WO2023142278A1 - 消毒灯的动态均光方法 - Google Patents

消毒灯的动态均光方法 Download PDF

Info

Publication number
WO2023142278A1
WO2023142278A1 PCT/CN2022/089165 CN2022089165W WO2023142278A1 WO 2023142278 A1 WO2023142278 A1 WO 2023142278A1 CN 2022089165 W CN2022089165 W CN 2022089165W WO 2023142278 A1 WO2023142278 A1 WO 2023142278A1
Authority
WO
WIPO (PCT)
Prior art keywords
disinfection
dose
disinfection lamp
equivalent
distribution data
Prior art date
Application number
PCT/CN2022/089165
Other languages
English (en)
French (fr)
Inventor
施敏
曹巍
Original Assignee
星际光(上海)实业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 星际光(上海)实业有限公司 filed Critical 星际光(上海)实业有限公司
Publication of WO2023142278A1 publication Critical patent/WO2023142278A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/105Controlling the light source in response to determined parameters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • A61L2/10Ultraviolet radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/26Accessories or devices or components used for biocidal treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/18Radiation
    • A61L9/20Ultraviolet radiation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Definitions

  • the invention relates to the technical field of air and surface disinfection, in particular to a dynamic uniform light method for a disinfection lamp.
  • the indoor environment is contaminated by pathogens on suspended particles, such as bacteria and viruses; volatile gaseous pollutants after decoration, such as radon, formaldehyde, benzene series, ammonia, etc.; inhalable particles, such as dust, smoke, pollen, etc.; life Odors, such as human metabolism, musty smell, garbage smell, etc.; outdoor air pollution intrusion, such as industrial waste gas, car exhaust, soil bag dust, etc.; the above can also be collectively referred to as air pollution, and the way to reduce or eliminate this kind of air pollution is Air disinfection.
  • volatile gaseous pollutants after decoration such as radon, formaldehyde, benzene series, ammonia, etc.
  • inhalable particles such as dust, smoke, pollen, etc.
  • life Odors such as human metabolism, musty smell, garbage smell, etc.
  • outdoor air pollution intrusion such as industrial waste gas, car exhaust, soil bag dust, etc.
  • Air disinfection the way to reduce or eliminate this kind of air pollution
  • UV C ultraviolet wavelengths in the C band
  • far ultraviolet C a small part of ultraviolet wavelengths in the C band
  • the current photodisinfection devices are basically fixed installations. During use, on the one hand, they can only efficiently sterilize local areas, and cannot realize all-round indoor air disinfection treatment, which affects the disinfection effect; on the other hand, ultraviolet rays in local areas The light is too concentrated, and after long-term exposure, the local ultraviolet dose is too high to form a hot spot problem, causing the local ultraviolet dose to exceed the international safety dose standard, which is not conducive to the health of the human body and other organisms. Moreover, the disinfection device cannot be configured according to the specific use environment, and the disinfection device cannot be flexibly applied.
  • the technical problem solved by the present invention is to provide a dynamic uniform light method for disinfection lamps, which can realize dynamic adjustment of the disinfection effect of disinfection lamps, realize all-round disinfection of indoor air and object surfaces, and can solve the problem of excessive local dosage in indoor spaces issues to meet biosafety requirements.
  • an embodiment of the present invention provides a dynamic uniform light method for a disinfection lamp, including: providing a disinfection lamp; obtaining the initial light distribution data of the disinfection lamp; obtaining the motion parameters of the disinfection lamp during motion ; According to the initial light distribution data of the disinfection lamp and the motion parameters, obtain the dose equivalent light distribution data of the disinfection lamp during motion; adjust the initial distribution of the disinfection lamp according to the dose equivalent light distribution data Light data or motion parameters of the disinfection lamp.
  • the method for adjusting the initial light distribution data of the disinfection lamp or the motion parameters of the disinfection lamp according to the dose equivalent light distribution data includes: obtaining the disinfection lamp according to the dose equivalent light distribution data.
  • the equivalent disinfectant dose during exercise includes compare the equivalent disinfectant dose with the target disinfectant dose and the safe disinfectant dose, and obtain the comparison result; adjust the initial light distribution data of the disinfection lamp according to the comparison result or the The movement parameters of the disinfection lamp, when the dose equivalent disinfection dose is less than the target disinfection dose or greater than the safe disinfection dose, then adjust the initial light distribution data of the disinfection lamp or the movement parameters of the disinfection lamp.
  • a goniophotometer is used to obtain the initial light distribution data of the disinfection lamp.
  • the initial light distribution data includes the radiation intensity distribution Ie of the disinfection lamp in all directions in space.
  • the movement of the disinfection lamp includes rotational movement or displacement movement.
  • the movement parameters include a rotation angle.
  • the method for obtaining the dose equivalent light distribution data of the disinfection lamp during movement includes: uniformly selecting n points on the rotation path of the disinfection lamp, where n is a natural number greater than 1; A replacement disinfection lamp is set on each point, and the replacement radiation intensity of the replacement disinfection lamp in each direction in the space is Ie/n; the dose equivalent distribution of the dose equivalent lamps when n replacement disinfection lamps act simultaneously light data.
  • the movement parameters include a movement distance.
  • the intensity of the alternative radiation in the direction is Ie/n; obtain the dose-equivalent light distribution data of the dose-equivalent lamps when n alternative disinfection lamps act at the same time.
