WO2023143375A1 - 飞轮储能设备 - Google Patents

飞轮储能设备 Download PDF

Info

Publication number
WO2023143375A1
WO2023143375A1 PCT/CN2023/073158 CN2023073158W WO2023143375A1 WO 2023143375 A1 WO2023143375 A1 WO 2023143375A1 CN 2023073158 W CN2023073158 W CN 2023073158W WO 2023143375 A1 WO2023143375 A1 WO 2023143375A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
rotor
flywheel
shaft
magnet
Prior art date
Application number
PCT/CN2023/073158
Other languages
English (en)
French (fr)
Inventor
王志强
苏森
Original Assignee
华驰动能(北京)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华驰动能(北京)科技有限公司 filed Critical 华驰动能(北京)科技有限公司
Publication of WO2023143375A1 publication Critical patent/WO2023143375A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/02Additional mass for increasing inertia, e.g. flywheels
    • H02K7/025Additional mass for increasing inertia, e.g. flywheels for power storage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J15/00Systems for storing electric energy
    • H02J15/007Systems for storing electric energy involving storage in the form of mechanical energy, e.g. fly-wheels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • H02K5/161Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields radially supporting the rotary shaft at both ends of the rotor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • H02K5/207Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium with openings in the casing specially adapted for ambient air
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/09Structural association with bearings with magnetic bearings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • H02K9/04Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Definitions

