPA). It is assumed here that the maximum amount of interference that the main system can tolerate is -80dBm, and CBSD 1 causes -77dBm interference to the main system. At this time, due to the interference protection of the main system, CBSD 2 can only provide a small coverage area with a small transmission power, and UE2 falls outside its coverage area.
  • the right side of Figure 4 shows that when CBSD 1 adopts RIS and utilizes the configuration of RIS to accurately direct the transmit beam to UE 1, compared with the case where RIS is not used, its transmit power is reduced, providing interference margin. Assuming that the interference of CBSD 1 to the main system is reduced to -85dBmdB, as long as the aggregated interference of CBSD1 and CBSD 2 to the main system is controlled within -80dBm, there will be no interference to the main system. In this case, CBSD 2 can increase its transmit power to provide a larger coverage area to serve UE 2.
  • the main beam of the reflected signal reflected by the RIS is directed to the user direction of UE 1 while avoiding the main system.
  • the reflection coefficient ⁇ k of the kth RIS can be modeled as a diagonal matrix:
  • M represents the number of reflection units of the RIS, ⁇ k,1 to ⁇ k
  • M represents the phase shift coefficient of M reflection units, to and represent the amplitude shift coefficients of the M reflective units, respectively.
  • the RIS gain can be determined as G (dB) according to the measurement information of the end user equipment, such as UE1 in FIG. 4 .
  • the reference signal received power measured by UE 1 (Reference Signal Received Power, RSRP) calculates the difference in signal-to-noise ratio to determine the gain obtained through RIS adjustment.
  • RSRP Reference Signal Received Power
  • SINR refers to the signal-to-noise ratio measured by the receiving end.
  • CBSD can release resource margins in the following two ways:
  • the other is to reduce the bandwidth.
  • the bandwidth after using RIS can be expressed as:
  • the process 300 may also include step 2c, in this step, CBSD 1 uploads the information of the determined resource balance to the block chain.
  • CBSD 1 can record the resource balance information adjusted by RIS into the local ledger associated with the blockchain of CBSD 1, and broadcast it to the standard CBSD in the network.
  • CBSD 1 is a lightweight node, which can only record its own resource balance information or information of transactions associated with itself.
  • each standard node in the network receives the resource balance information sent by CBSD 1, it will verify the node information of CBSD 1 and record the resource balance information of CBSD 1 in their local ledgers.
  • the resource headroom information may include at least one of power headroom and bandwidth headroom.
  • CBSD 1 can report resource balance information to one of multiple standard CBSDs, and the standard CBSD that receives the information generates a new block containing the information and records it in the local blockchain ledger, And broadcast the new block to other standard CBSDs in the network for other standard CBSDs to store in their respective local ledgers. In this way, the resource balance information is uploaded to the blockchain.
  • FIG. 5 is a schematic diagram illustrating a block structure of a block according to an embodiment of the present disclosure.
  • a block includes a block header and a block body.
  • the block header can include the hash of the previous block, the hash of the current block, the Merkle root hash, etc.
  • the block body may include but not limited to: CBSD newly released interference margin (resource margin), including new power margin and/or bandwidth margin; CBSD uses resource information released by other CBSD through resource transactions ; The latest interference margin information updated after each transaction.
  • resource margin including new power margin and/or bandwidth margin
  • CBSD uses resource information released by other CBSD through resource transactions ;
  • Shown in Figure 5 is an example block. Those skilled in the art can include more or other information in the blocks as needed.
  • the process 300 may also include step 2d, in this step, CBSD 1 reports the resource usage information adjusted by the RIS to the CxM.
  • Resource usage information may include RIS configuration related information.
  • the information related to the RIS configuration may include the signal direction and/or power of the reflected signal reflected by the RIS.
  • the resource usage information may also include a received signal strength indicator (Received Signal Strength Indicator, RSSI) and/or a received signal direction.
  • RSSI Received Signal Strength Indicator
  • CBSD 1 may report CoexMeasInfo and cellInfo information to CxM via HeartbeatRequest.
  • CoexMeasInfo can include channelReport and signalReport. In addition to reporting RSSI, channelReport and signalReport can also report the orientation of the received signal.
  • the information of cellInfo may include the signal direction of the reflected signal reflected by the RIS.
  • the information of cellInfo may also include other information, such as E-UTRA Absolute Radio Frequency Channel Number (E-UTRA Absolute Radio Frequency Channel Number, EARFCN), RAT, PCI bandwidth (PCI bandwidth), etc.
  • the process 300 may also include step 3, in which step, the CxM updates the coverage overlap map based on the resource usage information received from the CBSD 1.
  • a CBRS Alliance (CBRS Alliance, CBRSA) coexistence group may include, for example, multiple different Interference Coordination Groups (Interference Coordination Group, ICG) divided according to different operators.
  • ICG Interference Coordination Group
  • a CxG is a group of CBSDs that follow a common interference management policy for coordinating their interference within the group.
  • An ICG group can include multiple common channel groups (Common Channel Group, CCG), wherein all CBSDs belonging to a CCG require the same channel assignment.
  • the CxM may be responsible for managing the coexistence between CBSDs within the CxG.
  • the CSAS can identify one or more groups of CBSDs within the ICG. For each set of CBSDs within the identified ICG, the CSAS may provide the CxM with a list of that set of CBSDs, information about those CBSDs, and the spectrum pool allocated for that set of CBSDs.
  • the information may include CBSD registration information such as location of each CBSD, maximum EIRP or requested EIRP (if available), height above mean ground for antenna placement average terrain, HAAT), antenna characteristics and grouping information, etc.
  • the CxM can use the information provided by the CSAS to create a coverage overlay map that represents the interference relationship between the CBSDs.
  • CxM creates a vertex for all CBSDs belonging to the same CCG.
  • CxM creates a vertex for the CBSD.
  • CxM creates edges in the graph.
  • An edge can be created between two vertices according to the following rules:
  • Co-located CBSDs may refer to CBSDs that share the same physical location and possibly the same antenna, ie share infrastructure or are physically proximate.
  • Edges can be created from modeling of propagation environment, RF measurement, network performance, interference status, and the like.
  • the CxM After the CxM creates the overlay map, the different connected components of the map can be found, and each connected component becomes a "channel assignment connected set". At this point, the CxM can consider each "Channel Assignment Connection Set" separately and perform the main channel assignment for each Channel Assignment Connection Set separately:
  • CxM colors each vertex of the channel assignment connection set with the minimum coloring number in the whole graph, so that any two vertices with edges have different colorings.
  • the frequency spectrum available for channel assignment connection sets can be divided into orthogonal and equal primary channels, and each vertex is assigned the primary channel of these channels corresponding to the coloring of that vertex in the graph.
  • a resource management device may receive respective resource usage information from CBSD 1 and CBSD 2.
  • the resource usage information of the CBSD may include information related to RIS configuration, for example, may include the direction and power of the reflected signal reflected by the RIS.
  • the resource management device may know the locations of the two CBSDs.
  • CxM can create or update coverage overlays as follows:
  • the interfering signal power at the intersection refers to the signal power generated by the interfering party at the intersection.
  • the interference signal power at the intersection exceeds the interference threshold according to the RSRP measured and reported by the user equipment.
  • the left side of Figure 6A shows that when CBSD 1 and CBSD 2 do not use RIS, the transmit beams of the two interfere with each other.
  • the coverage overlap graph there is an edge between the two vertices of CBSD 1 and CBSD 2. That is, two CBSDs have overlapped coverage, need to use different coloring, and cannot use the same spectrum resource.
  • the right side of Figure 6A shows that the transmit beams of CBSD 1 and CBSD 2 do not interfere with each other, and in the coverage overlap graph, there is no edge between the two vertices of CBSD 1 and CBSD 2. That is, the two CBSDs do not overlap, can use the same coloring, and can use the same spectrum resources. Note that in Figure 6A, the different colorings are represented by gray triangles and black-bordered triangles.
  • CBSD 1 does not use RIS but CBSD 2 uses RIS and CBSD 1 and CBSD 2 do not belong to the same ICG or CCG can be described in conjunction with Figure 6B.
  • a resource management device may receive respective resource usage information from CBSD 1 and CBSD 2.
  • the resource usage information of CBSD 2 may include information related to RIS configuration, for example, may include the direction and power of the reflected signal reflected by the RIS.
  • the resource usage information of CBSD 1 may include the direction and power of the transmitted signal of CBSD 1.
  • the resource management device knows the location of CBSD 1 and CBSD 2.
  • CxM can create or update coverage overlays as follows:
  • the left side of Figure 6B shows that when CBSD 2 does not use RIS, the transmit beams of CBSD 1 and CBSD 2 interfere with each other.
  • the coverage overlap graph there is an edge between the two vertices of CBSD 1 and CBSD 2. That is, two CBSDs have overlapped coverage, need to use different coloring, and cannot use the same spectrum resource.
  • the right side of Figure 6B shows that the transmit beams of CBSD 1 and CBSD 2 do not interfere with each other, and in the coverage overlap graph, there is no edge between the two vertices of CBSD 1 and CBSD 2. That is, the two CBSDs do not overlap, can use the same coloring, and can use the same spectrum resources.
  • the process 300 may also include step 4a, in which step, the CBSD 2 may send a resource query request to the standard CBSD.
  • CBSD 2 can send a resource query request to any of the multiple standard CBSDs associated with the blockchain (such as a nearby standard CBSD) to obtain information about currently available resources on the blockchain.
  • CBSD 2 is a lightweight CBSD, it can periodically or on-demand send a resource query request to the standard CBSD to query the latest interference margin information.
  • CBSD 2 is a standard CBSD, it can query the latest interference margin information from the locally stored blockchain ledger.
  • the process 300 may further include step 4b.
  • the standard CBSD obtains information of available resources from the blockchain in response to the received resource query request.
  • the standard CBSD may query the latest resource headroom information, such as currently available power headroom and/or bandwidth headroom, from a locally stored blockchain ledger.
  • the latest resource headroom information such as currently available power headroom and/or bandwidth headroom
  • the process 300 may also include step 4c, in this step, the standard CBSD sends a resource query response to the CBSD 2.
  • the standard CBSD includes the information of the currently available resource margin in the resource query response, and sends the resource query response to CBSD 2.
  • the process 300 may also include step 4d, in which the CBSD 2 sends a resource bidding request to the standard CBSD.
  • a resource bid request may include information indicating the resource being bid on.
  • CBSD 2 When CBSD 2 receives a resource query response, it can determine to request additional resources based on the current available resource margin of the network, such as additional transmit power and/or additional bandwidth, to meet its own communication needs. CBSD 2 can send a resource bidding request to the standard CBSD, and can send a certain amount of deposit along with the resource bidding request.
  • the resource bidding request may be a request to adjust transmission parameters, such as parameters related to channel range and/or transmission power.
  • CBSD 2 itself is a standard network node
  • CBSD 2 can send resource bidding requests to another standard CBSD.
  • the process 300 may further include step 5a.
  • the standard CBSD obtains the coverage overlap map from the CxM when receiving the resource bidding request.
  • the standard CBSD may send a request to the CxM for an overlay overlay.
  • the CxM sends the latest coverage overlay to the standard CBSD in response to this request.
  • the standard CBSD may verify the transactions involved in the resource bidding request.
  • Verification may include bidding verification, that is, judging whether the received resource bidding request is the bidding request with the highest bid among all bidding requests for the same resource received by all CBSDs in the network. This can be determined by all standard CBSDs within the network cooperating. For example, each standard CBSD may broadcast the highest bid received by itself to other standard CBSDs. Each standard CBSD can determine whether the bid of the resource bidding request it receives is the highest bid according to the received highest bid.
  • the standard CBSD may reject the resource bidding request, for example, send a rejection response to the CBSD that sent the resource bidding request. If the bid of a resource bid request received by a standard CBSD is the highest bid, further verifications may be performed on the resource bid request.
  • Validation may include intrusive validation of transactions to which the resource bid request relates.
  • a standard CBSD can verify that the transaction meets the interference protection requirements for other protected CBSDs (eg, the host system's CBSD, and/or other nearby CBSDs).
  • the standard CBSD can judge whether the resource usage after the transaction interferes with other protected nodes below a threshold according to the acquired latest coverage overlap map and main system information.
  • the maximum tolerable total amount of interference of the primary system is -80dBm, it can be judged whether the total amount of interference generated by the secondary system to the primary system after the transaction meets this requirement.
  • the standard CBSD may assume that the transaction was generated and based on the received coverage overlay compute an updated An overlay map that compares the updated overlay map with the received overlay map to determine whether undesired edges have been generated.
  • the resource bidding request with the highest bid fails the interference verification, the resource bidding request with the second highest bid will be subjected to interference verification, and so on until a resource bidding request that passes the interference verification is generated.
  • the process 300 may also include step 5c, in this step, the standard CBSD sends a resource bidding response to the CBSD 2.
  • the resource auction response may include authorization to use the resources bid for in the resource auction request.
  • the process 300 may also include step 5d, in which the standard CBSD may pay CBSD1 a remuneration.
  • CBSD 2 can obtain the resource balance released from multiple CBSDs through one resource bidding request. remuneration.
  • the process 300 may also include step 5c, in which the standard CBSD uploads the records of the transactions involved in the resource bidding request to the blockchain.
  • the standard CBSD that receives the resource bidding request and responds to it can add the record of the transaction to the local ledger of the block chain, form a new block, and put the new block (which contains the information related to the new transaction Record related information) broadcast to other standard CBSD.
  • the process 300 may also include step 6a, in this step, CBSD 2 uses the obtained resource margin by adjusting transmission parameters.
  • CBSD 2 can increase the transmit power and/or increase the bandwidth used.
  • the adjusting transmit parameters of step 6a may include adjusting the reflection coefficient of the RIS.
  • the process 300 may also include step 6b.
  • the CBSD 2 reports the resource usage information after the transmission parameters are adjusted to the CxM, so as to be used by the CxM to update the coverage overlap map.
  • the resource usage information reported in step 6b may include information related to RIS configuration.
  • the reported resource usage information may include, for example, CBSD ID, channel, EIRP power, and the like. Reporting resource usage information is similar to step 2d and will not be repeated here.
  • the process 300 may also include step 7, in which step, the CxM updates the coverage overlap map based on the resource usage information received from the CBSD 2.
  • the CxM is only an example of a resource management device. It can be understood that the resource management The management device can also be SAS or CSAS. In other words, the functions or operations described above in conjunction with the CxM can also be performed by the SAS or the CSAS.
  • FIG. 3 is only exemplary, and a method comprising more or less steps or other steps can be implemented according to the teaching of the present disclosure, and the order of the steps can be adjusted .
  • Fig. 7 is an exemplary flowchart illustrating a method 700 performed by a network node according to an embodiment of the present disclosure.
  • a network node can be a lightweight network node or a standard network node.
  • the method 700 may include step 7001, in which step, the network node determines its resource headroom.
  • the method 700 may also include step 7003, in this step, the network node uploads the determined information of the resource balance to the block chain.
  • the network node can obtain resource margin by adjusting transmission parameters (for example, reducing transmission power or reducing bandwidth).
  • transmission parameters for example, reducing transmission power or reducing bandwidth.
