WO2023142313A1 - 磁性元件及制作方法 - Google Patents

磁性元件及制作方法 Download PDF

Info

Publication number
WO2023142313A1
WO2023142313A1 PCT/CN2022/093787 CN2022093787W WO2023142313A1 WO 2023142313 A1 WO2023142313 A1 WO 2023142313A1 CN 2022093787 W CN2022093787 W CN 2022093787W WO 2023142313 A1 WO2023142313 A1 WO 2023142313A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic element
magnetic
groove
units
grooves
Prior art date
Application number
PCT/CN2022/093787
Other languages
English (en)
French (fr)
Inventor
汤磊
夏莉
吉修涛
张广权
陈进华
Original Assignee
上海盘毂动力科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海盘毂动力科技股份有限公司 filed Critical 上海盘毂动力科技股份有限公司
Publication of WO2023142313A1 publication Critical patent/WO2023142313A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • H01F7/0205Magnetic circuits with PM in general
    • H01F7/021Construction of PM
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F2027/348Preventing eddy currents

Definitions

  • the invention relates to a magnetic element and a manufacturing method, in particular to a magnetic element used in an electromagnetic device and a manufacturing method.
  • the electromagnetic device is used to generate electromagnetic to achieve the corresponding work, which is divided into motor and electromagnet.
  • Take an electric motor for example, which consists of a rotating part called the rotor, and a stationary part called the stator, which combine to generate torque.
  • the stator of an electric machine includes a stator core, and windings for receiving electric current and for operation, the rotor is equipped with a plurality of magnets, and the stator and rotor interact to rotate the rotor relative to the stator.
  • eddy current loss energy loss
  • eddy current loss energy loss
  • eddy current loss will cause the magnetic component to heat up, which in turn affects the operating performance of the motor .
  • the most common way to reduce eddy current loss is to segment, and then stack multiple magnetic segments a (such as silicon steel sheets) to form a magnetic element. Referring to Figure 1, the gap between two adjacent magnetic segments a can prevent Break the eddy current path, thereby reducing the eddy current loss of the magnetic element.
  • the magnetic components are processed in sections by cutting, and a lot of waste is easily generated during the cutting process, which makes the material utilization rate low.
  • the surface of the magnetic segment needs to be attached with an insulating layer. Due to the relationship between the segments, it is only possible to spray the insulating coating on the surface of each magnetic segment one by one. invalidated.
  • the present invention provides a magnetic element and a manufacturing method that can effectively reduce costs and improve production efficiency.
  • the present invention provides a magnetic element, including a plurality of magnetic units, the plurality of magnetic units are arranged in sequence, grooves and connecting parts are arranged between adjacent magnetic units, and the grooves
  • the connecting portion connects the adjacent magnetic units, the connecting portion is in contact with the groove and blocks the groove from completely penetrating between the adjacent magnetic units, the connection
  • the material of the part is the same as that of the magnetic unit and the two are integrally formed.
  • connection part is located in the middle of two adjacent magnetic units, so that the two sides of the connection part respectively form the grooves.
  • the central line of the plurality of connecting parts is perpendicular to the length direction of the magnetic unit.
  • a connecting portion and a groove are arranged between two adjacent magnetic units, and the grooves are alternately arranged on both sides of the magnetic element to form an S-shaped the magnetic element.
  • the connecting portions are respectively flush with both sides in the thickness direction of the magnetic element.
  • the groove runs through the magnetic element in the thickness direction of the magnetic element.
  • the groove has a width ranging from 0.05 to 0.2 mm.
  • the trench is filled with an insulating substance.
  • the present invention also provides a method for manufacturing the magnetic element of the above embodiment, comprising the following steps:
  • the overall magnetic element is cut to form grooves on both sides of the magnetic element, and a margin is reserved during cutting to form a connecting portion.
  • the cut magnetic element is integrally electroplated or sprayed to form an insulating layer on the surface of the magnetic element.
  • the eddy current loss is reduced by arranging the grooves on both sides of the magnetic element to block the eddy current path, wherein a magnetic unit is defined between two adjacent grooves, and when cutting the grooves A connecting portion integrally connecting two adjacent magnetic units is reserved, and the connecting portion prevents the groove from completely penetrating between the two adjacent magnetic units, so that the magnetic element is continuous and integrated,
  • the stacking and bonding processes are omitted, which effectively improves the production efficiency of the magnetic element, and compared with the segmented method, it avoids more waste generated during the cutting process , effectively improve the utilization rate of materials, and also omit the adhesive required for the bonding process, further reducing costs.
  • the grooves located on both sides of the magnetic element can be arranged in a one-to-one correspondence or in a staggered manner to adapt to the magnetic elements of different shapes, so as to ensure that the magnetic element has a corresponding structural strength.
  • the groove blocks the eddy current path, thereby realizing implementability and improving applicability.