  • the present disclosure relates to the technical field of energy storage, and in particular, to a flywheel energy storage device.
  • the flywheel energy storage system is an energy storage device for electromechanical energy conversion.
  • the system uses physical methods to store energy, and realizes the mutual conversion and storage of electric energy and the mechanical kinetic energy of the high-speed flywheel through the electric/power generation reciprocal bidirectional motor.
  • Power grid frequency modulation and peak regulation and power energy storage all require a large-scale energy storage flywheel, but in related technologies, the stored energy in the flywheel energy storage system is relatively low, which is inconvenient for practical use.
  • the present disclosure aims to solve one of the technical problems in the related art at least to a certain extent.
  • the embodiment of the present disclosure proposes a flywheel energy storage device, which has the characteristics of large energy storage, can achieve energy storage of 1000 kWh or more, and loses stability during the high-speed rotation of the flywheel rotor , it has good load-bearing protection capacity in both radial and axial directions, and has high safety.
  • the flywheel energy storage device of the embodiment of the present disclosure includes a housing, the housing is provided with an installation cavity; a flywheel rotor, the flywheel rotor is arranged in the installation cavity and can rotate in the installation cavity, and the flywheel
  • the rotor includes a rotor part, a first shaft part and a second shaft part, the first shaft part is located on one side of the rotor part, the second shaft part is located on the other side of the rotor part, and the first The first shaft part and the second shaft part are coaxially arranged; the first bearing is arranged on the housing, and the first bearing surrounds the outer peripheral side of the first shaft part; the second Bearing, the second bearing is arranged on the housing, and the second bearing surrounds the outer peripheral side of the second shaft part; a limit assembly, the limit assembly is arranged on the first shaft part end portion or the end portion of the second shaft portion, and the limit assembly is adapted to engage with the end portion of the first shaft portion or the end portion of the second shaft portion when the flywheel
  • the limit assembly includes a first bearing cap, a second bearing cap and a third bearing
  • the third bearing includes a first bearing ring and a second bearing ring
  • the first bearing ring and the second bearing ring Relatively rotatable, one of the first bearing cap and the second bearing cap is connected with the first bearing ring, the other is connected with the second bearing ring, the first bearing cap and the One of the second bearing caps is adapted to fit with the end of the first shaft portion or the end of the second shaft portion Department stop.
  • the flywheel energy storage device in the embodiment of the present disclosure has the characteristics of large energy storage, which can achieve energy storage of 1000 kWh or more.
  • the flywheel rotor loses stability during high-speed rotation, it has good performance in both radial and axial directions. Load protection capacity, high security.
  • the first bearing cap, the second bearing cap, and the third bearing are movable relative to the housing, and the limit assembly includes a buffer, and the buffer is adapted to move toward the The first bearing cap or the second bearing cap exerts force to buffer the impact of the flywheel rotor.
  • the first bearing cover is arranged between the flywheel rotor and the second bearing cover, a guide part is provided on one of the second bearing cover and the housing, and a guide part is provided on the other.
  • One of them is provided with a slot, and the guide part fits in the slot and can guide and move in the slot.
  • the flywheel energy storage device includes a first magnetic group and a second magnetic group, the first magnetic group and the first shaft part are located on the same side of the rotor part, and the second magnetic group
  • the first magnetic group and the second shaft part are located on the same side of the rotor part
  • the first magnetic group includes a first magnet and a second magnet, and one of the first magnet and the second magnet is arranged on the The casing, the other is arranged on the flywheel rotor
  • the second magnetic group includes a third magnet and a fourth magnet, one of the third magnet and the fourth magnet is arranged on the casing , the other one is arranged on the flywheel rotor, between the first magnet and the second magnet, between the third magnet and the fourth magnet is suitable for generating magnetic force so that the flywheel rotor can Suspended within the mounting cavity.
  • the flywheel energy storage device includes a damper, the damper is disposed on the casing, and the damper is adapted to apply a buffering force to the flywheel rotor when it loses stability.
  • the flywheel energy storage device includes a motor, the motor is sleeved on the outer peripheral side of the first shaft part, and the housing is provided with a protruding part, and the protruding part faces the housing The outer side of the body protrudes and forms a hollow slot in the housing, at least part of the motor fits in the hollow slot.
  • the flywheel energy storage device includes a cooling cover and a fan
  • the cooling cover covers the outer peripheral side of the protruding part
  • a cooling channel is formed between the cooling cover and the protruding part
  • the fan is arranged in the cooling cover, the fan is suitable for driving the cooling air flow into the cooling passage, the cooling cover is provided with an air outlet, and the air outlet is suitable for the cooling air flow to flow out of the cooling cover .
  • the flywheel energy storage device includes a first magnetic bearing and a second magnetic bearing
  • the first magnetic bearing includes a first rotor part and a first stator part
  • the first rotor part is sleeved on
  • the outer peripheral side of the first shaft part can rotate synchronously with the flywheel rotor
  • the first stator part surrounds the outer peripheral side of the first rotor part
  • the distance between the rotor part is greater than the distance between the first shaft part and the first bearing
  • the second magnetic bearing includes a second rotor part and a second stator part
  • the second rotor part is sleeved on the second
  • the outer peripheral side of the shaft part can rotate synchronously with the flywheel rotor
  • the second stator part surrounds the outer peripheral side of the second rotor part
  • the distance between the two rotor parts is greater than the distance between the second shaft part and the second bearing.
  • the first magnetic bearing and the second magnetic bearing are located between the first bearing and the second bearing.
  • FIG. 1 is a schematic perspective view of an embodiment of the present disclosure.
  • Fig. 2 is a schematic structural diagram of an embodiment of the present disclosure.
  • FIG. 3 is a schematic cross-sectional structure view along direction A in FIG. 2 .
  • Fig. 4 is a schematic structural diagram of a flywheel rotor in an embodiment of the present disclosure.
  • Fig. 5 is a cross-sectional enlarged structural schematic diagram of a limiting component in an embodiment of the present disclosure.
  • Housing 1 upper housing 11; protruding part 111; base 12; lower end cover 121;
  • flywheel rotor 3 rotor part 31; first shaft part 32; second shaft part 33;
  • the limit assembly 5 the first bearing cover 51; the second bearing cover 52; the third bearing 53; the buffer member 54; the guide part 55;
  • Motor 7 Motor stator 71; Motor rotor 72;
  • the flywheel energy storage device includes a casing 1 , and an installation cavity is arranged in the casing 1 .
  • the housing 1 can be formed by connecting the upper housing 11 and the base 12 through a bolt structure, the upper housing 11 can be arranged on the top of the base 12, and an installation cavity is formed inside the upper housing 11 and the base 12, and the installation cavity It can be a vacuum environment, which can effectively reduce the energy loss caused by air resistance when the flywheel energy storage device is working.
  • the outer peripheral surface of the upper casing 11 can be provided with a plurality of first ribs 21, and the outer peripheral surface of the base 12 can be provided with There are a plurality of second reinforcing ribs 22, the distance between the top of the second reinforcing rib 22 and the upper part of the base 12 is smaller than the distance between the bottom of the second reinforcing rib 22 and the lower part of the base 12, which can improve the strengthening effect on the shell 1,
  • the upper edge of the base 12 can be provided with several lifting lugs 23, which can facilitate the handling and hoisting of the flywheel energy storage device, wherein the upper shell 11 and the first rib 21, the base 12 and the second rib 22, the base 12 and the suspension
  • the ears 23 can all be processed in one piece.
  • the lifting lug 23 can also be provided on the upper shell 11, and the upper shell 11 and the first rib 21, the base 12 and the second rib 22, the base 12 or the upper
  • the casing 11 and the lifting lug 23 can also be fixedly connected by welding.