  • the resource margin can be obtained by adjusting the reflection coefficient of the RIS via RIS control.
  • Resource headroom may include power headroom and/or bandwidth headroom.
  • uploading the resource margin information to the block chain further includes: broadcasting the resource margin information to standard network nodes in the network, so that each standard network node stores the resource margin information in their respective local ledgers.
  • the network node When the network node is a lightweight node, the network node can save the resource balance information in the local ledger, and broadcast the resource balance information to all standard network nodes in the network. In the case that the network node is a standard node, the network node can save the resource balance information in the local ledger, and broadcast the resource balance information to all other standard network nodes in the network.
  • Each network node in the network can upload new resource allowance information to the blockchain every time the resource allowance changes, allowing the blockchain to dynamically track the latest resource allowance changes in the network.
  • the method 700 may further include: the network node reports resource usage information to the resource management device.
  • the network node can report the adjusted resource usage information to the resource management device every time the transmission parameter is adjusted, so that the resource management device can track the interference between network nodes in the network.
  • the resource management device may, for example, use the resource usage information reported by each network node to create and/or update the coverage overlap map.
  • the resource usage information may include information related to the RIS configuration of the network node, and the resource usage information is used by the resource management device to update the coverage overlap map.
  • the information related to the RIS configuration may include the direction and power of the reflected signal reflected by the RIS.
  • the method 700 may also include: the network node sends a block chain link to the resource management device registration request.
  • the registration request may include information indicating at least one of: whether the network node supports a blockchain function; and whether the type of the network node is a lightweight network node or a standard network node.
  • Fig. 8 shows an exemplary flowchart of another method 800 performed by a network node according to an embodiment of the present disclosure.
  • method 800 may include step 8001.
  • a network node such as the CBSD 2 in FIG. 3 sends a resource headroom query request to another network node (such as the standard CBSD in FIG. 3).
  • the method 800 may further include step 8003.
  • the network node receives a resource headroom query response from the other network node.
  • the resource balance query response may include information about the resource balance currently available on the blockchain.
  • the method 800 may also include step 8005, in which the network node sends a resource bid request to another network node, the resource bid request including information indicating the bid resource.
  • the method 800 may further include step 8007, in which the network node receives a resource bidding response from another network node, the resource bidding response indicating authorization to use the information of the bid resource.
  • the method 800 may also include step 8009, in which the network node adjusts transmission parameters to use the bid resources.
  • the method 800 may further include step 8011.
  • the network node reports the adjusted resource usage information to the resource management device, so that the resource management device can update the coverage overlap map.
  • Network nodes can be lightweight nodes or standard nodes. For a standard node, it is not necessary to perform steps 8001 and 8003, because it can find information about the resource balance currently available on the block chain from the local ledger.
  • Fig. 9 is an exemplary flowchart illustrating yet another method 900 performed by a network node according to an embodiment of the present disclosure.
  • the network nodes may be standard nodes.
  • method 900 may include step 9001, at which step, a network node receives a resource headroom query request from another network node;
  • the method 900 may include step 9003, at which step, in response to the resource balance query request, the network node obtains information on the currently available resource balance from a local ledger associated with the blockchain;
  • the method 900 may include step 9005.
  • the network node sends a resource headroom query response to the other network node, wherein the resource headroom query response includes information about currently available resource headroom.
  • the method 900 may include step 9007, in which the network node receives a resource bidding request from the other network node.
  • a resource bid request includes information indicating the resource being bid on.
  • the method 900 may include step 9009.
  • the network node in response to the resource bidding request, the network node obtains the current coverage overlap map from the resource management device.
  • the method 900 may include step 9011. In this step, based at least on the current coverage map, the network node verifies the transactions involved in the resource bidding request. The network node may determine whether the transaction satisfies interference protection requirements for the protected network node.
  • the method 900 may include step 9011, in which, in response to the successful authentication, a resource bid response is sent to the other network node.
  • a resource auction response includes authorization to use the auctioned resource.
  • the method 900 may include step 9013, in this step, the transaction record is uploaded to the block chain to update the resource balance information of the block chain.
  • the network node can record the record of the transaction in the local ledger associated with the block chain of the network node, form a new block, and broadcast the block containing the record of the transaction to Other standard network nodes within the network.
  • the method 900 may further include the network node receiving a deposit from the network node sending the resource bidding request and providing remuneration to the network node providing the resource headroom.
  • Fig. 10 is an exemplary flowchart illustrating a method 1000 performed by a resource management device according to an embodiment of the present disclosure.
  • the resource management device can be CxM, SAS or CSAS.
  • the method 1000 may include step 10001.
  • the resource management device receives from a network node equipped with RIS information related to the RIS configuration of the network node.
  • the method 1000 may further include step 10003, at which step, the resource management device updates the coverage overlap map based on the received information related to the RIS configuration of the network node.
  • the information related to the RIS configuration of the network node may include a first signal direction of a reflected signal of the network node after being reflected by the RIS.
  • the method 1000 may further include: receiving from another network node information related to a transmission signal of the other network node, the information indicating at least a second signal direction of the transmission signal.
  • the coverage overlap map may be updated by the following operations: judging whether the first signal direction intersects with the second signal direction; if the first signal The direction does not intersect with the second signal direction, and does not form an edge between the network node and the other network node; if the first signal direction intersects with the second signal direction, it is determined whether the interference signal power at the intersection exceeds a threshold , wherein in response to determining that the interfering signal power at the intersection exceeds a threshold, form an edge between the network node and the other network node, otherwise, do not form an edge between the network node and the other network node side.
  • a method performed by a network node comprising:
  • the resource margin of the network node is increased by adjusting the RIS configuration parameters.
  • uploading the resource balance information to the blockchain further comprises:
  • the information on the remaining resource is broadcast to standard network nodes in the network, so that each standard network node stores the information on the remaining resource in their respective local ledgers.
  • resource usage information includes information related to RIS configuration of the network node, and the resource usage information is used by the resource management device to update a coverage overlap map.
  • the registration request includes information indicating at least one of the following:
  • the type of the network node is a lightweight network node or a standard network node.
  • a resource balance query response from the other network node is received, where the resource balance query response includes information on the currently available resource balance on the blockchain.
  • the resource auction response indicating authorization to use information on the auctioned resource
  • the adjusted resource usage information is reported to the resource management device, so that the resource management device can update the coverage overlap map.
  • the resource bid request including information indicative of the resource being bid on;
  • a resource bid response is sent to the other network node.
  • uploading the record of the transaction to the blockchain further comprises:
  • a record of the transaction is broadcast to other standard network nodes within the network.
  • the operation of verifying the transaction involved in the resource bidding request further includes:
  • a network node comprising:
  • a processor coupled to the memory, configured to execute the computer-executable instructions to perform the method according to any one of items 1-14.
  • a method performed by a resource management device comprising:
  • a coverage overlay map is updated based on received information related to the RIS configuration of the network node.
  • a resource management device comprising:
  • a processor coupled to the memory, configured to execute the computer-executable instructions to perform the method as recited in any one of items 16-19.
  • a computer program medium having stored thereon computer executable instructions which, when executed by a processor, cause the method of any one of items 1-14 and 16-19 to be performed.
  • a computer program product comprising computer-executable instructions which, when executed by a processor, cause the method of any one of items 1-14 and 16-19 to be performed.
  • an electronic device may be implemented as or installed in various base stations, or implemented as or installed in various user equipments.
  • the communication method according to the embodiment of the present disclosure can be implemented by various base stations or user equipment; the method and operation according to the embodiment of the present disclosure can be embodied as computer-executable instructions, stored in a non-transitory computer-readable storage medium, and It may be executed by various base stations or user equipments to implement one or more functions described above.
  • the technology according to the embodiments of the present disclosure can be made into various computer program products, which are used in various base stations or user equipments to realize one or more functions described above.
  • the base station mentioned in this disclosure can be implemented as any type of base station, preferably, such as macro gNB and ng-eNB defined in the 5G NR standard of 3GPP.
  • a gNB may be a gNB covering a cell smaller than a macro cell, such as a pico gNB, a micro gNB, and a home (femto) gNB.
  • the base station may be implemented as any other type of base station, such as NodeB, eNodeB and Base Transceiver Station (BTS).
  • the base station may also include: a body configured to control wireless communications, and one or more remote radio heads (RRHs), wireless relay stations, drone towers, control nodes in automated factories, etc., disposed at different places from the body.
  • RRHs remote radio heads
  • the user equipment may be implemented as a mobile terminal such as a smartphone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/dongle type mobile router, and a digital camera, or a vehicle terminal such as a car navigation device.
  • the user equipment may also be implemented as a terminal performing machine-to-machine (M2M) communication (also referred to as a machine type communication (MTC) terminal), a drone, sensors and actuators in automated factories, and the like.
  • M2M machine-to-machine
  • MTC machine type communication
  • the user equipment may be a wireless communication module (such as an integrated circuit module including a single chip) mounted on each of the above-mentioned terminals.
  • base station has the full breadth of its usual meaning and includes at least a wireless communication station used as part of a wireless communication system or radio system to facilitate communication.
  • base stations can be, for example but not limited to, the following: one or both of a base transceiver station (BTS) and a base station controller (BSC) in a GSM communication system; a radio network controller (RNC) in a 3G communication system One or both of NodeB; eNB in 4G LTE and LTE-A systems; gNB and ng-eNB in 5G communication systems.
  • BTS base transceiver station
  • BSC base station controller
  • RNC radio network controller
  • NodeB NodeB
  • eNB in 4G LTE and LTE-A systems
  • gNB and ng-eNB in 5G communication systems.
  • a logical entity having a communication control function may also be called a base station.
  • a logical entity that plays a role in spectrum coordination can also be called a base station.
  • Fig. 11 is a block diagram showing a first example of a schematic configuration of a base station to which the technology of the present disclosure can be applied.
  • the base station may be implemented as gNB 1400.
  • the gNB 1400 includes multiple antennas 1410 and base station equipment 1420.
  • the base station apparatus 1420 and each antenna 1410 may be connected to each other via an RF cable.
  • Antenna 1410 includes multiple antenna elements, such as multiple antenna arrays for massive MIMO.
  • the antennas 1410 can be arranged in an antenna array matrix, for example, and used for the base station device 1420 to transmit and receive wireless signals.
  • multiple antennas 1410 may be compatible with multiple frequency bands used by gNB 1400.
  • the base station device 1420 includes a controller 1421 , a memory 1422 , a network interface 1423 and a wireless communication interface 1425 .
  • the controller 1421 may be, for example, a CPU or a DSP, and operates various functions of a higher layer of the base station apparatus 1420 .
  • the controller 1421 generates a data packet according to data in a signal processed by the wireless communication interface 1425 and transfers the generated packet via the network interface 1423 .
  • the controller 1421 may bundle data from a plurality of baseband processors to generate a bundled packet, and transfer the generated bundled packet.
  • the controller 1421 may have a logic function to perform control such as radio resource control, radio bearer control, mobility management, admission control and scheduling. This control can be performed in conjunction with nearby gNBs or core network nodes.
  • the memory 1422 includes RAM and ROM, and stores programs executed by the controller 1421 and various types of control data such as a terminal list, transmission power data, and scheduling data.
  • the network interface 1423 is a communication interface for connecting the base station device 1420 to a core network 1424 (for example, a 5G core network).
  • the controller 1421 may communicate with a core network node or another gNB via a network interface 1423 .
  • gNB1400 and core network nodes or other gNBs can be connected to each other through logical interfaces (such as NG interface and Xn interface).
  • the network interface 1423 can also be a wired communication interface or a wireless communication interface for wireless backhaul. If the network interface 1423 is a wireless communication interface, the network interface 1423 may use a higher frequency band for wireless communication than that used by the wireless communication interface 1425 .
  • the wireless communication interface 1425 supports any cellular communication scheme such as 5G NR, and provides a wireless connection to a terminal located in the cell of the gNB 1400 via the antenna 1410 .
  • Wireless communication interface 1425 may generally include, for example, a baseband (BB) processor 1426 and RF circuitry 1427 .
  • the BB processor 1426 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various layers (such as physical layer, MAC layer, RLC layer, Various types of signal processing of PDCP layer, SDAP layer).
  • the BB processor 1426 may have a part or all of the logic functions described above.
  • the BB processor 1426 may be a memory storing a communication control program, or a module including a processor configured to execute a program and related circuits.
  • the update program can cause the function of the BB processor 1426 to change.
  • the module may be a card or blade inserted into a slot of the base station device 1420 .
  • the module can also be a chip mounted on a card or blade.
  • the RF circuit 1427 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 1410 .
  • FIG. 11 shows an example in which one RF circuit 1427 is connected to one antenna 1410, the present disclosure is not limited to this illustration, but one RF circuit 1427 may be connected to a plurality of antennas 1410 at the same time.
  • the wireless communication interface 1425 may include multiple BB processors 1426 .
  • multiple BB processors 1426 may be compatible with multiple frequency bands used by gNB 1400.
  • the wireless communication interface 1425 may include a plurality of RF circuits 1427 .
  • multiple RF circuits 1427 may be compatible with multiple antenna elements.
  • FIG. 11 shows an example in which the wireless communication interface 1425 includes a plurality of BB processors 1426 and a plurality of RF circuits 1427 , the wireless communication interface 1425 may also include a single BB processor 1426 or a single RF circuit 1427 .
  • one or more units included in the processing circuit 1001, 2001, 3001, or 4001 can be implemented in the wireless communication interface In 1425.
  • the gNB 1400 includes a part (for example, the BB processor 1426) or the whole of the wireless communication interface 1425, and/or a module including the controller 1421, and one or more components may be implemented in the module.