  • Fig. 1 is the structural representation of prior art magnetic element
  • Fig. 2 is a structural schematic diagram of the first embodiment of the magnetic element of the present invention.
  • FIG. 3 is a schematic structural view of a second embodiment of the magnetic element of the present invention.
  • FIG. 4 is a schematic structural view of a third embodiment of the magnetic element of the present invention.
  • FIG. 5 is a schematic structural diagram of a fourth embodiment of the magnetic element of the present invention.
  • the magnetic element includes a plurality of magnetic units 100, the plurality of magnetic units 100 are arranged in sequence, and grooves 200 and connecting parts 300 are provided between adjacent magnetic units 100,
  • the groove 200 is used to block the eddy current path
  • the connecting portion 300 connects the adjacent magnetic units 100
  • the connecting portion 300 is in contact with the groove 200 and blocks the groove 200 from completely penetrating the adjacent magnetic unit 100.
  • the connecting portion 300 is made of the same material as the magnetic unit 100 and both are integrally formed. .
  • the eddy current loss is reduced by arranging the grooves 200 on both sides of the magnetic element to block the eddy current path, wherein a magnetic unit 100 is defined between two adjacent grooves 110, and the magnetic unit 100 is cut.
  • the groove 100 reserves a connection part 300 integrally connecting two adjacent magnetic units 100, and the connection part 300 prevents the groove 200 from completely penetrating between the two adjacent magnetic units 100, so that all The above-mentioned magnetic elements are continuous and integrated.
  • the stacking and bonding processes are omitted, which effectively improves the production efficiency of the magnetic components. , to avoid more waste generated during the cutting process, effectively improve the utilization rate of materials, and also omit the adhesive required for the bonding process, further reducing costs.
  • the magnetic element can be made of electrical conductivity materials, including permanent magnet materials with certain electrical conductivity, such as NdFeB, AlNiCo, SmCo, etc.
  • the magnetic elements can be applied to motors, electromagnets or other electromagnetic devices, wherein the motors are further divided into axial magnetic field motors and radial motors, so the shapes of the magnetic elements can also be various, such as the magnetic element Regular shapes such as sector, rectangle, trapezoid, polygon, or other irregular shapes. Introduce by four embodiments below:
  • the magnetic element is fan-shaped, wherein a plurality of the magnetic units 100 are arranged along the radial direction of the sector, and the lengths of the plurality of magnetic units 100 are sequentially arranged along the radial direction of the sector and from inside to outside
  • the inner side of the sector of the magnetic element is concave
  • the outer side of the sector of the magnetic element is convex, so that the magnetic element forms a fan-shaped structure as shown in FIG. 2 .
  • connection part 300 is located in the middle of two adjacent magnetic units 100, so that the two sides of the connection part 300 respectively form the grooves 200, and the grooves 200 on both sides of the connection part 300
  • the grooves 200 correspond one-to-one, and the grooves 200 are exposed on the side of the magnetic element, for example, the groove 200 on the left side of the connecting part 300, which is from the left side of the magnetic element
  • the side extends to the outside, so that the groove 200 on the left side is exposed on the left side of the magnetic element, and the groove 200 runs through the magnetic element in the thickness direction of the magnetic element, so that the cutting device
  • the groove 200 can be entered from the left side of the magnetic element, and the groove 200 on the left side of the connection part 300 is formed along the track of the groove 200 .
  • the grooves 200 located on both sides of the connecting portion 300 correspond to each other and are located on the same straight line.
  • the reserved connecting portion 300 is formed between the bottoms of the two corresponding grooves 200 , and the reserved connecting portion 300 serves to integrally connect two adjacent magnetic units 100 .
  • each of the connecting parts 300 has the same length and is respectively located in the middle of the magnetic element, so that the grooves 200 on both sides of the connecting part 300 are arranged symmetrically, that is, they are located at the middle of the magnetic element.
  • the grooves 200 on both sides of the connecting portion 300 have the same depth. Since each of the magnetic units 100 has a different length, the grooves 200 between different magnetic units 100 have different depths, and the grooves 200 near the outside of the sector of the magnetic element are the longest.
  • the connecting parts 300 are all located in the middle of the magnetic element, the central lines of the multiple connecting parts 300 are perpendicular to the length direction of the magnetic unit 100 to ensure structural strength and avoid The arrangement of the groove 200 affects the reliability and stability of the magnetic element structure.
  • the thickness of the magnetic element remains consistent, that is, the two sides in the thickness direction of the magnetic element are parallel, and the connecting portion 300 is reserved after the groove 100 is cut, so the connection The portions 300 are respectively flush with both sides in the thickness direction of the magnetic element.
  • the number of the magnetic units 100 and the number of the grooves 200 defined between two adjacent magnetic units 100 can be determined according to the actual operating conditions and the principle of actual requirements for eddy current loss.
