WO2023142032A1 - 一种改善既有滨海平原地区内涝的方法 - Google Patents

一种改善既有滨海平原地区内涝的方法 Download PDF

Info

Publication number
WO2023142032A1
WO2023142032A1 PCT/CN2022/074952 CN2022074952W WO2023142032A1 WO 2023142032 A1 WO2023142032 A1 WO 2023142032A1 CN 2022074952 W CN2022074952 W CN 2022074952W WO 2023142032 A1 WO2023142032 A1 WO 2023142032A1
Authority
WO
WIPO (PCT)
Prior art keywords
reservoir
waterlogging
area
existing
coastal
Prior art date
Application number
PCT/CN2022/074952
Other languages
English (en)
French (fr)
Inventor
马兴华
Original Assignee
中交上海航道勘察设计研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中交上海航道勘察设计研究院有限公司 filed Critical 中交上海航道勘察设计研究院有限公司
Publication of WO2023142032A1 publication Critical patent/WO2023142032A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B3/00Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
    • E02B3/04Structures or apparatus for, or methods of, protecting banks, coasts, or harbours
    • E02B3/10Dams; Dykes; Sluice ways or other structures for dykes, dams, or the like
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B3/00Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
    • E02B3/04Structures or apparatus for, or methods of, protecting banks, coasts, or harbours
    • E02B3/10Dams; Dykes; Sluice ways or other structures for dykes, dams, or the like
    • E02B3/102Permanently installed raisable dykes
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B3/00Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
    • E02B3/04Structures or apparatus for, or methods of, protecting banks, coasts, or harbours
    • E02B3/041Structures or apparatus for, or methods of, protecting banks, coasts, or harbours using active mechanical means, e.g. fluidizing or pumping
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A10/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
    • Y02A10/11Hard structures, e.g. dams, dykes or breakwaters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A10/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
    • Y02A10/30Flood prevention; Flood or storm water management, e.g. using flood barriers

Definitions

  • the invention belongs to the planning and construction fields of urban and rural areas, water conservancy projects, marine nearshore projects and highway projects, and relates to a method for increasing waterlogging storage capacity in existing coastal plain areas, receiving rainwater in existing coastal plain areas, and improving waterlogging in existing coastal plain areas.
  • the "internal waterlogging” (referred to as “waterlogging”) referred to in this manual refers to the heavy rainfall (water) or continuous rainfall (water) in the plain area, which exceeds the drainage capacity and waterlogging capacity of the area, causing the area to
  • the ground (such as sites, roads, farmland, green space, etc.) produces the phenomenon of waterlogging disasters.
  • the "waterlogging area” referred to in this manual refers to the river network in the plain area that has the function of receiving heavy rainfall (water) or continuous rainfall (water) in the area and improving the phenomenon of ground water accumulation (that is, improving internal waterlogging) , lakes, surface storage tanks, etc., excluding reservoirs, flood detention areas or flood discharge areas that mainly receive upstream floods.
  • the rainwater drainage path in the plain area is generally rainfall ⁇ 1 surface flow ⁇ 2 rainwater pipe network, ditch drainage ⁇ 3 waterlogging area (river network, lake, surface storage tank) waterlogging, river network drainage ⁇ 4 discharge into the downstream flood channel (for the inland plain area), and discharged into the open sea through the outlet of the river network (for the coastal plain area).
  • the waterlogging and drainage capacity of 3 is greater than the drainage capacity of 2 is greater than the surface flow of 1, then there will be no surface water disaster (internal waterlogging)
  • the drainage capacity of 2 is smaller than the surface flow of 1 Waterlogging or 3 waterlogging, drainage capacity less than 2 drainage capacity will cause ground water disasters (internal waterlogging).
  • the invention is especially suitable for the situation that the drainage capacity of the rainwater pipe network and the ditches is greater than that of the surface flow, but the drainage capacity of the waterlogging area and the river network is smaller than that of the surface flow, so that waterlogging occurs.
  • the current solution to the waterlogging problem in the inland plain area first relies on waterlogging areas, usually the river network and lakes in the plain area, such as the river network in the Yangtze River Delta in China, Taihu Lake, Dianshan Lake, etc., whose normal water level is lower than The ground in the area, the storage capacity between the normal water level and the ground elevation is the natural waterlogging storage capacity, which is used to receive the rainwater in the area and improve the waterlogging phenomenon on the ground in the area; The difference in water level is discharged into the downstream river network; thirdly, relying on setting up closed areas + pump drainage to forcefully discharge rainwater to the flood channel outside the closed area to improve the waterlogging problem in the closed area.
  • the Puxi area within the inner ring road of Shanghai uses pump drainage
  • the method is to forcibly discharge rainwater to the Huangpu River.
  • Existing waterlogging methods include:
  • Existing flood control method 1 use the storage capacity between the normal water level and the ground elevation (hereinafter referred to as the natural waterlogging storage capacity V 1 of the waterlogging area) of the waterlogging area (river network, lake) to store waterlogging.
  • Existing Waterlogging Method 3 On the basis of the existing Waterlogging Method 2, during periods of heavy rainfall or continuous rainfall, use the period of low tide in the open sea to open the drainage sluice to drain water from the waterlogging area (river network, lake) into the open sea to reduce the water level in flooded areas.
  • the tide level in the open sea continues to fluctuate.
  • the low tide period there is a certain water level difference but the duration is short, while the water level difference in other periods is small, heavy rainfall or continuous rainfall.
  • the amount of water discharged into the open sea through the drainage sluice is small. If the astronomical tide and storm surge increase at the same time, the drainage sluice can hardly discharge water. Once the amount of water caused by heavy rainfall or continuous rainfall exceeds the waterlogging storage capacity V 1 + V 2 , waterlogging often occurs in coastal plain areas.
  • Existing waterlogging method 4 On the basis of existing waterlogging method 3, increase the drainage pumping station, and use pump drainage method or sluice pump combined drainage method during heavy rainfall or continuous rainfall to reduce the water level in the waterlogging area. To improve the phenomenon of waterlogging, for example, the Shanghai area has gradually implemented this method since the end of the last century.
  • the disadvantage of this method is that the running time of the drainage pump station during heavy rainfall or continuous rainfall is very short (basically equal to the duration of heavy rainfall or continuous rainfall), the drainage intensity is high, and the drainage capacity required is large.
  • the unit drainage capacity (m 3 /s) of the pumping station requires high infrastructure investment and operating costs.
  • the existing coastal plain area needs to meet a very high waterlogging prevention and control design return period standard (such as the 24-hour rainfall standard once in 50-100 years ), the drainage pumping station that needs to be built is large in scale, and the infrastructure investment and operation costs are expensive, and the general financial resources are unbearable, so we can only adopt a lower return period standard for waterlogging prevention and control design.
  • a very high waterlogging prevention and control design return period standard such as the 24-hour rainfall standard once in 50-100 years
  • the 24-hour rainfall standard in Shanghai in 2015 was 5 ⁇ Once in 10 years, once it exceeds, waterlogging will occur, so the frequency of waterlogging is very high.
  • Existing waterlogging method 5 On the basis of existing waterlogging methods 1, 2, 3, and 4, set up underground storage tanks and deep tunnel systems to increase waterlogging storage capacity and improve waterlogging. Such as the construction of underground storage tanks in Singapore.
  • the disadvantage of this method is that the construction space of the underground reservoir and the deep tunnel system is small, the water storage capacity is small, and the cost is high.
  • the existing coastal plain area A condition is: 1) the total area of the area is S 1 , and the ground elevation is 4.0m; 2) where The area of waterlogging area in the region is S 2 .
  • the normal water level of the area is 2.6m; 3)
  • the average high tide level of the local open sea for many years is 3.0m, the average tide level is 2.0m, and the average low tide level is 1m.
  • a tide (which lasts 12.5 hours) is lower than the average tide level for about 6 hours; 4) Encountering astronomical During spring tides and storm surges, the local sea level increases by 2m, the local high tide level reaches 5.0m, the average tide level reaches 4.0m, and the low tide level reaches 3m. A tide (12.5 hours) lower than 3.5m lasts about 3 hours; 5) The highest tidal level planned or designed in the open sea is 5.0m; 6) The 24-hour rainfall in 10, 100, and 500-year encounters is 0.215m (215mm), 0.315m (315mm), and 0.385m (385mm), respectively.
  • Existing waterlogging method 3 On the basis of existing waterlogging method 2, during periods of heavy rainfall or continuous rainfall, use the period of low tide level in the open sea (the period when the tide level is lower than 3.5m), open the drainage sluice to drain the waterlogged area The water will be discharged into the open sea, reducing the water level in the waterlogged area.
  • the water increases by 2.0m, the high tide level in the open sea reaches 5.0m, the average tide level in the open sea reaches 4.0m, the low tide level in the open sea reaches 3m, and the duration of the low tide period (the period when the tide level is lower than 3.5m) is short ( 3 hours/tidal time) and the water level difference between the ground and the open sea is small (0.5-1m), and the amount of water discharged into the open sea through the drainage gate is very small.
  • Singapore is located in the coastal plain area and is famous for its world-renowned comprehensive rainwater collection and waterlogging facilities.
  • the facilities include large surface storage tanks, underground storage tanks, green roofs, rain gardens, and permeable pavements.
  • the large-scale surface storage tanks starting from the construction of the first storage tank in 1868, have built a total of 17 storage tanks by 2011, which are used to collect rainwater as fresh water resources for capital use, and at the same time prevent waterlogging.
  • the operating rules are: Collect rainwater resources to the greatest extent (according to the paper "Singapore Rainwater Harvesting and Utilization Analysis", Singapore's annual "water loss” is only 5%). Drainage sluices and drainage pumping stations are discharged into the open sea.
  • Existing land reclamation usually utilizes coastal shoals to directly reclaim land outside the coastline to form land (ie, shoal reclamation), or build offshore artificial islands.
  • a small number of side beach reclamation projects set up artificial lakes in the middle area as the waterlogging area of the side beach reclamation projects themselves.
  • Dishui Lake is set up in the area.
  • Dishui Lake is used as a landscape lake and also as its own waterlogging area in the main urban area of Shanghai Lingang New City. It is implemented according to the existing waterlogging methods 1-3 (see above) in the existing coastal plain area, but not As the waterlogging area of the existing coastal plain area.
  • the existing technology lacks the method of greatly improving the waterlogging in the existing coastal plain area. How to greatly improve the waterlogging in the existing coastal plain area has been a difficult problem that has plagued the industry for a long time and has not been resolved.
  • the "existing coastal plain area” mentioned in this manual refers to the plain area within and adjacent to the existing coastline.
  • the "waterlogging reservoir along the coastal beach” mentioned in this specification belongs to a part of the technical solution of the present invention (does not belong to the prior art).
  • a dam or a dam with any shape on the plane forms a closed area as a reservoir for receiving rainwater in the existing coastal plain area and improving the waterlogging problem in the existing coastal plain area.
  • Nao Reservoir or "reservoir” for short.
  • the invention is especially suitable for the situation that the drainage capacity of the rainwater pipe network and the ditches is greater than that of the surface flow, but the drainage capacity of the waterlogging area and the river network is smaller than that of the surface flow, so that waterlogging occurs.
  • the object of the present invention is to provide a waterlogging reservoir set along the coastal beach, which can greatly increase the waterlogging storage capacity of the existing coastal plain area, so as to accommodate the existing coastal plain area caused by heavy rainfall or continuous rainfall, which exceeds the existing coastal plain area.
  • the rainwater discharge of the waterlogging storage capacity in the waterlogging area within the plain area greatly improves the existing method of waterlogging in the coastal plain area and solves the shortcomings of the existing technology.
  • the technical solutions provided by the invention include:
  • the first method to improve waterlogging in the existing coastal plain area is the first method to improve waterlogging in the existing coastal plain area:
  • the drainage capacity of the drainage pumping station should meet the needs of the pre-falling water in the reservoir and the waterlogging area that needs to be discharged from the reservoir within the duration of the pre-falling. Design Code for Outdoor Drainage"determined;
  • the sluice at the entrance of the reservoir is opened and controlled, so that part of the water in the waterlogged area (river network, lake, etc.) in the coastal plain area and the rainwater pipe network passes through the entrance of the reservoir and enters the waterlogged reservoir on the coastal beach in advance (
  • the existing waterlogging method 2 of the background technology can be adopted at the same time, during the period of low tide in the open sea, the drainage gates arranged on the existing coastline other than the waterlogged reservoir on the coastal beach are opened, and the water in the waterlogged area is discharged into the open sea in advance), both
  • the water level in the waterlogging area in the coastal plain area has also been greatly reduced in advance, and the range exceeds the existing waterlogging method 2 in the background technology.
  • the waterlogging storage capacity of the waterlogging area in the existing coastal plain area the natural waterlogging area Waterlogging storage capacity V 1 + enhanced pre-falling waterlogging storage capacity V 2 ′ in the waterlogging area; the water flow capacity of the reservoir entrance sluice should meet the needs of the pre-falling water in the waterlogging area to enter the reservoir within the duration of the pre-falling, which can be calculated according to The existing calculation methods are as determined in the "Code for Design of Sluice Gates";
  • the rainfall in the existing coastal plain area flows into the waterlogging area from the ground, and then enters the waterlogging reservoir along the coastal beach through the reservoir entrance. Since the total waterlogging storage capacity of the existing coastal plain area is much larger Based on the waterlogging storage capacity of the existing coastal plain area in the existing waterlogging method of the background technology, the waterlogging phenomenon of the existing coastal plain area has been greatly improved;
  • the entrance of the reservoir can use the existing sluices of the river network and rainwater pipe network in the existing coastal plain area or through the newly-established reservoir entrance sluice gate to prevent the water level in the waterlogging area of the existing coastal plain area from falling too low, or the reservoir water flow to the existing coastal plain area.
  • the entrance of the reservoir may not be equipped with a sluice gate, and the river network and rainwater pipe network in the coastal plain area are directly connected to the Nalao Reservoir along the coastal beach;
  • Drainage sluices and drainage pumping stations are installed at the outlet of the reservoir at the same time.
  • the drainage method can be the sluice drainage method.
  • the gate is opened during the low tide period to discharge the water higher than the low tide level in the Naluo reservoir along the coastal beach into the open sea.
  • the pump drainage method can also be used , through the drainage pumping station, the water in the Nalog reservoir along the coastal beach is discharged into the open sea to further reduce the water level of the Nalog reservoir along the coastal beach. water level; the outlet of the reservoir can also simply set up a drainage gate, and only use the low tide period to open the gate to discharge the water higher than the low tide level in the Naluo Reservoir along the coastal beach into the open sea;
  • dams excavated tidal flats, reservoir entrance sluices, drainage gates, drainage pumping stations, water photovoltaic power generation facilities, expressways or highways at the top of dams, landscapes, leisure, and recreational facilities use existing technologies, and will not be repeated here.
  • the main body of the Naluo reservoir along the coastal beach is preferentially arranged adjacent to or close to the side of the existing coastline, so as to shorten the distance from the existing river network and rainwater pipe network in the coastal plain area to the Nalogous reservoir along the coastal beach;
  • the elevation of the existing tidal flats within the area of the Laotian Reservoir is higher than the planned or designed pre-precipitation water level in the Naluo Reservoir, excavate the elevation of the existing tidal flats to the planned or designed pre-precipitation water level in the Naluo Reservoir;
  • the structure of the embankment should meet the water level and waves in the reservoir, the tidal level and wave action in the open sea, the water level difference inside and outside the reservoir and the seepage caused by it;
  • the main body of the reclamation area is preferably arranged adjacent to or close to the outer sea side, and the ground elevation of the reclamation area is not lower than the planned or designed maximum water level in the Naalao Reservoir along the coastal beach; when the top elevation of the seaside revetment in the reclamation area is higher When the highest tide level is planned or designed in the local open sea, and its structure meets the tide level and wave action of the open sea, the part of the dam located in the reclamation area can directly use the seaside revetment of the reclamation area.
  • the revetment on the seaside side adopts the existing technology.
  • the Naalao Reservoir along the coastal beach is mainly used to receive rainwater from the existing coastal plain area and improve the waterlogging phenomenon in the existing coastal plain area; for this reason, the ground elevation of the reclamation area should preferably not be lower than the historical highest water level of the local open sea and The local planning or design of the highest tide level makes the rainfall in the reclamation area directly discharged into the open sea mainly through its own river network and rainwater pipe network in the reclamation area, without occupying the waterlogging storage capacity of the coastal beach waterlogging reservoir.
  • the present invention can greatly increase the waterlogging storage capacity of the existing coastal plain area, and accept the waterlogging storage capacity of the existing coastal plain area caused by heavy rainfall or continuous rainfall that exceeds the existing coastal plain area.
  • the drainage of rainwater from the waterlogging storage capacity of the waterlogging area within the plain area has greatly improved the waterlogging problem in the existing coastal plain area.
  • the technical solution of the present invention is different from the large-scale surface storage tank technology in Singapore.
  • the area of the waterlogging reservoir required by the former is much smaller than that of the latter, but the effect of improving waterlogging is better than that of the latter.
  • the specific comparison is as follows.
  • the area of large-scale surface storage tanks in Singapore accounts for a high proportion of land area (according to the paper "A Brief Discussion on Water Resources Management in Singapore", the area of coastal storage tanks alone accounts for about 1/6 of the total area of Singapore), and is used to collect Rainwater is used as a freshwater resource for capital utilization and at the same time to prevent waterlogging. It seems to kill two birds with one stone.
  • the actual function is to collect rainwater resources as freshwater resources for capital utilization, supplemented by waterlogging, because its operating rule is to collect rainwater resources to the greatest extent ( According to the paper "Analysis of Rainwater Harvesting and Utilization in Singapore", the annual “water loss” in Singapore is only 5%. into the open sea.
  • the waterlogging reservoir of the technical solution of the present invention is waterlogging, as in the first and second embodiments, as long as the area of the waterlogging reservoir reaches 1/40 to 1/20 of the area of the existing coastal plain area, it will Pre-lowering the water level of the waterlogging reservoir to a lower level before the onset of heavy rainfall or continuous rainfall can double the waterlogging storage capacity and bearable short-term heavy rainfall or continuous rainfall in coastal plain areas , Waterlogging prevention ability can be greatly improved from 1 to 10 years (24 hours rainfall) to 100 to 500 years (24 hours rainfall).
  • the technical scheme and method of the present invention are applicable to waterlogging projects, land reclamation projects, road or highway projects in existing coastal plain areas, and integrated projects of waterlogging, land reclamation, roads or highways.
  • Fig. 1 is a plan view of Embodiment 1 of the present invention.
  • Fig. 2 is a plan view of Embodiment 2 of the present invention.
  • Fig. 3 is a plan view of Embodiment 3 of the present invention.
  • Fig. 4 is a plan view of Embodiment 4 of the present invention.
  • Fig. 5 is a plan view of Embodiment 5 of the present invention.
  • Fig. 6 is a plan view of Embodiment 6 of the present invention.
  • the conditions are: 1) to 6) see 1) to 6) in the background technology for the existing coastal plain area A conditions; 7) the original waterlogging
  • See Figure 1 a method for improving waterlogging in existing coastal plain areas, including:
  • the water level of Naalao Reservoir 7 along the coastal beach is pre-lowered to the planned or designed pre-precipitation water level in Naalao Reservoir, which is better than the multi-year average sea level of the local open sea It is lower than the multi-year average low tide level of the local open sea (such as 0m), thus forming a gap between the existing coastal plain area 2 ground (elevation 4.0m) and the planned or designed pre-precipitation water level (such as 0m) in the coastal beach Naluo reservoir 7
  • the huge drop (4m) and the waterlogging storage capacity V 3 used to receive the rainwater in the existing coastal plain area 2, the waterlogging storage capacity V 3 of the Naloo Reservoir (the highest water level planned or designed
  • the short-term heavy rainfall or continuous rainfall that can withstand is reduced from 0.2 m is increased to 0.4m, an increase of 100%, which is equivalent to an increase in waterlogging prevention capacity from once in less than 10 years (0.215m in 24 hours of rainfall) to once in 500 years (0.385m in 24 hours of rainfall);
  • the water flow capacity of the sluice at the entrance of the reservoir should meet the amount of water that needs to be pre-precipitated in the waterlogging area, that is, "(normal water level in the waterlogging area 2.6m - enhanced pre-precipitation water level in the waterlogging area 1.0m) ⁇ S 2 " in the duration of the pre-falling (such as One week) discharge needs can be determined according to existing calculation methods such as "Code for Design of Sluice Gates";
  • the drainage capacity of the reservoir drainage sluice and drainage pumping station should meet the pre-falling water volume of the reservoir, that is, "(normal water level of the reservoir, such as 2.6m—the planned or designed pre-precipitation water level of the reservoir, such as 0m) ⁇ S 3 ", and the pre-falling water volume of the waterlogging area.
  • the amount of water is "(normal water level in waterlogging area 2.6m-enhanced pre-precipitation water level in waterlogging area 1.0m) ⁇ S 2 " to be discharged from the reservoir within the duration of pre-fall (such as one week), which can be calculated according to the existing calculation method such as " Sluice Design Specifications” and "Outdoor Drainage Design Specifications”;
  • the rainfall in the existing coastal plain area 2 flows into the waterlogging area from the ground, and then enters the coastal beach waterlogging reservoir 7 through the reservoir entrance 8. Since the waterlogging storage capacity of the existing coastal plain area is significantly increase, and the waterlogging phenomenon in the existing coastal plain area has been greatly improved;
  • L is the flow distance of river runoff and rainwater pipe network flow
  • the corresponding drainage speed and drainage capacity (discharge volume per unit time) have been significantly increased year-on-year
  • Reservoir entrance 8 can use the existing sluices of the river network and rainwater pipe network in the existing coastal plain area or set up new sluice gates to prevent the water level of the river network in the existing coastal plain area from falling too low, or the reservoir water will be absorbed into the existing coastal plain area Backflow in waterlogged areas; if there is no problem of secondary disasters such as the low water level in the existing coastal plain areas that will affect the safety of revetments or riverside buildings, and the problem of backflow of reservoir water into the existing coastal plain areas in waterlogged areas, There is also no need to set a sluice at the entrance of the reservoir, and the river network and rainwater pipe network in the coastal plain area are directly connected to the Nalao Reservoir along the coastal beach.
  • the sluice adopts prior art, not shown on the figure.
  • the outlet 9 of the reservoir is equipped with a drainage gate and a drainage pumping station at the same time.
  • the drainage method can adopt the gate drainage method, and use the low tide period (when there is no water increase, the tide level is lower than 2.0m period) to open the gate to drain the waterlogging reservoir along the coastal beach.
  • the water above the low tide level (1.0m without water increase) in 7 is discharged into the open sea 13; the pump discharge method can also be used to discharge the water in the Naalao reservoir 7 along the coastal beach into the open sea 13 through the drainage pumping station.
  • the water level of the waterlogging reservoir along the coastal beach can also be lowered more quickly by using the combined drainage method of the gate pump; the outlet 9 of the reservoir can also simply set up a drainage gate, and only use the low tide period to open the gate
  • the water higher than the low tide level in the naalao reservoir 7 along the coastal beach is discharged into the open sea 13 .
  • Drain gate, drainage pumping station adopt prior art, not shown on the figure.
  • express roads or highways can be set on the top of the U-shaped three dikes 6 to connect with the existing coastal plain area roads or highways 10 to improve the local transportation network.
  • Expressway or highway adopt prior art, not shown on the figure.
  • on-water photovoltaic power generation facilities 11 (the plane can be rectangular or other arbitrary shapes) can be used to generate electricity from sunlight during non-rainfall periods, for
  • the Nalao Reservoir 7 along the coastal beach adopts the pumping method to reduce the water level to provide power.
  • the floating photovoltaic power generation facility 11 adopts the prior art, and the details are not shown in the figure.
  • appropriate landscape, leisure, and recreational facilities can be set up in Naalao Reservoir 7 along the coastal beach, such as landscape belts around the lake, green belts around the lake, wetlands in the lake, water sports fields, water playgrounds, yacht harbor areas, yacht entry and exit locks, etc., are open during the non-flooding period, but not during the flooding period.
  • Landscape, leisure, recreational facility adopt prior art, not shown on the figure.
  • dams excavation tidal flats, reservoir entrance sluices, drainage gates, drainage pumping stations, water photovoltaic power generation facilities, expressways or highways at the top of the dams, landscapes, leisure, and recreational facilities use existing technologies, which will not be described in detail here. Details are not shown.
  • the existing coastal plain area B the conditions are: 1) the total area of the area is S 1 , and the ground elevation is 4.0m; 2) the area of the waterlogging area in the area is S 2 , and for the sake of simplicity, it is assumed that the waterlogging area is vertical
  • the water area ratio (the ratio of the water area S 2 in the region to the total area S 1 ) is 5%, and the normal water level in the waterlogging area is 2.6m; 3)
  • the local high tide level for many years is 3.0m, and the average tide level is 2.0m , the average low tide level is 1m, and one tide (duration 12.5 hours) is lower than the average tide level and lasts about 6 hours; 4)
  • the highest tide level in the planning or design of the open sea is 4.0m; 5)
  • the original waterlogging method is the background technology.
  • See Figure 2 a method for improving waterlogging in existing coastal plain areas, including:
  • the water level of Naalao Reservoir 7 along the coastal beach is pre-reduced to the planned or designed pre-precipitation water level in Naalao Reservoir, which is lower than the multi-year average sea level of the local open sea It is best to be lower than the multi-year average low tide level of the local open sea (such as 0m), so as to form the planned or designed pre-precipitation water level (such as 0m) in the existing coastal plain area 2 (elevation 4.0m) and the coastal beach Naluo reservoir 7
  • the water flow capacity of the sluice at the entrance of the reservoir should meet the amount of water that needs to be pre-precipitated in the waterlogging area, that is, "(normal water level in the waterlogging area 2.6m - enhanced pre-precipitation water level in the waterlogging area 1.0m) ⁇ S 2 " in the duration of the pre-falling (such as The need to enter the reservoir within one week) can be determined according to existing calculation methods such as the "Code for Design of Sluice Gates";
  • the drainage capacity of the reservoir drainage sluice and drainage pumping station should meet the pre-falling water volume of the reservoir, that is, "(normal water level of the reservoir, such as 2.6m—the planned or designed pre-precipitation water level of the reservoir, such as 0m) ⁇ S 3 ", and the pre-falling water volume of the waterlogging area.
  • the amount of water is "(normal water level in waterlogging area 2.6m-enhanced pre-precipitation water level in waterlogging area 1.0m) ⁇ S 2 " to be discharged from the reservoir within the duration of pre-fall (such as one week), which can be calculated according to the existing calculation method such as " Sluice Design Specifications” and "Outdoor Drainage Design Specifications”;
  • the rainfall in the existing coastal plain area 2 flows into the waterlogging area from the ground, and then enters the coastal beach waterlogging reservoir 7 through the reservoir entrance 8. Since the waterlogging storage capacity of the existing coastal plain area is significantly increase, and the waterlogging phenomenon in the existing coastal plain area has been greatly improved;
  • the area S 3 is 1/40 of the area S 1 of the existing coastal plain area, and the top elevation of the embankment 6 (such as 7.0m) is higher than the planned or designed maximum water level (such as 4.0m) in the Nalao Reservoir 7, and the local open sea 13 planning or Design highest tide level (5.0m);.
  • express roads or highways can be set on the top of the four dikes 6 in a ⁇ shape to connect with the existing coastal plain area roads or highways 10 to improve the local transportation network.
  • Expressway or highway adopt prior art, not shown on the figure.
  • a D-shaped embankment 6 is set up to form a closed area, and the existing river network 4 and rainwater pipe network 5 of the coastal plain area 2 are connected to the embankment 6
  • the reservoir entrance 8 of the closed area, and the reservoir outlet 9 connecting the closed area to the open sea 13, together with the embankment 6, the reservoir entrance 8 and the reservoir exit 9, the closed area constitutes the coastal waterlogged reservoir 7, and the area of the waterlogged reservoir is S 3 is 1/40 of the area S 1 of the existing coastal plain area
  • the top elevation of the embankment 6 (such as 7.0m) is higher than the planned or designed maximum water level (such as 4.0m) in the Naluo Reservoir 7, and the local open sea 13 is the planned or designed highest water level.
  • Tide level (5.0m);.
  • express roads or highways can be set on the top of the D-shaped embankment 6 to connect with the existing coastal plain area roads or highways 10 to improve the local traffic network.
  • Expressway or highway adopt prior art, not shown on the figure.
  • See Figure 5 a method of improving waterlogging in the existing coastal plain area, including:
  • Biantan Naalao Reservoir 7 the rest of the enclosed area is reclamation area 12, backfill or blow fill to form land, the top elevation of dam 6 (such as 7.0m) is higher than the planned or designed maximum water level in Naalao Reservoir 7 (such as 4.0m) and the local offshore planning or design highest tide level (such as 5.0m).
  • the waterlogging reservoir 7 along the coastal beach is adjacent to or close to the side of the existing coastline 1, so as to shorten the distance from the river network 4 and rainwater pipe network 5 in the existing coastal plain area 2 to the Naalao reservoir 7 along the coastal beach;
  • the elevation (such as 1-2m) of the existing tidal flats within the scope of Naalao Reservoir 7 on the Biantan is higher than the planned or designed pre-precipitation water level (such as 0m) in Naalo Reservoir 7, excavate the existing tidal flats to the area within Naalao Reservoir 7.
  • the pre-precipitation water level (such as 0m); the structure of the embankment 6 within the scope of the Naluo reservoir 7 along the coastal beach should meet the water level and wave in the reservoir 7, the tidal level and wave action in the open sea 13, the water level difference between the inside and outside of the reservoir 7 and the resulting Seepage.
  • the reclamation area 12 is arranged adjacent to or close to the outer sea, and the ground elevation (eg 5.5m) of the reclamation area 12 is not lower than the planned or designed maximum water level (eg 4.0m) in the Nalao reservoir 7 along the coastal beach.
  • the top elevation (such as 7.0m) of the revetment on the seaside side is higher than the planned or designed highest tide level (5.0m) of the outer sea 13, and its structure satisfies the tide level and wave action of the outer sea 13, the U-shaped three dikes 6 on the plane are located at the filling point.
  • the part within the range of the sea construction area 12 can directly utilize the seaside revetment of the sea reclamation area 12.
  • the revetment on the seaside side adopts the existing technology, which is not shown in the figure.
  • the waterlogging reservoir 7 along the coastal beach is mainly used to receive the waterlogged water in the existing coastal plain area 2, and improve the waterlogging phenomenon in the existing coastal plain area 2; for this reason, the ground elevation (such as 5.5m) of the reclamation area 12 should be at most It is best not to be lower than the highest historical water level in the local open sea and the highest tide level (5.0m) in local planning or design, so that the rainfall in the reclamation area 12 is mainly discharged directly into the open sea 13 through its own river network and rainwater pipe network in the reclamation area 12, without occupying The waterlogging storage capacity of the waterlogging reservoir 7 along the coastal beach.
  • See Figure 6 a method for improving waterlogging in existing coastal plain areas, including:
  • Biantan Naalao Reservoir 7 is a large rectangle+small rectangle (also can be other arbitrary shapes), and the rest of the closed area is the reclamation area 12, which is backfilled or blown to form land, and the top elevation of the embankment 6 (such as 7.0 m) Higher than the planned or designed highest water level (eg 4.0m) in Naluo Reservoir 7 and the planned or designed highest tide level (eg 5.0m) in the local open sea.
  • the planned or designed highest water level eg 4.0m
  • the planned or designed highest tide level eg 5.0m
  • the main body of the Naluo Reservoir 7 along the coastal beach (the large rectangular part shown in the figure) is adjacent to or close to the existing coastline 1, and the small part of the Naluo Reservoir 7 along the coastal beach (the small rectangular part shown in the picture) is adjacent to or close to the open sea side layout; when the elevation of the existing tidal flats (such as 1-2m) within the scope of the Naalao Reservoir 7 along the coastal beach is higher than the planned or designed pre-precipitation water level (such as 0m) in the Nalogous Reservoir 7, excavate the existing tidal flats to The planning or design pre-precipitation water level (such as 0m) of the reservoir 7; the structure of the embankment 6 within the range of the waterlogging reservoir 7 along the coastal beach should meet the water level and wave in the reservoir 7, the tidal level and wave action of the open sea 13, the effect of water level difference inside and outside the reservoir 7, and The seepage effect caused by it.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Sewage (AREA)
  • Revetment (AREA)

Abstract

一种改善既有滨海平原地区内涝的方法,包括:在既有滨海平原地区的部分既有海岸线外滩涂上,设置堤坝形成封闭区域,该封闭区域与所述的堤坝、水库入口和水库出口一起构成沿海边滩纳涝水库;或者,该封闭区域内的部分区域为填海造地区;在预报强降雨来临前或连续性降雨开始前,将沿海边滩纳涝水库的水位预降至纳涝水库内的规划或设计预降水位,既有滨海平原地区内纳涝区的水位也得到预降,大幅增加既有滨海平原地区纳涝库容;水库入口利用水闸防止纳涝区水位预降过低,或水库水向既有滨海平原地区纳涝区的倒灌;水库出口同时设排水闸和排水泵站,采用不同的排水方式。适用于既有滨海平原地区的除涝、填海造地、道路公路及其一体化工程。

Description

一种改善既有滨海平原地区内涝的方法 技术领域
本发明属于城乡、水利工程、海洋近岸工程和公路工程等规划建设领域,涉及增加既有滨海平原地区纳涝库容,接纳既有滨海平原地区雨水,改善既有滨海平原地区内涝的方法。
背景技术
为避免歧义,说明有关用词的含义:
1、本说明书所称的“内涝”(简称“涝”)指,平原地区因所在地区强降雨(水)或连续性降雨(水),超过该地区的排水能力和纳涝能力,致使该地区的地面(如场地、道路、农田、绿地等)产生积水灾害的现象。
2、本说明书所称的“纳涝区”指,平原地区内具有接纳所在地区强降雨(水)或连续性降雨(水)的雨水,改善地面积水现象(即改善内涝)功能的河网、湖泊、地表蓄水池等,不包括以接纳上游洪水为主的水库、滞洪区或行洪区。
平原地区雨水排水路径一般为降雨→①地表面流→②雨水管网、沟渠排水→③纳涝区(河网、湖泊、地表蓄水池)纳涝、河网排水→④排入下游行洪河道(对于内陆平原地区)、经河网出口排入外海(对于滨海平原地区)。如果强降雨或连续性降雨期间,③的纳涝、排水能力大于②的排水能力大于①的地表面流,则不会出现地面积水灾害(内涝),如果②的排水能力小于①的地表面流或③的纳涝、排水能力小于②的排水能力,都会引起地面积水灾害(内涝)。本发明尤其适用于雨水管网、沟渠排水能力大于地表面流但纳涝区纳涝、河网排水能力小于地表面流而出现内涝的情况。
一、内陆平原地区现有解决内涝问题的办法
内陆平原地区现有解决内涝问题的办法,首先依靠纳涝区纳涝,通常是平原地区的河网、湖泊,如中国的长江三角洲的河网、太湖、淀山湖等,其常水位低于所在地区地面,常水位与地面高程之间的库容为自然纳涝库容,用于接纳所在地区的雨水,改善所在地区地面的内涝现象;其次,河网、湖泊中超过常水位的多余雨水,利用水位落差排入下游河网;再次,依靠设置封闭区域+泵排方式强排雨水到封闭区域以外的行洪河道,改善封闭区域内的内涝问题,如上海市内环线以内的浦西地区采用泵排方式强排雨水到黄浦江。
二、既有滨海平原地区现有解决内涝问题的方法
既有滨海平原地区现有解决内涝问题的方法(以下简称为“现有除涝方法”)包括:
现有除涝方法一:利用纳涝区(河网、湖泊)常水位和地面高程之间的库容(以下简称纳涝区的自然纳涝库容V 1)纳涝。
现有除涝方法二:在预报强降雨来临前或连续性降雨开始前的若干天内如一周内,利用 外海低潮位时段,预先开启排水闸将纳涝区(河网、湖泊)的水排入外海,降低纳涝区的水位,增加纳涝区的纳涝库容(以下简称纳涝区的常规预降纳涝库容V 2),则纳涝区的纳涝库容=纳涝区的自然纳涝库容V 1+纳涝区的常规预降纳涝库容V 2
现有除涝方法三:在现有除涝方法二的基础上,在强降雨或连续性降雨期间,利用外海较低潮位时段,开启排水闸将纳涝区(河网、湖泊)的水排入外海,降低纳涝区水位。但是,由于滨海平原地区地势低(地面与外海海面的落差小),外海潮位持续涨落变化,低潮位时段有一定水位差但持续时间短,而其他时段水位差小,强降雨或连续性降雨期间,通过排水闸排入外海的水量小,如果同时遭遇天文大潮和风暴潮增水,排水闸几乎无法排水,一旦强降雨或连续性降雨引起的水量超过纳涝区的纳涝库容V 1+V 2,滨海平原地区往往发生内涝问题。
现有除涝方法四:在现有除涝方法三的基础上,增加排水泵站,在强降雨或连续性降雨期间,采用泵排方式或闸泵联合排水方式,降低纳涝区的水位,改善内涝现象,如上海地区上世纪末以来逐步推行这一方法。该方法的不足之处是,排水泵站在强降雨或连续性降雨期间的运行时间很短(基本等于强降雨或连续性降雨的持续时间),排水强度大,需要的排水能力大,而排水泵站单位排水能力(m 3/s)的基建投资和运行费用高,如果既有滨海平原地区要达到很高的内涝防治设计重现期标准(如24小时降雨量标准50~100年一遇),需要建设的排水泵站规模大,基建投资和运行费用昂贵,一般财力难以承受,只能采取较低的内涝防治设计重现期标准,如上海市2015年时24小时降雨量标准为5~10年一遇,一旦超过,就发生内涝,因此内涝发生频率很高。
现有除涝方法五:在现有除涝方法一或二、三、四的基础上,设置地下蓄水池、深层隧道系统,增加纳涝库容,改善内涝。如新加坡建设地下蓄水池。该方法的不足之处是,地下蓄水池、深层隧道系统的建设空间小、蓄水能力小、造价高。
为了便于与下文的发明内容比较,现举例说明既有滨海平原地区现有除涝方法,既有滨海平原地区A条件为:1)地区总面积为S 1,地面高程为4.0m;2)其中地区内的纳涝区面积为S 2,为简便起见假定纳涝区竖向为直立式,水面积率(地区内的水面积S 2与地区总面积S 1之比)为10%,纳涝区的常水位2.6m;3)当地外海多年平均高潮位3.0m,平均潮位2.0m,平均低潮位1m,一个潮次(历时12.5小时)低于平均潮位的历时约6小时;4)遭遇天文大潮和风暴潮时当地海面增水2m,当地外海高潮位达到5.0m,平均潮位达到4.0m,低潮位达到3m,一个潮次(历时12.5小时)低于3.5m的历时约3小时;5)外海规划或设计最高潮位为5.0m;6)10、100、500年一遇24小时降雨量分别为0.215m(215mm)、0.315m(315mm)、0.385m(385mm)。
现有除涝方法一:纳涝区的自然纳涝库容V 1=(既有滨海平原地区地面高程-纳涝区常水位)×S 2=(4-2.6)×S 2=1.4×10%S 1=0.14S 1,在不考虑地面渗水情况下(即径流系数1.0,下同),等于既有滨海平原地区A降雨量0.14m的水量(即0.14m×S 1=0.14S 1)。
现有除涝方法二:在现有除涝方法一的基础上,在预报强降雨来临前或连续性降雨开始前的一周内,利用外海低潮位时段(潮位1.0~2.0m的时段),预先开启排水闸将纳涝区的水排入外海,纳涝区的水位由2.6m降低至2.0m,由此增加纳涝区的常规预降纳涝库容V 2,则 纳涝区的纳涝库容=纳涝区的自然纳涝库容V 1+纳涝区的常规预降纳涝库容V 2=0.14S 1+(纳涝区常水位—纳涝区预降水位)×S 2=0.14S 1+(2.6-2.0)×S 2=0.14S 1+0.6×10%S 1=0.2S 1,在不考虑地面渗水情况下,等于既有滨海平原地区A降雨量0.2m的水量(即0.2m×S 1=0.2S 1),与10年一遇24小时降雨量0.215(215mm)相当。
现有除涝方法三:在现有除涝方法二的基础上,在强降雨或连续性降雨期间,利用外海较低潮位时段(潮位低于3.5m的时段),开启排水闸将纳涝区的水排入外海,降低纳涝区水位。如果遭遇天文大潮和风暴潮增水2.0m,外海高潮位达到5.0m,外海平均潮位达到4.0m,外海低潮位达到3m,较低潮位时段(潮位低于3.5m的时段)的持续时间短(3小时/潮次)且地面与外海的水位差小(0.5~1m),通过排水闸排入外海的水量很小,一旦该地区短时降雨量或连续性降雨量超过0.2m,在不考虑地面渗水情况下,进入纳涝区的水量就超过0.2S 1,而纳涝区的纳涝库容V 1+V 2=0.2S 1,既有滨海平原地区A往往发生内涝问题。
长期以来,世界各地通过采取现有除涝方法,持续改善既有滨海平原地区的内涝问题,但时至今日,既有滨海平原地区的内涝问题仍然十分突出:
1、上海市的滨海平原地区在台风期间因暴雨和风暴潮增水容易发生内涝,如2015年8月发生较为严重的内涝。
2、中国澳门的滨海平原地区2012年7月、2018年9月发生较为严重的内涝。
3、印尼雅加达位于滨海平原地区,在每年的雨季(1~3月)容易发生内涝,如2017年、2018年、2020年、2021年均发生较为严重的内涝,其中2018年2月城市街道积水最深达到2m,最浅也有0.5m。
4、新加坡位于滨海平原地区,以拥有全球闻名的完善的雨水收集和除涝设施而著称,设施包括大型地表蓄水池、地下蓄水池、绿色屋顶、雨水花园、透水路面等。其中大型地表蓄水池,从1868年建设第一个蓄水池开始,到2011年已建成共17个蓄水池,用于收集雨水作为淡水资源以资利用,同时防止内涝,其运行规则是最大程度地收集雨水资源(据论文《新加坡雨水收集及利用探析》,新加坡每年的“水量流失”只有5%),如果雨水量超过蓄水池的蓄水能力,则超过蓄水能力的雨水采用排水闸、排水泵站排入外海。尽管如此,2021年4月17日上午11点开始,普降中到大雨,一直持续到傍晚,降雨总量为170.6mm,造成多条沟渠和河道水位超过了警戒水位,多个路段积水,地下室浸水,车辆损毁,部分路段交通阻断,史称新加坡2021年“4·17”降雨事件。
5、美国纽约位于滨海平原地区,同样以拥有全球闻名的完善的防涝设施而著称,但2021年9月发生较为严重的内涝。
可见,既有滨海平原地区的内涝问题是一直以来困扰行业而未能得到解决的难题。
三、现有填海造地与纳涝有关的技术
现有填海造地通常利用沿海边滩,直接往海岸线外填海形成陆域(即边滩围垦),或建设离岸人工岛。少量的边滩围垦工程在中间区域设置了人工湖泊,作为边滩围垦工程自身的纳涝区,如2002年,上海在南汇东滩进行边滩围垦,用于建设上海临港新城主城区,中间区域设置了滴水湖,滴水湖作为景观湖,同时也作为上海临港新城主城区自己的纳涝区,按既有 滨海平原地区现有除涝方法一~三(见上文)执行,但是不作为既有滨海平原地区的纳涝区。
综上所述,长期以来,现有技术缺少大幅度地改善既有滨海平原地区内涝的方法,如何大幅度地改善既有滨海平原地区内涝,是一直以来困扰行业而未能得到解决的难题。
发明内容
为避免歧义,说明有关用词的含义:
1、本说明书所称“既有滨海平原地区”指,既有海岸线以内、毗邻既有海岸线的平原地区。
2、本说明书所称“沿海边滩纳涝水库”属于本发明技术方案的一部分(不属于现有技术)指,在既有海岸线外的滩涂上(通俗讲“在沿海边滩上”),设置平面呈U形的三道堤坝或平面呈C形的堤坝或平面呈任意线形的堤坝与既有海岸线相连形成封闭区域,或设置平面呈□形的四道堤坝,或设置平面呈D形的堤坝或平面呈任意形状的堤坝形成封闭区域,作为用于接纳既有滨海平原地区的雨水,改善既有滨海平原地区内涝问题的水库,本说明书有的地方为叙述方便,在不产生歧义的情况下,简称为“纳涝水库”或“水库”。
本发明尤其适用于雨水管网、沟渠排水能力大于地表面流但纳涝区纳涝、河网排水能力小于地表面流而出现内涝的情况。
本发明的目的在于提供一种设置沿海边滩纳涝水库,大幅度地增加既有滨海平原地区的纳涝库容,以接纳既有滨海平原地区强降雨或连续性降雨引起的、超过既有滨海平原地区范围内纳涝区纳涝库容的雨水排放,大幅度地改善既有滨海平原地区内涝问题的方法,解决现有技术的不足。
为实现以上目标,本发明提供的技术方案包括:
第一种改善既有滨海平原地区内涝的方法:
1、在既有滨海平原地区的部分既有海岸线外滩涂上,设置平面呈U形的三道堤坝或平面呈C形的堤坝或平面呈任意线形的堤坝与既有海岸线相连形成封闭区域,或设置平面呈□形的四道堤坝或平面呈D形的堤坝或平面呈任意形状的堤坝形成封闭区域,在所述堤坝上设置既有滨海平原地区河网和雨水管网接入该封闭区域的水库入口,以及该封闭区域接入外海的水库出口,该封闭区域与所述的堤坝、水库入口和水库出口一起构成沿海边滩纳涝水库,堤坝的顶高程高于纳涝水库内规划或设计最高水位和当地外海规划或设计最高潮位;
2、在预报强降雨来临前或连续性降雨开始前的若干天内(如一周内),通过水库出口(详见本方法第5点),预先将沿海边滩纳涝水库的部分水量排到外海,在预报强降雨来临前或连续性降雨开始前,将沿海边滩纳涝水库的水位预降至纳涝水库内的规划或设计预降水位,该水位低于当地外海多年平均海平面最好是低于当地外海多年平均低潮位,从而形成既有滨海平原地区地面与沿海边滩纳涝水库水位之间的巨大落差,以及用于接纳既有滨海平原地区雨水的纳涝库容V 3=(纳涝水库内规划或设计最高水位—纳涝水库内的规划或设计预降水位)×水库面积S 3,纳涝水库内规划或设计最高水位应小于等于既有滨海平原地区地面高程,排 水闸、排水泵站的排水能力应满足水库需要预降的水量及纳涝区需要预降的水量在预降持续的时间内排出水库的需要,可按现有计算方法如《水闸设计规范》、《室外排水设计规范》确定;
且在此过程中,开启和控制水库入口的水闸,使得既有滨海平原地区纳涝区(河网、湖泊等)、雨水管网中的部分水体通过水库入口,预先进入沿海边滩纳涝水库(可同时采用背景技术现有除涝方法二,在外海低潮位时段,开启设置在沿海边滩纳涝水库以外的既有海岸线上的排水闸,预先将纳涝区的水排入外海),既有滨海平原地区内纳涝区的水位也得到较大幅度的预降,幅度超过背景技术现有除涝方法二,既有滨海平原地区内纳涝区的纳涝库容=纳涝区的自然纳涝库容V 1+纳涝区的增强预降纳涝库容V 2′;水库入口水闸的过水能力应满足纳涝区需要预降的水量在预降持续的时间内进入水库的需要,可按现有计算方法如《水闸设计规范》确定;
由此,本发明既有滨海平原地区的总纳涝库容=纳涝区的自然纳涝库容V 1+纳涝区的增强预降纳涝库容V 2′+纳涝水库的纳涝库容V 3,远远大于采用背景技术现有除涝方法的既有滨海平原地区的纳涝库容=纳涝区的自然纳涝库容V 1+纳涝区的常规预降纳涝库容V 2
在强降雨或连续性降雨期间,既有滨海平原地区降雨从地面汇入纳涝区后,通过水库入口进入沿海边滩纳涝水库,由于此时既有滨海平原地区的总纳涝库容远远大于背景技术现有除涝方法的既有滨海平原地区的纳涝库容,既有滨海平原地区的内涝现象得到大幅度的改善;
同时,由于既有滨海平原地区地面与沿海边滩纳涝水库水位之间的落差,跟既有滨海平原地区地面与外海水位的落差相比显著加大,既有滨海平原地区到沿海边滩纳涝水库的河道径流、雨水管网管流的比降i',与既有滨海平原地区直接排入外海的比降i相比也显著加大,相应的排水速度、排水能力(单位时间排水量)同比显著提高,既有滨海平原地区降雨引起的地表水排出的速度显著加快,地面积水的程度得到大幅度的改善,即内涝现象得到大幅度的改善;
3、当沿海边滩纳涝水库范围内既有滩涂高程高于纳涝水库内的规划或设计预降水位时,开挖既有滩涂高程至纳涝水库内规划或设计预降水位;堤坝的结构应满足水库内水位及波浪、外海潮位及波浪作用、水库内外水位差作用及其引起的渗流作用;
4、水库入口可利用既有滨海平原地区河网和雨水管网的既有水闸或通过新设水库入口水闸,防止既有滨海平原地区纳涝区水位预降过低,或水库水向既有滨海平原地区纳涝区的倒灌;若不存在既有滨海平原地区纳涝区水位预降过低产生影响护岸或临河建筑物安全等次生灾害问题、水库水向既有滨海平原地区纳涝区倒灌的问题,水库入口也可以不设水闸,既有滨海平原地区河网和雨水管网直接接入沿海边滩纳涝水库;
5、水库出口同时设排水闸和排水泵站,排水方式可采用闸排方式,利用低潮位时段开闸将沿海边滩纳涝水库中高于低潮位的水排入外海,也可以采用泵排方式,通过排水泵站将沿海边滩纳涝水库中的水强排入外海,进一步降低沿海边滩纳涝水库的水位,还可以采用闸泵联合排水方式,更快地降低沿海边滩纳涝水库的水位;水库出口也可以单纯设排水闸,只利用低潮位时段开闸将沿海边滩纳涝水库中高于低潮位的水排入外海;
6、可进一步,在堤坝的顶部设置快速道路或公路,与既有滨海平原地区道路网或公路网连接,其有益效果是完善当地交通网络;
7、可进一步,在沿海边滩纳涝水库内的部分水面上设置水上光伏发电设施,利用非降雨期间的太阳能发电,为沿海边滩纳涝水库采用泵排方式降低水位提供动力;
8、可进一步,在沿海边滩纳涝水库内,设置适宜的景观、休闲、游乐设施,如环湖景观带、环湖绿化带、湖内湿地、水上运动场、水上游乐场、游艇港区、游艇进出水库的船闸等,在非纳涝期间开放,在纳涝期间不开放,其有益效果是,沿海边滩纳涝水库得到综合开发;
所述堤坝、开挖滩涂、水库入口水闸、排水闸、排水泵站、水上光伏发电设施、堤坝顶部的快速道路或公路、景观、休闲、游乐设施采用现有技术,在此不作赘述。
或者,第二种改善既有滨海平原地区内涝的方法:
1、在既有滨海平原地区的部分既有海岸线外滩涂上,设置平面呈U形的三道堤坝或平面呈C形的堤坝或平面呈任意线形的堤坝与既有海岸线相连形成封闭区域,或设置平面呈□形的四道堤坝或平面呈D形的堤坝或平面呈任意形状的堤坝形成封闭区域,在所述堤坝上设置既有滨海平原地区河网和雨水管网接入该封闭区域的水库入口,以及该封闭区域接入外海的水库出口,该封闭区域内的部分区域与其接壤的堤坝、水库入口和水库出口一起构成沿海边滩纳涝水库,该封闭区域内的其余区域为填海造地区,进行回填或吹填形成陆地,堤坝的顶高程高于纳涝水库内规划或设计最高水位和当地外海规划或设计最高潮位;
2、同本发明第一种改善既有滨海平原地区内涝的方法的2。
3、沿海边滩纳涝水库的主体优先毗邻或靠近既有海岸线一侧布置,以便尽可能缩短既有滨海平原地区河网、雨水管网到沿海边滩纳涝水库的距离;当沿海边滩纳涝水库范围内既有滩涂高程高于纳涝水库内的规划或设计预降水位时,开挖既有滩涂高程至纳涝水库内的规划或设计预降水位;沿海边滩纳涝水库范围内堤坝的结构应满足水库内水位及波浪、外海潮位及波浪作用、水库内外水位差作用及其引起的渗流作用;
4、同本发明第一种改善既有滨海平原地区内涝的方法的4。
5、同本发明第一种改善既有滨海平原地区内涝的方法的5。
6、同本发明第一种改善既有滨海平原地区内涝的方法的6。
7、同本发明第一种改善既有滨海平原地区内涝的方法的7。
8、同本发明第一种改善既有滨海平原地区内涝的方法的8。
9、填海造地区的主体优先毗邻或靠近外海侧布置,填海造地区的地面高程不低于沿海边滩纳涝水库内的规划或设计最高水位;当填海造地区临海侧护岸的顶高程高于当地外海规划或设计最高潮位,其结构满足外海潮位及波浪作用时,所述堤坝位于填海造地区的部分可直接利用填海造地区的临海侧护岸。临海侧护岸采用现有技术。
10、沿海边滩纳涝水库主要用于接纳既有滨海平原地区的雨水,改善既有滨海平原地区的内涝现象;为此,填海造地区的地面高程最好不低于当地外海历史最高水位和当地规划或设计最高潮位,使得填海造地区的降雨主要通过填海造地区内的自身河网和雨水管网直接排入外海,不占用沿海边滩纳涝水库的纳涝库容。
由于采用上述技术方案,设置沿海边滩纳涝水库,本发明可以大幅度地增加既有滨海平原地区的纳涝库容,接纳既有滨海平原地区强降雨或连续性降雨引起的、超过既有滨海平原地区范围内纳涝区纳涝库容的雨水排放,大幅度地改善既有滨海平原地区内涝问题。
本发明的技术方案不同于新加坡大型地表蓄水池技术,前者所需要的纳涝水库面积远小于后者所需要的蓄水池面积,但改善内涝效果好于后者,具体比较如下。
新加坡大型地表蓄水池的面积占陆地面积的比例很高(据论文《浅谈新加坡水资源管理》,仅其中的滨海蓄水池面积就占约新加坡总面积的1/6),用于收集雨水作为淡水资源以资利用,同时防止内涝,似乎是一举两得,实际功能是以收集雨水资源作为淡水资源以资利用为主,以除涝为辅,因为其运行规则是最大程度地收集雨水资源(据论文《新加坡雨水收集及利用探析》,新加坡每年的“水量流失”只有5%),如果雨水量超过蓄水池的蓄水能力,则超过蓄水能力的雨水采用排水闸、排水泵站排入外海。这使得大型地表蓄水池通常保持较高水位,其结果是:地面与蓄水池较高水位之间的高差较小,蓄水池的纳涝库容较小,可承受的短时强降雨量或连续性降雨量提高有限,遭遇强降雨时,等到发现实际强降雨雨量超过纳涝库容,再采用排水闸、排水泵站排入外海,由于排水时间很短,排水闸、排水泵站来不及排,蓄水池水位迅速上升,导致地面与蓄水池水位的高差急剧减小,雨水管网管流、沟渠径流的比降急剧减小,排水能力急剧减小,造成地面积水,形成内涝。因此,尽管新加坡蓄水池面积占陆地面积的比例很高,仍发生了2021年“4·17”降雨事件(见背景技术)。
本发明技术方案的纳涝水库,其首要功能和核心功能是纳涝,如实施例一、二,纳涝水库的面积只要达到既有海滨平原地区面积的1/40~1/20,在预降强降雨或连续性降雨来临之前将纳涝水库的水位预降到较低水位,既有海滨平原地区的纳涝库容、可承受的短时强降雨量或连续性降雨量就可以成倍提高,防涝能力可以由1~10年一遇(24小时降雨量)大幅度地提高到100~500年一遇(24小时降雨量)。
本发明的技术方案、方法适用于既有滨海平原地区的除涝工程、填海造地工程、道路或公路工程,以及除涝、填海造地、道路或公路的一体化工程。
附图说明
图1为本发明实施例一的平面图。
图2为本发明实施例二的平面图。
图3为本发明实施例三的平面图。
图4为本发明实施例四的平面图。
图5为本发明实施例五的平面图。
图6为本发明实施例六的平面图。
图中:1、既有海岸线,2、既有滨海平原地区,3、既有海岸线外滩涂,4、既有滨海平原地区的河网,5、既有滨海平原地区的雨水管网,6、堤坝,7、沿海边滩纳涝水库,8、水库入口,9、水库出口,10、既有滨海平原地区道路或公路,11、水上光伏发电设施,12、填 海造地区,13、外海。
具体实施方式
以下结合附图及实施例对本发明作进一步的说明。
实施例一:
为对比效果起见,以背景技术中既有滨海平原地区A为例,条件为:1)~6)见背景技术中既有滨海平原地区A条件的1)~6);7)原有除涝办法为背景技术现有除涝方法二,即在预报强降雨或连续性降雨之前的一周内,将纳涝区的水位预降到2.0m,纳涝区的纳涝库容=纳涝区的自然纳涝库容V 1+纳涝区的常规预降纳涝库容V 2=(既有滨海平原地区地面高程—纳涝区常水位)×S 2+(纳涝区常水位—纳涝区预降水位)×S 2=(4-2.6)×S 2+(2.6-2.0)×S 2=1.4S 1×10%S 1+0.6×10%S 1=0.2S 1,在不考虑地面渗水情况下,等于既有滨海平原地区A降雨量0.2m的水量(即0.2m×S 1=0.2S 1),与10年一遇24小时降雨量0.215(215mm)相当。
参见图1,一种改善既有滨海平原地区内涝的方法,包括:
1、在既有滨海平原地区A的部分既有海岸线外滩涂3上,设置平面呈U形的三道堤坝6与既有海岸线1相连形成封闭区域,在堤坝6上设置既有滨海平原地区2的河网4和雨水管网5接入该封闭区域的水库入口8,以及该封闭区域接入外海13的水库出口9,该封闭区域与堤坝6、水库入口8和水库出口9一起构成沿海边滩纳涝水库7,纳涝水库7的面积S 3为既有滨海平原地区2面积S 1的1/40,为简便起见假定纳涝水库竖向为直立式,纳涝水库内规划或设计最高水位=既有滨海平原地区地面高程=4.0m,堤坝6的顶高程(如7.0m)高于纳涝水库7内规划或设计最高水位(4.0m)、当地外海13规划或设计最高潮位(5.0m);
2、在预报强降雨来临前或连续性降雨开始前的一周内,通过水库出口9(详见本实施例第5点),预先将沿海边滩纳涝水库7的部分水量排到外海13,在预报强降雨来临前或连续性降雨开始前,将沿海边滩纳涝水库7的水位预降至纳涝水库内的规划或设计预降水位,该水位低于当地外海多年平均海平面最好是低于当地外海多年平均低潮位(如0m),从而形成既有滨海平原地区2地面(高程4.0m)与沿海边滩纳涝水库7内的规划或设计预降水位(如0m)之间的巨大落差(4m),以及用于接纳既有滨海平原地区2雨水的纳涝库容V 3,纳涝水库的纳涝库容V 3=(纳涝水库内规划或设计最高水位—纳涝水库内规划或设计预降水位)×纳涝水库面积S 3=(4-0)×S 3=4S 3=4×(1/40S 1)=0.1S 1
在此水位预降过程中,开启和控制水库入口水闸,使得既有滨海平原地区2的纳涝区(河网4、湖泊等)、雨水管网5中的部分水体通过水库入口8预先进入沿海边滩纳涝水库7,既有滨海平原地区内纳涝区水位也得到较大幅度的预降(如水位预降到1m),既有滨海平原地区2的纳涝区的纳涝库容得到显著提高,纳涝区的纳涝库容=纳涝区的自然纳涝库容V 1+纳涝区的增强预降纳涝库容V 2′=(4-2.6)×S 2+(2.6-1)×S 2=3×10%S 1=0.3S 1,与背景技术现有除涝方法二纳涝区的水位预降到2.0m、纳涝区的纳涝库容=(4-2)×S 2=2×10%S 1=0.2S 1相比,水位多预降1m,纳涝区的纳涝库容增加50%;
由此,既有滨海平原地区A的总纳涝库容=纳涝区的自然纳涝库容V 1+纳涝区的增强预降纳涝库容V 2′+纳涝水库的纳涝库容V 3=0.3S 1+0.1S 1=0.4S 1,与背景技术现有除涝方法二纳涝区的水位预降到2.0m、纳涝区的纳涝库容=(4-2)×S 2=2×10%S 1=0.2S 1相比,既有滨海平原地区A的总纳涝库容增加100%,在不考虑地面渗水情况下,可以承受的短时强降雨量或连续性降雨量由0.2m提升至0.4m,提高100%,相当于防涝能力由不足10年一遇(24小时降雨量0.215m)提高到500年一遇(24小时降雨量0.385m);
水库入口水闸的过水能力应满足纳涝区需要预降的水量即“(纳涝区常水位2.6m—纳涝区增强预降水位1.0m)×S 2”在预降持续的时间(如一周)内的排出需要,可按现有计算方法如《水闸设计规范》确定;
水库排水闸、排水泵站的排水能力应满足水库需要预降的水量即“(水库常水位如2.6m—水库规划或设计预降水位如0m)×S 3”及纳涝区需要预降的水量即“(纳涝区常水位2.6m—纳涝区增强预降水位1.0m)×S 2”在预降持续的时间(如一周)内排出水库的需要,可按现有计算方法如《水闸设计规范》、《室外排水设计规范》确定;
在强降雨或连续性降雨期间,既有滨海平原地区2的降雨从地面汇入纳涝区后,通过水库入口8进入沿海边滩纳涝水库7,由于既有滨海平原地区的纳涝库容显著增加,既有滨海平原地区的内涝现象得到大幅度的改善;
同时,由于此时既有滨海平原地区2~沿海边滩纳涝水库7的河道径流、雨水管网管流的比降i',与既有滨海平原地区2直接排入外海13的比降i相比显著加大,以比降最大值为例,L为河道径流、雨水管网管流的流经距离,i'最大值=(既有滨海平原地区地面高程—纳涝水库内规划或设计预降水位)/L=(4-0)/L=4/L,i最大值=(既有滨海平原地区地面高程—当地外海多年平均低潮位或遭遇天文大潮和风暴潮时当地外海低潮位)=(4-1~3)/L=1/L~3/L,相应的排水速度、排水能力(单位时间排水量)同比显著提高,既有滨海平原地区2降雨引起的地表水排出的速度显著加快,地面积水的程度得到大幅度的改善,即内涝现象得到大幅度的改善。
3、当沿海边滩纳涝水库7范围内既有滩涂高程(如1~2m)高于纳涝水库内的规划或设计预降水位(如0m)时,开挖既有滩涂至纳涝水库内的规划或设计预降水位(如0m);堤坝6的结构应满足水库7内水位及波浪、外海13的潮位及波浪作用、水库7内外水位差作用及其引起的渗流作用。
4、水库入口8可利用既有滨海平原地区河网和雨水管网的既有水闸或通过新设水闸防止既有滨海平原地区河网水位预降过低,或水库水向既有滨海平原地区纳涝区的倒灌;若不存在既有滨海平原地区纳涝区水位预降过低产生影响护岸或临河建筑物安全等次生灾害问题、水库水向既有滨海平原地区纳涝区倒灌的问题,水库入口也可以不设水闸,既有滨海平原地区河网和雨水管网直接接入沿海边滩纳涝水库。水闸采用现有技术,图上未示出。
5、水库出口9同时设有排水闸和排水泵站,排水方式可采用闸排方式,利用低潮位时段(无增水情况下,潮位低于2.0m时段)开闸将沿海边滩纳涝水库7中高于低潮位(无增水情况下,1.0m)的水排入外海13;也可以采用泵排方式,通过排水泵站将沿海边滩纳涝水库7 中的水强排入外海13,进一步降低沿海边滩纳涝水库的水位,还可以采用闸泵联合排水方式,更快地降低沿海边滩纳涝水库的水位;水库出口9也可以单纯设排水闸,只利用低潮位时段开闸将沿海边滩纳涝水库7中高于低潮位的水排入外海13。排水闸、排水泵站采用现有技术,图上未示出。
6、可进一步,在平面呈U形的三道堤坝6的顶部可以设置快速道路或公路,与既有滨海平原地区道路或公路10连接,完善当地交通网络。快速道路或公路采用现有技术,图上未示出。
7、可进一步,在沿海边滩纳涝水库7内的在部分水面上,设置水上光伏发电设施11(平面可以是矩形,也可以是其它任意形状),利用非降雨期间的太阳光发电,为沿海边滩纳涝水库7采用泵排方式降低水位提供动力。水上光伏发电设施11采用现有技术,图上未示出细节。
8、可进一步,在沿海边滩纳涝水库7内设置适宜的景观、休闲、游乐设施,如环湖景观带、环湖绿化带、湖内湿地、水上运动场、水上游乐场、游艇港区、游艇进出船闸等,在非纳涝期间开放,在纳涝期间不开放。景观、休闲、游乐设施采用现有技术,图上未示出。
所述堤坝、开挖滩涂、水库入口水闸、排水闸、排水泵站、水上光伏发电设施、堤坝顶部的快速道路或公路、景观、休闲、游乐设施采用现有技术,此不赘述,图上也未示出细节。
实施例二:
既有滨海平原地区B,条件为:1)地区总面积为S 1,地面高程为4.0m;2)其中地区内的纳涝区面积为S 2,为简便起见假定纳涝区竖向为直立式,水面积率(地区内的水面积S 2与地区总面积S 1之比)为5%,纳涝区的正常水位2.6m;3)当地外海多年平均高潮位3.0m,平均潮位2.0m,平均低潮位1m,一个潮次(历时12.5小时)低于平均潮位的历时约6小时;4)外海规划或设计最高潮位为4.0m;5)原有除涝办法为背景技术现有除涝方法二,即在预报强降雨或连续性降雨之前的一周内,将纳涝区的水位预降到2.0m,纳涝区的纳涝库容=纳涝区的自然纳涝库容V 1+纳涝区的常规预降纳涝库容V 2=(既有滨海平原地区地面高程—纳涝区常水位)×S 2+(纳涝区常水位—纳涝区预降水位)×S 2=(4-2.6)×S 2+(2.6-2.0)×S 2=1.4S 1×5%S 1+0.6×5%S 1=0.1S 1,在不考虑地面渗水情况下,等于该地区降雨量0.1m的水量(即0.1m×S 1=0.1S 1);6)1、100、200年一遇24小时降雨量分别为0.115m(115mm)、0.315m(315mm)、0.345m(345mm)。
参见图2,一种改善既有滨海平原地区内涝的方法,包括:
1、在既有滨海平原地区部分既有海岸线外滩涂3上,设置平面呈C形的堤坝6与既有海岸线1相连形成封闭区域,在堤坝6上设置既有滨海平原地区2的河网4和雨水管网5接入该封闭区域的水库入口8,以及该封闭区域接入外海13的水库出口9,该封闭区域与堤坝6、水库入口8和水库出口9一起构成沿海边滩纳涝水库7,纳涝水库7的面积S 3为既有滨海平原地区2面积S 1的1/20,为简便起见假定纳涝水库7竖向为直立式,纳涝水库7内规划或设计最高水位=既有滨海平原地区2的地面高程=4.0m,堤坝6的顶高程(如5.0m)高于纳涝水库7内规划或设计最高水位(4.0m)、当地外海13规划或设计最高潮位(4.0m);
2、在预报强降雨来临前或连续性降雨开始前的一周内,开启和控制水库出口8的排水闸和(或)排水泵站,预先将沿海边滩纳涝水库7的部分水量排到外海13,在预报强降雨来临前或连续性降雨开始前,将沿海边滩纳涝水库7的水位预降至纳涝水库内的规划或设计预降水位,该水位低于当地外海多年平均海平面最好是低于当地外海多年平均低潮位(如0m),从而形成既有滨海平原地区2地面(高程4.0m)与沿海边滩纳涝水库7内的规划或设计预降水位(如0m)之间的巨大落差(4m),以及用于接纳既有滨海平原地区2雨水的纳涝库容V 3,纳涝水库的纳涝库容V 3=(纳涝水库内规划或设计最高水位—纳涝水库内规划或设计预降水位)×纳涝水库面积S 3=(4-0)×S 3=4S 3=4×(1/20S 1)=0.2S 1
在此水位预降过程中,开启和控制水库入口水闸,使得既有滨海平原地区2的纳涝区(河网4、湖泊等)、雨水管网5中的部分水体通过水库入口8预先进入沿海边滩纳涝水库7,既有滨海平原地区内纳涝区水位也得到较大幅度的预降(如水位预降到1m),既有滨海平原地区2的纳涝区的纳涝库容得到显著提高,纳涝区的纳涝库容=纳涝区的自然纳涝库容V 1+纳涝区的增强预降纳涝库容V 2′=(4-2.6)×S 2+(2.6-1)×S 2=3×5%S 1=0.15S 1,与背景技术现有除涝方法二纳涝区的水位预降到2.0m、纳涝区的纳涝库容=(4-2)×S 2=2×5%S 1=0.1S 1相比,水位多预降1m,纳涝区的纳涝库容增加50%,则既有滨海平原地区的总纳涝库容=纳涝区的自然纳涝库容V 1+纳涝区的增强预降纳涝库容V 2′+纳涝水库的纳涝库容V 3=0.15S 1+0.2S 1=0.35S 1,与背景技术现有除涝方法二纳涝区的水位预降到2.0m、纳涝区的纳涝库容=(4-2)×S 2=2×5%S 1=0.1S 1相比,既有滨海平原地区的总纳涝库容增加250%,在不考虑地面渗水情况下,可以承受的短时强降雨量或连续性降雨量由0.1m提升至0.35m,提高250%,相当于防涝能力由不足1年一遇(24小时降雨量0.115m)提高到200年一遇(24小时降雨量0.345m);
水库入口水闸的过水能力应满足纳涝区需要预降的水量即“(纳涝区常水位2.6m—纳涝区增强预降水位1.0m)×S 2”在预降持续的时间(如一周)内进入水库的需要,可按现有计算方法如《水闸设计规范》确定;
水库排水闸、排水泵站的排水能力应满足水库需要预降的水量即“(水库常水位如2.6m—水库规划或设计预降水位如0m)×S 3”及纳涝区需要预降的水量即“(纳涝区常水位2.6m—纳涝区增强预降水位1.0m)×S 2”在预降持续的时间(如一周)内排出水库的需要,可按现有计算方法如《水闸设计规范》、《室外排水设计规范》确定;
在强降雨或连续性降雨期间,既有滨海平原地区2的降雨从地面汇入纳涝区后,通过水库入口8进入沿海边滩纳涝水库7,由于既有滨海平原地区的纳涝库容显著增加,既有滨海平原地区的内涝现象得到大幅度的改善;
同时,由于此时既有滨海平原地区2~沿海边滩纳涝水库7的河道径流、雨水管网管流的比降,与既有滨海平原地区2直接排入外海13相比显著加大,以最大比降为例,L为河道径流、雨水管网管流的流经距离,前者最大比降i=(既有滨海平原地区地面高程—纳涝水库内规划或设计预降水位)/L=(4-0)/L=4/L,后者最大比降i=(既有滨海平原地区地面高程—当地外海多年平均低潮位)=(4-1)/L=3/L,相应的排水速度、排水能力(单位时间排水量) 同比显著提高,既有滨海平原地区2降雨引起的地表水排出的速度显著加快,地面积水的程度得到大幅度的改善,即内涝现象得到大幅度的改善。
3、同实施例一的3。
4、同实施例一的4。
5、同实施例一的5。
6、同实施例一的6。
7、同实施例一的7。
8、同实施例一的8。
实施例三:
仍以背景技术中既有滨海平原地区A为例,条件同实施例一。
参见图3,一种改善既有滨海平原地区内涝的方法,包括:
1、在既有滨海平原地区部分既有海岸线外滩涂3上,设置平面呈□形的四道堤坝6形成封闭区域,在堤坝6上设置既有滨海平原地区2的河网4和雨水管网5接入该封闭区域的水库入口8,以及该封闭区域接入外海13的水库出口9,该封闭区域与堤坝6、水库入口8和水库出口9一起构成沿海边滩纳涝水库7,纳涝水库面积S 3为既有滨海平原地区面积S 1的1/40,堤坝6的顶高程(如7.0m)高于纳涝水库7内规划或设计最高水位(如4.0m)、当地外海13规划或设计最高潮位(5.0m);。
2、同实施例一的2。
3、同实施例一的3。
4、同实施例一的4。
5、同实施例一的5。
6、可进一步,在平面呈□形的四道堤坝6的顶部可以设置快速道路或公路,与既有滨海平原地区道路或公路10连接,完善当地交通网络。快速道路或公路采用现有技术,图上未示出。
7、同实施例一的7。
8、同实施例一的8。
实施例四:
仍以背景技术中既有滨海平原地区A为例,条件同实施例一。
参见图4,一种改善既有滨海平原地区内涝的方法,包括:
1、在既有滨海平原地区部分既有海岸线外滩涂3上,设置平面呈D形的堤坝6形成封闭区域,在堤坝6上设置既有滨海平原地区2的河网4和雨水管网5接入该封闭区域的水库入口8,以及该封闭区域接入外海13的水库出口9,该封闭区域与堤坝6、水库入口8和水库出口9一起构成沿海边滩纳涝水库7,纳涝水库面积S 3为既有滨海平原地区面积S 1的1/40,堤坝6的顶高程(如7.0m)高于纳涝水库7内规划或设计最高水位(如4.0m)、当地外海13 规划或设计最高潮位(5.0m);。
2、同实施例一的2。
3、同实施例一的3。
4、同实施例一的4。
5、同实施例一的5。
6、可进一步,在平面呈D形的堤坝6的顶部可以设置快速道路或公路,与既有滨海平原地区道路或公路10连接,完善当地交通网络。快速道路或公路采用现有技术,图上未示出。
7、同实施例一的7。
8、同实施例一的8。
实施例五:
仍以背景技术中既有滨海平原地区A为例,条件同实施例一。
参见图5,一种改善既有滨海平原地区内涝的方法,包括:
1、在既有滨海平原地区部分既有海岸线外滩涂2上,设置平面呈U形的三道堤坝6与既有海岸线1相连形成封闭区域,在堤坝6上设置既有滨海平原地区河网4和雨水管网5接入该封闭区域的水库入口8,以及该封闭区域接入外海13的水库出口9,该封闭区域内的部分区域与其接壤的堤坝6、水库入口8和水库出口9一起构成沿海边滩纳涝水库7,该封闭区域的其余区域为填海造地区12,进行回填或吹填形成陆地,堤坝6的顶高程(如7.0m)高于纳涝水库7内规划或设计最高水位(如4.0m)和当地外海规划或设计最高潮位(如5.0m)。
2、同实施例一的2。
3、沿海边滩纳涝水库7毗邻或靠近既有海岸线1一侧布置,以便尽可能缩短既有滨海平原地区2的河网4、雨水管网5到沿海边滩纳涝水库7的距离;沿海边滩纳涝水库7范围内既有滩涂高程(如1~2m)高于纳涝水库7内的规划或设计预降水位(如0m)时,开挖既有滩涂至纳涝水库7内的规划或设计预降水位(如0m);沿海边滩纳涝水库7范围内堤坝6的结构应满足水库7内水位及波浪、外海13潮位及波浪作用、水库7内外水位差作用及其引起的渗流作用。
4、同实施例一的4。
5、同实施例一的5。
6、同实施例一的6。
7、同实施例一的7。
8、同实施例一的8。
9、填海造地区12毗邻或靠近外海侧布置,填海造地区12的地面高程(如5.5m)不低于沿海边滩纳涝水库7内的规划或设计最高水位(如4.0m)。当临海侧护岸的顶高程(如7.0m)高于外海13规划或设计最高潮位(5.0m),其结构满足外海13潮位及波浪作用时,所述平面呈U形的三道堤坝6位于填海造地区12范围内的部分可直接利用填海造地区12的临海侧护岸。临海侧护岸采用现有技术,图上未示出。
10、沿海边滩纳涝水库7主要用于接纳既有滨海平原地区2的涝水,改善既有滨海平原地区2的内涝现象;为此,填海造地区12的地面高程(如5.5m)最好不低于当地外海历史最高水位和当地规划或设计最高潮位(5.0m),使得填海造地区12的降雨主要通过填海造地区12内的自身河网和雨水管网直接排入外海13,不占用沿海边滩纳涝水库7的纳涝库容。
实施例六:
仍以背景技术中既有滨海平原地区A为例,条件同实施例一。
参见图6,一种改善既有滨海平原地区内涝的方法,包括:
1、在既有滨海平原地区部分既有海岸线外滩涂2上,设置平面呈U形的三道堤坝6与既有海岸线1相连形成封闭区域,在堤坝6上设置既有滨海平原地区河网4和雨水管网5接入该封闭区域的水库入口8,以及该封闭区域接入外海13的水库出口9,该封闭区域内的部分区域与其接壤的堤坝6、水库入口8和水库出口9一起构成沿海边滩纳涝水库7,呈大矩形+小矩形(也可以是其它任意形状),该封闭区域的其余区域为填海造地区12,进行回填或吹填形成陆地,堤坝6的顶高程(如7.0m)高于纳涝水库7内规划或设计最高水位(如4.0m)和当地外海规划或设计最高潮位(如5.0m)。
2、同实施例五的2。
3、沿海边滩纳涝水库7的主体(图示大矩形部分)毗邻或靠近既有海岸线1一侧布置,沿海边滩纳涝水库7的小部分(图示小矩形部分)毗邻或靠近外海侧布置;沿海边滩纳涝水库7范围内既有滩涂高程(如1~2m)高于纳涝水库7内的规划或设计预降水位(如0m)时,开挖既有滩涂至纳涝水库7的规划或设计预降水位(如0m);沿海边滩纳涝水库7范围内堤坝6的结构应满足水库7内水位及波浪、外海13潮位及波浪作用、水库7内外水位差作用及其引起的渗流作用。
4、同实施例五的4。
5、同实施例五的5。
6、同实施例五的6。
7、同实施例五的7。
8、同实施例五的8。
9、同实施例五的9。
10、同实施例五的10。
上述的对实施例的描述是为了便于该技术领域的普通技术人员能理解和应用本发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,对于本发明做出的改进和修改都应该在本发明的保护范围之内。

Claims (16)

  1. 一种改善既有滨海平原地区内涝的方法,其特征在于包括以下步骤:
    (1)在既有滨海平原地区的部分既有海岸线外滩涂上,设置堤坝形成封闭区域,在所述堤坝上设置既有滨海平原地区河网和雨水管网接入该封闭区域的水库入口,以及该封闭区域接入外海的水库出口,该封闭区域与所述的堤坝、水库入口和水库出口一起构成沿海边滩纳涝水库,堤坝的顶高程高于纳涝水库内规划或设计最高水位和当地外海规划或设计最高潮位;
    (2)在预报强降雨来临前或连续性降雨开始前的一段时间内,通过水库出口预先将沿海边滩纳涝水库的部分水量排到外海,在预报强降雨来临前或连续性降雨开始前,使得沿海边滩纳涝水库的水位预降至纳涝水库内的规划或设计预降水位,所述水位低于当地外海多年平均海平面;
    在此过程中,开启和控制水库入口的水闸,使得既有滨海平原地区纳涝区、雨水管网中的部分水体通过水库入口,预先进入沿海边滩纳涝水库,既有滨海平原地区内纳涝区的水位也得到预降;
    (3)当沿海边滩纳涝水库范围内既有滩涂高程高于纳涝水库内的规划或设计预降水位时,开挖既有滩涂高程至纳涝水库内规划或设计预降水位;堤坝的结构应满足水库内水位及波浪、外海潮位及波浪作用、水库内外水位差作用及其引起的渗流作用;
    (4)水库入口可利用既有滨海平原地区河网和雨水管网的既有水闸或通过新设水库入口水闸,防止既有滨海平原地区纳涝区水位预降过低,或水库水向既有滨海平原地区纳涝区的倒灌;
    (5)水库出口同时设排水闸和排水泵站,采用不同的排水方式。
  2. 一种改善既有滨海平原地区内涝的方法,其特征在于包括以下步骤:
    (1)在既有滨海平原地区的部分既有海岸线外滩涂上,设置堤坝形成封闭区域,在所述堤坝上设置既有滨海平原地区河网和雨水管网接入该封闭区域的水库入口,以及该封闭区域接入外海的水库出口,该封闭区域内的部分区域与其接壤的堤坝、水库入口和水库出口一起构成沿海边滩纳涝水库,该封闭区域内的其余区域为填海造地区,进行回填或吹填形成陆地,堤坝的顶高程高于纳涝水库内规划或设计最高水位和当地外海规划或设计最高潮位;
    (2)在预报强降雨来临前或连续性降雨开始前的一段时间内,通过水库出口预先将沿海边滩纳涝水库的部分水量排到外海,在预报强降雨来临前或连续性降雨开始前,使得沿海边滩纳涝水库的水位预降至纳涝水库内的规划或设计预降水位,所述水位低于当地外海多年平均海平面;
    在此过程中,开启和控制水库入口的水闸,使得既有滨海平原地区纳涝区、雨水管网中的部分水体通过水库入口,预先进入沿海边滩纳涝水库,既有滨海平原地区内纳涝区的水位也得到预降;
    (3)当沿海边滩纳涝水库范围内既有滩涂高程高于纳涝水库内的规划或设计预降水位时,开挖既有滩涂高程至纳涝水库内的规划或设计预降水位;沿海边滩纳涝水库范围内堤坝的结构应满足水库内水位及波浪、外海潮位及波浪作用、水库内外水位差作用及其引起的渗流作用;
    (4)水库入口可利用既有滨海平原地区河网和雨水管网的既有水闸或通过新设水库入口水闸,防止既有滨海平原地区纳涝区水位预降过低,或水库水向既有滨海平原地区纳涝区的倒灌;
    (5)水库出口同时设排水闸和排水泵站,采用不同的排水方式。
  3. 根据权利要求2所述的改善既有滨海平原地区内涝的方法,其特征在于:
    步骤(3)中,沿海边滩纳涝水库的主体毗邻或靠近既有海岸线一侧布置,以便尽可能缩短既有滨海平原地区河网、雨水管网到沿海边滩纳涝水库的距离。
  4. 根据权利要求1或2所述的改善既有滨海平原地区内涝的方法,其特征在于:
    步骤(1)中:所述“设置堤坝形成封闭区域”包括:设置平面呈任意线形的堤坝与既有海岸线相连形成封闭区域,或设置平面呈任意形状的堤坝形成封闭区域。
  5. 根据权利要求4所述的改善既有滨海平原地区内涝的方法,其特征在于:
    所述“呈任意线形的堤坝”包括平面呈U形的三道堤坝或平面呈C形的堤坝;所述“平面呈任意形状的堤坝”包括平面呈□形的四道堤坝或平面呈D形的堤坝。
  6. 根据权利要求1或2所述的改善既有滨海平原地区内涝的方法,其特征在于:
    步骤(2)中所述“一段时间”为一周内。
  7. 根据权利要求1或2所述的改善既有滨海平原地区内涝的方法,其特征在于:
    步骤(2)中所述水位低于当地外海多年平均低潮位。
  8. 根据权利要求1或2所述的改善既有滨海平原地区内涝的方法,其特征在于:
    步骤(2)中,同时在外海低潮位时段,开启设置在沿海边滩纳涝水库以外的既有海岸线上的排水闸,预先将纳涝区的水排入外海。
  9. 根据权利要求1或2所述的改善既有滨海平原地区内涝的方法,其特征在于:
    步骤(5)中所述排水方式采用闸排方式,利用低潮位时段开闸将沿海边滩纳涝水库中高于低潮位的水排入外海;或者采用泵排方式,通过排水泵站将沿海边滩纳涝水库中的水强排入外海,进一步降低沿海边滩纳涝水库的水位;或者采用闸泵联合排水方式,更快地降低沿海边滩纳涝水库的水位。
  10. 根据权利要求1或2所述的改善既有滨海平原地区内涝的方法,其特征在于:
    步骤(5)中水库出口单纯设排水闸,只利用低潮位时段开闸将沿海边滩纳涝水库中高于低潮位的水排入外海。
  11. 根据权利要求1或2所述的改善既有滨海平原地区内涝的方法,其特征在于:
    在所述堤坝的顶部设置快速道路或公路,与既有滨海平原地区道路网或公路网连接,完善当地交通网络。
  12. 根据权利要求1或2所述的改善既有滨海平原地区内涝的方法,其特征在于:
    在所述沿海边滩纳涝水库内的部分水面上设置水上光伏发电设施,利用非降雨期间的太阳能发电,为沿海边滩纳涝水库提供电力。
  13. 根据权利要求1或2所述的改善既有滨海平原地区内涝的方法,其特征在于:
    在所述沿海边滩纳涝水库内,设置适宜的景观、休闲、游乐设施,在非纳涝期间开放,在纳涝期间关闭。
  14. 根据权利要求13所述的改善既有滨海平原地区内涝的方法,其特征在于:
    所述适宜的景观、休闲、游乐设施包括环湖景观带、环湖绿化带、湖内湿地、水上运动场、水上游乐场、游艇港区、游艇进出水库的船闸。
  15. 根据权利要求2所述的改善既有滨海平原地区内涝的方法,其特征在于:
    所述填海造地区的主体毗邻或靠近外海侧布置,填海造地区的地面高程不低于沿海边滩纳涝水库内的规划或设计最高水位;当填海造地区临海侧护岸的顶高程高于当地外海规划或设计最高潮位,其结构满足外海潮位及波浪作用时,所述堤坝位于填海造地区的部分可直接利用填海造地区的临海侧护岸。
  16. 根据权利要求2所述的改善既有滨海平原地区内涝的方法,其特征在于:
    所述填海造地区的地面高程不低于当地外海历史最高水位和当地规划或设计最高潮位,使得填海造地区的降雨主要通过填海造地区内的自身河网和雨水管网直接排入外海,不占用沿海边滩纳涝水库的纳涝库容。
PCT/CN2022/074952 2022-01-27 2022-01-29 一种改善既有滨海平原地区内涝的方法 WO2023142032A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210100916.9 2022-01-27
CN202210100916.9A CN114351640B (zh) 2022-01-27 2022-01-27 一种改善既有滨海平原地区内涝的方法

Publications (1)

Publication Number Publication Date
WO2023142032A1 true WO2023142032A1 (zh) 2023-08-03

Family

ID=81092905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/074952 WO2023142032A1 (zh) 2022-01-27 2022-01-29 一种改善既有滨海平原地区内涝的方法

Country Status (3)

Country Link
US (1) US11885089B2 (zh)
CN (1) CN114351640B (zh)
WO (1) WO2023142032A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115323995A (zh) * 2022-09-19 2022-11-11 上海师范大学 一种缓解复合极端风暴潮洪水的滩涂围垦结构及方法
CN117315486B (zh) * 2023-10-30 2024-05-14 武汉理工大学 一种航道绿地监测方法、装置、电子设备及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201028509A (en) * 2009-01-20 2010-08-01 Jun-Shin Chang A method to store fresh water in flood period and torrential raining season
CN102234993A (zh) * 2011-04-25 2011-11-09 山东河海水力插板工程有限责任公司 高位溢流堰海水单向流动工程
KR20140120985A (ko) * 2013-04-03 2014-10-15 주식회사 대영 홍수조절지 및 우수저류지의 수문 자동 운전시스템
TWI521121B (zh) * 2014-11-17 2016-02-11 Wu-Xiong Wu Flood control system
CN105887768A (zh) * 2015-01-12 2016-08-24 刘广 江河入海口的蓄水水库
CN113216074A (zh) * 2021-05-13 2021-08-06 中国科学院城市环境研究所 一种滨海城市河道水治理方法
CN113550272A (zh) * 2021-07-28 2021-10-26 广东省水利电力勘测设计研究院有限公司 一种沿海城市排水防涝一体化闸站

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4457646A (en) * 1982-04-05 1984-07-03 Laesch Daniel A Impoundment and diversion systems for preventing or mitigating flooding
JPH0730533B2 (ja) * 1992-06-29 1995-04-05 株式会社日建調査設計 都市型洪水調節池
US20140056645A1 (en) * 2010-07-28 2014-02-27 Richard C. Hogan Flood Control Method
US9915048B2 (en) * 2013-12-04 2018-03-13 Fenghe Yingzao Group, Inc. Method for river/lake level regulation and water conservancy system
CN106400728A (zh) * 2016-09-09 2017-02-15 黄斌夫 河湖填海域
US20190249406A1 (en) * 2018-02-15 2019-08-15 Environmental Quality Resources, Inc. Remote stormwater management pond volume adjustment system
US10465409B1 (en) * 2018-08-28 2019-11-05 Raymond Barber Flood water retention assembly
CN109629630A (zh) * 2018-12-20 2019-04-16 广西科技大学 一种预防内涝的山体雨水海绵体建造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201028509A (en) * 2009-01-20 2010-08-01 Jun-Shin Chang A method to store fresh water in flood period and torrential raining season
CN102234993A (zh) * 2011-04-25 2011-11-09 山东河海水力插板工程有限责任公司 高位溢流堰海水单向流动工程
KR20140120985A (ko) * 2013-04-03 2014-10-15 주식회사 대영 홍수조절지 및 우수저류지의 수문 자동 운전시스템
TWI521121B (zh) * 2014-11-17 2016-02-11 Wu-Xiong Wu Flood control system
CN105887768A (zh) * 2015-01-12 2016-08-24 刘广 江河入海口的蓄水水库
CN113216074A (zh) * 2021-05-13 2021-08-06 中国科学院城市环境研究所 一种滨海城市河道水治理方法
CN113550272A (zh) * 2021-07-28 2021-10-26 广东省水利电力勘测设计研究院有限公司 一种沿海城市排水防涝一体化闸站

Also Published As

Publication number Publication date
CN114351640A (zh) 2022-04-15
US11885089B2 (en) 2024-01-30
CN114351640B (zh) 2022-09-16
US20230235522A1 (en) 2023-07-27

Similar Documents

Publication Publication Date Title
WO2023142032A1 (zh) 一种改善既有滨海平原地区内涝的方法
CN102733351B (zh) 一种治理江河入海口方法
AU2018375503B2 (en) Express flood mitigation works using elevated and or at ground level with tunnel integrated large scale aqueduct with numerous functions, with main function to divert flood water or river water away from cities in order to fight or mitigate flood events and effect of global warming, with discharge invert levels to the sea higher than high tide levels
Abdullah et al. Irrigation projects in Iraq
WO2022016825A1 (zh) 一种喇叭口水袋式阻流坝发电装置
CN112267419A (zh) 一种沿海自动清淤截流排污输水港口
CN114867917B (zh) 利用自然力量而阻止反复发生的(海啸/涨潮/河流)灾害的方法
CN212452456U (zh) 一种绿色具有收集海洋垃圾能力的抗侵蚀海堤
WO2005003466A1 (fr) Procede permettant d'empecher et d'evacuer une inondation
CN217174585U (zh) 一种防风固沙护岸结构
CN218622112U (zh) 一种土石坝防漫顶溃决的泄水建筑物结构
CN217580027U (zh) 抽水蓄能电站上水库布置结构
JP2015129427A (ja) 巨大ダムの倒壊リスクを多数の小型ダムや堰で代替する減災工法と安く短期に設置でき非常用水源と非常用電源小型となる据置き堰・防波堤の発明
CN219825148U (zh) 一种用于多泥沙河道的抽水蓄能电站水库布置结构
CN1185387C (zh) 一种增大湖泊防洪库容的方法
CN213773185U (zh) 一种河流抗冲堤防
CN217053251U (zh) 一种用于挖方渠道的排洪建筑物结构
Zhang et al. Study on Flood Risk Characteristics and Disaster Prevention Countermeasures in the Taihu Basin
CN116856361A (zh) 一种抽水蓄能电站下水库拦沙排沙结构及其运行方法
Yang et al. Layout and construction organization design of river ecological control project—A case study of urban section of Shichuan River
Pan et al. Comparative Study on Layout Scheme of High Head Diversion Power Station----Taking the Yamu River-I Hydropower Station as an Example
CN105544455A (zh) 堤坝超标准洪水分洪管带
CN205475064U (zh) 堤坝超标准洪水分洪管带
Huang et al. Influences of Beach Replenishment on Seawall Engineering
CN115075205A (zh) 抽水蓄能电站上水库布置结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22922863

Country of ref document: EP

Kind code of ref document: A1