  • the module may store a program for allowing a processor to function as one or more components (in other words, a program for allowing a processor to perform operations of one or more components), and may execute the program.
  • a program for allowing a processor to function as one or more components may be installed in gNB 1400, and wireless communication interface 1425 (eg, BB processor 1426) and/or controller 1421 may execute the program .
  • the gNB 1400, the base station apparatus 1420, or a module may be provided as an apparatus including one or more components, and a program for allowing a processor to function as one or more components may be provided.
  • a readable medium in which the program is recorded may be provided.
  • Fig. 12 is a block diagram showing a second example of a schematic configuration of a base station to which the technology of the present disclosure can be applied.
  • the base station is shown as gNB 1530 .
  • the gNB 1530 includes multiple antennas 1540 , base station equipment 1550 and RRH 1560 .
  • the RRH 1560 and each antenna 1540 may be connected to each other via an RF cable.
  • the base station apparatus 1550 and the RRH 1560 may be connected to each other via a high-speed line such as an optical fiber cable.
  • Antenna 1540 includes multiple antenna elements, such as multiple antenna arrays for massive MIMO.
  • the antennas 1540 can be arranged in an antenna array matrix, for example, and used for the base station device 1550 to transmit and receive wireless signals.
  • multiple antennas 1540 may be compatible with multiple frequency bands used by gNB 1530.
  • the base station device 1550 includes a controller 1551 , a memory 1552 , a network interface 1553 , a wireless communication interface 1555 and a connection interface 1557 .
  • the controller 1551, the memory 1552, and the network interface 1553 are the same as the controller 1421, the memory 1422, and the network interface 1423 described with reference to FIG. 12 .
  • the wireless communication interface 1555 supports any cellular communication scheme (such as 5G NR), and provides wireless communication to a terminal located in a sector corresponding to the RRH 1560 via the RRH 1560 and the antenna 1540.
  • Wireless communication interface 1555 may generally include, for example, BB processor 1556 .
  • the BB processor 1556 is the same as the BB processor 1426 described with reference to FIG. 13 except that the BB processor 1556 is connected to the RF circuit 1564 of the RRH 1560 via the connection interface 1557.
  • the wireless communication interface 1555 may include multiple BB processors 1556 .
  • multiple BB processors 1556 may be compatible with multiple frequency bands used by gNB 1530.
  • FIG. 12 shows an example in which the wireless communication interface 1555 includes a plurality of BB processors 1556 , the wireless communication interface 1555 may also include a single BB processor 1556 .
  • connection interface 1557 is an interface for connecting the base station device 1550 (wireless communication interface 1555) to the RRH 1560.
  • the connection interface 1557 can also be a communication module used to connect the base station equipment 1550 (wireless communication interface 1555) to the communication in the above-mentioned high-speed line of the RRH 1560.
  • the RRH 1560 includes a connection interface 1561 and a wireless communication interface 1563.
  • connection interface 1561 is an interface for connecting the RRH 1560 (wireless communication interface 1563) to the base station device 1550.
  • the connection interface 1561 may also be a communication module used for communication in the above-mentioned high-speed line.
  • the wireless communication interface 1563 transmits and receives wireless signals via the antenna 1540 .
  • Wireless communication interface 1563 may generally include RF circuitry 1564, for example.
  • the RF circuit 1564 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives wireless signals via the antenna 1540 .
  • FIG. 12 shows an example in which one RF circuit 1564 is connected to one antenna 1540, the present disclosure is not limited to this illustration, but one RF circuit 1564 may be connected to a plurality of antennas 1540 at the same time.
  • the wireless communication interface 1563 may include a plurality of RF circuits 1564 .
  • multiple RF circuits 1564 may support multiple antenna elements.
  • FIG. 12 shows an example in which the wireless communication interface 1563 includes a plurality of RF circuits 1564 , the wireless communication interface 1563 may also include a single RF circuit 1564 .
  • the gNB 1500 shown in FIG. 12 one or more units included in the processing circuit 1001, 2001, 3001 or 4001 (such as the transmitting unit 1003, the receiving unit 2002, the receiving unit 3003, etc.) In the line communication interface 1525.
  • the controller 1521 may be implemented in the controller 1521 .
  • the gNB 1500 includes a part (for example, the BB processor 1526) or the whole of the wireless communication interface 1525, and/or a module including the controller 1521, and one or more components may be implemented in the module.
  • the module may store a program for allowing a processor to function as one or more components (in other words, a program for allowing a processor to perform operations of one or more components), and may execute the program.
  • a program for allowing a processor to function as one or more components may be installed in the gNB 1500, and the wireless communication interface 1525 (eg, the BB processor 1526) and/or the controller 1521 may execute the program. program.
  • the gNB 1500, the base station apparatus 1520, or a module may be provided as an apparatus including one or more components, and a program for allowing a processor to function as one or more components may be provided.
  • a readable medium in which the program is recorded may be provided.
  • FIG. 13 is a block diagram showing an example of a schematic configuration of a smartphone 1600 to which the technology of the present disclosure can be applied.
  • the smart phone 1600 includes a processor 1601, a memory 1602, a storage device 1603, an external connection interface 1604, a camera device 1606, a sensor 1607, a microphone 1608, an input device 1609, a display device 1610, a speaker 1611, a wireless communication interface 1612, one or more Antenna switch 1615 , one or more antennas 1616 , bus 1617 , battery 1618 , and auxiliary controller 1619 .
  • the processor 1601 may be, for example, a CPU or a system on chip (SoC), and controls functions of an application layer and another layer of the smartphone 1600 .
  • the processor 1601 may include or act as any one of the processing circuits 1001, 2001, 3001, 4001 described with reference to the drawings.
  • the memory 1602 includes RAM and ROM, and stores data and programs executed by the processor 1601 .
  • the storage device 1603 may include a storage medium such as a semiconductor memory and a hard disk.
  • the external connection interface 1604 is an interface for connecting an external device, such as a memory card and a universal serial bus (USB) device, to the smartphone 1600 .
  • USB universal serial bus
  • the imaging device 1606 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • Sensors 1607 may include a set of sensors such as measurement sensors, gyro sensors, geomagnetic sensors, and acceleration sensors.
  • the microphone 1608 converts sound input to the smartphone 1600 into an audio signal.
  • the input device 1609 includes, for example, a touch sensor configured to detect a touch on the screen of the display device 1610, a keypad, a keyboard, buttons, or switches, and receives operations or information input from the user.
  • the display device 1610 includes a screen such as a Liquid Crystal Display (LCD) and an Organic Light Emitting Diode (OLED) display, and displays an output image of the smartphone 1600 .
  • speaker 1611 will be from the smart phone The audio signal output by the 1600 is converted into sound.
  • the wireless communication interface 1612 supports any cellular communication scheme (such as 4G LTE or 5G NR, etc.), and performs wireless communication.
  • the wireless communication interface 1612 may generally include, for example, a BB processor 1613 and an RF circuit 1614 .
  • the BB processor 1613 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 1614 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 1616 .
  • the wireless communication interface 1612 may be a chip module on which a BB processor 1613 and an RF circuit 1614 are integrated. As shown in FIG.
  • the wireless communication interface 1612 may include multiple BB processors 1613 and multiple RF circuits 1614 .
  • FIG. 13 shows an example in which the wireless communication interface 1612 includes a plurality of BB processors 1613 and a plurality of RF circuits 1614
  • the wireless communication interface 1612 may also include a single BB processor 1613 or a single RF circuit 1614 .
  • the wireless communication interface 1612 may support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near field communication scheme, and a wireless local area network (LAN) scheme, in addition to a cellular communication scheme.
  • the wireless communication interface 1612 may include a BB processor 1613 and an RF circuit 1614 for each wireless communication scheme.
  • Each of the antenna switches 1615 switches the connection destination of the antenna 1616 among a plurality of circuits included in the wireless communication interface 1612 (eg, circuits for different wireless communication schemes).
  • Antenna 1616 includes multiple antenna elements, such as multiple antenna arrays for massive MIMO.
  • the antennas 1616 may be arranged in an antenna array matrix, for example, and used for the wireless communication interface 1612 to transmit and receive wireless signals.
  • Smartphone 1600 may include one or more antenna panels (not shown).
  • the smartphone 1600 may include an antenna 1616 for each wireless communication scheme.
  • the antenna switch 1615 may be omitted from the configuration of the smartphone 1600 .
  • the bus 1617 connects the processor 1601, memory 1602, storage device 1603, external connection interface 1604, camera device 1606, sensor 1607, microphone 1608, input device 1609, display device 1610, speaker 1611, wireless communication interface 1612, and auxiliary controller 1619 to each other. connect.
  • the battery 1618 provides power to the various blocks of the smartphone 1600 shown in FIG. 13 via feed lines, which are partially shown as dashed lines in the figure.
  • the auxiliary controller 1619 operates minimum necessary functions of the smartphone 1600, for example, in a sleep mode.
  • one or more units included in the processing circuit 1001, 2001, 3001, or 4001 can be implemented in wireless communication Interface 1612.
  • the transmitting unit 1003, the receiving unit 2002, the receiving unit 3003, etc. can be implemented in wireless communication Interface 1612.
  • at least some of these components may be implemented in the processor 1601 or the auxiliary controller 1619 .
  • smart phone 1600 includes a wireless communication interface 1612 Part (eg, BB processor 1613 ) or the whole, and/or a module including the processor 1601 and/or auxiliary controller 1619 , and one or more components may be implemented in the module.
  • the module may store a program that allows processing to function as one or more components (in other words, a program for allowing a processor to perform operations of one or more components), and may execute the program.
  • a program for allowing the processor to function as one or more components may be installed in the smartphone 1600, and the wireless communication interface 1612 (e.g., the BB processor 1613), the processor 1601 and/or the auxiliary The controller 1619 can execute the program.
  • the smartphone 1600 or a module may be provided as an apparatus including one or more components, and a program for allowing a processor to function as one or more components may be provided.
  • a readable medium in which the program is recorded may be provided.
  • FIG. 14 is a block diagram showing an example of a schematic configuration of a car navigation device 1720 to which the technology of the present disclosure can be applied.
  • Car navigation device 1720 includes processor 1721, memory 1722, global positioning system (GPS) module 1724, sensor 1725, data interface 1726, content player 1727, storage medium interface 1728, input device 1729, display device 1730, speaker 1731, wireless communication interface 1733 , one or more antenna switches 1736 , one or more antennas 1737 , and battery 1738 .
  • GPS global positioning system
  • the processor 1721 may be, for example, a CPU or a SoC, and controls a navigation function and other functions of the car navigation device 1720 .
  • the memory 1722 includes RAM and ROM, and stores data and programs executed by the processor 1721 .
  • the GPS module 1724 measures the location (such as latitude, longitude, and altitude) of the car navigation device 1720 using GPS signals received from GPS satellites.
  • Sensors 1725 may include a set of sensors such as gyroscopic sensors, geomagnetic sensors, and air pressure sensors.
  • the data interface 1726 is connected to, for example, an in-vehicle network 1741 via a terminal not shown, and acquires data generated by the vehicle such as vehicle speed data.
  • the content player 1727 reproduces content stored in a storage medium such as CD and DVD, which is inserted into the storage medium interface 1728 .
  • the input device 1729 includes, for example, a touch sensor, a button, or a switch configured to detect a touch on the screen of the display device 1730, and receives an operation or information input from a user.
  • the display device 1730 includes a screen such as an LCD or OLED display, and displays an image of a navigation function or reproduced content.
  • the speaker 1731 outputs sound of a navigation function or reproduced content.
  • the wireless communication interface 1733 supports any cellular communication scheme such as 4G LTE or 5G NR, and performs wireless communication.
  • Wireless communication interface 1733 may generally include, for example, a BB processor 1734 and RF circuitry 1735 .
  • the BB processor 1734 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform Various types of signal processing for communications.
  • the RF circuit 1735 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 1737 .
  • the wireless communication interface 1733 can also be a chip module on which the BB processor 1734 and the RF circuit 1735 are integrated. As shown in FIG.
  • the wireless communication interface 1733 may include multiple BB processors 1734 and multiple RF circuits 1735 .
  • FIG. 14 shows an example in which the wireless communication interface 1733 includes a plurality of BB processors 1734 and a plurality of RF circuits 1735
  • the wireless communication interface 1733 may also include a single BB processor 1734 or a single RF circuit 1735 .
  • the wireless communication interface 1733 may support another type of wireless communication scheme, such as a short-distance wireless communication scheme, a near field communication scheme, and a wireless LAN scheme, in addition to the cellular communication scheme.
  • the wireless communication interface 1733 may include a BB processor 1734 and an RF circuit 1735 for each wireless communication scheme.
  • Each of the antenna switches 1736 switches the connection destination of the antenna 1737 among a plurality of circuits included in the wireless communication interface 1733 , such as circuits for different wireless communication schemes.
  • Antenna 1737 includes multiple antenna elements, such as multiple antenna arrays for massive MIMO.
  • the antenna 1737 can be arranged in an antenna array matrix, for example, and used for the wireless communication interface 1733 to transmit and receive wireless signals.
  • the car navigation device 1720 may include an antenna 1737 for each wireless communication scheme.
  • the antenna switch 1736 can be omitted from the configuration of the car navigation device 1720 .
  • the battery 1738 provides power to the various blocks of the car navigation device 1720 shown in FIG. 14 via feeder lines, which are partially shown as dotted lines in the figure.
  • the battery 1738 accumulates electric power supplied from the vehicle.
  • one or more units included in the processing circuit 1001, 2001, 3001, or 4001 can be implemented in wireless In the communication interface 1733.
  • the car navigation device 1720 includes a part (eg, the BB processor 1734 ) or the whole of the wireless communication interface 1733 , and/or a module including the processor 1721 , and one or more components may be implemented in the module.
  • the module may store a program that allows processing to function as one or more components (in other words, a program for allowing a processor to perform operations of one or more components), and may execute the program.
  • a program for allowing the processor to function as one or more components may be installed in the car navigation device 1720, and the wireless communication interface 1733 (for example, the BB processor 1734) and/or the processor 1721 may Execute the program.
  • the car navigation device 1720 or a module may be provided as a device including one or more components, and a program for allowing a processor to function as one or more components may be provided.
  • a readable medium in which the program is recorded may be provided.
  • the technology of the present disclosure may also be implemented as an in-vehicle system (or vehicle) 1740 including one or more blocks in a car navigation device 1720 , an in-vehicle network 1741 , and a vehicle module 1742 .
  • the vehicle module 1742 generates vehicle data such as vehicle speed, engine speed, and breakdown information, and outputs the generated data to the in-vehicle network 1741 .
  • a plurality of functions included in one unit in the above embodiments may be realized by separate devices.
  • a plurality of functions implemented by a plurality of units in the above embodiments may be respectively implemented by separate devices.
  • one of the above functions may be realized by a plurality of units. Needless to say, such a configuration is included in the technical scope of the present disclosure.
  • the steps described in the flowcharts include not only processing performed in time series in the stated order but also processing performed in parallel or individually and not necessarily in time series. Furthermore, even in the steps of time-series processing, needless to say, the order can be appropriately changed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Computing Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开涉及动态资源共享。根据本公开实施例,提供一种由网络节点执行的方法,包括:确定所述网络节点的资源余量;和将所述资源余量的信息上载到区块链。本公开实施例提供了更灵活更安全的动态资源共享。