  • the width of the groove generally ranges from 0.05 to 0.2 mm, which can be selected according to design requirements.
  • the outer surface of the magnetic element 100 is provided with an insulating layer, which is formed by overall electroplating or spraying, wherein the insulating layer formed by spraying can be an insulating layer such as epoxy or nickel.
  • the trench 200 is filled with an insulating substance, by filling the trench 200 with an insulating substance, the magnetic element is prevented from breaking, thereby further improving the structural strength and stability of the magnetic element, and The effect of the groove 200 blocking the eddy current path is ensured.
  • the second embodiment of the magnetic element is different from the first embodiment in that a connecting portion 300 and a groove 200 are provided between two adjacent magnetic units 100 , and the The grooves 200 are alternately arranged on both sides of the magnetic element, so that the magnetic element forms a fan-shaped profile in an S-shape.
  • a plurality of the magnetic units 100 are arranged along the radial direction of the sector of the magnetic element, and there is only one groove 200 between two adjacent magnetic units 100, so the plurality of grooves 200 are also arranged along the
  • the magnetic elements are radially arranged in a fan shape, and the grooves 200 are arranged alternately on both sides of the magnetic elements, so that the magnetic elements are S-shaped. Referring to Fig.
  • the groove 200 on the upper side cuts in from the left side of the magnetic element, and reserves the connection on the right side of the magnetic element part 300
  • the groove 200 on the lower side is cut from the right side of the magnetic element, and the connecting part 300 on the left side of the magnetic element is reserved, so that the magnetic element is in the form of an S Form a scalloped outline.
  • each of the connecting parts 300 can be the same, and since the length of each of the magnetic units 100 is different, the depths of the grooves 200 between different magnetic units 100 are also different.
  • the groove 200 on the outer side of the sector is the longest to ensure the ability to block eddy current loss.
  • the third embodiment of the magnetic element is different from the first embodiment in that the magnetic element is rectangular.
  • a plurality of magnetic units 100 are arranged along the length direction of the rectangular shape of the magnetic element, so that the grooves 200 located on both sides of the connecting portion 300 are exposed on both sides of the rectangular width of the magnetic unit 100, and any The grooves 200 between two adjacent magnetic units 100 have the same depth.
  • the difference between the fourth embodiment of the magnetic element and the second embodiment is that the magnetic element is rectangular, and the grooves 200 are alternately arranged on both sides of the width of the magnetic element, so that the The magnetic element forms a fan-shaped profile in an S-shape, and the grooves 200 on each side have the same depth and are arranged at intervals along the length direction of the magnetic element.
  • the eddy current loss is reduced by arranging the grooves 200 on both sides of the magnetic element to block the eddy current path, wherein a magnetic unit 100 is defined between two adjacent grooves 110 , and the connection portion 300 integrally connecting two adjacent magnetic units 100 is reserved when cutting the groove 100, and the connection portion 300 prevents the groove 200 from completely penetrating between the two adjacent magnetic units 100
  • the lamination and bonding process is omitted, which effectively improves the production efficiency of the magnetic element, and compared with In terms of segmenting, it avoids more waste generated during the cutting process, effectively improving the utilization rate of materials, and also omits the adhesive required for the bonding process, further reducing costs.
  • the grooves 200 on both sides of the magnetic element can be arranged in a one-to-one correspondence or in a staggered manner to adapt to the magnetic elements of different shapes, so as to ensure that the magnetic element has a corresponding structural strength. With the groove 200 blocking the eddy current path, implementability and applicability are improved.
  • a method for manufacturing the magnetic element of the above embodiment includes the following steps:
  • the overall magnetic element is cut to form the grooves 200 on both sides of the magnetic element, and a margin is reserved during cutting to form the connecting portion 300 .
  • select the overall magnetic element of the corresponding shape and then reserve the connection part 300 and partially cut the groove 200 for blocking the eddy current path, so that the magnetic element is continuous and integrated Forming, prevent the groove 200 from completely penetrating between two adjacent magnetic units 100 through the connecting part 300, avoid the time-consuming and labor-intensive defects caused by the lamination and bonding process, and increase the cost, while ensuring the molding
  • the magnetic element has a stable structure, it has the groove blocking the eddy current path, which effectively improves the production efficiency.
  • the method further includes the following steps: performing overall electroplating or spraying on the cut magnetic element to form an insulating layer on the surface of the magnetic element.
  • the overall electroplating and spraying method is adopted to improve the molding efficiency. And the insulating layer formed by overall electroplating avoids the defects of poor adhesion caused by spraying.

