WO2023142991A1 - 激光雷达和具有探测功能的设备 - Google Patents

激光雷达和具有探测功能的设备 Download PDF

Info

Publication number
WO2023142991A1
WO2023142991A1 PCT/CN2023/071220 CN2023071220W WO2023142991A1 WO 2023142991 A1 WO2023142991 A1 WO 2023142991A1 CN 2023071220 W CN2023071220 W CN 2023071220W WO 2023142991 A1 WO2023142991 A1 WO 2023142991A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
unit
optical
laser
amount
Prior art date
Application number
PCT/CN2023/071220
Other languages
English (en)
French (fr)
Inventor
徐运强
周勇
陈洪福
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023142991A1 publication Critical patent/WO2023142991A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • the invention relates to the technical field of laser detection, in particular to a laser radar and a device with a detection function.
  • Lidar is an active detection system that can accurately detect the depth, distance and other information of objects whether it is day or night. Compared with millimeter-wave radar and ultrasonic radar, Lidar has smaller wavelength, resolution and measurement It is an indispensable technology and direction in both military and civilian fields.
  • the current R&D and design in the field of LiDAR is facing many difficulties and challenges. Among them, how to realize the miniaturization design of the LiDAR system while ensuring the high performance and high quality of the LiDAR system is the research and development direction of the industry.
  • the embodiment of the present application provides a laser radar and a device with a detection function, which can ensure the small size of the laser radar and meet the quality requirements of the laser radar.
  • the embodiment of the present application provides a laser radar, including a window, a laser system, a scanning unit and an off-axis optical unit, the window has a power in a first direction, and the first direction is the laser system The collimation direction or the divergence direction of the laser system;
  • the laser system includes a laser unit and a mirror unit, and the laser unit is used for emitting or/and receiving light beams (that is, the laser unit can be a transmitting unit or a receiving unit, or can be equipped with The general term for the laser unit of the transmitting unit and the receiving unit) to form a laser optical path between the window and the laser unit, the mirror unit is located on the laser optical path, and the scanning unit is located on the laser optical path Between the mirror unit and the window, and used to scan the light beam, the laser light path forms a first optical axis between the scanning unit and the window, in the first direction, the The first off-axis amount is formed between the first optical axis and the second optical axis; wherein, the
  • the first optical axis can be understood as the line between the light reflection point of the laser light path on the scanning unit and the imaging spot of the laser light path, specifically, it can be the line between the center of the light reflection point and the center of the light spot.
  • the third optical axis can be understood as the line connecting the laser light path between the light exit/incidence position of the laser unit and the light reflection point of the scanning unit, specifically, it can be the center of the light exit/incidence position and the center of the light reflection point connection.
  • the volume of the laser radar can be reduced, and the design of the miniaturization of the laser radar can be realized.
  • the non-collinearity between the axes will produce off-axis aberration, which refers to the asymmetrical aberration caused by the non-collinearity between the first optical axis and the second optical axis, wherein, aberration (aberration) It refers to the inconsistency between the results obtained by non-paraxial ray tracing and the results obtained by paraxial ray tracing in the actual optical lens, and the deviation from the ideal state of Gaussian optics (first-order approximation theory or paraxial ray).
  • the existence of off-axis aberration directly affects the image quality of the environment to be detected detected by the lidar.
  • the existence of the first off-axis amount is the main factor that causes off-axis aberration and affects the quality of the image of the environment to be detected detected by the lidar.
  • the aberration generated by the first off-axis amount can be reduced or eliminated through the setting of the off-axis optical unit. It can be understood that the present application realizes complete compensation or complete compensation through the second off-axis amount The aberration caused by the first off-axis amount is partially compensated. Therefore, the present application can reduce or eliminate off-axis aberration while realizing the miniaturization of the laser radar, and improve the quality of the laser radar.
  • the off-axis optical unit is located between the scanning unit and the mirror unit.
  • the off-axis optical unit and the mirror group unit are independent of each other, they can have an independent installation structure, and the driving and control of the off-axis optical unit by the control module, and the driving and control of the mirror group unit can be independent of each other Yes, in such a solution, the off-axis optical unit can be used with different mirror units, and different forms of off-axis optical units can be selected according to the internal configuration environment of the lidar, which has better flexibility.
  • the off-axis optical unit includes a first lens barrel, and the lens group unit includes a second lens barrel.
  • the off-axis optical unit can be changed. position, adjust the second off-axis amount.
  • a sliding track is provided inside the lidar, the first lens barrel is slidably connected to the sliding track, and the extending direction of the sliding track is perpendicular to the direction of the fourth optical axis.
  • the sliding track is provided with a plurality of positioning structures, and the off-axis optical unit is positioned in different positions through the cooperation of the positioning structures and the second lens barrel.
  • the off-axis optical unit is located in the lens group unit, that is to say, the off-axis optical unit is integrated in the lens group unit, and the off-axis optical unit does not need an independent lens barrel structure, only It is necessary to install the off-axis lens group of the off-axis optical unit in the lens barrel of the lens unit, and reserve a space for installing the off-axis lens group of the off-axis optical unit in the lens barrel of the lens unit.
  • the advantage of this solution is that the off-axis optical unit and the mirror unit are integrated to form an optical component with the second off-axis. In the process of assembling the laser radar, only the lens barrel of the mirror unit needs to be installed, which not only saves The internal space of the lidar is also convenient for assembly, which can reduce the production cost of the lidar.
  • the third optical axis and the fourth optical axis are not collinear, the second off-axis amount is a fixed value, and the first off-axis amount is a variable value.
  • This solution can select an appropriate value of the second off-axis amount according to the change of the first off-axis amount, so as to adapt to all possible first off-axis amounts during the scanning process of the scanning unit, and can compensate the first off-axis amount
  • the accuracy of the second off-axis amount to compensate for off-axis aberrations in this solution is not high, since the second off-axis amount is a fixed value, the design difficulty and production cost are relatively low for lidar , can be based on the requirements of specific application scenarios, for example, in some scenarios, the low-cost lidar provided by this solution can be used when high accuracy of off-axis aberration compensation is not required.
  • both the off-axis optical unit and the laser system can be designed to be fixed on the lidar The structure inside the housing; it can also be realized by relatively fixing the positions of the third optical axis and the fourth optical axis, for example, the position of the off-axis optical unit can be moved, but during the movement of the off-axis optical unit, the laser system Also active to ensure that the distance between the third optical axis and the fourth optical axis is a fixed value.
  • both the first off-axis amount and the second off-axis amount are variable values.
  • This solution can adjust the value of the second off-axis amount according to the change of the first off-axis amount, can improve the accuracy of compensating the off-axis aberration, perform real-time compensation, and improve the image quality of the lidar.
  • the laser system is fixed, and the off-axis optical unit is driven to move by a control module to change the second off-axis amount .
  • the solution provided by this solution for real-time compensation of off-axis aberration has higher accuracy.
  • the first off-axis value when the first off-axis value is in the first value range and the second off-axis value is the first value, it can be understood as: a specific value of the second off-axis value corresponds to a value range The value of the specific first off-axis amount within, that is, one-to-many.
  • this solution can achieve partition compensation for off-axis aberrations. Compared with the solution where the off-axis optical unit is fixed, this solution can achieve refined off-axis aberration compensation.
  • the second off-axis amount can remain unchanged, and the driving structure and control module of the second off-axis amount are easier to design, and the cost can be better controlled.
  • the first off-axis amount includes N different first values
  • the second off-axis amount includes N different second values
  • the lidar further includes a storage module and a control module, the storage module stores the correspondence between the positions of the scanning unit and the off-axis optical unit, and the control module is used to According to the real-time position of the scanning unit, determine the target position of the off-axis optical unit corresponding to the real-time position, and control the off-axis optical unit to move to the target position.
  • control module may be a processor, and the processor may also be called a control unit, a controller, a microcontroller, or some other suitable term.
  • the storage module can be a memory, and the memory can be coupled to the processor or connected to the processor through a bus for storing various software programs and/or multiple sets of instructions and data.
  • the memory can include a high-speed random access memory , and may also include non-volatile memory, such as one or more disk storage devices, Embedded Multi Media Card (Embedded Multi Media Card, EMMC), Universal Flash Storage (Universal Flash Storage, UFS), read-only memory (Read- Only Memory, ROM) or flash memory (flash), etc., or other types of static memory that can store static information and instructions.
  • the memory may also store one or more computer programs comprising program instructions for the methods described herein.
  • the memory can also store a communication program, which can be used to communicate with the terminal.
  • the data table is a correspondence table of the positions of the scanning unit and the off-axis optical unit
  • the control module is used to For the real-time position of the scanning unit, the target position of the off-axis optical unit corresponding to the real-time position is retrieved from the data table, and the off-axis optical unit is driven to move to the target position.
  • the first off-axis amount is L1
  • the second off-axis amount is L2, and
  • the relationship between the first off-axis amount and the second off-axis amount is limited within this range, which can ensure a better effect of off-axis aberration compensation. If the first off-axis amount and the second off-axis amount If the relationship between them exceeds this range, the compensation effect of the off-axis optical unit is not ideal.
  • the focal length of the off-axis optical unit is f1
  • the focal length of the window is f2, and 5 ⁇
  • the embodiment of the present application defines the relationship between the off-axis optical unit and the focal length of the window, which can ensure the effect of off-axis aberration compensation. It can be understood that the ideal off-axis aberration compensation effect can be achieved only by selecting a suitable off-axis optical unit. The relationship between the off-axis optical unit and the window is not within this range, and the compensation effect of the off-axis optical unit is not ideal.
  • the focal length of the laser system is fr
  • the focal length of the window is f2
  • the focal length of the laser emitting system and the focal length of the laser receiving system are within the range of 1 mm to 100 mm, so that the off-axis optical unit has a better off-axis aberration compensation effect. If it exceeds this range, the focal length of the window is too small, and its The generated off-axis aberration will be too large, so that the compensation effect of the off-axis optical unit is not ideal.
  • the first direction is a collimation direction of the laser system, and in the first direction, the window has a positive refractive power.
  • This solution can effectively reduce the spot size between the laser system and the window, thereby reducing the volume of the lidar, and can also use the optical power of the window to achieve better collimation effect.
  • the first direction is a divergence direction of the laser system, and in the first direction, the window has a negative optical power.
  • This solution can not only obtain a larger divergence angle, but also effectively reduce the size of the window, thereby reducing the volume of the lidar.
  • the laser unit includes a transmitting unit and a receiving unit, and the transmitting unit and the receiving unit are adjacently arranged on the same side of the scanning unit, or are arranged separately from each other on the same side of the scanning unit. sides.
  • This solution defines a specific arrangement of laser units.
  • the configuration of the transmitting unit and the receiving unit is adapted, the mirror unit includes a transmitting mirror unit and a receiving mirror unit, the transmitting mirror unit is located between the transmitting unit and the scanning unit, The receiving mirror unit is located between the receiving unit and the scanning unit.
  • the off-axis optical unit includes a first off-axis unit, the first off-axis unit is located between the emitting unit and the scanning unit, and the light of the first off-axis unit axis is the fourth optical axis.
  • This solution defines a specific configuration of the off-axis optical unit in the laser radar.
  • the first off-axis unit is arranged between the transmitting unit and the scanning unit, emphasizing off-axis compensation for the optical path of the transmitting unit.
  • This implementation mode is beneficial to saving the space inside the laser radar, and is beneficial to the miniaturization design of the laser radar.
  • the off-axis optical unit includes a second off-axis unit, the second off-axis unit is located between the receiving unit and the scanning unit, and the light of the second off-axis unit axis is the fourth optical axis.
  • This solution introduces a second off-axis unit on the basis of the aforementioned first off-axis unit, and adds an off-axis compensation solution between the receiving unit and the scanning unit to achieve better imaging effects of the laser radar.
  • the viewing window has optical power in a second direction, and when the first direction is the collimation direction of the laser system, the second direction is the divergence direction of the laser system. direction, when the first direction is the divergence direction of the laser system, the second direction is the collimation direction of the laser system, and in the second direction, the laser light path is in the scanning unit A third off-axis amount is formed between the first optical axis formed between the window and the second optical axis of the window, and the fourth optical axis of the off-axis optical unit and the laser light path in the scanning A fourth off-axis amount is formed between the third optical axis formed between the unit and the laser unit, and the fourth off-axis amount is used to compensate aberration caused by the third off-axis amount.
  • This solution introduces an off-axis compensation scheme in the second direction, and improves the imaging accuracy of the laser radar by setting the off-axis compensation scheme in both the first direction and the second direction.
  • the embodiment of the present application provides a device with a detection function, including a control center and the lidar described in any possible implementation of the first aspect, the lidar is used to detect target signals, and the The target signal is transmitted to the control center.
  • the control center can be a processor in a device with a detection function.
  • the control center is a Microcontroller Unit (MCU), and the control center can also be used to control other electronic devices in the device, such as Audio devices, display devices, etc., and even audio devices and display devices can be associated with the lidar, for example, the target signal collected from the lidar is sent to the user through the audio device, or the target signal collected from the lidar The target signal is displayed by the display device.
  • Devices with detection functions can be, but not limited to: detection devices used on vehicles, robots, smart docks and traffic roads.
  • the embodiment of the present application provides a device with a detection function, including a control module and the lidar described in the first aspect, the control module is used to drive the off-axis optical unit to move to change the first Two off-axis amounts.
  • This solution uses the control module in the device with detection function, and this control module is located outside the laser radar, and controls the movement of the off-axis optical unit, which can ensure the small size design of the laser radar.
  • the control module is also in the device with detection function. Other control functions may be performed.
  • the control module may be a processor in a device with a detection function.
  • the embodiment of the present application also provides a laser radar control system.
  • the control system includes a first drive unit, a signal acquisition unit, a signal retrieval unit, and a second drive unit.
  • the first drive unit is used to drive scanning
  • the unit, specifically the first driving unit sends a driving signal to the scanning unit, so that the scanning unit starts to scan the light beam.
  • the signal collection unit is used to detect the specific position of the scanning unit and collect the position information of the scanning unit.
  • the signal fetching unit is used for fetching the target position information corresponding to the off-axis optical unit in the storage module according to the position information collected by the signal collecting unit.
  • the second driving unit is used for driving the off-axis optical unit to move to a target position according to the target position information of the off-axis optical unit obtained by the signal retrieval unit.
  • the embodiment of the present application provides a method for controlling lidar, including the following steps:
  • the scanning unit starts to scan the light beam
  • the position information may be the angle, coordinates, or positional relationship (such as distance) of the scanning unit relative to a certain reference;
  • the position information corresponding to the off-axis optical unit may be retrieved from the data table of the storage module through the control module, or Obtain the position information corresponding to the off-axis optical unit by indexing;
  • the target position is consistent with the retrieved position information corresponding to the off-axis unit, specifically, the target position may be the specific coordinate position of the optical axis of the off-axis optical unit , the target position can also be determined by the amount of movement of the off-axis optical unit, or by the time of movement. Therefore, in a specific driving scheme, the target position of the off-axis optical unit can be determined according to different physical properties or methods .
  • Fig. 1 is a schematic diagram of the first application scenario of the lidar provided by the present application
  • Fig. 2 is a schematic diagram of the second application scenario of the laser radar provided by the present application.
  • FIG. 3 is a schematic diagram of a third application scenario of the laser radar provided by the present application.
  • FIG. 4 is a schematic diagram of a fourth application scenario of the laser radar provided by the present application.
  • Fig. 5 is a schematic diagram of two different types of laser radars provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of the internal structure of a lidar provided in an embodiment of the present application.
  • Figure 7A, Figure 7B and Figure 8 are partial schematic diagrams of the laser radar provided by an embodiment of the present application
  • Figure 7A and Figure 7B are schematic cross-sectional views of the laser radar on the plane determined by the X direction and the Y direction
  • Figure 7A and Figure 7B They are schematic diagrams of the scanning unit at different scanning positions
  • FIG. 8 is a schematic cross-sectional diagram of the laser radar on the plane determined by the X direction and the Z direction;