  • the flywheel rotor 3, the flywheel rotor 3 is arranged in the installation cavity and can rotate in the installation cavity, the flywheel rotor 3 includes a rotor part 31, a first shaft part 32 and a second shaft part 33, and the first shaft part 32 is located on the side of the rotor part 31 On one side, the second shaft portion 33 is located on the other side of the rotor portion 31 , and the first shaft portion 32 and the second shaft portion 33 are arranged coaxially.
  • the flywheel rotor 3 in the embodiment of the present disclosure is arranged vertically in the axial direction, wherein the first shaft part 32 is arranged on the upper side of the rotor part 31, and the second shaft part 33 is arranged on the upper side of the rotor part 31.
  • the lower side of the rotor part 31, and the first shaft part 32 and the second shaft part 33 are arranged coaxially, and the rotor part 31, the first shaft part 32 and the second shaft part 33 can be processed in an integral molding manner.
  • the flywheel rotor 3 can also be formed by fixedly connecting the rotating shaft and the rotor part 31, and the rotating shaft is fixedly passed through the inside of the flywheel rotor 3, wherein the rotating shaft protrudes from the upper side of the rotor part 31.
  • a portion is the first shaft portion 32
  • a portion protruding from the lower side of the rotor portion 31 is the second shaft portion 33 .
  • the first bearing 41, the first bearing 41 is arranged on the casing 1, and the first bearing 41 surrounds the outer peripheral side of the first shaft portion 32; the second bearing 42, the second bearing 42 is arranged on the casing 1, and the second bearing 42 surrounds the outer peripheral side of the second shaft portion 33 .
  • the first bearing 41 is disposed in the corresponding installation cavity of the upper housing 11 , the first bearing 41 is movably sleeved at the first shaft portion 32 and the outer ring of the first bearing 41 is in contact with the upper housing 11 .
  • the inner wall of the housing 11 is fixedly connected, there is a certain gap between the inner ring of the first bearing 41 and the first shaft part 32, the second bearing 42 is arranged in the corresponding installation cavity of the base 12, and the second bearing 42 is movably sleeved At the second shaft part 33 and the outer ring of the second bearing 42 is fixedly connected with the inner wall of the base 12, there is a certain gap between the inner ring of the second bearing 42 and the second shaft part 33, the first bearing 41 and the second
  • the bearings 42 can be two face-to-face paired or back-to-back paired angular contact bearings.
  • the first bearing 41 and the second bearing 42 can support the first shaft part 32 and the first shaft part 32 respectively.
  • the second shaft portion 33 has a resisting effect and can protect other structures in the casing 1 .
  • first bearing 41 and the second bearing 42 can also use deep groove balls bearings.
  • Limiting assembly 5 the limiting assembly 5 is arranged at the end of the first shaft portion 32 or the end of the second shaft portion 33, the limiting assembly 5 is suitable for contacting the first shaft portion when the flywheel rotor 3 moves in the axial direction 32 or the end of the second shaft portion 33 abuts to constrain the displacement of the flywheel rotor 3 .
  • the limit assembly 5 is arranged below the bottom end of the second shaft portion 33.
  • the limit assembly 5 can stop the flywheel.
  • the rotor 3 performs stop buffering, which can protect other structures in the casing 1 .
  • the flywheel energy storage device in the embodiment of the present disclosure has the characteristics of large energy storage, which can achieve energy storage of 1000 kWh or more.
  • the flywheel rotor 3 loses stability in the process of high-speed rotation, it has a large amount of energy in both the radial and axial directions. Good load protection capacity, high security.
  • the limit assembly 5 includes a first bearing cap 51, a second bearing cap 52 and a third bearing 53
  • the third bearing 53 includes a first bearing ring and a second bearing ring
  • the first bearing ring and the second bearing ring The bearing rings can rotate relatively, one of the first bearing cap 51 and the second bearing cap 52 is connected with the first bearing ring, the other is connected with the second bearing ring, the first bearing cap 51 and the second bearing cap 52 One of them is adapted to abut against the end of the first shaft portion 32 or the end of the second shaft portion 33 .
  • the bearing ring on the upper side of the ball in the third bearing 53 is defined as the first bearing ring
  • the bearing cap on the upper side of the first bearing ring is defined as the first bearing cap 51
  • the first bearing cap 51 and the first bearing ring can be fixedly connected
  • the bearing ring on the lower side of the inner ball of the third bearing 53 is defined as the second bearing ring
  • the bearing cap on the lower side of the second bearing ring is defined as the second bearing cap 52
  • the second bearing The cover 52 and the second bearing ring can be fixedly connected
  • the first bearing ring and the second bearing ring can rotate relative to each other in the horizontal direction
  • the third bearing 53 can be a thrust bearing
  • the thrust bearing is a bearing specially used to bear axial force.
  • the end portion of the second shaft portion 33 is located above the first bearing cover 51, the end position of the second shaft portion 33 can be provided with a chamfer, and the upper part of the first bearing cover 51 can be provided with a joint with the second shaft portion 33.
  • the matching groove at the end when the high-speed rotating flywheel rotor 3 is axially unstable and falls down, the first bearing cap 51 can better stop the flywheel rotor 3 to avoid damage to the housing 1 damage to other structures within.
  • the first bearing cap 51, the second bearing cap 52, and the third bearing 53 are movable relative to the housing 1, and the limit assembly 5 includes a buffer member 54, which is adapted to move toward the first bearing cap 51 or The second bearing cover 52 exerts force to buffer the impact of the flywheel rotor 3 .
  • the buffer member 54 can be an annular permanent magnet, and the annular permanent magnet is adsorbed on the upper part of the second bearing cover 52, and a mounting groove adapted to the annular permanent magnet can be provided in the base 12, and the annular permanent magnet can The magnet is fixedly arranged in the installation groove.
  • the high-speed rotating flywheel rotor 3 is axially unstable and falls down onto the first bearing cap 51, it drives the first bearing cap 51, the second bearing cap 52, and the third bearing 53 to When moving downward, the annular permanent magnet has an upward suction force on the second bearing cover 52 to buffer the impact force of the flywheel rotor 3 and effectively avoid damage to other structures in the housing 1 .
  • the buffer member 54 can also be a structure composed of a plurality of block permanent magnets. The two structures work together to adsorb the second bearing cover 52.
  • the buffer member 54 can also adopt a spring, and the spring can be arranged on the upper part of the second bearing cover 52, or on the lower part of the second bearing cover 52, or on the flywheel rotor 3
  • the impact force acts as a cushioning effect.
  • the first bearing cap 51 is arranged between the flywheel rotor 3 and the second bearing cap 52, one of the second bearing cap 52 and the housing 1 is provided with a guide portion 55, and the other is provided with a There is a slot, and the guide part 55 fits in the slot and can guide and move in the slot.
  • a lower end cover 121 may be provided at the bottom of the base 12, the lower end cover 121 may be detachably connected to the base 12 through a bolt structure, and the upper part of the lower end cover 121 may be provided with a guide portion 55, the second A slot can be provided in the bearing cover 52, and the guide part 55 is inserted in the inside of the slot to facilitate the downward movement of the first bearing cover 51, the second bearing cover 52, and the third bearing 53.
  • the side wall of the slot in the second bearing cover 52 has a certain friction force, which can play a certain buffering effect when the first bearing cover 51, the second bearing cover 52, and the third bearing 53 move downward, and the lower end of the detachable connection
  • the cover 121 can facilitate the installation, disassembly, replacement and maintenance of the limit assembly 5 .
  • the guide part 55 can also be provided on the second bearing cover 52 , and the slot cooperating with the guide part 55 can be provided on the lower end cover 121 .
  • the flywheel energy storage device includes a first magnetic group 61 and a second magnetic group 62, the first magnetic group 61 and the first shaft portion 32 are located on the same side of the rotor portion 31, the second magnetic group 62 and the second The shaft portion 33 is located on the same side of the rotor portion 31, the first magnetic group 61 includes a first magnet 611 and a second magnet 612, one of the first magnet 611 and the second magnet 612 is arranged in the casing 1, and the other is arranged in the housing 1.
  • the second magnetic group 62 includes a third magnet 621 and a fourth magnet 622, one of the third magnet 621 and the fourth magnet 622 is arranged in the casing 1, and the other is arranged in the flywheel rotor 3, and the second Between the first magnet 611 and the second magnet 612 , between the third magnet 621 and the fourth magnet 622 is suitable for generating magnetic force so that the flywheel rotor 3 can be suspended in the installation cavity.
