WO2023141930A1 - 一种显示设备及其压降补偿方法 - Google Patents

一种显示设备及其压降补偿方法 Download PDF

Info

Publication number
WO2023141930A1
WO2023141930A1 PCT/CN2022/074551 CN2022074551W WO2023141930A1 WO 2023141930 A1 WO2023141930 A1 WO 2023141930A1 CN 2022074551 W CN2022074551 W CN 2022074551W WO 2023141930 A1 WO2023141930 A1 WO 2023141930A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission line
power supply
transmission
voltage
pin
Prior art date
Application number
PCT/CN2022/074551
Other languages
English (en)
French (fr)
Other versions
WO2023141930A9 (zh
Inventor
李强
赖政德
赵成杰
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2022/074551 priority Critical patent/WO2023141930A1/zh
Priority to CN202280000098.3A priority patent/CN116997953A/zh
Publication of WO2023141930A1 publication Critical patent/WO2023141930A1/zh
Publication of WO2023141930A9 publication Critical patent/WO2023141930A9/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes

Definitions

  • the present disclosure relates to the field of display technology, in particular, to a display device and a voltage drop compensation method thereof.
  • OLED Organic Light Emitting Diode
  • OLED Organic Light Emitting Diode
  • the purpose of the present disclosure is to overcome the shortcomings of the above-mentioned prior art, and provide a display device and a voltage drop compensation method thereof.
  • a display device including: a signal source terminal, a display terminal and a transmission part, the signal source terminal is connected to the display terminal through the transmission part; wherein the signal source terminal includes : a power supply module, the power supply module includes a voltage output terminal and a voltage feedback terminal, the voltage output terminal is used to output a power supply signal, the voltage feedback terminal is used to obtain a feedback voltage signal, and the power supply module is configured based on the The feedback voltage signal adjusts the power supply signal; the transmission part includes: a first transmission line, the first end of which is connected to the voltage output end, and the second end outputs the power supply signal; a second transmission line is set separately from the first transmission line , the first end of the second transmission line is connected to the voltage feedback end, and the second end is connected to the second end of the first transmission line.
  • the transmission part includes: a first connector connected to the signal source end, the first connector includes a first pin and a second pin, the The first pin is connected to the first transmission line, the second pin is connected to the second transmission line, and the first connector is connected to the voltage output terminal through the first pin, and through the first pin
  • the two pins are connected to the voltage feedback end; the second connector is connected to the display end, and the first transmission line is connected to the second transmission line at the second connector end.
  • the display device includes a plurality of transmission parts; the signal source end includes a plurality of power supply modules configured to output a plurality of different The power supply signal; wherein, the plurality of transmission parts are set in one-to-one correspondence with the plurality of power supply modules.
  • the multiple power supply modules include a first power supply module, a second power supply module and a third power supply module, the first power supply module is used to output a first power supply signal, and the The second power supply module is used to output the second power supply signal, the third power supply module is used to output the third power supply signal, the voltage of the first power supply signal, the voltage of the second power supply signal, the third The voltages of the power supply signals are different from each other;
  • the multiple transmission parts include a first transmission part, a second transmission part and a third transmission part; wherein, the first transmission part and the second transmission part are arranged on the first The circuit board, the third transmission part is arranged on the second circuit board.
  • the transmission part includes a first conductive layer and a second conductive layer, and the first conductive layer is insulated from the second conductive layer;
  • the second connector includes The third pin, the third pin is connected to the first transmission line; the first pin, the second pin, the first transmission line, and the second transmission line are all located on the first conductive layer, the third pin is located in the second conductive layer; or, the first pin, the second pin, the first transmission line, and the second transmission line are all located in the second conductive layer layer, the third pin is located in the first conductive layer; or, the first pin and the second pin are located in the first conductive layer, the first transmission line, the second transmission line , the third pins are located on the second conductive layer; or, the first pin and the second pin are located on the second conductive layer, the first transmission line, the second transmission line , the third pins are located on the first conductive layer; or, the first pin, the second pin, the first transmission line, the second transmission line, the third pin are located on the first conductive layer;
  • the first connector includes a plurality of first pins, and the plurality of first pins are arranged in parallel;
  • the second connector includes a plurality of first pins Three pins, and a plurality of the third pins are arranged in parallel; wherein, the plurality of the first pins are respectively connected to the first end of the first transmission line, and the plurality of the third pins are respectively connected to the the second end of the first transmission line.
  • the first pin, the second pin, the first transmission line, and the second transmission line are all located on the first conductive layer, and the third The pins are located on the second conductive layer; the first transmission part and the second transmission part both include: a first conductive part disposed at the second connector end and located on the first conductive layer; A conductive part is connected to the second end of the first transmission line; a second conductive part is located in the second conductive layer and opposite to the first conductive part, and the second conductive part is connected to the first conductive part through a via hole. A conductive part; wherein, in the same transmission part, the second conductive part is also connected to the second transmission line, and the second conductive part is respectively connected to a plurality of the third pins.
  • the width of the second conductive portion is greater than the width of the first conductive portion.
  • the line width of the first transmission line is greater than the line width of the second transmission line.
  • the line width of the first transmission line is d1, the line width of the second transmission line is d2, and d1/d2 is greater than or equal to 8 and less than equal to 10; in the second transmission part, the line width of the first transmission line is d3, the line width of the second transmission line is d4, and d3/d4 is greater than or equal to 8 and less than or equal to 10; the third transmission part Among them, the line width of the first transmission line is d5, the line width of the second transmission line is d6, and d5/d6 is greater than or equal to 2 and less than or equal to 4.
  • d1/d5 is greater than or equal to 2 and less than or equal to 4
  • d3/d5 is greater than or equal to 2 and less than or equal to 4.
  • the third pins in the first transmission part are more than the first pins; the third pins in the second transmission part are more than the first pins; The number of third pins in the third transmission part is the same as that of the first pins.
  • the second connector in the first transmission part and the second connector in the second transmission part each include nine third tubes pins; the second connector in the third transmission part includes three third pins.
  • the display device further includes: a transfer part, one end of which is connected to the signal source end, and the other end is connected to the first end of the first transmission part and the second transmission part.
  • the first end of the first transmission part and the first end of the third transmission part, the second end of the first transmission part, the second end of the second transmission part and the second end of the third transmission part are connected the display terminal.
  • a voltage drop compensation circuit which is applied to the display device described in any embodiment of the present disclosure, and the voltage drop compensation circuit includes: a power supply module arranged at the signal source end, the power supply The module includes: a voltage output terminal, used to output a power supply signal; a feedback voltage terminal, used to obtain a feedback voltage signal; a voltage divider module, the input terminal of the voltage divider module is connected to the voltage output terminal, and the output terminal is connected to the feedback voltage Terminal, the voltage division module is configured to determine a feedback voltage signal based on the output voltage signal of the voltage output terminal according to a preset voltage division ratio; the power supply module is configured to output to the voltage output terminal based on the feedback voltage signal The power supply signal is adjusted.
  • the voltage dividing module includes: a first resistor, the first end of which is used as the input end of the voltage dividing module; a second resistor, the first end of which is connected to the The second terminal of the first resistor is connected as the output terminal of the voltage dividing module, and the second terminal of the second resistor is grounded.
  • it further includes: a filter capacitor, one end of which is connected to the input end of the voltage dividing module, and the other end is connected to the output end of the voltage dividing module.
  • a first transmission line and a second transmission line are arranged in the transmission part, the second transmission line is set separately from the first transmission line, and the second end of the second transmission line is connected to the first transmission line at the second end of the first transmission line.
  • the transmission line is connected, so that the voltage signal collected by the second transmission line is the actual power supply signal after the line loss, and the second transmission line transmits the actual power supply signal to the feedback voltage terminal of the power supply module, so that the power supply module can be based on the actual power supply signal Adjust the output voltage so that the transmission part outputs a stable target voltage at the end connected to the display end, which can not only solve the problems of horizontal stripes and flickering screens caused by the voltage drop of Logic, but also solve the problems of brightness drop caused by EL voltage drop, Issues such as Gamma drift and CIE out-of-spec.
  • FIG. 1 is a schematic structural diagram of a display device according to an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of a display device according to another embodiment of the present disclosure.
  • Fig. 3 is a schematic structural diagram of the transmission part in Fig. 1;
  • Fig. 4 is a cross-sectional view of the transmission part along the AA direction in Fig. 3;
  • FIG. 5 is a schematic structural diagram of a state in which a transmission unit is connected to a signal source terminal and a display terminal according to an embodiment of the present disclosure
  • FIG. 6 is a schematic structural diagram of a state in which a transmission unit is connected to a signal source terminal and a display terminal according to another embodiment of the present disclosure
  • FIG. 7 is a schematic structural diagram of a display device according to another embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of pins of a first transmission unit and a second transmission unit according to an embodiment of the present disclosure
  • FIG. 9 is a schematic diagram of pins of a third transmission unit according to an embodiment of the present disclosure.
  • Fig. 10 is a schematic top view of a first transmission part according to an embodiment of the present disclosure.
  • Fig. 11 is a schematic top view of a first transmission part according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of a display device according to another embodiment of the present disclosure.
  • FIG. 13 is a schematic diagram of a voltage drop compensation circuit according to an embodiment of the present disclosure.
  • Example embodiments will now be described more fully with reference to the accompanying drawings.
  • Example embodiments may, however, be embodied in many forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the concept of example embodiments to those skilled in the art.
  • the same reference numerals in the drawings denote the same or similar structures, and thus their detailed descriptions will be omitted.
  • the drawings are merely schematic illustrations of the present disclosure and are not necessarily drawn to scale.
  • a transistor refers to an element including at least three terminals of a gate electrode, a drain electrode, and a source electrode.
  • a transistor has a channel region between a drain electrode (drain electrode terminal, drain region, or drain electrode) and a source electrode (source electrode terminal, source region, or source electrode), and current can flow through the drain electrode, the channel region, and the source electrode .
  • the channel region refers to a region through which current mainly flows.
  • the first electrode may be a drain electrode and the second electrode may be a source electrode, or the first electrode may be a source electrode and the second electrode may be a drain electrode.
  • the functions of the "source electrode” and “drain electrode” may be interchanged. Therefore, in this specification, “source electrode” and “drain electrode” can be interchanged
  • FIG. 1 is a schematic structural diagram of a display device according to an embodiment of the present disclosure.
  • the display device may include a signal source terminal 10, a display terminal 30 and a transmission unit 20. Connected through the transmission part 20; wherein, the signal source terminal 10 may include a power supply module 11, and the power supply module 11 may include a voltage output terminal Vout and a voltage feedback terminal FB, the voltage output terminal Vout is used to output a power supply signal, and the voltage feedback terminal FB is used for Acquiring the feedback voltage signal, the power supply module 11 is configured to adjust the power supply signal based on the feedback voltage signal;
  • the transmission part 20 may include: a first transmission line L1 and a second transmission line L2, the first end of the first transmission line L1 is used to connect to the voltage output terminal Vout , the second end of the first transmission line L1 is used to output the power supply signal; the second transmission line L2 is set separately from the first transmission line L1, the first end of the second transmission line L2 is used to connect the voltage feedback
  • the transmission part 20 is provided with a first transmission line L1 and a second transmission line L2, the second transmission line L2 is set separately from the first transmission line L1, and the second end of the second transmission line L2 is connected to the first transmission line L2.
  • the second end of the transmission line L1 is connected to the first transmission line L1, so that the voltage signal collected by the second transmission line L2 is the actual power supply signal after line loss, and the second transmission line L2 transmits the actual power supply signal to the power supply module 11
  • the feedback voltage terminal so that the power supply module 11 can adjust the output voltage based on the actual power supply signal, so that the transmission part 20 can output a stable target voltage at the end connected to the display terminal 30, which can not only solve the horizontal stripes caused by the voltage drop of Logic, Problems such as flickering screens can also be solved, such as brightness drop caused by EL voltage drop, Gamma drift, and CIE over-regulation problems.
  • the first transmission line L1 is a voltage output line, which is used to output the power supply signal output by the power supply module 11 to the display terminal;
  • the second transmission line L2 is a voltage feedback line, which is used to collect The actual power supply signal at the display terminal is transmitted to the power supply module 11 as a feedback voltage signal.
  • the transmission part 20 may include a first connector J1 and a second connector J2, the first connector J1 may be used for connecting the signal source terminal 10, and the second connector J2 may be used for Connected to the display terminal 30 , the second transmission line L2 can be connected to the first transmission line L1 at the second connector J2 to collect the actual power supply signal output by the transmission part 20 .
  • the second end of the first transmission line L1 described in this exemplary embodiment refers to the end of the first transmission line L1 connected to the second connector J2.
  • the second end of the second transmission line L2 is connected to the output end of the first transmission line L1.
  • the first transmission line L1 is connected. Because there is a certain impedance in the line, when the current of the power supply signal is large, a voltage drop loss will inevitably occur on the line.
  • the second end of the second transmission line L2 is connected to the output end of the first transmission line L1 , so that the second transmission line L2 can collect the actual power supply signal after the line loss, so that the power supply module 11 adjusts the power supply signal of the voltage output terminal Vout based on the actual power supply signal, so that the power supply signal output by the voltage output terminal Vout can be transmitted on the line After the loss, a stable target voltage is output at the remote end, which matches the required voltage of the display terminal 30 .
  • the structures of the first connector J1 and the second connector J2 can be specifically set according to the connector structures of the signal source terminal 10 and the display terminal 30 , which is not limited in the present disclosure.
  • the power supply module 11 can be an integrated chip, such as a power management chip, and the power supply module 11 can adjust the output power supply signal based on the feedback voltage signal through a built-in algorithm.
  • the method is not limited.
  • the display device described in this exemplary embodiment may be, for example, a display device such as a vehicle-mounted terminal or a tablet computer.
  • 2 is a schematic structural diagram of a display device according to another embodiment of the present disclosure.
  • the signal source terminal 10 described in this exemplary embodiment may correspond to the SOC terminal M3 in FIG. 2
  • the SOC terminal M3 May include system control circuit board.
  • the display terminal 30 may correspond to the Panel terminal M1 in FIG. 2, and the Panel terminal M1 may include a PCB driving circuit board M2 connected to the display panel.
  • the PCB driving circuit board M2 is integrated with a POWER IC chip for providing power supply signals for the display panel, providing Various devices such as TCON chips and GAM chips that display signals.
  • the volume of the PCB driving circuit board M2 can be effectively reduced, and the problem of temperature rise of the PCB driving circuit board M2 can be avoided.
  • the PCB driving circuit board M2 and the system control circuit board M3 can be connected through the transmission part 20 provided in this exemplary embodiment, so as to realize compensation for line loss and voltage drop.
  • Figure 3 is a schematic structural diagram of the transmission part in Figure 1, as shown in Figure 3, in this exemplary embodiment, the first connector J1 may include a first pin 1 and a second pin 2, the first pin 1 It can be connected with the first transmission line L1, and the second pin 2 can be connected with the second transmission line L2.
  • the first transmission line L1 in the transmission part 20 is connected to the voltage output terminal Vout of the power supply module 11 through the first pin 1, and the second transmission line L2 in the transmission part 20 It is connected to the voltage feedback terminal FB of the power supply module 11 through the second pin 2 .
  • the second connector J2 may include a third pin 3, which is connected to the first transmission line L1.
  • the first transmission line L1 in the transmission part 20 passes through the first transmission line L1.
  • the three pins 3 output the power supply signal to the corresponding chip of the display terminal 30 .
  • the line width of the first transmission line L1 may be set to be larger than the line width of the second transmission line L2 .
  • Both the first transmission line L1 and the second transmission line L2 may be copper wires. Because the current of the power supply signal is relatively large, the line width of the first transmission line L1 can be set to be relatively large, so that the first transmission line L1 can transmit a power supply signal with relatively large current.
  • the line width of the first transmission line L1 is d1
  • the line width of the second transmission line L2 is d2
  • d1/d2 can be set to be greater than or equal to 3 and less than or equal to 10, for example, d1/d2 can be 3, 4, 5, 6 , 7, 8, 9, 10, etc., depending on the current magnitude of the power supply signal to be transmitted by the first transmission line L1.
  • other characteristics can be set to be the same.
  • the second connector J2 end may be provided with a first conductive portion 21, and the second transmission line L2 and the first transmission line L1 may be connected to the first conductive portion 21, thereby passing through the first
  • the conductive part 21 enables the second transmission line L2 to be connected to the first transmission line L1 at the output end of the transmission part 20, so as to collect the actual power supply signal after transmission loss.
  • the wiring length of the first transmission line L1 can be reduced by providing the first conductive part 21, that is, the first transmission line L1 only needs to extend to the first conductive part 21 at the end of the second connector J2, and then the first conductive part 21 It is connected with the third pin 3 of the second connector J2.
  • the benefit of providing the first conductive portion 21 is that when the second connector J2 end needs to connect more third pins 3 or more than the first pin 1 at the first connector J1 end,
  • the line width of the first transmission line L1 only needs to be able to withstand the current intensity of the power supply signal, and it does not need to be widened in order to cover all the third pins 3, and it is sufficient to cover all the third pins 3 by the first conductive part 21. , thereby reducing the difficulty of wiring in the circuit board.
  • the end of the second connector J2 may also not have the first conductive portion 21, and the second transmission line L2 is directly connected to the first transmission line L1 at the end of the second connector J2.
  • FIG. 4 is a cross-sectional view of the transmission part along the AA direction in FIG. 3.
  • An insulating layer 213 is disposed between the second conductive layers 212 .
  • the first transmission line L1 and the second transmission line L2 can be both arranged on the first conductive layer 211 or both on the second conductive layer 212, that is, the first transmission line L1 and the second transmission line L2 can be set on the same conductive layer, which can simplify wiring and reduce Wiring difficulty.
  • first transmission line L1 and the second transmission line L2 may also be located in different conductive layers, for example, the first transmission line L1 is located in the first conductive layer 211, the second transmission line L2 is located in the second conductive layer 212, etc. , all of which belong to the protection scope of the present disclosure.
  • the power supply signal output by the power supply module 11 of the signal source terminal 10 has a large current, and it is difficult for a single pin to withstand a large current, so the first connector J1 may include multiple first pins arranged in parallel 1.
  • the second connector J2 may include a plurality of third pins 3 connected in parallel, and by setting multiple pins for shunting, it is possible to prevent current from burning the pins.
  • the first transmission line L1 connects multiple first pins 1 at the end of the first connector J1 and connects multiple third pins 3 at the end of the second connector J2 to output the power supply signal.
  • FIG. 5 is a structural schematic diagram of a state in which the transmission part is connected to the signal source terminal and the display terminal according to an embodiment of the present disclosure. As shown in FIG. 5 , the transmission part 20 is bent in a U shape and the first connector J1 is connected to the system control circuit board M3, and the second connector J2 is connected to the PCB driving circuit M2M2.
  • FIG. 6 is a schematic structural diagram of the connection state of the transmission part, the signal source terminal and the display terminal according to another embodiment of the present disclosure. As shown in FIG.
  • the first pin 1 and the second pin 2 can be arranged on the same conductive layer as the third pin 3, for example, both are arranged on the first
  • the conductive layer 211 is either disposed on the second conductive layer 212 .
  • the pins in the first connector J1 and the pins in the second connector J2 may be disposed on the same conductive layer as the first transmission line L1 and the second transmission line L2 or on different conductive layers.
  • the first pin 1, the second pin 2, the first transmission line L1, and the second transmission line L2 may all be disposed on the first conductive layer 211, and the third pin 3 may be disposed on the second conductive layer 212; or, The first pin 1, the second pin 2, the first transmission line L1, and the second transmission line L2 are all set on the second conductive layer 212, and the third pin 3 is set on the first conductive layer 211; or, the first pin 1 , the second pin 2 is set on the first conductive layer 211, the first transmission line L1, the second transmission line L2, and the third pin 3 are all set on the second conductive layer 212; or, the first pin 1 and the second pin 2 is set on the second conductive layer 212, the first transmission line L1, the second transmission line L2, and the third pin 3 are all set on the first conductive layer 211; or, the first pin 1, the second pin 2, the first transmission line L1 , the second transmission line L2 , and the third pin 3 are all disposed on the first conductive layer 211 or the
  • the Panel generally includes different chips such as a power management chip and a TCON chip to control the Panel to perform light-emitting display. It can be known that different chips require different power supply signals, that is, in this exemplary embodiment, the signal source terminal 10 can provide multiple different types of power supply signals to the display terminal 30 .
  • FIG. 7 is a schematic structural diagram of a display device according to another embodiment of the present disclosure. As shown in FIG.
  • the signal source terminal 10 may include a first power supply module 101, a first power supply module 102 and a third power supply module 103, wherein the first power supply module 101 can be used to output a first power supply signal, the first power supply signal can be, for example, an ELVDD signal, and the ELVDD signal is used as the first voltage signal of the pixel driving circuit in the display panel; the first power supply module 102 can be used to Output the second power supply signal, the second power supply signal can be, for example, the ELVSS signal, and the ELVSS signal is used as the second voltage signal in the pixel drive circuit; the pixel drive circuit controls the drive current generated according to the voltage difference between the ELVDD signal and the ELVSS signal during the light-emitting phase.
  • the first power supply module 101 can be used to output a first power supply signal
  • the first power supply signal can be, for example, an ELVDD signal
  • the ELVDD signal is used as the first voltage signal of the pixel driving circuit in the display panel
  • the light emitting unit emits light.
  • the third power supply module 103 can output a third power supply signal, for example, the third power supply signal can be a VDD signal for powering the TCON chip.
  • the display device provided by this exemplary embodiment may include a first transmission part 201 , a second transmission part 202 and a third transmission part 203 , and the first transmission part 201 may communicate with
  • the first power supply module 101 is connected to output the first power supply signal and output the first feedback voltage signal to the first power supply module 101;
  • the second transmission part 202 can be connected to the first power supply module 102 for outputting the second power supply signal and Outputting the second feedback voltage signal to the first power supply module 102 ;
  • the third transmission part 203 can be connected to the third power supply module 103 for outputting the third power supply signal and outputting the third feedback voltage signal to the third power supply module 103 .
  • each of the first transmission part 201 , the second transmission part 202 and the third transmission part 203 can be connected to the third power supply
  • Fig. 8 is a schematic diagram of the pins of the first transmission part and the second transmission part according to an embodiment of the present disclosure
  • Fig. 9 is a schematic diagram of the pins of the third transmission part according to an embodiment of the present disclosure, as shown in Figs. 8 and 9
  • the first transmission part 201 for transmitting the first power supply signal and the second transmission part 202 for transmitting the second power supply signal can be arranged on the same circuit board
  • the third transmission part for transmitting the third power supply signal 203 may be disposed on another circuit board
  • the circuit board may be a flexible circuit board FPC
  • the display device may include two circuit boards, a first FPC board and a second FPC board. As shown in FIG.
  • the first transmission part 201 and the second transmission part 202 are both arranged on the first FPC board, and the first connector J1 and the second connector J2 in the first FPC board are both 40pins.
  • the second transmission part 202 is arranged on the second FPC board, the first connector J1 and the second connector J2 in the second FPC board are both 50pin, in addition, the second FPC board can also transmit the display control Semaphore Other signals.
  • the first transmission unit 201 multiple pins for transmitting ELVDD signals are arranged in order, and the first pin for transmitting ELVDD signals can be used as the second pin, and the other pins for transmitting ELVDD signals can be used as the second pins.
  • the pin is used as the second pin 2, and the other pins transmitting the ELVDD signal are used as the first pin 1.
  • the second transmission part 202 and the third transmission part 203 may have similar structures.
  • the first transmission unit 201 , the second transmission unit 202 and the third transmission unit 203 may also have other arrangements.
  • Fig. 10 is a schematic top view of the first transmission part according to an embodiment of the present disclosure.
  • the pin 2, the first transmission line L1, and the second transmission line L2 are located on the first conductive layer 211, and the third pin 3 is located on the second conductive layer 212;
  • the conductive part 21 and the second conductive part 22, the first conductive part 21 can be arranged on the first conductive layer 211, the second conductive part 22 can be arranged on the second conductive layer 212 and opposite to the first conductive part 21 and pass through the via hole connect.
  • the opposite arrangement of the first conductive portion 21 and the second conductive portion 22 can be understood as that the orthographic projection of the first conductive portion 21 on the insulating layer 213 overlaps with the orthographic projection of the second conductive portion 22 on the insulating layer 213 .
  • the wiring length of the first transmission line L1 can be reduced by providing the first conductive portion 21 , that is, the first transmission line L1 only needs to extend to the first conductive portion 21 at the end of the second connector J2 .
  • the first conductive part 21 is connected to the first transmission line L1 at the end of the second connector J2, and is connected to the second conductive part 22 on the second conductive layer 212 through the via hole H1.
  • the second conductive part 22 is connected to the first transmission line L1 at the end of the second connector J2 to collect the output voltage of the first transmission part 201 .
  • the second transmission line L2 may not be connected to the first conductive portion 21 , but directly connected to the second conductive portion 22 through the via hole H2 .
  • a plurality of via holes H1 may be provided to connect the first conductive portion 21 and the second conductive portion 22 to ensure sufficient electrical connection between the first conductive portion 21 and the second conductive portion 22 .
  • the second transmission line L2 may also be directly connected to the first conductive portion 21 .
  • the third pins 3 at the end of the second connector J2 may be more than the first pins 1 in the first connector J1 .
  • the current of the first power supply signal is about 2A, and nine first pins 1 can be set at the end of the first connector J1. After the first power supply signal is shunted by the nine first pins 1, it will not burn the first pin 1.
  • Ten third pins 3 can be set at the end of the second connector J2 to match the number of pins of the ELVDD Power IC in the display end 30 for obtaining the first power supply signal.
  • the width of the second conductive portion 22 can be set to be greater than the width of the first conductive portion 21, for example, the width of the second conductive portion 22 can be equivalent to the width of the area where ten third pins 3 are located, In order to realize that the second conductive portion 22 is respectively connected to each third pin 3 , the first conductive portion 21 does not need to cover all the third pins 3 .
  • the width of the first conductive portion 21 can be set to be equal to or slightly larger than the width of the first transmission line L1.
  • the number of first pins 1 at the end of the first connector J1 may also be the same as the number of third pins 3 at the end of the second connector J2, for example, the first pin 1 and the second pin 2 are set to 10, etc., all of which belong to the protection scope of the present disclosure.
  • the width of the conductive portion may be understood as the distance of the conductive portion in the direction in which the pins are arranged.
  • the line width of the first transmission line L1 is d1
  • the line width of the second transmission line L2 is d2
  • d1/d2 can be set to be greater than or equal to 8 And less than or equal to 10, for example, it can be 8, 8.5, 9, 9.5, 10 and so on.
  • the line width of the transmission part can be understood as the distance perpendicular to the extending direction of the transmission part in the plane where the transmission part is located.
  • the second transmission part 202 may have the same structure as the first transmission part 201, and this embodiment will not be expanded.
  • Fig. 11 is a schematic top view of the first transmission part according to an embodiment of the present disclosure.
  • the first tube in the first connector J1 Pin 1 may have the same number as the third pin 3 in the second connector J2, the first transmission line L1 may directly connect the first pin 1 and the third pin 3, the second transmission line L2 may directly connect the second pin 2 and The first transmission line L1 is connected to the end of the second connector J2.
  • both the first connector J1 and the second connector J2 may include a first conductive portion 21, and at one end of the first connector J1, the first conductive portion 21 may be connected to the first transmission line L1 and the second transmission line L1.
  • the first conductive part 21 is connected between the first transmission line L1 and the third pin 3, and the second transmission line L2 can be connected to the first conductive part 21 to Realize the connection with the second end of the first transmission line L1.
  • the line width of the first transmission line L1 is d5
  • the line width of the second transmission line L2 is d6
  • d5/d6 can be set to be greater than or equal to 2 and Less than or equal to 4, for example, it can be 2, 2.53, 3.2, 3.4, 3.5, 3.6, 3.8, 4, etc.
  • the line width of the first transmission line L1 in the first transmission part 201 may be greater than the line width of the first transmission line L1 in the third transmission part 203, for example, the line width of the first transmission line L1 in the first transmission part 201
  • the line width d1 of the first transmission line L1, the line width of the first transmission line L1 in the third transmission part 203 is d5, and d1/d5 can be set to be greater than or equal to 2 and less than or equal to 4, for example, it can be 2, 2.5, 3, 3.5, 4 etc.
  • the line width of the first transmission line L1 in the second transmission part 202 is d3, and d3/d5 can be set to be greater than or equal to 2 and less than or equal to 4, for example, it can be 2, 2.5, 3, 3.5, 4 and so on.
  • Fig. 12 is a schematic structural diagram of a display device according to another embodiment of the present disclosure.
  • the display device may further include an adapter, and one end of the adapter may be connected to a signal The source end 10, and the other end is respectively connected with the first end of the first transmission part 201, the first end of the second transmission part 202 and the first end of the third transmission part 203, the second end of the first transmission part 201, The second end of the second transmission part 202 and the second end of the third transmission part 203 are connected to the display terminal 30 .
  • the transition part may be a 90-pin connector, which connects the 40-pin first FPC and the 50-pin second FPC as a whole.
  • This exemplary embodiment connects the first transmission part 201, the second transmission part 202, and the third transmission part 203 as a whole by setting up a transfer part, so that at the signal source end, only one plug and pull is required to pass through the transfer part. At the same time, it is connected to the system control circuit board, which makes the operation more convenient.
  • This structure can be applied to the test stage, such as the factory test stage, where frequent plugging and unplugging operations are required, and the use of this structure can simplify operations and is less prone to errors.
  • the first transmission part 201 , the second transmission part 202 , and the third transmission part 203 have the structure of the above-mentioned embodiments of the present disclosure, it is also possible to realize the voltage drop compensation for the remote end during the test phase, so that the test results are more accurate.
  • the present disclosure also provides a voltage drop compensation circuit, which can be applied to the display device described in any embodiment of the present disclosure.
  • 13 is a schematic diagram of a voltage drop compensation circuit according to an embodiment of the present disclosure. As shown in FIG. Adjusting the voltage division ratio of the voltage division module 12 can make the collected feedback voltage signal within the specified voltage range of the voltage feedback terminal FB, and then the power supply module 11 adjusts the size of the power supply signal output by the voltage output terminal Vout through a built-in algorithm, and finally makes the voltage output The power supply signal output from the terminal Vout matches the demand voltage of the display terminal, that is, the power supply module 11 outputs a stable target voltage.
  • the voltage divider module 12 may be a resistor divider module.
  • the voltage divider module 12 may include a first resistor R1 and a second resistor R2, the first end of the first resistor R1 serves as the input end of the voltage divider module 12, and the first The other end of the resistor R1 is connected to one end of the second resistor R2 , the other end of the second resistor R2 is grounded, and the common connection end of the first resistor R1 and the second resistor R2 is used as the output end of the voltage dividing module 12 .
  • the power supply module 11 may further include a filter capacitor C F , one end of the filter capacitor C F is connected to the input end of the voltage divider module 12 , and the other end is connected to the output of the voltage divider module 12 terminal, the filter capacitor CF can filter stray signals, so that the voltage divider module 12 can output a stable feedback power supply signal to the voltage feedback terminal FB.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种显示设备和压降补偿电路,显示设备包括:信号源端(10)、显示端(30)和传输部(20),信号源端(10)与显示端(30)通过传输部(20)连接;其中,信号源端(10)包括:供电模块(11),供电模块(11)包括电压输出端(Vout)和电压反馈端(FB),电压输出端(Vout)用于输出供电信号,电压反馈端(FB)用于获取反馈电压信号,电源模块被配置为基于反馈电压信号调节供电信号;传输部(20)包括:第一传输线(L1),第一端连接电压输出端(Vout),第二端输出供电信号;第二传输线(L2),与第一传输线(L1)分开设置,第二传输线(L2)的第一端连接电压反馈端(FB),第二端连接第一传输线(L1)的第二端。显示设备能够进行压降补偿,不仅能解决Logic电压压降造成的横纹、闪屏等问题,还能解决EL电压压降造成的亮度下降、Gamma漂移和CIE超规等问题。

Description

一种显示设备及其压降补偿方法 技术领域
本公开涉及显示技术领域,具体而言,涉及一种显示设备及其压降补偿方法。
背景技术
有机发光二极管(Organic Light Emitting Diode,OLED)为主动发光显示器件,具有自发光、广视角、高对比度、低耗电、极高反应速度、轻薄、可弯曲等优点。随着显示技术不断发展,以OLED作为发光器件的显示器件应用越来越广泛,相关技术中,在中大尺寸车载OLED应用中,存在因电压损耗而造成屏显异常的情况。
需要说明的是,在上述背景技术部分公开的信息仅用于加强对本公开的背景的理解,因此可以包括不构成对本领域普通技术人员已知的现有技术的信息。
发明内容
本公开的目的在于克服上述现有技术的不足,提供一种显示设备及其压降补偿方法。
根据本公开的一个方面,提供一种显示设备,包括:信号源端、显示端和传输部,所述信号源端与所述显示端通过所述传输部连接;其中,所述信号源端包括:供电模块,所述供电模块包括电压输出端和电压反馈端,所述电压输出端用于输出供电信号,所述电压反馈端用于获取反馈电压信号,所述电源模块被配置为基于所述反馈电压信号调节所述供电信号;所述传输部包括:第一传输线,第一端连接所述电压输出端,第二端输出所述供电信号;第二传输线,与所述第一传输线分开设置,所述第二传输线的第一端连接所述电压反馈端,第二端连接所述第一传输线的第二端。
在本公开的一种示例性实施例中,所述传输部包括:第一连接器,与所述信号源端连接,所述第一连接器包括第一管脚和第二管脚,所述 第一管脚连接所述第一传输线,所述第二管脚连接所述第二传输线,且所述第一连接器通过所述第一管脚连接所述电压输出端,以及通过所述第二管脚连接所述电压反馈端;第二连接器,与所述显示端连接,所述第一传输线与所述第二传输线在所述第二连接器端连接。
在本公开的一种示例性实施例中,所述显示设备包括多个所述传输部;所述信号源端包括多个所述供电模块,多个所述供电模块被配置为输出多个不同的供电信号;其中,多个所述传输部与多个所述供电模块一一对应设置。
在本公开的一种示例性实施例中,多个所述供电模块包括第一供电模块、第二供电模块和第三供电模块,所述第一供电模块用于输出第一供电信号,所述第二供电模块用于输出第二供电信号,所述第三供电模块用于输出第三供电信号,所述第一供电信号的电压大小、所述第二供电信号的电压大小、所述第三供电信号的电压大小互不相同;多个所述传输部包括第一传输部、第二传输部和第三传输部;其中,所述第一传输部与所述第二传输部设置于第一电路板,所述第三传输部设置于第二电路板。
在本公开的一种示例性实施例中,所述传输部包括第一导电层和第二导电层,所述第一导电层与所述第二导电层绝缘设置;所述第二连接器包括第三管脚,所述第三管脚连接所述第一传输线;所述第一管脚、所述第二管脚、所述第一传输线、所述第二传输线均位于所述第一导电层,所述第三管脚位于所述第二导电层;或者,所述第一管脚、所述第二管脚、所述第一传输线、所述第二传输线均位于所述第二导电层,所述第三管脚位于所述第一导电层;或者,所述第一管脚、所述第二管脚位于所述第一导电层,所述第一传输线、所述第二传输线、所述第三管脚均位于所述第二导电层;或者,所述第一管脚、所述第二管脚位于所述第二导电层,所述第一传输线、所述第二传输线、所述第三管脚均位于所述第一导电层;或者,所述第一管脚、所述第二管脚、所述第一传输线、所述第二传输线、所述第三管脚均位于所述第一导电层或所述第二导电层。
在本公开的一种示例性实施例中,所述第一连接器包括多个所述第 一管脚,且多个所述第一管脚并联设置;所述第二连接器包括多个第三管脚,且多个所述第三管脚并联设置;其中,多个所述第一管脚分别连接所述第一传输线的第一端,多个所述第三管脚分别连接所述第一传输线的第二端。
在本公开的一种示例性实施例中,所述第一管脚、所述第二管脚以及所述第一传输线、所述第二传输线均位于所述第一导电层,所述第三管脚位于所述第二导电层;所述第一传输部、所述第二传输部均包括:第一导电部,设置于第二连接器端且位于所述第一导电层,所述第一导电部连接所述第一传输线的第二端;第二导电部,位于所述第二导电层且与所述第一导电部相对设置,所述第二导电部通过过孔连接所述第一导电部;其中,同一传输部中,所述第二导电部还连接所述第二传输线,且所述第二导电部与多个所述第三管脚分别连接。
在本公开的一种示例性实施例中,所述第二导电部的宽度大于所述第一导电部的宽度。
在本公开的一种示例性实施例中,所述第一传输线的线宽大于所述第二传输线的线宽。
在本公开的一种示例性实施例中,所述第一传输部中,所述第一传输线的线宽为d1,所述第二传输线的线宽为d2,d1/d2大于等于8且小于等于10;所述第二传输部中,所述第一传输线的线宽为d3,所述第二传输线的线宽为d4,d3/d4大于等于8且小于等于10;所述第三传输部中,所述第一传输线的线宽为d5,所述第二传输线的线宽为d6,d5/d6大于等于2且小于等于4。
在本公开的一种示例性实施例中,d1/d5大于等于2且小于等于4,d3/d5大于等于2且小于等于4。
在本公开的一种示例性实施例中,所述第一传输部中的第三管脚多于第一管脚;所述第二传输部中的第三管脚多于第一管脚;所述第三传输部中的第三管脚与第一管脚数量相同。
在本公开的一种示例性实施例中,所述第一传输部中的所述第二连接器、所述第二传输部中的所述第二连接器均包括9个所述第三管脚;所述第三传输部中的所述第二连接器包括3个所述第三管脚。
在本公开的一种示例性实施例中,所述显示设备还包括:转接部,一端连接所述信号源端,另一端连接所述第一传输部的第一端、所述第二传输部的第一端以及所述第三传输部的第一端,所述第一传输部的第二端、所述第二传输部的第二端以及所述第三传输部的第二端连接所述显示端。
根据本公开的另一方面,还提供一种压降补偿电路,应用于本公开任意实施例所述的显示设备,所述压降补偿电路包括:供电模块,设置于信号源端,所述供电模块包括:电压输出端,用于输出供电信号;反馈电压端,用于获取反馈电压信号;分压模块,所述分压模块的输入端连接所述电压输出端,输出端连接所述反馈电压端,所述分压模块被配置为按照预设分压比基于所述电压输出端的输出电压信号确定反馈电压信号;所述供电模块被配置为基于所述反馈电压信号对所述电压输出端输出的供电信号进行调节。
在本公开的一种示例性实施例中,所述分压模块包括:第一电阻,所述第一电阻的第一端作为所述分压模块的输入端;第二电阻,第一端与所述第一电阻的第二端连接后作为所述分压模块的输出端,所述第二电阻的第二端接地。
在本公开的一种示例性实施例中,还包括:滤波电容,一端连接所述分压模块的输入端,另一端连接所述分压模块的输出端。
本公开提供的显示设备,传输部中设置有第一传输线和第二传输线,第二传输线与第一传输线分开设置,且第二传输线的第二端在第一传输线的第二端处与第一传输线进行连接,由此第二传输线采集到的电压信号为经线路损耗后的实际供电信号,第二传输线将该实际供电信号传输至供电模块的反馈电压端,从而供电模块可以基于该实际供电信号进行输出电压调节,使得传输部在与显示端连接的一端输出稳定的目标电压,不仅能解决Logic电压压降造成的横纹、闪屏等问题,还能解决EL电压压降造成的亮度下降、Gamma漂移和CIE超规等问题。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为根据本公开一种实施方式的显示设备的结构示意图;
图2为根据本公开另一种实施方式的显示设备的结构示意图;
图3为图1中传输部的结构示意图;
图4为图3中传输部沿AA方向的剖视图;
图5为根据本公开一种实施方式的传输部与信号源端和显示端连接状态的结构示意图;
图6为根据本公开另一种实施方式的传输部与信号源端和显示端连接状态的结构示意图;
图7为根据本公开另一种实施方式的显示设备的结构示意图;
图8为根据本公开一种实施方式的第一传输部和第二传输部的管脚示意图;
图9为根据本公开一种实施方式的第三传输部的管脚示意图;
图10为根据本公开一种实施方式的第一传输部的俯视结构示意图;
图11为根据本公开一种实施方式的第一传输部的俯视结构示意图;
图12为根据本公开另一种实施方式的显示设备的结构示意图;
图13为根据本公开一种实施方式的压降补偿电路原理图。
具体实施方式
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的实施方式;相反,提供这些实施方式使得本公开将全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。图中相同的附图标记表示相同或类似的结构,因而将省略它们的详细描述。此外,附图仅为本公开的示意性 图解,并非一定是按比例绘制。
用语“一个”、“一”、“该”、“所述”和“至少一个”用以表示存在一个或多个要素/组成部分/等;用语“包括”和“具有”用以表示开放式的包括在内的意思并且是指除了列出的要素/组成部分/等之外还可存在另外的要素/组成部分/等;用语“第一”、“第二”和“第三”等仅作为标记使用,不是对其对象的数量限制。
晶体管是指至少包括栅电极、漏电极以及源电极这三个端子的元件。晶体管在漏电极(漏电极端子、漏区域或漏电极)与源电极(源电极端子、源区域或源电极)之间具有沟道区域,并且电流可以流过漏电极、沟道区域以及源电极。沟道区域是指电流主要流过的区域。
第一极可以为漏电极、第二极可以为源电极,或者第一极可以为源电极、第二极可以为漏电极。在使用极性相反的晶体管的情况或电路工作中的电流方向变化的情况等下,“源电极”及“漏电极”的功能有时互相调换。因此,在本说明书中,“源电极”和“漏电极”可以互相调换
图1为根据本公开一种实施方式的显示设备的结构示意图,如图1所示,该显示设备可以包括信号源端10、显示端30和传输部20,信号源端10与显示端30可通过该传输部20连接;其中,信号源端10可包括供电模块11,供电模块11可包括电压输出端Vout和电压反馈端FB,电压输出端Vout用于输出供电信号,电压反馈端FB用于获取反馈电压信号,供电模块11被配置为基于反馈电压信号调节供电信号;传输部20可包括:第一传输线L1和第二传输线L2,第一传输线L1的第一端用于连接电压输出端Vout,第一传输线L1的第二端用于输出供电信号;第二传输线L2与第一传输线L1分开设置,第二传输线L2的第一端用于连接电压反馈端FB,第二传输线L2的第二端连接第一传输线L1的第二端。
本示例性实施例提供的显示设备,传输部20中设置有第一传输线L1和第二传输线L2,第二传输线L2与第一传输线L1分开设置,且第二传输线L2的第二端在第一传输线L1的第二端处与第一传输线L1进行连接,由此第二传输线L2采集到的电压信号为经线路损耗后的实际供电信号,第二传输线L2将该实际供电信号传输至供电模块11的反馈电 压端,从而供电模块11可以基于该实际供电信号进行输出电压调节,使得传输部20在与显示端30连接的一端输出稳定的目标电压,不仅能解决Logic电压压降造成的横纹、闪屏等问题,还能解决EL电压压降造成的亮度下降、Gamma漂移和CIE超规等问题。
如图1所示,本示例性实施例中,第一传输线L1为电压输出线,用于将供电模块11输出的供电信号输出至显示端;第二传输线L2为电压反馈线,用于采集对显示端的实际供电信号作为反馈电压信号传输至供电模块11。如图1所示,本示例性实施例中,传输部20可以包括第一连接器J1和第二连接器J2,第一连接器J1可用于连接信号源端10,第二连接器J2可用于连接显示端30,第二传输线L2可在第二连接器J2端与第一传输线L1进行连接,以采集到传输部20输出的实际供电信号。即本示例性实施例中所述的第一传输线L1的第二端是指第一传输线L1连接第二连接器J2的一端,换言之,第二传输线L2是在第一传输线L1的输出端处与第一传输线L1连接。因为线路存在一定的阻抗,当供电信号的电流较大时,势必会在线路上产生压降损耗,本示例性实施例通过将第二传输线L2的第二端连接在第一传输线L1的输出端处,由此第二传输线L2可以采集到经线路损耗后的实际供电信号,从而供电模块11基于该实际供电信号调节电压输出端Vout的供电信号,以使得电压输出端Vout输出的供电信号能够在线路损耗后在远端输出稳定的目标电压,匹配于显示端30的需求电压。应该理解的是,第一连接器J1和第二连接器J2的结构具体可根据信号源端10和显示端30的连接器结构进行设置,本公开对此不作限定。
本示例性实施例中,供电模块11可以为集成芯片,例如为电源管理芯片,供电模块11可通过内置算法基于反馈电压信号调节所输出的供电信号,本公开对于供电模块11进行电压调节的具体方法不作限定。
本示例性实施例所述的显示设备例如可以为车载终端、平板电脑等显示设备。图2为根据本公开另一种实施方式的显示设备的结构示意图,如图2所示,本示例性实施例所述的信号源端10可对应于图2中的SOC端M3,SOC端M3可包括系统控制电路板。显示端30可对应图2中的Panel端M1,Panel端M1可以包括与显示面板连接的PCB驱动电路板 M2,该PCB驱动电路板M2上集成有为显示面板提供供电信号的POWER IC芯片、提供显示信号的TCON芯片、GAM芯片等多种器件。本示例性实施例通过将供电模块11设置于SOC端,可以有效减小PCB驱动电路板M2的体积,并且可避免PCB驱动电路板M2出现温升问题。PCB驱动电路板M2与系统控制电路板M3可通过本示例性实施例提供的传输部20进行连接,实现线路损耗压降的补偿。
图3为图1中传输部的结构示意图,如图3所示,本示例性实施例中,第一连接器J1可以包括第一管脚1和第二管脚2,该第一管脚1可以与第一传输线L1连接,第二管脚2可与第二传输线L2连接。在将第一连接器J1插入信号源端10后,传输部20中的第一传输线L1通过第一管脚1与供电模块11的电压输出端Vout进行连接,传输部20中的第二传输线L2通过第二管脚2与供电模块11的电压反馈端FB连接。第二连接器J2可以包括第三管脚3,该第三管脚3与第一传输线L1连接,在将第二连接器J2插入显示端30后,传输部20中的第一传输线L1通过第三管脚3将供电信号输出至显示端30的相应芯片。
如图3所示,本示例性实施例中,第一传输线L1的线宽可设置为大于第二传输线L2的线宽。第一传输线L1和第二传输线L2可均为铜线。因为供电信号的电流较大,因而可将第一传输线L1的线宽设置为较大,以使得第一传输线L1能够传输较大电流的供电信号。示例性的,第一传输线L1的线宽为d1,第二传输线L2线宽为d2,d1/d2可以设置为大于等于3且小于等于10,例如d1/d2可以为3,4,5,6,7,8,9,10等,具体取决于第一传输线L1所要传输的供电信号的电流大小。此外,第一传输线L1和第二传输线L2除了线宽不同外,其他特性可设置为相同。
如图3所示,本示例性实施例中,第二连接器J2端可设置有第一导电部21,第二传输线L2、第一传输线L1可连接至第一导电部21,从而通过第一导电部21实现第二传输线L2在传输部20的输出端与第一传输线L1相连接,以采集到经传输损耗后的实际供电信号。通过设置第一导电部21可以减小第一传输线L1的布线长度,即第一传输线L1在第二连接器J2端仅需要延伸至第一导电部21处即可,再由第一导电部21与第二连接器J2端的第三管脚3相连接。本示例性实施例中,设置第一导 电部21的好处在于,当第二连接器J2端需要连接的第三管脚3较多或者多于第一连接器J1端的第一管脚1时,第一传输线L1的线宽能够承受供电信号的电流强度即可,不需要为了覆盖全部的第三管脚3而进行加宽设置,由第一导电部21覆盖全部的第三管脚3即可,由此可降低在电路板中的布线难度。当然,在其他示例性实施例中,第二连接器J2端也可以没有第一导电部21,而将第二传输线L2直接在第二连接器J2端连接第一传输线L1。
图4为图3中传输部沿AA方向的剖视图,如图4所示,本示例性实施例中,传输部20可以包括第一导电层211和第二导电层212,第一导电层211与第二导电层212之间设有绝缘层213。第一传输线L1、第二传输线L2可均设置于第一导电层211或均设置于第二导电层212,即第一传输线L1和第二传输线L2可设置为同一导电层,可简化布线,降低布线难度。当然,在其他示例性实施例中,第一传输线L1和第二传输线L2也可以位于不同导电层,例如,第一传输线L1位于第一导电层211,第二传输线L2位于第二导电层212等,这些都属于本公开的保护范围。
本示例性实施例中,信号源端10的供电模块11输出的供电信号因为电流较大,单个管脚难以承受较大电流,因此第一连接器J1可包括多个并联设置的第一管脚1,第二连接器J2可包括多个并联的第三管脚3,通过设置多个管脚进行分流可避免电流烧毁管脚。可以理解的是,第一传输线L1在第一连接器J1端将多个第一管脚1进行连接并在第二连接器J2端将多个第三管脚3进行连接,将供电信号输出。
本示例性实施例中,第一连接器J1中的管脚和第二连接器J2中的管脚可根据SOC端系统控制电路板M3和Panel端PCB驱动电路M2的连接方式设置于不同导电层或同一导电层。示例性的,图5为根据本公开一种实施方式的传输部与信号源端和显示端连接状态的结构示意图,如图5所示,传输部20呈U型弯折后将第一连接器J1连接于系统控制电路板M3,将第二连接器J2连接于PCB驱动电路M2M2,若是第一连接器J1与系统控制电路板M3、第二连接器J2与PCB驱动电路M2均在传输部20所在电路板的同一侧连接,例如均在传输部20的上侧连接,则第一管脚1和第二管脚2可与第三管脚3设置于不同导电层,如将第 一管脚1和第二管脚2设置于第一导电层211,将第三管脚3设置于第二导电层212。或者,图6为根据本公开另一种实施方式的传输部与信号源端和显示端连接状态的结构示意图,如图6所示,当传输部20进行弯折后需要在传输部20所在电路板的两侧分别与系统控制电路板M3和PCB驱动电路M2连接时,则第一管脚1和第二管脚2可与第三管脚3设置于同一导电层,例如均设置于第一导电层211或者均设置于第二导电层212。此外,本示例性实施例中,第一连接器J1中的管脚、第二连接器J2中的管脚可与第一传输线L1和第二传输线L2设置于同一导电层或不同导电层。示例性的,第一管脚1、第二管脚2、第一传输线L1、第二传输线L2可均设置于第一导电层211,第三管脚3设置于第二导电层212;或者,第一管脚1、第二管脚2、第一传输线L1、第二传输线L2均设置于第二导电层212,第三管脚3设置于第一导电层211;或者,第一管脚1、第二管脚2设置于第一导电层211,第一传输线L1、第二传输线L2、第三管脚3均设置于第二导电层212;或者,第一管脚1、第二管脚2设置于第二导电层212,第一传输线L1、第二传输线L2、第三管脚3均设置于第一导电层211;或者,第一管脚1、第二管脚2、第一传输线L1、第二传输线L2、第三管脚3均设置于第一导电层211或第二导电层212。这些都属于本公开的保护范围。
如图2所示,本示例性实施例中,Panel端通常包括电源管理芯片、TCON芯片等不同的芯片,以控制Panel进行发光显示。可以知道的是,不同的芯片所需要的供电信号可互不相同,即本示例性实施例中,信号源端10可向显示端30提供多个不同类型的供电信号。示例性的,图7为根据本公开另一种实施方式的显示设备的结构示意图,如图7所示,信号源端10可包括第一供电模块101、第一供电模块102和第三供电模块103,其中,第一供电模块101可用于输出第一供电信号,第一供电信号例如可以为ELVDD信号,该ELVDD信号作为显示面板中像素驱动电路的第一电压信号;第一供电模块102可用于输出第二供电信号,第二供电信号例如可以为ELVSS信号,该ELVSS信号作为像素驱动电路中的第二电压信号;像素驱动电路在发光阶段根据ELVDD信号和ELVSS信号的压差产生的驱动电流控制发光单元进行发光。第三供电模块103 可输出第三供电信号,第三供电信号例如可以为TCON芯片供电的VDD信号。如图7所示,为了与三种供电信号配合,本示例性实施例提供的显示设备可以包括第一传输部201、第二传输部202和第三传输部203,第一传输部201可与第一供电模块101连接,用于输出第一供电信号以及向第一供电模块101输出第一反馈电压信号;第二传输部202可与第一供电模块102连接,用于输出第二供电信号并向第一供电模块102输出第二反馈电压信号;第三传输部203可与第三供电模块103连接,用于输出第三供电信号并向第三供电模块103输出第三反馈电压信号。可以理解的是,第一传输部201、第二传输部202、第三传输部203均包括第一传输线L1和第二传输线L2。
图8为根据本公开一种实施方式的第一传输部和第二传输部的管脚示意图,图9为根据本公开一种实施方式的第三传输部的管脚示意图,如图8、9所示,本示例性实施例中,传输第一供电信号的第一传输部201和传输第二供电信号的第二传输部202可设置于同一电路板,传输第三供电信号的第三传输部203可设置于另一电路板,电路板例如可以为柔性电路板FPC,显示设备可包括第一FPC板和第二FPC板两个电路板。如图8所示,第一传输部201和第二传输部202均设置于第一FPC板,第一FPC板中的第一连接器J1和第二连接器J2均为40pin。如图9所示,第二传输部202设置于第二FPC板,第二FPC板中的第一连接器J1和第二连接器J2均为50pin,此外,第二FPC板还可以传输显示控制信号灯其他信号。此外,如图8所示,第一传输部201中,传输ELVDD信号的多个管脚按照顺序依次排列,可将首个传输ELVDD信号的管脚作为第二管脚,其他的传输ELVDD信号的管脚作为第二管脚2,其他的传输ELVDD信号的管脚作为第一管脚1。第二传输部202、第三传输部203可具有类似结构。当然,在其他示例性实施例中,第一传输部201、第二传输部202和第三传输部203还可以具有其他的设置方式。
下面结合三种不同的供电模块对传输部20的结构作进一步介绍。图10为根据本公开一种实施方式的第一传输部的俯视结构示意图,如图10所示,本示例性实施例中,在第一传输部201中,第一管脚1、第二管脚2以及第一传输线L1、第二传输线L2均位于第一导电层211,第三 管脚3位于第二导电层212;第一传输部201还可以包括设置于第二连接器J2端的第一导电部21和第二导电部22,第一导电部21可设置于第一导电层211,第二导电部22可设置于第二导电层212并与第一导电部21相对设置并通过过孔连接。其中,第一导电部21和第二导电部22相对设置可以理解为,第一导电部21在绝缘层213的正投影与第二导电部22在绝缘层213的正投影具有交叠部分。通过设置第一导电部21可以减小第一传输线L1的布线长度,即第一传输线L1在第二连接器J2端仅需要延伸至第一导电部21处即可。第一导电部21在第二连接器J2端连接第一传输线L1,并通过过孔H1连接位于第二导电层212的第二导电部22,同时,第二传输线L2可通过过孔H2连接第二导电部22,从而实现在第二连接器J2端与第一传输线L1连接,以采集到第一传输部201的输出电压。从图10可以看出,第二传输线L2可不连接第一导电部21,而直接通过过孔H2连接第二导电部22。此外,可以理解的是,可设置多个过孔H1连接第一导电部21和第二导电部22,以保证第一导电部21和第二导电部22充分电连接。此外,在其他示例性实施例中,第二传输线L2也可以直接连接第一导电部21。
如图10所示,本示例性实施例中,第一传输部201中,位于第二连接器J2端的第三管脚3可多于第一连接器J1中的第一管脚1。示例性的,第一供电信号的电流为2A左右,第一连接器J1端可设置9个第一管脚1,第一供电信号经9个第一管脚1分流后,不会烧毁第一管脚1。而在第二连接器J2端可设置10个第三管脚3,以与显示端30中ELVDD Power IC获取第一供电信号的管脚数量相匹配。在此基础上,第二导电部22的宽度可设置为大于第一导电部21的宽度,示例性的,第二导电部22的宽度可与10个第三管脚3所在区域的宽度相当,以实现第二导电部22分别与各个第三管脚3连接,而第一导电部21则无需覆盖全部第三管脚3。此外,第一导电部21的宽度可设置为与第一传输线L1的宽度相当或略大于第一传输线L1的宽度。应该理解的是,在其他示例性实施例中,第一连接器J1端的第一管脚1的数量也可以与第二连接器J2端的第三管脚3的数量相同,例如,第一管脚1和第二管脚2均设置为10个等,这些都属于本公开的保护范围。
本示例性实施例中,导电部的宽度可以理解为导电部在管脚排列方向上的距离。
如图10所示,本示例性实施例中,在第一传输部201中,第一传输线L1的线宽为d1,第二传输线L2的线宽为d2,d1/d2可设置为大于等于8且小于等于10,例如可以为8,8.5,9,9.5,10等。本示例性实施例中,传输部的线宽可以理解为,在该传输部所在平面内,垂直于该传输部的延伸方向所具有的距离。
此外,本示例性实施例中,第二传输部202可与第一传输部201具有相同的结构,本实施例不再展开。
图11为根据本公开一种实施方式的第一传输部的俯视结构示意图,如图11所示,本示例性实施例中,第三传输部203中,第一连接器J1中的第一管脚1可与第二连接器J2中第三管脚3数量相同,第一传输线L1可直接连接第一管脚1和第三管脚3,第二传输线L2可直接连接第二管脚2且在第二连接器J2端连接第一传输线L1。在其他示例性实施例中,第一连接器J1和第二连接器J2可均包括第一导电部21,在第一连接器J1一端,第一导电部21可连接于第一传输线L1和第一管脚1之间;在第二连接器J2一端,第一导电部21连接于第一传输线L1和第三管脚3之间,且第二传输线L2可连接至第一导电部21,以实现与第一传输线L1的第二端连接。
如图11所示,本示例性实施例中,第三传输部203中,第一传输线L1的线宽为d5,第二传输线L2的线宽为d6,d5/d6可设置为大于等于2且小于等于4,例如可以为2,2.53,3.2,3.4,3.5,3.6,3.8,4等。
此外,本示例性实施例中,第一传输部201中的第一传输线L1的线宽可大于第三传输部203中第一传输线L1的线宽,示例性的,第一传输部201中的第一传输线L1的线宽d1,第三传输部203中第一传输线L1的线宽为d5,d1/d5可设置为大于等于2且小于等于4,例如可以为2,2.5,3,3.5,4等。同样地,第二传输部202中的第一传输线L1的线宽为d3,d3/d5可设置为大于等于2且小于等于4,例如可以为2,2.5,3,3.5,4等。
图12为根据本公开另一种实施方式的显示设备的结构示意图,如图 12所示,本示例性实施例中,显示设备还可以包括一转接部,该转接部的一端可连接信号源端10,另一端则分别与第一传输部201的第一端、第二传输部202的第一端以及第三传输部203的第一端连接,第一传输部201的第二端、第二传输部202的第二端以及第三传输部203的第二端连接显示端30。例如,该转接部可以为一90pin的连接器,其将40pin的第一FPC和50pin的第二FPC连接为一整体。本示例性实施例通过设置一转接部将第一传输部201、第二传输部202和第三传输部203连接为一体,从而在信号源端,仅需一次插拔即可通过该转接部同时连接系统控制电路板,操作更加方便。该结构可应用于测试阶段,如工厂测试阶段,需要频繁插拔操作的情况下,使用该结构可简化操作,且不易出错。并且因为第一传输部201、第二传输部202、第三传输部203具有本公开上述实施例结构,因此同样可以在测试阶段实现对远端的压降补偿,使得测试结果更加准确。
此外,本公开还提供一种压降补偿电路,该压降补偿电路可应用于本公开任意实施例所述的显示设备。图13为根据本公开一种实施方式的压降补偿电路原理图,如图13所示,供电模块11的电压输出端Vout与电压反馈端FB之间可通过一分压模块12进行连接,通过调节分压模块12的分压比可使得采集到的反馈电压信号在电压反馈端FB的规定电压范围内,供电模块11再通过内置算法调节电压输出端Vout输出的供电信号大小,最终使得电压输出端Vout输出的供电信号匹配显示端的需求电压,即供电模块11输出稳定的目标电压。本示例性实施例中,节点AB之间因为存在一定的线阻,可将节点AB之间的导线等效为一等效电阻,因此节点A和节点B之间存在一定的压降,的电压并不相同。分压模块12可以为电阻分压模块,示例性的,分压模块12可包括第一电阻R1和第二电阻R2,第一电阻R1的第一端作为分压模块12的输入端,第一电阻R1的另一端连接第二电阻R2的一端,第二电阻R2的另一端接地,并且第一电阻R1与第二电阻R2的公共连接端作为分压模块12的输出端。此外,如图2所示,本示例性实施例中,供电模块11还可以包括滤波电容C F,滤波电容C F的一端连接分压模块12的输入端,另一 端连接分压模块12的输出端,滤波电容C F可滤波杂散信号,使得分压模块12能够向电压反馈端FB输出稳定的反馈供电信号。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由所附的权利要求指出。

Claims (16)

  1. 一种显示设备,其中,包括:信号源端、显示端和传输部,所述信号源端与所述显示端通过所述传输部连接;其中,
    所述信号源端包括:
    供电模块,所述供电模块包括电压输出端和电压反馈端,所述电压输出端用于输出供电信号,所述电压反馈端用于获取反馈电压信号,所述电源模块被配置为基于所述反馈电压信号调节所述供电信号;
    所述传输部包括:
    第一传输线,第一端连接所述电压输出端,第二端输出所述供电信号;
    第二传输线,与所述第一传输线分开设置,所述第二传输线的第一端连接所述电压反馈端,第二端连接所述第一传输线的第二端。
  2. 根据权利要求1所述的显示设备,其中,所述传输部包括:
    第一连接器,与所述信号源端连接,所述第一连接器包括第一管脚和第二管脚,所述第一管脚连接所述第一传输线,所述第二管脚连接所述第二传输线,且所述第一连接器通过所述第一管脚连接所述电压输出端,以及通过所述第二管脚连接所述电压反馈端;
    第二连接器,与所述显示端连接,所述第一传输线与所述第二传输线在所述第二连接器端连接。
  3. 根据权利要求2所述的显示设备,其中,所述显示设备包括多个所述传输部;
    所述信号源端包括多个所述供电模块,多个所述供电模块被配置为输出多个不同的供电信号;
    其中,多个所述传输部与多个所述供电模块一一对应设置。
  4. 根据权利要求3所述的显示设备,其中,多个所述供电模块包括第一供电模块、第二供电模块和第三供电模块,所述第一供电模块用于输出第一供电信号,所述第二供电模块用于输出第二供电信号,所述第三供电模块用于输出第三供电信号,所述第一供电信号的电压大小、所述第二供电信号的电压大小、所述第三供电信号的电压大小互不相同;
    多个所述传输部包括第一传输部、第二传输部和第三传输部;
    其中,所述第一传输部与所述第二传输部设置于第一电路板,所述第三传输部设置于第二电路板。
  5. 根据权利要求4所述的显示设备,其中,所述传输部包括第一导电层和第二导电层,所述第一导电层与所述第二导电层绝缘设置;
    所述第二连接器包括第三管脚,所述第三管脚连接所述第一传输线;
    所述第一管脚、所述第二管脚、所述第一传输线、所述第二传输线均位于所述第一导电层,所述第三管脚位于所述第二导电层;或者,
    所述第一管脚、所述第二管脚、所述第一传输线、所述第二传输线均位于所述第二导电层,所述第三管脚位于所述第一导电层;或者,
    所述第一管脚、所述第二管脚位于所述第一导电层,所述第一传输线、所述第二传输线、所述第三管脚均位于所述第二导电层;或者,
    所述第一管脚、所述第二管脚位于所述第二导电层,所述第一传输线、所述第二传输线、所述第三管脚均位于所述第一导电层;或者,
    所述第一管脚、所述第二管脚、所述第一传输线、所述第二传输线、所述第三管脚均位于所述第一导电层或所述第二导电层。
  6. 根据权利要求4所述的显示设备,其中,所述第一连接器包括多个所述第一管脚,且多个所述第一管脚并联设置;
    所述第二连接器包括多个第三管脚,且多个所述第三管脚并联设置;
    其中,多个所述第一管脚分别连接所述第一传输线的第一端,多个所述第三管脚分别连接所述第一传输线的第二端。
  7. 根据权利要求6所述的显示设备,其中,所述第一管脚、所述第二管脚以及所述第一传输线、所述第二传输线均位于所述第一导电层,所述第三管脚位于所述第二导电层;
    所述第一传输部、所述第二传输部均包括:
    第一导电部,设置于第二连接器端且位于所述第一导电层,所述第一导电部连接所述第一传输线的第二端;
    第二导电部,位于所述第二导电层且与所述第一导电部相对设置,所述第二导电部通过过孔连接所述第一导电部;
    其中,同一传输部中,所述第二导电部还连接所述第二传输线,且所述第二导电部与多个所述第三管脚分别连接。
  8. 根据权利要求7所述的显示设备,其中,所述第二导电部的宽度大于所述第一导电部的宽度。
  9. 根据权利要求1所述的显示设备,其中,所述第一传输线的线宽大于所述第二传输线的线宽。
  10. 根据权利要求5所述的显示设备,其中,
    所述第一传输部中,所述第一传输线的线宽为d1,所述第二传输线的线宽为d2,d1/d2大于等于8且小于等于10;
    所述第二传输部中,所述第一传输线的线宽为d3,所述第二传输线的线宽为d4,d3/d4大于等于8且小于等于10;
    所述第三传输部中,所述第一传输线的线宽为d5,所述第二传输线的线宽为d6,d5/d6大于等于2且小于等于4。
  11. 根据权利要求10所述的显示设备,其中,d1/d5大于等于2且小于等于4,d3/d5大于等于2且小于等于4。
  12. 根据权利要求6所述的显示设备,其中,所述第一传输部中的第三管脚多于第一管脚,所述第二传输部中的第三管脚多于第一管脚;
    所述第三传输部中的第三管脚与第一管脚数量相同。
  13. 根据权利要求4所述的显示设备,其中,所述显示设备还包括:
    转接部,一端连接所述信号源端,另一端连接所述第一传输部的第一端、所述第二传输部的第一端以及所述第三传输部的第一端,所述第一传输部的第二端、所述第二传输部的第二端以及所述第三传输部的第二端连接所述显示端。
  14. 一种压降补偿电路,应用于权利要求1-13中任一项所述的显示设备,其中,所述压降补偿电路包括:
    供电模块,设置于信号源端,所述供电模块包括:
    电压输出端,用于输出供电信号;
    反馈电压端,用于获取反馈电压信号;
    分压模块,所述分压模块的输入端连接所述电压输出端,输出端连接所述反馈电压端,所述分压模块被配置为按照预设分压比基于所述电压输出端的输出电压信号确定反馈电压信号;
    所述供电模块被配置为基于所述反馈电压信号对所述电压输出端输 出的供电信号进行调节。
  15. 根据权利要求14所述的压降补偿电路,其中,所述分压模块包括:
    第一电阻,所述第一电阻的第一端作为所述分压模块的输入端;
    第二电阻,第一端与所述第一电阻的第二端连接后作为所述分压模块的输出端,所述第二电阻的第二端接地。
  16. 根据权利要求14所述的显示设备,其中,还包括:
    滤波电容,一端连接所述分压模块的输入端,另一端连接所述分压模块的输出端。
PCT/CN2022/074551 2022-01-28 2022-01-28 一种显示设备及其压降补偿方法 WO2023141930A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/074551 WO2023141930A1 (zh) 2022-01-28 2022-01-28 一种显示设备及其压降补偿方法
CN202280000098.3A CN116997953A (zh) 2022-01-28 2022-01-28 一种显示设备及其压降补偿方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/074551 WO2023141930A1 (zh) 2022-01-28 2022-01-28 一种显示设备及其压降补偿方法

Publications (2)

Publication Number Publication Date
WO2023141930A1 true WO2023141930A1 (zh) 2023-08-03
WO2023141930A9 WO2023141930A9 (zh) 2023-10-12

Family

ID=87469964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/074551 WO2023141930A1 (zh) 2022-01-28 2022-01-28 一种显示设备及其压降补偿方法

Country Status (2)

Country Link
CN (1) CN116997953A (zh)
WO (1) WO2023141930A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3511625A1 (de) * 1985-03-29 1986-10-02 Siemens AG, 1000 Berlin und 8000 München Verdrahtete oder-anordnung
CN1586061A (zh) * 2001-09-11 2005-02-23 施卢默格海外有限公司 用于有线线路电缆系统的电源调节器
CN208954610U (zh) * 2018-08-07 2019-06-07 昆山龙腾光电有限公司 测量装置
CN110780222A (zh) * 2019-12-20 2020-02-11 韦森特(东莞)科技技术有限公司 一种MINI/MicroLED的点亮测试装置
CN111223461A (zh) * 2020-01-16 2020-06-02 昆山龙腾光电股份有限公司 一种调压电路和显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3511625A1 (de) * 1985-03-29 1986-10-02 Siemens AG, 1000 Berlin und 8000 München Verdrahtete oder-anordnung
CN1586061A (zh) * 2001-09-11 2005-02-23 施卢默格海外有限公司 用于有线线路电缆系统的电源调节器
CN208954610U (zh) * 2018-08-07 2019-06-07 昆山龙腾光电有限公司 测量装置
CN110780222A (zh) * 2019-12-20 2020-02-11 韦森特(东莞)科技技术有限公司 一种MINI/MicroLED的点亮测试装置
CN111223461A (zh) * 2020-01-16 2020-06-02 昆山龙腾光电股份有限公司 一种调压电路和显示装置

Also Published As

Publication number Publication date
WO2023141930A9 (zh) 2023-10-12
CN116997953A (zh) 2023-11-03

Similar Documents

Publication Publication Date Title
US20050205877A1 (en) Display device having driving circuit
US20230052091A1 (en) Array substrate, display panel and display module
WO2018072429A1 (zh) 显示面板及显示设备
US9418596B2 (en) Organic light emitting display and method for driving the same
WO2021254036A1 (zh) 显示基板、显示面板
US10741142B1 (en) Current mode digitally variable resistor or programmable VCOM
CN104008722A (zh) 有机发光显示器
CN112255847A (zh) 一种显示模组、显示装置及显示模组的驱动方法
US11763737B2 (en) Micro-LED display panel and display device
WO2022174612A1 (zh) 显示基板、显示装置和布线方法
WO2023015618A1 (zh) 背光灯板、背光模组及显示装置
TWI684045B (zh) 顯示裝置
WO2019227858A1 (zh) 触控显示面板及电子设备
US20170053593A1 (en) Amoled Panel, Manufacturing Method Thereof, and Display Device
WO2023141930A1 (zh) 一种显示设备及其压降补偿方法
CN204632309U (zh) 一种显示面板和显示装置
WO2021184485A1 (zh) 阵列基板及液晶显示面板
CN104424908B (zh) 平板显示设备和源极驱动器集成电路
US20230419912A1 (en) Pixel drive circuit, display panel, and display device
KR20200082676A (ko) 발광 표시장치
WO2021253397A1 (zh) 显示模组和显示装置
TWI767473B (zh) 發光基板及其驅動方法、顯示裝置
CN113299232A (zh) 一种显示面板及其驱动方法、显示装置
KR102510375B1 (ko) 표시장치
KR20210033732A (ko) 표시장치와 그 불량 감지 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280000098.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22922775

Country of ref document: EP

Kind code of ref document: A1