  • Fig. 9A and Fig. 9B are partial schematic diagrams of the lidar provided by an embodiment of the present application, and Fig. 9A and Fig. 9B are schematic diagrams of the scanning unit at different scanning positions;
  • Fig. 10A and Fig. 10B are partial schematic diagrams of the lidar provided by an embodiment of the present application, and Fig. 10A and Fig. 10B are schematic diagrams of the scanning unit at different scanning positions;
  • Fig. 11A, Fig. 11B and Fig. 11C are schematic diagrams of three specific structural arrangements between the off-axis optical unit and the mirror unit in the lidar provided by an embodiment of the present application;
  • Fig. 12 is a partial schematic diagram of a laser radar provided in an embodiment of the present application.
  • Fig. 13A is a schematic diagram of the internal optical path structure of the lidar provided in an embodiment of the present application.
  • Fig. 13B is a schematic diagram of the optical path expansion of the lidar shown in Fig. 13A;
  • Fig. 14 is an expanded view of the internal optical path of the lidar provided by an embodiment of the present application.
  • the laser radar provided by this application is used in devices with detection functions.
  • the laser radar is used to detect and perceive objects in the space environment, and can be applied to artificial intelligence fields such as unmanned driving and robots.
  • the laser radar involved in this application passes Actively illuminate and detect, realize external perception, obtain environmental data, feed back depth information and contour information, and assist in various extended applications, such as automatic driving, automatic planning of routes, automatic starting or braking, automatic parking and other functions.
  • devices with detection functions can be, but are not limited to: detection devices used on vehicles, robots, smart docks, and traffic roads, which can cover many scenarios, as shown in Figures 1 to 4, and are described in detail below.
  • the device 1000 with detection function is a car
  • the laser radar 100 is installed in the center of the front bumper of the vehicle or at the four corners of the front, rear, left, and right sides.
  • the laser radar 100 can be used for automatic assisted driving.
  • the lidar 100 may be a reversing radar or a front radar.
  • the lidar 100 used in automobiles has the biggest and most obvious function: in the case of no visibility or poor visibility, or when encountering some unpredictable obstacles, it can give the driver voice prompts, buzzer alarms, etc. , thereby preventing or reducing or mitigating accidents. As shown in FIG.
  • the device with detection function 1000 has a control center 200 inside, and the control center 200 is electrically connected to the laser radar 100, and the laser radar 100 is used to detect target signals and transmit the target signals to the control center. Center 200.
  • the installation position of the lidar shown in this application is only an example, and this application does not limit the installation position of the lidar.
  • the control center 200 can be a processor in a device with a detection function.
  • the control center 200 is a Microcontroller Unit (MCU), and the control center 200 can also be used to control the device 1000 with a detection function.
  • Other electronic devices such as audio equipment, display equipment, etc., can even associate the audio equipment and display equipment with the laser radar, for example, the target signal collected from the laser radar 100 is sent to the user through the audio equipment. , or, display the target signal collected from the lidar 100 through the display device.
  • the device 1000 with detection function can be set on the smart dock or traffic road, for example, as shown in Figure 2, the device 1000 with detection function is installed at the intersection, and the device 1000 with detection function It may be a roadside bracket or utility pole (or other carrying equipment, such as a temporary vehicle, a sentry box, etc.), and the laser radar 100 is installed on the bracket or utility pole to detect the traffic environment at the intersection. As shown in Figure 3, the device 1000 with detection function is installed on the central safety island of the crossroad, and is used to detect the traffic environment around the intersection position.
  • the device 1000 with detection function can be a load (such as an advertisement sign or sign), the laser radar 100 is installed on the carrier.
  • the device 1000 with detection function is a robot, and the head of the robot is provided with a laser radar 100, and the laser radar 100 can be located on the top of the robot's head to realize rotation and enlarge the control and measurement angle, or it can be located elsewhere on the robot, such as the neck, chest, etc.).
  • radar detection is a necessary functional component
  • the laser radar 100 provides a portable and effective environment description for the robot's navigation in the robot.
  • the lidar 100 can realize distance detection (or detection of other parameters).
  • the device 1000 with detection function may also be a control device installed on a dock or a monitoring device installed on a building.
  • FIG. 5 is a schematic diagram of two different types of laser radars 100 provided by an embodiment of the present application
  • FIG. 6 is a schematic diagram of the internal structure of the laser radar 100 provided by an embodiment of the present application.
  • the laser radar 100 includes a housing 10 and functional modules disposed inside the housing 10 .
  • the housing 10 includes a housing body 11 and a window 12.
  • the housing body 11 encloses a housing space 111.
  • the functional modules are located in the housing space 111.
  • the housing body 11 is provided with an opening 112 connecting the housing space 111 and the external space.
  • the window 12 is connected to the housing body 11.
  • the window 12 of the lidar 100 shown in the upper drawing in FIG. 5 has optical power, the outer surface of the window 12 is arc-shaped, and the inner surface of the window 12 can be arc-shaped or flat.
  • the window 12 of the lidar 100 shown in the lower figure in FIG. 5 also has optical power, the outer surface of the window 12 is a plane, and the inner surface of the window 12 is arc-shaped.
  • the space volume of the laser radar 100 is reduced by setting the window 12 as a structure with optical power, so as to realize the miniaturization design of the laser radar 100 .
  • the laser output system can be divided into two types according to the shape of the output light, one is point output, and the other is line output.
  • Point emission requires the emitted beam to be a collimated beam, so that the emitted light spot can be a point at a long distance, thereby defining the collimated direction of the emitted beam.
  • Line emission requires the emission beam to be a slender line beam. Therefore, the lidar has two directions (collimation direction and divergence direction). If the emitted beam is a longitudinal slender line, the horizontal direction is the collimation direction, and the longitudinal direction is the divergence direction.
  • the present application defines the first direction as the collimation direction of the laser system or the divergence direction of the laser system. When the first direction is the collimation direction of the laser system, the second direction is the divergence direction of the laser system, and when the first direction is the divergence direction of the laser system, the second direction is The two directions are collimation directions of the laser system.
  • the window 12 has a positive optical power in the collimation direction of the laser system, which can effectively reduce the spot size between the laser system and the window 12, thereby reducing the volume of the laser radar 100, and can also utilize the optical focus of the window 12. achieve better collimation effect.
  • the window 12 has a negative optical power in the divergence direction of the laser system, which not only can obtain a larger divergence angle, but also can effectively reduce the size of the window 12 , thereby reducing the volume of the lidar 100 .
  • the window 12 has positive optical power in the collimation direction of the laser system and negative optical power in the divergence direction of the laser system.
  • the focal length f2 of the window 12 mentioned later in the present application may be the focal length of the window 12 in the meridional direction, or may be the focal length of the window 12 in the arcanian direction.
  • the functional modules disposed in the housing 10 at least include a laser system 20 , a scanning unit 30 , an off-axis optical unit 40 , a storage module 50 and a control module 60 .
  • the laser system 20 includes a laser unit 21 and a mirror unit 22, the laser unit 21 is used to emit or/and receive light beams to form a laser light path between the window 12 and the laser unit 21, the mirror unit 22 is located on the laser light path, and the mirror unit 22 is used to adjust the beam, for example: changing the divergence, beam width and cross-sectional area of the emitted beam, collimating and shaping the beam, adjusting the viewing angle, eliminating stray light, etc.
  • the lens unit 22 may include multiple lenses, and the lenses may include, but are not limited to: ball lenses, aspheric lens groups, cylindrical lenses, cylindrical lens groups, cylindrical lens plus ball lens groups, spherical plus aspheric lens groups, etc.
  • the scanning unit 30 may include, but not limited to: a MEMS two-dimensional scanning element, a polygon mirror rotating scanning element, a one-dimensional oscillating mirror scanning element, and a wedge prism group rotating scanning element.
  • the light beams sent and received by the laser unit 21 can be scanned by rotating or swinging the scanning unit 30 , so that the light beams sent and received by the laser unit 21 can cover the scene to be detected.
  • the off-axis optical unit 40 may include a lens with power, the off-axis optical unit 40 is arranged between the laser unit 21 and the scanning unit 30, and the optical axis of the off-axis optical unit 40 is not the same as the optical axis of the mirror unit 22
  • the optical axis of the off-axis optical unit 40 and the optical axis of the mirror group unit 22 may be parallel to each other or may form an included angle.
  • the off-axis optical unit 40 and the mirror unit 22 need to be arranged on both the emitting optical path and the receiving optical path of the laser system 20 .
  • the control module 60 may be a processor, and the processor may also be called a control unit, a controller, a microcontroller, or some other suitable term.
  • the storage module 50 can be a memory, and the memory can be coupled to the processor, or connected to the processor through a bus, for storing various software programs and/or multiple sets of instructions and data.
  • the memory can include high-speed random access memory, and may also include non-volatile memory such as one or more disk storage devices, Embedded Multi Media Card (EMMC), Universal Flash Storage (UFS), Read Only Memory (Read -Only Memory, ROM) or flash memory (flash), etc., or other types of static memory that can store static information and instructions.
  • the memory may also store one or more computer programs comprising program instructions for the methods described herein.
  • the memory can also store a communication program, which can be used to communicate with the terminal.
  • the data table is a correspondence table of the positions of the scanning unit 30 and the off-axis optical unit 40, and the scanning unit can also be established by indexing 30 and the corresponding relationship between the positions of the off-axis optical unit 40 .
  • the control module 60 is electrically connected to the storage module 50.
  • the control module 60 can read the data table in the storage module 50.
  • the control module 60 is also used to control the movement of the scanning unit 30 and the off-axis optical unit 40.
  • control module 60 uses According to the real-time position of the scanning unit 30, the target position of the off-axis optical unit 40 corresponding to the real-time position is retrieved from the data table, and the off-axis optical unit 40 is driven to move to the target location.
  • Fig. 7A, Fig. 7B and Fig. 8 are partial schematic diagrams of a laser radar provided by an embodiment
  • Fig. 7A and Fig. 7B are schematic cross-sectional diagrams of a laser radar on a plane determined by the X direction and the Y direction
  • Fig. 7A and Fig. 7B They are schematic diagrams of the scanning unit 30 at different scanning positions
  • FIG. 8 is a schematic cross-sectional diagram of the laser radar on a plane defined by the X direction and the Z direction.
  • the laser unit 21 includes a transmitting unit 211 and a receiving unit 212.
  • the transmitting unit 211 is used to emit a laser beam.
  • the transmitting unit 211 is also called a laser light source.
  • the transmitting unit 211 includes but is not limited to: semiconductor, optical fiber, gas,
  • the wavelength ⁇ of the laser light emitted by the emitting unit 211 satisfies the condition of 850nm ⁇ 2000nm.
  • the receiving unit 212 is used to receive the laser beam and perform photoelectric conversion to convert the optical signal into an electrical signal.
  • the receiving unit 212 is also called a laser receiving detector.
  • the receiving unit 212 includes but is not limited to: avalanche diode (APD), silicon photomultiplier tube (SIPM), APD array, multi-pixel photon counter (MPPC), photomultiplier tube (PMT), single photon avalanche diode (SPAD).
  • APD avalanche diode
  • SIPM silicon photomultiplier tube
  • MPPC multi-pixel photon counter
  • PMT photomultiplier tube
  • SPAD single photon avalanche diode
  • Both the transmitting unit 211 and the receiving unit 212 need to be equipped with a mirror unit 22. On the laser optical path, the beam passes through the mirror unit 22 and is received by the receiving unit 212. The beam emitted by the transmitting unit 211 also needs to pass through the mirror unit 22 to form a laser optical path. .
  • the light beam emitted by the transmitting unit 211 is reflected by the scanning unit 30 to the window 12 after passing through the mirror unit 22, and the light beam is emitted through the window 12 and irradiates the scene to be detected.
  • the path of the light beam received by the receiving unit 212 is: the light beam in the scene to be detected enters the interior of the lidar 100 through the window 12, and is reflected by the scanning unit 30 to the mirror unit 22, and the light beam converges on the receiving unit after passing through the mirror unit 22 212 , thus forming a laser light path between the receiving unit 212 and the viewing window 12 .
  • the scanning unit 30 in the laser radar 100 provided in the present application is arranged between the mirror unit 22 and the window 12 on the laser light path.
  • the transmitting unit 211 and the receiving unit 212 are adjacently arranged on the same side of the scanning unit 30. In a specific embodiment, the transmitting unit 211 and the receiving unit 212 are arranged side by side with a gap between them. In order to assemble the optical components, there are no other optical components, electronic devices or mechanical structural parts between the transmitting unit 211 and the receiving unit 212 . This implementation mode is beneficial to saving the space inside the laser radar, and is beneficial to the miniaturization design of the laser radar.
  • Figure 8 shows the positional relationship between the transmitting unit 211 and the receiving unit 212 from another direction of Figure 7A, the number of mirror unit 22 is two, and one of the mirror unit 22 is located between the transmitting unit 211 and the receiving unit 212 between the scanning unit 30, the other mirror unit 22 is located between the receiving unit 212 and the scanning unit 30, the number of the off-axis optical units 40 is two, and one of the off-axis optical units 40 Located between the transmitting unit 211 and the scanning unit 30 , another off-axis optical unit 40 is located between the receiving unit 212 and the scanning unit 30 .
  • the implementation shown in Figure 7A and Figure 7B is a schematic diagram of the optical path of the laser system in the first direction, the first direction is the collimation direction of the laser system, and the first direction can be understood as: the plane determined in the X direction and the Y direction
  • the window 12 has a positive refractive power in the collimation direction, and can be a positive refractive power or a negative refractive power in the divergence direction.
  • the specific form of the window 12 is: the outer surface of the window 12 is an outwardly protruding arc surface, and the inner surface of the window 12 is a plane. This program does not limit the specific form of the window 12.
  • the outer surface of the window 12 is an outer In the case of a protruding arc surface, the inner surface of the window 12 can also be a protruding arc surface or a concave arc surface.
  • the laser optical path forms the first optical axis A1 between the scanning unit 30 and the window 12, and the laser optical path forms the third optical axis A3 between the scanning unit 30 and the laser unit 21.
  • the position of the third optical axis A3 is fixed, and the position of the first optical axis A1 changes as the position of the scanning unit 30 changes.
  • the optical axis of the window 12 is the second optical axis A2.
  • the window 12 includes an arc surface, and this arc surface has a center of circle.
  • the window 12 may have multiple optical axes, all of which pass through A line passing through the center of the circle, and the second optical axis A2 is an optical axis parallel to the first optical axis A1 drawn from the center of the circle among the optical axes of the window 12 .
  • the first optical axis A1 and the second optical axis A2 are not collinear, and the second optical axis A2 of the window corresponding to the first optical axis A1 of each laser light path at different positions is also different.
  • the non-collinearity between the first optical axis A1 and the second optical axis A2 will produce off-axis aberrations, and the existence of off-axis aberrations directly affects the laser beam.
  • Image quality of the environment to be detected detected by the radar 100 Specifically, the first off-axis amount L1 is formed between the second optical axis A2 of the window 12 and the first optical axis A1 of the laser light path. The existence of the first off-axis amount L1 is to cause off-axis aberration and affect the laser radar 100 The main factor for the quality of the detected image of the environment to be detected.
  • This application compensates the aberration produced by the first off-axis amount L1 through the off-axis optical unit 40 arranged on the laser optical path, that is to say, the setting of the off-axis optical unit 40 can reduce or eliminate the first off-axis amount produced
  • the aberration caused by the first off-axis amount L1 is fully compensated or partially compensated.
  • the off-axis optical unit 40 is arranged between the scanning unit 30 and the laser unit 21, the optical axis of the off-axis optical unit 40 is the fourth optical axis A4, and the fourth optical axis A4 and the third optical axis A3 form a
  • the second off-axis amount L2 is used to compensate the aberration caused by the first off-axis amount L1.
  • the dotted lines in FIGS. 7A and 7B represent a first optical axis A1 , a second optical axis A2 , a third optical axis A3 and a fourth optical axis A4 .
  • the relationship between the second off-axis amount L2 and the first off-axis amount L1 satisfies:
  • the relationship between the first off-axis amount L1 and the second off-axis amount L2 is limited within this range, which can ensure a better effect of off-axis aberration compensation. If the first off-axis amount L1 and the second off-axis amount If the relationship between the off-axis amount L2 exceeds this range, the compensation effect of the off-axis optical unit 40 may not be as good as that within this range.
  • the focal length of the off-axis optical unit 40 is f1
  • the focal length of the window 12 is f2, 5 ⁇
  • the embodiment of the present application defines the relationship between the focal length of the off-axis optical unit 40 and the window 12, It can ensure a better effect of off-axis aberration compensation. It can be understood that the ideal off-axis aberration compensation effect can be achieved only by selecting a suitable off-axis optical unit 40. If the relationship between the off-axis optical unit 40 and the window 12 is not in this Within this range, the compensation effect of the off-axis optical unit 40 may not be as good as that within this range.
  • the beam emitted by the emitting unit 211 is reflected by the scanning unit 30 and then emitted from the window 12 to form a laser emitting system.
  • the relationship between the focal length ft of the laser emitting system and the focal length f2 of the window satisfies:
  • the path of the receiving unit 212 receiving the light beam is that the light beam enters the laser radar from the window, and after being scanned and reflected, it is received by the receiving unit 212 through the mirror unit 22 to form a laser receiving system.
  • the focal length fr of the laser receiving system and the focal length of the window 12 The relationship between f2 satisfies:
  • the focal length of the laser emitting system and the focal length of the laser receiving system are within the range of 1 mm to 100 mm, so that the off-axis optical unit 40 has a better off-axis aberration compensation effect. If it exceeds this range, the focal length of the window 12 is too small , the off-axis aberration generated by it will be too large, so that the compensation effect of the off-axis optical unit 40 is not ideal.
  • FIG. 7A shows the specific positions of the first optical axis A1 and the second optical axis A2 when the scanning unit 30 is in the first position
  • FIG. 7B shows the first optical axis A1 and the second optical axis A2 when the scanning unit 30 is in the second position
  • the specific position of the second optical axis A2 in this embodiment, when the scanning unit 30 is in the first position and the second position, the positions of the third optical axis A3 and the fourth optical axis A4 are fixed, it can be understood that Therefore, the positional relationship among the laser unit 21 , the mirror group unit 22 and the off-axis optical unit 40 may be fixed.
  • the off-axis optical unit 40 can also be set in a movable state. During the scanning process of the scanning unit 30, the off-axis optical unit 40 moves synchronously, so that the position of the fourth optical axis A4 also changes accordingly. .
  • the transmitting mirror unit 22A and the first off-axis unit 40A are arranged on the laser optical path between the emitting unit 211 and the scanning unit 30, and the receiving mirror unit 22B is arranged on the laser optical path between the receiving unit 212 and the scanning unit 30 and a second off-axis unit 40B.
  • the configuration of the transmitting mirror unit 22A and the receiving mirror unit 22B (referring to the number, size and structure of the lens) can be the same or different; the configuration of the first off-axis unit 40A and the second off-axis unit 40B (referring to The number, size and structure of the lenses) can be the same or different.
  • Fig. 9A and Fig. 9B are schematic diagrams of the optical path of the laser system in the second direction, and the second direction is the laser
  • the divergence direction of the system, the second direction can be understood as: the optical path structure on the plane determined by the X direction and the Z direction.
  • the window 12 has a negative focal power in the divergence direction of the laser system, for example: the outer surface of the window 12 is planar, and the inner surface of the window 12 is a concave arc surface.
  • FIG. 9A shows the specific positions of the first optical axis A1 and the second optical axis A2 when the scanning unit 30 is in the first position
  • FIG. 9B shows the first optical axis A1 and the second optical axis A2 when the scanning unit 30 is in the second position.
  • the position of the third optical axis A3 is fixed when the scanning unit 30 is in the first position and the second position. It can be understood that the laser unit 21 and the The positional relationship between the mirror group units 22 may be fixed, but the position of the off-axis optical unit 40 changes, so that the position of the fourth optical axis A4 changes, and Fig. 9A and Fig.
  • the different positions of the two states of the optical unit 40 and the fourth optical axis A4 are not limited to the specific positional relationship between the off-axis optical unit 40 and the scanning unit 30. According to the specific application environment, the off-axis optical unit 40 and the fourth optical axis The position of the optical axis A4 changes.
  • Fig. 10A and Fig. 10B are schematic diagrams of the optical path of the laser system in the first direction, and the first direction is the laser
  • the collimation direction of the system, the first direction can be understood as: the optical path structure on the plane determined by the X direction and the Y direction.
  • the window 12 has positive refractive power in the collimating direction of the laser system
  • the outer surface of the window 12 is an outwardly protruding arc surface
  • the inner surface of the window 12 is a concave arc surface.
  • the center position O of the arc surface of the viewing window 12 is shown
  • the second optical axis A2 is located on a line parallel to the first optical axis A1 drawn from the center O of the circle.
  • the off-axis optical unit 40 is located between the scanning unit 30 and the mirror unit 22 .
  • FIG. 11A , FIG. 11B and FIG. 11C show three implementations of specific structural arrangements between the off-axis optical unit 40 and the mirror unit 22 .
  • the off-axis optical unit 40 and the mirror unit 22 are independent of each other, and they may have independent installation structures, and there may not be any connection relationship between the off-axis optical unit 40 and the mirror unit 22 , the driving and control of the off-axis optical unit 40 by the control module and the driving and control of the mirror unit 22 can be independent of each other.
  • the off-axis optical unit 40 can be used with different mirror units 22, It is also possible to select different forms of off-axis optical units 40 according to the internal configuration environment of the lidar, which has better flexibility.
  • the off-axis optical unit 40 includes an off-axis lens group 41 and a first lens barrel 42 , and the first lens barrel 42 is used for installing the off-axis lens group 41 and connecting the off-axis lens group 41 inside the laser radar 100 .
  • the first lens barrel 42 may be fixedly connected inside the lidar.
  • the off-axis mirror group 41 can be a combination of one lens or at least two lenses.
  • FIG. 11A only schematically expresses that the off-axis mirror group 41 has two lenses, and does not form a shape and quantity of the lenses of the off-axis mirror group 41. and positional constraints.
  • the lens group unit 22 includes an optical lens group 221 and a second lens barrel 222, the second lens barrel 222 is used to install the optical lens group 221, and fix the optical lens group 221 inside the laser radar 100, the optical lens group 221 can be a piece As for the lens or the combination of at least two lenses, FIG. 11A only schematically shows that the optical lens group 221 has three lenses, and does not form a limitation on the shape, quantity and positional relationship of the lenses of the optical lens group 221 . In the embodiment shown in FIG. 11A , both the first lens barrel 42 and the second lens barrel 222 are fixed inside the lidar 100, and the second off-axis amount L2 is a fixed value.
  • This solution can be based on the first off-axis amount L1 Change, select an appropriate value of the second off-axis amount L2 to adapt to all possible first off-axis amounts L1 during the scanning process of the scanning unit 30, and can compensate the aberration generated by the first off-axis amount L1. Since the second off-axis value is a fixed value, for lidar, the design difficulty and production cost are relatively low. According to the needs of specific application scenarios, for example, in some scenarios, high compensation for off-axis images is not required. In the case of poor accuracy, the low-cost lidar provided by this solution can be used.
  • the difference between the embodiment shown in FIG. 11B and the embodiment shown in FIG. 11A is that in the embodiment shown in FIG. 11B , by adjusting the positional relationship between the first barrel 42 and the second barrel 222, the The position of the axis optical unit 40 is adjusted to the value of the second off-axis amount L2.
  • the first lens barrel 42 can be slidably connected in the lidar, and the motor drives the first lens barrel 42 to slide to change the second off-axis amount L2.
  • a sliding track 43 is provided in the lidar, and the sliding track 43 extends along the radial direction R-R (that is, a direction perpendicular to the fourth optical axis), and the first lens barrel 42 is slidably connected to the sliding track 43, and the sliding track 43
  • R-R radial direction perpendicular to the fourth optical axis
  • the positioning structures 432 are used for positioning the first lens barrel 42 .
  • the scanning position of the scanning unit 30 can be divided into a plurality of areas, and each area corresponds to a specific position defined by a positioning structure 432.
  • a value of a second off-axis amount L2 corresponds to a range of a first off-axis amount L1, when the When the second off-axis amount L2 is a first value, the first off-axis amount L1 is within a first numerical range, and the first numerical range includes at least two different second off-axis amounts L2.
  • the scanning position of the scanning unit 30 and the position of the off-axis optical unit 40 may have a many-to-one relationship.
  • the first lens barrel 42 can be positioned at any position on the sliding track 43, for example, the frictional force between the sliding track 43 and the first lens barrel 42 serves as a limiting structure, and there is no need to set a positioning structure at a specified position , the frictional force can be used as a limiting structure to limit the first lens barrel 42 to any position.
  • the scanning position of the scanning unit 30 and The positions of the off-axis optical units 40 are in a one-to-one relationship rather than a many-to-one relationship.
  • the off-axis optical unit 40 is arranged in the mirror unit 22, that is to say, the off-axis optical unit 40 is integrated in the mirror unit 22, and the off-axis optical unit 40 does not need an independent lens barrel structure, only the off-axis lens group 41 of the off-axis optical unit 40 needs to be installed in the lens barrel 223 of the lens unit 22, and the lens barrel 223 of the lens unit 22 is reserved for installing the off-axis mirror of the off-axis optical unit 40 Space for group 41.
  • the optical axis of some lenses in the mirror unit 22 is the third optical axis A3, and the optical axis of some lenses is the fourth optical axis A4.
  • the off-axis optical unit 40 and the mirror unit 22 are integrated to form an optical assembly with the second off-axis amount.
  • the lens barrel 223 of the lens group unit 22 includes a first area 2231 and a second area 2232.
  • the first area 2231 is used to install a lens whose optical axis is the third optical axis A3.
  • the second area 2232 is used to install the lens whose optical axis is the fourth optical axis A4, and this part of the lens is the off-axis lens group 41 of the off-axis optical unit 40.
  • the dimension of the second region 2232 in the direction perpendicular to the third optical axis A3 is greater than the radial dimension of the off-axis mirror group 41 in the second region 2232, and the space in the second region 2232 can provide The off-axis mirror group 41 moves radially.
  • the second area 2232 of the lens barrel 223 is provided with a moving track 224
  • the moving track 224 extends along a direction perpendicular to the third optical axis A3
  • the off-axis lens group 41 of the off-axis optical unit 40 is slidably connected to
  • the moving track 224 can change the second off-axis amount L2 through the movement of the off-axis lens 41 on the moving track 224 .
  • a limiting structure 2242 may also be provided on the moving track 224, and the limiting structure 2242 is used to limit the off-axis mirror group 41 in multiple different positions.
  • the optical mirror group 221 of the mirror group unit 22 (that is, the part of the lens whose optical axis is the third optical axis A3) can be fixed in the lens barrel 223, that is, the position of the third optical axis A3 is fixed relative to the position of the lens barrel 223
  • the position of the fourth optical axis A4 can be changed and the second off-axis amount L2 can be changed by setting the partial off-axis lens group 41 whose optical axis is the fourth optical axis A4 to be slidably connected to the lens barrel 223 .
  • the implementations shown in Figure 11B and Figure 11C both set the second off-axis amount L2 from the first direction, and can also adjust the second off-axis amount L2.
  • the first direction can be understood as: in the X direction and the Y direction Light path architecture on the determined plane.
  • the second off-axis amount L2 is set in the collimation direction of the laser system, and the second off-axis amount L2 can also be adjusted.
  • optical off-axis elements may also be arranged in the second direction to perform off-axis aberration compensation.
  • the second direction can be understood as an optical path structure on a plane determined by the X direction and the Z direction.
  • the first direction is the collimation direction of the laser system
  • the second direction is the divergence direction of the laser system
  • the first direction is the divergence direction of the laser system
  • the second direction is The second direction is the collimation direction of the laser system
  • the optical axis of the laser light path formed between the scanning unit and the window and the optical axis of the window form a second direction.
  • the optical axis of the off-axis optical unit and the optical axis of the laser light path formed between the scanning unit and the laser unit form a fourth off-axis amount, the fourth off-axis The amount is used to compensate the aberration caused by the third off-axis amount.
  • the first off-axis amount L1 is a variable value
  • the scanning unit 30 scans at different positions
  • the second optical axis of the window 12 The position of A2 is different, so the first off-axis amount L1 between the second optical axis A2 and the first optical axis A1 of the laser light path is also different.
  • the second off-axis amount L2 when the off-axis optical unit 40 is fixedly arranged inside the laser radar 100, the second off-axis amount L2 is also a fixed value; when the off-axis optical unit 40 is slidably connected inside the laser radar 100 , during the scanning process of the scanning unit 30, the off-axis optical unit 40 also moves synchronously, and the second off-axis amount L2 changes accordingly. During the process, the off-axis optical unit 40 can compensate the off-axis aberration in real time to ensure the image quality of the lidar 100 .
  • the solution for the variable value of the second off-axis amount L2 may include two specific solutions.
  • the second off-axis amount L2 in the process of scanning the light beam by the scanning unit 30, the second off-axis amount L2 can have multiple different values, and each specific value of the second off-axis amount L2 corresponds to at least Two different values of the first off-axis amount L1, that is, each value of the second off-axis amount L2 correspond to different values of the first off-axis amount L1 included in a certain range, so as to achieve partition compensation for off-axis aberrations.
  • this solution can realize refined off-axis aberration compensation.
  • the second off-axis amount L2 can remain unchanged during the scanning process in a specific partition,
  • the driving structure and control module of the second off-axis amount L2 are easier to design, and the cost can be better controlled.
  • the second off-axis amount L2 and the first off-axis amount L1 have a one-to-one correspondence relationship.
  • the second off-axis amount L2 changes synchronously to realize real-time compensation of aberrations caused by the first off-axis amount L1.
  • the solution provided by this solution for real-time compensation of off-axis aberrations has higher precision.
  • the laser system (referring to the transmitting unit, the receiving unit and their corresponding mirror units) is fixed, and through the off-axis optical unit Movement of 40 changes said second off-axis amount L2.
  • FIG. 12 is a schematic diagram of a laser radar provided in an implementation manner.
  • the laser unit 21 includes a transmitting unit 211 and a receiving unit 212.
  • the transmitting unit 211 and the receiving unit 212 are separately arranged on two sides of the scanning unit 30.
  • the number of the mirror unit 22 is two, which are the transmitting mirror unit 22A and the receiving mirror unit 22B, the transmitting mirror unit 22A is located between the transmitting unit 211 and the scanning unit 30, and the receiving mirror unit 22B is located Between the receiving unit 212 and the scanning unit 30, there are two off-axis optical units 40, namely a first off-axis unit 40A and a second off-axis unit 40B, and the first off-axis unit 40A is located at Between the transmitting unit 211 and the scanning unit 30 , the second off-axis unit 40B is located between the receiving unit 212 and the scanning unit 30 .
  • the detection accuracy of the laser radar 100 can be improved.
  • the number of the first optical axis A1, the second optical axis A2, the third optical axis A3 and the fourth optical axis A4 are two, and the two second optical axes A2 are located: from A line parallel to the corresponding first optical axis A1 is drawn from the position of the center O of the arc surface of the viewing window 12 .
  • FIG. 13A and FIG. 13B are schematic diagrams of the internal optical path of the lidar provided by an embodiment of the present application, where the scanning unit 30 is not shown.
  • the window 12 has a negative refractive power in the divergence direction of the laser system
  • the inner surface of the window 12 is a concave arc surface
  • the outer surface of the window 12 is an outwardly protruding arc surface.
  • the off-axis optical unit 40 is composed of a lens with positive power. In the embodiment shown in Fig.
  • FIG. 13B is an expanded view of an optical path of a specific lidar provided by the
  • FIG. 14 is an expanded view of the internal optical path of the lidar provided in an embodiment of the present application, where the scanning unit 30 is not shown.
  • the optical power of the window 12 is positive
  • the off-axis optical unit 40 is composed of a lens with negative optical power.
  • the off-axis optical unit 40 has a lens, and in other embodiments, the off-axis optical unit 40 can also have multiple lenses, for example, the lens of the off-axis optical unit 40 can be The number of chips is controlled within the range of 1-5, taking into account the performance of optimizing the space ratio and compensating off-axis aberration performance.
  • the storage module 50 and the control module 60 in the embodiment shown in FIG. 6 can be arranged inside the casing as the internal system of the laser radar 100, so that the laser radar 100 has independent storage and control functions, independent of the laser radar 100.
  • An external system makes the function of storing and processing data of the lidar 100 stronger.
  • at least one of the storage module 50 and the control module 60 can also be arranged outside the laser radar 100, for example, the control module is arranged in a device with a detection function, the laser radar is provided with a signal interface, and the The signal interface is electrically connected to the control module in the device with the detection function; similarly, the storage module can also be set in the device with the detection function, and is electrically connected between the laser radar and the storage module through a data line.
  • the inner space of the lidar can realize the light weight and miniaturization of the lidar.
  • the embodiment of the present application also provides a laser radar control system and control method
  • the control system includes a first drive unit, a signal acquisition unit, a signal retrieval unit and a second drive unit
  • the first drive unit is used to drive the scanning unit
  • the first driving unit sends a driving signal to the scanning unit, so that the scanning unit starts to scan the light beam.
  • the signal collection unit is used to detect the specific position of the scanning unit and collect the position information of the scanning unit.
  • the signal retrieval unit is used to retrieve the corresponding position information of the off-axis optical unit from the data table of the storage module according to the position information collected by the signal collection unit.
  • the second driving unit is used to drive the off-axis optical unit to move to a target position according to the position information of the off-axis optical unit obtained by the signal retrieval unit.
  • the scanning unit starts to scan the light beam
  • the position information may be the angle, coordinates, or positional relationship (such as distance) of the scanning unit relative to a certain reference;
  • the position information corresponding to the off-axis optical unit can be retrieved from the data table of the storage module through the control module, or The position information corresponding to the off-axis optical unit can be obtained by indexing;
  • the target position is consistent with the position information corresponding to the called off-axis unit, specifically, the target position can be the specific coordinate position of the optical axis of the off-axis optical unit, the target The position can also be the amount of movement of the off-axis optical unit, or its target position can be determined by the time of movement. Therefore, in a specific driving scheme, the target position of the off-axis optical unit can be determined according to different physical properties or methods.
  • sequence numbers of the above-mentioned processes do not mean the order of execution, and the execution order of the processes should be determined by their functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种激光雷达(100)和具有探测功能的设备(1000)。激光雷达(100)包括具有光焦度的视窗(12)、激光系统(20)、扫描单元(30)和离轴光学单元(40)。激光系统(20)包括激光单元(21)和镜组单元(22),激光单元(21)用于发射或接收光束,以在视窗(12)和激光单元(21)之间构成激光光路,镜组单元(22)位于激光光路上。扫描单元(30)在激光光路上位于镜组单元(22)和视窗(12)之间,激光光路在扫描单元(30)和视窗(12)之间的光轴和视窗(12)的光轴之间构成第一离轴量(L1),离轴光学单元(40)位于激光单元(21)和扫描单元(30)之间且与激光光路之间构成第二离轴量(L2),第二离轴量(L2)用于补偿第一离轴量(L1)导致的像差。能够实现激光雷达(100)的小型化的同时可以减少或消除离轴像差,提升激光雷达(100)的品质。

Description

激光雷达和具有探测功能的设备
本申请要求于2022年1月27日提交中国专利局、申请号为202210103389.7,发明名称为“激光雷达和具有探测功能的设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及激光探测技术领域,尤其涉及一种激光雷达和具有探测功能的设备。
背景技术
激光雷达是一种主动探测系统,无论是在白天还是夜晚都能够精准地探测到物体的深度、距离等信息,相比于毫米波雷达以及超声波雷达,激光雷达的波长更小、分辨率以及测距能力更高,在军事以及民用领域都是一项不可或缺的技术及方向。当前激光雷达领域研发设计面临着许多难点及挑战,其中,如何实现激光雷达系统的小型化设计的同时保证激光雷达系统高性能高品质为业界研发的方向。
发明内容
本申请实施例提供一种激光雷达及具有探测功能的设备,能够保证激光雷达小尺寸的同时满足激光雷达的品质要求。
第一方面,本申请实施例提供一种激光雷达,包括视窗、激光系统、扫描单元和离轴光学单元,视窗在第一方向上具有光焦度,所述第一方向为所述激光系统的准直方向或所述激光系统的发散方向;激光系统包括激光单元和镜组单元,所述激光单元用于发射或/和接收光束(即激光单元可以为发射单元或接收单元,也可以是具备发射单元和接收单元的激光单元的总称),以在所述视窗和所述激光单元之间构成激光光路,所述镜组单元位于所述激光光路上,扫描单元在所述激光光路上位于所述镜组单元和所述视窗之间,且用于扫描所述光束,所述激光光路在所述扫描单元和所述视窗之间形成第一光轴,在所述第一方向上,所述第一光轴和第二光轴之间构成第一离轴量;其中,所述第二光轴为所述视窗的光轴中与所述第一光轴平行的光轴,即视窗具有圆心,第二光轴的位置为从圆心引出的一条平行于第一光轴的线;离轴光学单元位于所述激光光路上且位于所述扫描单元和所述激光单元之间,所述激光光路在所述激光单元和所述扫描单元之间形成第三光轴,所述离轴光学单元的光轴为第四光轴,所述第四光轴平行于所述第三光轴,在所述第一方向上,所述第四光轴和所述第三光轴之间构成第二离轴量,所述第二离轴量用于补偿所述第一离轴量导致的像差。
其中,第一光轴可以理解为激光光路在扫描单元上的光线反射点与激光光路的成像光斑之间的连线,具体可以是光线反射点的中心和光斑的中心之间的连线。第三光轴可以理解为激光光路在激光单元的光线出射/入射位置与扫描单元的光线反射点之间的连线,具体可以是光线出射/入射位置的中心和光线反射点的中心之间的连线。
本申请通过将视窗设置为具有光焦度,能够降低激光雷的体积,实现激光雷达小型化的设计,但由于视窗具有光焦度,扫描单元在扫描过程中,第一光轴和第二光轴之间的不共线会产生离轴像差,离轴像差即指第一光轴和第二光轴之间的不共线而导致的非对称像差,其中,像差(aberration)是指实际光学镜头中,由非近轴光线追迹所得的结果和近轴光线追迹所得的结果不一致,与高斯光学(一级近似理论或近轴光线)的理想状况的偏差。离轴像 差的存在,直接影响激光雷达所探测到的待探测环境的影像品质。
具体而言,第一离轴量的存在是导致离轴像差、影响激光雷达所探测到的待探测环境的影像的品质的主要因素,本申请通过设置在激光光路上的离轴光学单元补偿第一离轴量所产生的像差,通过离轴光学单元的设置可以减轻或消除第一离轴量所产生的像差,可以理解的是,本申请通过第二离轴量实现完全补偿或部分补偿第一离轴量导致的像差。因此,本申请能够实现激光雷达的小型化的同时可以减少或消除离轴像差,提升激光雷达的品质。
一种可能的实现方式中,所述离轴光学单元位于所述扫描单元和所述镜组单元之间。具体而言,离轴光学单元和镜组单元之间相互独立,它们可以具有独立的安装结构,控制模块对离轴光学单元的驱动和控制,和对镜组单元的驱动和控制可以是相互独立的,这样的方案中,离轴光学单元可以搭配不同的镜组单元使用,也可以根据激光雷达内部配置环境,选择不同形态的离轴光学单元,灵活性更好。
一种具体的实施方式中,离轴光学单元包括第一镜筒,镜组单元包括第二镜筒,通过调节第一镜筒和第二镜筒之间的位置关系,改变离轴光学单元的位置,调节所述第二离轴量。
一种具体的实施方式中,所述激光雷达内设滑动轨道,所述第一镜筒滑动连接至所述滑动轨道,所述滑动轨道的延伸方向垂直于所述第四光轴的方向。
一种具体的实施方式中,所述滑动轨道上设有多个定位结构,通过所述定位结构和所述第二镜筒的配合,将所述离轴光学单元定位在不同的位置。
一种可能的实现方式中,所述离轴光学单元位于所述镜组单元中,也就是说将离轴光学单元集成在镜组单元中,离轴光学单元不需要独立的镜筒结构,只需要将离轴光学单元的离轴镜组安装在镜组单元的镜筒内,将镜组单元的镜筒预留出安装离轴光学单元的离轴镜组的空间。本方案的优势在于,将离轴光学单元和镜组单元集成为一体,构成具有第二离轴量的光学组件,在组装激光雷达的过程中,只需要安装镜组单元的镜筒,不但节约激光雷达的内部空间,还方便组装,可以降低激光雷达的制作成本。
一种可能的实现方式中,所述第三光轴和所述第四光轴不共线,所述第二离轴量为固定值,所述第一离轴量为可变值。本方案可以根据第一离轴量的变化,选择一个合适的第二离轴量的值,以适应在扫描单元扫描过程中的所有可能出现的第一离轴量,能够补偿第一离轴量产生的像差,虽然本方案中的第二离轴量补偿离轴像差的精度不高,但是由于第二离轴量是固定值,对于激光雷达而言,设计难度及制作成本都较低,可以根据具体的应用场景的需求,例如,某些场景下,不需要较高的补偿离轴像差的精度的情况下,可以使用本方案提供的低成本的激光雷达。在第二离轴量为固定值的方案中,可以通过第三光轴和第四光轴的位置绝对固定的方式实现,例如,可以将离轴光学单元和激光系统均设计为固定在激光雷达外壳内部的结构;也可以通过第三光轴和第四光轴的位置的相对固定的方式实现,例如,离轴光学单元的位置可以活动,但在离轴光学单元活动的过程中,激光系统也活动,确保第三光轴和第四光轴之间的距离为固定值。
一种可能的实现方式中,所述第一离轴量和所述第二离轴量均为可变值。本方案能够实现根据第一离轴量的变化,调节第二离轴量的值,能够提高补偿离轴像差的精度,进行实时补偿,提高激光雷达的影像品质。
一种可能的实现方式中,在所述扫描单元扫描所述光束的过程中,所述激光系统固定不动,通过控制模块驱动所述离轴光学单元移动,以改变所述第二离轴量。本方案提供的实时补偿离轴像差的方案精度更高。
一种可能的实现方式中,当第一离轴量位于第一数值范围时,第二离轴量为第一值时, 以理解为:一个具体的第二离轴量的值对应一个数值范围内的具体的第一离轴量的值,即一对多。具体而言,本方案能实现分区补偿离轴像差,相较离轴光学单元固定不动的方案,本方案可以实现精细化的离轴像差补偿,由于在某一个具体的分区内扫描的过程中,第二离轴量可以保持不变,第二离轴量的驱动结构及控制模块更容易设计,可以比较好地控制成本。
一种可能的实现方式中,在所述扫描单元扫描所述光束的过程中,第一离轴量包括N个不同的第一值,第二离轴量包括N个不同的第二值,所述N个不同的第一值和所述N个不同的第二值之间为一一对应的关系。可以理解为:随着所述第一离轴量的变化,所述第二离轴量同步改变,以实现实时补偿所述第一离轴量导致的像差。本方案能够实现精细化的补偿,提升激光雷达的成像效果。
一种可能的实现方式中,所述激光雷达还包括存储模块和控制模块,所述存储模块内存储有所述扫描单元和所述离轴光学单元的位置的对应关系,所述控制模块用于根据所述扫描单元的实时位置,确定所述实时位置所对应的所述离轴光学单元的目标位置,并控制所述离轴光学单元移动到所述目标位置。
具体而言,控制模块可以为处理器,处理器还可能被称为控制单元、控制器、微控制器或其他某个合适的术语。存储模块可以为存储器,存储器可以与处理器耦合,或者与处理器通过总线连接,用于存储各种软件程序和/或多组指令以及数据,具体实现中,存储器可包括高速随机存取的存储器,并且也可包括非易失性存储器,例如一个或多个磁盘存储设备、嵌入式多媒体卡(Embedded Multi Media Card,EMMC)、通用闪存存储(Universal Flash Storage,UFS)、只读存储器(Read-Only Memory,ROM)或闪存(flash)等,或者是可存储静态信息和指令的其他类型的静态存储器。存储器还可以存储一个或多个计算机程序,所述一个或多个计算机程序包括本申请所描述方法的程序指令。存储器还可以存储通信程序,该通信程序可用于与终端进行通信。
具体而言,一种具体的方案中,所述存储模块内具有数据表,所述数据表为所述扫描单元和所述离轴光学单元的位置的对应关系表,所述控制模块用于根据所述扫描单元的实时位置,在所述数据表中调取所述实时位置所对应的所述离轴光学单元的目标位置,并驱动所述离轴光学单元移动到所述目标位置。
一种可能的实现方式中,所述第一离轴量为L1,所述第二离轴量为L2,|L2/L1|≥0.1。本申请实施例将第一离轴量和第二离轴量之间的关系限定在此范围内,可以保证离轴像差补偿的效果较佳,若第一离轴量和第二离轴量之间的关系式超出这个范围,离轴光学单元的补偿效果不理想。
一种可能的实现方式中,所述离轴光学单元的焦距为f1,所述视窗的焦距为f2,5≥|f1/f2|≥0.2。本申请实施例限定离轴光学单元和视窗的焦距的关系式,可以保证离轴像差补偿的效果,可以理解为,选择合适的离轴光学单元才能达到理想的离轴像差补偿效果,若离轴光学单元和视窗的关系式不在这个范围内,离轴光学单元的补偿效果不理想。
一种可能的实现方式中,所述激光系统的焦距为fr,所述视窗的焦距为f2,|f2/fr|≥0.5。具体实施方式中,将激光发射系统焦距和激光接收系统焦距在1mm~100mm范围内,使得离轴光学单元具有较好的离轴像差补偿效果,若超出这个范围,视窗的焦距过小,其产生的离轴像差会过大,以致离轴光学单元补偿效果不理想。
一种可能的实现方式中,所述第一方向为所述激光系统的准直方向,在所述第一方向上,所述视窗具有正光焦度。本方案可以有效降低激光系统与视窗之间的光斑尺寸,进而降低激光雷达的体积,还可以利用视窗的光焦度实现更好的准直效果。
一种可能的实现方式中,所述第一方向为所述激光系统的发散方向,在所述第一方向上,所述视窗具有负光焦度。本方案不仅可以得到更大的发散角,还能有效降低视窗的尺寸,进而降低激光雷达的体积。
一种可能的实现方式中,所述激光单元包括发射单元和接收单元,所述发射单元和所述接收单元相邻设置在所述扫描单元的同侧,或彼此分离设置在所述扫描单元的两侧。本方案限定一种具体的激光单元布置方案。
一种可能的实现方式中,适配发射单元和接收单元的配置,所述镜组单元包括发射镜单元和接收镜单元,所述发射镜单元位于所述发射单元和所述扫描单元之间,所述接收镜单元位于所述接收单元和所述扫描单元之间。
一种可能的实现方式中,所述离轴光学单元包括第一离轴单元,所述第一离轴单元位于所述发射单元和所述扫描单元之间,所述第一离轴单元的光轴为所述第四光轴。本方案限定了一种具体的激光雷达中的离轴光学单元的配置方案,将第一离轴单元设置在发射单元和扫描单元之间,强调为发射单元的光路进行离轴补偿。本实施方式有利于节约激光雷达内部的空间,有利于激光雷达小型化的设计。
一种可能的实现方式中,所述离轴光学单元包括第二离轴单元,所述第二离轴单元位于所述接收单元和所述扫描单元之间,所述第二离轴单元的光轴为所述第四光轴。本方案在前述第一离轴单元的基础上,引入了第二离轴单元,在接收单元和扫描单元之间增设离轴补偿方案,以实现激光雷达的成像效果更好的有益效果。
一种可能的实现方式中,所述视窗在第二方向上有光焦度,当所述第一方向为所述激光系统的准直方向时,所述第二方向为所述激光系统的发散方向,当所述第一方向为所述激光系统的发散方向时,所述第二方向为所述激光系统的准直方向,在所述第二方向上,所述激光光路在所述扫描单元和所述视窗之间形成的第一光轴和所述视窗的第二光轴之间构成第三离轴量,所述离轴光学单元的第四光轴和所述激光光路在所述扫描单元和所述激光单元之间形成的第三光轴之间构成第四离轴量,所述第四离轴量用于补偿所述第三离轴量导致的像差。本方案引入了第二方向上的离轴补偿方案,通过在第一方向和第二方向均设置离轴补偿方案,提升激光雷达的成像精度。
第二方面,本申请实施例提供一种具有探测功能的设备,包括控制中心和第一方面任意一种可能的实现方式所述的激光雷达,所述激光雷达用于探测目标信号,并将所述目标信号传送至所述控制中心。控制中心可以为具有探测功能的设备中的处理器,一种具体的方案中,控制中心为微控制单元(Microcontroller Unit,MCU),控制中心还可以用于控制设备中的其它的电子装置,例如音频设备、显示设备等等,甚至可以将音频设备和显示设备与激光雷达关联,例如,将从激光雷达采集到的目标信号通过音频设备发送音频信号给使用者,或者,将从激光雷达采集到的目标信号通过显示设备显示。具有探测功能的设备可以为但不限于:车辆、机器人、智慧码头及交通道路上所使用的探测设备。
第三方面,本申请实施例提供一种具有探测功能的设备,包括控制模块和第一方面所述的激光雷达,所述控制模块用于驱动所述离轴光学单元移动,以改变所述第二离轴量。本方案利用具有探测功能的设备中的控制模块,且此控制模块位于激光雷达之外,控制离轴光学单元移动,可以保证激光雷达的小尺寸的设计,控制模块在具有探测功能的设备中也可以执行其它的控制功能。控制模块可以为具有探测功能的设备中的处理器。
第四方面,本申请实施例还提供一种激光雷达的控制系统,控制系统包括第一驱动单元、信号采集单元、信号调取单元和第二驱动单元,所述第一驱动单元用于驱动扫描单元,具体 而言第一驱动单元发送驱动信号给扫描单元,使得扫描单元开始扫描光束。所述信号采集单元用于侦测扫描单元的具体的位置并采集扫描单元的位置信息。信号调取单元用于根据信号采集单元所采集的位置信息在存储模中调取离轴光学单元对应的目标位置信息。所述第二驱动单元用于根据所述信号调取单元获得的所述离轴光学单元的目标位置信息驱动所述离轴光学单元移动至目标位置。
第五方面,本申请实施例提供一种激光雷达的控制方法,包括如下步骤:
发送驱动信号给扫描单元;
扫描单元开始扫描光束;
在扫描单元扫描的过程中,侦测扫描单元的位置信息,具体而言,位置信息可以为扫描单元的角度、坐标、或相对某一参照的位置关系(例如距离);
根据扫描单元的位置信息确定所述位置信息所对应的离轴光学单元的目标位置,具体而言,可以通过控制模块从存储模块的数据表中调取离轴光学单元对应的位置信息,也可以通过索引的方式获取离轴光学单元对应的位置信息;
驱动离轴光学单元移动至所述目标位置,此目标位置与所述调取的离轴单元对应的位置信息一致,具体而言,目标位置可以为离轴光学单元的光轴的具体的坐标位置,目标位置也可以为离轴光学单元的移动量、或者通过移动的时间来确定其目标位置,因此,在具体的驱动方案中,可以根据不同的物理属性或方式确定离轴光学单元的目标位置。
附图说明
为了更清楚地说明本发明实施例或背景技术中的技术方案,下面将对本发明实施例或背景技术中所需要使用的附图进行说明。
图1是本申请提供的激光雷达的第一种应用场景的示意图;
图2是本申请提供的激光雷达的第二种应用场景的示意图;
图3是本申请提供的激光雷达的第三种应用场景的示意图;
图4是本申请提供的激光雷达的第四种应用场景的示意图;
图5是本申请一种实施方式提供的两种不同型号的激光雷达示意图;
图6是本申请一种实施方式提供的激光雷达的内部结构的示意图;
图7A、图7B和图8是本申请一种实施方式提供的激光雷达的部分示意图,图7A和图7B是X方向和Y方向所确定的平面上的激光雷达截面示意图,图7A和图7B分别为扫描单元在不同的扫描位置的示意图,图8是X方向和Z方向所确定的平面上的激光雷达的截面示意图;
图9A和图9B是本申请一种实施方式提供的激光雷达的部分示意图,图9A和图9B分别为扫描单元在不同的扫描位置的示意图;
图10A和图10B是本申请一种实施方式提供的激光雷达的部分示意图,图10A和图10B分别为扫描单元在不同的扫描位置的示意图;
图11A、图11B和图11C是本申请一种实施方式提供的激光雷达中的离轴光学单元和镜组单元之间的三种具体的结构设置的示意图;
图12是本申请一种实施方式提供的激光雷达的部分示意图;
图13A是本申请一种实施方式提供的激光雷达内部光路结构示意图;
图13B是图13A所示的激光雷达的光路展开示意图;
图14是本申请一种实施方式提供的激光雷达内部光路展开图。
具体实施方式
下面结合本发明实施例中的附图对本发明实施例进行描述。
本申请提供的激光雷达应用在具有探测功能的设备中,激光雷达用于对空间环境中的物体做探测感知,可以应用在无人驾驶、机器人等人工智能领域,本申请所涉及的激光雷达通过主动照明并探测,实现外界感知,获取环境数据,反馈深度信息和轮廓信息,辅助开展各种延伸应用,例如自动驾驶、自动规划行径路线、自动启动或刹车、自动泊车等功能。具体而言,具有探测功能的设备可以为但不限于:车辆、机器人、智慧码头及交通道路上所使用的探测设备,可以覆盖众多场景,如图1至图4所示,详述如下。
如图1所示,一种实施方式中,具有探测功能的设备1000为汽车,激光雷达100安装在车辆前保险杠中央或者前后左右四个角处,激光雷达100可以用于自动辅助驾驶。具体而言,激光雷达100可以为倒车雷达或前置雷达。应用在汽车上的激光雷达100作为一个安全装置,最大最明显的作用就是:在无能见度或能见度很差的情况下、或者遇到某些无法预测的障碍,向司机语音提示、蜂鸣警报等,从而防止或减少、减轻事故。如图1所示,在汽车的前端安装三个激光雷达100(为前置雷达),在汽车的后端安装两个激光雷达100(为倒车雷达)。具体而言,具有探测功能的设备1000内设控制中心200,此控制中心200与激光雷达100中电连接,所述激光雷达100用于探测目标信号,并将所述目标信号传送至所述控制中心200。本申请示例的激光雷达安装位置仅为示例,本申请对激光雷达安装的位置不做限定。
控制中心200可以为具有探测功能的设备中的处理器,一种具体的方案中,控制中心200为微控制单元(Microcontroller Unit,MCU),控制中心200还可以用于控制有探测功能的设备1000中的其它的电子装置,例如音频设备、显示设备等等,甚至可以将音频设备和显示设备与激光雷达关联,例如,将从激光雷达100采集到的目标信号通过音频设备发送音频信号给使用者,或者,将从激光雷达100采集到的目标信号通过显示设备显示。
如图2和图3所示,有探测功能的设备1000可以设置在智慧码头或交通道路上,例如,如图2所示,有探测功能的设备1000安装在路口的位置,探测功能的设备1000可以为路边的支架或者电线杆(或者其它的承载设备,例如临时车辆、岗亭等),激光雷达100安装在支架或电线杆上,用于探测此路口位置处的交通环境。如图3所示,有探测功能的设备1000安装在十字路中央安全岛上,用于探测十字路口位置周围的交通环境,有探测功能的设备1000可以为设置在十字路中央安全岛上的承载物(例如广告牌或指示牌),激光雷达100安装在此承载物上。
如图4所示,一种实施方式中,具有探测功能的设备1000为机器人,机器人的头部设有激光雷达100,激光雷达100可以位于机器人的头顶,以实现转动扩大控测角度,也可以位于机器人的其它位置,例如颈部、胸部等)。对于机器人而言,雷达探测为必要的功能组件,激光雷达100在机器人中为机器人的导航提供了便携有效的环境描述。例如激光雷达100可以实现距离探测(或其它参数的探测)。
其它实施方式中,具有探测功能的设备1000也可以为设置在码头上的控制设备或建筑物上的监控设备。
图5所示为本申请一种实施方式提供的两种不同型号的激光雷达100示意图,图6所示为本申请一种实施方式提供的激光雷达100的内部结构的示意图。参阅图5和图6,激光雷达100包括外壳10和设于外壳10内部的功能模块。外壳10包括壳主体11和视窗12,壳主体11围设收容空间111,功能模块位于收容空间111内,壳主体11设有连通收容空间111 和外部空间的开口112,视窗12连接至壳主体11且遮挡此开口112,激光雷达100发射的光束通过视窗12照射至激光雷达100的外部的待探测环境,外部待探测环境的光通过视窗12进入激光雷达100的内部。图5中位于上方的附图所示的激光雷达100的视窗12具有光焦度,视窗12的外表面为弧形,视窗12的内表面可以为弧形也可以为平面。图5中位于下方的附图所示的激光雷达100的视窗12也具有光焦度,视窗12的外表面为平面,视窗12的内表面为弧形。本申请通过将视窗12设置为具有光焦度的架构,减小激光雷达100的空间体积,实现激光雷达100的小型化设计。
激光出射系统按照出射光的形状可以分为两类,一类为点出射,一类为线出射。点出射要求发射光束为准直光束,这样在远距下出射光斑才能是个点,藉此定义了射出光束的准直方向。线出射要求发射光束为细长线光束。因此,激光雷达具有两个方向(准直方向和发散方向),如发射光束是个纵向细长线,则横向即为准直方向,纵向即为发散方向。本申请限定第一方向为所述激光系统的准直方向或所述激光系统的发散方向。当所述第一方向为所述激光系统的准直方向时,所述第二方向为所述激光系统的发散方向,当所述第一方向为所述激光系统的发散方向时,所述第二方向为所述激光系统的准直方向。
一种实施方式中,视窗12在激光系统的准直方向上具有正光焦度,可以有效降低激光系统与视窗12之间的光斑尺寸,进而降低激光雷达100的体积,还可以利用视窗12的光焦度实现更好的准直效果。一种实施方式中,视窗12在激光系统的发散方向上具有负光焦度,不仅可以得到更大的发散角,还能有效降低视窗12的尺寸,进而降低激光雷达100的体积。又一种实施方式中,视窗12在激光系统的准直方向上具有正光焦度,且在激光系统的发散方向上具有负光焦度。
对于视窗12而言,视窗12在子午方向焦距和弧氏方向焦距可以存在差异,子午方向和弧氏方向指的是视窗的弧形表面(具有光焦度的部分)的相互垂直的两个方向。本申请后续涉及到的视窗12的焦距f2可以为视窗12在子午方向的焦距,也可以为视窗12在弧氏方向的焦距。
如图6所示,设于外壳10内的功能模块至少包括激光系统20、扫描单元30、离轴光学单元40、存储模块50和控制模块60。
激光系统20包括激光单元21和镜组单元22,所述激光单元21用于发射或/和接收光束,以在所述视窗12和所述激光单元21之间构成激光光路,所述镜组单元22位于所述激光光路上,镜组单元22用于调整光束,例如:改变发射光束的发散度、波束宽度和截面积、对光束进行准直、整形、调节视场角、消除杂散光等。
镜组单元22可以包括多片透镜,透镜可以包括但不限于:球透镜、非球面透镜组、柱透镜、柱透镜组、柱透镜加球透镜组、球面加非球面组合透镜组等。
扫描单元30可以包括但不限于:MEMS二维扫描元件、多面镜旋转扫描元件、一维摆镜扫描元件、楔形棱镜组旋转扫描元件。通过扫描单元30的旋转或摆动可以实现扫描激光单元21收发的光束,以使激光单元21收发的光束能够覆盖待探测的场景。
离轴光学单元40可以包括具有光焦度的透镜,离轴光学单元40设置在激光单元21和扫描单元30之间,且离轴光学单元40的光轴和镜组单元22的光轴不共线,离轴光学单元40的光轴和镜组单元22和光轴可以相互平行也可以形成夹角。具体而言,激光系统20的发射光路和接收光路上均需要设置离轴光学单元40和镜组单元22。
控制模块60可以为处理器,处理器还可能被称为控制单元、控制器、微控制器或其他某个合适的术语。存储模块50可以为存储器,存储器可以与处理器耦合,或者与处理器通过总 线连接,用于存储各种软件程序和/或多组指令以及数据,具体实现中,存储器可包括高速随机存取的存储器,并且也可包括非易失性存储器,例如一个或多个磁盘存储设备、嵌入式多媒体卡(Embedded Multi Media Card,EMMC)、通用闪存存储(Universal Flash Storage,UFS)、只读存储器(Read-Only Memory,ROM)或闪存(flash)等,或者是可存储静态信息和指令的其他类型的静态存储器。存储器还可以存储一个或多个计算机程序,所述一个或多个计算机程序包括本申请所描述方法的程序指令。存储器还可以存储通信程序,该通信程序可用于与终端进行通信。
一种实施方式中,存储模块50内具有数据表,所述数据表为所述扫描单元30和所述离轴光学单元40的位置的对应关系表,也可以通过索引的方式建立所述扫描单元30和所述离轴光学单元40的位置的对应关系。控制模块60与存储模块50电连接,控制模块60能够读取存储模块50中的数据表,控制模块60还用于控制扫描单元30和离轴光学单元40移动,概括而言,控制模块60用于根据所述扫描单元30的实时位置,在所述数据表中调取所述实时位置所对应的所述离轴光学单元40的目标位置,并驱动所述离轴光学单元40移动到所述目标位置。
图7A、图7B和图8所示为一种实施方式提供的激光雷达的部分示意图,图7A和图7B是X方向和Y方向所确定的平面上的激光雷达截面示意图,图7A和图7B分别为扫描单元30在不同的扫描位置的示意图,图8是X方向和Z方向所确定的平面上的激光雷达的截面示意图。
图7A和图7B示意性地表达了激光单元21中和视窗12之间的激光光路。如图7B所示,激光单元21包括发射单元211和接收单元212,发射单元211用于发射激光束,发射单元211也称为激光光源,发射单元211包括但不限于:半导体、光纤、气体、固体激光器,发射单元211所发出的激光的波长λ满足条件850nm≤λ≤2000nm。接收单元212用于接收激光束,并进行光电转换,将光信号转换为电信号,接收单元212也称为激光接收探测器,接收单元212包括但不限于:雪崩二极管(APD)、硅光电倍增管(SIPM)、APD阵列、多像素光子计数器(MPPC)、光电倍增管(PMT)、单光子雪崩二极管(SPAD)。发射单元211和接收单元212均需要配置镜组单元22,在激光光路上,光束经过镜组单元22后被接收单元212接收,发射单元211发出的光束也需要经过镜组单元22才能形成激光光路。具体而言,发射单元211发出的光束经过镜组单元22后,被扫描单元30反射至视窗12,光束经过视窗12射出并照射至待探测场景,这样,在发射单元211和视窗12之间形成了激光光路。接收单元212所接收到的光束的路径为:待探测场景中光束通过视窗12进入激光雷达100的内部,并经过扫描单元30反射至镜组单元22,光束经过镜组单元22后汇聚在接收单元212处,这样在接收单元212和视窗12之间形成激光光路。本申请提供的激光雷达100中的扫描单元30在激光光路上设置在镜组单元22和视窗12之间。
本实施方式中,发射单元211和接收单元212相邻设置在扫描单元30的同侧,一种具体的实施方式中,发射单元211和接收单元212并排设置,二者之间具有间隙,此间隙的存在为了组装光学元件,发射单元211和接收单元212之间并无其它的光学元件、电子器件或机械结构件。本实施方式有利于节约激光雷达内部的空间,有利于激光雷达小型化的设计。
图8从图7A的另一个方向展示了发射单元211和接收单元212之间的位置关系,镜组单元22的数量为两个,其中一个所述镜组单元22位于所述发射单元211和所述扫描单元30之间,另一个所述镜组单元22位于所述接收单元212和所述扫描单元30之间,所述离轴光学单元40的数量为两个,其中一个离轴光学单元40位于所述发射单元211和所述扫描单元30 之间,另一个所述离轴光学单元40位于所述接收单元212和所述扫描单元30之间。
图7A、图7B所示的实施方式为激光系统在第一方向上的光路示意图,第一方向为激光系统的准直方向,第一方向可以理解为:在X方向和Y方向所确定的平面上的光路架构。本实施方式中,视窗12在准直方向上具有正光焦度,在发散方向上可以为正光焦度,也可以为负光焦度。举例而言,视窗12的具体形态为:视窗12的外表面为向外突出的弧形表面,视窗12的内表面为平面,本方案不限定视窗12的具体形态,视窗12的外表面为外突的弧形表面的情况下,视窗12的内表面也可以为突出的弧面或内凹的弧面。
如图7A、图7B和图8所示,激光光路在扫描单元30和视窗12之间形成第一光轴A1,激光光路在扫描单元30和激光单元21之间形成第三光轴A3,在扫描单元30在扫描的过程中,第三光轴A3位置固定,第一光轴A1的位置随着扫描单元30的位置变化而改变。由于视窗12具有光焦度,视窗12的光轴为第二光轴A2,具体而言,视窗12包括弧形面,此弧形面具有圆心,视窗12可能有多个光轴,都是穿过该圆心的一条线,而第二光轴A2就是为视窗12的光轴中从圆心引出的一条平行于第一光轴A1的光轴。第一光轴A1和第二光轴A2不共线,每一个不同位置的激光光路的第一光轴A1所对应的视窗的第二光轴A2也是不同的。由于视窗12具有光焦度,扫描单元30在扫描过程中,第一光轴A1和第二光轴A2之间的不共线会产生离轴像差,离轴像差的存在,直接影响激光雷达100所探测到的待探测环境的影像品质。具体而言,视窗12的第二光轴A2和激光光路的第一光轴A1之间构成第一离轴量L1,第一离轴量L1的存在是导致离轴像差、影响激光雷达100所探测到的待探测环境的影像的品质的主要因素。本申请通过设置在激光光路上的离轴光学单元40补偿第一离轴量L1所产生的像差,也就是说,通过离轴光学单元40的设置可以减轻或消除第一离轴量所产生的像差,实现完全补偿或部分补偿第一离轴量L1导致的像差。具体而言,离轴光学单元40设置在扫描单元30和激光单元21之间,离轴光学单元40的光轴为第四光轴A4,第四光轴A4和第三光轴A3之间构成第二离轴量L2,第二离轴量L2用于补偿第一离轴量L1导致的像差。图7A和图7B中的点划线表示为第一光轴A1、第二光轴A2、第三光轴A3和第四光轴A4。
所述第二离轴量L2和所述第一离轴量为L1之间的关系满足:|L2/L1|≥0.1。本申请实施例将第一离轴量L1和第二离轴量L2之间的关系限定在此范围内,可以保证离轴像差补偿的效果较佳,若第一离轴量L1和第二离轴量L2之间的关系式超出这个范围,离轴光学单元40的补偿效果可能不如在该范围内的。
所述离轴光学单元40的焦距为f1,所述视窗12的焦距为f2,5≥|f1/f2|≥0.2,本申请实施例限定离轴光学单元40和视窗12的焦距的关系式,可以使保证离轴像差补偿的效果较佳,可以理解为,选择合适的离轴光学单元40才能达到理想的离轴像差补偿效果,若离轴光学单元40和视窗12的关系式不在这个范围内,离轴光学单元40的补偿效果可能不如在该范围内的。
发射单元211发射光束经过扫描单元30反射后从视窗12射出,以构成激光发射系统,激光发射系统的焦距ft和视窗的焦距f2之间的关系满足:|f2/ft|≥0.5。接收单元212接收光束的路径为,光束从视窗进入激光雷达,经过扫描的反射后,通过镜组单元22被接收单元212接收,以构成激光接收系统,激光接收系统的焦距fr和视窗12的焦距f2之间的关系满足:|f2/fr|≥0.5。具体实施方式中,将激光发射系统焦距和激光接收系统焦距在1mm~100mm范围内,使得离轴光学单元40具有较好的离轴像差补偿效果,若超出这个范围,视窗12的焦距过小,其产生的离轴像差会过大,以致离轴光学单元40补偿效果不理想。
图7A所示为扫描单元30在第一位置时的第一光轴A1和第二光轴A2的具体的位置,图 7B所示为扫描单元30在第二位置时的第一光轴A1和第二光轴A2的具体的位置,本实施方式中,扫描单元30在第一位置和第二位置两种状态下,第三光轴A3和第四光轴A4的位置是固定的,可以理解为,激光单元21、镜组单元22和离轴光学单元40之间的位置关系可以是固定的。其它实施方式中,也可以将离轴光学单元40设置为可以移动的状态,在扫描单元30扫描的过程中,离轴光学单元40同步移动,这样,第四光轴A4的位置也随之改变。
如图8所示,发射单元211和扫描单元30之间的激光光路上设置发射镜单元22A和第一离轴单元40A,接收单元212和扫描单元30之间的激光光路上设置接收镜单元22B和第二离轴单元40B。发射镜单元22A和接收镜单元22B的配置(指的是透镜的数量、尺寸和结构形态)可以相同,也可以不同;第一离轴单元40A和第二离轴单元40B的配置(指的是透镜的数量、尺寸和结构形态)可以相同,也可以不同。
图9A和图9B所示的实施方式与图7A和图7B所示的实施方式的主要区别在于:图9A和图9B所示为激光系统在第二方向上的光路示意图,第二方向为激光系统的发散方向,第二方向可以理解为:在X方向和Z方向所确定的平面上的光路架构。本实施方式中,视窗12在所述激光系统的发散方向上具有负光焦度,举例而言:视窗12的外表面为平面状,视窗12的内表面的内凹的弧形表面。图9A所示为扫描单元30在第一位置时的第一光轴A1和第二光轴A2的具体的位置,图9B所示为扫描单元30在第二位置时的第一光轴A1和第二光轴A2的具体的位置,本实施方式中,扫描单元30在第一位置和第二位置两种状态下,第三光轴A3的位置是固定的,可以理解为,激光单元21和镜组单元22之间的位置关系可以是固定的,但是离轴光学单元40的位置发生了变化,使得第四光轴A4的位置发生了变化,图9A和图9B只是示意性地表达离轴光学单元40和第四光轴A4的两个状态的不同的位置,并不作为离轴光学单元40和扫描单元30具体位置关系的限定,根据具体的应用环境,离轴光学单元40和第四光轴A4的位置会发生变化。
图10A和图10B所示的实施方式与图9A和图9B所示的实施方式的主要区别在于:图10A和图10B所示为激光系统在第一方向上的光路示意图,第一方向为激光系统的准直方向,第一方向可以理解为:在X方向和Y方向所确定的平面上的光路架构。本实施方式中,视窗12在激光系统的准直方向上具有正光焦度,视窗12的外表面为向外突出的弧形表面,视窗12的内表面为内凹的弧形表面。图10A和图10B所示的实施方式中,显示了视窗12的弧形表面的圆心位置O,第二光轴A2位于从此圆心O引出的一条平行于第一光轴A1的线上。
一种实施方式中,离轴光学单元40位于扫描单元30和镜组单元22之间。图11A、图11B和图11C所示为离轴光学单元40和镜组单元22之间的三种具体的结构设置的实施方式。
图11A所示的实施方式中,离轴光学单元40和镜组单元22之间相互独立,它们可以具有独立的安装结构,离轴光学单元40和镜组单元22之间可以不设置任何连接关系,控制模块对离轴光学单元40的驱动和控制,和对镜组单元22的驱动和控制可以是相互独立的,这样的方案中,离轴光学单元40可以搭配不同的镜组单元22使用,也可以根据激光雷达内部配置环境,选择不同形态的离轴光学单元40,灵活性更好。具体而言,离轴光学单元40包括离轴镜组41和第一镜筒42,第一镜筒42用于安装离轴镜组41且将离轴镜组41连接在激光雷达100的内部。第一镜筒42可以是固定连接在激光雷达内部。离轴镜组41可以为一片透镜或至少两片透镜组合而成,图11A只是示意性地表达离轴镜组41具有两片透镜,并不形成对离轴镜组41的透镜的形态和数量及位置关系的限定。镜组单元22包括光学镜组221和第二镜筒222,第二镜筒222用于安装光学镜组221,且将光学镜组221固定在激光雷达100 的内部,光学镜组221可以为一片透镜或至少两片透镜的组合,图11A只是示意性地表达光学镜组221具有三片透镜,并不形成对光学镜组221的透镜的形态和数量及位置关系的限定。图11A所示的实施方式中,第一镜筒42和第二镜筒222均固定设置在激光雷达100内部,第二离轴量L2为固定值,本方案可以根据第一离轴量L1的变化,选择一个合适的第二离轴量L2的值,以适应在扫描单元30扫描过程中的所有可能出现的第一离轴量L1,能够补偿第一离轴量L1产生的像差。由于第二离轴量是固定值,对于激光雷达而言,设计难度及制作成本都较低,可以根据具体的应用场景的需求,例如,某些场景下,不需要较高的补偿离轴像差的精度的情况下,可以使用本方案提供的低成本的激光雷达。
图11B所示的实施方式与图11A所示的实施方式的区别在于:图11B所示的实施方式中,可以通过调节第一镜筒42和第二镜筒222之间的位置关系,改变离轴光学单元40的位置,调第二离轴量L2的值,例如第一镜筒42可以滑动连接在激光雷达内,通过电机驱动第一镜筒42滑动,改变第二离轴量L2。具体而言,在激光雷达内设置滑动轨道43,滑动轨道43沿着径向方向R-R(即垂直于第四光轴的方向)延伸,第一镜筒42滑动连接至此滑动轨道43,滑动轨道43上还设有多个沿径向方向R-R间隔设置的定位结构432,定位结构432用于定位第一镜筒42。通过具体的定位结构432与第一镜筒42之间的配合,能够实现离轴光学单元40在多个不同位置之间的切换。在扫描单元30扫描的过程中,扫描单元30扫描的位置可以分成多个区域,每个区域均对应一个定位结构432所限定的具体的位置,通过对离轴光学单元40在不同的位置的定位,使得每个不同的位置均可以对应扫描单元30所扫描的一个区域,也就是说,本实施方式中,一个第二离轴量L2的值对应一个第一离轴量L1的范围,当所述第二离轴量L2为第一值时,所述第一离轴量L1位于第一数值范围内,所述第一数值范围包括至少两个不同的第二离轴量L2。在存储模块的数据表中,扫描单元30的扫描位置和离轴光学单元40的位置可以是多对一的关系。其它实施方式中,第一镜筒42在滑动轨道43上可以定位在任意位置,例如,滑动轨道43和第一镜筒42之间通过摩擦力作为限位结构,不需要设置指定位置的定位结构,摩擦力作为限位结构能够实现将第一镜筒42限位在任意的位置,本方案中,在所述扫描单元30扫描所述光束的过程中,随着所述第一离轴量L1的变化,所述第二离轴量L2同步改变,以实现实时补偿所述第一离轴量L1导致的像差,也就是说,在所述扫描单元30扫描所述光束的过程中,所述第一离轴量L1为N个不同的第一值,所述第二离轴量L2为N个不同的第二值,所述N个不同的第一值和所述N个不同的第二值之间为一一对应的关系,每一个第一离轴量L1的值均对应一个不同的第二离轴量L2的值,在存储模块的数据表中,扫描单元30的扫描位置和离轴光学单元40的位置是一一对应的关系,而不是多对一的关系。
图11C所示的实施方式中,离轴光学单元40设置在镜组单元22中,也就是说将离轴光学单元40集成在镜组单元22中,离轴光学单元40不需要独立的镜筒结构,只需要将离轴光学单元40的离轴镜组41安装在镜组单元22的镜筒223内,将镜组单元22的镜筒223预留出安装离轴光学单元40的离轴镜组41的空间。也可以理解为,本方案通过将镜组单元22中部分透镜的光轴为第三光轴A3,还有部分透镜的光轴为第四光轴A4。本方案的优势在于,将离轴光学单元40和镜组单元22集成为一体,构成具有第二离轴量的光学组件,在组装激光雷达的过程中,只需要安装镜组单元22的镜筒,不但节约激光雷达的内部空间,还方便组装,可以降低激光雷达的制作成本。具体而言,镜组单元22的镜筒223包括第一区域2231和第二区域2232,第一区域2231用于安装光轴为第三光轴A3的透镜,此部分透镜为镜组单元22的光学镜组221。第二区域2232用于安装光轴为第四光轴A4的透镜,此部分透镜为离轴光 学单元40的离轴镜组41。一种实施方式中,第二区域2232在垂直于第三光轴A3的方向上的尺寸大于第二区域2232中的离轴镜组41的径向尺寸,第二区域2232内的空间可以提供其中的离轴镜组41沿径向移动。一种实施方式中,镜筒223的第二区域2232内设有移动轨道224,移动轨道224沿垂直于第三光轴A3的方向延伸,离轴光学单元40的离轴镜组41滑动连接至移动轨道224,可以通过离轴透镜41在移动轨道224上的移动改变第二离轴量L2。移动轨道224上也可以设置限位结构2242,限位结构2242用于将离轴镜组41限位在多个不同的位置。本方案中,镜组单元22的光学镜组221(即光轴为第三光轴A3的部分透镜)可以固定在镜筒223内,即第三光轴A3的位置相对镜筒223的位置固定不变,通过将光轴为第四光轴A4的部分离轴镜组41设置为滑动连接至镜筒223,能够改变第四光轴A4的位置,改变第二离轴量L2。
图11B和图11C所示的实施方式均为从第一方向上设置第二离轴量L2,也可以调节第二离轴量L2的方案,第一方向可以理解为:在X方向和Y方向所确定的平面上的光路架构。例如:在激光系统的准直方向上设置第二离轴量L2,也可以调节第二离轴量L2。
一种具体的实施方式中上,也可以在第二方向上配置光学离轴元件,进行离轴像差补偿。第二方向可以理解为,在X方向和Z方向所确定的平面上的光路架构。当所述第一方向为所述激光系统的准直方向时,所述第二方向为所述激光系统的发散方向,当所述第一方向为所述激光系统的发散方向时,所述第二方向为所述激光系统的准直方向,在所述第二方向上,所述激光光路在所述扫描单元和所述视窗之间形成的光轴和所述视窗的光轴之间构成第三离轴量,所述离轴光学单元的光轴和所述激光光路在所述扫描单元和所述激光单元之间形成的光轴之间构成第四离轴量,所述第四离轴量用于补偿所述第三离轴量导致的像差。
概括而言,本申请实施方式提供的激光雷达中,在扫描单元30扫描的过程中,第一离轴量L1为可变值,扫描单元30扫描在不同的位置,视窗12的第二光轴A2的位置不同,因此第二光轴A2和激光光路的第一光轴A1之间的第一离轴量L1也是不同的。而对于第二离轴量L2而言,当离轴光学单元40固定设置在激光雷达100内部时,第二离轴量L2也是固定值;当离轴光学单元40滑动连接在激光雷达100内部时,扫描单元30扫描的过程中,离轴光学单元40也同步移动,第二离轴量L2随之改变,因此,第二离轴量L2也可以为可变值,以实现在扫描单元30扫描的过程中,离轴光学单元40可以实时补偿离轴像差,保证激光雷达100的影像品质。
对于第二离轴量L2为可变值的方案可以包括两种具体的方案。第一种具体的方案中,在所述扫描单元30扫描所述光束的过程中,第二离轴量L2可以有多个不同的值,第二离轴量L2的每个具体值均对应至少两个不同的第一离轴量L1的值,即每个第二离轴量L2的值均对应一段范围内所包括第一离轴量L1的不同值,实现分区补偿离轴像差。相较离轴光学单元40固定不动的方案,本方案可以实现精细化的离轴像差补偿,由于在某一个具体的分区内扫描的过程中,第二离轴量L2可以保持不变,第二离轴量L2的驱动结构及控制模块更容易设计,可以比较好地控制成本。第二种具体的方案中,在所述扫描单元30扫描所述光束的过程中,第二离轴量L2和第一离轴量L1是一一对应的关系,随着所述第一离轴量L1的变化,所述第二离轴量L2同步改变,以实现实时补偿所述第一离轴量L1导致的像差,本方案提供的实时补偿离轴像差的方案精度更高。
上述方案中,在所述扫描单元30扫描所述光束的过程中,所述激光系统(指的是发射单元、接收单元及它们对应的镜组单元)固定不动,通过所述离轴光学单元40的移动改变所述第二离轴量L2。其它实施方式中,也可以通过同步改变激光系统,即通过同步改变第三光轴 A3和第二光轴A2的位置改变第二离轴量L2;或者,通过改变第三光轴A3的位置且保持第二光轴A2位置不变的方式改变第二离轴量L2。
图12所示为一种实施方式提供的激光雷达的示意图,激光单元21包括发射单元211和接收单元212,所述发射单元211和所述接收单元212彼此分离设置在所述扫描单元30的两侧,所述镜组单元22的数量为两个,分别为发射镜单元22A和接收镜单元22B,发射镜单元22A位于所述发射单元211和所述扫描单元30之间,接收镜单元22B位于所述接收单元212和所述扫描单元30之间,所述离轴光学单元40的数量为两个,分别为第一离轴单元40A和第二离轴单元40B,第一离轴单元40A位于所述发射单元211和所述扫描单元30之间,第二离轴单元40B位于所述接收单元212和所述扫描单元30之间。本方案通过将发射单元211和接收单元212分别布置在扫描单元30的相对的两侧,将激光发射光路和激光接收光路分开,可以提升激光雷达100的探测精度。图12所示的实施方式中,第一光轴A1、第二光轴A2、第三光轴A3和第四光轴A4的数量均为两个,两个第二光轴A2均位于:从视窗12的弧形面的圆心O的位置引出的平行于对应的第一光轴A1的线上。
图13A和图13B所示为本申请一种实施方式提供的激光雷达内部光路示意图,其中未示出扫描单元30。如图13A所本实施方式中,视窗12在所述激光系统的发散方向上具有负光焦度,视窗12的内表面为内凹的弧面,视窗12的外表面为外突的弧面,离轴光学单元40由一片具有正光焦度的透镜构成。图13A所示的实施方式中,离轴光学单元40的焦距f1与视窗焦距f2满足:f1/f2=-0.9;离轴光学单元40的第四光轴A4相对激光系统20(激光单元21和镜组单元22)的第三光轴A3的第二离轴量L2与激光系统的第一光轴A1相对视窗12的光轴(第二光轴A2)的第一离轴量L1之间满足:L2/L1=-0.73;视窗焦距f2与激光发射系统(发射单元211和镜组单元22构成)焦距ft满足f2/ft=-7;视窗焦距f2与激光接收系统(接收单元212和镜组单元22构成)焦距fr满足f2/ft=-7。图13B为图13A所示的实施方式提供的具体的激光雷达的光路展开图。
图14所示为本申请一种实施方式提供的激光雷达内部光路展开图,其中未示出扫描单元30。本实施方式中,视窗12的光焦度为正,离轴光学单元40由一片具有负光焦度的透镜构成。其中离轴光学单元40的焦距f1与视窗的焦距f2满足f1/f2=-0.32;离轴光学单元40的第四光轴A4相对激光系统(激光单元21和镜组单元22)的第三光轴A3的第二离轴量L2与激光系统的第一光轴A1相对视窗光轴(第二光轴A2)的第一离轴量L1满足L2/L1=0.78;视窗焦距f2与激光发射系统(发射单元211和镜组单元22构成)焦距ft满足f2/ft=12;视窗焦距f2与激光接收系统(接收单元212和镜组单元22构成)焦距fr满足f2/ft=12。
图13A和图14所示的实施方式中,离轴光学单元40均具有一片透镜,其它实施方式中,离轴光学单元40也可以具有多片透镜,例如,可以将离轴光学单元40的透镜的数量控制在1-5片范围内,兼顾优化空间占比及补偿离轴像差性能两方面的性能。
图6所示的实施方式中的存储模块50和控制模块60可以设置在外壳的内部,作为激光雷达100的内部系统,使得激光雷达100具有独立的存储和控制功能,不依赖于激光雷达100之外的系统,使得激光雷达100的存储及处理数据的功能更强。其它实施方式中,存储模块50和控制模块60中的至少一个也可以设于激光雷达100之外,例如,控制模块设置在具有探测功能的设备中,激光雷达设有信号接口,通过数据线将信号接口电连接至具有探测功能的设备中的控制模块;同样,存储模块也可以设置在具有探测功能的设备中,通过数据线电连接在激光雷达和存储模块之间,这样的方案有利于节约激光雷达内部空间,可以实现激光雷达的轻量化及小型化。
本申请实施例还提供一种激光雷达的控制系统和控制方法,控制系统包括第一驱动单元、信号采集单元、信号调取单元和第二驱动单元,所述第一驱动单元用于驱动扫描单元,具体而言第一驱动单元发送驱动信号给扫描单元,使得扫描单元开始扫描光束。所述信号采集单元用于侦测扫描单元的具体的位置并采集扫描单元的位置信息。信号调取单元用于根据信号采集单元所采集的位置信息在存储模块的数据表中调取离轴光学单元的对应的位置信息。所述第二驱动单元用于根据所述信号调取单元获得的所述离轴光学单元的位置信息驱动所述离轴光学单元移动至目标位置。
本申请实施例提供的激光雷达的控制方法包括如下步骤:
发送驱动信号给扫描单元;
扫描单元开始扫描光束;
在扫描单元扫描的过程中,侦测扫描单元的位置信息,具体而言,位置信息可以为扫描单元的角度、坐标、或相对某一参照的位置关系(例如距离);
根据扫描单元的位置信息确定所述位置信息所对就的离轴光学单元的目标位置,具体而言,可以通过控制模块从存储模块的数据表中调取离轴光学单元对应的位置信息,也可以通过索引的方式获取离轴光学单元对应的位置信息;
驱动离轴光学单元移动至目标位置,此目标位置与所述调取的离轴单元对应的位置信息一致,具体而言,目标位置可以为离轴光学单元的光轴的具体的坐标位置,目标位置也可以为离轴光学单元的移动量、或者通过移动的时间来确定其目标位置,因此,在具体的驱动方案中,可以根据不同的物理属性或方式确定离轴光学单元的目标位置。
本文中涉及的第一、第二、第三、第四以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请的范围。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本申请实施例装置中的功能单元(或模块)可以根据实际需要进行合并、划分和删减。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (19)