  • the dose-equivalent light distribution data includes the dose-equivalent radiation light intensity distribution Ie' of the dose-equivalent lamp in all directions in space.
  • the factors affecting the target disinfection dose include the type of target microorganism, the degree of completion of disinfecting the target microorganism, and the carrier of the target microorganism.
  • safe disinfection dose ⁇ S UV ( ⁇ ) effective radiation dose exposure limit, wherein S UV ( ⁇ ) is a weighted function of photochemical ultraviolet hazard, and the value of effective radiation dose exposure limit is 30J/m 2 .
  • the dynamic uniform light method of the disinfection lamp obtaineds the dose equivalent light distribution data of the disinfection lamp during motion through the initial light distribution data and motion parameters of a single disinfection lamp, and then adjusts it through the dose equivalent light distribution data
  • the initial light distribution data or motion parameters of the disinfection lamp can realize the dynamic adjustment of the disinfection lamp configuration, and the disinfection lamp can be arranged according to the actual use situation to improve the disinfection effect in different usage scenarios and meet different disinfection needs. Hazard to human beings and other organisms.
  • Fig. 1 is the flowchart of the dynamic uniform light method of disinfection lamp in an embodiment of the present invention
  • Fig. 2 is the structural representation of disinfection lamp in an embodiment of the present invention
  • Fig. 3 is a schematic diagram of the enlarged structure of the circled part in Fig. 2;
  • Figure 4 is a schematic diagram of the position of the irradiated point and the irradiated surface and equivalent disinfection lamps;
  • Fig. 5 is a flow chart of a method for adjusting the parameters of the disinfection lamp or the motion parameters of the disinfection lamp according to the dose equivalent light distribution data.
  • the embodiment of the present invention provides a dynamic uniform light method for disinfection lamps.
  • the disinfection lamps can move in the space, so the disinfection lamps can disinfect more indoor air and surfaces , to avoid the problem of irradiating dead angles of disinfection light, and realize indoor all-round disinfection and sterilization; at the same time, avoid ultraviolet light staying in local areas for too long, avoiding photobiological hazards and damage to objects caused by excessive local doses, and long-term increase in local areas
  • the energy waste caused by the irradiation dose on the other hand, the initial light distribution data of the disinfection lamp or the motion parameters of the disinfection lamp are adjusted according to the target disinfection dose and the safe disinfection dose, so as to configure the best disinfection lamp assembly scheme according to the application scenario, which is beneficial Improve the disinfection effect and meet the biological safety requirements.
  • FIG. 1 is the flow chart of the dynamic uniform light method of disinfection lamp in an embodiment of the present invention
  • Fig. 2 is the structural representation of disinfection lamp in an embodiment of the present invention
  • Fig. 3 is the enlarged structural representation of circle part in Fig. 2
  • Fig. 4 It is a schematic diagram of the position of the irradiated point, the irradiated surface and the equivalent disinfection lamp
  • FIG. 5 is a flow chart of a method for adjusting the parameters of the disinfection lamp or the movement parameters of the disinfection lamp according to the dose equivalent light distribution data.
  • a dynamic uniform light method for disinfection lamps including:
  • Step S1 providing a disinfection lamp 10 .
  • the disinfection lamp 10 can be a single lamp tube structure or a multiple lamp tube structure.
  • the disinfection lamp 10 is an ultraviolet lamp, which sterilizes the air by emitting ultraviolet light.
  • the light emitted by the disinfection lamp 10 may also be visible light or non-visible light of other wavelength bands.
  • the disinfection lamp 10 is a multi-lamp structure, including three groups of lamp tubes 101 , and the angles between each group of lamp tubes 101 are 120°.
  • the disinfection lamp 10 is also a disinfection device in other forms.
  • Step S2 Obtain the initial light distribution data of the disinfection lamp.
  • a goniophotometer is used to obtain the initial light distribution data of the disinfection lamp 10 .
  • the initial light distribution data includes the radiation intensity distribution I e , of the disinfection lamp 10 in various directions in space.
  • the radiation intensity I e is the radiation flux emitted by the disinfection light of the disinfection lamp 10 in a unit solid angle in a given direction.
  • Step S3 acquiring motion parameters of the disinfection lamp during motion.
  • the disinfection lamp 10 can perform rotational movement or displacement movement.
  • the disinfection lamp 10 can rotate.
  • an installation base 20 the installation base 20 is used to install the disinfection lamp 10
  • a rotating assembly 30, the rotation assembly 30 is installed on the installation base 20, and 30 is connected with the disinfection lamp 10 for driving the disinfection lamp 10 to rotate.
  • the rotating assembly 30 is driven to rotate by a driving motor (not shown).
  • the rotation of the rotating assembly 30 can drive the disinfection lamp 10 to rotate, so that the indoor air can be sterilized and sterilized from multiple angles, which can realize all-round disinfection, and avoid local hot spots caused by ultraviolet light staying in a local area for too long. cause harm to the human body.
  • the installation base 20 is installed and fixed on a wall, and the wall can be a ceiling parallel to the ground, or a wall perpendicular to the ground; or the installation base 10 can also be installed on other fixing devices.
  • the installation base 20 is hollow inside and can accommodate the driving motor.
  • it further includes: a connecting piece 50 through which the rotating assembly 30 is connected to the disinfection lamp 10 .
  • the connecting member 50 is fixedly connected to the disinfection lamp 10 , and the relative positions of the two do not change, and the rotating assembly 30 drives the connecting member 50 and the disinfection lamp 10 to rotate.