Description

动态资源共享 技术领域
本公开总体上涉及通信技术,更具体而言,本公开涉及用于动态资源共享的方法、设备和系统。
背景技术
随着通信技术的发展,网络节点部署更加密集,同时手机、物联网设备、可穿戴设备等各类形态的终端数量急剧增长,对频谱资源的需求越来越大。由于业务的异构和动态性,传统的静态频谱管理方案频谱利用率低下,浪费了宝贵的频谱资源。因此,认知无线电技术被提出,由次用户通过例如频谱感知发现主用户的空闲频谱并利用该空闲频谱来进行传输,以提高频谱利用率。但是目前中心化的频谱共享方案中,频谱管理装置需要大量的计算资源,频谱管理设备间的同步频率低,频谱管理的实时性不高。
近来,已提出将区块链技术引入频谱管理中,以设计更安全、灵活的频谱共享机制,使得能够在提升频谱利用率的同时,提高频谱交易的安全性。可以将公共区块链的技术应用于频谱感知、频谱拍卖和频谱交易中。但可能存在以下问题:使用区块链分配的频谱资源在一定周期内仍完全属于某个基站使用,而该基站在该周期内对频谱的使用仍可能不充分。
发明内容
在此部分给出了关于本公开的简要概述,以便提供关于本公开的一些方面的基本理解。但是,应当理解,这个概述并不是关于本公开的穷举性概述。它并不是意图用来确定本公开的关键性部分或重要部分,也不是意图用来限定本公开的范围。其目的仅仅是以简化的形式给出关于本公开的某些概念,以此作为稍后给出的更详细描述的前序。
根据本公开的一个方面,提供一种由网络节点执行的方法,包括:确定所述网络节点的资源余量;和将所述资源余量的信息上载到区块链。
根据一些实施例,所述网络节点可以配备有可重构智能表面((Reconfigurable  Intelligent Surface,RIS),所述方法还可以包括:通过调整RIS配置参数以增加所述网络节点的资源余量。
根据一些实施例,所述网络节点的资源余量可以包括功率余量和/或带宽余量。
根据一些实施例,将所述资源余量的信息上载到区块链可以进一步包括:将所述资源余量的信息广播给网络内的标准网络节点,以由各个标准网络节点将所述资源余量的信息存储在各自的本地账本中。
根据一些实施例,该方法还可以包括:向资源管理设备上报资源使用信息,其中,所述资源使用信息包括所述网络节点的RIS配置相关的信息,并且所述资源使用信息被所述资源管理设备用于更新覆盖重叠图。
根据一些实施例,所述RIS配置相关的信息可以包括:RIS反射后的反射信号的方向和功率。
根据一些实施例,该方法还可以包括:向资源管理设备发送对所述区块链的注册请求,其中所述注册请求包括指示以下中的至少一者的信息:所述网络节点是否支持区块链功能;和所述网络节点的类型是轻量网络节点还是标准网络节点。
根据一些实施例,该方法还可以包括:向另一网络节点发送资源余量查询请求;和接收来自所述另一网络节点的资源余量查询响应,所述资源余量查询响应包括所述区块链上当前可用的资源余量的信息。
根据一些实施例,该方法还可以包括:向另一网络节点发送资源竞拍请求,其中所述另一网络节点是标准网络节点,所述资源竞拍请求包括指示所竞拍的资源的信息;接收来自所述另一网络节点的资源竞拍响应,所述资源竞拍响应指示对所竞拍的资源的信息的使用授权;调整发射参数来使用所竞拍的资源;和将调整后的资源使用信息上报资源管理设备,以用于由所述资源管理设备更新覆盖重叠图。
根据一些实施例,所述网络节点是标准网络节点,所述方法还可以包括:接收来自另一网络节点的资源余量查询请求;响应于所述资源余量查询请求,从与所述区块链相关联的本地账本获取当前可用的资源余量的信息;向所述另一网络节点发送资源余量查询响应,其中所述资源余量查询响应包括当前可用的资源余量的信息。
根据一些实施例,该方法还可以包括:接收来自另一网络节点的资源竞拍请求,所述资源竞拍请求包括指示所竞拍的资源的信息;响应于所述资源竞拍请求,从资源管理设备获取当前覆盖重叠图;至少基于所述当前覆盖重叠图,对所述资源竞拍请求所涉 及的交易进行验证;和响应于验证成功,向所述另一网络节点发送资源竞拍响应。
根据一些实施例,该方法还可以包括:将所述交易的记录上载到所述区块链以更新所述区块链的所述资源余量的信息。
根据一些实施例,在所述交易的记录上载到所述区块链的操作还可以:将所述交易的记录记载在所述网络节点的与所述区块链相关联的所述本地账本中;和将所述交易的记录广播给网络内的其它标准网络节点。
根据一些实施例,至少基于所述当前覆盖重叠图,对所述资源竞拍请求所涉及的交易进行验证的操作还可以:确定所述交易是否满足对受保护网络节点的干扰保护要求。
根据本公开另一方面,提供一种网络节点,包括:存储器,存储计算机可执行指令;和处理器,其与存储器耦接,被配置为执行所述计算机可执行指令来执行如上所述的方法。
根据本公开另一方面,提供一种由资源管理设备执行的方法,包括:从配备RIS的网络节点接收与所述网络节点的RIS配置相关的信息;和基于接收的与所述网络节点的所述RIS配置相关的信息来更新覆盖重叠图。
根据一些实施例,所述网络节点的RIS配置相关的信息可以包括所述网络节点的经RIS反射后的反射信号的第一信号方向。
根据一些实施例,该方法还可以包括:从另一网络节点接收与所述另一网络节点的发射信号有关的信息,所述信息至少指示所述发射信号的第二信号方向,其中,所述网络节点和所述另一网络节点不属于同一个ICG或CCG。该方法还可以包括通过以下操作来更新覆盖重叠图:判断第一信号方向与第二信号方向是否交叉;如果第一信号方向与第二信号方向不交叉,不形成所述网络节点和所述另一网络节点之间的边;和如果第一信号方向与第二信号方向交叉,判断交叉点处的干扰信号功率是否超过阈值,其中,响应于判定交叉点处的干扰信号功率超过阈值,形成所述网络节点和所述另一网络节点之间的边,否则,不形成所述网络节点和所述另一网络节点之间的边。
根据一些实施例,该方法还可以包括:从标准网络节点接收针对覆盖重叠图的请求;和向所述标准网络节点发送最新的覆盖重叠图。
根据本公开的另一方面,提供一种资源管理设备,包括:存储器,存储计算机可执行指令;和处理器,其与存储器耦接,被配置为执行所述计算机可执行指令来执行如上所述的方法。
附图说明
本公开可以通过参考下文中结合附图所给出的详细描述而得到更好的理解,其中在所有附图中使用了相同或相似的附图标记来表示相同或者相似的要素。所有附图连同下面的详细说明一起包含在本说明书中并形成说明书的一部分,用来进一步举例说明本公开的实施例和解释本公开的原理和优点。其中:
图1是示出根据本公开实施例的网络的示例性系统结构图。
图2是示出根据本公开实施例的RIS控制器控制RIS反射系数的示意图。
图3是示出根据本公开实施例的动态资源管理方法的示例性信令交互过程的流程图。
图4是示出根据本公开实施例的通过配置RIS反射系数释放资源余量的示意图。
图5是示出根据本公开实施例的区块的区块结构的示意图。
图6A和图6B是示出根据本公开实施例的覆盖重叠图更新的示意图。
图7是示出根据本公开实施例的由网络节点执行的方法的示例性流程图。
图8是示出根据本公开实施例的由网络节点执行的另一方法的示例性流程图。
图9是示出根据本公开实施例的由网络节点执行的又一方法的示例性流程图。
图10是示出根据本公开实施例的由资源管理设备执行的方法的示例性流程图。
图11是示出可以应用本公开的技术的基站的示意性配置的第一示例的框图。
图12是示出可以应用本公开的技术的基站的示意性配置的第二示例的框图。
图13是示出可以应用本公开内容的技术的智能电话的示意性配置的示例的框图。
图14是示出可以应用本公开的技术的汽车导航设备的示意性配置的示例的框图。
通过参照附图阅读以下详细描述,本公开的特征和方面将得到清楚的理解。
具体实施方式
在下文中将参照附图来详细描述本公开的各种示例性实施例。为了清楚和简明起见,在本说明书中并未描述实施例的所有实现方式。然而应注意,在实现本公开的实施例时可以根据特定需求做出很多特定于实现方式的设置,以便实现开发人员的具体目标。此外,还应该了解,虽然开发工作有可能是较复杂和费事的,但对得益于本公开内容的本领域技术人员来说,这种开发公开仅仅是例行的任务。
此外,还应注意,为了避免因不必要的细节而模糊了本公开,在附图中仅仅示出了与本公开的技术方案密切相关的处理步骤和/或设备结构。以下对于示例性实施例的 描述仅仅是说明性的,不意在作为对本公开及其应用的任何限制。
本公开考虑,在网络中的网络节点(诸如基站)之间建立区块链,该区块链用于记录网络内的各个网络节点的资源余量的动态变化和频谱交易记录。根据资源使用需求不同,一网络节点既可以释放资源余量(例如功率余量或带宽余量)以供网络内的其它网络节点(例如附近的网络节点)使用,也可以从其它网络节点获取由其它网络节点释放的资源余量。网络节点可以将资源余量的信息上载到区块链,也可以查询区块链上的当前可用资源余量。在两个网络节点完成资源余量的交易的情况下,该交易的记录也可以上载到区块链,以更新区块链上的资源余量的信息。
通过将区块链与网络节点的资源余量的交易相结合,可以以安全灵活的方式实现网络节点之间的资源余量的动态共享,改善各个网络节点的通信服务质量并且提高网络的资源利用率。
本公开考虑,由分布式的网络节点来承担区块链的维护、资源交易的验证工作等,从而将原本集中在资源管理设备处的至少部分资源管理功能转移到网络节点,促成了更有效、更灵活、更安全的资源共享。
本公开还考虑,各个网络节点可以通过采用可重构智能表面(Reconfigurable Intelligent Surface,RIS)或调整RIS的配置来获取资源余量。这不仅可以提高网络节点处的资源利用率和通信服务质量,还可以提高网络整体的资源利用率和通信服务质量。
本公开还考虑,各个网络节点可以在发生资源使用调整(例如调整RIS配置,调整发射参数等)时将调整后的资源使用的信息实时上报给资源管理设备(例如,频谱管理设备),以用于由资源管理设备更新网络的覆盖重叠图。这使得资源管理设备处的覆盖重叠图能够实时跟踪网络内的网络节点间的通信干扰的变化。
在资源使用调整涉及RIS配置调整的情况下,资源使用的信息可以包括RIS配置相关的信息,资源管理设备根据RIS配置相关的信息可以生成更精确的覆盖重叠图。
本公开还考虑,在两个网络节点进行资源余量的交易时,可以利用最新的覆盖重叠图来对该交易进行验证,以避免该交易导致对网络内的其它受保护的网络节点(例如主系统的网络节点)的不期望的干扰。
图1是示出根据本公开实施例的网络100的示例性系统结构图。
网络100可以包括主系统和次系统。以公民宽带无线电服务(Citizens Broadband  Radio Services,CBRS)系统为例,主系统可以包括现有用户例如雷达(Incumbents)或优先接入许可(Priority Access License,PAL)网络节点,例如,雷达或PAL公民宽带无线电服务设备(Citizens Broadband Radio Service Device,CBSD)102。次系统可以包括一般授权接入(General Authorized Access,GAA)网络节点,例如,GAA CBSD 104、106和108。
每个CBSD为各自的用户,即用户设备UE,提供服务。次系统中的GAA用户不能影响主系统中的雷达或PAL用户。
次系统可以包括一定区域内的若干GAA网络节点。次系统中的各个网络节点之间可以实现动态资源共享。可以将区块链技术应用于次系统中的动态资源共享,例如在这些GAA网络节点之间建立区块链。各个网络节点106-108可以将各自的资源余量的信息或资源使用信息或这些信息的变化实时上载到区块链,从而允许各个网络节点对网络内的可用资源余量的信息进行查询以及进行资源交易,从而实现更高效、更安全和更灵活的资源共享。
如图1所示,CBSD 104和106各自配备了可重构智能表面(Reconfigurable Intelligent Surface,RIS)以及控制RIS的RIS控制器RIS-C。在一些实施例中,RIS控制器可以与CBSD有线连接。RIS可以部署在CBSD侧、中继侧或用户侧。
CBSD能够经由RIS控制器来实时控制RIS的反射系数(例如图1中的)以按照需求动态地构造反射路径。
图2是示出根据本公开实施例的RIS控制器控制RIS反射系数的示意图。如图2所示,RIS控制器可以通过控制RIS的各反射单元的相位偏移来调整入射波的出射方向(例如出射角度θ)。
如图2所示,RIS可以包括多个RIS单元,每个单元可以独立控制,例如每个单元的可以独立设置。在一些实施例中,可以针对各个单元的设置相同的值来对接收到的入射信号实现相同的相位偏移。在另一些实施例中,可以针对每个单元的设置不同的值来针对不同入射信号实现不同的相位偏移。
图2仅例示了反射系数为相位偏移的示例。除了相位偏移,可以经由RIS控制器控制的RIS的反射系数还可以包括幅度偏移、频率、极化等。
按照在区块链网络中的功能,CBSD可以分为两类:一类是轻量CBSD,其可以只记录自己的资源使用和交易记录;另一类是标准CBSD,其可以存储区块链上的全部当前可用资源信息及新近的资源使用信息,可以验证最新生成的待确认的区块的信息, 可以服务本地的轻量CBSD,提供其所需信息等。已经完成验证并且成为历史信息的区块链可以存储在资源管理设备上。资源管理设备例如是共存管理器(Coexistence Manager,CxM)、频谱接入系统(Spectrum Access System,SAS)或CSAS(SAS+CxM)等。资源管理设备可以是频谱管理装置或设备。
图3是示出根据本公开实施例的动态资源管理方法的示例性信令交互过程300的流程图。
图3示出CBSD 1、CBSD 2、标准CBSD和CxM。假设CBSD 1为轻量CBSD并且配备了RIS和RIS控制器,CBSD 2为轻量CBSD,标准CBSD为与区块链相关联的多个标准CBSD中的一个并且保存与区块链相关联的本地账本,CxM是资源管理设备。标准CBSD可以产生区块。
如图3所示,过程300包括步骤1,在该步骤,CBSD 1、CBSD 2和标准CBSD可以向CxM发送注册请求,以在CBSD之间建立用于动态资源共享的区块链。
在一些实施例中,可以先前已经建立了区块链,当一个新的CBSD要加入该区块链时,可以向CxM发送注册请求。
在一些实施例中,注册请求可以指示进行注册的CBSD是否支持区块链功能,该CBSD的类型是轻量节点还是标准节点等。
CBSD注册的信息可以包括以下信息中的一者或多者:地理位置,最大有效全向辐射功率(Effective Isotropic Radiated Power,EIRP)或请求EIRP,天线高度,CBSD类别(指示室内低功率设备的类别A或指示室外高功率设备的类别B),授权状态(PAL或GAA),ID号,用户联系信息,空口技术,序列号,感测能力(如果支持的话),其他部署配置(例如天线增益,波束宽度,方位角,用于类别B的下倾角)、分组信息、节点类型(轻量或标准),是否支持区块链功能,是否配置RIS,以及RIS配置参数(如果配置了RIS的话)。
过程300可以包括步骤2a,在该步骤,CBSD 1调整所配备的RIS的配置,例如调整RIS的反射系数。
CBSD 1可以根据主系统信息、用户移动性、用户的QoS需求等来调整RIS的配置,使得调整后的发射信号能够满足用户服务需求,也能够满足对受保护节点(例如主系统的CBSD和/或其它受保护CBSD)的干扰保护要求,同时相对于调整之前使用了更少的资源(例如使用了更低的功率和/或使用了更小的带宽)。主系统信息可以包括主系统能够容忍的最大干扰总量。
CBSD可以向其关联的RIS控制器RIS-C发送控制信号,来控制RIS调整配置参数,例如反射系数。
如图3所示,过程300还可以包括步骤2b,在该步骤,CBSD 1确定通过调整RIS的配置参数获得/增加的资源余量。
CBSD 1可以确定通过调整RIS配置所获得/增加的增益。通过所获得/增加的增益可以确定CBSD 1的资源余量,例如,可以降低的功率余量或可以释放的信道资源。
图4是示出根据本公开实施例的通过配置RIS反射系数释放资源余量的示意图。为了说明简单,图4将使用RIS的情况和没有使用RIS的情况来作为对比。假设主系统保护区内只有CBSD1和CBSD2两个次系统。
图4的左边示出当CBSD 1没有使用RIS时的情况,其中,CBSD 1向UE 1进行的发射对主系统(由PZ/PPA表示)造成了干扰。这里假设主系统能够容忍的最大干扰总量是-80dBm,CBSD 1对主系统造成了-77dBm的干扰。此时,CBSD 2由于对主系统的干扰保护,只能以较小的发射功率提供较小的覆盖范围,UE2落在了其覆盖范围以外。