  1. 一种激光雷达,其特征在于,包括视窗、激光系统、扫描单元和离轴光学单元,其中:
    所述视窗在第一方向上具有光焦度,所述第一方向为所述激光系统的准直方向或所述激光系统的发散方向;
    所述激光系统包括激光单元和镜组单元,所述激光单元用于发射或/和接收光束,以在所述视窗和所述激光单元之间构成激光光路,所述镜组单元位于所述激光光路上;
    所述扫描单元在所述激光光路上位于所述镜组单元和所述视窗之间,所述扫描单元用于扫描所述光束,所述激光光路在所述扫描单元和所述视窗之间形成第一光轴;在所述第一方向上,所述第一光轴和第二光轴之间构成第一离轴量;其中,所述第二光轴为所述视窗的光轴中与所述第一光轴平行的光轴;
    所述离轴光学单元位于所述激光光路上且位于所述扫描单元和所述激光单元之间,所述激光光路在所述激光单元和所述扫描单元之间形成第三光轴,所述离轴光学单元的光轴为第四光轴,所述第四光轴平行于所述第三光轴,在所述第一方向上,所述第四光轴和所述第三光轴之间构成第二离轴量,所述第二离轴量用于补偿所述第一离轴量导致的像差。
  2. 如权利要求1所述的激光雷达,其特征在于,所述离轴光学单元位于所述扫描单元和所述镜组单元之间。
  3. 如权利要求1所述的激光雷达,其特征在于,所述离轴光学单元位于所述镜组单元中。
  4. 如权利要求1-3任一项所述的激光雷达,其特征在于,所述第三光轴和所述第四光轴不共线,所述第二离轴量为固定值,所述第一离轴量为可变值。
  5. 如权利要求1-3任一项所述的激光雷达,其特征在于,所述第一离轴量和所述第二离轴量均为可变值。
  6. 如权利要求5所述的激光雷达,其特征在于,在所述扫描单元扫描所述光束的过程中,所述激光系统固定不动,通过控制模块驱动所述离轴光学单元移动,以改变所述第二离轴量。
  7. 如权利要求6所述的激光雷达,其特征在于,当所述第一离轴量位于第一数值范围时,所述第二离轴量为第一值。
  8. 如权利要求6所述的激光雷达,其特征在于,当所述第一离轴量为第一值时,所述第二离轴量为第二值,所述第一值与所述第二值对应。
  9. 如权利要求6-8任一项所述的激光雷达,其特征在于,所述控制模块位于所述激光雷达中,所述激光雷达还包括存储模块,所述存储模块存储有所述扫描单元和所述离轴光学单元的位置的对应关系,所述控制模块用于根据所述扫描单元的实时位置,确定与所述实时位置对应的所述离轴光学单元的目标位置,并控制所述离轴光学单元移动到所述目标位置。
  10. 如权利要求1-9任一项所述的激光雷达,其特征在于,所述第一离轴量为L1,所述第二离轴量为L2,|L2/L1|≥0.1。
  11. 如权利要求1-10任一项所述的激光雷达,其特征在于,所述离轴光学单元的焦距为f1,所述视窗的焦距为f2,5≥|f1/f2|≥0.2。
  12. 如权利要求1-11任一项所述的激光雷达,其特征在于,所述激光系统的焦距为fr,所述视窗的焦距为f2,|f2/fr|≥0.5。
  13. 如权利要求1-12任一项所述的激光雷达,其特征在于,所述第一方向为所述激光系统的准直方向,在所述第一方向上,所述视窗具有正光焦度。
  14. 如权利要求1-12任一项所述的激光雷达,其特征在于,所述第一方向为所述激光系 统的发散方向,在所述第一方向上,所述视窗具有负光焦度。
  15. 如权利要求1-14任一项所述的激光雷达,其特征在于,所述激光单元包括发射单元和接收单元,所述发射单元和所述接收单元相邻设置在所述扫描单元的同侧,或彼此分离设置在所述扫描单元的两侧;
    所述镜组单元包括发射镜单元和接收镜单元,所述发射镜单元位于所述发射单元和所述扫描单元之间,所述接收镜单元位于所述接收单元和所述扫描单元之间。
  16. 如权利要求15所述的激光雷达,其特征在于,所述离轴光学单元包括第一离轴单元,所述第一离轴单元位于所述发射单元和所述扫描单元之间,所述第一离轴单元的光轴为所述第四光轴;或/和,
    所述离轴光学单元包括第二离轴单元,所述第二离轴单元位于所述接收单元和所述扫描单元之间,所述第二离轴单元的光轴为所述第四光轴。
  17. 如权利要求1-16任一项所述的激光雷达,其特征在于,所述视窗在第二方向上有光焦度,其中,当所述第一方向为所述激光系统的准直方向时,所述第二方向为所述激光系统的发散方向,当所述第一方向为所述激光系统的发散方向时,所述第二方向为所述激光系统的准直方向;
    在所述第二方向上,所述激光光路在所述扫描单元和所述视窗之间形成的第一光轴和所述视窗的第二光轴之间构成第三离轴量;
    在所述第二方向上,所述离轴光学单元的第四光轴和所述激光光路在所述扫描单元和所述激光单元之间形成的第三光轴之间构成第四离轴量,所述第四离轴量用于补偿所述第三离轴量导致的像差。
  18. 一种具有探测功能的设备,其特征在于,包括控制中心和如权利要求1-17任一项所述的激光雷达,所述激光雷达用于探测目标信号,并将所述目标信号传送至所述控制中心。
  19. 一种具有探测功能的设备,其特征在于,包括控制模块和如权利要求1-8任一项或10-17任一项所述的激光雷达,所述控制模块用于驱动所述离轴光学单元移动,以改变所述第二离轴量。
PCT/CN2023/071220 2022-01-27 2023-01-09 激光雷达和具有探测功能的设备 WO2023142991A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210103389.7 2022-01-27
CN202210103389.7A CN116559884A (zh) 2022-01-27 2022-01-27 激光雷达和具有探测功能的设备