  • the rotating assembly 30 includes: a rotating member 31, the rotating member 31 includes a first rotating shaft 311 and a second rotating shaft 312, one end of the first rotating shaft 311 is connected to the installation base 20 , the other end of the first rotating shaft 311 is connected to the second rotating shaft 312 , and the driving motor is connected to the first rotating shaft 311 .
  • the first rotating shaft 311 is a driving shaft, which drives the second rotating shaft 312 to rotate; in other embodiments, the driving motor can also be connected to the second rotating shaft 312 to drive the second The rotating shaft 312 serves as a driving shaft.
  • the rotating assembly 30 further includes: a positioning member 32 through which the first rotating shaft 311 is connected to the second rotating shaft 312 .
  • the positioning member 32 has a plurality of positioning holes 321, the positioning holes 321 are arranged along the extending direction of the positioning member 32, and the first rotating shaft 311 passes through one of the positioning holes. 321 , fixed with the positioning member 32 .
  • the positioning member 32 is in the shape of a circular arc plate, and each positioning hole 32 on the circular arc plate represents a gear position, and the first rotating shaft 311 passes through different positioning holes 32, which can be Change the inclination angle of the rotating assembly 30 relative to the ground.
  • the second rotating shaft 312 is connected to the positioning member 32 through bolts.
  • the rotating assembly 30 further includes: a rotating bracket 33 disposed on the installation base 20 .
  • the rotating bracket 33 includes a first bracket 331 and a second bracket 332, the second bracket 332 is connected to the first bracket 331, the first bracket 331 is connected to the installation base 20, and the second bracket 332 is connected to the first bracket 331.
  • the bracket 332 is connected to the connecting member 50 .
  • the first bracket 331 is connected to the second bracket 332 through a bolt assembly.
  • the first bracket 331 is a U-shaped structure with an opening downward
  • the second bracket 332 is a ring bracket
  • the two opposite side walls of the second bracket 332 are connected to the sides of the first bracket 331. The two ends are connected.
  • the second bracket 332 is square; in other embodiments, the second bracket 332 may also be circular.
  • the driving motor drives the first rotating shaft 311 to rotate, and drives the second rotating shaft 312 to rotate around the first rotating shaft 311, thereby driving the disinfection lamp 10 to rotate.
  • the disinfection lamp 10 can also be inclined at a certain angle relative to the ground, and at the same time, the second support 332 can also be inclined at a certain angle relative to the first support 331 to adapt to the inclination angle of the disinfection lamp 10, thereby increasing the size of the disinfection lamp. 10 disinfection range.
  • the motion parameters include the rotation angle of the disinfection lamp 10 .
  • the disinfection lamp 10 can rotate in a direction of 360°, and the rotation angle is 360°.
  • the rotation angle of the disinfection lamp 10 can also be other values.
  • the disinfection lamp 10 can also perform displacement movement. By adding a moving track in the space, the disinfection lamp 10 moves on the moving track, thereby realizing multi-directional disinfection in the space.
  • the motion parameters include the moving distance and the shape of the moving track.
  • Step S4 According to the initial light distribution data of the disinfection lamp and the motion parameters, obtain the dose equivalent light distribution data of the disinfection lamp during motion.
  • the method of obtaining the equivalent light distribution data of the dose of the disinfection lamp 10 during rotation is: uniformly select n points, n is a natural number greater than 1; a replacement disinfection lamp is set on each point, and the replacement radiation intensity of the replacement disinfection lamp in each direction in space is I e /n; n replacement disinfection lamps are obtained Dose-equivalent light distribution data of dose-equivalent lamps when the lamps act at the same time.
  • the light distribution data of the replacement disinfection lamp can also be obtained by a goniophotometer.
  • the selection of the replacement disinfection lamp is determined according to the initial light distribution data of the disinfection lamp 10, and the replacement radiation intensity of the replacement disinfection lamp in each direction is the initial radiation intensity distribution I e /n of the disinfection lamp 10 in all directions.
  • the light distribution data of the disinfection lamp 10 during rotation can be simulated, and the state of n substitute disinfection lamps working together can be abstracted as the entire lamp. That is, the dose-equivalent lamps, and the dose-equivalent light distribution data of the dose-equivalent lamps are obtained through the goniophotometer.
  • the rotation angle is 360°
  • the n is a natural number greater than 1 and less than or equal to 360; the more alternative disinfection lamps are installed, the more accurate the obtained dose equivalent light distribution data will be.
  • the dose-equivalent light distribution data includes the dose-equivalent radiation light intensity distribution I e ′ of the dose-equivalent lamp in all directions in space.
  • the method for obtaining the equivalent light distribution data of the dose of the disinfection lamp 10 during displacement is: equidistantly and evenly distributed on the displacement path of the disinfection lamp 10 Select n points, n is a natural number greater than 1; set a replacement disinfection lamp on each point, and the replacement radiation intensity of the replacement disinfection lamp in each direction in space is I e /n; obtain n replacement Dose-equivalent light distribution data of dose-equivalent lamps when disinfection lamps act at the same time.
  • the distance between the selected points can be freely defined according to the actual situation. Generally speaking, the shorter the distance, the more points are selected, and the more accurate the obtained dose equivalent light distribution data is. .
  • Step S5 Adjusting parameters of the disinfection lamp or motion parameters of the disinfection lamp according to the dose-equivalent light distribution data.