  • the first magnetic group 61 is arranged on the upper side of the rotor part 31, the first magnet 611 and the second magnet 612 can be ring-shaped and arranged oppositely, and the upper part of the rotor part 31 can be opened with
  • the first magnet 611 fits the installation groove, the first magnet 611 is fixedly installed in the installation groove, and the side of the upper casing 11 facing the upper surface of the rotor part 31 can be provided with a second magnet 612.
  • the installation groove is adapted to the groove , the second magnet 612 is fixedly installed in the installation groove, the second magnetic group 62 is arranged on the lower side of the rotor part 31, the third magnet 621 and the fourth magnet 622 can be ring-shaped and arranged oppositely, the lower part of the rotor part 31
  • a mounting slot adapted to the third magnet 621 may be provided, the third magnet 621 is fixedly installed in the mounting slot, and a mounting slot adapted to the fourth magnet 622 is provided on the side of the base 12 facing the lower surface of the rotor part 31 .
  • both the first magnetic group 61 and the second magnetic group 62 can use passive magnetic bearings, compared with electromagnetic bearings, the work of the flywheel energy storage device can be greatly reduced
  • the loss of energy during operation by arranging passive magnetic bearings on the upper and lower sides of the flywheel rotor 3, the stability of the flywheel rotor 3 during rotation can be improved and the occurrence of axial instability of the flywheel rotor 3 can be reduced, with high safety .
  • the flywheel energy storage device includes a damper 63 , the damper 63 is disposed on the casing 1 , and the damper 63 is adapted to apply a buffering force to the flywheel rotor 3 when it loses stability.
  • a mounting groove can also be opened on the side of the upper casing 11 facing the upper surface of the flywheel rotor 3 , and the damper 63 is fixedly installed in the mounting groove.
  • the damper 63 can adopt electromagnetic The damper can apply force to the flywheel rotor 3 and promote the flywheel rotor 3 to quickly reach a more stable state when rotating, and can improve the energy storage effect of the flywheel energy storage device.
  • the flywheel energy storage device includes a motor 7, and the motor 7 is sleeved on the outer peripheral side of the first shaft portion 32, and the housing 1 is provided with a protruding portion 111, and the protruding portion 111 protrudes to the outside of the housing 1 And an empty slot is formed in the casing 1, and at least part of the motor 7 fits in the empty slot.
  • a protruding portion 111 is provided on the top of the upper housing 11, and the cavity is located inside the upper housing 11.
  • the motor 7 includes a motor stator 71 and a motor rotor 72, and the motor rotor 72 is connected to the first shaft portion. 32 is fixedly connected, the motor stator 71 is fixedly connected with the inner wall of the upper casing 11, and the motor rotor 72 and the motor stator 71 fit in the hollow slot.
  • the flywheel energy storage device includes a cooling cover 81 and a fan 82.
  • the cooling cover 81 covers the outer peripheral side of the protruding part 111.
  • a cooling channel is formed between the cooling cover 81 and the protruding part 111.
  • the fan 82 is arranged on the cooling Inside the cover 81 , the fan 82 is adapted to drive the cooling airflow to flow into the cooling channel.
  • the cooling cover 81 is provided with an air outlet 83 , and the air outlet 83 is suitable for allowing the cooling airflow to flow out of the cooling cover 81 .
  • the cooling cover 81 is provided on the outer peripheral side of the protruding part 111, the fan 82 is arranged in the cooling cover 81 and can be located above the protruding part 111, the cooling cover 81 and the protruding part Between the parts 111 is an air passage, between the lower side edge of the cooling cover 81 and the upper casing 11 can be an air inlet 84, and the air outlet 83 can be located at the top position of the side of the cooling cover 81, when the blower fan 82 is running, it can The cooling air is forced to enter the cooling channel through the air inlet 84 and flow out through the air outlet 83.
  • the fan 82 can facilitate rapid cooling of the motor 7 and improve the service life.
  • the air inlet 84 can also be arranged at the top position of the peripheral side of the cooling cover 81 , and the cooling air outlet 83 can be arranged between the lower side edge of the cooling cover 81 and the upper casing 11 place.
  • the flywheel energy storage device includes a first magnetic bearing 91 and a second magnetic bearing 92
  • the first magnetic bearing 91 includes a first rotor part 911 and a first stator part 912
  • the first rotor part 911 is sheathed on
  • the outer peripheral side of the first shaft portion 32 can rotate synchronously with the flywheel rotor 3
  • the first stator portion 912 surrounds the outer peripheral side of the first rotor portion 911, and the distance between the first stator portion 912 and the first rotor portion 911 is larger than that of the first rotor portion 911.
  • the distance between the first shaft part 32 and the first bearing 41, the second magnetic bearing 92 includes the second The rotor part 921 and the second stator part 922.
  • the second rotor part 921 is sleeved on the outer peripheral side of the second shaft part 33 and can rotate synchronously with the flywheel rotor 3.
  • the second stator part 922 surrounds the outer peripheral side of the second rotor part 921 , the distance between the second stator part 922 and the second rotor part 921 is greater than the distance between the second shaft part 33 and the second bearing 42 .
  • the first magnetic bearing 91 is arranged above the motor 7, the first rotor part 911 is sleeved on the first shaft part 32 and is fixedly connected with the first shaft part 32, and the first stator part 912 surrounds the outer peripheral side of the first rotor part 911 and is fixedly connected to the inner wall of the upper housing 11, the distance between the first stator part 912 and the first rotor part 911 is greater than the distance between the first shaft part 32 and the first bearing 41,
  • the second rotor part 921 is sleeved on the second shaft part 33 and is fixedly connected with the second shaft part 33.
  • the second stator part 922 surrounds the outer peripheral side of the second rotor part 921 and is fixedly connected with the inner wall of the base 12.
  • the second The distance between the stator part 922 and the second rotor part 921 is greater than the distance between the second shaft part 33 and the second bearing 42, and the first magnetic bearing 91 and the second magnetic bearing 92 can adopt permanent magnetic bias hybrid magnetic bearings, the first magnetic The arrangement of the bearing 91 and the second magnetic bearing 92 structure, when the high-speed rotating flywheel rotor 3 occurs radial instability, the first bearing 41 and the second bearing 42 can play a role in the first magnetic bearing 91 and the second magnetic bearing 92
  • the function of protection effectively avoids damage caused by collision between the first rotor part 911 and the first stator part 912 , and between the second rotor part 921 and the second stator part 922 .
  • first magnetic bearing 91 and the second magnetic bearing 92 may also use pure electromagnetic bearings.
  • first magnetic bearing 91 and the second magnetic bearing 92 are located between the first bearing 41 and the second bearing 42 .
  • the first magnetic bearing 91 is arranged between the first bearing 41 and the motor 7, and the second magnetic bearing 92 is arranged between the rotor part 31 and the second bearing 42.
  • the configuration of this structure can When the radial instability of the flywheel rotor 3 occurs, the first shaft part 32 and the second shaft part 33 can be in contact with the first bearing 41 and the second bearing 42 that play a protective role with a smaller offset distance. The effect of protecting the radial direction of the flywheel rotor 3 is improved.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features.
  • the features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined.
  • a first feature being “on” or “under” a second feature may mean that the first and second features are in direct contact, or that the first and second features are indirect through an intermediary. touch.
  • “above”, “above” and “above” the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • “Below”, “beneath” and “beneath” the first feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is less horizontally than the second feature.
  • the terms “one embodiment,” “some embodiments,” “example,” “specific examples,” or “some examples” mean a specific feature, structure, material, or feature described in connection with the embodiment or example. Features are included in at least one embodiment or example of the present disclosure. In this specification, the schematic representations of the above terms are not necessarily directed to the same embodiment or example. Furthermore, the described specific features, structures, materials or characteristics may be combined in any suitable manner in any one or more embodiments or examples. In addition, those skilled in the art can combine and combine different embodiments or examples and features of different embodiments or examples described in this specification without conflicting with each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