Publications (1)

Publication Number Publication Date
WO2023142991A1 true WO2023142991A1 (zh) 2023-08-03

Family

ID=87470639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/071220 WO2023142991A1 (zh) 2022-01-27 2023-01-09 激光雷达和具有探测功能的设备

Country Status (2)

Country Link
CN (1) CN116559884A (zh)
WO (1) WO2023142991A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130027783A1 (en) * 2010-05-04 2013-01-31 Mbda France Process for correcting aberration defects within an optical device for observing a field through a window
CN108226901A (zh) * 2018-02-06 2018-06-29 北京万集科技股份有限公司 激光雷达光学系统
CN109991749A (zh) * 2017-12-29 2019-07-09 宁波舜宇车载光学技术有限公司 光学设备及其设计方法
CN109991734A (zh) * 2017-12-29 2019-07-09 宁波舜宇车载光学技术有限公司 光学设备及其像差补偿方法
US20210156971A1 (en) * 2019-11-22 2021-05-27 Robert Bosch Gmbh Lidar sensor
WO2021196193A1 (zh) * 2020-04-03 2021-10-07 深圳市速腾聚创科技有限公司 激光雷达及自动驾驶设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130027783A1 (en) * 2010-05-04 2013-01-31 Mbda France Process for correcting aberration defects within an optical device for observing a field through a window
CN109991749A (zh) * 2017-12-29 2019-07-09 宁波舜宇车载光学技术有限公司 光学设备及其设计方法
CN109991734A (zh) * 2017-12-29 2019-07-09 宁波舜宇车载光学技术有限公司 光学设备及其像差补偿方法
CN108226901A (zh) * 2018-02-06 2018-06-29 北京万集科技股份有限公司 激光雷达光学系统
US20210156971A1 (en) * 2019-11-22 2021-05-27 Robert Bosch Gmbh Lidar sensor
WO2021196193A1 (zh) * 2020-04-03 2021-10-07 深圳市速腾聚创科技有限公司 激光雷达及自动驾驶设备

Also Published As

Publication number Publication date
CN116559884A (zh) 2023-08-08

Similar Documents

Publication Publication Date Title
US20220128667A1 (en) Multi-beam laser radar and self-moving vehicle
CN107085207B (zh) 一种360°扫描探测激光雷达装置
US20220236392A1 (en) Detection device and method for adjusting parameter thereof
CN108802763B (zh) 一种大视场近程激光雷达及车辆
US20210255329A1 (en) Environment sensing system and movable platform
US6723975B2 (en) Scanner for airborne laser system
JPH09113262A (ja) 走査距離計及び距離計を使用する走査方法
CN109814084B (zh) 激光雷达系统
CN112965044B (zh) 一种激光雷达
KR20210063250A (ko) Lidar 센서
CN211718520U (zh) 一种多线激光雷达
US20240210528A1 (en) Receiving Optical System, Lidar System, and Terminal Device
Lin et al. Design and realization of wide field-of-view 3D MEMS LiDAR
CN111398969A (zh) 一种激光雷达及其收发装置
CN110658527A (zh) 激光雷达、自主移动机器人及智能车辆
WO2022110210A1 (zh) 一种激光雷达及移动平台
WO2023142991A1 (zh) 激光雷达和具有探测功能的设备
WO2024002107A1 (zh) 激光接收系统、激光雷达、镜头组件、电子设备及车辆
EP4379421A1 (en) Lidar and terminal device
WO2021161858A1 (ja) 測距装置および測距方法
WO2024044905A1 (zh) 一种探测装置及终端设备
CN211786117U (zh) 一种可360°扫描的激光雷达
WO2023040788A1 (zh) 激光雷达、探测设备和车辆
WO2023201596A1 (zh) 一种探测装置及终端设备
CN218630192U (zh) 一种激光雷达系统及移动设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23745876

Country of ref document: EP

Kind code of ref document: A1