图4的右边示出当CBSD 1采用RIS并利用RIS的配置将发射波束准确导向UE 1时,相对于没有使用RIS的情况,其发射功率降低,提供了干扰余量。假设CBSD 1对主系统的干扰减小到-85dBmdB,则只要CBSD1和CBSD 2对主系统的聚合干扰控制在-80dBm以内,就不会对主系统造成干扰。在这种情况下,CBSD 2可以提高自己的发射功率来提供更大的覆盖范围从而为UE 2提供服务。
在进行RIS的反射系数的配置时,根据用户(例如UE 1)的位置和主系统的位置(例如图4中由PZ/PPA指示的区域),使得经RIS反射后的反射信号主波束指向用户UE 1的方向,同时避开主系统。
作为示例,假设网络中存在k个RIS,第k个RIS的反射系数Ψk可以建模为对角矩阵:
其中,M表示该RIS的反射单元的数目,βk,1到βk,M表示M个反射单元的相位偏移系数,到和分别表示M个反射单元的幅度偏移系数。
在确定好反射系数之后,可以根据端用户设备,例如图4中的UE1,的测量信息确定RIS增益为G(dB)。例如,可以根据UE 1所测量的参考信号接收功率 (Reference Signal Received Power,RSRP)计算信噪比差异,从而确定通过RIS调整获得的增益。
根据香农公式,使用RIS前的吞吐量为:
其中,SINR是指接收端测得的信噪比。
假设用户获得的服务质量不变,CBSD可以按照以下两种方式来释放资源余量:
一种是降低功率,降低的功率可以表示为:ΔP(dB)=G(dB)
另一种是减小带宽,使用RIS后的带宽可以表示为:
减小的带宽可以表示为:ΔW=W-WRIS
如图3所示,过程300还可以包括步骤2c,在该步骤,CBSD 1将所确定的资源余量的信息上载到区块链。
例如,CBSD 1可以将RIS调整之后的资源余量的信息记录到CBSD 1的与区块链相关联的本地账本中,并向网络内的标准CBSD广播。如上所述,CBSD 1是轻量节点,其可以仅记录本身的资源余量信息或与自己相关联的交易的信息。网络中的各个标准节点在接收到CBSD 1发送的资源余量信息时,验证CBSD 1的节点信息并将CBSD 1的资源余量信息记录到各自的本地账本上。资源余量的信息可以包括功率余量和带宽余量中的至少一者。
在一些实施例中,CBSD 1可以向多个标准CBSD中的一个上报资源余量的信息,接收到该信息的标准CBSD生成包含该信息的新区块,将其记录到本地区块链账本中,并将新区块广播给网络内的其它标准CBSD以供其它标准CBSD存储在各自的本地账本中。这样,完成资源余量信息到区块链的上载。
图5是示出根据本公开实施例的区块的区块结构的示意图。
如图5所示,区块包括区块头和区块主体。
区块头可以包括前一区块的哈希值、当前区块的哈希值、默克尔树根哈希等。
区块主体可以包括但不限于:CBSD新释放的干扰余量(即资源余量),包括新的功率余量和/或带宽余量;CBSD通过进行资源交易,使用其他CBSD释放的资源的信息;每次交易完后更新的最新的干扰余量信息。
图5中所示出的是一个示例性区块。本领域技术人员可以根据需要在区块中包含更多或其它信息。
如图3所示,过程300还可以包括步骤2d,在该步骤,CBSD 1将RIS调整之后的资源使用信息上报给CxM。
资源使用信息可以包括RIS配置有关的信息。RIS配置有关的信息可以包括经RIS反射后的反射信号的信号方向和/或功率。资源使用信息还可以包括接收信号强度指示符(Received Signal Strength Indicator,RSSI)和/或接收信号方向。
在一些实施例中,CBSD 1可以经由HeartbeatRequest向CxM上报CoexMeasInfo和cellInfo信息。
CoexMeasInfo可以包括channelReport和signalReport。channelReport和signalReport除报告RSSI外,还可以报告接收信号的方位。
cellInfo的信息中,可以包括经RIS反射后的反射信号的信号方向。cellInfo的信息中也可以包括其他信息,例如E-UTRA绝对无线频率信道号(E-UTRA Absolute Radio Frequency Channel Number,EARFCN),RAT,PCI带宽(PCIbandwidth)等。
如图3所示,过程300还可以包括步骤3,在该步骤,CxM基于从CBSD 1接收到的资源使用信息来更新覆盖重叠图。
CBRS联盟(CBRS Alliance,CBRSA)共存组(Coexistence Group,CxG)可以包括例如按照不同运营商划分的多个不同的干扰协调组(Interference Coordination Group,ICG)。CxG是这样一组CBSD,该组CBSD遵循用于在该组内协调他们的干扰的公共干扰管理策略。一个ICG组可以包括多个公共信道组(Common Channel Group,CCG),其中属于一个CCG的所有CBSD要求同样的信道分派。CxM可以负责管理CxG内的CBSD之间的共存。
CSAS可以识别ICG内的一组或多组CBSD。对于所识别的ICG内的每组CBSD,CSAS可以向CxM提供该组CBSD的列表,有关这些CBSD的信息以及为该组CBSD分派的频谱池。所述信息可以包括CBSD注册信息,例如每个CBSD的位置,最大EIRP或请求EIRP(如果可用的话),天线布置的高于平均地面的高度(height above  average terrain,HAAT)、天线特征和分组信息等。
针对每组识别的CBSD,CxM可以使用CSAS提供的信息来创建覆盖重叠图,其表示CBSD之间的干扰关系。
相关技术中,创建覆盖重叠图的具体过程如下:
1)CxM创建图中的顶点:
1-1)CxM为属于同一个CCG的所有CBSD创建一个顶点。
1-2)如果一个CBSD不属于任何CCG,CxM为该CBSD创建一个顶点。
2)CxM创建图中的边。可以按照如下规则在两个顶点之间创建边:
2-1)根据CBSD之间的覆盖重叠建立边。
2-2)在属于不同ICG的共址CBSD之间有边。共址CBSD可以指共享相同物理地点并且可能共享相同天线即共享基础设施或物理上临近的CBSD。
2-3)属于同一个ICG的所有CBSD之间都没有边。
2-4)可以根据对传播环境、RF测量、网络性能、干扰状态等的建模来创建边。
在CxM创建覆盖重叠图之后,可以找到该图的不同连接组件,每个连接组件变成“信道分配连接集”。此时,CxM可以分别考虑每个“信道分配连接集”并单独为每个信道分派连接集执行主信道分派:
1)CxM在整个图中以最小着色数目对信道分配连接集的每个顶点进行着色,使得具有边的任意两个顶点具有不同着色。
2)可用于信道分派连接集的频谱可以被划分成正交的和相等的主信道,并且每个顶点被分配这些信道中与图中的该顶点的着色对应的主信道。
本申请中,针对不属于同一个ICG或CCG的CBSD,修改覆盖重叠图的创建过程。
首先结合图6A描述假设两个CBSD,例如CBSD 1和CBSD 2,不属于同一个ICG或CCG且均采用RIS的情况。
资源管理设备(例如CxM)可以从CBSD 1和CBSD 2接收各自的资源使用信息。CBSD的资源使用信息可以包括RIS配置相关的信息,例如可以包括经RIS反射后的反射信号的方向和功率。资源管理设备可以知道两个CBSD的位置。
CxM可以如下来创建或更新覆盖重叠图:
1)判断CBSD 1的经RIS反射后的反射信号的方向(以下,称为第一信号方向) 与CBSD 2的经RIS反射后的反射信号的方向(以下,称为第二信号方向)是否交叉:
1-1)如果第一信号方向与第二信号方向不交叉,CBSD 1和CBSD 2之间没有边;
1-2)如果第一信号方向与第二信号方向交叉,判断交叉点处的干扰信号功率是否超过干扰阈值:
1-2-1)如果交叉点处的干扰信号功率超过干扰阈值,则在CBSD 1和CBSD 2之间创建边。这意味着在后续着色过程中,CBSD 1和CBSD 2需要使用不同的着色。
1-2-2)如果交叉点处的干扰信号功率没有超过干扰阈值,则在CBSD 1和CBSD 2之间没有边。
交叉点处的干扰信号功率是指干扰方在交叉点处产生的信号功率。
若交叉点位置有用户设备,也可以根据用户设备测量上报的RSRP来判断交叉点处的干扰信号功率是否超过干扰阈值。
图6A左边示出在CBSD 1和CBSD 2没有采用RIS的情况下,两者的发射波束相互干扰,在覆盖重叠图中,表示CBSD 1和CBSD 2的两个顶点之间存在边。即两个CBSD存在覆盖重叠,需要使用不同的着色,不能使用相同的频谱资源。
图6A右边示出CBSD 1和CBSD 2两者的发射波束相互不干扰,在覆盖重叠图中,表示CBSD 1和CBSD 2的两个顶点之间不存在边。即两个CBSD不存在覆盖重叠,可以使用相同的着色,可以使用相同的频谱资源。请注意,在图6A中,用灰色三角和黑色边框的三角形来表示不同着色。
可以结合图6B描述CBSD 1没有采用RIS而CBSD 2采用RIS并且CBSD 1和CBSD 2不属于同一个ICG或CCG的情况。
资源管理设备(例如CxM)可以从CBSD 1和CBSD 2接收各自的资源使用信息。CBSD 2的资源使用信息可以包括RIS配置相关的信息,例如可以包括经RIS反射后的反射信号的方向和功率。CBSD 1的资源使用信息可以包括CBSD 1的发射信号的方向和功率。资源管理设备知道CBSD 1和CBSD 2的位置。
CxM可以如下来创建或更新覆盖重叠图:
1)判断CBSD 1的发射信号的方向(第一信号方向)与CBSD 2的经RIS反射后的发射信号的方向(如上,还称为第二信号方向)是否交叉:
1-1)如果第一信号方向与第二信号方向不交叉,CBSD 1和CBSD 2之间没有边;
1-2)如果第一信号方向与第二信号方向交叉,判断交叉点处的干扰信号功率是否超过干扰阈值:
1-2-1)如果交叉点处的干扰信号功率超过干扰阈值,则在CBSD 1和CBSD 2之间创建边。这意味着在后续着色过程中,CBSD 1和CBSD 2需要使用不同的着色。
1-2-2)如果交叉点处的干扰信号功率没有超过干扰阈值,则在CBSD 1和CBSD 2之间没有边。
图6B左边示出在CBSD 2没有采用RIS的情况下,CBSD 1和CBSD 2的发射波束相互干扰,在覆盖重叠图中,表示CBSD 1和CBSD 2的两个顶点之间存在边。即两个CBSD存在覆盖重叠,需要使用不同的着色,不能使用相同的频谱资源。
图6B右边示出CBSD 1和CBSD 2两者的发射波束相互不干扰,在覆盖重叠图中,表示CBSD 1和CBSD 2的两个顶点之间不存在边。即两个CBSD不存在覆盖重叠,可以使用相同的着色,可以使用相同的频谱资源。
回到图3,过程300还可以包括步骤4a,在该步骤,CBSD 2可以向标准CBSD发送资源查询请求。
CBSD 2可以向与区块链相关联的多个标准CBSD中的任一个(例如附近的一个标准CBSD)发送资源查询请求,以获取与区块链上的当前可用资源有关的信息。
如果CBSD 2是轻量CBSD,其可以周期性的或按需向标准CBSD发送资源查询请求,以查询最新的干扰余量的信息。
如果CBSD 2是标准CBSD,其可以从本地存储的区块链账本查询最新的干扰余量的信息。
如图3所示,过程300还可以包括步骤4b,在该步骤,标准CBSD响应于接收到的资源查询请求,从区块链获取可用资源的信息。
例如,响应于该请求,标准CBSD可以从本地存储的区块链账本查询最新的资源余量的信息,例如当前可用的功率余量和/或带宽余量。
如图3所示,过程300还可以包括步骤4c,在该步骤,标准CBSD向CBSD 2发送资源查询响应。
标准CBSD将当前可用的资源余量的信息包括在资源查询响应中,并将资源查询响应发送给CBSD 2。
如图3所示,过程300还可以包括步骤4d,在该步骤,CBSD 2向标准CBSD发送资源竞拍请求。资源竞拍请求可以包括指示所竞拍的资源的信息。
CBSD 2在接收到资源查询响应时,可以基于网络的当前可用资源余量确定要请求增加额外的资源,例如额外的发射功率和/或额外的带宽,以满足自己的通信需求。CBSD 2可以向标准CBSD发送资源竞拍请求,可以随资源竞拍请求发送一定数量的保证金。在一些实施例中,资源竞拍请求可以是调整发射参数请求,发射参数例如是与信道范围和/或发射功率有关的参数。
在CBSD 2本身是标准网络节点的情况下,CBSD 2可以向另一个标准CBSD发送资源竞拍请求。
如图3所示,过程300还可以包括步骤5a,在该步骤,标准CBSD在接收到资源竞拍请求时,从CxM获取覆盖重叠图。
在一些实施例中,标准CBSD可以向CxM发送针对覆盖重叠图的请求。CxM响应于该请求,向标准CBSD发送最新的覆盖重叠图。
接下来,在步骤5b,标准CBSD可以对该资源竞拍请求所涉及的交易进行验证。
验证可以包括竞价验证,即,判断接收到的资源竞拍请求是否是网络内的所有CBSD收到的所有对相同资源的竞拍请求中竞价最高的竞拍请求。这可以由网络内的所有标准CBSD协作进行该确定。例如,各个标准CBSD可以将自己收到的最高竞价广播给其它标准CBSD。各个标准CBSD可以根据接收到的最高竞价来确定自己收到的资源竞拍请求的竞价是不是最高竞价。
如果一个标准CBSD收到的资源竞拍请求的竞价不是最高竞价,则标准CBSD可以拒绝该资源竞拍请求,例如向发送该资源竞拍请求的CBSD发送拒绝响应。如果一个标准CBSD收到的资源竞拍请求的竞价是最高竞价,则可以对该资源竞拍请求进行更多其它验证。
验证可以包括对资源竞拍请求所涉及的交易进行干扰验证。标准CBSD可以验证该交易是否满足对其它受保护的CBSD(例如主系统的CBSD,和/或附近的其它CBSD)的干扰保护要求。
在一些实施例中,标准CBSD可以根据获取的最新的覆盖重叠图和主系统信息,判断交易后的资源使用是否对其它受保护节点的干扰低于阈值。
例如,如果主系统的最大容忍干扰总量为-80dBm,则可以判断交易之后次系统对主系统所产生的干扰总量是否满足该要求。
例如,还可以判断交易后的资源使用是否在覆盖重叠图中产生不期望的边。在一些实施例中,标准CBSD可以假定该交易产生并基于接收的覆盖重叠图而计算更新的 覆盖重叠图,将更新的覆盖重叠图与接收的覆盖重叠图进行比较,来确定是否产生了不期望的边。
从网络的角度来看,如果竞价最高的资源竞拍请求没有通过干扰验证,则竞价次高的资源竞拍请求将被进行干扰验证,依次类推,直到产生通过干扰验证的资源竞拍请求。
如图3所示,过程300还可以包括步骤5c,在该步骤,标准CBSD向CBSD 2发送资源竞拍响应。资源竞拍响应可以包括对资源竞拍请求所竞拍的资源的使用授权。
如图3所示,过程300还可以包括步骤5d,在该步骤,标准CBSD可以向CBSD1支付报酬。
本领域技术人员可以理解,CBSD 2可以通过一个资源竞拍请求来获得从多个CBSD释放的资源余量,在该情况下,标准CBSD可以向资源竞拍请求的交易所涉及的多个CBSD分别支付各自的报酬。
如图3所示,过程300还可以包括步骤5c,在该步骤,标准CBSD将资源竞拍请求所涉及的交易的记录上载到区块链。
接收该资源竞拍请求并对其进行响应的标准CBSD可以将该交易的记录添加到区块链的本地账本中,形成新的区块,并将该新的区块(其包含与新的交易的记录有关的信息)广播给其它标准CBSD。
如图3所示,过程300还可以包括步骤6a,在该步骤,CBSD 2通过调整发射参数来使用所获得的资源余量。例如,CBSD 2可以提高发射功率和/或增大使用的带宽。
在CBSD 2是配备了RIS和RIS控制器的CBSD的情况下,步骤6a的调整发射参数可以包括调整RIS的反射系数。
如图3所示,过程300还可以包括步骤6b,在该步骤,CBSD 2将调整发射参数之后的资源使用信息上报给CxM,以用于由CxM更新覆盖重叠图。
在CBSD 2是配备了RIS和RIS控制器的CBSD的情况下,步骤6b上报的资源使用信息可以包括RIS配置有关的信息。
上报的资源使用信息例如可以包括CBSD ID、信道、EIRP功率等。上报资源使用信息与步骤2d类似,在此不再赘述。
如图3所示,过程300还可以包括步骤7,在该步骤,CxM基于从CBSD 2接收的资源使用信息更新覆盖重叠图。
本领域技术人员可以理解,CxM仅仅是资源管理设备的示例,可以理解,资源管 理设备还可以是SAS或CSAS等。换言之,以上结合CxM描述的功能或操作也可以由SAS或CSAS等执行。
本领域技术人员可以理解,图3中所示出的步骤仅仅是示例性的,根据本公开教导能够实现包含更多或更少步骤或包含其他步骤的方法,并且步骤之间的先后顺序可以调整。
图7是示出根据本公开实施例的由网络节点执行的方法700的示例性流程图。网络节点可以是轻量网络节点或标准网络节点。
如图7所示,方法700可以包括步骤7001,在该步骤,网络节点确定其资源余量。
方法700还可以包括步骤7003,在该步骤,网络节点将所确定的资源余量的信息上载到区块链。