公开了一种飞轮储能设备,包括壳体、飞轮转子、第一轴承、第二轴承和限位组件,壳体内设有安装腔,飞轮转子设在安装腔内并在安装腔内可转动,飞轮转子包括转子部、第一轴部和第二轴部,第一轴部位于转子部的一侧,第二轴部位于转子部的另一侧,第一轴承环绕在第一轴部的外周侧,第二轴承环绕在第二轴部的外周侧,限位组件设在第一轴部的端部或第二轴部的端部,限位组件适于在飞轮转子沿着轴向移动时与第一轴部的端部或第二轴部的端部止抵以约束所述飞轮转子的位移。

Description

飞轮储能设备
相关申请的交叉引用
本申请要求在2022年1月28日在中国提交的中国专利申请号202210103796.8的优先权,其全部内容通过引用并入本文。
技术领域
本公开涉及储能技术领域,具体地,涉及一种飞轮储能设备。
背景技术
飞轮储能系统是一种机电能量转换的储能装置,该系统采用物理方法进行储能,并通过电动/发电互逆式双向电机实现电能与高速运转飞轮的机械动能之间的相互转换和储存,电网调频调峰和电力储能,都需要大电量的储能飞轮,但在相关技术中,飞轮储能系统中的储存能量较低,不方便实际中的使用。
发明内容
本公开旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本公开的实施例提出一种飞轮储能设备,该飞轮储能设备具有储存能量大的特点,能够达到1000度电以及以上的能量储存,在飞轮转子进行高速旋转的过程中失稳时,在径向以及轴向均具有很好的承载保护能力,安全性高。
本公开实施例的飞轮储能设备,包括壳体,所述壳体内设有安装腔;飞轮转子,所述飞轮转子设在所述安装腔内并在所述安装腔内可转动,所述飞轮转子包括转子部、第一轴部和第二轴部,所述第一轴部位于所述转子部的一侧,所述第二轴部位于所述转子部的另一侧,且所述第一轴部和所述第二轴部同轴布置;第一轴承,所述第一轴承设于所述壳体,且所述第一轴承环绕在所述第一轴部的外周侧;第二轴承,所述第二轴承设于所述壳体,且所述第二轴承环绕在所述第二轴部的外周侧;限位组件,所述限位组件设在所述第一轴部的端部或所述第二轴部的端部,所述限位组件适于在所述飞轮转子沿着轴向移动时与所述第一轴部的端部或所述第二轴部的端部止抵以约束所述飞轮转子的位移,
其中所述限位组件包括第一轴承盖、第二轴承盖和第三轴承,所述第三轴承包括第一轴承圈和第二轴承圈,所述第一轴承圈和所述第二轴承圈可相对转动,所述第一轴承盖和所述第二轴承盖的其中一者与所述第一轴承圈相连、另一者与所述第二轴承圈相连,所述第一轴承盖和所述第二轴承盖的其中一者适于与所述第一轴部的端部或所述第二轴部的端 部止抵。
本公开实施例的飞轮储能设备具有储存能量大的特点,能够达到1000度电以及以上的能量储存,在飞轮转子进行高速旋转的过程中失稳时,在径向以及轴向均具有很好的承载保护能力,安全性高。
在一些实施例中,所述第一轴承盖、所述第二轴承盖、所述第三轴承相对所述壳体可移动,所述限位组件包括缓冲件,所述缓冲件适于向所述第一轴承盖或所述第二轴承盖施加作用力以缓冲所述飞轮转子的冲击作用。
在一些实施例中,所述第一轴承盖设在所述飞轮转子和所述第二轴承盖之间,所述第二轴承盖和所述壳体的其中一者上设有导向部、另一者上设有插槽,所述导向部配合在所述插槽内并在所述插槽内可导向移动。
在一些实施例中,所述飞轮储能设备包括第一磁组和第二磁组,所述第一磁组和所述第一轴部位于所述转子部的同侧,所述第二磁组和所述第二轴部位于所述转子部的同侧,所述第一磁组包括第一磁体和第二磁体,所述第一磁体和所述第二磁体的其中一者设于所述壳体、另一者设于所述飞轮转子,所述第二磁组包括第三磁体和第四磁体,所述第三磁体和所述第四磁体的其中一者设于所述壳体、另一者设于所述飞轮转子,所述第一磁体和所述第二磁体之间、所述第三磁体和所述第四磁体之间适于产生磁力作用以使所述飞轮转子可悬浮在所述安装腔内。
在一些实施例中,所述飞轮储能设备包括阻尼器,所述阻尼器设于所述壳体,所述阻尼器适于向所述飞轮转子失稳时施加缓冲作用力。
在一些实施例中,所述飞轮储能设备包括电机,所述电机套设在所述第一轴部的外周侧,所述壳体设有凸出部,所述凸出部向所述壳体的外侧凸出并在所述壳体内形成空槽,至少部分所述电机配合在所述空槽内。
在一些实施例中,所述飞轮储能设备包括冷却罩和风机,所述冷却罩罩在所述凸出部的外周侧,所述冷却罩和所述凸出部之间形成冷却通道,所述风机设在所述冷却罩内,所述风机适于驱动冷却气流流入所述冷却通道,所述冷却罩上设有出风口,所述出风口适于供所述冷却气流流出所述冷却罩。
在一些实施例中,所述飞轮储能设备包括第一磁轴承和第二磁轴承,所述第一磁轴承包括第一转子部和第一定子部,所述第一转子部套设在所述第一轴部的外周侧并与所述飞轮转子可同步转动,所述第一定子部环绕在所述第一转子部的外周侧,所述第一定子部和所述第一转子部的间距大于所述第一轴部和所述第一轴承的间距,所述第二磁轴承包括第二转子部和第二定子部,所述第二转子部套设在所述第二轴部的外周侧并与所述飞轮转子可同步转动,所述第二定子部环绕在所述第二转子部的外周侧,所述第二定子部和所述第 二转子部的间距大于所述第二轴部和所述第二轴承的间距。
在一些实施例中,所述第一磁轴承和所述第二磁轴承位于所述第一轴承和所述第二轴承之间。
附图说明
图1是本公开实施例的立体结构示意图。
图2是本公开实施例的结构示意图。
图3是图2中A方向的剖面结构示意图。
图4是本公开实施例中飞轮转子的结构示意图。
图5是本公开实施例中限位组件处的剖面放大结构示意图。
附图标记:
壳体1;上壳体11;凸出部111;底座12;下端盖121;
第一加强筋21;第二加强筋22;吊耳23;
飞轮转子3;转子部31;第一轴部32;第二轴部33;
第一轴承41;第二轴承42;
限位组件5;第一轴承盖51;第二轴承盖52;第三轴承53;缓冲件54;导向部55;
第一磁组61;第一磁体611;第二磁体612;第二磁组62;第三磁体621;第四磁体622;阻尼器63;
电机7;电机定子71;电机转子72;
冷却罩81;风机82;出风口83;进风口84;
第一磁轴承91;第一转子部911;第一定子部912;第二磁轴承92;第二转子部921;第二定子部922。
具体实施方式
下面详细描述本公开的实施例,实施例的示例在附图中示出。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
本公开是基于发明人对以下事实和问题的发现和认识做出的:
大电量的储能飞轮都需要有较大的转动惯量和较高的转速,但随之出现了新的问题:重量增大时存在一定的安全问题,存储能量较高时,飞轮转子失稳后存在较大风险,而在相关技术中缺少可靠稳定的保护措施。
如图1和图2所示,根据本公开实施例的飞轮储能设备,包括壳体1,壳体1内设有安装腔。
具体地,壳体1可以由上壳体11和底座12通过螺栓结构连接而成,上壳体11可以设在底座12的上部,上壳体11和底座12的内部形成一个安装腔,安装腔可以为真空环境,可以有效降低飞轮储能设备工作时由于空气阻力而造成的能量损耗,上壳体11的外周面上可设有多个第一加强筋21,底座12的外周面上可以设有多个第二加强筋22,第二加强筋22顶端与底座12上部之间的距离小于第二加强筋22底端与底座12下部之间的距离,可以提高对壳体1的加强效果,底座12的上部边缘处可以设有若干吊耳23,可以方便对飞轮储能设备进行搬运吊装,其中上壳体11与第一加强筋21、底座12与第二加强筋22、底座12与吊耳23均可以为一体成型加工而成。
可以理解的是,在其他一些实施例中,吊耳23也可以设在上壳体11上,并且上壳体11与第一加强筋21、底座12与第二加强筋22、底座12或上壳体11与吊耳23也可以采用焊接的方式固定连接。
飞轮转子3,飞轮转子3设在安装腔内并在安装腔内可转动,飞轮转子3包括转子部31、第一轴部32和第二轴部33,第一轴部32位于转子部31的一侧,第二轴部33位于转子部31的另一侧,且第一轴部32和第二轴部33同轴布置。
具体地,如图3和图4所示,本公开实施例中的飞轮转子3为轴向竖直设置,其中第一轴部32设置在转子部31的上侧,第二轴部33设置在转子部31的下侧,并且第一轴部32和第二轴部33为同轴设置,转子部31、第一轴部32、第二轴部33可以采用一体成型的方式加工而成。
可以理解的是,在其他一些实施例中,飞轮转子3也可以由转轴和转子部31固定连接而成,转轴固定穿设在飞轮转子3的内部,其中转轴凸出于转子部31上侧的部分为第一轴部32,凸出于转子部31下侧的部分为第二轴部33。
第一轴承41,第一轴承41设于壳体1,且第一轴承41环绕在第一轴部32的外周侧;第二轴承42,第二轴承42设于壳体1,且第二轴承42环绕在第二轴部33的外周侧。
具体地,如图3所示,第一轴承41设置在上壳体11所对应的安装腔内,第一轴承41活动套设在第一轴部32处并且第一轴承41的外圈与上壳体11的内壁固定连接,第一轴承41的内圈与第一轴部32之间具有一定的间隙,第二轴承42设置在底座12所对应的安装腔内,第二轴承42活动套设在第二轴部33处并且第二轴承42的外圈与底座12的内壁固定连接,第二轴承42的内圈与第二轴部33之间具有一定的间隙,第一轴承41和第二轴承42均可以采用两个面对面配对或背对背配对的角接触轴承,当高速旋转的飞轮转子3发生径向的失稳时,第一轴承41和第二轴承42可分别对第一轴部32和第二轴部33起到抵挡的效果,可以对壳体1内的其他结构起到保护的作用。
可以理解的是,在其他一些实施例中,第一轴承41和第二轴承42也可以采用深沟球 轴承。
限位组件5,限位组件5设在第一轴部32的端部或第二轴部33的端部,限位组件5适于在飞轮转子3沿着轴向移动时与第一轴部32的端部或第二轴部33的端部止抵以约束飞轮转子3的位移。
具体地,如图3所示,限位组件5设在第二轴部33底端的下方,当高速旋转的飞轮转子3发生轴向失稳并向下掉落时,限位组件5可对飞轮转子3进行止抵缓冲,可以对壳体1内的其他结构起到保护的作用。
