WO2023141752A1 - Method, apparatus and system for monitoring a switching device - Google Patents

Method, apparatus and system for monitoring a switching device Download PDF

Info

Publication number
WO2023141752A1
WO2023141752A1 PCT/CN2022/073719 CN2022073719W WO2023141752A1 WO 2023141752 A1 WO2023141752 A1 WO 2023141752A1 CN 2022073719 W CN2022073719 W CN 2022073719W WO 2023141752 A1 WO2023141752 A1 WO 2023141752A1
Authority
WO
WIPO (PCT)
Prior art keywords
determining
time
operation status
switching device
release
Prior art date
Application number
PCT/CN2022/073719
Other languages
French (fr)
Inventor
Guang Yang
Kaiyu LIU
Original Assignee
Abb Schweiz Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abb Schweiz Ag filed Critical Abb Schweiz Ag
Priority to CN202280052092.0A priority Critical patent/CN117836639A/en
Priority to PCT/CN2022/073719 priority patent/WO2023141752A1/en
Publication of WO2023141752A1 publication Critical patent/WO2023141752A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers
    • G01R31/3277Testing of circuit interrupters, switches or circuit-breakers of low voltage devices, e.g. domestic or industrial devices, such as motor protections, relays, rotation switches
    • G01R31/3278Testing of circuit interrupters, switches or circuit-breakers of low voltage devices, e.g. domestic or industrial devices, such as motor protections, relays, rotation switches of relays, solenoids or reed switches

Definitions

  • Example embodiments of the present disclosure generally relate to industrial control, and more specifically, to method, apparatus, system and computer readable medium for monitoring a switching device.
  • the release in the mechanical switching device such as a circuit breaker is utilized to implement automatic opening or closing operations.
  • the mechanical switching device such as the circuit breaker will not be able to open or close automatically. Therefore, it is desirable to provide a solution of monitoring the performance of the switching device, especially monitoring the release of the switching device.
  • Example embodiments of the present disclosure provide solutions for monitoring a switching device.
  • example embodiments of the present disclosure provide a method for monitoring a switching device.
  • the method comprises: detecting a sequence of current values of a coil of a release of the switching device during a time duration; determining a voltage value and a set of characteristic values based on the sequence of current values, the set of characteristic values comprising information about an actuation time of the release and information about current values; and determining an operation status of the release based on the voltage value and the set of characteristic values.
  • the switching device for example the release of the switching device
  • the malfunction of the release especially the malfunction of the coil of the release
  • health status of the release can be evaluated and advices can be provided.
  • the switching device or the release can be monitored in a convenience and effective way.
  • determining the operation status of the release comprises: determining, from a plurality of standard characteristic value sets, a target standard characteristic value set based on the voltage value, each of the plurality of standard characteristic value sets being associated with a respective voltage value; and determining the operation status of the release based on a difference between the set of characteristic values and the target standard characteristic value set.
  • the operation status of the release can be determined based on the difference between the set of characteristic values and the target standard characteristic value set.
  • the target standard characteristic value set is associated with the voltage value. In this way, malfunctions can be found based on the set of characteristic values and the voltage value determined based on the sequence of current values.
  • determining the operation status of the release based on the difference comprises: in accordance with a determination that the difference is below a first threshold, determining the operation status to indicate that the release is operating normally; in accordance with a determination that the difference exceeds the first threshold and is below a second threshold, determining the operation status to indicate a mild malfunction of the coil of the release; and in accordance with a determination that the difference exceeds the second threshold, determining the operation status to indicate a severe malfunction of the coil.
  • different operation status can be determined based on the difference between the set of characteristic values and the target standard characteristic value set.
  • two different threshold it is possible to not only determine whether the release performs normal or not, but also determines the level of the malfunction of the release.
  • the method further comprises: in accordance with a determination that the difference exceeds the first threshold and is below a second threshold, providing a warning indicating that the coil of the release mildly malfunctions; and in accordance with a determination that the difference exceeds the second threshold, providing an alarm indicating that the coil of the release severely malfunctions.
  • a warning or an alarm to the user may be provided when determining a mild or severe malfunction of the release. In this way, reasonable advices will be provided to the user once malfunctions are found. For example, when the user notices the alarm which indicating a severe malfunction, the user may replace the coil to fix the release.
  • determining the voltage value comprises: determining a fitted current curve based on the sequence of current values; determining a deviation between the fitted current curve and a standard current curve corresponding to a standard voltage value; and determining the voltage value based on the deviation and a voltage-deviation relationship curve.
  • the voltage value of the release can be determined based on the deviation between the fitted current curve and the standard current curve.
  • determining the set of characteristic values comprises: determining, based on the sequence of current values, at least one of: a starting time of the sequence of current values; a stable time of output voltage value; a first order starting time corresponding to a starting point of a first order response of the sequence of current values; a peak time corresponding to a first peak current value of the sequence of current values; the first peak current value; a first valley current value of the sequence of current values; or a valley time duration from the starting point of the sequence of current values to a valley time corresponding to the first valley current value.
  • the set of characteristic values of the current values can be determined.
  • the set of characteristic values may indicate the actuation time of the release.
  • the release is configured to trigger opening or closing of a switching device
  • the method further comprises: detecting an operating time of the switching device, the operating time comprising one of: a closing time or an opening time of the switching device; and determining a further operation status of the switching device based on the operating time and a standard operating time associated with the voltage value.
  • a further operation status of the switching device can be further determined based on temporal information of the switching device.
  • the further operation status of the switching device can be determined based on the opening time of the switching device or the closing time of the switching device.
  • determining the further operation status comprises: determining a correction time duration associated with the voltage value based on the voltage value and a correction curve, the correction curve indicating relationships between a set of voltage values and a set of correction time durations; determining a corrected operating time based on the correction time duration and the operating time; and determining the further operation status of the switching device based on a time difference between the corrected operating time and the standard operating time.
  • the operating time such as the opening time or the closing time
  • the further operation status can be determined based on the corrected operation time and the standard operating time. In this way, the health status of the switching device can be further evaluated based on the temporal information of the switching device.
  • determining the further operation status based on the time difference comprises: in accordance with a determination that the time difference is below a threshold time, determining the further operation status to indicate that the switching device is operating normally; and in accordance with a determination that the time difference exceeds a threshold time, determining the further operation status to indicate a malfunction of the switching device.
  • the method further comprises: in accordance with a determination that the operation status indicating that the release is operating normally and the further operation status indicating a malfunction of the switching device, providing a warning indicating that a mechanism of the switching device other than the coil malfunctions.
  • the operation status indicates that the release is normally operated but the further operation status indicates that the switching device breaks down
  • an advice or a warning will be provided to the user to indicate that a mechanism of the switching device other than the coil malfunctions. In this way, the user may be acknowledged that the mechanism of the switching device needs to be fixed or replaced.
  • example embodiments of the present disclosure provide an apparatus for monitoring a switching device.
  • the apparatus comprises: a detecting unit for detecting a sequence of current values of a coil of a release of the switching device during a time duration; a value determining unit for determining a voltage value and a set of characteristic values based on the sequence of current values, the set of characteristic values comprising information about an actuation time of the release and information about current values; and an operation status determining unit for determining an operation status of the release based on the voltage value and the set of characteristic values.
  • the operation status determining unit comprises: a standard value determining unit for determining, from a plurality of standard characteristic value sets, a target standard characteristic value set based on the voltage value, each of the plurality of standard characteristic value sets being associated with a respective voltage value; and a first operation status determining unit for determining the operation status of the release based on a difference between the set of characteristic values and the target standard characteristic value set.
  • the first operation status determining unit comprises: a normal status determining unit for in accordance with a determination that the difference is below a first threshold, determining the operation status to indicate that the release is operating normally; a mild malfunction status determining unit for in accordance with a determination that the difference exceeds the first threshold and is below a second threshold, determining the operation status to indicate a mild malfunction of the coil of the release; and a severe malfunction status determining unit for in accordance with a determination that the difference exceeds the second threshold, determining the operation status to indicate a severe malfunction of the coil.
  • the apparatus further comprises: a first providing unit for in accordance with a determination that the difference exceeds the first threshold and is below a second threshold, providing a warning indicating that the coil of the release mildly malfunctions; and a second providing unit for in accordance with a determination that the difference exceeds the second threshold, providing an alarm indicating that the coil of the release severely malfunctions.
  • the value determining unit comprises: a fitted curve determining unit for determining a fitted current curve based on the sequence of current values; a deviation determining unit for determining a deviation between the fitted current curve and a standard current curve corresponding to a standard voltage value; and a voltage value determining unit for determining the voltage value based on the deviation and a voltage-deviation relationship curve.
  • the value determining unit comprises: a characteristic value determining unit for determining, based on the sequence of current values, at least one of: a starting time of the sequence of current values; a stable time of output voltage value; a first order starting time corresponding to a starting point of a first order response of the sequence of current values; a peak time corresponding to a first peak current value of the sequence of current values; the first peak current value; a first valley current value of the sequence of current values; or a valley time duration from the starting point of the sequence of current values to a valley time corresponding to the first valley current value
  • the release is configured to trigger opening or closing of a switching device
  • the apparatus further comprises: an operating time detecting unit for detecting an operating time of the switching device, the operating time comprising one of: a closing time or an opening time of the switching device; and a further operation status determining unit for determining a further operation status of the switching device based on the operating time and a standard operating time associated with the voltage value.
  • the further operation status determining unit comprises: a correction time determining unit for determining a correction time duration associated with the voltage value based on the voltage value and a correction curve, the correction curve indicating relationships between a set of voltage values and a set of correction time durations; a corrected operating time determining unit for determining a corrected operating time based on the correction time duration and the operating time; and a second operation status determining unit for determining the further operation status of the switching device based on a time difference between the corrected operating time and the standard operating time.
  • the second operation status determining unit comprises: a further normal status determining unit for in accordance with a determination that the time difference is below a threshold time, determining the further operation status to indicate that the switching device is operating normally; and a malfunction status determining unit for in accordance with a determination that the time difference exceeds the threshold time, determining the further operation status to indicate a malfunction of the switching device.
  • the apparatus further comprises: a third providing unit for in accordance with a determination that the operation status indicating that the release is operating normally and the further operation status indicating a malfunction of the switching device, providing a warning indicating that a mechanism of the switching device other than the coil malfunctions.
  • example embodiments of the present disclosure provide a system for monitoring a switching device.
  • the system comprises: a computer processor coupled to a computer-readable memory unit, the memory unit comprising instructions that when executed by the computer processor implement the method for monitoring a release.
  • example embodiments of the present disclosure provide a system for monitoring a switching device.
  • the system comprises: a computer processor coupled to a computer-readable memory unit, the memory unit comprising instructions that when executed by the computer processor implements the method for monitoring a release.
  • FIG. 1 illustrates an example environment in which various embodiments for monitoring a switching device in accordance with embodiments of the present disclosure
  • Fig. 2 illustrates a flowchart of a method for monitoring a switching device in accordance with embodiments of the present disclosure
  • Fig. 3A illustrates an example current waveform of a coil of the release in accordance with embodiments of the present disclosure
  • Fig. 3B illustrates another example current waveform of a coil of the release in accordance with embodiments of the present disclosure
  • Fig. 3C illustrates an example voltage waveform of a coil of the release in accordance with embodiments of the present disclosure
  • Fig. 4 illustrates a flowchart of a method for determining a voltage value based on a sequence of current values in accordance with embodiments of the present disclosure
  • Fig. 5A illustrates example fitted current curves of the coil of the release under different voltage values in accordance with embodiments of the present disclosure
  • Fig. 5B illustrates an example voltage-deviation relationship curve in accordance with embodiments of the present disclosure
  • Fig. 6A illustrates example current curves under different load in accordance with embodiments of the present disclosure
  • Fig. 6B illustrates a flowchart of a method for determining the operation status of the switching device in accordance with embodiments of the present disclosure
  • Fig. 7 illustrates example errors under different voltage in accordance with embodiments of the present disclosure
  • Fig. 8 illustrates a flowchart of a method for determining a further operation status of the switching device based on a corrected operating time in accordance with embodiments of the present disclosure
  • Fig. 9A illustrates example correction time results in accordance with embodiments of the present disclosure
  • Fig. 9B illustrates an example voltage-deviation time correction curve in accordance with embodiments of the present disclosure
  • Fig. 10 illustrates a schematic diagram of an apparatus for monitoring a switching device in accordance with embodiments of the present disclosure.
  • Fig. 11 illustrates a schematic diagram of a system for implementing a method in accordance with embodiments of the present disclosure.
  • the term “comprises” or “includes” and its variants are to be read as open terms that mean “includes, but is not limited to. ”
  • the term “or” is to be read as “and/or” unless the context clearly indicates otherwise.
  • the term “based on” is to be read as “based at least in part on. ”
  • the term “being operable to” is to mean a function, an action, a motion or a state can be achieved by an operation induced by a user or an external mechanism.
  • the term “one embodiment” and “an embodiment” are to be read as “at least one embodiment. ”
  • the term “another embodiment” is to be read as “at least one other embodiment. ”
  • the terms “first, ” “second, ” and the like may refer to different or same objects. Other definitions, explicit and implicit, may be included below. A definition of a term is consistent throughout the description unless the context clearly indicates otherwise.
  • mechanical switching device with a release has been widely utilized in the industry.
  • the release in the mechanical switching device such as a circuit breaker is utilized to implement automatic opening or closing operations.
  • the mechanical switching device such as the circuit breaker will not be able to open or close automatically.
  • failures in releases such as a coil failure are critical to the mechanical switching device. Such release failures will lead to severe incident and even cause heavy losses.
  • a solution for monitoring the switching device In this solution, a sequence of current values of a coil of the release is detected. A corresponding voltage value of the coil is determined based on the sequence of current values.
  • a set of characteristic values is determined based on the sequence of current values, as well. The set of characteristic values comprises information regarding an actuation time of the release and information regarding current values such as the peak current value.
  • an operation status of the release is determined. The operation status indicates whether the release is operating normally or not. In this way, the performance of the switching device can be monitored based on the detected current values.
  • a warning or an alarm can be provided to indicate a mild or severe malfunction of the release.
  • Advices can also be provided to the user based on the determined operation status. For example, the user may be indicated to fix or replace the coil of the release in the situation that the operation status indicates a severe malfunction.
  • Fig. 1 illustrates an example environment 100 in which various embodiments for monitoring a switching device in accordance with the present disclosure can be implemented. It is to be understood that the environment 100 shown in Fig. 1 is only for the purpose of illustration, without suggesting any limitation to functions and the scope of the embodiments of the present disclosure.
  • a switching device 101 such as a mechanical switching device is implemented in an environment 100.
  • the switching device 101 comprises a release 110.
  • the release 110 may be configured to trigger the switching device 101 to open or close.
  • the release 110 comprises a coil 120.
  • the switching device 101 may further comprise a mechanism 130.
  • the mechanism 130 may comprise a plurality of components, such as a transmission component, a releasing component and/or a contact point connecting to other component of the switching device 101, etc. It is to be understood that the mechanism 130 may be an integrated mechanism or comprise a plurality of distributed components. It is to be understood that the switching device 101 may be any suitable switching device with a release.
  • the current in the coil 120 may trigger the mechanism 130 to move, which will in turn trigger the switching device 101 to open or close. It is to be understood that Fig. 1 is only for the purpose of illustration, without suggesting any limitation.
  • the switching device 101 may comprise additional components.
  • the release 110 may comprise additional components as well.
  • the switching device 101 may perform a closing action and/or an opening action triggered by the release 110. For example, if the current in the coil 120 is within a first current range for closing the switching device 101, the release 110 may trigger the switching device 101 to close.
  • the first current range may be predetermined.
  • the release 110 may trigger the switching device 101 to close.
  • the first voltage range may be predetermined, such as 85%to 110%of a standard voltage value (such as 220V) .
  • the time on which the switching device 101 closes may be referred to as a closing time.
  • an ejector rod of the release 110 moves up and contacts a closing release plate.
  • the closing release plate rotates and triggers a moving contact to move up. Accordingly, the switching device 101 is closed.
  • the release 110 may trigger the switching device 101 to open.
  • the second current range may be predetermined.
  • the voltage on the coil 120 is within a second voltage range for opening the switching device 101
  • the release 110 may trigger the switching device 101 to open.
  • the second voltage range may be predetermined, such as 65%to 85%of a standard voltage value (such as 220V) .
  • the time on which the switching device 101 opens may be referred to as an opening time. For example, when the coil 120 is energized and the voltage of the coil 120 is within the second voltage range, the ejector rod of the release 110 moves up and contacts the opening release plate.
  • the opening release plate rotates and triggers the moving contact to move down. Accordingly, the switching device 101 opens. It is to be understood that the value of the standard voltage and the example voltage range are only for the purpose of illustration, without suggesting any limitations. The value of voltage may be of any suitable range. The standard voltage may be of any suitable value.
  • the computing device 140 is communicatively coupled to the switching device 101.
  • the computing device 140 is configured to monitor the release 110 of the switching device 101.
  • the computing device 140 may comprise a detector 150.
  • the detector 150 may be configured to detect current values of the coil 120 during a time duration.
  • the computing device 140 may monitor the release 110 based on the detected current values.
  • the detector 150 may also be configured to detect other information such as temporal information during the operation of the release 110.
  • the detector 150 may be a separate component which is communicatively coupled to the computing device 140.
  • Fig. 1 is only for the purpose of illustration, without suggesting any limitation.
  • the computing device 140 may comprise additional components.
  • Fig. 2 illustrates a flowchart of a method 200 for monitoring a switching device 101 in accordance with embodiments of the present disclosure.
  • the method 200 may be implemented by the computing device 140. It is to be understood that the method 200 may also be implemented by any other suitable device or apparatus. For the purpose of illustration, the method 200 will be described with reference to Fig. 1.
  • the computing device 140 detects a sequence of current values of the coil 120 during a time duration.
  • the computing device 140 may detect the sequence of current values of the coil 120 during a predetermined operation time duration of the switching device 101 in real time via the detector 150.
  • the computing device 140 determines a voltage value and a set of characteristic values based on the sequence of current values.
  • the voltage value may be a stable output voltage value of the coil 120 or the release 110.
  • the set of characteristic values may comprise information about an actuation time of the release 110 and information about current values.
  • a current waveform (also referred to as a current curve) of the coil 120 may be plotted based on the sequence of current values.
  • the set of characteristic values may be determined based on the current waveform of the coil 120.
  • Fig. 3A illustrates an example current waveform 300 of the coil 120 of the release 110 in accordance with embodiments of the present disclosure.
  • the release 110 may trigger the switching device 101 to close.
  • the current waveform 300 is illustrated as a continuous curve in Fig. 3A, in some example embodiments, it may be a waveform consisting of a plurality of discrete points.
  • the current waveform 300 may be plotted based on the sequence of current values.
  • a point A 312 represents a starting point of the sequence of current values, at which the current of the coil 120 starts to be greater than 0.
  • a point B 314 represents a point at which a first order response begins.
  • a point C 316 represents a first peak point at which the current value reaches a first peak current value.
  • the mechanism 130 (for example a moving part) of the release 110 may generate energy from the point B 314 and the energy reaches a peak at the point C 316.
  • the first order response ends at the point C 316.
  • a point D 318 represents a first valley point at which the current value reduces to a first valley value.
  • Fig. 3A also illustrates a valley time duration 320 (also referred to as T AD ) from the point A 312 to the point D 318.
  • the set of characteristic values may comprise at least one of: a starting time of the sequence of current values at the point A 312; a first order starting time corresponding to the starting point of the first order response of the sequence of current values at the point B 314; a peak time (also referred to as a first order end time) corresponding to the first peak current value of the sequence of current values at the point C 316; the first peak current value at the point C 316; a first valley current value of the sequence of current values at the point D 318; or a valley time duration from the starting point A 312 of the sequence of current values to a valley time (at the point D 318) corresponding to the first valley current value.
  • the computing device 140 may determine the set of characteristic values based on the current waveform 300. It is to be understood that the above described values are only for the purpose of illustration, without suggesting any limitation.
  • the set of characteristic values may comprise further values.
  • Fig. 3B illustrates an example current waveform 330 of the coil 120 of the release 110 in accordance with embodiments of the present disclosure.
  • the release 110 may trigger the switching device 101 to open.
  • the current waveform 330 may be plotted based on the sequence of current values. It is to be understood that although the current waveform 300 is illustrated as a continuous curve in Fig. 3B, in some example embodiments, it may be a waveform consisting of a plurality of discrete points.
  • a point 342 represents a starting point of the sequence of current values, at which the current of the coil 120 starts to be greater than 0.
  • a point 344 represents a point at which a first order response begins.
  • a point 346 represents a first peak point at which the current value reaches a first peak value. The first order response ends at the point 346.
  • the mechanism 130 (for example a moving part) of the release 110 may generate energy from the point 344 and the energy reaches a peak at the point 346.
  • a point 348 represents a first valley point at which the current value reduces to a first valley value. The current value of the coil 120 will be reduced since the point 346 until the finish of the actuation at the point 348.
  • Fig. 3B also illustrates a valley time duration 350 from the point 342 to the point D 348.
  • the set of characteristic values may comprise at least one of: a starting time of the sequence of current values at the point 342; a first order starting time corresponding to the starting point of the first order response of the sequence of current values at the point 344; a peak time (also referred to as a first order end time) corresponding to the first peak current value of the sequence of current values at the point 346; the first peak current value at the point 346; a first valley current value of the sequence of current values at the point 348; or a valley time duration from the starting point 342 of the sequence of current values to a valley time (at the point 348) corresponding to the first valley current value.
  • the computing device 140 may determine the set of characteristic values based on the current waveform 330. It is to be understood that the above described values are only for the purpose of illustration, without suggesting any limitation.
  • the set of characteristic values may comprise further values.
  • Fig. 3C illustrates an example voltage waveform 360 of the coil 120 of the release 110 in accordance with embodiments of the present disclosure.
  • the voltage waveform 360 may be plotted based on a sequence of voltage values detected by a voltage detector.
  • the computing device 140 may use the detector 150 or another voltage detector to detect the sequence of voltage values.
  • a point S 380 represents a starting point of the stable voltage. It is to be understood that Fig. 3C is only illustrated to provide a visual description of the stable output voltage waveform, in some example embodiments, the computing device 140 does not require detecting the sequence of voltage values by the detector.
  • the computing device 140 may only detect the sequence of current values by the detector 150 to monitor the release 110.
  • the set of characteristic values may further comprise a stable time of output voltage value at the point S 380.
  • the voltage value may also be determined based on the sequence of current values.
  • Fig. 4 illustrates a flowchart of a method 400 for determining the voltage value based on the sequence of current values in accordance with embodiments of the present disclosure.
  • the method 400 may be implemented by the computing device 140. It is to be understood that the method 400 may also be implemented by any other suitable device or apparatus. For the purpose of illustration, the method 400 will be described with reference to Fig. 1.
  • the computing device 140 may determine a fitted current curve based on the sequence of current values. For example, the computing device may determine the voltage value based on the current waveform 300 or 330 which is plotted based on the sequence of current values. For example, the voltage value may be determined based on a portion of the current waveform 300, for example from the point B 314 to the point C 316. For another example, the voltage value may be determined based on a portion of the current waveform 330, for example, from the point 344 to the point 346.
  • the computing device 140 may extract a portion of the current waveform 300, for example from the point B 314 to the point C 316.
  • the computing device 140 may determine the fitted current curve based on this portion of the current waveform 300.
  • the computing device 140 may use a least squares fitting or any other suitable fitting method to determine the fitted current curve based on the above portion of the current waveform 300.
  • the fitted current curve may be determined based on a mathematical model for a first order response.
  • the fitted current curve can be represented as following:
  • t denotes the time
  • f (t) denotes the current value at time t
  • a, b c denote parameters of the fitted curve which may be determined by using for example least squares fitting or any other suitable fitting method.
  • the computing device 140 may determine a deviation between the fitted current curve and a standard current curve corresponding to a standard voltage value.
  • the standard voltage value may be predefined as 220V.
  • the computing device 140 may determine the voltage value based on the deviation and a voltage-deviation relationship curve.
  • the voltage-deviation relationship curve may be predetermined based on, for example historical current and voltage data.
  • the voltage-deviation relationship curve may also be a look-up table which shows the relationship between the deviation and the corresponding voltage.
  • the voltage value may be determined.
  • the determined voltage value may also be referred to as a computed voltage value. In this way, the voltage value of the release can be determined based on the deviation between the fitted current curve and the standard current curve.
  • the computing device 140 may predetermine the voltage-deviation relationship curve based on historical current waveforms and corresponding voltage waveforms. For example, the computing device 140 may pretest the release 110 under different voltage values and detect the current waveforms and corresponding voltage waveforms. The computing device 140 may select the portion from the first order starting point (such as the point B 314 or the point 344) to the peak point (such as the point C 316 or the point 346) of each waveform and determine each fitted current curve by using for example least squares fitting.
  • the first order starting point such as the point B 314 or the point 344
  • the peak point such as the point C 316 or the point 346
  • Fig. 5A illustrates example fitted current curves of the coil 120 of the release 110 under different voltage values in accordance with embodiments of the present disclosure.
  • the curve 515 corresponding to 220V may be referred to as the standard current curve.
  • Fig. 5A also shows a curve 505 under 140V, a curve 510 under 180V, a curve 520 under 240V and a curve 525 under 260V. It is to be understood that these curves in Fig. 5A are only for the purpose of illustration, without suggesting any limitations.
  • the computing device 140 may predetermine more or less fitted curve.
  • the computing device 140 may also choose another fitted curve other than the fitted curve under 220V as the standard curve.
  • the computing device 140 may predetermine the voltage-deviation relationship curve. For example, the computing device 140 may predetermine the deviations between each fitted current curve with the standard fitted current curve. The computing device 140 may further determine the voltage-deviation relationship curve based on the predetermined deviations and corresponding voltage values.
  • Fig. 5B illustrates an example voltage-deviation relationship curve 560 in accordance with embodiments of the present disclosure.
  • the voltage-deviation relationship curve 560 may be predetermined based on the process as described above. It is to be understood that the voltage-deviation relationship curve 560 may also be predetermined by using other process. For example, the voltage-deviation relationship curve 560 may also be predetermined based on historical current data and voltage data collected during the test of the release 110.
  • the computing device 140 determines an operation status of the release 110 based on the determined voltage value and the determined set of characteristic values. In this way, malfunctions can be found based on the set of characteristic values and the voltage value determined based on the sequence of current values.
  • the computing device 140 may determine a target standard characteristic value set from a plurality of standard characteristic value sets. Each of the plurality of standard characteristic value sets is associated with a respective voltage value. For example, the plurality of standard characteristic value sets may be predetermined based on the historical current values under different voltage values. For example, the computing device 140 may collect historical current values under different voltage values when the release 110 operates normally. Based on these data, the computing device 140 may predetermine the plurality of standard characteristic value sets corresponding to different voltage values. The computing device 140 may then select, from the plurality of standard characteristic value sets, a standard characteristic value set corresponding to the voltage value as the target standard characteristic value set.
  • the computing device 140 may predetermine a fitted function based on historical current values under different voltage values.
  • the fitted function may be configured to determine a standard characteristic value set under each voltage value.
  • the computing device 140 then may determine the target standard characteristic value set based on the determined voltage value and the predetermined fitted function.
  • the fitted function may be configured to determine the standard characteristic value set under each voltage difference with the standard output voltage value (for example, 218V) .
  • the computing device 140 may determine the voltage difference between the determined voltage value and the standard output voltage value.
  • the computing device 140 may then determine the target standard characteristic value set based on the determined voltage difference and the predetermined fitted function. It is to be understood that the voltage value of 218V is only for the purpose of illustration, without suggesting any limitation.
  • the standard output voltage value may be any suitable value.
  • the computing device 140 may predetermine the target standard characteristic value set based on historical current and/or voltage data.
  • target standard characteristic value set may comprise a target standard characteristic value matrix.
  • the computing device 140 may collect a group of data (such as current values) under normal condition of the release 110 and corresponding characteristic values to determine target standard characteristic value matrix. The group of data may be obtained when the release 110 is operated with no load.
  • Fig. 6A illustrates example current curves 600 under different load in accordance with embodiments of the present disclosure. These current curves 600 may correspond to the same voltage value, for example, the determined voltage value. These current curves 600 are plotted based on the group of data (such as current values) of the release 110 between the first point where the current value exceeding 0.1A and the valley point under different loads. In the current curves 600, one curve 601 under no load condition may be regarded as a normal or healthy curve. The target standard characteristic value matrix may be determined based on the normal curve 601.
  • the computing device 140 may determine the operation status of the release 110 based on a difference between the determined set of characteristic values and the target standard characteristic value set.
  • Fig. 6B illustrates a flowchart of a method 605 for determining the operation status of the release 100 based on the difference in accordance with embodiments of the present disclosure.
  • the method 605 may be implemented by the computing device 140. It is to be understood that the method 605 may also be implemented by any other suitable device or apparatus. For the purpose of illustration, the method 605 will be described with reference to Fig. 1.
  • the computing device 140 may determine the difference between the determined set of characteristic values and the target standard characteristic value set.
  • the computing device 140 may use the nonlinear state estimation technology (NSET) or other suitable proportion normalization method to determine the difference.
  • the target standard characteristic value set may comprise the target standard characteristic value matrix.
  • the determined set of characteristic values may also be represented as a matrix or a vector.
  • the NSET model may determine the difference based on the determined characteristic value matrix and the target standard characteristic value matrix.
  • the difference (also referred to as “error” ) may be determined as follows:
  • F i denotes each characteristic value in the determined set of characteristic value vectors
  • F_STD denotes the target standard characteristic matrix under a given voltage
  • the computing device 140 may determine whether the difference exceeds a first threshold.
  • the first threshold may be predetermined by the computing device 140 or by a user.
  • the first threshold may be predetermined to 5. It is to be understood that the first threshold may be predetermined as any suitable value.
  • the first threshold may be different for different release and for different stable output voltage.
  • the computing device 140 determines that the difference is below or equal to the first threshold at block 620, the computing device 140, at block 660, determines the operation status to indicate that the release 110 is operating normally.
  • the computing device 140 determines whether the difference exceeds a second threshold.
  • the second threshold may be predetermined by the computing device 140 or by a user. For example, the second threshold may be predetermined to 20. It is to be understood that the second threshold may be predetermined as any suitable value greater than the first threshold. The second threshold may be different for different release and for different stable output voltage.
  • the computing device 140 determines the operation status to indicate a mild malfunction of the coil 120 of the release 110.
  • the computing device 140 may further provide a warning indicating that the coil 120 of the release 110 mildly malfunctions.
  • the computing device 140 determines the operation status to indicate a severe malfunction of the coil 120 of the release 110.
  • the computing device 140 may further provide an alarm indicating that the coil 120 of the release 110 severely malfunctions.
  • different operation status can be determined based on the difference between the set of characteristic values and the target standard characteristic value set.
  • two different thresholds not only whether the release performs normal or not can be determined, but also the level of the malfunction of the release can be determined.
  • a warning or an alarm will be provided to the user when determining a mild or severe malfunction of the release. In this way, reasonable advices will also be provided to the user once malfunctions are found. For example, when the user notices the alarm which indicating a severe malfunction, the user may replace the coil to fix the release.
  • Fig. 7 illustrates example errors (differences) results700 in accordance with embodiments of the present disclosure.
  • a threshold 710 may be used as the first threshold, while a threshold 720 may be used as the second threshold. If the error 740 or the difference is below the threshold 710, then the computing device 140 may determine the operation status to indicate that the release 110 is operating normally. If the error 730 exceeds the threshold 720, the computing device 140 may determine the operation status to indicate a severe malfunction of the coil 120 of the release 110. In addition, the computing device 140 may provide an alarm to the user to indicate the severe malfunction.
  • the computing device 140 may determine the operation status to indicate a mild malfunction of the coil 120 of the release 110. In addition, the computing device 140 may provide a warning to the user to indicate the mild malfunction.
  • the computing device 140 may further monitor the switching device 101 based on temporal information of the switching device 101. For example, the computing device 140 may detect an operating time of the switching device 101 by the detector 150 or another suitable detector. The operating time may comprise one of: a closing time of the switching device 101 or an opening time of the switching device 101. The computing device 140 may determine a further operation status based on the operating time and a standard operating time associated with the determined voltage value. The further operation status may indicate whether the switching device 101 is operating normally or not.
  • Fig. 8 illustrates a flowchart of a method 800 for determining a further operation status of the switching device 101 based on a corrected operating time in accordance with embodiments of the present disclosure.
  • the method 800 may be implemented by the computing device 140. It is to be understood that the method 800 may also be implemented by any other suitable device or apparatus. For the purpose of illustration, the method 800 will be described with reference to Fig. 1.
  • the computing device 140 may determine an operating time of the switching device 101. For example, the computing device 140 may determine the operating time by the detector 150 or another suitable detector. Alternatively, the operating time may be detected by a monitoring component in the switching device 101 and sent to the computing device 140.
  • the monitored or detected operating time there will be an error between the monitored or detected operating time and a real operating time of the switching device 101.
  • a time difference between the closing or opening signal at the main circuit and a closing or opening signal at the switching device 101.
  • Such mechanical time difference will be factory calibrated.
  • a further time difference between the monitored or detected operating time and the real operating time of the switching device 101.
  • This further time difference may result from a time difference between the starting point of the current values and the starting point of the stable voltage values.
  • the further time difference may be a time difference between the point A 312 in Fig. 3A and the point S 380 in Fig. 3C. In some example embodiments, this further time difference will be corrected. The correction of operating time will be described below.
  • the computing device 140 may determine a correction time duration associated with the determined voltage value based on the determined voltage value and a correction curve.
  • the correction curve indicates relationships between a set of voltage values and a set of correction time durations.
  • the correction curve may be predetermined by the computing device 140 based on historical data.
  • the computing device 140 may collect current data under the voltage varies from for example 65%to 110%of the rated voltage (220V) . It is to be understood that the value of the rated voltage and the example voltage range are only for the purpose of illustration, without suggesting any limitations.
  • the computing device 140 may subtract the time point at the beginning of stable voltage in voltage waveform from the time point where the current waveform starts to obtain the further time difference.
  • Fig. 9A illustrates example correction time results 900 in accordance with embodiments of the present disclosure.
  • the correction time results 900 illustrate the further time difference under different voltage values.
  • the computing device 140 may select the further time difference under 220V at a standard correction time. All the further time differences in Fig. 9A will be subtracted by the standard correction time. The result of this subtraction may be referred to as a time deviation. It is to be understood that the computing device 140 may determine other suitable voltage value as the standard voltage value, and determine a corresponding time difference under the standard voltage value to be the standard correction time.
  • the computing device 140 may predetermine the correction curve based on the plurality of voltage-time curve. For example, the computing device 140 may use the average of the time deviations from each voltage group and apply a linear interpolation method to obtain the correction curve.
  • the correction curve may also be referred to as a voltage-deviation time correction curve.
  • Fig. 9B illustrates an example voltage-deviation time correction curve 950 in accordance with embodiments of the present disclosure.
  • the voltage-deviation time correction curve 950 may be predetermined by the process described above.
  • the computing device 140 may determine the correction time duration based on the determined voltage value and the voltage-deviation time correction curve 950. For example, the computing device 140 may determine a deviation time based on the determined voltage value from the voltage-deviation time correction curve 950. The computing device 140 may then determine the correction time by adding the standard correction time to the determined deviation time.
  • the computing device 140 may determine a corrected operating time based on the correction time duration and the operating time. For example, the computing device 140 may determine a corrected closing time of the switching device 101 based on the correction time duration and the detected closing time. Likewise, the computing device 140 may determine a corrected opening time of the switching device 101 based on the correction time duration and the detected opening time. In this way, the closing time and/or the opening time of the switching device 101will be corrected. In addition, the corrected operation time can be more accurate, which may further lead to a more accurate further operation status.
  • the computing device 140 may determine a further operation status of the switching device 101 based on a time difference between the corrected operating time and a standard operating time associated with the determined voltage value.
  • the standard operating time may be predetermined by the computing device 140 based on historical data or preconfigured in factory.
  • the computing device 140 may determine the further operation status to indicate that the switching device 101 is operating normally. On the other hand, if the time difference exceeds the threshold time, the computing device 140 may determine the further operation status to indicate a malfunction of the switching device 101. Alternatively, or in addition, in such situation, the computing device 140 may provide a warning or an alarm to indicate that there is a malfunction of the switching device 101. It is to be understood that the threshold time may be predetermined by the computing device 140 or preconfigured in factory.
  • the computing device 140 may determine the further operation status to indicate that the switching device 101 is operating normally. On the other hand, if the time difference exceeds the predetermined time range, the computing device 140 may determine the further operation status to indicate a malfunction of the switching device 101. Alternatively, or in addition, in such situation, the computing device 140 may provide a warning or an alarm to indicate that there is a malfunction of the switching device 101. It is to be understood that the predetermined time range may be predetermined by the computing device 140 or preconfigured in factory.
  • the computing device 140 may provide a warning indicating that the mechanism 130 of the switching device 101 malfunctions. In such situation, the user will be noticed that it is the mechanism 130 instead of the coil 120 of the release 110 malfunctions. The user may then be indicated to fix or replace the mechanism 130.
  • the method 800 it is possible to determine whether the switching device is operating normally or not based on the time difference between the corrected operating time and the standard operating time.
  • the user may be acknowledged that the coil 120 or the mechanism 130 of the switching device 101 needs to be fixed or replaced.
  • Example embodiments have been described with respect to Figs. 1-9B above. With these embodiments, it is possible to monitor the performance of the release online. For example, the performance of the switching device can be monitored based on the detected current values or the detected temporal information. In this way, the malfunction of the switching device, especially the malfunction of the coil of the release can be effectively detected. Accordingly, once a malfunction (s) is found, health status of the switching device can be evaluated and advices can be provided. By doing so, a convenience and effective way for monitoring the switching device will be provided.
  • Fig. 10 illustrates a schematic diagram of an apparatus 1000 for monitoring a switching device in accordance with embodiments of the present disclosure. As illustrated in Fig. 10, the apparatus 1000 is for monitoring the switching device 101.
  • the apparatus 1000 comprises: a detecting unit for detecting a sequence of current values of a coil of the release during a time duration.
  • the apparatus 1000 further comprises: a value determining unit for determining a voltage value and a set of characteristic values based on the sequence of current values.
  • the set of characteristic values comprises information about an actuation time of the release and information about current values.
  • the apparatus 1000 further comprises: an operation status determining unit for determining an operation status of the release based on the voltage value and the set of characteristic values.
  • the operation status determining unit 1030 comprises: a standard value determining unit for determining, from a plurality of standard characteristic value sets, a target standard characteristic value set based on the voltage value, each of the plurality of standard characteristic value sets being associated with a respective voltage value; and a first operation status determining unit for determining the operation status of the release based on a difference between the set of characteristic values and the target standard characteristic value set.
  • the first operation status determining unit comprises: a normal status determining unit for in accordance with a determination that the difference is below a first threshold, determining the operation status to indicate that the release is operating normally; a mild malfunction status determining unit for in accordance with a determination that the difference exceeds the first threshold and is below a second threshold, determining the operation status to indicate a mild malfunction of the coil of the release; and a severe malfunction status determining unit for in accordance with a determination that the difference exceeds the second threshold, determining the operation status to indicate a severe malfunction of the coil.
  • the apparatus 1000 further comprises: a first providing unit for in accordance with a determination that the difference exceeds the first threshold and is below a second threshold, providing a warning indicating that the coil of the release mildly malfunctions; and a second providing unit for in accordance with a determination that the difference exceeds the second threshold, providing an alarm indicating that the coil of the release severely malfunctions.
  • the value determining unit 1020 comprises: a fitted curve determining unit for determining a fitted current curve based on the sequence of current values; a deviation determining unit for determining a deviation between the fitted current curve and a standard current curve corresponding to a standard voltage value; and a voltage value determining unit for determining the voltage value based on the deviation and a voltage-deviation relationship curve.
  • the value determining unit 1020 comprises: a characteristic value determining unit for determining, based on the sequence of current values, at least one of: a starting time of the sequence of current values; a stable time of output voltage value; a first order starting time corresponding to a starting point of a first order response of the sequence of current values; a peak time corresponding to a first peak current value of the sequence of current values; the first peak current value; a first valley current value of the sequence of current values; or a valley time duration from the starting point of the sequence of current values to a valley time corresponding to the first valley current value.
  • the apparatus 1000 further comprises: an operating time detecting unit for detecting an operating time of a switching device, the release being configured to trigger opening or closing of the switching device, the operating time comprising one of: a closing time or an opening time of the switching device; and a further operation status determining unit for determining a further operation status of the switching device based on the operating time and a standard operating time associated with the voltage value.
  • an operating time detecting unit for detecting an operating time of a switching device, the release being configured to trigger opening or closing of the switching device, the operating time comprising one of: a closing time or an opening time of the switching device
  • a further operation status determining unit for determining a further operation status of the switching device based on the operating time and a standard operating time associated with the voltage value.
  • the further operation status determining unit comprises: a correction time determining unit for determining a correction time duration associated with the voltage value based on the voltage value and a correction curve, the correction curve indicating relationships between a set of voltage values and a set of correction time durations; a corrected operating time determining unit for determining a corrected operating time based on the correction time duration and the operating time; and a second operation status determining unit for determining the further operation status of the switching device based on a time difference between the corrected operating time and the standard operating time.
  • the second operation status determining unit comprises: a further normal status determining unit for in accordance with a determination that the time difference is below a threshold time, determining the further operation status to indicate that the switching device is operating normally; and a malfunction status determining unit for in accordance with a determination that the time difference exceeds the threshold time, determining the further operation status to indicate a malfunction of the switching device.
  • the apparatus 1000 further comprises: a third providing unit for in accordance with a determination that the operation status indicating that the release is operating normally and the further operation status indicating a malfunction of the switching device, providing a warning indicating that a mechanism of the switching device other than the coil malfunctions.
  • a system for implementing the above methods 200, 400, 605 and/or 800.
  • Fig. 11 illustrates a schematic diagram of a system 1100 for implementing a method in accordance with embodiments of the present disclosure.
  • the system 1100 comprises: a computer processor 1110 coupled to a computer-readable memory unit 1120, the memory unit 1120 comprising instructions 1122 that when executed by the computer processor 1110 implements the methods 200, 400, 605 and/or 800.
  • a computer readable medium for monitoring a switching device has instructions stored thereon, and the instructions, when executed on at least one processor, may cause at least one processor to perform the method for monitoring a release as described in the preceding paragraphs, and details will be omitted hereinafter.
  • various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device. While various aspects of embodiments of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representation, it will be appreciated that the blocks, apparatus, systems, techniques or methods described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
  • the present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer readable storage medium.
  • the computer program product includes computer-executable instructions, such as those included in program modules, being executed in a device on a target real or virtual processor, to carry out the process or method as described above with reference to Figs. 2, 4, 6B and 8.
  • program modules include routines, programs, libraries, objects, classes, components, data structures, or the like that perform particular tasks or implement particular abstract data types.
  • the functionality of the program modules may be combined or split between program modules as ideal in various embodiments.
  • Machine-executable instructions for program modules may be executed within a local or distributed device. In a distributed device, program modules may be located in both local and remote storage media.
  • Program code for carrying out methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing apparatus, such that the program codes, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented.
  • the program code may execute entirely on a machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
  • the above program code may be embodied on a machine readable medium, which may be any tangible medium that may contain, or store a program for use by or in connection with an instruction execution system, apparatus, or device.
  • the machine readable medium may be a machine readable signal medium or a machine readable storage medium.
  • a machine readable medium may include but not limited to an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing.
  • machine readable storage medium More specific examples of the machine readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.
  • RAM random access memory
  • ROM read-only memory
  • EPROM or Flash memory erasable programmable read-only memory
  • CD-ROM portable compact disc read-only memory
  • magnetic storage device or any suitable combination of the foregoing.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Keying Circuit Devices (AREA)

Abstract

Embodiments of the present disclosure provide method, apparatus, system and computer readable medium for monitoring a switching device. In the method, a sequence of current values of a coil of a release of the switching device is detected during a time duration. A voltage value and a set of characteristic values are determined based on the sequence of current values. The set of characteristic values comprises information about an actuation time of the release and information about current values. An operation status of the release is determined based on the voltage value and the set of characteristic values. With these embodiments, the switching device performance, especially the release or the coil performance can be monitored based on the detected current values. In this way, warnings or alarms will be provided to a user when malfunctions of the switching device or the coil occur.

Description

METHOD, APPARATUS AND SYSTEM FOR MONITORING A SWITCHING DEVICE FIELD
Example embodiments of the present disclosure generally relate to industrial control, and more specifically, to method, apparatus, system and computer readable medium for monitoring a switching device.
BACKGROUND
Nowadays, mechanical switching device with a release has been widely utilized in the industry. For example, the release in the mechanical switching device such as a circuit breaker is utilized to implement automatic opening or closing operations. However, if the release does not work under an appropriate condition, the mechanical switching device such as the circuit breaker will not be able to open or close automatically. Therefore, it is desirable to provide a solution of monitoring the performance of the switching device, especially monitoring the release of the switching device.
SUMMARY
Example embodiments of the present disclosure provide solutions for monitoring a switching device.
In a first aspect, example embodiments of the present disclosure provide a method for monitoring a switching device. The method comprises: detecting a sequence of current values of a coil of a release of the switching device during a time duration; determining a voltage value and a set of characteristic values based on the sequence of current values, the set of characteristic values comprising information about an actuation time of the release and information about current values; and determining an operation status of the release based on the voltage value and the set of characteristic values.
According to embodiments of the present disclosure, it is possible to monitor the performance of the switching device (for example the release of the switching device) online. In this way, the malfunction of the release especially the malfunction of the coil of the release can be effectively detected. Accordingly, once a malfunction (s) is found,  health status of the release can be evaluated and advices can be provided. As a result, the switching device or the release can be monitored in a convenience and effective way.
In some embodiments, determining the operation status of the release comprises: determining, from a plurality of standard characteristic value sets, a target standard characteristic value set based on the voltage value, each of the plurality of standard characteristic value sets being associated with a respective voltage value; and determining the operation status of the release based on a difference between the set of characteristic values and the target standard characteristic value set. With these embodiments, the operation status of the release can be determined based on the difference between the set of characteristic values and the target standard characteristic value set. The target standard characteristic value set is associated with the voltage value. In this way, malfunctions can be found based on the set of characteristic values and the voltage value determined based on the sequence of current values.
In some embodiments, determining the operation status of the release based on the difference comprises: in accordance with a determination that the difference is below a first threshold, determining the operation status to indicate that the release is operating normally; in accordance with a determination that the difference exceeds the first threshold and is below a second threshold, determining the operation status to indicate a mild malfunction of the coil of the release; and in accordance with a determination that the difference exceeds the second threshold, determining the operation status to indicate a severe malfunction of the coil. With these embodiments, different operation status can be determined based on the difference between the set of characteristic values and the target standard characteristic value set. In addition, by using two different threshold, it is possible to not only determine whether the release performs normal or not, but also determines the level of the malfunction of the release.
In some embodiments, the method further comprises: in accordance with a determination that the difference exceeds the first threshold and is below a second threshold, providing a warning indicating that the coil of the release mildly malfunctions; and in accordance with a determination that the difference exceeds the second threshold, providing an alarm indicating that the coil of the release severely malfunctions. With these embodiments, a warning or an alarm to the user may be provided when determining a mild or severe malfunction of the release. In this way, reasonable advices will be provided to the user once malfunctions are found. For example, when the user notices the  alarm which indicating a severe malfunction, the user may replace the coil to fix the release.
In some embodiments, determining the voltage value comprises: determining a fitted current curve based on the sequence of current values; determining a deviation between the fitted current curve and a standard current curve corresponding to a standard voltage value; and determining the voltage value based on the deviation and a voltage-deviation relationship curve. With these embodiments, the voltage value of the release can be determined based on the deviation between the fitted current curve and the standard current curve.
In some embodiments, determining the set of characteristic values comprises: determining, based on the sequence of current values, at least one of: a starting time of the sequence of current values; a stable time of output voltage value; a first order starting time corresponding to a starting point of a first order response of the sequence of current values; a peak time corresponding to a first peak current value of the sequence of current values; the first peak current value; a first valley current value of the sequence of current values; or a valley time duration from the starting point of the sequence of current values to a valley time corresponding to the first valley current value.
With these embodiments, the set of characteristic values of the current values can be determined. In addition, the set of characteristic values may indicate the actuation time of the release.
In some embodiments, the release is configured to trigger opening or closing of a switching device, and the method further comprises: detecting an operating time of the switching device, the operating time comprising one of: a closing time or an opening time of the switching device; and determining a further operation status of the switching device based on the operating time and a standard operating time associated with the voltage value. With these embodiments, a further operation status of the switching device can be further determined based on temporal information of the switching device. For example, the further operation status of the switching device can be determined based on the opening time of the switching device or the closing time of the switching device.
In some embodiments, determining the further operation status comprises: determining a correction time duration associated with the voltage value based on the voltage value and a correction curve, the correction curve indicating relationships between  a set of voltage values and a set of correction time durations; determining a corrected operating time based on the correction time duration and the operating time; and determining the further operation status of the switching device based on a time difference between the corrected operating time and the standard operating time. With these embodiments, the operating time (such as the opening time or the closing time) of the switching device can be corrected based on the voltage value and a correction curve. In this way, the corrected operation time can be more accurate, which may further lead to a more accurate further operation status. In addition, the further operation status can be determined based on the corrected operation time and the standard operating time. In this way, the health status of the switching device can be further evaluated based on the temporal information of the switching device.
In some embodiments, determining the further operation status based on the time difference comprises: in accordance with a determination that the time difference is below a threshold time, determining the further operation status to indicate that the switching device is operating normally; and in accordance with a determination that the time difference exceeds a threshold time, determining the further operation status to indicate a malfunction of the switching device. With these embodiments, it is possible determine whether the switching device is operating normally or not based on the time difference between the corrected operating time and the standard operating time.
In some embodiments, the method further comprises: in accordance with a determination that the operation status indicating that the release is operating normally and the further operation status indicating a malfunction of the switching device, providing a warning indicating that a mechanism of the switching device other than the coil malfunctions. With these embodiments, when the operation status indicates that the release is normally operated but the further operation status indicates that the switching device breaks down, an advice or a warning will be provided to the user to indicate that a mechanism of the switching device other than the coil malfunctions. In this way, the user may be acknowledged that the mechanism of the switching device needs to be fixed or replaced.
In a second aspect, example embodiments of the present disclosure provide an apparatus for monitoring a switching device. The apparatus comprises: a detecting unit for detecting a sequence of current values of a coil of a release of the switching device during a time duration; a value determining unit for determining a voltage value and a set  of characteristic values based on the sequence of current values, the set of characteristic values comprising information about an actuation time of the release and information about current values; and an operation status determining unit for determining an operation status of the release based on the voltage value and the set of characteristic values.
In some embodiments, the operation status determining unit comprises: a standard value determining unit for determining, from a plurality of standard characteristic value sets, a target standard characteristic value set based on the voltage value, each of the plurality of standard characteristic value sets being associated with a respective voltage value; and a first operation status determining unit for determining the operation status of the release based on a difference between the set of characteristic values and the target standard characteristic value set.
In some embodiments, the first operation status determining unit comprises: a normal status determining unit for in accordance with a determination that the difference is below a first threshold, determining the operation status to indicate that the release is operating normally; a mild malfunction status determining unit for in accordance with a determination that the difference exceeds the first threshold and is below a second threshold, determining the operation status to indicate a mild malfunction of the coil of the release; and a severe malfunction status determining unit for in accordance with a determination that the difference exceeds the second threshold, determining the operation status to indicate a severe malfunction of the coil.
In some embodiments, the apparatus further comprises: a first providing unit for in accordance with a determination that the difference exceeds the first threshold and is below a second threshold, providing a warning indicating that the coil of the release mildly malfunctions; and a second providing unit for in accordance with a determination that the difference exceeds the second threshold, providing an alarm indicating that the coil of the release severely malfunctions.
In some embodiments, the value determining unit comprises: a fitted curve determining unit for determining a fitted current curve based on the sequence of current values; a deviation determining unit for determining a deviation between the fitted current curve and a standard current curve corresponding to a standard voltage value; and a voltage value determining unit for determining the voltage value based on the deviation and a voltage-deviation relationship curve.
In some embodiments, the value determining unit comprises: a characteristic value determining unit for determining, based on the sequence of current values, at least one of: a starting time of the sequence of current values; a stable time of output voltage value; a first order starting time corresponding to a starting point of a first order response of the sequence of current values; a peak time corresponding to a first peak current value of the sequence of current values; the first peak current value; a first valley current value of the sequence of current values; or a valley time duration from the starting point of the sequence of current values to a valley time corresponding to the first valley current value
In some embodiments, the release is configured to trigger opening or closing of a switching device, and the apparatus further comprises: an operating time detecting unit for detecting an operating time of the switching device, the operating time comprising one of: a closing time or an opening time of the switching device; and a further operation status determining unit for determining a further operation status of the switching device based on the operating time and a standard operating time associated with the voltage value.
In some embodiments, the further operation status determining unit comprises: a correction time determining unit for determining a correction time duration associated with the voltage value based on the voltage value and a correction curve, the correction curve indicating relationships between a set of voltage values and a set of correction time durations; a corrected operating time determining unit for determining a corrected operating time based on the correction time duration and the operating time; and a second operation status determining unit for determining the further operation status of the switching device based on a time difference between the corrected operating time and the standard operating time.
In some embodiments, the second operation status determining unit comprises: a further normal status determining unit for in accordance with a determination that the time difference is below a threshold time, determining the further operation status to indicate that the switching device is operating normally; and a malfunction status determining unit for in accordance with a determination that the time difference exceeds the threshold time, determining the further operation status to indicate a malfunction of the switching device.
In some embodiments, the apparatus further comprises: a third providing unit for in accordance with a determination that the operation status indicating that the release is operating normally and the further operation status indicating a malfunction of the  switching device, providing a warning indicating that a mechanism of the switching device other than the coil malfunctions.
In a third aspect, example embodiments of the present disclosure provide a system for monitoring a switching device. The system comprises: a computer processor coupled to a computer-readable memory unit, the memory unit comprising instructions that when executed by the computer processor implement the method for monitoring a release.
In a fourth aspect, example embodiments of the present disclosure provide a system for monitoring a switching device. The system comprises: a computer processor coupled to a computer-readable memory unit, the memory unit comprising instructions that when executed by the computer processor implements the method for monitoring a release.
DESCRIPTION OF DRAWINGS
Fig. 1 illustrates an example environment in which various embodiments for monitoring a switching device in accordance with embodiments of the present disclosure;
Fig. 2 illustrates a flowchart of a method for monitoring a switching device in accordance with embodiments of the present disclosure;
Fig. 3A illustrates an example current waveform of a coil of the release in accordance with embodiments of the present disclosure;
Fig. 3B illustrates another example current waveform of a coil of the release in accordance with embodiments of the present disclosure;
Fig. 3C illustrates an example voltage waveform of a coil of the release in accordance with embodiments of the present disclosure;
Fig. 4 illustrates a flowchart of a method for determining a voltage value based on a sequence of current values in accordance with embodiments of the present disclosure;
Fig. 5A illustrates example fitted current curves of the coil of the release under different voltage values in accordance with embodiments of the present disclosure;
Fig. 5B illustrates an example voltage-deviation relationship curve in accordance with embodiments of the present disclosure;
Fig. 6A illustrates example current curves under different load in accordance with embodiments of the present disclosure;
Fig. 6B illustrates a flowchart of a method for determining the operation status of the switching device in accordance with embodiments of the present disclosure;
Fig. 7 illustrates example errors under different voltage in accordance with embodiments of the present disclosure;
Fig. 8 illustrates a flowchart of a method for determining a further operation status of the switching device based on a corrected operating time in accordance with embodiments of the present disclosure;
Fig. 9A illustrates example correction time results in accordance with embodiments of the present disclosure;
Fig. 9B illustrates an example voltage-deviation time correction curve in accordance with embodiments of the present disclosure;
Fig. 10 illustrates a schematic diagram of an apparatus for monitoring a switching device in accordance with embodiments of the present disclosure; and
Fig. 11 illustrates a schematic diagram of a system for implementing a method in accordance with embodiments of the present disclosure.
Throughout the drawings, the same or similar reference symbols are used to indicate the same or similar elements.
DETAILED DESCRIPTION OF EMBODIEMTNS
Principles of the present disclosure will now be described with reference to several example embodiments shown in the drawings. Though example embodiments of the present disclosure are illustrated in the drawings, it is to be understood that the embodiments are described only to facilitate those skilled in the art in better understanding and thereby achieving the present disclosure, rather than to limit the scope of the disclosure in any manner.
The term “comprises” or “includes” and its variants are to be read as open terms that mean “includes, but is not limited to. ” The term “or” is to be read as “and/or” unless the context clearly indicates otherwise. The term “based on” is to be read as “based at least in part on. ” The term “being operable to” is to mean a function, an action, a motion or a state can be achieved by an operation induced by a user or an external mechanism. The term “one embodiment” and “an embodiment” are to be read as “at least one  embodiment. ” The term “another embodiment” is to be read as “at least one other embodiment. ” The terms “first, ” “second, ” and the like may refer to different or same objects. Other definitions, explicit and implicit, may be included below. A definition of a term is consistent throughout the description unless the context clearly indicates otherwise.
Unless specified or limited otherwise, the terms “mounted, ” “connected, ” “supported, ” and “coupled” and variations thereof are used broadly and encompass direct and indirect mountings, connections, supports, and couplings. Furthermore, “connected” and “coupled” are not restricted to physical or mechanical connections or couplings. In the description below, like reference numerals and labels are used to describe the same, similar or corresponding parts in the figures. Other definitions, explicit and implicit, may be included below.
As mentioned above, mechanical switching device with a release has been widely utilized in the industry. For example, the release in the mechanical switching device such as a circuit breaker is utilized to implement automatic opening or closing operations. However, if the release does not work under an appropriate condition, the mechanical switching device such as the circuit breaker will not be able to open or close automatically. Thus, failures in releases such as a coil failure are critical to the mechanical switching device. Such release failures will lead to severe incident and even cause heavy losses.
Conventionally, there lacks an efficient way to monitoring the performance of the switching device (such as the release) online. Therefore, the release failures such as the coil failures will not be detected until incident or loss has occurred. Thus, it is desirable to provide an efficient solution for monitoring the switching device. According to embodiments of the present disclosure, there is proposed a solution for monitoring the switching device. In this solution, a sequence of current values of a coil of the release is detected. A corresponding voltage value of the coil is determined based on the sequence of current values. In addition, a set of characteristic values is determined based on the sequence of current values, as well. The set of characteristic values comprises information regarding an actuation time of the release and information regarding current values such as the peak current value. With the determined voltage value and the determined set of characteristic values, an operation status of the release is determined. The operation status indicates whether the release is operating normally or not. In this way, the performance of the switching device can be monitored based on the detected  current values.
In addition, based on the determined operation status, a warning or an alarm can be provided to indicate a mild or severe malfunction of the release. Advices can also be provided to the user based on the determined operation status. For example, the user may be indicated to fix or replace the coil of the release in the situation that the operation status indicates a severe malfunction. Hereinafter, some example embodiments of the present disclosure will be described in detail with reference to the accompanying drawings.
Fig. 1 illustrates an example environment 100 in which various embodiments for monitoring a switching device in accordance with the present disclosure can be implemented. It is to be understood that the environment 100 shown in Fig. 1 is only for the purpose of illustration, without suggesting any limitation to functions and the scope of the embodiments of the present disclosure.
As shown, a switching device 101 such as a mechanical switching device is implemented in an environment 100. The switching device 101 comprises a release 110. The release 110 may be configured to trigger the switching device 101 to open or close. The release 110 comprises a coil 120. The switching device 101 may further comprise a mechanism 130. In some example embodiments, the mechanism 130 may comprise a plurality of components, such as a transmission component, a releasing component and/or a contact point connecting to other component of the switching device 101, etc. It is to be understood that the mechanism 130 may be an integrated mechanism or comprise a plurality of distributed components. It is to be understood that the switching device 101 may be any suitable switching device with a release.
The current in the coil 120 may trigger the mechanism 130 to move, which will in turn trigger the switching device 101 to open or close. It is to be understood that Fig. 1 is only for the purpose of illustration, without suggesting any limitation. The switching device 101 may comprise additional components. The release 110 may comprise additional components as well.
In some example embodiments, the switching device 101 may perform a closing action and/or an opening action triggered by the release 110. For example, if the current in the coil 120 is within a first current range for closing the switching device 101, the release 110 may trigger the switching device 101 to close. The first current range may be predetermined. Alternatively, if the voltage on the coil 120 is within a first voltage range  for closing the switching device 101, the release 110 may trigger the switching device 101 to close. The first voltage range may be predetermined, such as 85%to 110%of a standard voltage value (such as 220V) . The time on which the switching device 101 closes may be referred to as a closing time. For example, when the coil 120 is energized and the voltage of the coil 120 is within the first voltage range, an ejector rod of the release 110 moves up and contacts a closing release plate. The closing release plate rotates and triggers a moving contact to move up. Accordingly, the switching device 101 is closed. It is to be understood that the value of the standard voltage and the example voltage range are only for the purpose of illustration, without suggesting any limitations. The value of voltage may be of any suitable range. The standard voltage may be of any suitable value.
For another example, if the current in the coil 120 is within a second current range for opening the switching device 101, the release 110 may trigger the switching device 101 to open. The second current range may be predetermined. Alternatively, if the voltage on the coil 120 is within a second voltage range for opening the switching device 101, the release 110 may trigger the switching device 101 to open. The second voltage range may be predetermined, such as 65%to 85%of a standard voltage value (such as 220V) . The time on which the switching device 101 opens may be referred to as an opening time. For example, when the coil 120 is energized and the voltage of the coil 120 is within the second voltage range, the ejector rod of the release 110 moves up and contacts the opening release plate. The opening release plate rotates and triggers the moving contact to move down. Accordingly, the switching device 101 opens. It is to be understood that the value of the standard voltage and the example voltage range are only for the purpose of illustration, without suggesting any limitations. The value of voltage may be of any suitable range. The standard voltage may be of any suitable value.
Still with reference to Fig. 1, there is also a computing device 140 in the environment 100. The computing device 140 is communicatively coupled to the switching device 101. In some example embodiments, the computing device 140 is configured to monitor the release 110 of the switching device 101. For example, in some example embodiments, the computing device 140 may comprise a detector 150. The detector 150 may be configured to detect current values of the coil 120 during a time duration. The computing device 140 may monitor the release 110 based on the detected current values. Alternatively, the detector 150 may also be configured to detect other information such as temporal information during the operation of the release 110. It is to  be understood that although the detector 150 is shown as part of the computing device 140 in Fig. 1, in some example embodiments, the detector 150 may be a separate component which is communicatively coupled to the computing device 140. It is to be understood that Fig. 1 is only for the purpose of illustration, without suggesting any limitation. The computing device 140 may comprise additional components.
Fig. 2 illustrates a flowchart of a method 200 for monitoring a switching device 101 in accordance with embodiments of the present disclosure. The method 200 may be implemented by the computing device 140. It is to be understood that the method 200 may also be implemented by any other suitable device or apparatus. For the purpose of illustration, the method 200 will be described with reference to Fig. 1.
At a block 210, the computing device 140 detects a sequence of current values of the coil 120 during a time duration. For example, the computing device 140 may detect the sequence of current values of the coil 120 during a predetermined operation time duration of the switching device 101 in real time via the detector 150.
At block 220, the computing device 140 determines a voltage value and a set of characteristic values based on the sequence of current values. The voltage value may be a stable output voltage value of the coil 120 or the release 110. The set of characteristic values may comprise information about an actuation time of the release 110 and information about current values.
In some example embodiments, a current waveform (also referred to as a current curve) of the coil 120 may be plotted based on the sequence of current values. The set of characteristic values may be determined based on the current waveform of the coil 120.
Fig. 3A illustrates an example current waveform 300 of the coil 120 of the release 110 in accordance with embodiments of the present disclosure. In the example of Fig. 3A, the release 110 may trigger the switching device 101 to close. It is to be understood that although the current waveform 300 is illustrated as a continuous curve in Fig. 3A, in some example embodiments, it may be a waveform consisting of a plurality of discrete points.
The current waveform 300 may be plotted based on the sequence of current values. In the current waveform 300, a point A 312 represents a starting point of the sequence of current values, at which the current of the coil 120 starts to be greater than 0. A point B 314 represents a point at which a first order response begins. A point C 316 represents a first peak point at which the current value reaches a first peak current value. The  mechanism 130 (for example a moving part) of the release 110 may generate energy from the point B 314 and the energy reaches a peak at the point C 316. The first order response ends at the point C 316. A point D 318 represents a first valley point at which the current value reduces to a first valley value. The current value of the coil 120 will be reduced since the point C 316 until the finish of the actuation at the point D 318. Fig. 3A also illustrates a valley time duration 320 (also referred to as T AD) from the point A 312 to the point D 318.
In some example embodiments, the set of characteristic values may comprise at least one of: a starting time of the sequence of current values at the point A 312; a first order starting time corresponding to the starting point of the first order response of the sequence of current values at the point B 314; a peak time (also referred to as a first order end time) corresponding to the first peak current value of the sequence of current values at the point C 316; the first peak current value at the point C 316; a first valley current value of the sequence of current values at the point D 318; or a valley time duration from the starting point A 312 of the sequence of current values to a valley time (at the point D 318) corresponding to the first valley current value. The computing device 140 may determine the set of characteristic values based on the current waveform 300. It is to be understood that the above described values are only for the purpose of illustration, without suggesting any limitation. The set of characteristic values may comprise further values.
Fig. 3B illustrates an example current waveform 330 of the coil 120 of the release 110 in accordance with embodiments of the present disclosure. In the example of Fig. 3B, the release 110 may trigger the switching device 101 to open. As shown in Fig. 3B, the current waveform 330 may be plotted based on the sequence of current values. It is to be understood that although the current waveform 300 is illustrated as a continuous curve in Fig. 3B, in some example embodiments, it may be a waveform consisting of a plurality of discrete points.
Similar to the current waveform 300 in Fig. 3A, in the current waveform 330, a point 342 represents a starting point of the sequence of current values, at which the current of the coil 120 starts to be greater than 0. A point 344 represents a point at which a first order response begins. A point 346 represents a first peak point at which the current value reaches a first peak value. The first order response ends at the point 346. The mechanism 130 (for example a moving part) of the release 110 may generate energy from the point 344 and the energy reaches a peak at the point 346. A point 348 represents a  first valley point at which the current value reduces to a first valley value. The current value of the coil 120 will be reduced since the point 346 until the finish of the actuation at the point 348. Fig. 3B also illustrates a valley time duration 350 from the point 342 to the point D 348.
In some example embodiments, the set of characteristic values may comprise at least one of: a starting time of the sequence of current values at the point 342; a first order starting time corresponding to the starting point of the first order response of the sequence of current values at the point 344; a peak time (also referred to as a first order end time) corresponding to the first peak current value of the sequence of current values at the point 346; the first peak current value at the point 346; a first valley current value of the sequence of current values at the point 348; or a valley time duration from the starting point 342 of the sequence of current values to a valley time (at the point 348) corresponding to the first valley current value. The computing device 140 may determine the set of characteristic values based on the current waveform 330. It is to be understood that the above described values are only for the purpose of illustration, without suggesting any limitation. The set of characteristic values may comprise further values.
It is to be understood that the above  current waveforms  300 and 330 are only for the purpose of illustration, without suggesting any limitation. Under different voltage value, the current waveform may vary but have a similar shape.
Fig. 3C illustrates an example voltage waveform 360 of the coil 120 of the release 110 in accordance with embodiments of the present disclosure. The voltage waveform 360 may be plotted based on a sequence of voltage values detected by a voltage detector. In some example embodiments, the computing device 140 may use the detector 150 or another voltage detector to detect the sequence of voltage values. As illustrated in Fig. 3C, a point S 380 represents a starting point of the stable voltage. It is to be understood that Fig. 3C is only illustrated to provide a visual description of the stable output voltage waveform, in some example embodiments, the computing device 140 does not require detecting the sequence of voltage values by the detector. The computing device 140 may only detect the sequence of current values by the detector 150 to monitor the release 110.
In some example embodiments, the set of characteristic values may further comprise a stable time of output voltage value at the point S 380.
In some example embodiments, the voltage value may also be determined based  on the sequence of current values. Fig. 4 illustrates a flowchart of a method 400 for determining the voltage value based on the sequence of current values in accordance with embodiments of the present disclosure. The method 400 may be implemented by the computing device 140. It is to be understood that the method 400 may also be implemented by any other suitable device or apparatus. For the purpose of illustration, the method 400 will be described with reference to Fig. 1.
At block 410, the computing device 140 may determine a fitted current curve based on the sequence of current values. For example, the computing device may determine the voltage value based on the  current waveform  300 or 330 which is plotted based on the sequence of current values. For example, the voltage value may be determined based on a portion of the current waveform 300, for example from the point B 314 to the point C 316. For another example, the voltage value may be determined based on a portion of the current waveform 330, for example, from the point 344 to the point 346.
Taking the example current waveform 300 in Fig. 3A as an example, the computing device 140 may extract a portion of the current waveform 300, for example from the point B 314 to the point C 316. The computing device 140 may determine the fitted current curve based on this portion of the current waveform 300. For example, the computing device 140 may use a least squares fitting or any other suitable fitting method to determine the fitted current curve based on the above portion of the current waveform 300. The fitted current curve may be determined based on a mathematical model for a first order response. For example, the fitted current curve can be represented as following:
Figure PCTCN2022073719-appb-000001
where t denotes the time, f (t) denotes the current value at time t, and a, b c denote parameters of the fitted curve which may be determined by using for example least squares fitting or any other suitable fitting method.
At block 420, the computing device 140 may determine a deviation between the fitted current curve and a standard current curve corresponding to a standard voltage value. For example, the standard voltage value may be predefined as 220V.
At block 430, the computing device 140 may determine the voltage value based on the deviation and a voltage-deviation relationship curve. The voltage-deviation relationship curve may be predetermined based on, for example historical current and  voltage data. The voltage-deviation relationship curve may also be a look-up table which shows the relationship between the deviation and the corresponding voltage. By referring to the voltage-deviation relationship curve, the voltage value may be determined. As used herein, the determined voltage value may also be referred to as a computed voltage value. In this way, the voltage value of the release can be determined based on the deviation between the fitted current curve and the standard current curve.
In some example embodiments, the computing device 140 may predetermine the voltage-deviation relationship curve based on historical current waveforms and corresponding voltage waveforms. For example, the computing device 140 may pretest the release 110 under different voltage values and detect the current waveforms and corresponding voltage waveforms. The computing device 140 may select the portion from the first order starting point (such as the point B 314 or the point 344) to the peak point (such as the point C 316 or the point 346) of each waveform and determine each fitted current curve by using for example least squares fitting.
Fig. 5A illustrates example fitted current curves of the coil 120 of the release 110 under different voltage values in accordance with embodiments of the present disclosure. For example, the curve 515 corresponding to 220V may be referred to as the standard current curve. Fig. 5A also shows a curve 505 under 140V, a curve 510 under 180V, a curve 520 under 240V and a curve 525 under 260V. It is to be understood that these curves in Fig. 5A are only for the purpose of illustration, without suggesting any limitations. The computing device 140 may predetermine more or less fitted curve. The computing device 140 may also choose another fitted curve other than the fitted curve under 220V as the standard curve.
In some example embodiments, with the above predetermined fitted current curves under different voltages, the computing device 140 may predetermine the voltage-deviation relationship curve. For example, the computing device 140 may predetermine the deviations between each fitted current curve with the standard fitted current curve. The computing device 140 may further determine the voltage-deviation relationship curve based on the predetermined deviations and corresponding voltage values.
Fig. 5B illustrates an example voltage-deviation relationship curve 560 in accordance with embodiments of the present disclosure. The voltage-deviation relationship curve 560 may be predetermined based on the process as described above. It  is to be understood that the voltage-deviation relationship curve 560 may also be predetermined by using other process. For example, the voltage-deviation relationship curve 560 may also be predetermined based on historical current data and voltage data collected during the test of the release 110.
The determination of the set of characteristic values has been described with respect to Figs. 3A-3B. The determination of the voltage value has been described with respect to Figs. 4-5B. Reference is now made back to Fig. 2. At block 230, the computing device 140 determines an operation status of the release 110 based on the determined voltage value and the determined set of characteristic values. In this way, malfunctions can be found based on the set of characteristic values and the voltage value determined based on the sequence of current values.
In some example embodiments, the computing device 140 may determine a target standard characteristic value set from a plurality of standard characteristic value sets. Each of the plurality of standard characteristic value sets is associated with a respective voltage value. For example, the plurality of standard characteristic value sets may be predetermined based on the historical current values under different voltage values. For example, the computing device 140 may collect historical current values under different voltage values when the release 110 operates normally. Based on these data, the computing device 140 may predetermine the plurality of standard characteristic value sets corresponding to different voltage values. The computing device 140 may then select, from the plurality of standard characteristic value sets, a standard characteristic value set corresponding to the voltage value as the target standard characteristic value set.
Alternatively, or in addition, the computing device 140 may predetermine a fitted function based on historical current values under different voltage values. The fitted function may be configured to determine a standard characteristic value set under each voltage value. The computing device 140 then may determine the target standard characteristic value set based on the determined voltage value and the predetermined fitted function.
Alternatively, the fitted function may be configured to determine the standard characteristic value set under each voltage difference with the standard output voltage value (for example, 218V) . In such cases, the computing device 140 may determine the voltage difference between the determined voltage value and the standard output voltage value.  The computing device 140 may then determine the target standard characteristic value set based on the determined voltage difference and the predetermined fitted function. It is to be understood that the voltage value of 218V is only for the purpose of illustration, without suggesting any limitation. The standard output voltage value may be any suitable value.
Alternatively, or in addition, in some example embodiments, the computing device 140 may predetermine the target standard characteristic value set based on historical current and/or voltage data. In such cases, target standard characteristic value set may comprise a target standard characteristic value matrix. For example, the computing device 140 may collect a group of data (such as current values) under normal condition of the release 110 and corresponding characteristic values to determine target standard characteristic value matrix. The group of data may be obtained when the release 110 is operated with no load.
Fig. 6A illustrates example current curves 600 under different load in accordance with embodiments of the present disclosure. These current curves 600 may correspond to the same voltage value, for example, the determined voltage value. These current curves 600 are plotted based on the group of data (such as current values) of the release 110 between the first point where the current value exceeding 0.1A and the valley point under different loads. In the current curves 600, one curve 601 under no load condition may be regarded as a normal or healthy curve. The target standard characteristic value matrix may be determined based on the normal curve 601.
With the determined target standard characteristic value set, the computing device 140 may determine the operation status of the release 110 based on a difference between the determined set of characteristic values and the target standard characteristic value set.
Fig. 6B illustrates a flowchart of a method 605 for determining the operation status of the release 100 based on the difference in accordance with embodiments of the present disclosure. The method 605 may be implemented by the computing device 140. It is to be understood that the method 605 may also be implemented by any other suitable device or apparatus. For the purpose of illustration, the method 605 will be described with reference to Fig. 1.
At block 610, the computing device 140 may determine the difference between the determined set of characteristic values and the target standard characteristic value set. For example, the computing device 140 may use the nonlinear state estimation technology  (NSET) or other suitable proportion normalization method to determine the difference. In some example embodiments, the target standard characteristic value set may comprise the target standard characteristic value matrix. The determined set of characteristic values may also be represented as a matrix or a vector. The NSET model may determine the difference based on the determined characteristic value matrix and the target standard characteristic value matrix.
In some example embodiments, the difference (also referred to as “error” ) may be determined as follows:
Figure PCTCN2022073719-appb-000002
where Error denotes the difference, F i denotes each characteristic value in the determined set of characteristic value vectors, F_STD denotes the target standard characteristic matrix under a given voltage, and
Figure PCTCN2022073719-appb-000003
denotes each characteristic value in the target standard characteristic value matrix.
It is to be understood that the above described method using NSET and the method using the formula (2) are only for the purpose of illustration, without suggesting any limitations. Any suitable method of calculation may be applied to determine the difference (also referred to as error) between the determined set of characteristic values and the target standard characteristic value set.
At block 620, the computing device 140 may determine whether the difference exceeds a first threshold. The first threshold may be predetermined by the computing device 140 or by a user. For example, the first threshold may be predetermined to 5. It is to be understood that the first threshold may be predetermined as any suitable value. The first threshold may be different for different release and for different stable output voltage.
If the computing device 140 determines that the difference is below or equal to the first threshold at block 620, the computing device 140, at block 660, determines the operation status to indicate that the release 110 is operating normally.
If the computing device 140 determines that the difference exceeds the first  threshold at block 620, the computing device 140, at block 630, determines whether the difference exceeds a second threshold. The second threshold may be predetermined by the computing device 140 or by a user. For example, the second threshold may be predetermined to 20. It is to be understood that the second threshold may be predetermined as any suitable value greater than the first threshold. The second threshold may be different for different release and for different stable output voltage.
If the computing device 140 determines that the difference is below or equal to the second threshold at block 630, the computing device 140, at block 650, determines the operation status to indicate a mild malfunction of the coil 120 of the release 110. Alternatively, or in addition, in some example embodiments, the computing device 140 may further provide a warning indicating that the coil 120 of the release 110 mildly malfunctions.
If the computing device 140 determines that the difference exceeds the second threshold at block 630, the computing device 140, at block640, determines the operation status to indicate a severe malfunction of the coil 120 of the release 110. Alternatively, or in addition, in some example embodiments, the computing device 140 may further provide an alarm indicating that the coil 120 of the release 110 severely malfunctions.
With these embodiments, different operation status can be determined based on the difference between the set of characteristic values and the target standard characteristic value set. In addition, by using two different thresholds, not only whether the release performs normal or not can be determined, but also the level of the malfunction of the release can be determined. In addition, a warning or an alarm will be provided to the user when determining a mild or severe malfunction of the release. In this way, reasonable advices will also be provided to the user once malfunctions are found. For example, when the user notices the alarm which indicating a severe malfunction, the user may replace the coil to fix the release.
Fig. 7 illustrates example errors (differences) results700 in accordance with embodiments of the present disclosure. As illustrated in Fig. 7, a threshold 710 may be used as the first threshold, while a threshold 720 may be used as the second threshold. If the error 740 or the difference is below the threshold 710, then the computing device 140 may determine the operation status to indicate that the release 110 is operating normally. If the error 730 exceeds the threshold 720, the computing device 140 may determine the  operation status to indicate a severe malfunction of the coil 120 of the release 110. In addition, the computing device 140 may provide an alarm to the user to indicate the severe malfunction. Furthermore, if the error (not shown) exceeds the threshold 710 and is below the threshold 720, the computing device 140 may determine the operation status to indicate a mild malfunction of the coil 120 of the release 110. In addition, the computing device 140 may provide a warning to the user to indicate the mild malfunction.
Some example embodiments regarding monitoring the release 110 based on the detected sequence of current values have been described above. In some example embodiments, the computing device 140 may further monitor the switching device 101 based on temporal information of the switching device 101. For example, the computing device 140 may detect an operating time of the switching device 101 by the detector 150 or another suitable detector. The operating time may comprise one of: a closing time of the switching device 101 or an opening time of the switching device 101. The computing device 140 may determine a further operation status based on the operating time and a standard operating time associated with the determined voltage value. The further operation status may indicate whether the switching device 101 is operating normally or not.
Fig. 8 illustrates a flowchart of a method 800 for determining a further operation status of the switching device 101 based on a corrected operating time in accordance with embodiments of the present disclosure. The method 800 may be implemented by the computing device 140. It is to be understood that the method 800 may also be implemented by any other suitable device or apparatus. For the purpose of illustration, the method 800 will be described with reference to Fig. 1.
At block 810, the computing device 140 may determine an operating time of the switching device 101. For example, the computing device 140 may determine the operating time by the detector 150 or another suitable detector. Alternatively, the operating time may be detected by a monitoring component in the switching device 101 and sent to the computing device 140.
Sometimes, there will be an error between the monitored or detected operating time and a real operating time of the switching device 101. For example, there will be a time difference between the closing or opening signal at the main circuit and a closing or opening signal at the switching device 101. Such mechanical time difference will be  factory calibrated. Additionally, there will be a further time difference between the monitored or detected operating time and the real operating time of the switching device 101. This further time difference may result from a time difference between the starting point of the current values and the starting point of the stable voltage values. For example, the further time difference may be a time difference between the point A 312 in Fig. 3A and the point S 380 in Fig. 3C. In some example embodiments, this further time difference will be corrected. The correction of operating time will be described below.
Still refer to Fig. 8. At block 820, the computing device 140 may determine a correction time duration associated with the determined voltage value based on the determined voltage value and a correction curve. The correction curve indicates relationships between a set of voltage values and a set of correction time durations.
In some example embodiments, the correction curve may be predetermined by the computing device 140 based on historical data. For example, the computing device 140 may collect current data under the voltage varies from for example 65%to 110%of the rated voltage (220V) . It is to be understood that the value of the rated voltage and the example voltage range are only for the purpose of illustration, without suggesting any limitations. The computing device 140 may subtract the time point at the beginning of stable voltage in voltage waveform from the time point where the current waveform starts to obtain the further time difference. Fig. 9A illustrates example correction time results 900 in accordance with embodiments of the present disclosure. The correction time results 900 illustrate the further time difference under different voltage values.
In some example embodiments, the computing device 140 may select the further time difference under 220V at a standard correction time. All the further time differences in Fig. 9A will be subtracted by the standard correction time. The result of this subtraction may be referred to as a time deviation. It is to be understood that the computing device 140 may determine other suitable voltage value as the standard voltage value, and determine a corresponding time difference under the standard voltage value to be the standard correction time.
Alternatively, or in addition, the computing device 140 may predetermine the correction curve based on the plurality of voltage-time curve. For example, the computing device 140 may use the average of the time deviations from each voltage group and apply a linear interpolation method to obtain the correction curve. The correction  curve may also be referred to as a voltage-deviation time correction curve.
Fig. 9B illustrates an example voltage-deviation time correction curve 950 in accordance with embodiments of the present disclosure. The voltage-deviation time correction curve 950 may be predetermined by the process described above. The computing device 140 may determine the correction time duration based on the determined voltage value and the voltage-deviation time correction curve 950. For example, the computing device 140 may determine a deviation time based on the determined voltage value from the voltage-deviation time correction curve 950. The computing device 140 may then determine the correction time by adding the standard correction time to the determined deviation time.
Refer back to Fig. 8. At block 830, the computing device 140 may determine a corrected operating time based on the correction time duration and the operating time. For example, the computing device 140 may determine a corrected closing time of the switching device 101 based on the correction time duration and the detected closing time. Likewise, the computing device 140 may determine a corrected opening time of the switching device 101 based on the correction time duration and the detected opening time. In this way, the closing time and/or the opening time of the switching device 101will be corrected. In addition, the corrected operation time can be more accurate, which may further lead to a more accurate further operation status.
At block 840, the computing device 140 may determine a further operation status of the switching device 101 based on a time difference between the corrected operating time and a standard operating time associated with the determined voltage value. The standard operating time may be predetermined by the computing device 140 based on historical data or preconfigured in factory.
In some example embodiments, if the time difference is below a threshold time, the computing device 140 may determine the further operation status to indicate that the switching device 101 is operating normally. On the other hand, if the time difference exceeds the threshold time, the computing device 140 may determine the further operation status to indicate a malfunction of the switching device 101. Alternatively, or in addition, in such situation, the computing device 140 may provide a warning or an alarm to indicate that there is a malfunction of the switching device 101. It is to be understood that the threshold time may be predetermined by the computing device 140 or preconfigured in  factory.
Alternatively, or in addition, in some example embodiments, if the time difference is within a predetermined time range, the computing device 140 may determine the further operation status to indicate that the switching device 101 is operating normally. On the other hand, if the time difference exceeds the predetermined time range, the computing device 140 may determine the further operation status to indicate a malfunction of the switching device 101. Alternatively, or in addition, in such situation, the computing device 140 may provide a warning or an alarm to indicate that there is a malfunction of the switching device 101. It is to be understood that the predetermined time range may be predetermined by the computing device 140 or preconfigured in factory.
In some example embodiments, if the operation status based on the sequence of current values indicates that the release 110 is operating normally, while the further operation status indicates a malfunction of the switching device 101, the computing device 140 may provide a warning indicating that the mechanism 130 of the switching device 101 malfunctions. In such situation, the user will be noticed that it is the mechanism 130 instead of the coil 120 of the release 110 malfunctions. The user may then be indicated to fix or replace the mechanism 130.
With the method 800, it is possible to determine whether the switching device is operating normally or not based on the time difference between the corrected operating time and the standard operating time. In addition, the user may be acknowledged that the coil 120 or the mechanism 130 of the switching device 101 needs to be fixed or replaced.
Example embodiments have been described with respect to Figs. 1-9B above. With these embodiments, it is possible to monitor the performance of the release online. For example, the performance of the switching device can be monitored based on the detected current values or the detected temporal information. In this way, the malfunction of the switching device, especially the malfunction of the coil of the release can be effectively detected. Accordingly, once a malfunction (s) is found, health status of the switching device can be evaluated and advices can be provided. By doing so, a convenience and effective way for monitoring the switching device will be provided.
The preceding paragraphs having described detailed steps of the method 200, in some embodiments of the present disclosure, the method 200 may be implemented by a corresponding apparatus. Fig. 10 illustrates a schematic diagram of an apparatus 1000 for  monitoring a switching device in accordance with embodiments of the present disclosure. As illustrated in Fig. 10, the apparatus 1000 is for monitoring the switching device 101.
The apparatus 1000 comprises: a detecting unit for detecting a sequence of current values of a coil of the release during a time duration. The apparatus 1000 further comprises: a value determining unit for determining a voltage value and a set of characteristic values based on the sequence of current values. The set of characteristic values comprises information about an actuation time of the release and information about current values. The apparatus 1000 further comprises: an operation status determining unit for determining an operation status of the release based on the voltage value and the set of characteristic values.
In some embodiments, the operation status determining unit 1030 comprises: a standard value determining unit for determining, from a plurality of standard characteristic value sets, a target standard characteristic value set based on the voltage value, each of the plurality of standard characteristic value sets being associated with a respective voltage value; and a first operation status determining unit for determining the operation status of the release based on a difference between the set of characteristic values and the target standard characteristic value set.
In some embodiments, the first operation status determining unit comprises: a normal status determining unit for in accordance with a determination that the difference is below a first threshold, determining the operation status to indicate that the release is operating normally; a mild malfunction status determining unit for in accordance with a determination that the difference exceeds the first threshold and is below a second threshold, determining the operation status to indicate a mild malfunction of the coil of the release; and a severe malfunction status determining unit for in accordance with a determination that the difference exceeds the second threshold, determining the operation status to indicate a severe malfunction of the coil.
In some embodiments, the apparatus 1000 further comprises: a first providing unit for in accordance with a determination that the difference exceeds the first threshold and is below a second threshold, providing a warning indicating that the coil of the release mildly malfunctions; and a second providing unit for in accordance with a determination that the difference exceeds the second threshold, providing an alarm indicating that the coil of the release severely malfunctions.
In some embodiments, the value determining unit 1020 comprises: a fitted curve determining unit for determining a fitted current curve based on the sequence of current values; a deviation determining unit for determining a deviation between the fitted current curve and a standard current curve corresponding to a standard voltage value; and a voltage value determining unit for determining the voltage value based on the deviation and a voltage-deviation relationship curve.
In some embodiments, the value determining unit 1020 comprises: a characteristic value determining unit for determining, based on the sequence of current values, at least one of: a starting time of the sequence of current values; a stable time of output voltage value; a first order starting time corresponding to a starting point of a first order response of the sequence of current values; a peak time corresponding to a first peak current value of the sequence of current values; the first peak current value; a first valley current value of the sequence of current values; or a valley time duration from the starting point of the sequence of current values to a valley time corresponding to the first valley current value.
In some embodiments, the apparatus 1000 further comprises: an operating time detecting unit for detecting an operating time of a switching device, the release being configured to trigger opening or closing of the switching device, the operating time comprising one of: a closing time or an opening time of the switching device; and a further operation status determining unit for determining a further operation status of the switching device based on the operating time and a standard operating time associated with the voltage value.
In some embodiments, the further operation status determining unit comprises: a correction time determining unit for determining a correction time duration associated with the voltage value based on the voltage value and a correction curve, the correction curve indicating relationships between a set of voltage values and a set of correction time durations; a corrected operating time determining unit for determining a corrected operating time based on the correction time duration and the operating time; and a second operation status determining unit for determining the further operation status of the switching device based on a time difference between the corrected operating time and the standard operating time.
In some embodiments, the second operation status determining unit comprises: a further normal status determining unit for in accordance with a determination that the time  difference is below a threshold time, determining the further operation status to indicate that the switching device is operating normally; and a malfunction status determining unit for in accordance with a determination that the time difference exceeds the threshold time, determining the further operation status to indicate a malfunction of the switching device.
In some embodiments, the apparatus 1000 further comprises: a third providing unit for in accordance with a determination that the operation status indicating that the release is operating normally and the further operation status indicating a malfunction of the switching device, providing a warning indicating that a mechanism of the switching device other than the coil malfunctions.
In some embodiments of the present disclosure, a system is provided for implementing the  above methods  200, 400, 605 and/or 800. Fig. 11 illustrates a schematic diagram of a system 1100 for implementing a method in accordance with embodiments of the present disclosure. The system 1100 comprises: a computer processor 1110 coupled to a computer-readable memory unit 1120, the memory unit 1120 comprising instructions 1122 that when executed by the computer processor 1110 implements the  methods  200, 400, 605 and/or 800.
In some embodiments of the present disclosure, a computer readable medium for monitoring a switching device is provided. The computer readable medium has instructions stored thereon, and the instructions, when executed on at least one processor, may cause at least one processor to perform the method for monitoring a release as described in the preceding paragraphs, and details will be omitted hereinafter.
Generally, various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device. While various aspects of embodiments of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representation, it will be appreciated that the blocks, apparatus, systems, techniques or methods described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
The present disclosure also provides at least one computer program product  tangibly stored on a non-transitory computer readable storage medium. The computer program product includes computer-executable instructions, such as those included in program modules, being executed in a device on a target real or virtual processor, to carry out the process or method as described above with reference to Figs. 2, 4, 6B and 8. Generally, program modules include routines, programs, libraries, objects, classes, components, data structures, or the like that perform particular tasks or implement particular abstract data types. The functionality of the program modules may be combined or split between program modules as ideal in various embodiments. Machine-executable instructions for program modules may be executed within a local or distributed device. In a distributed device, program modules may be located in both local and remote storage media.
Program code for carrying out methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing apparatus, such that the program codes, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented. The program code may execute entirely on a machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
The above program code may be embodied on a machine readable medium, which may be any tangible medium that may contain, or store a program for use by or in connection with an instruction execution system, apparatus, or device. The machine readable medium may be a machine readable signal medium or a machine readable storage medium. A machine readable medium may include but not limited to an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples of the machine readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.
Further, while operations are depicted in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or  in sequential order, or that all illustrated operations be performed, to achieve desirable results. In certain circumstances, multitasking and parallel processing may be advantageous. Likewise, while several specific implementation details are contained in the above discussions, these should not be construed as limitations on the scope of the present disclosure, but rather as descriptions of features that may be specific to particular embodiments. Certain features that are described in the context of separate embodiments may also be implemented in combination in a single embodiment. On the other hand, various features that are described in the context of a single embodiment may also be implemented in multiple embodiments separately or in any suitable sub-combination.
Although the subject matter has been described in language specific to structural features and/or methodological acts, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.

Claims (22)

  1. A method for monitoring a switching device, the method comprising:
    detecting a sequence of current values of a coil of a release of the switching device during a time duration;
    determining a voltage value and a set of characteristic values based on the sequence of current values, the set of characteristic values comprising information about an actuation time of the release and information about current values; and
    determining an operation status of the release based on the voltage value and the set of characteristic values.
  2. The method of claim 1, wherein determining the operation status of the release comprises:
    determining, from a plurality of standard characteristic value sets, a target standard characteristic value set based on the voltage value, each of the plurality of standard characteristic value sets being associated with a respective voltage value; and
    determining the operation status of the release based on a difference between the set of characteristic values and the target standard characteristic value set.
  3. The method of claim 2, wherein determining the operation status of the release based on the difference comprises:
    in accordance with a determination that the difference is below a first threshold, determining the operation status to indicate that the release is operating normally;
    in accordance with a determination that the difference exceeds the first threshold and is below a second threshold, determining the operation status to indicate a mild malfunction of the coil of the release; and
    in accordance with a determination that the difference exceeds the second threshold, determining the operation status to indicate a severe malfunction of the coil.
  4. The method of claim 2, further comprising:
    in accordance with a determination that the difference exceeds the first threshold and is below a second threshold, providing a warning indicating that the coil of the release mildly malfunctions; and
    in accordance with a determination that the difference exceeds the second threshold, providing an alarm indicating that the coil of the release severely malfunctions.
  5. The method of any of claims 1-4, wherein determining the voltage value comprises:
    determining a fitted current curve based on the sequence of current values;
    determining a deviation between the fitted current curve and a standard current curve corresponding to a standard voltage value; and
    determining the voltage value based on the deviation and a voltage-deviation relationship curve.
  6. The method of any of claims 1-5, wherein determining the set of characteristic values comprises:
    determining, based on the sequence of current values, at least one of:
    a starting time of the sequence of current values;
    a stable time of output voltage value;
    a first order starting time corresponding to a starting point of a first order response of the sequence of current values;
    a peak time corresponding to a first peak current value of the sequence of current values;
    the first peak current value;
    a first valley current value of the sequence of current values; or
    a valley time duration from the starting point of the sequence of current values to a valley time corresponding to the first valley current value.
  7. The method of any of claims 1-6, wherein the release is configured to trigger opening or closing of a switching device; and
    wherein the method further comprising:
    detecting an operating time of the switching device, the operating time comprising one of: a closing time or an opening time of the switching device; and
    determining a further operation status of the switching device based on the operating time and a standard operating time associated with the voltage value.
  8. The method of claim 7, wherein determining the further operation status comprises:
    determining a correction time duration associated with the voltage value based on the voltage value and a correction curve, the correction curve indicating relationships between a set of voltage values and a set of correction time durations;
    determining a corrected operating time based on the correction time duration and the operating time; and
    determining the further operation status of the switching device based on a time difference between the corrected operating time and the standard operating time.
  9. The method of claim 8, wherein determining the further operation status based on the time difference comprises:
    in accordance with a determination that the time difference is below a threshold time, determining the further operation status to indicate that the switching device is operating normally; and
    in accordance with a determination that the time difference exceeds the threshold time, determining the further operation status to indicate a malfunction of the switching device.
  10. The method of claim 8, further comprising:
    in accordance with a determination that the operation status indicating that the release is operating normally and the further operation status indicating a malfunction of the switching device, providing a warning indicating that a mechanism of the switching device other than the coil malfunctions.
  11. An apparatus for monitoring a switching device, the apparatus comprising:
    a detecting unit for detecting a sequence of current values of a coil of a release of the switching device during a time duration;
    a value determining unit for determining a voltage value and a set of characteristic values based on the sequence of current values, the set of characteristic values comprising information about an actuation time of the release and information about current values; and
    an operation status determining unit for determining an operation status of the  release based on the voltage value and the set of characteristic values.
  12. The apparatus of claim 11, wherein the operation status determining unit comprises:
    a standard value determining unit for determining, from a plurality of standard characteristic value sets, a target standard characteristic value set based on the voltage value, each of the plurality of standard characteristic value sets being associated with a respective voltage value; and
    a first operation status determining unit for determining the operation status of the release based on a difference between the set of characteristic values and the target standard characteristic value set.
  13. The apparatus of claim 12, wherein the first operation status determining unit comprises:
    a normal status determining unit for in accordance with a determination that the difference is below a first threshold, determining the operation status to indicate that the release is operating normally;
    a mild malfunction status determining unit for in accordance with a determination that the difference exceeds the first threshold and is below a second threshold, determining the operation status to indicate a mild malfunction of the coil of the release; and
    a severe malfunction status determining unit for in accordance with a determination that the difference exceeds the second threshold, determining the operation status to indicate a severe malfunction of the coil.
  14. The apparatus of claim 12, further comprising:
    a first providing unit for in accordance with a determination that the difference exceeds the first threshold and is below a second threshold, providing a warning indicating that the coil of the release mildly malfunctions; and
    a second providing unit for in accordance with a determination that the difference exceeds the second threshold, providing an alarm indicating that the coil of the release severely malfunctions.
  15. The apparatus of any of claims 11-14, wherein the value determining unit  comprises:
    a fitted curve determining unit for determining a fitted current curve based on the sequence of current values;
    a deviation determining unit for determining a deviation between the fitted current curve and a standard current curve corresponding to a standard voltage value; and
    a voltage value determining unit for determining the voltage value based on the deviation and a voltage-deviation relationship curve.
  16. The apparatus of any of claims 11-15, wherein the value determining unit comprises:
    a characteristic value determining unit for determining, based on the sequence of current values, at least one of:
    a starting time of the sequence of current values;
    a stable time of output voltage value;
    a first order starting time corresponding to a starting point of a first order response of the sequence of current values;
    a peak time corresponding to a first peak current value of the sequence of current values;
    the first peak current value;
    a first valley current value of the sequence of current values; or
    a valley time duration from the starting point of the sequence of current values to a valley time corresponding to the first valley current value.
  17. The apparatus of any of claims 11-16, wherein the release is configured to trigger opening or closing of a switching device; and
    wherein the apparatus further comprising:
    an operating time detecting unit for detecting an operating time of the switching device, the operating time comprising one of: a closing time or an opening time of the switching device; and
    a further operation status determining unit for determining a further operation status of the switching device based on the operating time and a standard operating time associated with the voltage value.
  18. The apparatus of claim 17, wherein the further operation status determining unit  comprises:
    a correction time determining unit for determining a correction time duration associated with the voltage value based on the voltage value and a correction curve, the correction curve indicating relationships between a set of voltage values and a set of correction time durations;
    a corrected operating time determining unit for determining a corrected operating time based on the correction time duration and the operating time; and
    a second operation status determining unit for determining the further operation status of the switching device based on a time difference between the corrected operating time and the standard operating time.
  19. The apparatus of claim 18, wherein the second operation status determining unit comprises:
    a further normal status determining unit for in accordance with a determination that the time difference is below a threshold time, determining the further operation status to indicate that the switching device is operating normally; and
    a malfunction status determining unit for in accordance with a determination that the time difference exceeds the threshold time, determining the further operation status to indicate a malfunction of the switching device.
  20. The apparatus of claim 18, further comprising:
    a third providing unit for in accordance with a determination that the operation status indicating that the release is operating normally and the further operation status indicating a malfunction of the switching device, providing a warning indicating that a mechanism of the switching device other than the coil malfunctions.
  21. A system for monitoring a switching device, comprising: a computer processor coupled to a computer-readable memory unit, the memory unit comprising instructions that when executed by the computer processor implement the method according to any of claims 1 to 10.
  22. A computer readable medium having instructions stored thereon, the instructions, when executed on at least one processor, cause the at least one processor to  perform the method according to any of claims 1 to 10.
PCT/CN2022/073719 2022-01-25 2022-01-25 Method, apparatus and system for monitoring a switching device WO2023141752A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280052092.0A CN117836639A (en) 2022-01-25 2022-01-25 Method, device and system for monitoring switching device
PCT/CN2022/073719 WO2023141752A1 (en) 2022-01-25 2022-01-25 Method, apparatus and system for monitoring a switching device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/073719 WO2023141752A1 (en) 2022-01-25 2022-01-25 Method, apparatus and system for monitoring a switching device

Publications (1)

Publication Number Publication Date
WO2023141752A1 true WO2023141752A1 (en) 2023-08-03

Family

ID=87470030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/073719 WO2023141752A1 (en) 2022-01-25 2022-01-25 Method, apparatus and system for monitoring a switching device

Country Status (2)

Country Link
CN (1) CN117836639A (en)
WO (1) WO2023141752A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116974268A (en) * 2023-09-20 2023-10-31 青岛朗兹环保科技有限公司 Intelligent monitoring and early warning method for control system circuit

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014019798A1 (en) * 2012-08-02 2014-02-06 Abb Technology Ag Coil actuator for a switching device and related correction method
CN103777103A (en) * 2014-02-18 2014-05-07 南京卓实电气有限责任公司 On-line detection method and device for state of arc suppression coils
CN103858200A (en) * 2011-10-06 2014-06-11 Abb技术有限公司 Coil actuator for a switching device and related switching device
CN107643482A (en) * 2017-07-25 2018-01-30 陕西斯瑞新材料股份有限公司 A kind of on off state judgment models based on coil current waveform
CN112986810A (en) * 2021-02-05 2021-06-18 国网江苏省电力有限公司电力科学研究院 Mechanical characteristic analysis method, device and system suitable for circuit breaker and high-voltage switch

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103858200A (en) * 2011-10-06 2014-06-11 Abb技术有限公司 Coil actuator for a switching device and related switching device
WO2014019798A1 (en) * 2012-08-02 2014-02-06 Abb Technology Ag Coil actuator for a switching device and related correction method
CN103777103A (en) * 2014-02-18 2014-05-07 南京卓实电气有限责任公司 On-line detection method and device for state of arc suppression coils
CN107643482A (en) * 2017-07-25 2018-01-30 陕西斯瑞新材料股份有限公司 A kind of on off state judgment models based on coil current waveform
CN112986810A (en) * 2021-02-05 2021-06-18 国网江苏省电力有限公司电力科学研究院 Mechanical characteristic analysis method, device and system suitable for circuit breaker and high-voltage switch

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116974268A (en) * 2023-09-20 2023-10-31 青岛朗兹环保科技有限公司 Intelligent monitoring and early warning method for control system circuit
CN116974268B (en) * 2023-09-20 2023-12-15 青岛朗兹环保科技有限公司 Intelligent monitoring and early warning method for control system circuit

Also Published As

Publication number Publication date
CN117836639A (en) 2024-04-05

Similar Documents

Publication Publication Date Title
CN110197288B (en) Method for predicting residual service life of equipment under influence of faults
WO2023141752A1 (en) Method, apparatus and system for monitoring a switching device
CN110207784B (en) Transformer oil level warning method and device and terminal equipment
WO2019183851A1 (en) Apparatus and method for fault diagnosis for circuit breaker
EP2613163A1 (en) Self-diagnostic apparatus and method for electric device
JP2021083208A5 (en)
CN113628236A (en) Camera shielding detection method, device, equipment, storage medium and program product
EP4035249A1 (en) Management of a pre-charge circuit of a battery management system
CN111814331B (en) Multi-point equipment residual service life prediction method under complex condition
CN117031182A (en) Method and system for detecting abnormal telemetering value of substation terminal
JP6680368B2 (en) Uninterruptible power system
US11442115B2 (en) Method and apparatus for circuit monitoring
EP3012953A1 (en) Method of controlling inverter
EP3338188B1 (en) Method for determining a mean time to failure of an electrical device
CN104598361A (en) Performance monitoring method and device
WO2019127185A1 (en) Method and system for on-line condition monitoring of dc-link capacitor in power converter
US10126209B2 (en) Limit based threshold estimation for prognostics and health management
CN117482443B (en) Fire-fighting equipment health monitoring method and system
CN110609198A (en) Operation and maintenance monitoring method for cable line and related equipment
CN109636833B (en) Unmanned aerial vehicle following anti-jump method and terminal based on perceptual hash algorithm
CN113298879B (en) Visual positioning method and device, storage medium and electronic equipment
US12008765B2 (en) Candidate region estimation device, candidate region estimation method, and program
EP4196967B1 (en) System and method for anomaly detection of a scene
CN111847256B (en) Rotation monitoring method and system of mechanical structure and engineering machinery
JPS5912642Y2 (en) data processing equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22922605

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280052092.0

Country of ref document: CN