网络节点可以通过调整发射参数(例如降低发射功率或减小带宽)来获得资源余量。在网络节点配备有RIS的情况下,可以通过经由RIS控制调整RIS的反射系数获得资源余量。资源余量可以包括功率余量和/或带宽余量。
在一些实施例中,将资源余量的信息上载到区块链进一步包括:将资源余量的信息广播给网络内的标准网络节点,以由各个标准网络节点将所述资源余量的信息存储在各自的本地账本中。
在网络节点是轻量节点的情况下,网络节点可以将资源余量的信息保存在本地账本中,并将资源余量的信息广播给网络内的所有标准网络节点。在网络节点是标准节点的情况下,网络节点可以将资源余量的信息保存在本地账本中,并将资源余量的信息广播给网络内的所有其它标准网络节点。
网络内的各个网络节点可以在每次发生资源余量改变时,将新的资源余量的信息上载到区块链,以允许区块链动态跟踪网络内的最新的资源余量的变化。
在一些实施例中,方法700还可以包括:网络节点向资源管理设备上报资源使用信息。网络节点可以在每次发生发射参数调整时,向资源管理设备上报调整后的资源使用信息,以用于由资源管理设备跟踪网络内的网络节点之间的干扰情况。资源管理设备例如可以使用各个网络节点上报的资源使用信息来创建和/或更新覆盖重叠图。
在网络节点配备有RIS并调整了RIS配置的情况下,资源使用信息可以包括该网络节点的RIS配置相关的信息,并且所述资源使用信息被所述资源管理设备用于更新覆盖重叠图。RIS配置相关的信息可以包括RIS反射后的反射信号的方向和功率。
在一些实施例中,方法700还可以包括:网络节点向资源管理设备发送对区块链 的注册请求。注册请求可以包括指示以下中的至少一者的信息:网络节点是否支持区块链功能;和网络节点的类型是轻量网络节点还是标准网络节点。
图8示出根据本公开实施例的由网络节点执行的另一方法800的示例性流程图。
如图8所示,方法800可以包括步骤8001,在该步骤,网络节点(例如图3中的CBSD 2)向另一网络节点(例如图3中的标准CBSD)发送资源余量查询请求。
方法800还可以包括步骤8003,在该步骤,网络节点接收来自所述另一网络节点的资源余量查询响应。资源余量查询响应可以包括所述区块链上当前可用的资源余量的信息。
方法800还可以包括步骤8005,在该步骤,网络节点向另一网络节点发送资源竞拍请求,所述资源竞拍请求包括指示所竞拍的资源的信息.
方法800还可以包括步骤8007,在该步骤,网络节点接收来自另一网络节点的资源竞拍响应,所述资源竞拍响应指示对所竞拍的资源的信息的使用授权。
方法800还可以包括步骤8009,在该步骤,网络节点调整发射参数来使用所竞拍的资源。
方法800还可以包括步骤8011,在该步骤,网络节点将调整后的资源使用信息上报资源管理设备,以用于由所述资源管理设备更新覆盖重叠图。
网络节点可以是轻量节点或标准节点。对于标准节点,其可以不必执行步骤8001和8003,因为其可以从本地账本查找到所述区块链上当前可用的资源余量的信息。
图9是示出根据本公开实施例的由网络节点执行的又一方法900的示例性流程图。网络节点可以是标准节点。
如图所示,方法900可以包括步骤9001,在该步骤,网络节点接收来自另一网络节点的资源余量查询请求;
方法900可以包括步骤9003,在该步骤,响应于所述资源余量查询请求,网络节点从与区块链相关联的本地账本获取当前可用的资源余量的信息;
方法900可以包括步骤9005,在该步骤,网络节点向该另一网络节点发送资源余量查询响应,其中资源余量查询响应包括当前可用的资源余量的信息。
方法900可以包括步骤9007,在该步骤,网络节点接收来自该另一网络节点的资源竞拍请求。资源竞拍请求包括指示所竞拍的资源的信息。
方法900可以包括步骤9009,在该步骤,响应于所述资源竞拍请求,网络节点从资源管理设备获取当前覆盖重叠图。
方法900可以包括步骤9011,在该步骤,至少基于所述当前覆盖重叠图,网络节点对所述资源竞拍请求所涉及的交易进行验证。网络节点可以确定所述交易是否满足对受保护网络节点的干扰保护要求。
方法900可以包括步骤9011,在该步骤,响应于验证成功,向该另一网络节点发送资源竞拍响应。资源竞拍响应包括对所竞拍的资源的使用授权。
方法900可以包括步骤9013,在该步骤,将交易的记录上载到区块链以更新区块链的资源余量的信息。
网络节点可以将所述交易的记录记载在所述网络节点的与所述区块链相关联的所述本地账本中,形成新的区块,并将包含所述交易的记录的区块广播给网络内的其它标准网络节点。
仅管未示出,方法900还可以包括网络节点从发送资源竞拍请求的网络节点接收保证金以及向提供资源余量的网络节点提供报酬。
图10是示出根据本公开实施例的由资源管理设备执行的方法1000的示例性流程图。资源管理设备可以是CxM、SAS或CSAS。
如图10所示,方法1000可以包括步骤10001,在该步骤,资源管理设备从配备RIS的网络节点接收与所述网络节点的RIS配置相关的信息。
方法1000还可以包括步骤10003,在该步骤,资源管理设备基于接收的与所述网络节点的所述RIS配置相关的信息来更新覆盖重叠图。
所述网络节点的RIS配置相关的信息可以包括所述网络节点的经RIS反射后的反射信号的第一信号方向。
仅管未示出,方法1000还可以包括:从另一网络节点接收与所述另一网络节点的发射信号有关的信息,所述信息至少指示所述发射信号的第二信号方向。
在所述网络节点和所述另一网络节点不属于同一个ICG或CCG的情况下,可以通过以下操作来更新覆盖重叠图:判断第一信号方向与第二信号方向是否交叉;如果第一信号方向与第二信号方向不交叉,不形成所述网络节点和所述另一网络节点之间的边;如果第一信号方向与第二信号方向交叉,判断交叉点处的干扰信号功率是否超过阈值,其中响应于判定交叉点处的干扰信号功率超过阈值,形成所述网络节点和所述另一网络节点之间的边,否则,不形成所述网络节点和所述另一网络节点之间的边。
接下来描述根据本公开的一些实施例的电子设备和通信方法。
【本公开的示例性实现】
根据本公开的实施例,可以想到各种实现本公开的概念的实现方式,包括但不限于:
1、一种由网络节点执行的方法,包括:
确定所述网络节点的资源余量;
将所述资源余量的信息上载到区块链。
2、如项1所述的方法,其中,所述网络节点配备有可重构智能表面(RIS),所述方法还包括:
通过调整RIS配置参数以增加所述网络节点的资源余量。
3、如项1所述的方法,其中,所述网络节点的资源余量包括功率余量和/或带宽余量。
4、如项1所述的方法,其中,将所述资源余量的信息上载到区块链进一步包括:
将所述资源余量的信息广播给网络内的标准网络节点,以由各个标准网络节点将所述资源余量的信息存储在各自的本地账本中。
5、如项2所述的方法,还包括:
向资源管理设备上报资源使用信息,其中,所述资源使用信息包括所述网络节点的RIS配置相关的信息,并且所述资源使用信息被所述资源管理设备用于更新覆盖重叠图。
6、如项5所述的方法,其中所述RIS配置相关的信息包括:
RIS反射后的反射信号的方向和功率。
7、如项1所述的方法,还包括:
向资源管理设备发送对所述区块链的注册请求,其中所述注册请求包括指示以下中的至少一者的信息:
所述网络节点是否支持区块链功能;和
所述网络节点的类型是轻量网络节点还是标准网络节点。
8、如项1所述的方法,还包括:
向另一网络节点发送资源余量查询请求;和
接收来自所述另一网络节点的资源余量查询响应,所述资源余量查询响应包括所述区块链上当前可用的资源余量的信息。
9、如项1所述的方法,还包括:
向另一网络节点发送资源竞拍请求,其中所述另一网络节点是标准网络节点,所述资源竞拍请求包括指示所竞拍的资源的信息;
接收来自所述另一网络节点的资源竞拍响应,所述资源竞拍响应指示对所竞拍的资源的信息的使用授权;
调整发射参数来使用所竞拍的资源;和
将调整后的资源使用信息上报资源管理设备,以用于由所述资源管理设备更新覆盖重叠图。
10、如项1所述的方法,其中,所述网络节点是标准网络节点,所述方法还包括:
接收来自另一网络节点的资源余量查询请求;
响应于所述资源余量查询请求,从与所述区块链相关联的本地账本获取当前可用的资源余量的信息;
向所述另一网络节点发送资源余量查询响应,其中所述资源余量查询响应包括当前可用的资源余量的信息。
11、如项10所述的方法,还包括:
接收来自另一网络节点的资源竞拍请求,所述资源竞拍请求包括指示所竞拍的资源的信息;
响应于所述资源竞拍请求,从资源管理设备获取当前覆盖重叠图;
至少基于所述当前覆盖重叠图,对所述资源竞拍请求所涉及的交易进行验证;和
响应于验证成功,向所述另一网络节点发送资源竞拍响应。
12、如项11所述的方法,还包括:
将所述交易的记录上载到所述区块链以更新所述区块链的所述资源余量的信息。
13、如项12所述的方法,其中,在所述交易的记录上载到所述区块链的操作还包括:
将所述交易的记录记载在所述网络节点的与所述区块链相关联的所述本地账本中;和
将所述交易的记录广播给网络内的其它标准网络节点。
14、如项11所述的方法,至少基于所述当前覆盖重叠图,对所述资源竞拍请求所涉及的交易进行验证的操作还包括:
确定所述交易是否满足对受保护网络节点的干扰保护要求。
15、一种网络节点,包括:
存储器,存储计算机可执行指令;和
处理器,其与存储器耦接,被配置为执行所述计算机可执行指令来执行如项1-14中任一项所述的方法。
16、一种由资源管理设备执行的方法,包括:
从配备RIS的网络节点接收与所述网络节点的RIS配置相关的信息;和
基于接收的与所述网络节点的所述RIS配置相关的信息来更新覆盖重叠图。
17、如项16所述的方法,其中,所述网络节点的RIS配置相关的信息包括所述网络节点的经RIS反射后的反射信号的第一信号方向。
18、如项17所述的方法,还包括:
从另一网络节点接收与所述另一网络节点的发射信号有关的信息,所述信息至少指示所述发射信号的第二信号方向,其中,所述网络节点和所述另一网络节点不属于同一个ICG或CCG;和
通过以下操作来更新覆盖重叠图:
判断第一信号方向与第二信号方向是否交叉;
如果第一信号方向与第二信号方向不交叉,不形成所述网络节点和所述另一网络节点之间的边;和
如果第一信号方向与第二信号方向交叉,判断交叉点处的干扰信号功率是否超过阈值,
响应于判定交叉点处的干扰信号功率超过阈值,形成所述网络
节点和所述另一网络节点之间的边,
否则,不形成所述网络节点和所述另一网络节点之间的边。
19、如项16所述的方法,还包括:
从标准网络节点接收针对覆盖重叠图的请求;和
向所述标准网络节点发送最新的覆盖重叠图。
20、一种资源管理设备,包括:
存储器,存储计算机可执行指令;和
处理器,其与存储器耦接,被配置为执行所述计算机可执行指令来执行如项16-19中任一项所述的方法。
21、一种计算机程序介质,其上存储计算机可执行指令,所述计算机可执行指令在被处理器执行时,使得如项1-14和16-19中任一项所述的方法被执行。
22、一种计算机程序产品,包括计算机可执行指令,所述计算机可执行指令在被处理器执行时,使得如项1-14和16-19中任一项所述的方法被执行。
本公开的应用实例
本公开中描述的技术能够应用于各种产品。
例如,根据本公开的实施例的电子设备可以被实现为各种基站或者安装在基站中,或被实现为各种用户设备或被安装在各种用户设备中。
根据本公开的实施例的通信方法可以由各种基站或用户设备实现;根据本公开的实施例的方法和操作可以体现为计算机可执行指令,存储在非暂时性计算机可读存储介质中,并可以由各种基站或用户设备执行以实现上面所述的一个或多个功能。
根据本公开的实施例的技术可以制成各个计算机程序产品,被用于各种基站或用户设备以实现上面所述的一个或多个功能。
本公开中所说的基站可以被实现为任何类型的基站,优选地,诸如3GPP的5G NR标准中定义的宏gNB和ng-eNB。gNB可以是覆盖比宏小区小的小区的gNB,诸如微微gNB、微gNB和家庭(毫微微)gNB。代替地,基站可以被实现为任何其他类型的基站,诸如NodeB、eNodeB和基站收发台(BTS)。基站还可以包括:被配置为控制无线通信的主体以及设置在与主体不同的地方的一个或多个远程无线头端(RRH)、无线中继站、无人机塔台、自动化工厂中的控制节点等。
用户设备可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。用户设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)、无人机、自动化工厂中的传感器和执行器等。此外,用户设备可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。
下面简单介绍可以应用本公开的技术的基站和用户设备的示例。
应当理解,本公开中使用的术语“基站”具有其通常含义的全部广度,并且至少包括被用于作为无线通信系统或无线电系统的一部分以便于通信的无线通信站。基站的例子可以例如是但不限于以下:GSM通信系统中的基站收发信机(BTS)和基站控制器(BSC)中的一者或两者;3G通信系统中的无线电网络控制器(RNC)和NodeB中的一者或两者;4G LTE和LTE-A系统中的eNB;5G通信系统中的gNB和ng-eNB。 在D2D、M2M以及V2V通信场景下,也可以将对通信具有控制功能的逻辑实体称为基站。在认知无线电通信场景下,还可以将起频谱协调作用的逻辑实体称为基站。在自动化工厂中,可以将提供网络控制功能的逻辑实体称为基站。
基站的第一应用示例
图11是示出可以应用本公开内容的技术的基站的示意性配置的第一示例的框图。在图11中,基站可以实现为gNB 1400。gNB 1400包括多个天线1410以及基站设备1420。基站设备1420和每个天线1410可以经由RF线缆彼此连接。
天线1410包括多个天线元件,诸如用于大规模MIMO的多个天线阵列。天线1410例如可以被布置成天线阵列矩阵,并且用于基站设备1420发送和接收无线信号。例如,多个天线1410可以与gNB 1400使用的多个频段兼容。
基站设备1420包括控制器1421、存储器1422、网络接口1423以及无线通信接口1425。
控制器1421可以为例如CPU或DSP,并且操作基站设备1420的较高层的各种功能。例如,控制器1421根据由无线通信接口1425处理的信号中的数据来生成数据分组,并经由网络接口1423来传递所生成的分组。控制器1421可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器1421可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的gNB或核心网节点来执行。存储器1422包括RAM和ROM,并且存储由控制器1421执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口1423为用于将基站设备1420连接至核心网1424(例如,5G核心网)的通信接口。控制器1421可以经由网络接口1423而与核心网节点或另外的gNB进行通信。在此情况下,gNB1400与核心网节点或其他gNB可以通过逻辑接口(诸如NG接口和Xn接口)而彼此连接。网络接口1423还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口1423为无线通信接口,则与由无线通信接口1425使用的频段相比,网络接口1423可以使用较高频段用于无线通信。
无线通信接口1425支持任何蜂窝通信方案(诸如5G NR),并且经由天线1410来提供到位于gNB 1400的小区中的终端的无线连接。无线通信接口1425通常可以包括例如基带(BB)处理器1426和RF电路1427。BB处理器1426可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行各层(例如物理层、MAC层、RLC层、 PDCP层、SDAP层)的各种类型的信号处理。代替控制器1421,BB处理器1426可以具有上述逻辑功能的一部分或全部。BB处理器1426可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器1426的功能改变。该模块可以为插入到基站设备1420的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路1427可以包括例如混频器、滤波器和放大器,并且经由天线1410来传送和接收无线信号。虽然图11示出一个RF电路1427与一根天线1410连接的示例,但是本公开并不限于该图示,而是一个RF电路1427可以同时连接多根天线1410。