本公开实施例的飞轮储能设备具有储存能量大的特点,能够达到1000度电以及以上的能量储存,在飞轮转子3进行高速旋转的过程中失稳时,在径向以及轴向均具有很好的承载保护能力,安全性高。
在一些实施例中,限位组件5包括第一轴承盖51、第二轴承盖52和第三轴承53,第三轴承53包括第一轴承圈和第二轴承圈,第一轴承圈和第二轴承圈可相对转动,第一轴承盖51和第二轴承盖52的其中一者与第一轴承圈相连、另一者与第二轴承圈相连,第一轴承盖51和第二轴承盖52的其中一者适于与第一轴部32的端部或第二轴部33的端部止抵。
具体地,如图5所示,将第三轴承53内滚珠上侧的轴承圈定义为第一轴承圈,将第一轴承圈上侧的轴承盖定义为第一轴承盖51,第一轴承盖51与第一轴承圈可以固定相连,将第三轴承53内滚珠下侧的轴承圈定义为第二轴承圈,将第二轴承圈下侧的轴承盖定义为第二轴承盖52,第二轴承盖52与第二轴承圈可以固定相连,第一轴承圈和第二轴承圈可发生水平方向上的相对转动,第三轴承53可以为推力轴承,推力轴承是专用于承受轴向力的轴承,第二轴部33的端部位于第一轴承盖51的上方,第二轴部33的端部位置处可以设有倒角,第一轴承盖51的上部可以设有与第二轴部33的端部适配的凹槽,当高速旋转的飞轮转子3发生轴向失稳并向下掉落时,第一轴承盖51可对飞轮转子3进行更好的止抵,以避免对壳体1内的其他结构造成损伤。
在一些实施例中,第一轴承盖51、第二轴承盖52、第三轴承53相对壳体1可移动,限位组件5包括缓冲件54,缓冲件54适于向第一轴承盖51或第二轴承盖52施加作用力以缓冲飞轮转子3的冲击作用。
具体地,如图5所示,缓冲件54可以为环形永磁铁,环形永磁铁吸附在第二轴承盖52的上部,在底座12内可以设有与环形永磁铁适配的安装槽,环形永磁铁固定设置在安装槽内,当高速旋转的飞轮转子3发生轴向失稳向下掉落至第一轴承盖51上并带动第一轴承盖51、第二轴承盖52、第三轴承53向下移动时,环形永磁铁对第二轴承盖52具有向上的吸力可以对飞轮转子3的冲击力进行缓冲,可以有效的避免对壳体1内的其他结构造成损伤。
可以理解的是,在其他一些实施例中,缓冲件54也可以选用多个块状永磁铁组成的结 构共同对第二轴承盖52起吸附作用。
可以理解的是,在其他一些实施例中,缓冲件54也可以采用弹簧,弹簧可以设在第二轴承盖52的上部,也可以设在第二轴承盖52的下部,也可以对飞轮转子3的冲击力起到缓冲的效果。
在一些实施例中,第一轴承盖51设在飞轮转子3和第二轴承盖52之间,第二轴承盖52和壳体1的其中一者上设有导向部55、另一者上设有插槽,导向部55配合在插槽内并在插槽内可导向移动。
具体地,如图5所示,在底座12的底部处可以设有下端盖121,下端盖121可以通过螺栓结构与底座12可拆卸连接,下端盖121的上部可以设有导向部55,第二轴承盖52内可以设有插槽,导向部55配合插设在插槽的内部,可便于第一轴承盖51、第二轴承盖52、第三轴承53向下移动,并且导向部55与第二轴承盖52内插槽的侧壁具有一定的摩擦力,可以对第一轴承盖51、第二轴承盖52、第三轴承53向下移动时起到一定的缓冲效果,可拆卸连接的下端盖121可便于限位组件5的安装、拆卸、更换维护等。
可以理解的是,在其他一些实施例中,导向部55也可以设在第二轴承盖52上,与该导向部55配合设置的插槽可以设在下端盖121上。
在一些实施例中,飞轮储能设备包括第一磁组61和第二磁组62,第一磁组61和第一轴部32位于转子部31的同侧,第二磁组62和第二轴部33位于转子部31的同侧,第一磁组61包括第一磁体611和第二磁体612,第一磁体611和第二磁体612的其中一者设于壳体1、另一者设于飞轮转子3,第二磁组62包括第三磁体621和第四磁体622,第三磁体621和第四磁体622的其中一者设于壳体1、另一者设于飞轮转子3,第一磁体611和第二磁体612之间、第三磁体621和第四磁体622之间适于产生磁力作用以使飞轮转子3可悬浮在安装腔内。
具体地,如图3所示,第一磁组61设在转子部31的上侧,第一磁体611和第二磁体612均可以为环形结构并相对设置,转子部31的上部可以开设有与第一磁体611适配的安装槽,第一磁体611固定安装在该安装槽内,上壳体11内朝向转子部31上表面的一侧面上可以开设有与第二磁体612适配的安装槽,第二磁体612固定安装在该安装槽内,第二磁组62设在转子部31的下侧,第三磁体621和第四磁体622均可以为环形结构并相对设置,转子部31的下部可以开设有与第三磁体621适配的安装槽,第三磁体621固定安装在该安装槽内,底座12内朝向转子部31下表面的一侧面上开设有与第四磁体622适配的安装槽,第四磁体622固定安装在该安装槽内,第一磁体611和第二磁体612之间、第三磁体621和第四磁体622之间可以产生斥力以使飞轮转子3悬浮在安装腔内,第一磁组61和第二磁组62均可以采用被动磁轴承,相对于电磁轴承,可以极大的降低该飞轮储能设备工 作时能量的损耗,通过在飞轮转子3的上下两侧均设置被动磁轴承,可以促使飞轮转子3在旋转时的稳定性更好并降低飞轮转子3轴向失稳情况的发生,安全性高。
在一些实施例中,飞轮储能设备包括阻尼器63,阻尼器63设于壳体1,阻尼器63适于向飞轮转子3失稳时施加缓冲作用力。
具体地,如图3所示,在上壳体11内朝向飞轮转子3上表面的一侧面上还可以开设有一个安装槽,阻尼器63固定安装在该安装槽内,阻尼器63可以采用电磁阻尼器,可以向飞轮转子3施加作用力并促使飞轮转子3旋转时快速达到更加稳定的状态,可以提高该飞轮储能设备的储能效果。
在一些实施例中,飞轮储能设备包括电机7,电机7套设在第一轴部32的外周侧,壳体1设有凸出部111,凸出部111向壳体1的外侧凸出并在壳体1内形成空槽,至少部分电机7配合在空槽内。
具体地,如图3所示,上壳体11的上部设有凸出部111,空槽位于上壳体11内部,电机7包括电机定子71和电机转子72,电机转子72与第一轴部32固定相连,电机定子71与上壳体11的内壁固定相连,并且电机转子72和电机定子71配合在空槽内。
可以理解的是,在其他一些实施例中,电机转子72和电机定子71也可以只有上侧的一部分配合在空槽内。
在一些实施例中,飞轮储能设备包括冷却罩81和风机82,冷却罩81罩在凸出部111的外周侧,冷却罩81和凸出部111之间形成冷却通道,风机82设在冷却罩81内,风机82适于驱动冷却气流流入冷却通道,冷却罩81上设有出风口83,出风口83适于供冷却气流流出冷却罩81。
具体地,如图2和图3所示,冷却罩81罩设在凸出部111的外周侧,风机82设在冷却罩81内并可以位于凸出部111的上方,冷却罩81和凸出部111之间为气流通道,冷却罩81的下侧边缘和上壳体11之间可以为进风口84,出风口83可以设在冷却罩81周侧面的顶部位置,在风机82运转时,可促使冷却气流经进风口84进入冷却通道并经出风口83流出,在该飞轮储能设备工作时,风机82可便于对电机7进行快速冷却降温,提高使用寿命。
可以理解的是,在其他一些实施例中,也可以将进风口84设在冷却罩81周侧面的顶部位置,将冷却气流出风口83设在冷却罩81下侧边缘和上壳体11之间处。
在一些实施例中,飞轮储能设备包括第一磁轴承91和第二磁轴承92,第一磁轴承91包括第一转子部911和第一定子部912,第一转子部911套设在第一轴部32的外周侧并与飞轮转子3可同步转动,第一定子部912环绕在第一转子部911的外周侧,第一定子部912和第一转子部911的间距大于第一轴部32和第一轴承41的间距,第二磁轴承92包括第二 转子部921和第二定子部922,第二转子部921套设在第二轴部33的外周侧并与飞轮转子3可同步转动,第二定子部922环绕在第二转子部921的外周侧,第二定子部922和第二转子部921的间距大于第二轴部33和第二轴承42的间距。
具体地,如图3所示,第一磁轴承91设在电机7的上方,第一转子部911套设在第一轴部32上并与第一轴部32固定相连,第一定子部912环绕在第一转子部911的外周侧并与上壳体11的内壁固定相连,第一定子部912和第一转子部911的间距大于第一轴部32和第一轴承41的间距,第二转子部921套设在第二轴部33上并与第二轴部33固定相连,第二定子部922环绕在第二转子部921的外周侧并与底座12的内壁固定相连,第二定子部922和第二转子部921的间距大于第二轴部33和第二轴承42的间距,第一磁轴承91和第二磁轴承92可以采用永磁偏置混合磁轴承,该第一磁轴承91和第二磁轴承92结构的设置,当高速旋转的飞轮转子3发生径向失稳时,第一轴承41和第二轴承42可以对第一磁轴承91和第二磁轴承92起到保护的作用,有效的避免了第一转子部911和第一定子部912、第二转子部921和第二定子部922之间发生碰撞造成损坏。
可以理解的是,在其他一些实施例中,第一磁轴承91和第二磁轴承92也可以采用纯电磁轴承。
在一些实施例中,第一磁轴承91和第二磁轴承92位于第一轴承41和第二轴承42之间。
具体地,如图3所示,第一磁轴承91设在第一轴承41和电机7之间,第二磁轴承92设在转子部31和第二轴承42之间,该结构的设置,可促使在飞轮转子3发生径向失稳时,第一轴部32、第二轴部33可以以更小的偏移距离就可以与起保护作用的第一轴承41、第二轴承42接触,可提高对飞轮转子3径向的保护效果。
在本公开的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本公开的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本公开中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械 连接,也可以是电连接或彼此可通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
在本公开中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本公开中,术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (9)