  • step S5 the method for adjusting the initial light distribution data of the disinfection lamp 10 or the motion parameters of the disinfection lamp 10 according to the dose equivalent light distribution data includes:
  • Step 5.1 According to the dose-equivalent light distribution data, obtain the dose-equivalent disinfection dose of the disinfection lamp during movement;
  • Step 5.2 Comparing the equivalent disinfectant dose with the target disinfectant dose and the safe disinfectant dose to obtain the comparison result;
  • Step 5.3 Adjust the initial piping data of the disinfection lamp or the motion parameters of the disinfection lamp according to the comparison result. If the equivalent disinfection dose is less than the target disinfection dose or greater than the safe disinfection dose, adjust The initial light distribution data of the disinfection lamp or the motion parameters of the disinfection lamp.
  • r is the linear distance between the irradiated point 101 and the equivalent dose lamp 100
  • is the line between the irradiated point 101 and the equivalent disinfection lamp 100 and the irradiated The included angle between the normals of the irradiated surface 102 where the point 101 is located.
  • Irradiance is the radiant flux per unit area of the irradiated surface.
  • the dose-equivalent disinfection dose is the disinfection dose of each irradiated point in the space, including the maximum disinfection dose and the minimum disinfection dose.
  • the maximum disinfectant dose should be less than or equal to the safe disinfectant dose, and the minimum disinfectant dose should be greater than or equal to the target disinfectant dose.
  • the disinfection duration t can be set according to the actual situation.
  • the target disinfectant dose is set to the disinfectant dose required to eliminate bacteria or microorganisms in the space.
  • the target disinfectant dose can be set according to the specific use scene.
  • the main types of bacteria or microorganisms in each scene are different, and the disinfection required to kill different microbial types
  • the dose is different, so it can be adjusted according to the usage scenario; in addition, it can also be adjusted according to the disinfection effect, for example, if the disinfection effect is required to reach 99% or 95%, it corresponds to different disinfection doses.
  • the influencing factors of the target disinfection dose include the type of target microorganism, the degree of completion of disinfecting the target microorganism, and the carrier of the target microorganism.
  • the target disinfectant dose can be specifically set according to specific conditions.
  • the safe disinfection dose is set as the disinfection dose that can be tolerated by humans and other organisms in the space. Once the equivalent disinfection dose exceeds the safe disinfection dose that can be tolerated by humans and other organisms, it will cause harm to human health.
  • safe disinfection dose ⁇ S UV ( ⁇ ) effective radiation dose exposure limit, wherein, S UV ( ⁇ ) is a weighting function of photochemical ultraviolet hazard, and the value of effective radiation dose exposure limit is 30J/m 2 .
  • the value of the S UV ( ⁇ ) function is distributed in several orders of magnitude.
  • the value of the S UV ( ⁇ ) function is obtained according to Table 1 of 4.3.1 in GBT20145-2006; however, after the national standard is revised, this The value of the S UV ( ⁇ ) function in the invention will be adjusted accordingly according to the revised national standard.
  • the value of the effective radiation dose exposure limit also refers to GBT20145-2006. After the national standard is revised, the value of the effective radiation dose exposure limit refers to the revised national standard.
  • the dose-equivalent disinfectant dose is greater than or equal to the target disinfectant dose and less than or equal to the safe disinfectant dose, it means that the disinfection lamp 10 can achieve the target disinfection effect in the current use environment and will not cause harm to organisms, so it is not It is necessary to adjust the disinfection lamp 10 itself or its motion parameters; if the dose equivalent disinfection dose is less than the target disinfection dose, or greater than the safe disinfection dose range, then the initial light distribution data of the disinfection lamp 10 or the motion parameters of the disinfection lamp 10 need to be adjusted.
  • the dose-equivalent disinfection dose is less than the target disinfection dose, or greater than the safe disinfection dose range, parameters such as the number of disinfection lamps 10 can also be adjusted.
  • the dose equivalent disinfection dose is less than the target disinfection dose, it means that the disinfection effect is not up to standard, and adjusting the initial light distribution data of the disinfection lamp 10 includes increasing the initial radiation intensity of the disinfection lamp 10, that is, replacing the disinfection lamp, and adopting a disinfection lamp with a higher initial radiation intensity ; Or the number of disinfection lamps 10 can be increased.
  • Adjusting the motion parameters of the disinfection lamp 10 includes: if the disinfection lamp 10 is rotating, the rotation angle can be increased to prevent the disinfection light from being irradiated at some angles in the space; if the disinfection lamp 10 is performing displacement motion, the length of the displacement track can be increased , or change the installation form of the displacement track, such as changing from linear to U-shaped, etc.
  • Adjusting the initial light distribution data of the disinfecting lamp 10 includes reducing the initial radiation intensity of the disinfecting lamp 10, that is, replacing the disinfecting lamp. Low sterilizing lamps; or reduce the number of sterilizing lamps 10 .
  • Adjusting the motion parameters of the disinfection lamp 10 includes: if the disinfection lamp 10 is rotating, the speed of rotation can be increased to prevent the disinfection lamp 10 from staying at a certain angle for too long, resulting in an excessively high local dose; , the moving speed can be increased, and the disinfection lamp 10 can be prevented from staying in a certain position for too long, resulting in an excessively high local dose.