Abstract

本发明提供了一种磁性元件,包括多个磁性单元,所述多个磁性单元依次排列,相邻所述磁性单元之间设置有沟槽和连接部,所述沟槽用于阻隔涡流路径,所述连接部连接所述相邻磁性单元,所述连接部与所述沟槽相接并阻断所述沟槽完全贯穿相邻所述磁性单元之间,所述连接部与所述磁性单元材质相同且两者一体成型,省略了叠合和粘结工序,有效提升所述磁性元件的生产效率,同时保证所述磁性元件具有相应结构强度的前提下,具备阻隔涡流路径的所述沟槽,进而实现可实施性和提升适用性。

Description

磁性元件及制作方法 技术领域
本发明涉及磁性元件及制作方法,尤其涉及一种在电磁装置中使用的磁性元件及制作方法。
背景技术
电磁装置用于产生电磁来实现相应工作,分为电机和电磁铁等。以电机为例,其包括被称为转子的转动部分,以及被称为定子的静止部分,定子和转子组合以产生转矩。一般而言,电机的定子包括定子铁芯,以及接收电流且用于操作的绕组,转子装备多个磁体,定子和转子相互作用,以使转子相对于定子旋转。
其中磁体等磁性元件在非均匀磁场中移动或处于随时间变化的磁场中时,磁性元件内感生的电流导致能量损耗,叫做涡流损耗,而涡流损耗会引发磁性元件发热,进而影响电机的运行性能。减小涡流损耗的最常用方式是分段,之后将分段的多个磁性段a(例如硅钢片)叠合形成磁性元件,参考图1,相邻的两磁性段a之间的间隙可以阻断涡流路径,从而减小磁性元件的涡流损耗。
但是上述分段方式存在以下缺陷:
第一,相邻的两磁性段之间需要粘接剂进行粘结,不仅制作工序繁琐,费时费力,而且成本因额外使用的粘接剂而显著增加。
第二,目前是通过切割对磁性元件进行分段处理,在切割的过程中容易产生较多废料,使得材料利用率不高。
第三,磁性段表面需要附着绝缘层,而由于分段的关系,因此只能逐一对各个磁性段进行表面喷涂绝缘涂层,这样不仅降低了效率,而且喷涂附着性较差,容易造成绝缘层失效。
发明内容
为了解决上述问题,本发明提供了一种有效降低成本,提高生产效率的磁性元件及制作方法。
根据本发明的一个目的,本发明提供一种磁性元件,包括多个磁性单元,所述多个磁性单元依次排列,相邻所述磁性单元之间设置有沟槽和连接部,所述沟槽用于阻隔涡流路径,所述连接部连接所述相邻磁性单元,所述连接部与所述沟槽相接并阻断所述沟槽完全贯穿相 邻所述磁性单元之间,所述连接部与所述磁性单元材质相同且两者一体成型。
作为优选的实施例,所述连接部位于相邻的两所述磁性单元的中间位置,以使所述连接部的两侧分别形成所述沟槽。
作为优选的实施例,多个所述连接部的中心连线与所述磁性单元的长度方向相垂直。
作为优选的实施例,相邻的两所述磁性单元之间设置有一所述连接部和一所述沟槽,并且所述沟槽交错地设置在所述磁性元件的两侧,以形成S型所述磁性元件。
作为优选的实施例,所述连接部分别与所述磁性元件厚度方向两侧齐平。
作为优选的实施例,所述沟槽在所述磁性元件的厚度方向贯穿所述磁性元件。
作为优选的实施例,所述沟槽的宽度范围在0.05~0.2mm之间。
作为优选的实施例,所述沟槽内填充有绝缘物质。
根据本发明的另一个目的,本发明还提供了一种用于制造上述实施例的磁性元件的方法,包括以下步骤:
制作所需形状的整体磁性元件;
对整体磁性元件进行切割,以形成在所述磁性元件两侧的沟槽,并在切割时预留余量以形成连接部。
作为优选的实施例,对切割后的所述磁性元件进行整体电镀或喷涂,以在所述磁性元件的表面形成一绝缘层。
与现有技术相比,本技术方案具有以下优点:
通过在所述磁性元件两侧设置所述沟槽以用于阻隔涡流路径,降低涡流损耗,其中相邻的两所述沟槽之间界定了一所述磁性单元,并且切割所述沟槽时预留了一体连接相邻两所述磁性单元的连接部,所述连接部防止所述沟槽完全贯穿相邻的两所述磁性单元之间,以使所述磁性元件为连续且一体地,相对于现有技术分段叠合的方式来说,省略了叠合和粘结工序,有效提升所述磁性元件的生产效率,并且相对于分段方式来说,避免切割过程产生的废料较多,有效提升对材料的利用率,另外还省略粘结工序所需的粘接剂,进一步降低成本。另外位于所述磁性元件两侧的所述沟槽可以一一对应或者交错的方式进行布置,以适配不同形状的所述磁性元件,以保证所述磁性元件具有相应结构强度的前提下,具备阻隔涡流路径的所述沟槽,进而实现可实施性和提升适用性。
以下结合附图及实施例进一步说明本发明。