  1. 一种飞轮储能设备,其特征在于,包括:
    壳体,所述壳体内设有安装腔;
    飞轮转子,所述飞轮转子设在所述安装腔内并在所述安装腔内可转动,所述飞轮转子包括转子部、第一轴部和第二轴部,所述第一轴部位于所述转子部的一侧,所述第二轴部位于所述转子部的另一侧,且所述第一轴部和所述第二轴部同轴布置;
    第一轴承,所述第一轴承设于所述壳体,且所述第一轴承环绕在所述第一轴部的外周侧;
    第二轴承,所述第二轴承设于所述壳体,且所述第二轴承环绕在所述第二轴部的外周侧;和
    限位组件,所述限位组件设在所述第一轴部的端部或所述第二轴部的端部,所述限位组件适于在所述飞轮转子沿着轴向移动时与所述第一轴部的端部或所述第二轴部的端部止抵以约束所述飞轮转子的位移,
    其中所述限位组件包括第一轴承盖、第二轴承盖和第三轴承,所述第三轴承包括第一轴承圈和第二轴承圈,所述第一轴承圈和所述第二轴承圈可相对转动,所述第一轴承盖和所述第二轴承盖的其中一者与所述第一轴承圈相连、另一者与所述第二轴承圈相连,所述第一轴承盖和所述第二轴承盖的其中一者适于与所述第一轴部的端部或所述第二轴部的端部止抵。
  2. 根据权利要求1所述的飞轮储能设备,其特征在于,所述第一轴承盖、所述第二轴承盖、所述第三轴承相对所述壳体可移动,所述限位组件包括缓冲件,所述缓冲件适于向所述第一轴承盖或所述第二轴承盖施加作用力以缓冲所述飞轮转子的冲击作用。
  3. 根据权利要求2所述的飞轮储能设备,其特征在于,所述第一轴承盖设在所述飞轮转子和所述第二轴承盖之间,所述第二轴承盖和所述壳体的其中一者上设有导向部、另一者上设有插槽,所述导向部配合在所述插槽内并在所述插槽内可导向移动。
  4. 根据权利要求1至3中任一项所述的飞轮储能设备,其特征在于,包括第一磁组和第二磁组,所述第一磁组和所述第一轴部位于所述转子部的同侧,所述第二磁组和所述第二轴部位于所述转子部的同侧,所述第一磁组包括第一磁体和第二磁体,所述第一磁体和所述第二磁体的其中一者设于所述壳体、另一者设于所述飞轮转子,所述第二磁组包括第三磁体和第四磁体,所述第三磁体和所述第四磁体的其中一者设于所述壳体、另一者设于所述飞轮转子,所述第一磁体和所述第二磁体之间、所述第三磁体和所述第四磁体之间适于产生磁力作用以使所述飞轮转子可悬浮在所述安装腔内。
  5. 根据权利要求1至4中任一项所述的飞轮储能设备,其特征在于,包括阻尼器,所述阻尼器设于所述壳体,所述阻尼器适于向所述飞轮转子失稳时施加缓冲作用力。
  6. 根据权利要求1至5中任一项所述的飞轮储能设备,其特征在于,包括电机,所述电机套设在所述第一轴部的外周侧,所述壳体设有凸出部,所述凸出部向所述壳体的外侧凸出并在所述壳体内形成空槽,至少部分所述电机配合在所述空槽内。
  7. 根据权利要求6所述的飞轮储能设备,其特征在于,包括冷却罩和风机,所述冷却罩罩在所述凸出部的外周侧,所述冷却罩和所述凸出部之间形成冷却通道,所述风机设在所述冷却罩内,所述风机适于驱动冷却气流流入所述冷却通道,所述冷却罩上设有出风口,所述出风口适于供所述冷却气流流出所述冷却罩。
  8. 根据权利要求1至7中任一项所述的飞轮储能设备,其特征在于,包括第一磁轴承和第二磁轴承,所述第一磁轴承包括第一转子部和第一定子部,所述第一转子部套设在所述第一轴部的外周侧并与所述飞轮转子可同步转动,所述第一定子部环绕在所述第一转子部的外周侧,所述第一定子部和所述第一转子部的间距大于所述第一轴部和所述第一轴承的间距,所述第二磁轴承包括第二转子部和第二定子部,所述第二转子部套设在所述第二轴部的外周侧并与所述飞轮转子可同步转动,所述第二定子部环绕在所述第二转子部的外周侧,所述第二定子部和所述第二转子部的间距大于所述第二轴部和所述第二轴承的间距。
  9. 根据权利要求8所述的飞轮储能设备,其特征在于,所述第一磁轴承和所述第二磁轴承位于所述第一轴承和所述第二轴承之间。
PCT/CN2023/073158 2022-01-28 2023-01-19 飞轮储能设备 WO2023143375A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210103796.8 2022-01-28
CN202210103796.8A CN114123635B (zh) 2022-01-28 2022-01-28 飞轮储能设备