Landscapes

  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)

Abstract

一种消毒灯(10)的动态均光方法,包括:提供一消毒灯(10)(S1);获取消毒灯(10)的初始配光数据(S2);获取消毒灯(10)在运动时的运动参数(S3);根据消毒灯(10)的初始配光数据以及运动参数,获得消毒灯(10)在运动时的剂量等效配光数据(S4);根据剂量等效配光数据调整消毒灯(10)的初始配光数据或者消毒灯(10)的运动参数(S5)。这种消毒灯(10)的动态均光方法,可以实现消毒灯(10)的动态配置,从而满足不同使用场景下的消毒需求,且能满足生物安全需要。

Description

消毒灯的动态均光方法
本申请要求2022年1月29日提交中国专利局、申请号为202210111949.3、发明名称为“消毒灯的动态均光方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及空气以及物表消毒技术领域,尤其涉及一种消毒灯的动态均光方法。
背景技术
室内环境受到悬浮颗粒上沾染的病原,如细菌、病毒等;装潢装修后挥发性气态污染物,如氡、甲醛、苯系物、氨等;可吸入颗粒,如粉尘、烟雾、花粉等;生活异味,如人自身新城代谢、霉味、垃圾气味等;室外污染空气入侵,如工业废气、汽车尾气、土囊灰尘等;以上也可总称为空气污染,降低或排除这种空气污染的方式为空气消毒。
在过去的几年中,人们发现C波段(UV C)中的一小部分紫外线波长,特别是200nm~230nm,称为远紫外线C,能够杀死病原体细菌,但不会伤害人体细胞,因此当人类在场的环境中,采用该波长紫外线的紫外线消毒灯成为了目前常用的空气消毒方式。
然而,目前的光消毒装置基本为固定设置,在使用过程中,一方面,仅能对局部进行高效消毒,无法实现室内全方位空气消毒处理,影响消毒效果;另一方面,在局部区域内紫外线光线过于集中,长时间照射后,导致局部紫外线剂量过高从而形成照射热点问题,造成局部紫外线剂量超过国际要求的安全剂量标准,不利于人体和其他生物健康。并且,无法根据具体的使用环境来对消毒装置进行配置,无法灵活应用消毒装置。
发明内容
本发明解决的技术问题是提供一种消毒灯的动态均光方法,可以实现消毒灯消毒效果的动态调整,实现对室内空气以及物表的全方位消毒,并且可以解决室内的空间局部剂量过高的问题以达到生物安全要求。
为解决上述技术问题,本发明实施例提供一种消毒灯的动态均光方法,包括:提供一消毒灯;获取所述消毒灯的初始配光数据;获取所述消毒灯在运动时的运动参数;根据所述消毒灯的初始配光数据以及所述运动参数,获得所述消毒灯在运动时的剂量等效配光数据;根据所述剂量等效配光数据调整所述消毒灯的初始配光数据或者所述消毒灯的运动参数。
可选的,根据所述剂量等效配光数据调整所述消毒灯的初始配光数据或者所述消毒灯的运动参数的方法包括:根据所述剂量等效配光数据,获得所述消毒灯在运动时的剂量等效消毒剂量;将所述剂量等效消毒剂量与目标消毒剂量以及安全消毒剂量进行比较,获取比较结果;根据所述比较结果调整所述消毒灯的初始配光数据或者所述消毒灯的运动参数,当所述剂量等效消毒剂量小于所述目标消毒剂量或者大于所述安全消毒剂量时,则调整所述消毒灯的初始配光数据或者所述消毒灯的运动参数。
可选的,采用分布光度计获取所述消毒灯的初始配光数据。
可选的,所述初始配光数据包括所述消毒灯在空间内各个方向的辐射光强分布Ie。
可选的,所述消毒灯的运动包括旋转运动或位移运动。
可选的,当所述消毒灯做旋转运动时,所述运动参数包括旋转角度。
可选的,获得所述消毒灯在运动时的剂量等效配光数据的方法包括:在所述消毒灯的旋转路径上等角度均匀选取n个点位,n为大于 1的自然数;在每个点位上设置一个替代消毒灯,所述替代消毒灯的在空间内各个方向的替代辐射光强为Ie/n;获取n个替代消毒灯同时作用时的剂量等效灯具的剂量等效配光数据。
可选的,当所述消毒灯做位移运动时,所述运动参数包括移动距离。
可选的,在所述消毒灯的位移路径上等距离均匀选取n个点位,n为大于1的自然数;在每个点位上设置一个替代消毒灯,所述替代消毒灯在空间内各个方向的替代辐射光强为Ie/n;获取n个替代消毒灯同时作用时的剂量等效灯具的剂量等效配光数据。
可选的,所述剂量等效配光数据包括所述剂量等效灯具在空间内各个方向的剂量等效辐射光强分布Ie’。
可选的,根据所述剂量等效配光数据,获取所述剂量等效灯具在空间内各被辐射点的剂量等效辐照度Ee’,Ee’=Ie’/r2×cosθ,其中,r为被辐射点与所述剂量等效灯具之间的直线距离,θ为被辐射点与所述等效消毒灯具之间的连线与所述被辐射点所在的被辐射面的法线之间的夹角。
可选的,根据所述剂量等效辐照度,获取所述剂量等效灯具的剂量等效消毒剂量,剂量等效消毒剂量=Ee’×t,其中t为消毒时长。
可选的,所述目标消毒剂量的影响因素包括目标微生物的种类、目标微生物的消杀完成度以及目标微生物的载体。
可选的,安全消毒剂量×S UV(λ)=有效辐射剂量曝辐限制,其中,S UV(λ)为光化学紫外危害加权函数,有效辐射剂量曝辐限制的数值为30J/m 2
与现有技术相比,本发明实施例的技术方案具有以下有益效果:
本技术方案提供的消毒灯的动态均光方法,通过单一消毒灯的初始配光数据和运动参数,获得消毒灯在运动时的剂量等效配光数据, 从而通过剂量等效配光数据来调整消毒灯的初始配光数据或者运动参数,从而实现消毒灯配置的动态调整,可以根据实际使用情况对消毒灯进行布置,以提高不同使用场景中的消毒效果,满足不同的消毒需求,且避免对人体等生物造成危害。
附图说明
图1是本发明一实施例中消毒灯的动态均光方法的流程图;
图2是本发明一实施例中消毒灯的结构示意图;
图3是图2中圆圈部分的放大结构示意图;
图4是被辐射点以及被辐射面与等效消毒灯具的位置示意图;
图5是根据剂量等效配光数据调整消毒灯的参数或者消毒灯的运动参数的方法流程图。
具体实施方式
如背景技术所述,目前的光消毒装置多为固定结构,照射出的消毒光线具有指向性,存在照射死角,输出范围有限,存在光线强弱之分,无法实现室内全方位消毒杀菌,并且紫外线长时间在局部照射,容易造成局部剂量过高导致的热点问题,局部紫外线强度过高且照射时间过长,导致照射剂量超过国际安全剂量标准,不利于生物健康。并且,光消毒装置无法根据具体的使用场景和想要达成的消毒效果灵活设置,不利于提高消毒效率。