附图说明
图1为现有技术磁性元件的结构示意图;
图2为本发明所述磁性元件第一实施例的结构示意图;
图3为本发明所述磁性元件第二实施例的结构示意图;
图4为本发明所述磁性元件第三实施例的结构示意图;
图5为本发明所述磁性元件第四实施例的结构示意图。
具体实施方式
以下描述用于揭露本发明以使本领域技术人员能够实现本发明。以下描述中的优选实施例只作为举例,本领域技术人员可以想到其他显而易见的变型。在以下描述中界定的本发明的基本原理可以应用于其他实施方案、变形方案、改进方案、等同方案以及没有背离本发明的精神和范围的其他技术方案。
如图2至图5所示,所述磁性元件,包括多个磁性单元100,所述多个磁性单元100依次排列,相邻所述磁性单元100之间设置有沟槽200和连接部300,所述沟槽200用于阻隔涡流路径,所述连接部300连接所述相邻磁性单元100,所述连接部300与所述沟槽200相接并阻断所述沟槽200完全贯穿相邻所述磁性单元100之间,所述连接部300与所述磁性单元100材质相同且两者一体成型。。
通过在所述磁性元件两侧设置所述沟槽200以用于阻隔涡流路径,降低涡流损耗,其中相邻的两所述沟槽110之间界定了一所述磁性单元100,并且切割所述沟槽100时预留了一体连接相邻两所述磁性单元100的连接部300,所述连接部300防止所述沟槽200完全贯穿相邻的两所述磁性单元100之间,以使所述磁性元件为连续且一体地,相对于现有技术分段叠合的方式来说,省略了叠合和粘结工序,有效提升所述磁性元件的生产效率,并且相对于分段方式来说,避免切割过程产生的废料较多,有效提升对材料的利用率,另外还省略粘结工序所需的粘接剂,进一步降低成本。
所述磁性元件可采用电导率材料,包括钕铁硼、铝镍钴、钐钴等具有一定电导率的永磁体材料。另外所述磁性元件可应用于电机、电磁铁或者其它电磁装置中,其中电机又分为轴向磁场电机和径向电机,因此所述磁性元件的形状也可多种多样,例如所述磁性元件呈扇形、矩形、梯形、多边形等规则形状,或者其它不规则形状。以下通过四个实施例来介绍:
第一实施例
如图2所示,所述磁性元件呈扇形,其中多个所述磁性单元100沿着扇形的径向排列,并且多个所述磁性单元100的长度沿扇形的径向并从内至外依次增大,另外所述磁性元件扇 形的内侧呈凹面,所述磁性元件扇形的外侧呈凸面,进而所述磁性元件形成如图2所示的扇形结构。
进一步地,所述连接部300位于相邻的两所述磁性单元100的中间位置,以使所述连接部300的两侧分别形成所述沟槽200,并且位于所述连接部300两侧的所述沟槽200一一对应,以及所述沟槽200暴露其所在所述磁性元件的侧面上,例如位于所述连接部300左侧的所述沟槽200,其从所述磁性元件的左侧延伸至外部,以使所述左侧的所述沟槽200暴露在所述磁性元件的左侧,并且所述沟槽200在所述磁性元件的厚度方向贯穿所述磁性元件,这样切割设备能够从所述磁性元件的左侧进入,并沿着所述沟槽200轨迹形成位于所述连接部300左侧的所述沟槽200。
更进一步地,位于所述连接部300两侧的所述沟槽200一一对应,且位于同一直线上。其中一一对应的两所述沟槽200底部之间形成了预留的所述连接部300,预留的所述连接部300起到一体连接相邻两所述磁性单元100的作用。
参考图2,每个所述连接部300的长度均相等,且分别位于所述磁性元件的中间位置,以使位于所述连接部300两侧的所述沟槽200对称设置,即位于所述连接部300两侧的所述沟槽200深度一致。而由于每个所述磁性单元100的长度不同,因此位于不同所述磁性单元100之间的沟槽200深度也不相同,其中靠近所述磁性元件扇形外侧的所述沟槽200最长。
继续参考图2,由于所述连接部300均位于所述磁性元件的中间位置,因此多个所述连接部300的中心连线与所述磁性单元100的长度方向相垂直,保证结构强度,避免所述沟槽200的设置影响磁性元件结构的可靠和稳定性。
需要说明的是,所述磁性元件的厚度保持一致,即所述磁性元件厚度方向的两个侧面相平行,而所述连接部300为所述沟槽100切割后预留的,因此所述连接部300分别与所述磁性元件厚度方向的两侧齐平。
另外,所述磁性单元100数量,以及相邻两所述磁性单元100之间界定所述沟槽200的数量,其可根据实际运行工况,并按照涡流损耗的实际要求原则来进行确定。