Publications (1)

Publication Number Publication Date
WO2023143375A1 true WO2023143375A1 (zh) 2023-08-03

Family

ID=80361832

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/073158 WO2023143375A1 (zh) 2022-01-28 2023-01-19 飞轮储能设备

Country Status (2)

Country Link
CN (1) CN114123635B (zh)
WO (1) WO2023143375A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114123635B (zh) * 2022-01-28 2022-05-17 华驰动能(北京)科技有限公司 飞轮储能设备
CN114448162B (zh) * 2022-04-06 2022-06-07 华驰动能(北京)科技有限公司 具有主动散热功能的磁悬浮储能飞轮和储能设备
CN115250033B (zh) * 2022-09-22 2022-12-06 沈阳微控主动磁悬浮技术产业研究院有限公司 飞轮储能总成
CN116545165B (zh) * 2023-07-07 2023-10-03 华驰动能(北京)科技有限公司 储能飞轮和储能装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140260779A1 (en) * 2013-03-15 2014-09-18 Paul Prober Energy storing flywheel and bearing assembly
CN204538879U (zh) * 2015-03-30 2015-08-05 成都浩生钢铁有限公司 一种新型飞轮储能装置
CN113489229A (zh) * 2021-07-09 2021-10-08 坎德拉(深圳)新能源科技有限公司 飞轮储能系统的飞轮转子轴向保护装置及轴向保护方法
CN114123635A (zh) * 2022-01-28 2022-03-01 华驰动能(北京)科技有限公司 飞轮储能设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112117861B (zh) * 2020-09-08 2021-08-31 华中科技大学 一种飞轮储能电机
CN113315295B (zh) * 2021-06-30 2022-07-15 平高集团有限公司 一种飞轮储能装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140260779A1 (en) * 2013-03-15 2014-09-18 Paul Prober Energy storing flywheel and bearing assembly
CN204538879U (zh) * 2015-03-30 2015-08-05 成都浩生钢铁有限公司 一种新型飞轮储能装置
CN113489229A (zh) * 2021-07-09 2021-10-08 坎德拉(深圳)新能源科技有限公司 飞轮储能系统的飞轮转子轴向保护装置及轴向保护方法
CN114123635A (zh) * 2022-01-28 2022-03-01 华驰动能(北京)科技有限公司 飞轮储能设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
REN ZHENGYI, YANG LIPING; CAO ZHIHAO; CAO FEI; SUN ZHENGLU: "Optimization Analysis of Thrust Collar Layout in Flywheel Energy Storage System", MACHINE BUILDING & AUTOMATION, vol. 49, no. 267, 20 April 2020 (2020-04-20), XP093083493, ISSN: 1671-5276, DOI: 10.19344/j.cnki.issn1671-5276.2020.02.025 *

Also Published As

Publication number Publication date
CN114123635B (zh) 2022-05-17
CN114123635A (zh) 2022-03-01

Similar Documents

Publication Publication Date Title
WO2023143375A1 (zh) 飞轮储能设备
AU2008266814B2 (en) Lift magnet mechanism for flywheel power storage systems
WO2023138569A1 (zh) 储能飞轮和具有其的储能设备
WO2018191990A1 (zh) 高效防爆三相异步电动机
EP1980765B1 (en) Electromagnetic suspension bearing
CN111404317A (zh) 一种磁悬浮电机
CN110718987B (zh) 飞轮电池
JP6155320B2 (ja) 安全装置を有する電気機械式フライホイール
TWI763610B (zh) 飛輪能量儲存系統
CN102684367A (zh) 一种大容量高效率磁悬浮飞轮储能装置
WO2020010017A1 (en) An electromechanical battery
WO2019037523A1 (zh) 一种吸尘器电机及吸尘器
CN216478457U (zh) 磁悬浮转子的失稳保护机构
CN115811174B (zh) 一种磁悬浮飞轮储能电池
CN202798274U (zh) 铝合金、铸铁复合轴承座振动电机
CN115776193B (zh) 一种磁悬浮飞轮电池
CN211429100U (zh) 高能复合飞轮电池
JPS5853222B2 (ja) フライホイ−ル
CN114567119B (zh) 一种飞轮储能系统用的飞轮防冲击旋转机构
CN216157940U (zh) 磁悬浮散热风扇
CN213185722U (zh) 一种利用陀螺原理的电机
CN220748602U (zh) 空压机
CN219697429U (zh) 一种利用轴向磁轴承卸载的机械支承储能飞轮装置
CN219394598U (zh) 一种集成制动器的盘式电机
CN216530766U (zh) 一种分体式磁环结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23746254

Country of ref document: EP

Kind code of ref document: A1