为了解决上述问题,本发明实施例提供了一种消毒灯的动态均光方法,一方面,所述消毒灯可以在空间内运动,因此所述消毒灯可以多消毒对室内空气以及物表进行消毒,避免消毒光线存在照射死角的问题,实现室内全方位消毒杀菌;同时避免紫外线光在局部区域停留时间过长,避免局部剂量过高造成的光生物危害以及物品的损伤,以及局部区域长时间增加照射剂量造成的能量浪费;另一方面,根据目标消毒剂量和安全消毒剂量调整消毒灯的初始配光数据或者消毒灯 的运动参数,从而根据应用场景配置出最佳的消毒灯装配方案,有利于提高消毒效果且能达到生物安全要求。
为使本发明的上述目的、特征和有益效果能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。
图1是本发明一实施例中消毒灯的动态均光方法的流程图;图2是本发明一实施例中消毒灯的结构示意图;图3是图2中圆圈部分的放大结构示意图;图4是被辐射点以及被辐射面与等效消毒灯具的位置示意图;图5是根据剂量等效配光数据调整消毒灯的参数或者消毒灯的运动参数的方法流程图。
参考图1,一种消毒灯的动态均光方法,包括:
步骤S1:提供一消毒灯10。
所述消毒灯10可以是单灯管结构或者多灯管结构。
本实施例中,所述消毒灯10为紫外线灯,通过放射紫外线光,对空气进行消毒杀菌。
在其他实施例中,所述消毒灯10发射的光线也可以是其他波段的可见光或非可见光。
参考图2,本实施例中,所述消毒灯10为多灯管结构,包括三组灯管101,各组灯管101之间彼此成120°。
在其他实施例中,所述消毒灯10也是其他形式的消毒装置。
步骤S2:获取所述消毒灯的初始配光数据。
本实施例中,采用分布光度计获取所述消毒灯10的初始配光数据。
本实施例中,所述初始配光数据包括所述消毒灯10在空间内各个方向上的辐射强度分布I e,。
辐射强度I e为消毒灯10的消毒光线在给定方向的单位立体角中 发射的辐射通量。
步骤S3:获取所述消毒灯在运动时的运动参数。
所述消毒灯10可以做旋转运动或位移运动。
以所述消毒灯10做旋转运动为例,参考图2,本实施例中,所述消毒灯10可以转动。
本实施例中,还包括:安装底座20,所述安装底座20用于安装所述消毒灯10;转动组件30,所述转动组件30转动设置于所述安装底座20上,且所述转动组件30与所述消毒灯10连接,用于带动所述消毒灯10转动。
本实施例中,通过驱动电机(未图示)驱动所述转动组件30转动。
所述转动组件30转动可以带动所述消毒灯10转动,从而可以多角度对室内空气进行消毒杀菌,可以实现全方位消毒,并且避免紫外线光在局部区域停留时间过长造成局部热点问题,不会对人体造成伤害。
所述安装底座20安装固定于墙面上,所述墙面可以是与地面平行的天花板,也可以是与地面垂直的墙壁;或者所述安装底座10也可以安装于其他固定装置上。
本实施例中,所述安装底座20内部中空,可以容纳所述驱动电机。
本实施例中,还包括:连接件50,所述转动组件30通过所述连接件50与所述消毒灯10连接。
本实施例中,所述连接件50与所述消毒灯10固定连接,两者相对位置不发生变化,所述转动组件30带动所述连接件50以及所述消毒灯10发生转动。
本实施例中,所述转动组件30包括:旋转件31,所述旋转件31包括第一转动轴311和第二转动轴312,所述第一转动轴311的一端与所述安装底座20连接,所述第一转动轴311的另一端与所述第二转动轴312连接,所述驱动电机连接所述第一转动轴311。
本实施例中,所述第一转动轴311为主动轴,带动所述第二转动轴312转动;在其他实施例中,所述驱动电机也可以连接所述第二转动轴312,将第二转动轴312作为主动轴。
本实施例中,所述转动组件30还包括:定位件32,所述第一转动轴311通过所述定位件32与所述第二转动轴312连接。
本实施例中,所述定位件32上具有多个定位孔321,所述定位孔321沿所述定位件32的延伸方向排布,所述第一转动轴311穿过其中一个所述定位孔321,与所述定位件32固定。
本实施例中,所述定位件32为圆弧板状,位于所述圆弧板上的每个定位孔32代表一个档位,所述第一转动轴311穿过不同的定位孔32,可以改变转动组件30的相对于地面的倾斜角度。
本实施例中,所述第二转动轴312与所述定位件32通过螺栓连接。
本实施例中,所述转动组件30还包括:转动支架33,所述转动支架33设置于所述安装底座20上。
所述转动支架33包括第一支架331和第二支架332,所述第二支架332连接在所述第一支架331上,所述第一支架331与所述安装底座20连接,所述第二支架332与所述连接件50连接。
本实施例中,所述第一支架331与所述第二支架332通过螺栓组件连接。
本实施例中,所述第一支架331为开口向下的U型结构,所述第二支架332为环形架,所述第二支架332相对的两个侧壁与所述第 一支架331的两端相连接。
本实施例中,所述第二支架332为方环形;在其他实施例中,所述第二支架332也可以为圆环形。
本实施例中,驱动电机驱动所述第一转动轴311转动,带动所述第二转动轴312围绕所述第一转动轴311转动,从而带动所述消毒灯10转动,除水平转动外,所述消毒灯10还可以相对于地面倾斜一定角度,同时所述第二支架332也能相对于所述第一支架331倾斜一定角度来适应所述消毒灯10的倾斜角度,从而可以增大消毒灯10的消毒范围。
当所述消毒灯10做旋转运动时,所述运动参数包括消毒灯10的转动角度。
本实施例中,所述消毒灯10可以在360°方向上发生转动,所述转动角度为360°。
在其他实施例中,所述消毒灯10的转动角度也可以是其他数值。
在其他实施例中,所述消毒灯10还可以做位移运动,通过在空间内增设移动轨道,所述消毒灯10在所述移动轨道上移动,从而实现空间内的多方位消毒。
当所述消毒灯10做位移运动时,所述运动参数包括移动距离,以及所述移动轨道的形状。
步骤S4:根据所述消毒灯的初始配光数据以及所述运动参数,获得所述消毒灯在运动时的剂量等效配光数据。