所述沟槽的宽度范围一般在0.05~0.2mm之间,可根据设计需要进行选择。
所述磁性元件100的外表面设置有一绝缘层,包括整体电镀或喷涂形成,其中喷涂形成的绝缘层可以为环氧、镍等绝缘层。
作为优选地,所述沟槽200内填充有绝缘物质,通过在所述沟槽200内填充绝缘物质,防止所述磁性元件断裂,从而进一提升所述磁性元件的结构强度和稳定性,并且保证所述沟槽200阻隔涡流路径的作用。
第二实施例
如图3所示,所述磁性元件第二实施例与第一实施例不同在于,相邻的两所述磁性单元100之间设置有一所述连接部300和一所述沟槽200,并且所述沟槽200交错地设置在所述磁性元件的两侧,,以使所述磁性元件以S型的形式形成扇形轮廓。
多个所述磁性单元100沿着所述磁性元件扇形的径向排列,并且相邻的两所述磁性单元100之间仅有一所述沟槽200,因此多个所述沟槽200也沿着所述磁性元件扇形的径向排列,并且所述沟槽200交错地设置在所述磁性元件的两侧,以使所述磁性元件呈S型。参考图3,在相邻的两所述沟槽200结构中,位于上侧的所述沟槽200从所述磁性元件的左侧切入,并预留位于所述磁性元件右侧的所述连接部300,位于下侧的所述沟槽200从所述磁性元件的右侧切入,并预留位于所述磁性元件左侧的所述连接部300,以使所述磁性元件以S型的形式形成扇形轮廓。
每个所述连接部300的长度可一致,而由于每个所述磁性单元100的长度不同,因此位于不同所述磁性单元100之间的沟槽200深度也不相同,其中靠近所述磁性元件扇形外侧的所述沟槽200最长,以保证阻隔涡流损耗的能力。
第三实施例
如图4所示,所述磁性元件第三实施例与第一实施例不同在于,所述磁性元件呈长方形。多个所述磁性单元100沿着所述磁性元件长方形的长度方向排列,以使位于所述连接部300两侧的所述沟槽200暴露在所述磁性单元100长方形宽度的两侧,并且任一相邻的两所述磁性单元100之间的所述沟槽200深度一致。
第四实施例
如图5所示,所述磁性元件第四实施例与第二实施例不同在于,所述磁性元件呈长方形,其中所述沟槽200交错分设于所述磁性元件宽度的两侧,以使所述磁性元件以S型的形式形成扇形轮廓,另外每一侧的所述沟槽200深度一致,并沿着所述磁性元件长度方向间隔排列。
综上所述,通过在所述磁性元件两侧设置所述沟槽200以用于阻隔涡流路径,降低涡流损耗,其中相邻的两所述沟槽110之间界定了一所述磁性单元100,并且切割所述沟槽100时预留了一体连接相邻两所述磁性单元100的连接部300,所述连接部300防止所述沟槽200 完全贯穿相邻的两所述磁性单元100之间,以使所述磁性元件为连续且一体地,相对于现有技术分段叠合的方式来说,省略了叠合和粘结工序,有效提升所述磁性元件的生产效率,并且相对于分段方式来说,避免切割过程产生的废料较多,有效提升对材料的利用率,另外还省略粘结工序所需的粘接剂,进一步降低成本。另外位于所述磁性元件两侧的所述沟槽200可以一一对应或者交错的方式进行布置,以适配不同形状的所述磁性元件,以保证所述磁性元件具有相应结构强度的前提下,具备阻隔涡流路径的所述沟槽200,进而实现可实施性和提升适用性。
如图2至图5所示,一种用于制造上述实施例的磁性元件的方法,包括以下步骤:
制作所需形状的整体磁性元件;
对整体磁性元件进行切割,以形成在所述磁性元件两侧的沟槽200,并在切割时预留余量以形成连接部300。根据所需所述磁性元件的轮廓形状,选择相应形状的整体磁性元件,之后通过预留连接部300,并局部切割形成用于阻隔涡流路径的沟槽200,以使所述磁性元件连续且一体成型,通过所述连接部300防止所述沟槽200完全贯穿相邻的两所述磁性单元100之间,避免叠合和粘结工序造成的费时费力,以及成本增加的缺陷,同时保证成型的所述磁性元件具备结构稳定的前提下,具有阻隔涡流路径的所述沟槽,有效提升生产效率。
所述方法还包括以下步骤:对切割后的所述磁性元件进行整体电镀或喷涂,以在所述磁性元件的表面形成一绝缘层。
采用整体电镀和喷涂的方式,提升了成型效率。并且整体电镀形成的绝缘层,避免喷涂所带来的附着性较差的缺陷。
以上所述的实施例仅用于说明本发明的技术思想及特点,其目的在于使本领域内的技术人员能够了解本发明的内容并据以实施,不能仅以本实施例来限定本发明的专利采用范围,即凡依本发明所揭示的精神所作的同等变化或修饰,仍落在本发明的专利范围内。

Claims (10)

  1. 一种磁性元件,包括多个磁性单元(100),所述多个磁性单元(100)依次排列,其特征在于,相邻所述磁性单元(100)之间设置有沟槽(200)和连接部(300),所述沟槽(200)用于阻隔涡流路径,所述连接部(300)连接所述相邻磁性单元(100),所述连接部(300)与所述沟槽(200)相接并阻断所述沟槽(200)完全贯穿相邻所述磁性单元(100)之间,所述连接部(300)与所述磁性单元(100)材质相同且两者一体成型。
  2. 如权利要求1所述的磁性元件,其特征在于,所述连接部(300)位于相邻的两所述磁性单元(100)的中间位置,以使所述连接部(300)的两侧分别形成所述沟槽(200)。
  3. 如权利要求2所述的磁性元件,其特征在于,多个所述连接部(300)的中心连线与所述磁性单元(100)的长度方向相垂直。
  4. 如权利要求1所述的磁性元件,其特征在于,相邻的两所述磁性单元(100)之间设置有一所述连接部(300)和一所述沟槽(200),并且所述沟槽(200)交错地设置在所述磁性元件的两侧,以形成S型所述磁性元件。
  5. 如权利要求2或3所述的磁性元件,其特征在于,所述连接部(300)分别与所述磁性元件厚度方向两侧齐平。
  6. 如权利要求1所述的磁性元件,其特征在于,所述沟槽(200)在所述磁性元件的厚度方向贯穿所述磁性元件。
  7. 如权利要求1所述的磁性元件,其特征在于,所述沟槽(200)的宽度范围在0.05~0.2mm之间。
  8. 如权利要求1所述的磁性元件,其特征在于,所述沟槽(200)内填充有绝缘物质。
  9. 一种用于制作如权利要求1至8任一项所述的磁性元件的制作方法,包括以下步骤:
    制作所需形状的整体磁性元件;
    对整体磁性元件进行切割,以形成在所述磁性元件两侧的沟槽(200),并在切割时预留余量以形成连接部(300)。
  10. 如权利要求9所述的制作方法,其特征在于,对切割后的所述磁性元件进行整体电镀或喷涂,以在所述磁性元件的表面形成一绝缘层。
PCT/CN2022/093787 2022-01-26 2022-05-19 磁性元件及制作方法 WO2023142313A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210094585.2A CN114400126A (zh) 2022-01-26 2022-01-26 磁性元件及制作方法
CN202210094585.2 2022-01-26

Publications (1)

Publication Number Publication Date
WO2023142313A1 true WO2023142313A1 (zh) 2023-08-03

Family

ID=81232581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/093787 WO2023142313A1 (zh) 2022-01-26 2022-05-19 磁性元件及制作方法

Country Status (2)

Country Link
CN (1) CN114400126A (zh)
WO (1) WO2023142313A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114400126A (zh) * 2022-01-26 2022-04-26 上海盘毂动力科技股份有限公司 磁性元件及制作方法
CN115346791A (zh) * 2022-09-02 2022-11-15 浙江盘毂动力科技有限公司 一种磁性元件的制造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010284062A (ja) * 2009-06-08 2010-12-16 Daikin Ind Ltd 界磁子及び界磁子の製造方法
CN107394921A (zh) * 2017-08-22 2017-11-24 广东美芝制冷设备有限公司 电机转子、永磁同步电机和压缩机
CN109510329A (zh) * 2017-09-15 2019-03-22 西门子歌美飒可再生能源公司 用于永磁电机的永磁体
CN110890798A (zh) * 2018-09-10 2020-03-17 烟台正海磁性材料股份有限公司 一种永磁体及永磁电机
WO2021028017A1 (en) * 2019-08-12 2021-02-18 Bomatec Management Ag Hollow permanent magnet cylinder with at least one groove or slit to reduce eddy currents
CN113113992A (zh) * 2021-05-10 2021-07-13 美的威灵电机技术(上海)有限公司 转子结构和电机结构
CN114400126A (zh) * 2022-01-26 2022-04-26 上海盘毂动力科技股份有限公司 磁性元件及制作方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4775566B2 (ja) * 2006-05-12 2011-09-21 信越化学工業株式会社 希土類永久磁石及びその製造方法並びに回転機
EP2867906B1 (de) * 2013-03-11 2018-05-23 STS Spezial-Transformatoren-Stockach GmbH & Co. KG Induktives bauteil

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010284062A (ja) * 2009-06-08 2010-12-16 Daikin Ind Ltd 界磁子及び界磁子の製造方法
CN107394921A (zh) * 2017-08-22 2017-11-24 广东美芝制冷设备有限公司 电机转子、永磁同步电机和压缩机
CN109510329A (zh) * 2017-09-15 2019-03-22 西门子歌美飒可再生能源公司 用于永磁电机的永磁体
CN110890798A (zh) * 2018-09-10 2020-03-17 烟台正海磁性材料股份有限公司 一种永磁体及永磁电机
WO2021028017A1 (en) * 2019-08-12 2021-02-18 Bomatec Management Ag Hollow permanent magnet cylinder with at least one groove or slit to reduce eddy currents
CN113113992A (zh) * 2021-05-10 2021-07-13 美的威灵电机技术(上海)有限公司 转子结构和电机结构
CN114400126A (zh) * 2022-01-26 2022-04-26 上海盘毂动力科技股份有限公司 磁性元件及制作方法

Also Published As

Publication number Publication date
CN114400126A (zh) 2022-04-26

Similar Documents

Publication Publication Date Title
WO2023142313A1 (zh) 磁性元件及制作方法
WO2019114803A1 (zh) 异步起动同步磁阻电机转子、电机及压缩机
JP5360219B2 (ja) 回転子、永久磁石形同期回転電機、車両、昇降機、流体機械、および加工機
CN104901452A (zh) 一种可用于高速场合的永磁辅助同步磁阻电机转子
US20190036397A1 (en) Synchronous reluctance motor rotor and synchronous reluctance motor
CN108808922B (zh) 转子铁芯和电机
CN204906031U (zh) 一种可用于高速场合的永磁辅助同步磁阻电机转子
WO2019174322A1 (zh) 转子结构、永磁辅助同步磁阻电机及电动汽车
WO2019214225A1 (zh) 转子结构、永磁辅助同步磁阻电机及电动汽车
CN204597648U (zh) 定子冲片、定子铁芯、定子及电机
JP2022546890A (ja) 直接起動同期リラクタンス・モータの回転子構造及びモータ
CN112968560A (zh) 一种旋转电机冲片及转子
CN111181272A (zh) 用于同步驱动电机的转子
JP2004140966A (ja) 回転電機用コアの積層構造
EP3200319B1 (en) Stator assembly, and, motor and electric pump having the same
CN211405641U (zh) 一种永磁电机的转子结构
CN112332570B (zh) 一种外转子低速同步磁阻电机的多极转子
CN114520551A (zh) 电机转子及其自起动同步磁阻电机、压缩机
CN210350877U (zh) 一种永磁同步电机改造结构
CN113949184A (zh) 一种转子冲片、转子及其应用的电机
CN220190548U (zh) 一种永磁电机转子、永磁电机及压缩机
CN218102760U (zh) 一种磁性元件及轴向磁场电机转子
CN219351382U (zh) 转子结构和电机
WO2024045322A1 (zh) 一种磁性元件的制造方法
CN216819525U (zh) 电机转子及其自起动同步磁阻电机、压缩机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22923126

Country of ref document: EP

Kind code of ref document: A1