如图11所示,无线通信接口1425可以包括多个BB处理器1426。例如,多个BB处理器1426可以与gNB 1400使用的多个频段兼容。如图11所示,无线通信接口1425可以包括多个RF电路1427。例如,多个RF电路1427可以与多个天线元件兼容。虽然图11示出其中无线通信接口1425包括多个BB处理器1426和多个RF电路1427的示例,但是无线通信接口1425也可以包括单个BB处理器1426或单个RF电路1427。
在图11中示出的gNB 1400中,处理电路1001、2001、3001或4001中包括的一个或多个单元(例如发送单元1003、接收单元2002、接收单元3003等)可被实现在无线通信接口1425中。可替代地,这些组件中的至少一部分可被实现在控制器1421中。例如,gNB1400包含无线通信接口1425的一部分(例如,BB处理器1426)或者整体,和/或包括控制器1421的模块,并且一个或多个组件可被实现在模块中。在这种情况下,模块可以存储用于允许处理器起一个或多个组件的作用的程序(换言之,用于允许处理器执行一个或多个组件的操作的程序),并且可以执行该程序。作为另一个示例,用于允许处理器起一个或多个组件的作用的程序可被安装在gNB1400中,并且无线通信接口1425(例如,BB处理器1426)和/或控制器1421可以执行该程序。如上所述,作为包括一个或多个组件的装置,gNB1400、基站设备1420或模块可被提供,并且用于允许处理器起一个或多个组件的作用的程序可被提供。另外,将程序记录在其中的可读介质可被提供。
基站的第二应用示例
图12是示出可以应用本公开的技术的基站的示意性配置的第二示例的框图。在图12中,基站被示出为gNB 1530。gNB 1530包括多个天线1540、基站设备1550和RRH1560。RRH 1560和每个天线1540可以经由RF线缆而彼此连接。基站设备1550和RRH 1560可以经由诸如光纤线缆的高速线路而彼此连接。
天线1540包括多个天线元件,诸如用于大规模MIMO的多个天线阵列。天线1540例如可以被布置成天线阵列矩阵,并且用于基站设备1550发送和接收无线信号。例如,多个天线1540可以与gNB 1530使用的多个频段兼容。
基站设备1550包括控制器1551、存储器1552、网络接口1553、无线通信接口1555以及连接接口1557。控制器1551、存储器1552和网络接口1553与参照图12描述的控制器1421、存储器1422和网络接口1423相同。
无线通信接口1555支持任何蜂窝通信方案(诸如5G NR),并且经由RRH 1560和天线1540来提供到位于与RRH 1560对应的扇区中的终端的无线通信。无线通信接口1555通常可以包括例如BB处理器1556。除了BB处理器1556经由连接接口1557连接到RRH 1560的RF电路1564之外,BB处理器1556与参照图13描述的BB处理器1426相同。如图12所示,无线通信接口1555可以包括多个BB处理器1556。例如,多个BB处理器1556可以与gNB 1530使用的多个频段兼容。虽然图12示出其中无线通信接口1555包括多个BB处理器1556的示例,但是无线通信接口1555也可以包括单个BB处理器1556。
连接接口1557为用于将基站设备1550(无线通信接口1555)连接至RRH 1560的接口。连接接口1557还可以为用于将基站设备1550(无线通信接口1555)连接至RRH 1560的上述高速线路中的通信的通信模块。
RRH 1560包括连接接口1561和无线通信接口1563。
连接接口1561为用于将RRH 1560(无线通信接口1563)连接至基站设备1550的接口。连接接口1561还可以为用于上述高速线路中的通信的通信模块。
无线通信接口1563经由天线1540来传送和接收无线信号。无线通信接口1563通常可以包括例如RF电路1564。RF电路1564可以包括例如混频器、滤波器和放大器,并且经由天线1540来传送和接收无线信号。虽然图12示出一个RF电路1564与一根天线1540连接的示例,但是本公开并不限于该图示,而是一个RF电路1564可以同时连接多根天线1540。
如图12所示,无线通信接口1563可以包括多个RF电路1564。例如,多个RF电路1564可以支持多个天线元件。虽然图12示出其中无线通信接口1563包括多个RF电路1564的示例,但是无线通信接口1563也可以包括单个RF电路1564。
在图12中示出的gNB 1500中,处理电路1001、2001、3001或4001中包括的一个或多个单元(例如发送单元1003、接收单元2002、接收单元3003等)可被实现在无 线通信接口1525中。可替代地,这些组件中的至少一部分可被实现在控制器1521中。例如,gNB 1500包含无线通信接口1525的一部分(例如,BB处理器1526)或者整体,和/或包括控制器1521的模块,并且一个或多个组件可被实现在模块中。在这种情况下,模块可以存储用于允许处理器起一个或多个组件的作用的程序(换言之,用于允许处理器执行一个或多个组件的操作的程序),并且可以执行该程序。作为另一个示例,用于允许处理器起一个或多个组件的作用的程序可被安装在gNB 1500中,并且无线通信接口1525(例如,BB处理器1526)和/或控制器1521可以执行该程序。如上所述,作为包括一个或多个组件的装置,gNB 1500、基站设备1520或模块可被提供,并且用于允许处理器起一个或多个组件的作用的程序可被提供。另外,将程序记录在其中的可读介质可被提供。
用户设备的第一应用示例
图13是示出可以应用本公开内容的技术的智能电话1600的示意性配置的示例的框图。
智能电话1600包括处理器1601、存储器1602、存储装置1603、外部连接接口1604、摄像装置1606、传感器1607、麦克风1608、输入装置1609、显示装置1610、扬声器1611、无线通信接口1612、一个或多个天线开关1615、一个或多个天线1616、总线1617、电池1618以及辅助控制器1619。
处理器1601可以为例如CPU或片上系统(SoC),并且控制智能电话1600的应用层和另外层的功能。处理器1601可以包括或充当参照附图描述的处理电路1001、2001、3001、4001中的任一个。存储器1602包括RAM和ROM,并且存储数据和由处理器1601执行的程序。存储装置1603可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口1604为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话1600的接口。
摄像装置1606包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器1607可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风1608将输入到智能电话1600的声音转换为音频信号。输入装置1609包括例如被配置为检测显示装置1610的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置1610包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话1600的输出图像。扬声器1611将从智能电话 1600输出的音频信号转换为声音。
无线通信接口1612支持任何蜂窝通信方案(诸如4G LTE或5G NR等等),并且执行无线通信。无线通信接口1612通常可以包括例如BB处理器1613和RF电路1614。BB处理器1613可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路1614可以包括例如混频器、滤波器和放大器,并且经由天线1616来传送和接收无线信号。无线通信接口1612可以为其上集成有BB处理器1613和RF电路1614的一个芯片模块。如图13所示,无线通信接口1612可以包括多个BB处理器1613和多个RF电路1614。虽然图13示出其中无线通信接口1612包括多个BB处理器1613和多个RF电路1614的示例,但是无线通信接口1612也可以包括单个BB处理器1613或单个RF电路1614。
此外,除了蜂窝通信方案之外,无线通信接口1612可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口1612可以包括针对每种无线通信方案的BB处理器1613和RF电路1614。
天线开关1615中的每一个在包括在无线通信接口1612中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线1616的连接目的地。
天线1616包括多个天线元件,诸如用于大规模MIMO的多个天线阵列。天线1616例如可以被布置成天线阵列矩阵,并且用于无线通信接口1612传送和接收无线信号。智能电话1600可以包括一个或多个天线面板(未示出)。
此外,智能电话1600可以包括针对每种无线通信方案的天线1616。在此情况下,天线开关1615可以从智能电话1600的配置中省略。
总线1617将处理器1601、存储器1602、存储装置1603、外部连接接口1604、摄像装置1606、传感器1607、麦克风1608、输入装置1609、显示装置1610、扬声器1611、无线通信接口1612以及辅助控制器1619彼此连接。电池1618经由馈线向图13所示的智能电话1600的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器1619例如在睡眠模式下操作智能电话1600的最小必需功能。
在图13中示出的智能电话1600中,处理电路1001、2001、3001或4001中包括的一个或多个单元(例如发送单元1003、接收单元2002、接收单元3003等)可被实现在无线通信接口1612中。可替代地,这些组件中的至少一部分可被实现在处理器1601或者辅助控制器1619中。作为一个示例,智能电话1600包含无线通信接口1612的一 部分(例如,BB处理器1613)或者整体,和/或包括处理器1601和/或辅助控制器1619的模块,并且一个或多个组件可被实现在该模块中。在这种情况下,该模块可以存储允许处理起一个或多个组件的作用的程序(换言之,用于允许处理器执行一个或多个组件的操作的程序),并且可以执行该程序。作为另一个示例,用于允许处理器起一个或多个组件的作用的程序可被安装在智能电话1600中,并且无线通信接口1612(例如,BB处理器1613)、处理器1601和/或辅助控制器1619可以执行该程序。如上所述,作为包括一个或多个组件的装置,智能电话1600或者模块可被提供,并且用于允许处理器起一个或多个组件的作用的程序可被提供。另外,将程序记录在其中的可读介质可被提供。
用户设备的第二应用示例
图14是示出可以应用本公开的技术的汽车导航设备1720的示意性配置的示例的框图。汽车导航设备1720包括处理器1721、存储器1722、全球定位系统(GPS)模块1724、传感器1725、数据接口1726、内容播放器1727、存储介质接口1728、输入装置1729、显示装置1730、扬声器1731、无线通信接口1733、一个或多个天线开关1736、一个或多个天线1737以及电池1738。
处理器1721可以为例如CPU或SoC,并且控制汽车导航设备1720的导航功能和另外的功能。存储器1722包括RAM和ROM,并且存储数据和由处理器1721执行的程序。
GPS模块1724使用从GPS卫星接收的GPS信号来测量汽车导航设备1720的位置(诸如纬度、经度和高度)。传感器1725可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口1726经由未示出的终端而连接到例如车载网络1741,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器1727再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被插入到存储介质接口1728中。输入装置1729包括例如被配置为检测显示装置1730的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示装置1730包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器1731输出导航功能的声音或再现的内容。
无线通信接口1733支持任何蜂窝通信方案(诸如4G LTE或5G NR),并且执行无线通信。无线通信接口1733通常可以包括例如BB处理器1734和RF电路1735。BB处理器1734可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线 通信的各种类型的信号处理。同时,RF电路1735可以包括例如混频器、滤波器和放大器,并且经由天线1737来传送和接收无线信号。无线通信接口1733还可以为其上集成有BB处理器1734和RF电路1735的一个芯片模块。如图14所示,无线通信接口1733可以包括多个BB处理器1734和多个RF电路1735。虽然图14示出其中无线通信接口1733包括多个BB处理器1734和多个RF电路1735的示例,但是无线通信接口1733也可以包括单个BB处理器1734或单个RF电路1735。
此外,除了蜂窝通信方案之外,无线通信接口1733可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口1733可以包括BB处理器1734和RF电路1735。
天线开关1736中的每一个在包括在无线通信接口1733中的多个电路(诸如用于不同的无线通信方案的电路)之间切换天线1737的连接目的地。
天线1737包括多个天线元件,诸如用于大规模MIMO的多个天线阵列。天线1737例如可以被布置成天线阵列矩阵,并且用于无线通信接口1733传送和接收无线信号。
此外,汽车导航设备1720可以包括针对每种无线通信方案的天线1737。在此情况下,天线开关1736可以从汽车导航设备1720的配置中省略。
电池1738经由馈线向图14所示的汽车导航设备1720的各个块提供电力,馈线在图中被部分地示为虚线。电池1738累积从车辆提供的电力。
在图14中示出的汽车导航装置1720中,处理电路1001、2001、3001或4001中包括的一个或多个单元(例如发送单元1003、接收单元2002、接收单元3003等)可被实现在无线通信接口1733中。可替代地,这些组件中的至少一部分可被实现在处理器1721中。作为一个示例,汽车导航装置1720包含无线通信接口1733的一部分(例如,BB处理器1734)或者整体,和/或包括处理器1721的模块,并且一个或多个组件可被实现在该模块中。在这种情况下,该模块可以存储允许处理起一个或多个组件的作用的程序(换言之,用于允许处理器执行一个或多个组件的操作的程序),并且可以执行该程序。作为另一个示例,用于允许处理器起一个或多个组件的作用的程序可被安装在汽车导航装置1720中,并且无线通信接口1733(例如,BB处理器1734)和/或处理器1721可以执行该程序。如上所述,作为包括一个或多个组件的装置,汽车导航装置1720或者模块可被提供,并且用于允许处理器起一个或多个组件的作用的程序可被提供。另外,将程序记录在其中的可读介质可被提供。
本公开的技术也可以被实现为包括汽车导航设备1720、车载网络1741以及车辆模块1742中的一个或多个块的车载系统(或车辆)1740。车辆模块1742生成车辆数据(诸如车速、发动机速度和故障信息),并且将所生成的数据输出至车载网络1741。
以上参照附图描述了本公开的示例性实施例,但是本公开当然不限于以上示例。本领域技术人员可在所附权利要求的范围内得到各种变更和修改,并且应理解这些变更和修改自然将落入本公开的技术范围内。
例如,在以上实施例中包括在一个单元中的多个功能可以由分开的装置来实现。替选地,在以上实施例中由多个单元实现的多个功能可分别由分开的装置来实现。另外,以上功能之一可由多个单元来实现。无需说,这样的配置包括在本公开的技术范围内。
在该说明书中,流程图中所描述的步骤不仅包括以所述顺序按时间序列执行的处理,而且包括并行地或单独地而不是必须按时间序列执行的处理。此外,甚至在按时间序列处理的步骤中,无需说,也可以适当地改变该顺序。
虽然已经详细说明了本公开及其优点,但是应当理解在不脱离由所附的权利要求所限定的本公开的精神和范围的情况下可以进行各种改变、替代和变换。而且,本公开实施例的术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。

Claims (22)

  1. 一种由网络节点执行的方法,包括:
    确定所述网络节点的资源余量;
    将所述资源余量的信息上载到区块链。
  2. 如权利要求1所述的方法,其中,所述网络节点配备有可重构智能表面(RIS),所述方法还包括:
    通过调整RIS配置参数以增加所述网络节点的资源余量。
  3. 如权利要求1所述的方法,其中,所述网络节点的资源余量包括功率余量和/或带宽余量。
  4. 如权利要求1所述的方法,其中,将所述资源余量的信息上载到区块链进一步包括:
    将所述资源余量的信息广播给网络内的标准网络节点,以由各个标准网络节点将所述资源余量的信息存储在各自的本地账本中。
  5. 如权利要求2所述的方法,还包括:
    向资源管理设备上报资源使用信息,其中,所述资源使用信息包括所述网络节点的RIS配置相关的信息,并且所述资源使用信息被所述资源管理设备用于更新覆盖重叠图。
  6. 如权利要求5所述的方法,其中所述RIS配置相关的信息包括:
    RIS反射后的反射信号的方向和功率。
  7. 如权利要求1所述的方法,还包括:
    向资源管理设备发送对所述区块链的注册请求,其中所述注册请求包括指示以下中的至少一者的信息:
    所述网络节点是否支持区块链功能;和
    所述网络节点的类型是轻量网络节点还是标准网络节点。
  8. 如权利要求1所述的方法,还包括:
    向另一网络节点发送资源余量查询请求;和
    接收来自所述另一网络节点的资源余量查询响应,所述资源余量查询响应包括所述区块链上当前可用的资源余量的信息。
  9. 如权利要求1所述的方法,还包括:
    向另一网络节点发送资源竞拍请求,其中所述另一网络节点是标准网络节点,所述资源竞拍请求包括指示所竞拍的资源的信息;
    接收来自所述另一网络节点的资源竞拍响应,所述资源竞拍响应指示对所竞拍的资源的信息的使用授权;
    调整发射参数来使用所竞拍的资源;和
    将调整后的资源使用信息上报资源管理设备,以用于由所述资源管理设备更新覆盖重叠图。
  10. 如权利要求1所述的方法,其中,所述网络节点是标准网络节点,所述方法还包括:
    接收来自另一网络节点的资源余量查询请求;
    响应于所述资源余量查询请求,从与所述区块链相关联的本地账本获取当前可用的资源余量的信息;
    向所述另一网络节点发送资源余量查询响应,其中所述资源余量查询响应包括当前可用的资源余量的信息。
  11. 如权利要求10所述的方法,还包括:
    接收来自另一网络节点的资源竞拍请求,所述资源竞拍请求包括指示所竞拍的资源的信息;
    响应于所述资源竞拍请求,从资源管理设备获取当前覆盖重叠图;
    至少基于所述当前覆盖重叠图,对所述资源竞拍请求所涉及的交易进行验证;和
    响应于验证成功,向所述另一网络节点发送资源竞拍响应。
  12. 如权利要求11所述的方法,还包括:
    将所述交易的记录上载到所述区块链以更新所述区块链的所述资源余量的信息。
  13. 如权利要求12所述的方法,其中,在所述交易的记录上载到所述区块链的操作还包括:
    将所述交易的记录记载在所述网络节点的与所述区块链相关联的所述本地账本中;和
    将所述交易的记录广播给网络内的其它标准网络节点。
  14. 如权利要求11所述的方法,至少基于所述当前覆盖重叠图,对所述资源竞拍请求所涉及的交易进行验证的操作还包括:
    确定所述交易是否满足对受保护网络节点的干扰保护要求。
  15. 一种网络节点,包括:
    存储器,存储计算机可执行指令;和
    处理器,其与存储器耦接,被配置为执行所述计算机可执行指令来执行如权利要求1-14中任一项所述的方法。
  16. 一种由资源管理设备执行的方法,包括:
    从配备RIS的网络节点接收与所述网络节点的RIS配置相关的信息;和
    基于接收的与所述网络节点的所述RIS配置相关的信息来更新覆盖重叠图。
  17. 如权利要求16所述的方法,其中,所述网络节点的RIS配置相关的信息包括所述网络节点的经RIS反射后的反射信号的第一信号方向。
  18. 如权利要求17所述的方法,还包括:
    从另一网络节点接收与所述另一网络节点的发射信号有关的信息,所述信息至少指示所述发射信号的第二信号方向,其中,所述网络节点和所述另一网络节点不属于同一个ICG或CCG;和
    通过以下操作来更新覆盖重叠图:
    判断第一信号方向与第二信号方向是否交叉;
    如果第一信号方向与第二信号方向不交叉,不形成所述网络节点和所述另一网络节点之间的边;和
    如果第一信号方向与第二信号方向交叉,判断交叉点处的干扰信号功率是否超过阈值,
    响应于判定交叉点处的干扰信号功率超过阈值,形成所述网络节点和所述另一网络节点之间的边,
    否则,不形成所述网络节点和所述另一网络节点之间的边。
  19. 如权利要求16所述的方法,还包括:
    从标准网络节点接收针对覆盖重叠图的请求;和
    向所述标准网络节点发送最新的覆盖重叠图。
  20. 一种资源管理设备,包括:
    存储器,存储计算机可执行指令;和
    处理器,其与存储器耦接,被配置为执行所述计算机可执行指令来执行如权利要求16-19中任一项所述的方法。
  21. 一种计算机程序介质,其上存储计算机可执行指令,所述计算机可执行指令 在被处理器执行时,使得如权利要求1-14和16-19中任一项所述的方法被执行。
  22. 一种计算机程序产品,包括计算机可执行指令,所述计算机可执行指令在被处理器执行时,使得如权利要求1-14和16-19中任一项所述的方法被执行。
PCT/CN2023/073271 2022-01-28 2023-01-20 动态资源共享 WO2023143410A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210103915.XA CN116567643A (zh) 2022-01-28 2022-01-28 动态资源共享
CN202210103915.X 2022-01-28

Publications (1)

Publication Number Publication Date
WO2023143410A1 true WO2023143410A1 (zh) 2023-08-03

Family

ID=87470819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/073271 WO2023143410A1 (zh) 2022-01-28 2023-01-20 动态资源共享

Country Status (2)

Country Link
CN (1) CN116567643A (zh)
WO (1) WO2023143410A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190024393A (ko) * 2017-08-31 2019-03-08 에스케이텔레콤 주식회사 기지국 관리 장치
CN111459676A (zh) * 2020-03-31 2020-07-28 腾讯科技(深圳)有限公司 一种节点资源管理方法、装置及存储介质
WO2021109345A1 (en) * 2020-03-03 2021-06-10 Zte Corporation Method to modulate signals by reflecting surfaces

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190024393A (ko) * 2017-08-31 2019-03-08 에스케이텔레콤 주식회사 기지국 관리 장치
WO2021109345A1 (en) * 2020-03-03 2021-06-10 Zte Corporation Method to modulate signals by reflecting surfaces
CN111459676A (zh) * 2020-03-31 2020-07-28 腾讯科技(深圳)有限公司 一种节点资源管理方法、装置及存储介质

Also Published As

Publication number Publication date
CN116567643A (zh) 2023-08-08

Similar Documents

Publication Publication Date Title
JP7147790B2 (ja) 電子機器、無線通信装置、及び無線通信方法
CN110089045B (zh) 基站、终端设备、方法和记录介质
CN105704822B (zh) 频谱资源管理装置和方法、无线通信设备和方法
US10944449B2 (en) Apparatus and method in wireless communication system, and computer readable storage medium
US11387886B2 (en) Electronic device, method for same and information processing device
US20210175943A1 (en) Electronic apparatus and server in wireless communication system, and wireless communication method
WO2019023902A1 (zh) 通信方式控制方法及设备
WO2022037433A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2020031645A1 (ja) 通信装置、通信方法及び記録媒体
US11917590B2 (en) Terminal and control method to optimize transmission/reception beam width in wireless communication system
WO2021204074A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
CN110506428B (zh) 频谱管理装置和方法、频谱协调装置和方法以及电子设备
WO2017124900A1 (zh) 电子设备和通信方法
WO2017104281A1 (ja) 装置、方法及びプログラム
US20220338023A1 (en) Electronic device, wireless communication method, and computer readable storage medium
US20220286214A1 (en) Electronic device, wireless communication method and computer-readable storage medium
WO2023143410A1 (zh) 动态资源共享
WO2021023146A1 (zh) 无线通信系统中的电子设备和方法
WO2020156472A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
KR102438410B1 (ko) 네트워크 제어 단말 및 네트워크 노드를 위한 전자 디바이스 및 방법
WO2023134526A1 (zh) 电子设备、无线通信方法和计算机可读存储介质
WO2023217105A1 (zh) 用于无线通信的电子设备和方法以及计算机可读存储介质
WO2022213894A1 (zh) 用于无线通信的电子设备、无线通信方法以及存储介质
US20240187282A1 (en) Electronic device for wireless communication, wireless communication method, and storage medium
WO2022083505A1 (zh) 电子设备和通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23746289

Country of ref document: EP

Kind code of ref document: A1