本实施例中,当所述消毒灯10做旋转运动时,获得所述消毒灯10在旋转时的剂量等效配光数据的方法是:在所述消毒灯10的旋转路径上等角度均匀选取n个点位,n为大于1的自然数;在每个点位上设置一个替代消毒灯,所述替代消毒灯在空间内各个方向的替代辐射光强为I e/n;获取n个替代消毒灯同时作用时的剂量等效灯具的剂 量等效配光数据。
本实施例中,替代消毒灯的配光数据也可以通过分布光度计来获得,所述替代消毒灯的选择根据消毒灯10的初始配光数据决定,替代消毒灯在各个方向的替代辐射光强为消毒灯10在各个方向的初始辐射光强分布I e/n。
本实施例中,通过在消毒灯10的旋转路径上设置多个替代消毒灯,可以模拟消毒灯10在旋转时的配光数据,将n个替代消毒灯共同作用时的状态抽象为整个灯具,即剂量等效灯具,并通过分布光度计获取剂量等效灯具的的剂量等效配光数据。
本实施例中,所述旋转角度为360°,所述n为大于1且小于等于360的自然数;设置的替代消毒灯越多,得到的剂量等效配光数据越准确。
所述剂量等效配光数据包括所述剂量等效灯具在空间内各个方向的剂量等效辐射光强分布I e’。
在其他实施例中,当所述消毒灯10做位移运动时,获得所述消毒灯10在位移时的剂量等效配光数据的方法是:在所述消毒灯10的位移路径上等距离均匀选取n个点位,n为大于1的自然数;在每个点位上设置一个替代消毒灯,所述替代消毒灯在空间内各个方向的替代辐射光强为I e/n;获取n个替代消毒灯同时作用时的剂量等效灯具的剂量等效配光数据。
当所述消毒灯10做位移运动时,选取点位的间隔距离可以根据实际情况自由定义,总体而言,间隔距离越短,选取的点位越多,获得的剂量等效配光数据越准确。
步骤S5:根据所述剂量等效配光数据调整所述消毒灯的参数或者所述消毒灯的运动参数。
参考图5,在步骤S5中,根据剂量等效配光数据调整所述消毒灯10的初始配光数据或者消毒灯10的运动参数的方法包括:
步骤5.1:根据所述剂量等效配光数据,获得所述消毒灯在运动时的剂量等效消毒剂量;
步骤5.2:将所述剂量等效消毒剂量与目标消毒剂量以及安全消毒剂量进行比较,获取比较结果;
步骤5.3:根据所述比较结果调整所述消毒灯的初始配管数据或者所述消毒灯的运动参数,如果所述剂量等效消毒剂量小于所述目标消毒剂量或者大于所述安全消毒剂量,则调整所述消毒灯的初始配光数据或者所述消毒灯的运动参数。
本实施例中,在获取所述剂量等效消毒剂量之前,还包括:根据所述剂量等效配光数据,获取所述剂量等效灯具在空间内各被辐射点的剂量等效辐照度Ee’,Ee’=I e’/r 2×cosθ。
参考图4,其中,r为被辐射点101与所述剂量等效灯具100之间的直线距离,θ为被辐射点101与所述等效消毒灯具100之间的连线与所述被辐射点101所在的被辐射面102的法线之间的夹角。
辐照度为被辐射面单位面积上的辐射通量。
本实施例中,获取所述剂量等效辐照度Ee’之后,根据所述剂量等效辐照度,获取所述剂量等效灯具的剂量等效消毒剂量,所述剂量等效消毒剂量=Ee’×t,其中t为消毒时长。
所述剂量等效消毒剂量为空间内各个被辐射点的消毒剂量,包括最大消毒剂量和最小消毒剂量。
本实施例中,所述最大消毒剂量要小于等于安全消毒剂量,所述最小消毒剂量要大于等于目标消毒剂量。
所述消毒时长t可以根据实际情况自行设定。
目标消毒剂量设置为消灭空间内细菌或者微生物需要的消毒剂量,所述目标消毒剂量可以根据具体使用场景设置,每个场景中主要存在的细菌或者微生物种类不同,不同的微生物种类杀灭需要的消毒 剂量不同,因此可以根据使用场景进行调整;另外,还可以根据消毒效果进行调整,例如要求消毒效果达到99%或者要求达到95%,均对应不同的消毒剂量。
因此,所述目标消毒剂量的影响因素包括目标微生物的种类、目标微生物的消杀完成度以及目标微生物的载体。
所述目标消毒剂量可以根据具体情况具体设定。
所述安全消毒剂量设置为空间内人类等生物能承受的消毒剂量,一旦剂量等效消毒剂量超过人类等生物能承受的安全消毒剂量,会对人体健康造成危害。
本实施例中,安全消毒剂量×S UV(λ)=有效辐射剂量曝辐限制,其中,S UV(λ)为光化学紫外危害加权函数,有效辐射剂量曝辐限制的数值为30J/m 2
所述S UV(λ)函数的值分布于好几个数量级,本实施例中,S UV(λ)函数的值根据GBT20145-2006中4.3.1的表1获取;但是,在国标修改后,本发明中S UV(λ)函数的值会根据修改后的国标做相应调整。
本实施例中,所述有效辐射剂量曝辐限制的数值同样参考GBT20145-2006,国标修改后,有效辐射剂量曝辐限制的数值参考修改后的国标。
本实施例中,如果剂量等效消毒剂量大于等于目标消毒剂量,且小于等于安全消毒剂量,则表示消毒灯10在当前使用环境中可以达成目标消毒效果,且不会对生物造成危害,因此不需要对调整消毒灯10本身或者其运动参数;如果剂量等效消毒剂量小于目标消毒剂量,或者大于安全消毒剂量范围,则需要调整消毒灯10的初始配光数据或者消毒灯10的运动参数。
本实施例中,如果剂量等效消毒剂量小于目标消毒剂量,或者大于安全消毒剂量范围,也可以调整消毒灯10的数量等参数。
如果剂量等效消毒剂量小于目标消毒剂量,说明消毒效果不达标,调整消毒灯10的初始配光数据包括提高消毒灯10的初始辐射强度,即更换消毒灯,采用初始辐射强度较高的消毒灯;或者可以增加消毒灯10的数量。
调整消毒灯10的运动参数包括:如果消毒灯10在做旋转运动,可以增加旋转角度,以避免空间内部分角度无法照射到消毒光线;如果消毒灯10在做位移运动,可以增加位移轨道的长度,或者改变位移轨道的安装形式,例如从直线型改成U型等。
如果剂量等效消毒剂量大于安全消毒剂量范围,说明消毒剂量会对生物造成伤害,调整消毒灯10的初始配光数据包括降低消毒灯10的初始辐射强度,即更换消毒灯,采用初始辐射强度较低的消毒灯;或者减少消毒灯10的数量。
调整消毒灯10的运动参数包括:如果消毒灯10在做旋转运动,可以提高转动速度,避免消毒灯10在某个角度停留时间过长,导致局部剂量过高;如果消毒灯10在做位移运动,可以提高移动速度,避免消毒灯10在某个位置停留时间过长,导致局部剂量过高。
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。

