WO2023142001A1 - 用于补偿显示面板的亮度的方法、装置以及设备 - Google Patents

用于补偿显示面板的亮度的方法、装置以及设备 Download PDF

Info

Publication number
WO2023142001A1
WO2023142001A1 PCT/CN2022/074822 CN2022074822W WO2023142001A1 WO 2023142001 A1 WO2023142001 A1 WO 2023142001A1 CN 2022074822 W CN2022074822 W CN 2022074822W WO 2023142001 A1 WO2023142001 A1 WO 2023142001A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
threshold time
grayscale value
display panel
vertical blanking
Prior art date
Application number
PCT/CN2022/074822
Other languages
English (en)
French (fr)
Inventor
杨梅
刘军
刘洋
路阳
闫郁翰
陈晓鹏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2022/074822 priority Critical patent/WO2023142001A1/zh
Publication of WO2023142001A1 publication Critical patent/WO2023142001A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals

Definitions

  • Embodiments of the present disclosure generally relate to the field of display technologies, and more specifically relate to a method, device and device for compensating brightness of a display panel.
  • VRR Variable Refresh Rate
  • the duration of the vertical active region (Vertical Active, Vactive) is fixed, while the duration of the vertical blanking region (Vertical Blanking, Vblank) is variable.
  • the adjustment of the refresh rate of the display panel is realized by adjusting the duration of the vertical blanking area.
  • the charging time of each row of pixel capacitors at a low refresh rate is the same as that of each row of pixel capacitors at a high refresh rate, that is, at different refresh rates when the thin film field
  • the effect transistor Thin Film Transistor, TFT
  • the duration of the vertical blanking area is longer at low refresh rates, so the pixel capacitor voltage is held longer than at high refresh rates, and the longer the hold time, the greater the pixel capacitor leakage.
  • the voltage across the liquid crystal capacitor becomes smaller, and the brightness is lower than that in the case of a high refresh rate. Therefore, when the refresh rate of the display panel changes, the still picture is displayed back and forth between high brightness and low brightness due to capacitor leakage.
  • the relative value of the brightness change exceeds 1% of the Weber constant, the human eye can feel obvious flicker .
  • the VRR technology poses a new challenge to the display panel: the display panel should have high display consistency within a predetermined refresh rate variation range.
  • the display panel should have high display consistency within a predetermined refresh rate variation range.
  • most display panels have the problem of screen flickering when the refresh rate is dynamically adjusted. Such screen flickering will cause the user to feel visual jitter and fatigue, and affect the user experience.
  • embodiments of the present disclosure aim to provide a solution for compensating the brightness of a display panel.
  • a method for compensating for brightness of a display panel comprising: timing a vertical blanking zone in a current frame of the display panel; and timing the vertical blanking zone in response to When the time reaches the first threshold time, a first value for first compensation for the brightness of the display panel during the vertical blanking period in the current frame is determined.
  • the method further includes: in response to the timing time of the vertical blanking zone reaching a second threshold time, determining a second compensation for the brightness of the display panel during the vertical blanking zone in the current frame Binary, the second threshold time is higher than the first threshold time, and the second offset is later than the first offset.
  • the luminance of the display panel during the vertical blanking period can be compensated in a segmented compensation manner, so that the luminance variation can be further reduced, ensuring that the luminance variation is less than the threshold at which human eyes can observe flicker.
  • the display panel includes a first sub-pixel of a first pixel unit
  • the method further includes: determining the first The target gray scale value of the sub-pixel in the next frame, the next frame is located after the current frame in the display sequence, and the target gray scale value is used to compensate the brightness of the first sub-pixel during the vertical effective area in the next frame.
  • different grayscale values can be compensated to different degrees during the vertical effective area of the next frame, so that the brightness difference and chromaticity difference between different refresh rates can be well compensated to solve the problem caused by the difference in bright colors. flickering problem.
  • the next frame follows the current frame in the display order, and determining the target gray scale value includes: in response to the timing time of the vertical blanking zone reaching the third threshold time, performing the following operations: acquiring the first sub-pixel for A first candidate grayscale value for a third threshold time; and obtaining a second candidate grayscale value for the first subpixel for a fourth threshold time, the fourth threshold time being higher than the third threshold time; and responding to the vertical blanking zone
  • the duration of is between the third threshold time and the fourth threshold time, and the target grayscale value is determined based on the first candidate grayscale value and the second candidate grayscale value.
  • obtaining the first candidate grayscale value includes: determining a compensation grayscale value as the first candidate grayscale value according to the third threshold time and the original grayscale value, and the compensated grayscale value is used in the duration Compensate the original gray scale value when it is equal to the third threshold time. In this way, the compensation grayscale value for compensating the original grayscale value for a specific threshold time can be determined more efficiently.
  • obtaining the first candidate grayscale value includes: using the position of the first subpixel in the display panel to obtain the polarity of the first subpixel; and according to the third threshold time, the original grayscale value and the first The polarity of the sub-pixel is used to determine the compensated gray scale value as the first candidate gray scale value, and the compensated gray scale value is used to compensate the original gray scale value when the duration is equal to the third threshold time.
  • the polarity difference of each sub-pixel can be considered in the brightness compensation during the vertical active area of the next frame, so that targeted compensation can be provided for the pixel capacitance of sub-pixels with different polarities, making it possible to On the basis of analog compensation, brightness differences in different regions of the display panel 140 are more finely compensated.
  • determining the target grayscale value based on the first candidate grayscale value and the second candidate grayscale value includes: interpolating the first candidate grayscale value and the second candidate grayscale value to obtain The corresponding target grayscale value. In this way, the target grayscale value for the refresh rate of the current frame can be obtained more accurately, thereby improving the effect of digital compensation.
  • the third threshold time is equal to the first threshold time
  • the fourth threshold time is equal to the second threshold time
  • determining the target grayscale value includes: using the position of the first subpixel in the display panel to obtain a scaling factor for the original grayscale value of the first subpixel; Scale to determine the target grayscale value. In this way, the difference in brightness at different positions in the display panel can be considered in the brightness compensation during the vertical active area of the next frame, so that the brightness difference in different regions of the display panel can be more finely compensated on the basis of analog compensation.
  • determining the first value includes: using the first threshold time to determine an analog compensation value as the first value, the analog compensation value being used when the duration of the vertical blanking period is equal to the first threshold time Compensates for the brightness of the display panel.
  • timing the vertical blanking interval includes timing a display control signal for the display panel.
  • the display control signal includes at least one of the following: a horizontal synchronization HSYNC signal, a vertical synchronization VSYNC signal, or a data enable DE signal.
  • an electronic device includes: a timing module configured to time a vertical blanking zone in a current frame of the display panel; and a first value determination module configured to respond to a timing time of the vertical blanking zone reaching a first threshold time , to determine a first value for performing first compensation on the brightness of the display panel during the vertical blanking period in the current frame.
  • the electronic device further includes: a second value determination module, configured to determine a vertical blanking area for the display panel in the current frame in response to the timing time of the vertical blanking area reaching a second threshold time
  • the brightness during the second compensation is a second value
  • the second threshold time is higher than the first threshold time
  • the second compensation is later than the first compensation.
  • the display panel includes the first sub-pixel of the first pixel unit
  • the electronic device further includes: a target grayscale value determination module configured to set the first sub-pixel in the next frame based on the timing time of the vertical blanking area and The original grayscale value in , determine the target grayscale value of the first subpixel in the next frame, the next frame is located after the current frame in the display order, and the target grayscale value is used to set the vertical value of the first subpixel in the next frame Brightness during the active zone is compensated.
  • different grayscale values can be compensated to different degrees during the vertical effective area of the next frame, so that the brightness difference and chromaticity difference between different refresh rates can be well compensated to solve the problem caused by the difference in bright colors. flickering problem.
  • the target gray scale value determination module is further configured to: in response to the timing time of the vertical blanking zone reaching the third threshold time, perform the following operations: acquire the first a first candidate grayscale value for the subpixel for a third threshold time; and obtaining a second candidate grayscale value for the first subpixel for a fourth threshold time, the fourth threshold time being higher than the third threshold time; and in response to The duration of the vertical blanking zone is between the third threshold time and the fourth threshold time, and the target gray scale value is determined based on the first candidate gray scale value and the second candidate gray scale value.
  • an electronic device comprising: the electronic device according to the second aspect of the present disclosure; and a drive circuit configured to receive a first value, and to display The panel applies a drive signal.
  • the drive signal includes at least one of: an array common ACOM voltage signal, or a shared common SVCM voltage signal.
  • ACOM voltage signal and SVCM voltage signal With the help of ACOM voltage signal and SVCM voltage signal, the current leakage can be compensated in real time in the vertical blanking area of the current frame, so that there is no delay between brightness compensation and leakage, which can fundamentally solve the flickering of the screen and improve the user experience of the display panel .
  • FIG. 1 shows a schematic diagram of a display device according to some embodiments of the present disclosure
  • FIG. 2 shows a flowchart of a method for compensating the brightness of a display panel according to some embodiments of the present disclosure
  • FIG. 3 shows an exemplary timing diagram for compensating the brightness of a display panel according to some embodiments of the present disclosure
  • FIG. 4 shows a flowchart of a method for determining a target gray scale value according to some embodiments of the present disclosure
  • FIG. 5 shows an example device for compensating the brightness of a display panel according to some embodiments of the present disclosure block diagram.
  • the term “comprise” and its variants mean open inclusion, ie “including but not limited to”.
  • the term “or” means “and/or” unless otherwise stated.
  • the term “based on” means “based at least in part on”.
  • the terms “one example embodiment” and “one embodiment” mean “at least one example embodiment.”
  • the term “another embodiment” means “at least one further embodiment”.
  • the duration of the vertical blanking area changes due to different refresh rates, so the brightness of the display panel will change, and may cause screen flicker that can be observed by human eyes .
  • Conventional solutions to flickering display screens include the following two methods: first, through real-time detection of the refresh rate, using the brightness of the maximum refresh rate as a benchmark, the brightness of each gray scale at different refresh rates is compensated to the reference brightness; second, By obtaining the duration of the vertical blanking area in the current frame period in real time, the gamma voltage compensation value is issued when the duration reaches a predetermined threshold.
  • the second solution cannot compensate the brightness of the display panel in time in the vertical blanking area of the current frame, so there is also a delay between leakage and compensation, making it impossible to fundamentally solve the flickering of the screen, and for the refresh rate at the maximum Extreme scenarios where switching back and forth between the minimum value and the minimum value may also aggravate the degree of flickering.
  • the leakage of the pixel capacitor is a slow process, a compensation at the end of the vertical blanking area like the second solution may instead aggravate the flicker.
  • the brightness of the display panel during the vertical blanking period of the current frame is adjusted in time by timing the vertical blanking period in the current frame and issuing a corresponding compensation value when the predetermined threshold time is reached. Make compensation.
  • the compensation value for compensating the brightness of the display panel during the vertical blanking period of the current frame is determined in real time according to the schemes of the various embodiments of the present disclosure during the vertical blanking period of the current frame , so that the brightness change caused by the leakage can be compensated by adjusting the relevant analog voltage in time, so that there is no delay between the brightness compensation and the leakage, so that the flickering of the screen can be fundamentally solved, and the user experience of the display panel can be improved.
  • FIG. 1 shows a schematic diagram of a display device 100 according to some embodiments of the present disclosure.
  • the display device 100 may generally include an electronic device 120 , a driving circuit 130 , and a display panel 140 . It should be understood that the display device 100 may further include components not shown and/or components shown may be omitted, and the scope of the present disclosure is not limited in this respect.
  • electronic device 120 may receive image data 110 from an image source (not shown).
  • image data 110 may be a video source signal.
  • the received image data 110 may first be processed by an image processor, for example, image enhancement and/or noise reduction are performed.
  • the electronic device 120 may generate timing control signals for driving the driving circuit 130 of the display panel 140 based on the received image data 110 .
  • the electronic device 120 may be implemented by one or more chips and/or hardware logic components.
  • Exemplary types of hardware logic components include, but are not limited to, Field Programmable Gate Arrays (Field Programmable Gate Arrays, FPGAs), Application Specific Integrated Circuits (ASICs), Application Specific Standard Parts (ASSPs) , System on Chip (SOC), Complex Programmable Logic Device (Complex Programmable Logic Device, CPLD), etc.
  • Field Programmable Gate Arrays Field Programmable Gate Arrays, FPGAs
  • ASICs Application Specific Integrated Circuits
  • ASSPs Application Specific Standard Parts
  • SOC System on Chip
  • Complex Programmable Logic Device Complex Programmable Logic Device, CPLD
  • the driving circuit 130 generates a driving signal for controlling the display panel 140 by using the received timing control signal.
  • the drive signal may include a gamma voltage signal.
  • the driving signal may include an array common (Array Common, ACOM) voltage signal.
  • ACOM Array Common
  • VA vertical Alignment
  • VA vertical Alignment
  • the ACOM voltage is the common voltage connected to the lower plate of all sub-pixel storage capacitors on the array side.
  • the driving signal may also include a shared common (Share Commom, SVCM) voltage signal, for example, for a VA panel, the SVCM voltage is the common voltage connected to the lower plate of the shared capacitor in the sub-region of each sub-pixel .
  • the driving circuit 130 is connected via a plurality of row lines RL1 to RLm (individually or collectively referred to as row lines RL) and a plurality of column lines CL1 to CLn (individually or collectively referred to as column lines CL). to the display panel 140, where m and n are positive integers.
  • the display panel 140 exemplarily includes a pixel array composed of a plurality of pixel units P11 to Pmn (individually or collectively referred to as a pixel unit P).
  • each pixel unit P may include a plurality of sub-pixels. Taking the pixel unit Pm2 as an example in FIG. 1 , it is schematically shown that the pixel unit Pm2 may include three sub-pixels Pm2-R, Pm2-G and Pm2-B for the three primary colors of red, green and blue (Red Green Blue, RGB).
  • the structure of the display panel 140 in FIG. 1 is only exemplary and non-restrictive, and the solutions according to various embodiments of the present disclosure can be applied to such as LCD panels, organic light-emitting diodes (Organic Light-Emitting Diode , OLED) panels, etc., the scope of the present disclosure is not limited in this respect.
  • FIG. 2 shows a flowchart of a method 200 for compensating the brightness of the display panel 140 according to some embodiments of the present disclosure.
  • the method 200 may be executed by the electronic device 120 as shown in FIG. 1 . It should be understood that method 200 may also include additional blocks not shown and/or blocks shown may be omitted, and that the scope of the present disclosure is not limited in this respect.
  • the electronic device 120 times the vertical blanking interval in the current frame of the display panel 140 .
  • the electronic device 120 may time the vertical blanking interval by timing the display control signal for the display panel 140 .
  • Display control signals include but are not limited to horizontal synchronization (Horizontal Synchronization, HSYNC) signal, vertical synchronization (Vertical Synchronization, VSYNC) signal, or data enable (Data Enable, DE) signal.
  • FIG. 3 illustrates an exemplary timing diagram 300 for compensating the brightness of the display panel 140 according to some embodiments of the present disclosure.
  • the vertical blanking interval is clocked by clocking the DE signal.
  • the high level of the DE signal corresponds to the vertical active area Vactive in the frame
  • the low level of the DE signal corresponds to the vertical blanking area Vblank in the frame.
  • the electronic device 120 can start timing from each falling edge of the DE signal until the next rising edge, and the duration of the low level corresponds to the duration of the corresponding vertical blanking area Vblank.
  • the duration of the vertical active area Vactive in each frame is the same,
  • the duration of the vertical blanking area Vblank in each frame may be different.
  • the duration of the vertical blanking area Vblank of the Nth frame is longer than the duration of the vertical blanking area Vblank of the N-1th frame, so the refresh rate of the Nth frame is lower than that of the N-1th frame.
  • the vertical blanking area Vblank in the current frame can also be clocked in any other suitable manner, for example, the vertical blanking area Vblank can also be clocked by line count detection, within the scope of the present disclosure Unrestricted in this respect.
  • the electronic device 120 determines, in response to the timing time of the vertical blanking zone Vblank reaching the first threshold time, a first first compensation value for performing a first compensation on the brightness of the display panel 140 during the vertical blanking zone Vblank in the current frame. value.
  • the Nth frame corresponds to the current frame
  • the time Ta corresponds to the first threshold time.
  • the electronic device 120 may use the first threshold time to determine an analog compensation value as the first value, the analog compensation value being used for a duration of the vertical blanking zone Vblank equal to In the case of the first threshold time, the brightness of the display panel 140 is compensated.
  • a plurality of threshold times may be predetermined, that is, a plurality of moments Ta to Td in FIG. 3 .
  • the brightness corresponding to the maximum refresh rate of the display panel 140 may be used as a reference, and then an analog compensation value corresponding to each threshold time may be sequentially determined.
  • the maximum refresh rate of the display panel 140 is 164 Hz
  • the refresh rates corresponding to time Ta to Td are 122 Hz, 97 Hz, 80 Hz and 68 Hz, respectively.
  • the analog compensation value for the ACOM voltage signal with a refresh rate of 122 Hz can be determined through pre-conducted experimental debugging, so that when the refresh rate is switched between 164 Hz and 122 Hz, the display screen has no brightness change and flicker.
  • analog compensation values for refresh rates of 97Hz, 80Hz and 68Hz can be predetermined, so that when the refresh rate is switched between 164Hz and the corresponding refresh rate, the display screen will have no brightness change and flicker.
  • the determined analog offset values and corresponding refresh rates may be stored in a look-up table. This lookup table may also be referred to as an analog compensation table.
  • Table 1 below shows an exemplary analog compensation table for the ACOM voltage signal.
  • first column shows multiple refresh rates corresponding to predetermined multiple threshold times
  • second column shows ACOM voltage compensation values for corresponding refresh rates. It should be understood that the numerical values shown in Table 1 are exemplary only, and the scope of the present disclosure is not limited in this respect.
  • the electronic device 120 can acquire the analog compensation value -16 for the refresh rate of 122 Hz corresponding to the time Ta from the analog compensation table, and send it as the first value to the downstream of the electronic device 120.
  • the driving circuit 130 is used to generate a corresponding ACOM voltage to compensate the leakage, so that the brightness of the display panel 140 can be compensated in time in the vertical blanking region Vblank. In this way, there is no delay between the brightness compensation of the display panel 140 and the leakage, so that the screen flicker can be fundamentally solved.
  • multiple analog signals can also be used simultaneously to compensate the brightness of the display panel 140, and the scope of the present disclosure is not limited in this respect.
  • the times Ta to Td corresponding to the multiple threshold times are equally divided in time, that is, the time intervals between two adjacent times are equal. Since the leakage of the pixel capacitor has a linear relationship with time, the leakage can be more reasonably compensated through this configuration of time equalization, thereby ensuring that the display screen does not flicker.
  • the threshold time may also be determined in any other suitable manner, for example, multiple threshold times may also be equally divided on the refresh rate, and the scope of the present disclosure is not limited in this respect.
  • the corresponding relationship between the threshold time and the corresponding analog compensation value can also be stored and indicated in any other suitable manner, for example, by means of a fitting formula, within the scope of the present disclosure Unrestricted in this respect.
  • the electronic device 120 determines the second compensation for the brightness of the display panel 140 during the vertical blanking period Vblank in the current frame in response to the timing time of the vertical blanking zone Vblank reaching the second threshold time.
  • the second threshold time is higher than the first threshold time, and the second compensation is later than the first compensation.
  • the electronic device 120 may use the second threshold time in a manner similar to that described above with reference to the first threshold time.
  • the threshold time is used to determine the analog compensation value as the second value. The present disclosure will not be repeated here.
  • the electronic device 120 can compensate the brightness of the display panel 140 during the vertical blanking period Vblank in a segmented compensation manner, so that the brightness variation can be further reduced, thereby ensuring that the brightness variation is smaller than that of the human eye. Threshold flickering can be observed.
  • the electronic device 120 may also, in a manner similar to the above, when the timing time reaches other predetermined moments (such as time Tc and time Td) later than time Tb, The third value and the fourth value for performing the third compensation and the fourth compensation on the luminance of the display panel 140 during the vertical blanking period Vblank in the current frame are respectively determined.
  • block 206 may also be omitted, that is, compensation is only performed once for each vertical blanking area Vblank, for example, compensation is only performed when the counting time reaches time Ta and no compensation is performed at other times. In this way, the computation load and bandwidth occupation of the electronic device 120 can be reduced.
  • the electronic device 120 determines the target grayscale value of the subpixel in the next frame based on the timing time of the vertical blanking area Vblank and the original grayscale value of the subpixel in the next frame, and the next frame is located in the current frame in display order Afterwards, the target grayscale value is used to compensate the brightness of the sub-pixel during the vertical active region Vactive in the next frame.
  • the target grayscale value is used to compensate the brightness of the sub-pixel during the vertical active region Vactive in the next frame.
  • both the Nth frame and the N+1th frame are located after the current frame in the display order, so both the Nth frame and the N+1th frame can be used as the next one frame.
  • this brightness compensation by means of grayscale values is also referred to as "digital compensation".
  • the leakage times of the pixel capacitors in different rows are slightly different, for example, the leakage time of the pixel capacitors located in the last row of the display panel 140 in the vertical direction is shorter than the leakage time of the pixel capacitors located in the first row of the display panel 140 . Therefore, the compensation effect of the analog voltage on the brightness of different regions of the display panel 140 is not consistent.
  • area compensation can be performed on the brightness for different positions of the display panel 140 .
  • the first sub-pixel of the first pixel unit included in the display panel 140 is taken as an example for description.
  • the electronic device 120 may use the position of the first sub-pixel in the display panel 140 to obtain the scaling factor for the original grayscale value of the first sub-pixel.
  • the display panel 140 may be divided into K sub-regions along the vertical direction in advance, where K may be any positive integer. Then, the scaling factor for the gray scale value of the sub-pixel in each sub-region is determined in advance through experimental debugging or calculation. The electronic device 120 may determine the sub-region where the first sub-pixel is located based on the position of the first sub-pixel in the display panel 140 , so as to obtain the scaling factor for the original grayscale value of the first sub-pixel.
  • the electronic device 120 may use the scaling factor to scale the original gray scale value to determine the target gray scale value for the first sub-pixel.
  • the difference in brightness of different positions in the display panel 140 can be considered in the brightness compensation during the vertical active region Vactive of the next frame, so that the brightness difference in different regions of the display panel 140 can be more finely compensated on the basis of analog compensation .
  • the next frame immediately follows the current frame in display order, for example, in FIG. 3 , frame N follows frame N ⁇ 1 in display order.
  • the electronic device 120 can determine the target grayscale value used to compensate the brightness of the sub-pixel during the vertical active area Vactive in the next frame before the arrival of the vertical active area Vactive in the next frame, so as to Avoid delays in digital compensation.
  • the current frame corresponds to the N-1th frame
  • the next frame corresponds to the Nth frame
  • the first sub-pixel of the first pixel unit included in the display panel 140 is taken as an example for illustration.
  • FIG. 4 shows a flowchart of a method 400 for determining a target gray scale value according to some embodiments of the present disclosure.
  • method 400 may be implemented as an example of block 208 as shown in FIG. 2 .
  • the method 400 may be executed by the electronic device 120 as shown in FIG. 1 . It should be appreciated that method 400 may also include additional blocks not shown and/or blocks shown may be omitted, and that the scope of the present disclosure is not limited in this respect.
  • the electronic device 120 performs the following operations in response to the timing time of the vertical blanking area Vblank reaching the third threshold time: acquiring the first candidate grayscale value of the first sub-pixel for the third threshold time; and acquiring the first A second candidate grayscale value of the sub-pixel for a fourth threshold time, the fourth threshold time being higher than the third threshold time.
  • first threshold time the terms “first threshold time”, “second threshold time”, “third threshold time” and “fourth threshold time” do not indicate a sequence between the respective threshold times order, the scope of the present disclosure is not limited in this respect.
  • the third threshold time may be higher than the first threshold time, may also be lower than the first threshold time, or may also be equal to the first threshold time.
  • the third threshold time corresponds to time Ta
  • the fourth threshold time corresponds to time Tb.
  • the third threshold time is equal to the first threshold time
  • the fourth threshold time is equal to the second threshold time.
  • the predetermined threshold time for digital compensation may also be different from the predetermined threshold time for analog compensation, and the scope of the present disclosure is not limited in this regard.
  • the electronic device 120 may determine a compensated grayscale value according to the third threshold time and the original grayscale value as the first candidate grayscale value, and the compensated grayscale value is used when the duration is equal to the third threshold time In the case of compensating the original grayscale value.
  • a plurality of threshold times may be predetermined, that is, a plurality of times Ta to Td in FIG. 3 .
  • the brightness corresponding to the maximum refresh rate of the display panel 140 may be used as a reference, and then the compensation grayscale value corresponding to each grayscale value for each threshold time is sequentially determined.
  • the maximum refresh rate of the display panel 140 is 164 Hz
  • the refresh rates of the display panel 140 corresponding to time Ta to Td are 122 Hz, 97 Hz, 80 Hz and 68 Hz, respectively.
  • the compensation grayscale value for each grayscale value from 0 to 255 for a refresh rate of 122Hz can be determined through pre-experimental debugging, so that when the refresh rate is switched between 164Hz and 122Hz, the display screen No brightness changes and flickering.
  • the compensation grayscale values corresponding to the respective grayscale values for the refresh rates of 97Hz, 80Hz and 68Hz can be predetermined, so that when the refresh rate is switched between 164Hz and the corresponding refresh rate, the display screen has no brightness change and flicker.
  • the determined compensated gray scale value, the corresponding original gray scale value, and the corresponding time may be stored in a lookup table similar to Table 1 above, and the lookup table may also be referred to as an RGB table.
  • the electronic device 120 may read the corresponding compensated grayscale value from the RGB table according to the original grayscale value of the first sub-pixel in the next frame when the timing reaches the time Ta. In this way, the compensation grayscale value for compensating the original grayscale value for a specific threshold time can be determined more efficiently.
  • the lookup table of the original grayscale value and the compensated grayscale value for a specific moment can be used as a reference lookup table, and the compensation for the same original grayscale value at other times can be determined
  • the offset value between the grayscale value and the compensated grayscale value at time Ta and store the offset value as an offset lookup table.
  • the electronic device 120 may determine the reference compensation gray scale for the original gray scale value at the time Ta from the reference lookup table according to the original gray scale value of the first sub-pixel in the next frame value, and determine the offset value for the original grayscale value from the offset lookup table, so as to determine the compensated grayscale value for the original grayscale value at time Tb based on the reference compensated grayscale value and the offset value. In this way, the occupation of the storage capacity of the memory can be saved.
  • the inventors have found through research that, for the display panel 140 in which the sub-pixels have positive and negative polarities, the leakage amounts of the pixel capacitors of the sub-pixels with different polarities may also be slightly different. Since the ACOM voltage and the SVCM voltage are common voltages connected to all sub-pixels, it is impossible to provide targeted compensation for the pixel capacitance of sub-pixels with different polarities in analog compensation. For this, the brightness can be polarity compensated for subpixels with different polarities in digital compensation.
  • the positive polarity pixel compensation table and the negative polarity pixel compensation table for different threshold times can be determined by additionally considering the polarity of the subpixel in a manner similar to that described above with reference to the RGB table, where the positive polarity
  • the pixel compensation table stores compensated grayscale values for compensating each original grayscale value when the subpixel has positive polarity
  • the negative polarity pixel compensation table stores compensation grayscale values for compensating each original grayscale value when the subpixel has negative polarity. Offset grayscale value for the grayscale value.
  • the electronic device 120 may use the position of the first sub-pixel in the display panel 140 to obtain the polarity of the first sub-pixel, and determine the compensated gray scale according to the third threshold time, the original gray scale value, and the polarity of the first sub-pixel value, as the first candidate grayscale value, and the compensated grayscale value is used to compensate the original grayscale value when the duration is equal to the third threshold time. For example, when the timing time of the vertical blanking area Vblank reaches time Ta, the electronic device 120 can determine the polarity of the first subpixel by searching the polarity template according to the position of the first subpixel, for example, the first subpixel at this time Positive polarity.
  • the electronic device 120 may acquire the compensated gray scale value for the original gray scale value of the first sub-pixel from the positive polarity pixel compensation table for the time Ta.
  • the polarity difference of each sub-pixel can be considered in the brightness compensation during the vertical active area Vactive of the next frame, so that targeted compensation can be provided for the pixel capacitance of sub-pixels with different polarities, enabling On the basis of analog compensation, brightness differences in different regions of the display panel 140 can be more finely compensated.
  • the electronic device 120 may determine the compensation grayscale value as the second candidate according to the fourth threshold time and the original grayscale value in a manner similar to that described above with reference to the first candidate grayscale value The gray scale value will not be repeated in this disclosure.
  • the electronic device 120 may acquire the candidate grayscale values of the first sub-pixel for the time Tb and the time Tc, and respond to the vertical blanking area Vblank When the timing time reaches the time Tc, the electronic device 120 can obtain the candidate gray scale values of the first sub-pixel for the time Tc and the time Td, and so on until the vertical blanking area Vblank of the current frame ends.
  • the electronic device 120 determines a target grayscale value based on the first candidate grayscale value and the second candidate grayscale value in response to the duration of the vertical blanking region Vblank being between the third threshold time and the fourth threshold time .
  • the current frame corresponds to the N-1th frame as an example.
  • the vertical blanking zone Vblank ends between the moment Ta and the moment Tb (shown by the gray arrow in FIG. 3 ), i.e. the duration of the vertical blanking zone Vblank is between the moment Ta and the moment Tb,
  • the third threshold time corresponds to the instant Ta and the fourth threshold time corresponds to the instant Tb.
  • the electronic device 120 may interpolate the first candidate grayscale value and the second candidate grayscale value to obtain a target grayscale value corresponding to the duration.
  • the electronic device 120 may, for example, perform linear interpolation on the first candidate gray scale value and the second candidate gray scale value obtained in block 402 to obtain a vertical
  • the gray scale value corresponding to the end time of the blanking area Vblank is used as the target gray scale value. In this way, the target grayscale value for the refresh rate of the current frame can be obtained more accurately, thereby improving the effect of digital compensation.
  • the electronic device may send the determined target grayscale value to the drive circuit 130 connected downstream of the electronic device 120 to generate a corresponding gamma voltage for the Vactive period of the next frame based on the compensated grayscale value to display the image data for the next frame.
  • the electronic device 120 may also determine the target grayscale value in any other suitable manner, for example, directly using the first candidate grayscale value or the second candidate grayscale value as the target grayscale value.
  • the scope of the present disclosure is This aspect is not limited.
  • the determined target grayscale value can be further adjusted for different positions in the display panel 140 by means of the area compensation described above, so as to more finely compensate for brightness differences in different areas of the display panel 140 .
  • the schemes according to various embodiments of the present disclosure measure the vertical blanking area in the current frame and issue corresponding compensation values when the predetermined threshold time is reached.
  • the brightness of the display panel during the vertical blanking period of the current frame is compensated in time.
  • the scheme according to the present disclosure enables to compensate the luminance variation caused by the leakage by timely adjusting the related analog voltage, so that there is no delay between the luminance compensation and the leakage, which can fundamentally solve the problem of The screen flickers to improve the user experience of the display panel.
  • Example implementations of the method according to the present disclosure have been described in detail above with reference to FIGS. 1 to 4 , and implementations of corresponding devices will be described below.
  • FIG. 5 shows a block diagram of an example apparatus 500 for compensating brightness of a display panel according to some embodiments of the present disclosure.
  • the device 500 can be used, for example, to implement an electronic device as shown in FIG. 1 .
  • the apparatus 500 may include a timing module configured to time a vertical blanking area in a current frame of the display panel.
  • the apparatus 500 may further include a first value determination module configured to determine the vertical blanking value for the display panel in the current frame in response to the timing time of the vertical blanking zone reaching the first threshold time. The luminance during the blanking period is first compensated to a first value.
  • the device may further include a second value determination module configured to, in response to the timing time of the vertical blanking zone reaching a second threshold time, determine the The luminance during the vertical blanking period is the second value of the second compensation, the second threshold time is higher than the first threshold time, and the second compensation is later than the first compensation.
  • a second value determination module configured to, in response to the timing time of the vertical blanking zone reaching a second threshold time, determine the The luminance during the vertical blanking period is the second value of the second compensation, the second threshold time is higher than the first threshold time, and the second compensation is later than the first compensation.
  • the display panel includes the first sub-pixel of the first pixel unit
  • the device may further include a target grayscale value determining module, and the target grayscale value determining module is configured to be based on the timing time of the vertical blanking zone and the second
  • the original grayscale value of a subpixel in the next frame determines the target grayscale value of the first subpixel in the next frame.
  • the next frame is located after the current frame in display order, and the target grayscale value is used for the first subpixel The brightness during the vertical active area in the next frame is compensated.
  • the target gray scale value determining module is further configured to perform the following operations in response to the timing time of the vertical blanking zone reaching the third threshold time: acquire the first sub- a first candidate gray scale value of the pixel for a third threshold time; and obtaining a second candidate gray scale value of the first sub-pixel for a fourth threshold time, the fourth threshold time being higher than the third threshold time.
  • the target grayscale value determining module is further configured to determine the target grayscale value based on the first candidate grayscale value and the second candidate grayscale value in response to the duration of the vertical blanking zone being between a third threshold time and a fourth threshold time. order value.
  • the modules and/or units included in the apparatus can be implemented in various ways, including software, hardware, firmware or any combination thereof.
  • one or more modules may be implemented using software and/or firmware, such as machine-executable instructions stored on a storage medium.
  • some or all of the units in the apparatus may be at least partially implemented by one or more hardware logic components.
  • Exemplary types of hardware logic components include, by way of example and not limitation, Field Programmable Gate Arrays (FPGAs), Application Specific Integrated Circuits (ASICs), Application Specific Standard Products (ASSPs), System on Chips (SOCs), Complex Programmable Logic Devices (CPLD), and so on.
  • modules and/or units shown in FIG. 5 may be implemented in part or in whole as hardware modules, software modules, firmware modules or any combination thereof.
  • the procedures, methods or processes described above may be implemented by hardware in the storage system or a host corresponding to the storage system or other computing devices independent of the storage system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

一种用于补偿显示面板(140)的亮度的方法(200)、装置(500)以及显示设备(100)。用于补偿显示面板(140)的亮度的方法(200)包括:对显示面板(140)的当前帧中的垂直消隐区(Vblank)进行计时(202);以及响应于垂直消隐区(Vblank)的计时时间达到第一阈值时间,确定用于对显示面板(140)在当前帧中的垂直消隐区(Vblank)期间的亮度进行第一补偿的第一值(204)。用于补偿显示面板(140)的亮度的方法(200)能够通过及时调整相关的模拟电压来补偿由于漏电而引起的亮度变化,使得亮度补偿与漏电之间不存在延迟,从而可以解决画面闪烁,提高显示面板(140)的用户体验。

Description

用于补偿显示面板的亮度的方法、装置以及设备 技术领域
本公开的实施例总体上涉及显示技术领域,更具体地涉及用于补偿显示面板的亮度的方法、装置以及设备。
背景技术
近年来,随着显示面板的分辨率和刷新率的不断提高,对显卡渲染能力提出了更高的要求。当显卡渲染帧率与显示面板的刷新率不一致时,就会出现卡顿、撕裂、延迟等问题。对此,显卡厂家逐步提出了可变刷新率(Variable Refresh Rate,VRR)技术。VRR技术通过动态调整显示面板的刷新率来匹配显卡的渲染帧率,从而解决了当显卡的渲染帧率低于显示面板的刷新率时,由于垂直同步导致的画面延迟、卡顿等问题。
在VRR技术中,垂直有效区(Vertical Active,Vactive)的持续时间固定,而垂直消隐区(Vertical Blanking,Vblank)的持续时间可变。通过调整垂直消隐区的持续时间来实现对显示面板刷新率的调整。以液晶显示(Liquid-Crystal Display,LCD)面板为例,低刷新率下每行像素电容的充电时间与高刷新率下的每行像素电容的充电时间相同,即在不同刷新率下当薄膜场效应晶体管(Thin Film Transistor,TFT)刚关闭时,液晶两端的像素电压一致,因此亮度一致。然而,在TFT关闭之后,在低刷新率的情况下垂直消隐区的持续时间更长,因此像素电容电压的保持时间相比于高刷新率更长,而保持时间越长则像素电容漏电越多,进而使得液晶电容两端电压变小,亮度相比于在高刷新率的情况下降低。因此,当显示面板的刷新率变化时,静止画面由于电容漏电而在高亮度和低亮度之间来回显示,当亮度变化的相对值超过韦伯常数1%时,人眼就能感觉到明显的闪烁。
因此,VRR技术对显示面板提出了新的挑战:在预定的刷新率变化范围内,显示面板应当具有高的显示一致性。目前,大多数显示面板在刷新率动态调整的情况下存在画面闪烁问题。这样的画面闪烁会使用户感觉到视觉抖动及疲劳,影响用户体验。
发明内容
鉴于上述问题,本公开的实施例旨在提供一种用于补偿显示面板的亮度的方案。
根据本公开的第一方面,提供了一种用于补偿显示面板的亮度的方法,该方法包括:对显示面板的当前帧中的垂直消隐区进行计时;以及响应于垂直消隐区的计时时间达到第一阈值时间,确定用于对显示面板在当前帧中的垂直消隐区期间的亮度进行第一补偿的第一值。通过在当前帧的垂直消隐区期间实时确定用于对显示面板在当前帧的垂直消隐区期间的亮度进行补偿的补偿值,而使得能够通过及时调整相关的模拟电压来补偿由于漏电而引起的亮度变化,使得亮度补偿与漏电之间不存在延迟,从而可以从根本上解决画面闪烁,提高显示面板的用户体验。
在一些实现方式中,该方法还包括:响应于垂直消隐区的计时时间达到第二阈值时间,确定用于对显示面板在当前帧中的垂直消隐区期间的亮度进行第二补偿的第二值,第二阈值时间高于第一阈值时间,第二补偿晚于第一补偿。通过这种方式,可以以分段补偿的方式来对显示面板在垂直消隐区期间的亮度进行补偿,从而使得亮度变化量进一 步减小,确保亮度变化量小于人眼可以观察到闪烁的阈值。
在一些实现方式中,显示面板包括第一像素单元的第一子像素,该方法还包括:基于垂直消隐区的计时时间和第一子像素在下一帧中的原始灰阶值,确定第一子像素在下一帧中的目标灰阶值,下一帧按显示顺序位于当前帧之后,目标灰阶值用于对第一子像素在下一帧中的垂直有效区期间的亮度进行补偿。通过这种方式,可以在下一帧的垂直有效区期间对不同灰阶值进行不同程度的补偿,从而可以很好地补偿不同刷新率之间的亮度差异及色度差异,以解决由亮色差异引起的闪烁问题。
在一些实现方式中,下一帧按显示顺序紧随当前帧,确定目标灰阶值包括:响应于垂直消隐区的计时时间达到第三阈值时间,执行以下操作:获取第一子像素的针对第三阈值时间的第一候选灰阶值;以及获取第一子像素的针对第四阈值时间的第二候选灰阶值,第四阈值时间高于第三阈值时间;以及响应于垂直消隐区的持续时间在第三阈值时间和第四阈值时间之间,基于第一候选灰阶值和第二候选灰阶值来确定目标灰阶值。通过这种方式,可以在准确确定垂直消隐区的持续时间,即准确确定当前帧的刷新率之后,基于该持续时间来在下一帧的垂直有效区期间对不同灰阶值进行不同程度的补偿,从而可以很好地补偿不同刷新率之间的亮度差异及色度差异,以解决由亮色差异引起的闪烁问题。
在一些实现方式中,获取第一候选灰阶值包括:根据第三阈值时间和原始灰阶值来确定补偿灰阶值,以作为第一候选灰阶值,补偿灰阶值用于在持续时间等于第三阈值时间的情况下补偿原始灰阶值。通过这种方式,可以较高效地确定针对特定阈值时间的用于补偿原始灰阶值的补偿灰阶值。
在一些实现方式中,获取第一候选灰阶值包括:使用第一子像素在显示面板中的位置来获取第一子像素的极性;以及根据第三阈值时间、原始灰阶值和第一子像素的极性来确定补偿灰阶值,以作为第一候选灰阶值,补偿灰阶值用于在持续时间等于第三阈值时间的情况下补偿原始灰阶值。通过这种方式,可以在下一帧的垂直有效区期间的亮度补偿中考虑各个子像素的极性差异,从而可以为具有不同极性的子像素的像素电容提供有针对性的补偿,使得能够可以在模拟补偿的基础上,更加精细地补偿显示面板140不同区域的亮度差异。
在一些实现方式中,基于第一候选灰阶值和第二候选灰阶值来确定目标灰阶值包括:对第一候选灰阶值和第二候选灰阶值进行插值,以获得与持续时间相对应的目标灰阶值。通过这种方式,可以较为准确地获得针对当前帧的刷新率的目标灰阶值,从而提高数字补偿的效果。
在一些实现方式中,第三阈值时间等于第一阈值时间,并且第四阈值时间等于第二阈值时间。
在一些实现方式中,确定目标灰阶值包括:使用第一子像素在显示面板中的位置来获取针对第一子像素的原始灰阶值的缩放因子;以及使用缩放因子对原始灰阶值进行缩放,以确定目标灰阶值。通过这种方式,可以在下一帧的垂直有效区期间的亮度补偿中考虑显示面板中不同位置的差异,从而可以在模拟补偿的基础上,更加精细地补偿显示面板不同区域的亮度差异。
在一些实现方式中,确定第一值包括:使用第一阈值时间来确定模拟补偿值,以作为第一值,模拟补偿值用于在垂直消隐区的持续时间等于第一阈值时间的情况下补偿显 示面板的亮度。
在一些实现方式中,对垂直消隐区进行计时包括:对用于显示面板的显示控制信号进行计时。
在一些实现方式中,显示控制信号包括以下至少一项:行同步HSYNC信号、场同步VSYNC信号、或者数据使能DE信号。
根据本公开的第二方面,提供了一种电子装置。该电子装置包括:计时模块,被配置为对显示面板的当前帧中的垂直消隐区进行计时;以及第一值确定模块,被配置为响应于垂直消隐区的计时时间达到第一阈值时间,确定用于对显示面板在当前帧中的垂直消隐区期间的亮度进行第一补偿的第一值。通过在当前帧的垂直消隐区期间实时确定用于对显示面板在当前帧的垂直消隐区期间的亮度进行补偿的补偿值,而使得能够通过及时调整相关的模拟电压来补偿由于漏电而引起的亮度变化,使得亮度补偿与漏电之间不存在延迟,从而可以从根本上解决画面闪烁,提高显示面板的用户体验。
在一些实现方式中,电子装置还包括:第二值确定模块,被配置为响应于垂直消隐区的计时时间达到第二阈值时间,确定用于对显示面板在当前帧中的垂直消隐区期间的亮度进行第二补偿的第二值,第二阈值时间高于第一阈值时间,第二补偿晚于第一补偿。通过这种方式,可以以分段补偿的方式来对显示面板在垂直消隐区期间的亮度进行补偿,从而使得亮度变化量进一步减小,确保亮度变化量小于人眼可以观察到闪烁的阈值。
在一些实现方式中,显示面板包括第一像素单元的第一子像素,电子装置还包括:目标灰阶值确定模块,被配置为基于垂直消隐区的计时时间和第一子像素在下一帧中的原始灰阶值,确定第一子像素在下一帧中的目标灰阶值,下一帧按显示顺序位于当前帧之后,目标灰阶值用于对第一子像素在下一帧中的垂直有效区期间的亮度进行补偿。通过这种方式,可以在下一帧的垂直有效区期间对不同灰阶值进行不同程度的补偿,从而可以很好地补偿不同刷新率之间的亮度差异及色度差异,以解决由亮色差异引起的闪烁问题。
在一些实现方式中,下一帧按显示顺序紧随当前帧,目标灰阶值确定模块还被配置为:响应于垂直消隐区的计时时间达到第三阈值时间,执行以下操作:获取第一子像素的针对第三阈值时间的第一候选灰阶值;以及获取第一子像素的针对第四阈值时间的第二候选灰阶值,第四阈值时间高于第三阈值时间;以及响应于垂直消隐区的持续时间在第三阈值时间和第四阈值时间之间,基于第一候选灰阶值和第二候选灰阶值来确定目标灰阶值。通过这种方式,可以在准确确定垂直消隐区的持续时间,即准确确定当前帧的刷新率之后,基于该持续时间来在下一帧的垂直有效区期间对不同灰阶值进行不同程度的补偿,从而可以很好地补偿不同刷新率之间的亮度差异及色度差异,以解决由亮色差异引起的闪烁问题。
根据本公开的第三方面,提供了一种电子设备,该电子设备包括:根据本公开的第二方面的电子装置;以及驱动电路,被配置为接收第一值,并且基于第一值向显示面板施加驱动信号。通过在当前帧的垂直消隐区期间实时确定用于对显示面板在当前帧的垂直消隐区期间的亮度进行补偿的补偿值,而使得能够通过及时调整相关的模拟电压来补偿由于漏电而引起的亮度变化,使得亮度补偿与漏电之间不存在延迟,从而可以从根本上解决画面闪烁,提高显示面板的用户体验。
在一些实现方式中,驱动信号包括以下至少一项:阵列公共ACOM电压信号、或 者共享公共SVCM电压信号。借助于ACOM电压信号和SVCM电压信号,可以在当前帧中的垂直消隐区实时补偿漏电,使得亮度补偿与漏电之间不存在延迟,从而可以从根本上解决画面闪烁,提高显示面板的用户体验。
提供发明内容部分是为了简化的形式来介绍对概念的选择,它们在下文的具体实施方式中将被进一步描述。发明内容部分无意标识本公开内容的关键特征或主要特征,也无意限制本公开内容的范围。
附图说明
通过参考附图阅读下文的详细描述,本公开的实施例的上述以及其它目的、特征和优点将变得易于理解。在附图中,以示例而非限制性的方式示出了本公开的若干实施例。
图1示出了根据本公开的一些实施例的显示设备的示意图;
图2示出了根据本公开的一些实施例的用于补偿显示面板的亮度的方法的流程图;
图3示出了根据本公开的一些实施例的用于补偿显示面板的亮度的示例性时序图;
图4示出了根据本公开的一些实施例的用于确定目标灰阶值的方法的流程图;以及图5示出了根据本公开的一些实施例的用于补偿显示面板的亮度的示例装置的框图。
具体实施方式
下面将参照附图更详细地描述本公开的优选实施例。虽然附图中显示了本公开的优选实施例,然而应该理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了使本公开更加透彻和完整,并且能够将本公开的范围完整地传达给本领域的技术人员。
在本文中使用的术语“包括”及其变形表示开放性包括,即“包括但不限于”。除非特别申明,术语“或”表示“和/或”。术语“基于”表示“至少部分地基于”。术语“一个示例实施例”和“一个实施例”表示“至少一个示例实施例”。术语“另一实施例”表示“至少一个另外的实施例”。术语“上”、“下”、“前”、“后”等指示放置或者位置关系的词汇均基于附图所示的方位或者位置关系,仅为了便于描述本公开的原理,而不是指示或者暗示所指的元件必须具有特定的方位、以特定的方位构造或操作,因此不能理解为对本公开的限制。
如上文所述,对于应用VRR技术的显示面板,由于不同的刷新率导致了垂直消隐区的持续时间变化,因此使得显示面板的亮度会发生变化,并且可能引起人眼可观察到的画面闪烁。
常规的解决显示画面闪烁的方案包括以下两种:第一,通过对刷新率进行实时检测,以最大刷新率亮度为基准,将不同刷新率下各灰阶的亮度补偿至基准亮度;第二,通过实时获取当前帧周期中的垂直消隐区的持续时长,来在持续时长达到预定阈值时下发伽马电压补偿值。
然而,这两种常规方案各自存在相应的问题。例如,对于第一种方案而言,刷新率检测作用在上一帧的垂直消隐区,而亮度补偿在当前帧的垂直有效区生效,因此在漏电和补偿之间存在延迟,使得不能从根本上解决画面闪烁,并且对于刷新率在最大值和最小值之间来回切换的极限场景,可能会加重闪烁程度。
对于第二种方案而言,由于基于伽马电压的补偿只在下一帧的垂直有效区才会起作用,因此即便是在当前帧的垂直消隐区反复下发伽马电压补偿值,也只有最后一次下发的补偿值会在下一帧的垂直有效区起作用。换言之,第二种方案无法在当前帧的垂直消隐区及时对显示面板的亮度进行补偿,因此在漏电和补偿之间同样存在延迟,使得不能从根本上解决画面闪烁,并且对于刷新率在最大值和最小值之间来回切换的极限场景,也可能会加重闪烁程度。此外,由于像素电容漏电是一个缓慢的过程,像第二种方案的在垂直消隐区结束时的一次补偿可能反而会加重闪烁。
本公开的各实施例提供了一种用于补偿显示面板的亮度的方案。根据本公开的各实施例,通过对当前帧中的垂直消隐区进行计时,并且在达到预定阈值时间时下发相对应的补偿值来对显示面板在当前帧的垂直消隐区期间的亮度及时进行补偿。
通过下文描述将会理解,由于根据本公开的各实施例的方案通过在当前帧的垂直消隐区期间实时确定用于对显示面板在当前帧的垂直消隐区期间的亮度进行补偿的补偿值,而使得能够通过及时调整相关的模拟电压来补偿由于漏电而引起的亮度变化,使得亮度补偿与漏电之间不存在延迟,从而可以从根本上解决画面闪烁,提高显示面板的用户体验。
图1示出了根据本公开的一些实施例的显示设备100的示意图。显示设备100总体上可以包括电子装置120、驱动电路130、以及显示面板140。应当理解的是,显示设备100还可以包括未示出的部件和/或可以省略所示出的部件,本公开的范围在此方面不受限制。
如图1所示,电子装置120可以从图像源(未示出)接收图像数据110。在一些实施例中,图像数据110可以是视频源信号。在一些实施例中,所接收的图像数据110可以首先被图像处理器处理,例如被执行图像增强和/或降噪等处理。电子装置120可以基于所述接收的图像数据110来生成用于驱动显示面板140的驱动电路130的时序控制信号。在一些实施例中,电子装置120可以由一个或多个芯片和/或硬件逻辑组件来实现。可以使用的示范类型的硬件逻辑组件包括但不限于现场可编程门阵列(Field Programmable Gate Array,FPGA)、专用集成电路(Application Specific Integrated Circuit,ASIC)、专用标准品(Application Specific Standard Parts,ASSP)、片上系统(System on Chip,SOC)、复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD),等等。
驱动电路130通过使用所接收的时序控制信号来生成用于控制显示面板140的驱动信号。在一些实施例中,驱动信号可以包括伽马电压信号。在一些实施例中,驱动信号可以包括阵列公共(Array Common,ACOM)电压信号。例如,对于垂直排列(Vertical Alignment,VA)面板而言,ACOM电压是阵列侧连接到所有子像素存储电容下极板的公共电压。在一些实施例中,驱动信号也可以包括共享公共(Share Commom,SVCM)电压信号,例如,对于VA面板而言,SVCM电压是各子像素的子区域中的共享电容下极板连接的公共电压。
如图1所示,驱动电路130经由多条行线RL1至RLm(单独或统一地被称为行线RL)和多条列线CL1至CLn(单独或统一地被称为列线CL)连接到显示面板140,其中m和n是正整数。显示面板140示例性地包括由多个像素单元P11至Pmn(单独或统一地被称为像素单元P)构成的像素阵列。在一些实施例中,每个像素单元P可以包括 多个子像素。在图1中以像素单元Pm2为例,示意性地示出了像素单元Pm2可以包括针对红绿蓝(Red Green Blue,RGB)三原色的三个子像素Pm2-R、Pm2-G和Pm2-B。
应当理解的是,图1中的显示面板140的结构仅是示例性的而非限制性的,根据本公开的各实施例的方案可以应用于诸如LCD面板、有机发光二极管(Organic Light-Emitting Diode,OLED)面板等的任何合适的显示面板,本公开的范围在此方面不受限制。
图2示出了根据本公开的一些实施例的用于补偿显示面板140的亮度的方法200的流程图。在一些实施例中,方法200可以由如图1所示的电子装置120执行。应当理解的是,方法200还可以包括未示出的附加框和/或可以省略所示出的框,本公开的范围在此方面不受限制。
在框202,电子装置120对显示面板140的当前帧中的垂直消隐区进行计时。在一些实施例中,电子装置120可以通过对用于显示面板140的显示控制信号进行计时,来对垂直消隐区进行计时。显示控制信号包括但不限于行同步(Horizontal Synchronization,HSYNC)信号、场同步(Vertical Synchronization,VSYNC)信号、或数据使能(Data Enable,DE)信号。
图3示出了根据本公开的一些实施例的用于补偿显示面板140的亮度的示例性时序图300。在图3所示的实施例中,借助于对DE信号进行计时来对垂直消隐区进行计时。示例性地,DE信号的高电平对应于帧中的垂直有效区Vactive,并且DE信号的低电平对应于帧中的垂直消隐区Vblank。在该实施例中,电子装置120可以从DE信号的每个下降沿开始进行计时,直至下一个上升沿为止,该低电平的持续时间即对应于相应垂直消隐区Vblank的持续时间。
如上文所述,在应用VRR技术的情况下,对于图3中所示的第N-1帧、第N帧和第N+1帧,各个帧中的垂直有效区Vactive的持续时间是相同,而各个帧中的垂直消隐区Vblank的持续时间可以不同。示例性地,第N帧的垂直消隐区Vblank持续时间大于第N-1帧的垂直消隐区Vblank持续时间,因此第N帧的刷新率低于第N-1帧的刷新率。
为了便于说明,在下文中将参考图3来描述本公开的各实施例的方案。应当理解的是,还可以以其它任何合适的方式来对当前帧中的垂直消隐区Vblank进行计时,例如还可以通过行计数检测的方式来对垂直消隐区Vblank进行计时,本公开的范围在此方面不受限制。
在框204,电子装置120响应于垂直消隐区Vblank的计时时间达到第一阈值时间,确定用于对显示面板140在当前帧中的垂直消隐区Vblank期间的亮度进行第一补偿的第一值。参考图3,假设第N帧对应于当前帧,并且时刻Ta对应于第一阈值时间。响应于垂直消隐区Vblank的计时时间达到时刻Ta,电子装置120可以使用第一阈值时间来确定模拟补偿值以作为第一值,该模拟补偿值用于在垂直消隐区Vblank的持续时间等于第一阈值时间的情况下补偿显示面板140的亮度。应当指出的是,由于调整伽马电压的补偿效果仅在下一帧的垂直有效区Vactive才生效,因此在根据本公开的各实施例的方案中需要通过调整诸如ACOM电压信号或SVCM电压信号之类的能够在当前帧中的垂直消隐区Vblank实时补偿漏电的模拟信号,来对显示面板140在当前帧中的垂直消隐区Vblank的亮度进行补偿。在本公开的上下文中,这种借助于模拟信号进行的亮度补偿也被称为“模拟补偿”。
在一些实施例中,可以预先确定多个阈值时间,即图3中的多个时刻Ta至Td。可以将与显示面板140的最大刷新率相对应的亮度作为基准,然后依次确定与每个阈值时间对应的模拟补偿值。示例性地,假设显示面板140的最大刷新率为164Hz,并且与时刻Ta至Td对应的刷新率分别是122Hz、97Hz、80Hz和68Hz。在一个示例中,可以通过预先进行的实验调试来确定针对刷新率122Hz的用于ACOM电压信号的模拟补偿值,使得刷新率在164Hz和122Hz之间相互切换时,显示画面没有亮度变化和闪烁。类似地,可以预先确定分别针对刷新率97Hz、80Hz和68Hz的模拟补偿值,使得刷新率在164Hz和相应刷新率之间相互切换时,显示画面没有亮度变化和闪烁。所确定的模拟补偿值与对应的刷新率可以被存储在查找表中。该查找表也可以被称为模拟补偿表。
下面的表1示出了用于ACOM电压信号的示例性模拟补偿表。
表1示例性模拟补偿表
刷新率 ACOM电压补偿值
164Hz 0
122Hz -16
97Hz -24
80Hz -34
68Hz -40
其中第一列示出了与预先确定的多个阈值时间相对应的多个刷新率,并且第二列示出了针对相应刷新率的ACOM电压补偿值。应当理解的是,表1中示出的数值仅是示例性的,本公开的范围在此方面不受限制。
例如,电子装置120可以在计时达到时刻Ta时,从模拟补偿表中获取针对与时刻Ta对应的刷新率122Hz的模拟补偿值-16,以作为第一值下发给连接在电子装置120下游的驱动电路130,以生成相应的ACOM电压来对漏电进行补偿,从而可以在垂直消隐区Vblank及时补偿显示面板140的亮度。通过这种方式,针对显示面板140的亮度补偿与漏电之间不存在延迟,从而可以从根本上解决画面闪烁。应当理解的是,还可以同时使用多个模拟信号来对显示面板140的亮度进行补偿,本公开的范围在此方面不受限制。
需要指出的是,在图3所示的实施例中,与多个阈值时间对应的时刻Ta至Td是在时间上均分的,即相邻的两个时刻之间的时间间隔相等。由于像素电容的漏电量与时间呈线性关系,因此通过这种时间上均分的配置,可以更合理地补偿漏电,从而可以保证显示画面不出现闪烁。应当理解的是,还可以以其它任何合适的方式来确定阈值时间,例如,多个阈值时间还可以是在刷新率上均分的,本公开的范围在此方面不受限制。
需要指出的是,除了借助于上述查找表之外,还可以以其它任何合适的方式来存储和指示阈值时间与相应模拟补偿值之间的对应关系,例如借助于拟合公式,本公开的范围在此方面不受限制。
在框206,电子装置120响应于垂直消隐区Vblank的计时时间达到第二阈值时间,确定用于对显示面板140在当前帧中的垂直消隐区Vblank期间的亮度进行第二补偿的第二值,第二阈值时间高于第一阈值时间,第二补偿晚于第一补偿。参考图3,假设时刻Tb对应于第二阈值时间,响应于垂直消隐区Vblank的计时时间达到时刻Tb,电子装置 120可以以与上文参考第一阈值时间描述的方式类似的方式使用第二阈值时间来确定模拟补偿值以作为第二值。本公开在此不再赘述。通过这种方式,电子装置120可以以分段补偿的方式来对显示面板140在垂直消隐区Vblank期间的亮度进行补偿,以使得亮度变化量进一步减小,从而可以确保亮度变化量小于人眼可以观察到闪烁的阈值。
在一些实施例中,针对当前帧对应于第N帧的情况,电子装置120还可以以与上面类似的方式在计时时间达到晚于时刻Tb的其它预定时刻(诸如时刻Tc和时刻Td)时,分别确定用于对显示面板140在当前帧中的垂直消隐区Vblank期间的亮度进行第三补偿和第四补偿的第三值和第四值。
在一些实施例中,还可以省略框206,即针对每个垂直消隐区Vblank仅执行一次补偿,例如只在计时时间达到时刻Ta时进行补偿而在其余时刻不再进行补偿。通过这种方式,可以减小电子装置120的运算量和带宽占用。
在框208,电子装置120基于垂直消隐区Vblank的计时时间和子像素在下一帧中的原始灰阶值,确定子像素在下一帧中的目标灰阶值,下一帧按显示顺序位于当前帧之后,目标灰阶值用于对子像素在下一帧中的垂直有效区Vactive期间的亮度进行补偿。示例性地,在当前帧对应于第N-1帧的情况下,第N帧和第N+1帧按显示顺序均位于当前帧之后,因此第N帧和第N+1帧都可以作为下一帧。在本公开的上下文中,这种借助于灰阶值进行的亮度补偿也被称为“数字补偿”。
发明人经研究发现:在垂直消隐区Vblank的计时时间到达阈值时间后通过诸如ACOM电压或SVCM电压的模拟电压对整个显示面板140的亮度进行补偿的情况下,在补偿时刻,位于显示面板140的不同行中的像素电容的漏电时间稍有不同,例如在垂直方向上位于显示面板140的最后一行中的像素电容的漏电时间短于位于显示面板140的第一行中的像素电容的漏电时间。因此,模拟电压对显示面板140不同区域的亮度的补偿效果并不一致。对此,可以在数字补偿中针对显示面板140的不同位置对亮度进行区域补偿。在下文中,以显示面板140中包括的第一像素单元的第一子像素为例进行说明。
在一些实施例中,电子装置120可以使用第一子像素在显示面板140中的位置来获取针对第一子像素的原始灰阶值的缩放因子。示例性地,可以预先将显示面板140沿垂直方向划分成K个子区域,其中K可以是任意正整数。然后,预先通过实验调试或计算确定针对每个子区域中的子像素的灰阶值的缩放因子。电子装置120可以基于第一子像素在显示面板140中的位置来确定第一子像素所位于的子区域,从而获取针对第一子像素的原始灰阶值的缩放因子。然后,电子装置120可以使用缩放因子对原始灰阶值进行缩放,以确定用于第一子像素的目标灰阶值。通过这种方式,可以在下一帧的垂直有效区Vactive期间的亮度补偿中考虑显示面板140中不同位置的差异,从而可以在模拟补偿的基础上,更加精细地补偿显示面板140不同区域的亮度差异。
在一些实施例中,下一帧按显示顺序紧随当前帧,例如在图3中第N帧按显示顺序紧随第N-1帧。在这种情况下,需要保证电子装置120能够在下一帧的垂直有效区Vactive到来之前确定用于对子像素在下一帧中的垂直有效区Vactive期间的亮度进行补偿的目标灰阶值,以尽量避免数字补偿的延迟。在下文中,假设当前帧对应于第N-1帧,下一帧对应于第N帧,并且以显示面板140中包括的第一像素单元的第一子像素为例进行说明。
图4示出了根据本公开的一些实施例的用于确定目标灰阶值的方法400的流程图。 例如,方法400可以作为如图2所示的框208的一种示例实现。在一些实施例中,方法400可以由如图1所示的电子装置120执行。应当理解的是,方法400还可以包括未示出的附加框和/或可以省略所示出的框,本公开的范围在此方面不受限制。
在框402,电子装置120响应于垂直消隐区Vblank的计时时间达到第三阈值时间,执行以下操作:获取第一子像素的针对第三阈值时间的第一候选灰阶值;以及获取第一子像素的针对第四阈值时间的第二候选灰阶值,第四阈值时间高于第三阈值时间。应当指出的是,在本公开的上下文中,术语“第一阈值时间”、“第二阈值时间”、“第三阈值时间”和“第四阈值时间”并不指示各个阈值时间之间的先后顺序,本公开的范围在此方面不受限制。示例性地,第三阈值时间可以高于第一阈值时间,也可以低于第一阈值时间,或者还可以等于第一阈值时间。
参考图3,假设第三阈值时间对应于时刻Ta,并且第四阈值时间对应于时刻Tb。在这种情况下,第三阈值时间等于第一阈值时间,并且第四阈值时间等于第二阈值时间。应当理解的是,用于数字补偿的预定阈值时间也可以不同于用于模拟补偿的预定阈值时间,本公开的范围在此方面不受限制。
在一些实施例中,电子装置120可以根据第三阈值时间和原始灰阶值来确定补偿灰阶值,以作为第一候选灰阶值,补偿灰阶值用于在持续时间等于第三阈值时间的情况下补偿原始灰阶值。示例性地,可以预先确定多个阈值时间,即图3中的多个时刻Ta至Td。可以将显示面板140的最大刷新率所对应的亮度作为基准,然后依次确定针对每个阈值时间的与各个灰阶值对应的补偿灰阶值。示例性地,假设显示面板140的最大刷新率为164Hz,并且与时刻Ta至Td对应的显示面板140刷新率分别为122Hz、97Hz、80Hz和68Hz。例如,可以通过预先实验调试来确定针对刷新率122Hz的用于灰阶值0至255中的每个灰阶值的补偿灰阶值,使得刷新率在164Hz和122Hz之间相互切换时,显示画面没有亮度变化和闪烁。类似地,可以预先确定针对刷新率97Hz、80Hz和68Hz的与各个灰阶值对应的补偿灰阶值,使得刷新率在164Hz和相应刷新率之间相互切换时,显示画面没有亮度变化和闪烁。所确定的补偿灰阶值、对应的原始灰阶值、以及对应的时刻可以被存储在与上面表1类似的查找表中,该查找表也可以被称为RGB表。示例性地,电子装置120可以在计时达到时刻Ta时,根据第一子像素在下一帧中的原始灰阶值从RGB表中读取对应的补偿灰阶值。通过这种方式,可以较高效地确定针对特定阈值时间的用于补偿原始灰阶值的补偿灰阶值。
在一些实施例中,可以将针对一个特定时刻(例如,时刻Ta)的原始灰阶值与补偿灰阶值的查找表作为基准查找表,并且确定其余时刻下的针对同一原始灰阶值的补偿灰阶值与时刻Ta下的补偿灰阶值之间的偏移值,并将该偏移值存储作为偏移查找表。示例性地,电子装置120可以在计时达到时刻Tb时,根据第一子像素在下一帧中的原始灰阶值从基准查找表中确定时刻Ta下用于该原始灰阶值的基准补偿灰阶值,并且从偏移查找表中确定针对该原始灰阶值的偏移值,从而基于基准补偿灰阶值和偏移值确定时刻Tb下用于该原始灰阶值的补偿灰阶值。通过这种方式,可以节省对存储器的存储容量的占用。
发明人经研究发现,对于子像素存在正负极性的显示面板140,具有不同极性的子像素的像素电容的漏电量也可能略有不同。由于ACOM电压和SVCM电压是连接到所有子像素的公共电压,因此在模拟补偿中无法为具有不同极性的子像素的像素电容提供有针对性的补偿。对此,可以在数字补偿中针对具有不同极性的子像素对亮度进行极性 补偿。
在一些实施例中,可以以与上文参考RGB表描述的方式类似的方式通过额外考虑子像素的极性来确定针对不同阈值时间的正极性像素补偿表和负极性像素补偿表,其中正极性像素补偿表中存储在子像素具有正极性的情况下用于补偿各个原始灰阶值的补偿灰阶值,并且负极性像素补偿表中存储在子像素具有负极性的情况下用于补偿各个原始灰阶值的补偿灰阶值。
电子装置120可以使用第一子像素在显示面板140中的位置来获取第一子像素的极性,并且根据第三阈值时间、原始灰阶值和第一子像素的极性来确定补偿灰阶值,以作为第一候选灰阶值,补偿灰阶值用于在持续时间等于第三阈值时间的情况下补偿原始灰阶值。例如,在垂直消隐区Vblank的计时时间达到时刻Ta时,电子装置120可以通过根据第一子像素的位置查找极性模板来确定第一子像素的极性,例如,第一子像素此时具有正极性。然后,电子装置120可以通过从针对时刻Ta的正极性像素补偿表中获取用于第一子像素的原始灰阶值的补偿灰阶值。通过这种方式,可以在下一帧的垂直有效区Vactive期间的亮度补偿中考虑各个子像素的极性差异,从而可以为具有不同极性的子像素的像素电容提供有针对性的补偿,使得能够可以在模拟补偿的基础上,更加精细地补偿显示面板140不同区域的亮度差异。
在一些实施例中,电子装置120可以以与上文参考第一候选灰阶值描述的方式类似的方式来根据第四阈值时间和原始灰阶值来确定补偿灰阶值,以作为第二候选灰阶值,本公开在此不再赘述。
在一些实施例中,响应于垂直消隐区Vblank的计时时间达到时刻Tb,电子装置120可以获取第一子像素的针对时刻Tb和时刻Tc的候选灰阶值,并且响应于垂直消隐区Vblank的计时时间达到时刻Tc,电子装置120可以获取第一子像素的针对时刻Tc和时刻Td的候选灰阶值,依次类推,直至当前帧的垂直消隐区Vblank结束为止。
在框404,电子装置120响应于垂直消隐区Vblank的持续时间在第三阈值时间和第四阈值时间之间,基于第一候选灰阶值和第二候选灰阶值来确定目标灰阶值。为了便于说明,以当前帧对应于第N-1帧为例。在这种情况下,垂直消隐区Vblank在时刻Ta和时刻Tb(在图3中以灰色箭头示出)之间结束,即垂直消隐区Vblank的持续时间在时刻Ta和时刻Tb之间,因此在这种情况下,第三阈值时间对应于时刻Ta并且第四阈值时间对应于时刻Tb。
在一些实施例中,电子装置120可以对第一候选灰阶值和第二候选灰阶值进行插值,以获得与持续时间相对应的目标灰阶值。响应于垂直消隐区Vblank在时刻Ta和时刻Tb之间结束,电子装置120例如可以对在框402中获取的第一候选灰阶值和第二候选灰阶值进行线性插值,以获得与垂直消隐区Vblank结束时刻对应的灰阶值作为目标灰阶值。通过这种方式,可以较为准确地获得针对当前帧的刷新率的目标灰阶值,从而提高数字补偿的效果。示例性地,电子装置可以将所确定的目标灰阶值下发给连接在电子装置120下游的驱动电路130,以生成相应的伽马电压,以在下一帧的垂直有效区Vactive期间基于经补偿的灰阶值来显示针对下一帧的图像数据。
此外,在线性插值的情况下,用于数字补偿的多个时间阈值在时间上均分将是有利的,因为可以提高借助于线性插值所获得的目标灰阶值的准确度,从而可以进一步保证数字补偿的效果。
应当指出的是,电子装置120还可以以其它任何合适的方式来确定目标灰阶值,例如直接将第一候选灰阶值或第二候选灰阶值作为目标灰阶值,本公开的范围在此方面不受限制。
在一些实施例中,还可以借助于在上文中描述的区域补偿来进一步针对显示面板140中的不同位置调整所确定的目标灰阶值,以更加精细地补偿显示面板140不同区域的亮度差异。
通过上述的各种数字补偿方式,可以在准确确定垂直消隐区Vblank的持续时间,即准确确定当前帧的刷新率之后,基于该持续时间来在下一帧的垂直有效区Vactive期间对不同灰阶值进行不同程度的补偿,从而可以很好地补偿不同刷新率之间的亮度差异及色度差异,以解决由亮色差异引起的闪烁问题。
通过以上结合图1至图4的描述可以看到,根据本公开的各实施例的方案通过对当前帧中的垂直消隐区进行计时,并且在达到预定阈值时间时下发相对应的补偿值来对显示面板在当前帧的垂直消隐区期间的亮度及时进行补偿。与常规已知的方案相比,根据本公开的方案使得能够通过及时调整相关的模拟电压来补偿由于漏电而引起的亮度变化,使得亮度补偿与漏电之间不存在延迟,从而可以从根本上解决画面闪烁,提高显示面板的用户体验。
在上文中已经参考图1至图4详细描述了根据本公开的方法的示例实现,在下文中将描述相应的装置的实现。
图5示出了根据本公开的一些实施例的用于补偿显示面板的亮度的示例装置500的框图。该装置500例如可以用于实现如图1中所示的电子装置。如图5所示,装置500可以包括计时模块,该计时模块被配置为对显示面板的当前帧中的垂直消隐区进行计时。此外,装置500还可以包括第一值确定模块,该第一值确定模块被配置为响应于垂直消隐区的计时时间达到第一阈值时间,确定用于对显示面板在当前帧中的垂直消隐区期间的亮度进行第一补偿的第一值。
在一些实施例中,装置还可以包括第二值确定模块,该第二值确定模块被配置为响应于垂直消隐区的计时时间达到第二阈值时间,确定用于对显示面板在当前帧中的垂直消隐区期间的亮度进行第二补偿的第二值,第二阈值时间高于第一阈值时间,第二补偿晚于第一补偿。
在一些实施例中,显示面板包括第一像素单元的第一子像素,装置还可以包括目标灰阶值确定模块,该目标灰阶值确定模块被配置为基于垂直消隐区的计时时间和第一子像素在下一帧中的原始灰阶值,确定第一子像素在下一帧中的目标灰阶值,下一帧按显示顺序位于当前帧之后,目标灰阶值用于对第一子像素在下一帧中的垂直有效区期间的亮度进行补偿。
在一些实施例中,下一帧按显示顺序紧随当前帧,目标灰阶值确定模块还被配置为响应于垂直消隐区的计时时间达到第三阈值时间,执行以下操作:获取第一子像素的针对第三阈值时间的第一候选灰阶值;以及获取第一子像素的针对第四阈值时间的第二候选灰阶值,第四阈值时间高于第三阈值时间。目标灰阶值确定模块还被配置为响应于垂直消隐区的持续时间在第三阈值时间和第四阈值时间之间,基于第一候选灰阶值和第二候选灰阶值来确定目标灰阶值。
装置中所包括的模块和/或单元可以利用各种方式来实现,包括软件、硬件、固件或 其任意组合。在一些实施例中,一个或多个模块可以使用软件和/或固件来实现,例如存储在存储介质上的机器可执行指令。除了机器可执行指令之外或者作为替代,装置中的部分或者全部单元可以至少部分地由一个或多个硬件逻辑组件来实现。作为示例而非限制,可以使用的示范类型的硬件逻辑组件包括现场可编程门阵列(FPGA)、专用集成电路(ASIC)、专用标准品(ASSP)、片上系统(SOC)、复杂可编程逻辑器件(CPLD),等等。
图5中所示的这些模块和/或单元可以部分或者全部地实现为硬件模块、软件模块、固件模块或者其任意组合。特别地,在某些实施例中,上文描述的流程、方法或过程可以由存储系统或与存储系统对应的主机或独立于存储系统的其它计算设备中的硬件来实现。
此外,虽然采用特定次序描绘了各操作,但是这应当理解为要求这样操作以所示出的特定次序或以顺序次序执行,或者要求所有图示的操作应被执行以取得期望的结果。在一定环境下,多任务和并行处理可能是有利的。同样地,虽然在上面论述中包含了若干具体实现细节,但是这些不应当被解释为对本公开的范围的限制。在单独的实施例的上下文中描述的某些特征还可以组合地实现在单个实现中。相反地,在单个实现的上下文中描述的各种特征也可以单独地或以任何合适的子组合的方式实现在多个实现中。
尽管已经采用特定于结构特征和/或方法逻辑动作的语言描述了本主题,但是应当理解所附权利要求书中所限定的主题未必局限于上面描述的特定特征或动作。相反,上面所描述的特定特征和动作仅仅是实现权利要求书的示例形式。

Claims (18)

  1. 一种用于补偿显示面板的亮度的方法,其特征在于,所述方法包括:
    对所述显示面板的当前帧中的垂直消隐区进行计时;以及
    响应于所述垂直消隐区的计时时间达到第一阈值时间,确定用于对所述显示面板在所述当前帧中的垂直消隐区期间的亮度进行第一补偿的第一值。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    响应于所述垂直消隐区的计时时间达到第二阈值时间,确定用于对所述显示面板在所述当前帧中的垂直消隐区期间的亮度进行第二补偿的第二值,所述第二阈值时间高于所述第一阈值时间,所述第二补偿晚于所述第一补偿。
  3. 根据权利要求1或2所述的方法,其特征在于,所述显示面板包括第一像素单元的第一子像素,所述方法还包括:
    基于所述垂直消隐区的计时时间和所述第一子像素在下一帧中的原始灰阶值,确定所述第一子像素在所述下一帧中的目标灰阶值,所述下一帧按显示顺序位于所述当前帧之后,所述目标灰阶值用于对所述第一子像素在所述下一帧中的垂直有效区期间的亮度进行补偿。
  4. 根据权利要求3所述的方法,其特征在于,所述下一帧按所述显示顺序紧随所述当前帧,确定所述目标灰阶值包括:
    响应于所述垂直消隐区的计时时间达到第三阈值时间,执行以下操作:
    获取所述第一子像素的针对所述第三阈值时间的第一候选灰阶值;以及
    获取所述第一子像素的针对第四阈值时间的第二候选灰阶值,所述第四阈值时间高于所述第三阈值时间;以及
    响应于所述垂直消隐区的持续时间在所述第三阈值时间和所述第四阈值时间之间,基于所述第一候选灰阶值和所述第二候选灰阶值来确定所述目标灰阶值。
  5. 根据权利要求4所述的方法,其特征在于,获取所述第一候选灰阶值包括:
    根据所述第三阈值时间和所述原始灰阶值来确定补偿灰阶值,以作为所述第一候选灰阶值,所述补偿灰阶值用于在所述持续时间等于所述第三阈值时间的情况下补偿所述原始灰阶值。
  6. 根据权利要求4所述的方法,其特征在于,获取所述第一候选灰阶值包括:
    使用所述第一子像素在所述显示面板中的位置来获取所述第一子像素的极性;以及
    根据所述第三阈值时间、所述原始灰阶值和所述第一子像素的极性来确定补偿灰阶值,以作为所述第一候选灰阶值,所述补偿灰阶值用于在所述持续时间等于所述第三阈值时间的情况下补偿所述原始灰阶值。
  7. 根据权利要求4至6中任一项所述的方法,其特征在于,基于所述第一候选灰阶值和所述第二候选灰阶值来确定所述目标灰阶值包括:
    对所述第一候选灰阶值和所述第二候选灰阶值进行插值,以获得与所述持续时间相对应的目标灰阶值。
  8. 根据权利要求4至7中任一项所述的方法,其特征在于,所述第三阈值时间等于所述第一阈值时间,并且所述第四阈值时间等于所述第二阈值时间。
  9. 根据权利要求3所述的方法,其特征在于,确定所述目标灰阶值包括:
    使用所述第一子像素在所述显示面板中的位置来获取针对所述第一子像素的所述原始灰 阶值的缩放因子;以及
    使用所述缩放因子对所述原始灰阶值进行缩放,以确定所述目标灰阶值。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,确定所述第一值包括:
    使用所述第一阈值时间来确定模拟补偿值,以作为所述第一值,所述模拟补偿值用于在所述垂直消隐区的持续时间等于所述第一阈值时间的情况下补偿所述显示面板的亮度。
  11. 根据权利要求1至10中任一项所述的方法,其特征在于,对所述垂直消隐区进行计时包括:
    对用于所述显示面板的显示控制信号进行计时。
  12. 根据权利要求11所述的方法,其特征在于,所述显示控制信号包括以下至少一项:行同步HSYNC信号、场同步VSYNC信号、或者数据使能DE信号。
  13. 一种电子装置,其特征在于,所述电子装置包括:
    计时模块,被配置为对显示面板的当前帧中的垂直消隐区进行计时;以及
    第一值确定模块,被配置为响应于所述垂直消隐区的计时时间达到第一阈值时间,确定用于对所述显示面板在所述当前帧中的垂直消隐区期间的亮度进行第一补偿的第一值。
  14. 根据权利要求13所述的电子装置,其特征在于,所述电子装置还包括:
    第二值确定模块,被配置为响应于所述垂直消隐区的计时时间达到第二阈值时间,确定用于对所述显示面板在所述当前帧中的垂直消隐区期间的亮度进行第二补偿的第二值,所述第二阈值时间高于所述第一阈值时间,所述第二补偿晚于所述第一补偿。
  15. 根据权利要求13或14所述的电子装置,其特征在于,所述显示面板包括第一像素单元的第一子像素,所述电子装置还包括:
    目标灰阶值确定模块,被配置为基于所述垂直消隐区的计时时间和所述第一子像素在下一帧中的原始灰阶值,确定所述第一子像素在所述下一帧中的目标灰阶值,所述下一帧按显示顺序位于所述当前帧之后,所述目标灰阶值用于对所述第一子像素在所述下一帧中的垂直有效区期间的亮度进行补偿。
  16. 根据权利要求15所述的电子装置,其特征在于,所述下一帧按所述显示顺序紧随所述当前帧,所述目标灰阶值确定模块还被配置为:
    响应于所述垂直消隐区的计时时间达到第三阈值时间,执行以下操作:
    获取所述第一子像素的针对所述第三阈值时间的第一候选灰阶值;以及
    获取所述第一子像素的针对第四阈值时间的第二候选灰阶值,所述第四阈值时间高于所述第三阈值时间;以及
    响应于所述垂直消隐区的持续时间在所述第三阈值时间和所述第四阈值时间之间,基于所述第一候选灰阶值和所述第二候选灰阶值来确定所述目标灰阶值。
  17. 一种电子设备,其特征在于,所述电子设备包括:
    根据权利要求13至16中任一项所述的电子装置;以及
    驱动电路,被配置为接收所述第一值,并且基于所述第一值向所述显示面板施加驱动信号。
  18. 根据权利要求17所述的电子设备,其特征在于,所述驱动信号包括以下至少一项:阵列公共ACOM电压信号、或者共享公共SVCM电压信号。
PCT/CN2022/074822 2022-01-28 2022-01-28 用于补偿显示面板的亮度的方法、装置以及设备 WO2023142001A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/074822 WO2023142001A1 (zh) 2022-01-28 2022-01-28 用于补偿显示面板的亮度的方法、装置以及设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/074822 WO2023142001A1 (zh) 2022-01-28 2022-01-28 用于补偿显示面板的亮度的方法、装置以及设备

Publications (1)

Publication Number Publication Date
WO2023142001A1 true WO2023142001A1 (zh) 2023-08-03

Family

ID=87470115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/074822 WO2023142001A1 (zh) 2022-01-28 2022-01-28 用于补偿显示面板的亮度的方法、装置以及设备

Country Status (1)

Country Link
WO (1) WO2023142001A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004212747A (ja) * 2003-01-07 2004-07-29 Hitachi Ltd 表示装置及びその駆動方法
US20180059868A1 (en) * 2016-08-29 2018-03-01 Apple Inc. Touch induced flicker mitigation for variable refresh rate display
CN110570828A (zh) * 2019-09-11 2019-12-13 京东方科技集团股份有限公司 显示面板亮度调整方法、装置、设备及可读存储介质
CN111640390A (zh) * 2020-06-30 2020-09-08 京东方科技集团股份有限公司 显示画面闪烁调节电路及方法、显示装置
CN112201208A (zh) * 2019-01-11 2021-01-08 苹果公司 具有混合像素内和外部补偿的电子显示器
CN113658565A (zh) * 2021-08-30 2021-11-16 深圳市华星光电半导体显示技术有限公司 显示面板和电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004212747A (ja) * 2003-01-07 2004-07-29 Hitachi Ltd 表示装置及びその駆動方法
US20180059868A1 (en) * 2016-08-29 2018-03-01 Apple Inc. Touch induced flicker mitigation for variable refresh rate display
CN112201208A (zh) * 2019-01-11 2021-01-08 苹果公司 具有混合像素内和外部补偿的电子显示器
CN110570828A (zh) * 2019-09-11 2019-12-13 京东方科技集团股份有限公司 显示面板亮度调整方法、装置、设备及可读存储介质
CN111640390A (zh) * 2020-06-30 2020-09-08 京东方科技集团股份有限公司 显示画面闪烁调节电路及方法、显示装置
CN113658565A (zh) * 2021-08-30 2021-11-16 深圳市华星光电半导体显示技术有限公司 显示面板和电子设备

Similar Documents

Publication Publication Date Title
JP5399432B2 (ja) 液晶表示装置とその駆動方法
US9495923B2 (en) Liquid crystal display device, method of driving liquid crystal display device, and television receiver
KR102060627B1 (ko) 표시 장치 및 그 구동 방법
US9218791B2 (en) Liquid crystal display device and method for driving a liquid crystal display device
US9311873B2 (en) Polarity inversion driving method for liquid crystal display panel, driving apparatus and display device
WO2021000632A1 (zh) 液晶显示面板以及改善液晶显示面板动态画面拖尾的方法
KR102087411B1 (ko) 표시 장치 및 그것의 구동 방법
KR20160009188A (ko) 표시 패널의 구동 방법 및 이를 수행하기 위한 표시 장치
US11776450B2 (en) Driving method and display device
KR101244485B1 (ko) 액정표시장치와 그 구동방법
KR20070059337A (ko) 액정표시장치 및 그의 구동 방법
KR102084714B1 (ko) 표시 장치 및 그 구동 방법
KR101926521B1 (ko) 액정 표시 장치
CN110827733A (zh) 用于显示面板的显示方法与显示设备
WO2023142001A1 (zh) 用于补偿显示面板的亮度的方法、装置以及设备
KR20120133881A (ko) 액정표시장치와 그 구동방법
US9940865B2 (en) Liquid crystal display device
KR20150076442A (ko) 액정표시장치
KR20100030173A (ko) 액정표시장치
KR101123075B1 (ko) 킥백전압 보상방법과 이를 이용한 액정표시장치
KR101568261B1 (ko) 액정 표시장치의 구동장치와 그 구동방법
KR100864980B1 (ko) 액정표시장치의 잔상방지장치
US9818324B2 (en) Transmission device, display device, and display system
KR20160078770A (ko) 액정표시장치
KR20040078298A (ko) 액정 표시 장치의 구동 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22922838

Country of ref document: EP

Kind code of ref document: A1