Claims (14)

  1. 一种消毒灯的动态均光方法,其特征在于,包括:
    提供一消毒灯;
    获取所述消毒灯的初始配光数据;
    获取所述消毒灯在运动时的运动参数;
    根据所述消毒灯的初始配光数据以及所述运动参数,获得所述消毒灯在运动时的剂量等效配光数据;
    根据所述剂量等效配光数据调整所述消毒灯的初始配光数据或者所述消毒灯的运动参数。
  2. 如权利要求1所述的消毒灯的动态均光方法,其特征在于,根据所述剂量等效配光数据调整所述消毒灯的初始配光数据或者所述消毒灯的运动参数的方法包括:根据所述剂量等效配光数据,获得所述消毒灯在运动时的剂量等效消毒剂量;将所述剂量等效消毒剂量与目标消毒剂量以及安全消毒剂量进行比较,获取比较结果;根据所述比较结果调整所述消毒灯的初始配光数据或者所述消毒灯的运动参数,当所述剂量等效消毒剂量小于所述目标消毒剂量或者大于所述安全消毒剂量时,则调整所述消毒灯的初始配光数据或者所述消毒灯的运动参数。
  3. 如权利要求2所述的消毒灯的动态均光方法,其特征在于,采用分布光度计获取所述消毒灯的初始配光数据。
  4. 如权利要求3所述的消毒灯的动态均光方法,其特征在于,所述初始配光数据包括所述消毒灯在空间内各个方向的初始辐射光强分布I e
  5. 如权利要求4所述的消毒灯的动态均光方法,其特征在于,所述消毒灯的运动包括旋转运动或位移运动。
  6. 如权利要求5所述的消毒灯的动态均光方法,其特征在于,当所述消毒灯做旋转运动时,所述运动参数包括旋转角度。
  7. 如权利要求6所述的消毒灯的动态均光方法,其特征在于,获得所述消毒灯在运动时的剂量等效配光数据的方法包括:在所述消毒灯的旋转路径上等角度均匀选取n个点位,n为大于1的自然数;在每个点位上设置一个替代消毒灯,所述替代消毒灯的在空间内各个方向的替代辐射光强为I e/n;获取n个替代消毒灯同时作用时的剂量等效灯具的剂量等效配光数据。
  8. 如权利要求5所述的消毒灯的动态均光方法,其特征在于,当所述消毒灯做位移运动时,所述运动参数包括移动距离。
  9. 如权利要求8所述的消毒灯的动态均光方法,其特征在于,在所述消毒灯的位移路径上等距离均匀选取n个点位,n为大于1的自然数;在每个点位上设置一个替代消毒灯,所述替代消毒灯在空间内各个方向的替代辐射光强为I e/n;获取n个替代消毒灯同时作用时的剂量等效灯具的剂量等效配光数据。
  10. 如权利要求7或9所述的消毒灯的动态均光方法,其特征在于,所述剂量等效配光数据包括所述剂量等效灯具在空间内各个方向的剂量等效辐射光强分布I e’。
  11. 如权利要求10所述的消毒灯的动态均光方法,其特征在于,根据所述剂量等效配光数据,获取所述剂量等效灯具在空间内各被辐射点的剂量等效辐照度Ee’,Ee’=I e’/r 2×cosθ,其中,r为被辐射点与所述剂量等效灯具之间的直线距离,θ为被辐射点与所述等效消毒灯具之间的连线与所述被辐射点所在的被辐射面的法线之间的夹角。
  12. 如权利要求11所述的消毒灯的动态均光方法,其特征在于,根据所述剂量等效辐照度,获取所述剂量等效灯具的剂量等效消毒剂量,剂量等效消毒剂量=Ee’×t,其中t为消毒时长。
  13. 如权利要求12所述的消毒灯的动态均光方法,其特征在于,所述目标消毒剂量的影响因素包括目标微生物的种类、目标微生物的消杀完成度以及目标微生物的载体。
  14. 如权利要求12所述的消毒灯的动态均光方法,其特征在于,安全消毒剂量×S UV(λ)=有效辐射剂量曝辐限制,其中,S UV(λ)为光化学紫外危害加权函数,有效辐射剂量曝辐限制的数值为30J/m 2
PCT/CN2022/089165 2022-01-29 2022-04-26 消毒灯的动态均光方法 WO2023142278A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210111949.3A CN116567886A (zh) 2022-01-29 2022-01-29 消毒灯的动态均光方法
CN202210111949.3 2022-01-29

Publications (1)

Publication Number Publication Date
WO2023142278A1 true WO2023142278A1 (zh) 2023-08-03

Family

ID=87470214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/089165 WO2023142278A1 (zh) 2022-01-29 2022-04-26 消毒灯的动态均光方法

Country Status (2)

Country Link
CN (1) CN116567886A (zh)
WO (1) WO2023142278A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107072261A (zh) * 2014-09-30 2017-08-18 首尔伟傲世有限公司 可移动紫外辐射源
US20170333583A1 (en) * 2012-08-28 2017-11-23 Sensor Electronic Technology, Inc. Storage Device Including Target UV Illumination Ranges
US20180193502A1 (en) * 2017-01-12 2018-07-12 UD Innovations, LLC Portable uv-c disinfection apparatus, method, and system
CN112075882A (zh) * 2020-09-21 2020-12-15 深圳市无限动力发展有限公司 智能消毒方法及扫地机
US20210346547A1 (en) * 2020-05-06 2021-11-11 Led Smart Inc. Germicidal lighting system
CN113713130A (zh) * 2020-05-25 2021-11-30 博尔博公司 具有消毒光源的移动设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170333583A1 (en) * 2012-08-28 2017-11-23 Sensor Electronic Technology, Inc. Storage Device Including Target UV Illumination Ranges
CN107072261A (zh) * 2014-09-30 2017-08-18 首尔伟傲世有限公司 可移动紫外辐射源
US20180193502A1 (en) * 2017-01-12 2018-07-12 UD Innovations, LLC Portable uv-c disinfection apparatus, method, and system
US20210346547A1 (en) * 2020-05-06 2021-11-11 Led Smart Inc. Germicidal lighting system
CN113713130A (zh) * 2020-05-25 2021-11-30 博尔博公司 具有消毒光源的移动设备
CN112075882A (zh) * 2020-09-21 2020-12-15 深圳市无限动力发展有限公司 智能消毒方法及扫地机

Also Published As

Publication number Publication date
CN116567886A (zh) 2023-08-08

Similar Documents

Publication Publication Date Title
CN111282012B (zh) 针对空间上层空气杀菌的人机共存的紫外灯管辐照系统
US8080203B2 (en) Air sterilization apparatus
KR102152810B1 (ko) 실내 살균 장치
Nunayon et al. Comparison of disinfection performance of UVC‐LED and conventional upper‐room UVGI systems
CN111265706B (zh) 针对空间上层空气杀菌的人机共存的紫外led辐照系统
US20090004046A1 (en) Ceiling lighting fixture with UV-C air sterilization
CA2749283A1 (en) Improved method and apparatus for producing a high level of disinfection in air and surfaces
WO2019072205A1 (en) ASYNCHRONOUS INTERMITTENT LIGHTING FOR QUICK SURFACE DISINFECTION
US20220288253A1 (en) Virucidal effects of 405 nm visible light on sars-cov2 and influenza a virus
TW202310883A (zh) 集光束uvled紫外線掃描方法及其裝置
WO2023142278A1 (zh) 消毒灯的动态均光方法
JP7023798B2 (ja) 紫外線照射装置
RU101635U1 (ru) Установка для облучения воздуха и поверхностей в помещении
WO2023142276A1 (zh) 光消毒装置
CN217385997U (zh) 集光束uvled紫外线扫描装置
US20220010992A1 (en) Apparatus for processing air in an indoor environment
US20220034531A1 (en) Air sanitizer with boundlessly-extended sanitizing chamber and method of using same
WO2023142277A1 (zh) 光消毒装置
CN212235351U (zh) 一种光谱消毒装置
Jones et al. UV-C for HVAC Air and Surface disinfection
EP4237691A1 (en) Blade for a fan, and a fan using such a blade
CN218474739U (zh) 一种壁挂式深紫外杀菌消毒装置
CN206222511U (zh) 空气净化灯具
Sandle Shining (invisible) light on viral pathogens: Virucidal contamination control strategies using UV-C light
JP2023148367A (ja) 紫外線照射装置の設定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22923096

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE