WO2023140691A1 - Oral formulation containing 5-aza-4'-thio-2'-deoxycytidine and preparation method therefor - Google Patents

Oral formulation containing 5-aza-4'-thio-2'-deoxycytidine and preparation method therefor Download PDF

Info

Publication number
WO2023140691A1
WO2023140691A1 PCT/KR2023/001028 KR2023001028W WO2023140691A1 WO 2023140691 A1 WO2023140691 A1 WO 2023140691A1 KR 2023001028 W KR2023001028 W KR 2023001028W WO 2023140691 A1 WO2023140691 A1 WO 2023140691A1
Authority
WO
WIPO (PCT)
Prior art keywords
aza
dcyd
drug
oral dosage
dosage form
Prior art date
Application number
PCT/KR2023/001028
Other languages
French (fr)
Korean (ko)
Inventor
이진수
정두영
조현용
최신혜
Original Assignee
주식회사 피노바이오
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 피노바이오 filed Critical 주식회사 피노바이오
Publication of WO2023140691A1 publication Critical patent/WO2023140691A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0053Mouth and digestive tract, i.e. intraoral and peroral administration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/706Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
    • A61K31/7064Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines
    • A61K31/7068Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines having oxo groups directly attached to the pyrimidine ring, e.g. cytidine, cytidylic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • A61K47/38Cellulose; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/4841Filling excipients; Inactive ingredients
    • A61K9/4866Organic macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Definitions

  • the present invention relates to an oral dosage form containing 5-aza-4'-thio-2'-deoxycytidine and a preparation method thereof.
  • Decitabine also called Dacogen® or 5-aza-2'-deoxycytidine
  • Decitabine functions by incorporating into DNA strands during replication, and when DNA methyltransferases (DNMTs), such as DNMT1, bind DNA and replicate methylation to daughter strands, DNMTs bind irreversibly to decitabine and cannot be separated.
  • DNMTs DNA methyltransferases
  • decitabine action is dependent on cell division. Cells must divide for the drug to work. Therefore, cells that divide much faster than most other cells in the body (such as cancer cells) are more affected by decitabine. That is, decitabine is used in the treatment of cancers such as leukemias, including myelodysplastic syndrome (MDS) and acute myelogenous leukemia (AML), in which DNA hypermethylation is important for development.
  • MDS myelodysplastic syndrome
  • AML acute myelogenous leukemia
  • aza-T-dCyd 5-aza-4'-thio-2'-deoxycytidine
  • NCI National Cancer Institute
  • This DNMT1 inhibitor has recently attracted attention due to its high DNMT elimination and cell inhibitory activity, reduced rate of cytidine deaminase degradation, and relatively low production of toxic by-products compared to existing compounds with a 5-azacytidine backbone.
  • aza-T-dCyd can be manufactured in a variety of forms and crystal structures.
  • U.S. Patent No. 5,591,722 relates to 2'-deoxy-4'-thioribonucleosides and intermediates useful for treating viral diseases and describes a general formula comprising 5-azacytidine compounds.
  • US Patent Publication No. 2006/0014949 reports polymorphs of decitabine.
  • Thottassery, et al. (Cancer Chemother Pharmacol, 2014) reports aza-T-dCyd.
  • Clinical trial NCT04167917 reports a phase I trial of Aza-T-dCyd in MDS and AML expected to be completed in 2025.
  • the polymorph of aza-T-dCyd has so far remained elusive.
  • DNA methyltransferase (DNMT) inhibitors based on cytidine analogs such as decitabine and azacitidine have excellent efficacy in the treatment of elderly patients with myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML).
  • MDS myelodysplastic syndrome
  • AML acute myeloid leukemia
  • DNMT DNA methyltransferase
  • MDS myelodysplastic syndrome
  • AML acute myeloid leukemia
  • DNMT DNA methyltransferase
  • anticancer drugs of the cytidine analogue family such as decitabine or azacytidine, commonly have difficulties in being developed as oral anticancer drugs due to individual differences in absorption and metabolism rates in the human body.
  • the optimal dose for one individual is a dose that cannot show a therapeutic effect for another individual.
  • Gastrointestinal Tract refers to all organs of the digestive system from the mouth to the anus.
  • Absorption of a drug means the movement of substances into or across tissues, in particular, the movement of a drug to the wall of the gastrointestinal tract and then to the bloodstream.
  • Absolute bioavailability is the rate at which a drug is systemically utilized after oral, rectal, subcutaneous, transdermal, intranasal, or extravascular administration of the drug.
  • a dosage form is a means of controlling the action of a drug by adjusting variable factors affecting dissolution and absorption characteristics of a drug, which are drug-derived factors.
  • the physical state of the pharmaceutical raw material that is, whether it is crystalline or amorphous
  • the amorphous form has high solubility and is helpful in increasing the efficacy and showing the fast effect, but it is unstable and the shelf life is shortened, and it is also difficult to release the drug and control the blood concentration.
  • the crystalline form has low solubility and low bioavailability per unit weight, stability is secured and there is an advantage in making a continuous controlled release formulation, crystalline raw materials are used in most pharmaceutical formulations except for special cases.
  • the crystalline form of a drug affects the physical and chemical stability, hygroscopicity, and dissolution rate of a compound in water. Chemical instability causes restrictions on the manufacturing, management, transportation, and shelf life of pharmaceutical raw materials. It also affects the stability after formulation as an oral preparation. If the crystal form is different, the crystal shape, purity, yield, etc. are different, and it greatly affects the formulation process, manufacturing environment, and manufacturing cost.
  • the individual drug exposure of the aza-T-dCyd drug varies greatly due to the difference in the degree of absorption for each individual, so that the optimally designed dose for anticancer efficacy may be a dose that cannot show a therapeutic effect for each individual or a dose that causes serious toxicity.
  • an object of the present invention is to provide an oral dosage form in which the ratio (wt%) of crystalline Form A in aza-T-dCyd is adjusted to a known value within an acceptable error range, so as to calculate a single dose that exhibits a desired therapeutic effect from the highest blood concentration (Cmax) of the aza-T-dCyd drug, and to minimize individual differences in absorption during oral administration to stably achieve the highest blood concentration (Cmax) of the aza-T-dCyd drug.
  • a first aspect of the present invention provides a method for preparing an oral dosage form containing aza-T-dCyd as an active ingredient, the efficacy of which is dependent on the highest blood concentration (Cmax), characterized by precisely designing a single dose that exhibits a desired therapeutic effect from the highest blood concentration (Cmax) of the aza-T-dCyd drug within an acceptable error range.
  • a second aspect of the present invention provides an oral dosage form in which the ratio (wt%) of crystalline Form A in the aza-T-dCyd drug is controlled, wherein the crystalline raw material containing crystalline Form A in a desired ratio (wt%) is prepared from crude materials of aza-T-dCyd, which is a synthesized product of the aza-T-dCyd compound, and then formulated into an oral dosage form.
  • the exposure amount of the aza-T-dCyd drug in the blood can be stably implemented within an acceptable error range.
  • a third aspect of the present invention provides a method for preparing an oral dosage form containing aza-T-dCyd as an active ingredient, wherein the ratio (wt%) of crystalline Form A and/or crystalline Form F in the crystalline raw material of aza-T-dCyd is confirmed and then formulated into an oral dosage form.
  • a fourth aspect of the present invention provides an oral dosage form wherein a single dose of the aza-T-dCyd drug is designed such that the ratio of Form A is greater than or equal to the ratio of Form A corresponding to the inflection point of the Cmax phase at which the maximum blood concentration (Cmax) change value according to the change in the ratio of Form A in the same dose of the aza-T-dCyd drug is increased.
  • a fifth aspect of the present invention provides an oral dosage form containing at least 70% of Form A in the aza-T-dCyd drug.
  • a sixth aspect of the present invention provides an oral dosage form characterized by containing 30 mpk to 70 mpk of crystalline Form A when designing a single dose of the aza-T-dCyd drug.
  • a seventh aspect of the present invention is a method for preparing an oral dosage form containing an aza-T-dCyd drug whose efficacy is dependent on the maximum blood concentration (Cmax), comprising the steps of crystallizing the aza-T-dCyd compound in the presence of a solvent and then removing the solvent to convert it into a non-solvate crystalline form; and a second step of preparing an oral dosage form designed so that the non-solvate crystalline form prepared in the first step can be dissolved in the stomach.
  • Cmax maximum blood concentration
  • a drug is any substance used to diagnose, cure, alleviate, treat, or prevent disease (excluding food or devices) or to affect the structure or function of the body.
  • disease excluding food or devices
  • any chemical or biological substance that affects the body and its metabolism indicates the drug's atomic or molecular structure.
  • the aza-T-dCyd drug includes a compound represented by Formula 1 below as well as pharmaceutically acceptable salts thereof.
  • “Pharmaceutically acceptable salts” include non-toxic acid and base addition salts of the compounds to which the term refers.
  • solvate refers to a compound provided herein or a salt thereof that further comprises a stoichiometric or non-stoichiometric amount of a solvent bound by non-covalent intermolecular forces.
  • the solvent is water, the solvate is a hydrate.
  • aza-T-dCyd of Chemical Formula 1 is a DNMT1 inhibitor based on a 4-Thio-2-deoxyribose backbone, and has both a sugar structure change (4'-thiodeoxyribose structure) and an aza-cytosine group.
  • aza-T-dCyd is activated by triphosphate in cells and used instead of some dC (deoxycytidine) during DNA synthesis. It is a nucleoside anticancer drug that induces cancer cell death by trapping DNMT1 after DNA synthesis and activating various epigenetic action mechanisms.
  • aza-T-dCyd due to its Thio-nucleoside structure, can exhibit strong anticancer efficacy by simultaneously blocking endonuclease that participates in DNA damage repair, an existing mechanism of resistance development, along with strong inhibition of DNMT1, the main drug target.
  • Aza-T-dCyd compounds can be rapidly activated by triphosphate in cancer cells compared to normal cells.
  • the Aza-T-dCyd compound delays DNA replication by causing base excision repair and/or mismatch repair through DNA insertion of aza-T-dCTP, a triphosphate of the aza-T-dCyd compound, thereby inducing replication stress and increasing DNA damage response.
  • the Aza-T-dCyd compound suppresses the expression of RRM1 protein, a ribonucleotide reductase that is important for dNTP de novo synthesis, induces DNA replication stress by reducing the amount of dCTP and dTTP in cells, and can generate a strong DNA damage response.
  • aza-T-dCyd significantly lowers the activation rate by dCK (deoxycytidine kinase) in normal cells due to its Thio-nucleoside structure, thereby selectively delivering the active ingredient of the drug to cancer cells.
  • dCK deoxycytidine kinase
  • Example 6 Furthermore, through the pharmacokinetic analysis of Example 6, (1) the anti-cancer treatment effect of aza-T-dCyd is Cmax dependent rather than AUC dependent; and (2) exposure to higher doses of the aza-T-dCyd drug for a short period of time is an effective anti-cancer therapy.
  • the present invention was completed based on these findings.
  • the optimally designed dose for anticancer efficacy may be a dose that cannot show a therapeutic effect or a dose that causes serious toxicity depending on the individual.
  • the proportion (wt%) of Form A in the drug aza-T-dCyd can be precisely controlled.
  • a single dose that exhibits a desired therapeutic effect is calculated from the highest blood concentration (Cmax) of the aza-T-dCyd drug, and the ratio (wt%) of Form A in the aza-T-dCyd drug is adjusted to a known value within an acceptable error range to stably exert the highest blood concentration (Cmax) of the aza-T-dCyd drug by minimizing individual differences in absorption during oral administration.
  • the method for preparing an oral dosage form containing aza-T-dCyd as an active ingredient according to the present invention is characterized by precisely designing a single dose that exhibits a desired therapeutic effect from the highest blood concentration (Cmax) of the aza-T-dCyd drug within an acceptable error range.
  • "precisely designing a single dose that exhibits a desired therapeutic effect from the highest blood concentration (Cmax) of the aza-T-dCyd drug within an acceptable error range” means, for example, designing a dosage form capable of controlling a constant dissolution rate profile and absorption of the drug within a predictable error range to minimize the variation in drug exposure, and based on this, a single administration of the aza-T-dCyd drug that achieves the highest blood concentration (Cmax) that exhibits the desired therapeutic effect It could be capacity design.
  • the pharmacokinetic parameters for evaluation of bioavailability are the amount of drug that the active ingredient or its active metabolites reach the systemic circulation from the preparation and the time it takes for them to reach the systemic circulation.
  • the area under the plasma level-time curve refers to the degree of drug exposure, that is, the degree of bioabsorption of the drug, and reflects the total amount of active drug that reaches the systemic circulation.
  • the unit of AUC is expressed as concentration ⁇ time (eg, ⁇ g hr/mL).
  • AUC is a measure of the degree of drug bioavailability. It represents the extent of total systemic exposure.
  • Cmax is the highest blood concentration after drug administration and is an indicator indicating whether the drug is sufficiently absorbed into the systemic circulation to show a therapeutic response, as well as providing information on whether or not it can cause toxic effects.
  • t max is the time at which the blood concentration reaches the highest value after drug administration, and refers to the moment at which the absorption rate of the drug and the excretion rate become the same as the time point at which the drug absorption reaches the highest value. After t max , drug absorption continues but slows down. Therefore, when comparing the absorption of drugs, it is an index for the rate of absorption.
  • IC 50 values are related to AUC. Usually, the dose can be calculated from AUC and bioavailability.
  • the present invention is characterized by designing a single dose of the aza-T-dCyd drug so as to exert a desired therapeutic effect from the highest blood concentration (Cmax) of the aza-T-dCyd drug.
  • a single dose of the aza-T-dCyd drug may be 5-70 mg/m 2 .
  • it may be 5-10 mg/m 2 .
  • it may be preferably 5 to 55 mg/m 2 , more preferably about 5 to 30 mg/m 2 , and still more preferably 5 to 20 mg/m 2 .
  • in combination therapy it may be 5 to 10 mg/m 2 .
  • NOAEL No-observed-adverse-effect level
  • HNSTD highest non-severe toxic dose
  • the appropriate dosage for humans when calculating the appropriate dosage for humans, it can be adjusted to be less than the no-observed-adverse-effect level (NOAEL) or the highest non-severe toxic dose (HNSTD) that does not cause serious toxicity, and the dose of the anticancer agent can be compared with the non-toxic amount (NOAEL) or the highest dose that does not cause serious toxicity (HNSTD), and the risk factor (risk) during administration can be predicted.
  • NOAEL no-observed-adverse-effect level
  • HNSTD non-severe toxic dose
  • the peak blood concentration (Cmax) after administration of a drug is not only an indicator of whether a drug has been sufficiently absorbed into the systemic circulation to produce a therapeutic response, but also provides information on the toxicity profile.
  • PK pharmacokinetics
  • IV intravenous
  • PO oral
  • mpk milligram per kilogram
  • Example 11 when comparing the results of 2mpk treatment and 1mpk treatment of mice twice, in consideration of the fact that the weight loss of mice was severe in the latter, the present invention provides that the highest blood concentration (Cmax) of the aza-T-dCyd drug calculated from a single dose of the aza-T-dCyd drug is a non-toxic level (No-observed-adverse-effect level, NOAEL) or the highest that does not cause serious toxicity.
  • NOAEL No-observed-adverse-effect level
  • a single dose of the aza-T-dCyd drug can be designed to be lower than the value corresponding to the highest non-severe toxic dose (HNSTD).
  • the present invention can design a single dose of the aza-T-dCyd drug to be lower than the value corresponding to the non-toxic level (NOAEL) or the highest dose that does not cause serious toxicity (HNSTD) based on Cmax rather than AUC, it is possible to expand the range of a very narrow therapeutic window of the aza-T-dCyd drug.
  • NOAEL non-toxic level
  • HNSTD serious toxicity
  • a database comparing in vitro data IC 50 , IC 60 , IC 70 , IC 80 and IC 90 with side effect values (IC 50 based on NOAEL and/or HNSTD) in a non-clinical large animal model can be constructed.
  • a single dose of the aza-T-dCyd drug is calculated from this, and then the maximum blood concentration (Cmax) of the aza-T-dCyd drug calculated therefrom is compared with the Cmax value corresponding to the non-toxic amount (NOAEL) or the highest dose that does not cause serious toxicity (HNSTD), and various therapeutic efficacy and/or side effect prediction information derived from a single dose of the aza-T-dCyd drug in a specific oral dosage form can be provided.
  • Cmax maximum blood concentration
  • NOAEL non-toxic amount
  • HNSTD serious toxicity
  • aza-T-dCyd has a low rate of degradation of cytidine deaminase compared to other cytidine analog-based anticancer drugs. Not only is the effect not significant, but the maximum blood concentration (Cmax) of the desired aza-T-dCyd drug can be maintained for a longer time there is
  • the present invention is characterized in that the ratio (wt%) of crystalline form A in the aza-T-dCyd drug is closely controlled to a known value within an error range, thereby solving problems caused by individual differences in absorption.
  • the present invention can provide an oral dosage form containing an aza-T-dCyd drug in which absorption of the drug and control of the maximum blood concentration (Cmax) are precisely controlled within an acceptable error range.
  • aza-T-dCyd is an analog of decitabine represented by Formula 1 and, like decitabine, can be prepared in various forms and crystal structures.
  • polymorphs of aza-T-dCyd include (pseudo-)polymorphs of aza-T-dCyd.
  • Polymorphism is a phenomenon in which one compound has more than one molecular arrangement structure, that is, a crystal structure, in a solid state, and has chemically identical but physically different characteristics.
  • the crystal structure means the internal structure of the crystal.
  • the most important characteristics of a solid are a specific distance between molecules and a specific bonding force, and polymorphs have different melting points because of the different distance and bonding strength between molecules, and therefore have different solubility.
  • Pseudo-polymorphism is chemically different and physically different. This is mainly in the case of solvates, in which solvent molecules enter the crystal lattice to form crystals.
  • the solvent is water, it is called a hydrate.
  • the synthesized product of the aza-T-dCyd compound mainly contains crystalline forms A and F, and may include various other crystalline forms (Example 1).
  • crystalline form A, crystalline form F, or a combination (mixed) form of crystalline form A and crystalline form F of aza-T-dCyd is disclosed.
  • Crystalline Form A of aza-T-dCyd can be defined as having peaks at 2 ⁇ diffraction angles of about 8o, about 13o, about 15o, about 17o, about 19o, about 22o, about 23o, about 26o, about 28o, about 29o, about 31o, about 33o, and about 37o in a powder X-ray diffraction spectrum.
  • crystalline form A of aza-T-dCyd has 2 ⁇ diffraction angles of 7.7° ⁇ 0.3°, 13.02° ⁇ 0.3°, 15.34° ⁇ 0.3°, 16.78° ⁇ 0.3°, 18.62° ⁇ 0.3°, 19.42° ⁇ 0.3°, 21.94° ⁇ 0.3°, and ⁇ 22.90°. .3°, 25.70° ⁇ 0.3°, 26.64° ⁇ 0.3°, 27.86° ⁇ 0.3°, 28.63° ⁇ 0.3°, 29.45° ⁇ 0.3°, 31.42° ⁇ 0.3°, 32.70° ⁇ 0.3°, 34.72 ⁇ 0.3, 35.97° ⁇ 0.3° and 37. It may have a peak of 46 ° ⁇ 0.3 °.
  • Crystalline form F of aza-T-dCyd has diffraction angles in 2 ⁇ of about 6o, about 12o, about 13o, about 14o, about 16o, about 18o, about 20o, about 21o, about 22o, about 26o, about 27o, about 29o, about 30o, about 33o, about 35o, about 36o in the powder X-ray diffraction spectrum. o, about 39o, and about 41o.
  • crystalline form F of aza-T-dCyd has 2 ⁇ diffraction angles of 6.06o ⁇ 0.3°, 12.10o ⁇ 0.3°, 13.02o ⁇ 0.3°, 14.38o ⁇ 0.3°, 15.94o ⁇ 0.3°, 17.50o ⁇ 0.3°, 19.62o ⁇ 0.3°, 21.18o ⁇ 0.3°, 22.34o ⁇ 0.3°, 26.18o ⁇ 0.3°, 27.42o ⁇ 0.3°, 28.50o ⁇ 0.3°, 29.90o ⁇ 0.3°, 32.66o ⁇ 0.3°, 35.02o ⁇ 0.3°, 36.30o ⁇ 0.3 °, 38.94o ⁇ 0.3 °, and 41.06o ⁇ 0.3 °.
  • the first step may be to convert the crystalline polymorph containing the solvate to a single crystalline Form A by removing the solvent.
  • an aza-T-dCyd drug consisting only of crystalline Form A can be provided.
  • the second step is to provide an oral dosage form containing an aza-T-dCyd drug that is precisely designed within an acceptable error range for a single dose that exhibits a desired therapeutic effect from the highest blood concentration (Cmax) of the aza-T-dCyd drug.
  • the amorphous form dissolves quickly and shows a quick effect, and the duration is short. In the case of the crystalline form, it dissolves slowly, so the effect appears slowly but the duration is long.
  • the physicochemical properties (physical properties) of the aza-T-dCyd drug directly affect formulation development. Since polymorphs differ in solubility and stability, polymorphs are very important pharmaceutically, and in particular, crystalline forms that are well soluble are preferred in terms of bioavailability. However, simply selecting a form that dissolves well does not end all problems, and it is necessary to study whether or not the form is converted. Therefore, the present invention was completed through polymorph screen and characterization of aza-T-dCyd in Examples 4 and 5.
  • crystalline form A and crystalline form F are stable anhydride forms in physical and chemical terms. Therefore, constructing the aza-T-dCyd drug raw material in crystalline form A and/or crystalline form F with high physicochemical stability not only has advantages such as storage stability and purity control during formulation development, but more importantly, the crystalline form can affect the biological activity of the drug.
  • the dosage of the aza-T-dCyd drug may vary within a range depending on the dosage form (crystal form) and route of administration.
  • an oral dosage form containing aza-T-dCyd may be designed to dissolve 90% or more of Form A and/or Form F in the stomach.
  • the maximum blood concentration (Cmax) and/or the area under the blood drug concentration-time curve (AUC) of the aza-T-dCyd drug may be adjusted by adjusting the composition ratio of Form A and/or Form F of the aza-T-dCyd drug.
  • Form A exhibits a high dissolution rate/solubility in strong acidic conditions and exhibits a consistent dissolution rate profile compared to Form F.
  • the present inventors prepared various crystalline forms of aza-T-dCyd and confirmed that the anticancer effect in crystalline form A was the most excellent. Therefore, it is a feature of the present invention to apply this to the design of an oral dosage form containing an Aza-T-dCyd drug whose efficacy is dependent on Cmax.
  • the desired Cmax value of the aza-T-dCyd drug can be stably achieved within an acceptable error range by adjusting the dose of Form A and/or the ratio of the aza-T-dCyd drug, and by applying this, the aza-T-dCyd drug can be formulated to exert a desired therapeutic effect by minimizing individual variation.
  • amorphous and highly water-soluble additives may be added and mixed thereto to improve solubility and increase bioavailability.
  • the additive include starch, lactose, PVP, and microcrystalline cellulose.
  • the oral dosage form of the present invention may contain a disintegrating carrier so that at least 80% of the aza-T-dCyd drug is dissolved in an acidic stomach.
  • the amorphous form has high solubility, which helps to increase the efficacy of the drug and show rapid action, but it is difficult to release the drug and control the blood concentration; no absorption of the aza-T-dCyd drug from the cecum (Example 12); Form A and Form F have high dissolution rate/solubility and similar dissolution rates at pH 5 (pH condition of the small intestine) and pH 1.2 (pH condition of the stomach).
  • the present invention provides (1) a single dose of aza-T-dCyd drug and (2) aza-T-d by controlling the ratio of Form A to aza-T-dCyd drug showing a consistent dissolution profile in the stomach, Despite the very narrow therapeutic window of Cyd drugs, high Cmax can be easily achieved within an acceptable margin of error.
  • the present invention designs an oral dosage form that is decomposed by gastric acid so that, for example, 90% or more of crystalline form A dissolves in the stomach, thereby absorbing most of the aza-T-dCyd drug at the beginning of the small intestine, thereby exhibiting the desired therapeutic effect with a lower single dose than other crystalline forms.
  • a high Cmax can be precisely controlled with significantly reduced potential for toxic side effects.
  • the present invention provides a single dose of the aza-T-dCyd drug and a crystalline form of the aza-T-dCyd drug to precisely control (i) the highest blood concentration (Cmax) of the drug Aza-T-dCyd that exerts the desired therapeutic effect, optionally (ii) the amount of the drug aza-T-dCyd that reaches the systemic circulation from the oral dosage form, and optionally (iii) the time it takes for the drug drug aza-T-dCyd to reach the systemic circulation. It is characterized by designing the ratio of A.
  • the ratio of crystalline form A in the aza-T-dCyd drug may be wt% or mole%, but is not limited thereto.
  • the present invention can design a single dose of aza-T-dCyd drug and the ratio of crystalline form A in aza-T-dCyd drug in order to easily control the maximum blood concentration (Cmax) after drug administration, which indicates whether the drug is sufficiently absorbed into the systemic circulation to produce a therapeutic response.
  • Cmax maximum blood concentration
  • the dosage of the aza-T-dCyd drug and the ratio (wt%) of the crystalline form A in the aza-T-dCyd drug that is, the amount of the drug reaching the systemic circulation from the oral dosage form and the time taken to reach the systemic circulation can be easily controlled by adjusting the dosage of the aza-T-dCyd drug and the dosage of the crystalline form A.
  • the present invention can easily control the amount of the drug reaching the systemic circulation from the oral formulation and the time taken to reach the systemic circulation by adjusting the dose of Form A or the ratio (wt%) of the aza-T-dCyd drug.
  • a crystalline raw material containing crystalline form A in a desired ratio (wt%) can be prepared from aza-T-dCyd crude materials, which are synthesized products of the aza-T-dCyd drug, and then formulated into an oral dosage form.
  • the present invention provides an oral dosage form in which the ratio (wt%) of crystalline Form A in the aza-T-dCyd drug is controlled, wherein the crystalline raw material containing Form A in a desired ratio (wt%) is prepared from crude materials of aza-T-dCyd, which is a synthetic product of the aza-T-dCyd drug, and then formulated into an oral dosage form.
  • preparing a crystalline raw material containing crystalline form A in a desired ratio (wt%) from aza-T-dCyd crude materials, which are the synthetic product of the aza-T-dCyd drug can be a process of controlling the desired ratio (wt%) of crystalline form A within a ⁇ 10% error range, preferably within a ⁇ 5% error range, and the desired ratio (wt%) of crystalline form A is within a ⁇ 10% error range, preferably ⁇ 5% error range. It may be a verification process.
  • the oral dosage form of the present invention is characterized in that a single dosage of the aza-T-dCyd drug is designed so that the dosage of the aza-T-dCyd drug contains more than the ratio of Form A corresponding to the inflection point of the Cmax phase at which the maximum blood concentration (Cmax) change value increases according to the change in the ratio of Form A in the same single dose of the aza-T-dCyd drug.
  • the Cmax inflection point considered in designing the ratio of Form A in the drug Aza-T-dCyd may appear when the ratio of Form A in the drug Aza-T-dCyd is 50% to 80%.
  • the ratio of crystalline Form A in the aza-T-dCyd drug may be 70% or more.
  • the oral dosage form can be designed such that the ratio of Form A in the aza-T-dCyd drug is 70% or more.
  • the ratio of crystalline Form A in the aza-T-dCyd drug in the oral dosage form may be 100%.
  • the bioavailability of the aza-T-dCyd drug whose therapeutic effect/toxic side effect depends on Cmax can be precisely controlled during oral administration.
  • the oral dosage form may be formulated.
  • cancer refers to or describes a physiological condition in mammals that is typically characterized by unregulated cell growth.
  • examples of cancers include, but are not limited to, blood-borne tumors (eg, multiple myeloma, lymphoma, and leukemia) and solid tumors.
  • hematological cancers include non-Hodgkin's lymphoma, Hodgkin's lymphoma, multiple myeloma, leukemia, lymphoma, myelodysplastic syndrome, acute granulocytic leukemia, acute myelogenous leukemia, chronic myeloid leukemia, etc.
  • Non-limiting examples of solid cancers include gastric cancer, kidney cancer, ovarian cancer, cervical cancer, uterine cancer, prostate cancer, lung cancer, colon cancer, breast cancer, melanoma, and pancreatic cancer.
  • patient and “subject” refer to animals such as mammals.
  • the patient is a human.
  • the patient is a non-human animal, such as a dog, cat, livestock (eg, horse, pig or donkey), chimpanzee or monkey.
  • the anticancer effect or therapeutic effect of an anticancer agent may refer to an action that reduces the severity of cancer, reduces the size of a tumor, or delays or slows down the progression of cancer, which occurs while a patient is suffering from a specific cancer.
  • the anticancer effect of an anticancer agent may be Cell Viability (a change in the degree of cytotoxicity or the number of cells) of cancer cells after treatment with the anticancer agent in vitro and/or in vivo. For example, it can be confirmed indirectly through a drug response test through a cell line or a non-clinical animal model (xenograft). In addition, even in cancer patients, the anticancer effect of the anticancer agent can be directly confirmed, and related data can be derived and used as a database. In addition, when designing an anticancer drug dosage guideline, animal model PK parameters and/or toxicity profile may be considered in parallel.
  • the anticancer effect of an anticancer agent may be inferred from in-vitro data, such as the % maximum effect of the anticancer agent, such as IC 50 , IC 60 , IC 70 , IC 80 and IC 90 , and the highest blood concentration of the drug (Cmax) and / or blood drug concentration - It can also be confirmed in non-clinical animal models and clinical cancer patients through in-vivo data such as area under the time curve (AUC). .
  • Reactivity of an anticancer agent means clinical sensitivity in terms of anticancer effect.
  • Sensitivity and “susceptibility” when referring to treatment with an anti-cancer agent are relative terms that refer to the degree of effectiveness of a compound in alleviating or reducing the progression of the tumor or disease being treated.
  • an "effective patient's anticancer effect/response” can be, for example, a 5%, 10%, 15%, 20%, 25%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 200%, or more inhibition of a patient's response, as measured by any suitable means, such as gene expression, cell counts, assays, and the like.
  • the dose is the dose at which drug efficacy is expected.
  • the medicinal effect may be an anticancer effect.
  • the reactivity (anti-cancer effect) of an anti-cancer agent is the degree of response, and may be the % maximum effect of the anti-cancer agent, such as IC 50 , IC 60 , IC 70 , IC 80 and IC 90 , and a value that exhibits toxicity to normal cells (LC 50 ).
  • dosage forms for oral use can be formulated using a variety of formulation techniques known in the art.
  • it may include a biodegradable (hydrolyzable) polymeric carrier used to adhere to the oral mucosa. It is designed to slowly erode over a predetermined period of time, wherein drug delivery is provided essentially entirely.
  • Drug delivery in an oral dosage form avoids the weaknesses encountered with oral drug administration, such as slow absorption, degradation of the active agent by fluid present in the gastrointestinal tract and/or first pass and inactivation in the liver, as recognized by those skilled in the art.
  • biodegradable (hydrolysable) polymeric carriers it will be appreciated that virtually any such carrier may be used provided that the desired drug release profile is not compromised, and that the carrier is compatible with aza-T-dCyd and any other ingredient present in an oral dosage unit.
  • polymeric carriers include hydrophilic (water-soluble and water-swellable) polymers that adhere to the wet surface of the oral mucosa.
  • polymeric carriers useful herein include acrylic acid polymers and co, eg, those known as “carbomers” (Carbopol ® (available from B.F. Goodrich) is one such polymer).
  • carbomers Carbopol ® (available from B.F. Goodrich) is one such polymer.
  • other ingredients that can be incorporated into an oral dosage form include disintegrants, diluents, binders, lubricants, flavoring agents, coloring agents, preservatives, and the like. In some embodiments, it may be in the form of a conventionally formulated tablet, lozenge, or gel for buccal or sublingual administration.
  • administration of the compound is continued at the physician's discretion when the patient's condition improves;
  • the dose of drug to be administered may be temporarily reduced or temporarily discontinued for some length of time (ie, a "holiday").
  • the length of the washout can vary between 2 days and 1 year, by way of example only, 2 days, 3 days, 4 days, 5 days, 6 days, 7 days, 10 days, 12 days, 15 days, 20 days, 28 days, 35 days, 50 days, 70 days, 100 days, 120 days, 150 days, 180 days, 200 days, 250 days. , 280 days, 300 days, 320 days, 350 days, or 365 days.
  • the dose reduction during the washout is 10%-100%, by way of example only, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100 contains %.
  • a maintenance dose is administered, if necessary. Subsequently, the dosage or frequency of administration, or both, can be reduced as a function of symptoms, to a level at which improved disease, disorder or condition is maintained.
  • patients require intermittent treatment over a long period of time upon any recurrence of symptoms.
  • the amount of a given agent that will correspond to such amount will vary with factors of the subject or host in need of treatment such as the particular compound, severity of the disease, identity (e.g., body weight), but can nevertheless be routinely determined in a manner known in the art, depending on, for example, the particular agent to be administered, the route of administration, and the particulars surrounding the case involving the subject or host to be treated. In general, however, doses used for adult human treatment will typically range from 0.02-5000 mg/day, or about 1-1500 mg/day.
  • a single dose herein may be given as a single dose or in divided doses administered simultaneously, for example as 2, 3, 4 or more sub-doses.
  • oral formulations are unit dosage forms suitable for single administration of precise dosages.
  • the formulation is divided into unit doses containing appropriate amounts of one or more compounds.
  • the unit dose is in the form of patches containing discrete amounts of the formulation.
  • Non-limiting examples are packaged tablets or capsules, and powders in vials or ampoules.
  • Aqueous suspension compositions can be packaged in single-dose non-reclosable containers. Alternatively, multi-dose reclosable containers may be used, in which case it is typical to include a preservative in the composition.
  • formulations for parenteral injection are presented in unit dosage form, including but not limited to ampoules, or in multi-dose containers, with an added preservative.
  • the concentration of the drug in the body must be maintained within a therapeutic range for a certain period of time or longer.
  • a drug is present in excess in the body, it exhibits toxicity, and when the amount is too small, the therapeutic effect does not appear. Therefore, the bioavailability of the aza-T-dCyd drug can be controlled by adjusting the polymorphism of the aza-T-dCyd drug at the crystalline level.
  • the present invention uses the polymorphism of the aza-T-dCyd crystalline form to control the release and absorption of the aza-T-dCyd drug, thereby reducing the side effects of the aza-T-dCyd drug that is Cmax dependent rather than the AUC and maximizing the efficacy of the aza-T-dCyd drug.
  • the present invention can provide an oral dosage form in which the ratio (wt%) of crystalline Form A among polymorphs of aza-T-dCyd drug is adjusted in order to achieve the highest blood concentration (Cmax) within a single dose of the aza-T-dCyd drug, which is related to toxicity in the body, which is a side effect, based on a single dose.
  • the dosage of the aza-T-dCyd drug and the ratio (wt%) of crystalline Form A in the Aza-T-dCyd drug can be precisely and easily controlled.
  • Figure 1 shows representative HT-XRPD and HR-XRPD patterns for aza-T-dCyd starting material (SM: aza-T-dCyd for which no specific crystallization conditions have yet been applied).
  • Figure 2 shows representative simulated XRPD and HR-XRPD of aza-T-dCyd crystalline Form A.
  • Figure 3 shows a representative TGMS analysis of aza-T-dCyd starting material (SM).
  • Figure 4 shows a representative DSC trace of aza-T-dCyd starting material (SM).
  • FIG. 5 shows representative simulated XRPD and HT-XRPD of aza-T-dCyd Form A after second cycling DSC.
  • Figure 6 shows the cycle DSC of aza-T-dCyd starting material (SM).
  • FIG. 7A and 7B show representative results of LCMS of aza-T-dCyd starting material (SM). Specifically, FIG. 7A shows a representative LC chromatogram of aza-T-dCyd starting material (SM). 7B shows a representative MS spectrum of aza-T-dCyd from liquid chromatography.
  • SM aza-T-dCyd starting material
  • FIGS 8A-C show representative results of LCMS of aza-T-dCyd starting material (SM) after forming a solution in water.
  • FIG. 8A shows an LC chromatogram of aza-T-dCyd formulated in water.
  • Figure 8b shows the MS spectrum of the impurity eluted at 3.8 minutes.
  • Figure 8c shows the MS spectrum of aza-T-dCyd eluted at 4.4 min.
  • Figure 9 presents representative data showing the chemical stability of aza-T-dCyd in various solutions.
  • FIG. 11 shows a representative XRPD pattern of Form A of aza-T-dCyd.
  • 13A-C show representative chemical analyzes of Form A.
  • 13A shows the TGMS analysis of Form A.
  • 13B shows the DSC analysis of Form A.
  • 13C shows the LCMS analysis of Form A.
  • 15A-C show representative chemical analyzes of Form F.
  • 15A shows the TGMS analysis of Form F.
  • 15B shows the DSC analysis of Form F.
  • 15C shows the LCMS analysis of Form F.
  • 16 shows a representative XRPD pattern of Form F of aza-T-dCyd.
  • 17 and 18 present in vivo luciferase activity data showing tumor size when aza-T-dCyd starting material (SM) was administered to female NOD-SCID mice.
  • SM aza-T-dCyd starting material
  • Fig. 19 shows the half-maximal inhibitory concentration (IC50) when hematological malignant cells (Mv4-11) were treated with aza-T-dCyd starting material (SM).
  • Figure 23 shows IC 50 values when the K562 cell line was treated with crystalline Form A or SM.
  • Figure 24 shows the IC 50 values when the HL-60 cell line was treated with Form A or SM.
  • 25 shows PK analysis results obtained by blood sampling at 0.25, 0.5, 1, 2, 4, 6, 8, and 24 hr after oral administration by adjusting the ratio (wt%) of crystalline form A in Aza-T-dCyd drug.
  • 26A and B show dissolution rate profiles of PO and IC administration of 1mpk and 3mpk of aza-T-dCyd compound, respectively.
  • aza-T-dCyd was prepared and analyzed by X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), thermogravimetry-mass spectrometry (TGMS), and liquid chromatography/mass spectrometry (LCMS).
  • the starting material (SM) is aza-T-dCyd that has not yet been subjected to specific crystallization conditions.
  • Figure 1 shows high-throughput XRPD (HT-XRPD) and high-resolution XRPD (HR-XRPD) in the top and bottom patterns, respectively.
  • the starting materials include crystals suitable for single crystal structure analysis.
  • crystalline form A As a result of crystallization of the starting material, a crystalline form having an asymmetric monoclinic P21 space group was obtained, which is referred to as crystalline form A.
  • Table 1 provides the relevant dimensions of Form A.
  • the HR-XRPD pattern of the starting material was compared with the HR-XRPD pattern, which is a simulated pattern of a single crystal of crystalline Form A, and is shown in FIG. 2 .
  • the crystal A has peaks in 7.7 °, 13.02 °, 15.34 °, 16.78 °, 18.62 °, 19.42 °, 21.94 °, 22.90 °, 25.70 °, 27.86 °, 28.70 °, 31.42 °, 32.70 °, and 37.46 ° 2 ⁇ . Based on this comparison, the starting material is calculated to contain about 70% of crystalline Form A and about 30% of the other crystalline forms of aza-T-dCyd.
  • TGMS analysis of the starting material between 25-300 °C (10 °C/min) showed a mass loss of 11.7% between 100-170 °C, most likely due to organic solvents (Fig. 3). Simultaneously with the mass loss, the heat flow signal showed two endotherms with an exotherm in between. A third endotherm was observed around 195 °C due to the onset of melting and decomposition.
  • XRPD and single crystal structure analysis revealed that the starting material consisted of a mixture of crystalline phases.
  • two cyclic DSC experiments were performed on the starting materials. One sample was heated to 170°C and cooled back to room temperature. As a result of analyzing the obtained solid by XRPD, it was consistent with the simulated pattern of crystalline Form A (FIG. 5).
  • the starting material was heated to 170 °C, cooled to 25 °C and then heated to 300 °C (Fig. 6). No thermal phenomena were observed during cooling, and only endothermic melting was observed at 194 °C in the second heating cycle, confirming the melting temperature of Form A.
  • an amorphous material was generated from the starting material via a lyophilized solution method of aza-T-dCyd.
  • Water, water/1,4-dioxane (50/50), water/THF (50/50) and water/tert-butyl alcohol (50/50% (v/v)) were added to aza-T-dCyd to obtain a solution of aza-T-dCyd in organic solvent for freeze-drying experiments. Lyophilization of the aza-T-dCyd solution resulted in poor crystalline materials containing impurities.
  • thermodynamic solubility of aza-T-dCyd was determined according to the shake flask method. A suspension of crystalline aza-T-dCyd was prepared in 25 pure solvents. A small amount of solvent was added to aza-T-dCyd until thin suspensions were obtained. The sample was then equilibrated at room temperature under continuous stirring for 24 hours. After equilibration, a small amount of mother liquor was filtered and analyzed by HPLC. Concentrations of solutes were determined against a calibration curve of aza-T-dCyd. The solubility values of aza-T-dCyd at room temperature are listed in Table 3 according to the United States Pharmacopoeia classification (USP29).
  • aza-T-dCyd was dissolved in high-boiling solvents such as DMF and DMA.
  • high-boiling solvents such as DMF and DMA.
  • aza-T-dCyd is slightly or very slightly soluble in polar solvents and sparingly soluble in non-polar solvents.
  • a polymorph screen was performed with various pure organic solvents and solvent mixtures of various compositions, combining six different crystallization methods.
  • the screening experimental conditions were chosen as follows: (1) the experiment was started with a crystalline starting material; (2) the compound stayed in solution for a limited time ( ⁇ 5 days); (3) avoided high temperatures ( ⁇ 50 °C); (4) solid aza-T-dCyd is handled in a glovebox under as dry conditions as possible (relative humidity about 20%) to avoid moisture absorption; (5) avoided water and limited ketone use; and (6) moderate stress conditions to evaluate the physical stability of the resulting solid.
  • Solvent equilibration experiments were performed at two temperatures: RT for 1 day and 5 °C for 5 days. Suspensions of aza-T-dCyd were prepared in different solvents along with the crystalline starting material and the solid was separated from the mother liquor upon completion of the equilibration time.
  • Anti-solvent experiments were performed using 10 solvent and anti-solvent combinations by reverse addition. A small amount of a highly concentrated solution of aza-T-dCyd was added to 20 mL of anti-solvent (Step 1).
  • Thermocycling experiments were performed by preparing aza-T-dCyd suspensions in various solvents and solvent mixtures at room temperature. The resulting suspension was subjected to a temperature profile of 5 to 50 °C.
  • Sonication experiments were performed by sonicating crystalline starting materials in the presence of small amounts of solvent.
  • Vapor diffusion experiments into solution were performed with the slow method of anti-solvent crystallization.
  • a saturated aza-T-dCyd solution was exposed to anti-solvent vapor for one week at room temperature.
  • Form A was the most abundant crystalline phase recovered from the screening experiment. Form A was found in all crystallization methods and in various solvents and solvent mixtures. From solvent equilibrium experiments, it was observed that Form A was obtained as a pure phase from solvents in which aza-T-dCyd was slightly or very slightly soluble.
  • the peak at 26.3° 2 ⁇ belonged to Form B.
  • the observed peak at 16.0° 2 ⁇ represents Form C1 and the peaks at 16.0 and 17.6° 2 ⁇ were attributed to Form C2.
  • the observed peak at 24.8° 2 ⁇ is attributed to Form D1 and the peaks at 24.8 and 34.1° 2 ⁇ are attributed to Form D2. According to this assignment, some solids were classified as crystalline forms A+D1/D2, A+C1/C2 or A+B+D2.
  • Form B was obtained as a pure phase by solvent equilibration in DMA and DMF both at room temperature and 5° C. and also from thermocycling experiments in DMSO/2-ethyl-1-hexanol (50/50). Form B was physically unstable and converted to Form A after storage at 25oC and 60% relative humidity.
  • Classes C and D were not observed as pure crystalline phases but were always admixed with Form A. In most cases, these mixtures converted to Form A after storage at 25° C. and 60% relative humidity.
  • Form F was obtained from vapor diffusion or evaporative crystallization in various solvents. Form F was physically stable. The peaks of Form F are 6.06°, 12.10°, 13.02°, 14.38°, 15.94°, 17.50°, 19.62°, 21.18°, 22.34°, 26.18°, 27.42°, 28.50°, 29.90°, 32.66°, 35.0 2°, 36.30°, 38.94°, and 41.06° 2 ⁇ .
  • Crystalline forms G1 and G2 have similar XRPD patterns, where some peaks shift between the two forms.
  • Form G1 was obtained from avoiding solvent addition or from sonication.
  • Form G2 was obtained from evaporative crystallization using DMA/EtOH. Both Form G1 and Form G2 were converted to Form A after storage at 25°C and 60% relative humidity.
  • Form H was obtained from evaporative crystallization in several solvent mixtures. This form is unstable. When obtained from NMP, Form H was converted to Form F. Form H was converted to Form A when obtained from other solvents.
  • Form I was obtained from evaporative crystallization from DMSO/IPA. Form I was converted to Form A after storage at 25°C and 60% relative humidity.
  • Form J was obtained from vapor diffusion into a solution with DMF as solvent and THF as anti-solvent. Form J was converted to Form A after storage at 25°C and 60% relative humidity.
  • Form K was observed in mixtures with Form F after evaporative crystallization from DMF. Form K was converted to form F after storage at 25°C and 60% relative humidity.
  • Form L was observed in the solid after storage at 25° C. and 65% relative humidity.
  • the XRPD patterns for each of these new forms are shown in FIG. 12 .
  • Form A obtained from solvent equilibration experiments of RT in TFE was used for analytical characterization.
  • TGMS results showed residual solvent release of about 0.7% in the temperature range of 30 - 190 °C (FIG. 12A).
  • An endotherm was observed in the DSC trace at 205 °C due to melting and decomposition (Fig. 12B).
  • LCMS analysis confirmed the integrity of 100% (area %) purity of Form A (FIG. 12C).
  • Form F obtained from evaporative crystallization experiments using DMF/acetonitrile (80/20, v/v) was used for characterization.
  • the TGMS results showed a small loss of 1.1% between 30 and 140 °C, which may be mostly due to residual solvent (FIG. 15A).
  • the DSC trace showed one endothermic event at about 170 °C due to melting and decomposition (Fig. 15B).
  • LCMS analysis confirmed the integrity of the API with 100% purity (area %) (FIG. 15C).
  • Form A has a higher melting temperature than Form F and can be considered a more thermodynamically stable form. Both crystalline forms A and F are anhydrous.
  • Forms B, C2, D2, E, G1, G2, H, I, J and K convert to Form A when solvated and stored at 25° C., 60% relative humidity for 2 days.
  • Form B obtained from solvent equilibration experiments in DMA at room temperature was further characterized.
  • the TGMS results showed a gradual mass loss upon heating between 30 and 170 °C with a mass loss of 25.0%.
  • the temperature at which decomposition begins is not clear due to the gradual loss of mass on heating.
  • Form B can be a non-stoichiometric solvate that can be formed with different solvents.
  • LCMS analysis indicated a solid purity of 97.3% aza-T-dCyd and the presence of impurities of 2.7% (area %).
  • Form C2 showed two additional peaks observed in the XRPD pattern in mixtures with other forms. TGMS analysis showed a mass loss of 0.7% over the temperature range of 30 - 160 °C. The heat flow signal showed only one endothermic event around 190 °C, which could be related to the melting and decomposition of Form A. The investigation of form C2 is inconclusive because form C2 is only present in trace amounts in mixtures with crystalline form A. Therefore, the nature of this form is still unclear. However, it appears to be a true (pseudo-)polymorph of aza-T-dCyd, as the chemical purity of the total solid sample was 100% (area %).
  • Form D2 exhibited two additional peaks observed in the XRPD pattern in mixtures with Form A. TGMS analysis of Form A+D2 showed that Form D2 was most likely the solvated form. A mass loss of 5.1% was observed between 90 and 170 °C. The results were inconclusive with respect to the released solvent. LCMS analysis of the crystalline mixture confirmed the integrity of aza-T-dCyd with a chemical purity of 100% (area %).
  • Form E from evaporative crystallization experiments using DMA was further analyzed by TGMS and LCMS.
  • the TGMS results showed a 25.8% mass loss of DMA, which corresponds to 1 molar equivalent of solvent.
  • the solvent was released in a stepwise manner between 90 and 160 °C, suggesting that Form E is a mono-DMA solvate.
  • an endothermic event was recorded at 200 °C, probably corresponding to melting of Form A. Compound integrity was confirmed by LCMS analysis.
  • Class G is an isostructural class of solvates. Crystalline forms G1 and G2 were further characterized by TGMS and LCMS. LCMS analysis confirmed compound integrity (area % of 100%). Form G1 obtained from antisolvent addition experiments using NMP and cyclohexane was used for characterization. TGMS results showed a stepwise mass loss of 27.5% between 90 and 160 °C. The 27.5% mass loss corresponds to approximately one molecule of NMP per molecule of aza-T-dCyd, so Form G1 may be a mono-NMP solvate. The DSC signal recorded two endotherms around 110 and 150 °C due to solvent loss and a third endotherm at 200 °C, which may correspond to the melting of Form A.
  • Form G2 was obtained by evaporative crystallization in DMA/ethanol (80/20, v/v).
  • the 14.6% mass loss observed by TGMS between 70 and 120 °C corresponds to 0.5 molar equivalents of DMA.
  • two endotherms were observed around 80 and 90 °C due to solvent loss, and a third endotherm around 195 °C due to melting and decomposition.
  • Form H obtained from evaporative crystallization from NMP/THF (80/20, v/v) was used for characterization of Form H.
  • the gradual mass loss observed by TGMS analysis was 15.3% from 30 to 180°.
  • C corresponds to about 0.5 molar equivalent of NMP.
  • an extensive endotherm was observed around 130 °C.
  • Form H was observed in experiments with other solvents and is therefore most likely a non-stoichiometric solvate capable of incorporating other solvent molecules into the crystal structure.
  • a second extensive endotherm was observed in the DSC trace due to decomposition at around 220 °C. From the TGMS data, it is not clear where solvent loss ends and where thermal decomposition begins. Events may partially overlap. To obtain dry samples, the solids had to be vacuum dried at 50 °C for 24 hours. This may have affected the purity as the LCMS data indicated that the solid was 82% (area %) pure.
  • Form I was obtained by evaporative crystallization from DMSO/IPA (80/20, v/v). TGMS data showed a gradual mass loss of 14.7% between 30 and 170 °C. A mass loss of 14.7% corresponds to about 0.5 molar equivalent of DMSO. Form I may be a hemi-DMSO solvate. The DSC trace showed two broad endotherms at 70oC and 110 °C due to mass loss, and a third endotherm around 190 °C due to melting and decomposition processes.
  • Form J precipitated by vapor diffusion from solution using DMF and THF, was further characterized.
  • TGMS data showed a 7.6% mass loss of THF stepwise between 120 and 170 °C.
  • the mass loss corresponds to about 0.3 molar equivalents of THF and Form J is therefore most likely a non-stoichiometric solvate.
  • the DSC trace recorded two endotherms at 120 and 150 °C due to solvent loss, and the third endotherm recorded at 200 °C, consistent with the melting/decomposition event of Form A.
  • Form K was observed once in a mixture with Form F and was obtained by evaporation from a DMF solution. The mixture was further characterized. TGMS analysis showed a mass loss of 6.3% between 30 and 160 °C, probably due to the loss of DMF. The mass loss was accompanied by a small endotherm around 110 °C. Two large endotherms were observed at 180 and 195 °C. The endotherm at 195 °C may be due to melting and decomposition of Form A. Since Form K is a mixture with Form F (the unsolvated form), Form K is most likely the solvated form.
  • Form L was a poor crystalline solid observed only after storage at 25° C., 60% relative humidity and very low yield. TGMS analysis observed a mass loss of 2.8% between 30 and 170 °C followed by decomposition. The absence of thermal events in the DSC traces may be due to the small amount of sample used for analysis. It is not clear whether the mass loss is due to solvent trapped in the crystal structure or residual solvent. The nature of Form L is unclear as no further characterization could be performed.
  • aza-T-dCyd starting material; SM; aza-T-dCyd not yet subjected to specific crystallization conditions
  • Aza-T-dCyd starting material was administered to 6 female NOD-SCID mice divided into 4 groups.
  • Group 1 was the vehicle control group.
  • Group 2 was administered with 2.0 mg/kg of aza-T-dCyd starting material (SM) once a day, and group 3 was administered with 1.0 mg/kg of aza-T-dCyd starting material (SM) twice a day.
  • the aza-T-dCyd starting material (SM) was administered in the above amount for 5 days, followed by a 2-day break, another 5 days of administration, and then a 9-day break. This cycle repeated itself.
  • SM aza-T-dCyd starting material
  • tumor size increased in group 1 (vehicle control group).
  • group 1 vehicle control group
  • the increase in tumor size was most significantly suppressed in group 2.
  • group 2 the increase in tumor size was most significantly suppressed in group 2.
  • group 3 the size of the tumor rapidly increased after 40 days of administration. From this, it was found that aza-T-dCyd was Cmax dependent rather than AUC dependent.
  • the tumor size of group 2 (2.0 mg/kg, once a day) was significantly smaller than that of group 1 (1.0 mg/kg, twice a day), demonstrating the results on day 43.
  • hematological malignant cells (Mv4-11) were treated with aza-T-dCyd starting material (SM), and the half-maximal inhibitory concentration (IC 50 ) was measured at 1 hour, 2 hours, and 4 hours.
  • the results are shown in FIG. 19 .
  • the measured IC 50 at 1 hour was about 160 nM, so the IC 50 at 2 hours was expected to be 80 nM and the IC 50 at 4 hours to be 20 nM.
  • the IC 50 measured at 2 h was about 120 nM, much higher than the expected value of 80 nM.
  • the IC 50 measured at 4 hours was about 80 nM, much higher than the expected value of 20 nM.
  • SM aza-T-dCyd starting material
  • the data suggest that crystalline polymorphs with large dissolution profiles, such as Form A or Form F in Example 7 described below, are superior to aza-T-dCyd starting material (SM) and other crystalline polymorphs with inferior dissolution profiles. Also for the same reason, the data suggest that crystalline polymorphs such as Form A or Form F exhibit improved PK profiles over the aza-T-dCyd starting material (SM) and other crystalline polymorphs.
  • SM aza-T-dCyd starting material
  • the crystalline form usually has disadvantages in solubility compared to the amorphous form, in the case of crystalline forms A and F, although they are physicochemically stable forms, the dissolution characteristics according to the pH condition are very uniform and rapidly. Since they dissolve stably, the crystalline form can be controlled and used according to the need for formulation development.
  • Example 7 Dissolution Profiles of Form A and Form F at Various pH Points
  • Form A and Form F exhibited similar dissolution rates, whereas Form A exhibited a more consistent dissolution profile compared to Form F.
  • pH 6.5 and pH 5 pH conditions of the appendix and small intestine
  • Form A can be prepared into a variety of drug forms that target release of the drug's active ingredient at about pH 1.2 (e.g., stomach or large intestine). Further, this suggests that Form F can be made into various drug forms that target release of the drug's active ingredient at about pH 5.0-6.5 (eg, small intestine).
  • the aza-T-dCyd starting material (SM), crystalline form A, and crystalline form F were prepared in the form of capsules mixed with microcrystalline cellulose in an 8:92 (w/w) ratio, respectively, at 2 mg/kg of SM, crystalline form A or crystalline form F.
  • Each of the SM capsules, crystalline A capsule, and crystalline Form F capsule was administered at a dose of 2 mg/kg to 2 male SD rats (i.e., a total of 6 male SD rats).
  • plasma concentrations of each of SM, Form A and Form F in tested SD rats were measured at 0.25, 0.5, 1, 2, 4, 6, 8 and 24 hours after capsule administration.
  • Form A and Form F showed higher Cmax values than SM.
  • Form A showed a Cmax value about 1.3 times higher than SM
  • Form F showed a Cmax value about 1.4 times higher than SM.
  • both crystalline form A and crystalline form B showed about 30% higher AUC values than SM.
  • Example 9 AZA-T-DCYD Comparison of half maximal inhibitory concentration (IC 50 ) of starting material and Form A
  • K562 and HL-60 cell lines were cultured and maintained in RPMI (10% FBS, 1% penicillin-streptomycin) medium at 37°C, 95% air and 5% CO 2 .
  • K562 and HL-60 cell lines were each seeded in 96-well plates at a density of 3000 cells/well (90 ⁇ l). Crystalline A and SM were treated in 10 ⁇ l using a 3-fold dilution, and each well was treated at a final concentration of 10 ⁇ M. Cells were incubated for 3 days at 37°C, 95% air and 5% CO 2 . The 96-well plate was left at room temperature for 30 minutes to equilibrate.
  • Form A exhibits an IC 50 value about 5% lower than SM, providing a greater effect.
  • Example 10 PK experiment in rats according to the ratio (wt%) of crystalline form A in drug Aza-T-dCyd
  • samples for PK experiments upon oral administration were prepared as follows.
  • a drug raw material of Aza-T-dCyd with 100% pure crystalline form A was prepared.
  • pure crystalline Form F could not be obtained, and the obtained Aza-T-dCyd drug substance was a polycrystalline form composed of 52% of crystalline form F, 15% of crystalline form A, and 33% of other undefined forms.
  • This polycrystalline Aza-T-dCyd drug substance was named polycrystalline form F'.
  • the experimental group for the PK experiment consisted of a total of 11 groups, and the ratio (mole %) of Aza-T-dCyd in each experimental group (crystal form A: other forms) of Aza-T-dCyd is shown in Table 13 below.
  • PK analysis was performed by blood sampling at 0.25, 0.5, 1, 2, 4, 6, 8, and 24 hr after oral administration, and the results are shown in Table 14 and FIG. 25.
  • Aza-T-dCyd significantly increased Cmax to 852-897 ng/mL when the ratio of crystalline form A was 70% or more. Specifically, when the ratio of crystalline form A in the Aza-T-dCyd drug is 70% or more in rats, the Cmax stably shows 850 ng/mL, but when the ratio is less than 70%, the Cmax has 442-703 ng/mL.
  • mice with 2mpk and 1mpk twice As described above, when comparing the results of treating mice with 2mpk and 1mpk twice, the weight loss of mice was severe in the latter. In addition, when the in vivo luciferase activity was measured, when the treatment was divided into two times, the rate of increase was steeper, so it can be predicted that the tumor inhibitory effect is more excellent when 2mpk is treated at one time.
  • a desired therapeutic effect can be exerted by sufficiently exhibiting the drug effect through rapid treatment in a short period of time.
  • the present invention can solve the problem that the variance in drug exposure among individual patients is very high, so that the optimal administration dose for one individual becomes a dose that cannot show a therapeutic effect for another individual, and for another individual, a dose that causes severe toxicity, resulting in a very narrow therapeutic window.
  • Example 12 Absorption profile in the gastrointestinal tract when formulated for oral dosage form
  • the Aza-T-dCyd drug was orally administered (PO) to the mice, and after inserting the Aza-T-dCyd drug into the caecum with a cannula, plasma concentration graphs as shown in FIG. 26 were obtained.
  • 26A and 26B show plasma concentration distribution graphs showing drug absorption through the gastrointestinal tract in the case of PO as a result of PO and IC administration of 1mpk and 3mpk, respectively.
  • IC a very small amount of drug appears to be present in the plasma, that is, it shows a very low exposure to plasma compared to PO. That is, when administered orally, Aza-T-dCyd is not absorbed from the caecum (the digestive organ that swells like a pouch at the beginning of the large intestine).
  • the aza-T-dCyd drug is not absorbed in the postcecal region, which is the starting point of the large intestine, toxic side effects can be controlled in a narrow treatment window of the aza-T-dCyd drug.
  • Cmax can be implemented within the therapeutic window range, and toxic side effects due to the narrow therapeutic window can also be solved.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Nutrition Science (AREA)
  • Physiology (AREA)
  • Inorganic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The present invention relates to an oral formulation containing 5-aza-4'-thio-2'-deoxycytidine and a preparation method therefor. The present invention is for solving the problem of very great variations among patients in terms of drug efficacy or drug exposure with respect to a cytidine-based anticancer drug such as decitabine.

Description

5-아자-4'-티오-2'-데옥시사이티딘을 함유하는 경구용 제형 및 이의 제조방법Oral dosage form containing 5-aza-4'-thio-2'-deoxycytidine and preparation method thereof
본 발명은 5-아자-4'-티오-2'-데옥시사이티딘을 함유하는 경구용 제형 및 이의 제조방법에 관한 것이다.The present invention relates to an oral dosage form containing 5-aza-4'-thio-2'-deoxycytidine and a preparation method thereof.
데시타빈(Dacogen® 또는 5-aza-2'-deoxycytidine이라고도 함)은 DNA 메틸트랜스퍼라제를 억제하여 DNA 저메틸화를 유도하는 사이티딘의 피리미딘 뉴클레오시드 유사체이다. 구체적으로, 데시타빈은 복제 시 DNA 가닥에 통합함으로써 기능하고, DNMT1과 같은 DNA 메틸트랜스퍼라제(DNMT)가 DNA에 결합하고 딸 가닥에 메틸화를 복제하는 경우, DNMT는 데시타빈에 비가역적으로 결합되어 분리할 수 없다. 따라서 데시타빈 작용은 세포분열에 의존적이다. 약이 작용하려면 세포가 분열해야 한다. 따라서 신체의 다른 대부분의 세포보다 훨씬 빠르게 분열하는 세포(예: 암세포)는 데시타빈의 영향을 더 심하게 받는다. 즉, DNA 과메틸화가 발달에 중요한 골수이형성 증후군(MDS) 및 급성 골수성 백혈병(AML)을 포함한 백혈병과 같은 암의 치료에 데시타빈이 사용된다. Decitabine (also called Dacogen® or 5-aza-2'-deoxycytidine) is a pyrimidine nucleoside analog of cytidine that inhibits DNA methyltransferase, leading to DNA hypomethylation. Specifically, decitabine functions by incorporating into DNA strands during replication, and when DNA methyltransferases (DNMTs), such as DNMT1, bind DNA and replicate methylation to daughter strands, DNMTs bind irreversibly to decitabine and cannot be separated. Thus, decitabine action is dependent on cell division. Cells must divide for the drug to work. Therefore, cells that divide much faster than most other cells in the body (such as cancer cells) are more affected by decitabine. That is, decitabine is used in the treatment of cancers such as leukemias, including myelodysplastic syndrome (MDS) and acute myelogenous leukemia (AML), in which DNA hypermethylation is important for development.
5-아자-4'-티오-2'-데옥시사이티딘("aza-T-dCyd")은 국립 암 연구소(NCI)에 의해 조기 임상 평가를 받은 데시타빈의 티오-치환된 유도체이다. 이 DNMT1 억제제는 5-아자사이티딘 골격을 갖는 기존 화합물에 비해 높은 DNMT 제거 및 세포 억제 활성, 사이티딘 디아미나제 분해 속도 감소, 독성 부산물의 생성이 상대적으로 낮아 최근 주목받고 있다. 데시타빈과 마찬가지로 aza-T-dCyd는 다양한 형태와 결정 구조로 제조될 수 있다.5-aza-4'-thio-2'-deoxycytidine ("aza-T-dCyd") is a thio-substituted derivative of decitabine that has received early clinical evaluation by the National Cancer Institute (NCI). This DNMT1 inhibitor has recently attracted attention due to its high DNMT elimination and cell inhibitory activity, reduced rate of cytidine deaminase degradation, and relatively low production of toxic by-products compared to existing compounds with a 5-azacytidine backbone. Like decitabine, aza-T-dCyd can be manufactured in a variety of forms and crystal structures.
미국 특허번호 5,591,722는 2'-데옥시-4'-티오리보뉴클레오사이드 및 바이러스 질병을 치료하는 데 유용한 중간체에 관한 것으로 5-아자사이티딘 화합물을 포함하는 일반식을 설명한다. 미국 특허 공개 번호 2006/0014949는 데시타빈의 다형체를 보고한다. Thottassery, et al. (Cancer Chemother Pharmacol, 2014)는 aza-T-dCyd를 보고한다. 임상 시험 NCT04167917은 2025년에 완료될 것으로 예상되는 MDS 및 AML에서 Aza-T-dCyd의 I상 시험을 보고한다. 그러나, aza-T-dCyd의 다형체는 지금까지 파악하기 어려운 상태로 남아 있다.U.S. Patent No. 5,591,722 relates to 2'-deoxy-4'-thioribonucleosides and intermediates useful for treating viral diseases and describes a general formula comprising 5-azacytidine compounds. US Patent Publication No. 2006/0014949 reports polymorphs of decitabine. Thottassery, et al. (Cancer Chemother Pharmacol, 2014) reports aza-T-dCyd. Clinical trial NCT04167917 reports a phase I trial of Aza-T-dCyd in MDS and AML expected to be completed in 2025. However, the polymorph of aza-T-dCyd has so far remained elusive.
한편, 데시타빈 및 아자시티딘과 같은 사이티딘 유사체에 기반한 DNA 메틸트랜스퍼라제(DNMT) 억제제는 골수이형성 증후군(MDS) 및 급성 골수성 백혈병(AML)을 갖는 고령 환자의 치료에 탁월한 효능을 갖는다. 그러나 많은 제한 사항이 있다. 예를 들어, 많은 환자가 데시타빈이나 아자시티딘에 반응하지 않는다. 또한, 이에 반응하는 환자에서도 호중구감소증, 혈구감소증 등의 부작용으로 치료 효과가 제한적이다. 마지막으로, 약동학(PK) 프로파일이 좋지 않아 치료제가 일반적으로 주사제로 사용되기 때문에 환자 순응도가 낮다.On the other hand, DNA methyltransferase (DNMT) inhibitors based on cytidine analogs such as decitabine and azacitidine have excellent efficacy in the treatment of elderly patients with myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). However, there are many limitations. For example, many patients do not respond to decitabine or azacytidine. In addition, even in patients who respond to this, the treatment effect is limited due to side effects such as neutropenia and cytopenia. Finally, patient compliance is low because the treatment is commonly used as an injectable drug due to a poor pharmacokinetic (PK) profile.
또한, 데시타빈(Decitabine) 또는 아자사이티딘(Azacytidine) 등과 같은 사이티딘 유사체 계열의 항암제들은, 공통적으로 인체에서 개인별 흡수 및 대사의 속도 차이로 인하여 경구 투여 항암제로서 개발되는 것에 어려운 문제점을 가지고 있다.In addition, anticancer drugs of the cytidine analogue family, such as decitabine or azacytidine, commonly have difficulties in being developed as oral anticancer drugs due to individual differences in absorption and metabolism rates in the human body.
즉, 상기 사이티딘 유사체 계열의 항암제들은 동일한 양을 투여하더라도 평균 약물 노출(exposure)량을 기준으로 개인별로 노출의 편차가 매우 높아 어떤 개인에게는 최적의 투여 용량에 해당하는 것이 다른 개인에게는 치료 효과를 보일 수 없는 용량이 되고, 또다른 개인에게는 심각한 독성을 일으키는 용량이 되어 치료 범위(therapeutic window)가 매우 좁아지게 되는 문제점을 가지고 있다. That is, even if the same amount of anticancer drugs of the cytidine analog series is administered, the variation in exposure among individuals based on the average drug exposure is very high, so that the optimal dose for one individual is a dose that cannot show a therapeutic effect for another individual.
따라서, Aza-T-dCyd의 항암 효과를 높일 수 있는 제형에 대한 추가적인 연구가 여전히 필요한 실정이다.Therefore, there is still a need for additional research on formulations capable of enhancing the anticancer effect of Aza-T-dCyd.
위장관(Gastrointestinal Tract)은 입에서 항문까지에 있는 모든 소화계통의 기관을 일컫는 말이다. Gastrointestinal Tract refers to all organs of the digestive system from the mouth to the anus.
소장에서 대부분의 영양소가 혈액으로 흡수되고 지용성 영양소는 림프관으로 흡수된다.In the small intestine, most nutrients are absorbed into the blood, and fat-soluble nutrients are absorbed into the lymphatic system.
약물의 흡수(Absorption)란 조직내 또는 조직 사이의 물질이동(The movement of substances into or across tissues)을 의미하며, 특히 약물이 위장관 벽으로 이동한 다음 혈류로 이동을 의미한다. 절대 생체이용률(Absolute Bioavailability)은 약물을 경구, 직장, 피하, 경피, 비강 등 혈관 외로 투여한 후에 약물이 전신적으로 이용되는 비율이다.Absorption of a drug means the movement of substances into or across tissues, in particular, the movement of a drug to the wall of the gastrointestinal tract and then to the bloodstream. Absolute bioavailability is the rate at which a drug is systemically utilized after oral, rectal, subcutaneous, transdermal, intranasal, or extravascular administration of the drug.
치료 효과를 나타내기 위해서는 적절한 약물의 혈중 농도를 유지하는 것이 중요하다. 제형은 약물 유래 요인인 약물의 용해, 흡수 특성에 미치는 변동인자를 조절하여 약물 작용을 제어하는 수단이다.It is important to maintain an appropriate blood level of the drug in order to exert a therapeutic effect. A dosage form is a means of controlling the action of a drug by adjusting variable factors affecting dissolution and absorption characteristics of a drug, which are drug-derived factors.
의약품 제조 과정에서 적합한 투여제형을 설계할 때는 의약품 원료의 물리적인 상태, 즉 결정이냐 무정형이냐 하는 형태가 아주 중요하다. 일반적으로 무정형이 용해도가 높아 약효를 높이고 속효성을 나타내는 데는 도움이 되지만 불안정하여 유통기간이 짧아지고, 또한 약의 방출과 혈중농도 조절이 어렵다. 그러나 결정형은 용해도가 낮아 단위 중량당 생체이용률이 떨어지지만 안정성이 확보되고 지속적인 방출조절제형을 만드는데 장점이 있기 때문에 특수한 경우를 제외하고는 대부분의 의약품 제형에서는 결정형 원료를 사용한다.When designing an appropriate dosage form in the pharmaceutical manufacturing process, the physical state of the pharmaceutical raw material, that is, whether it is crystalline or amorphous, is very important. In general, the amorphous form has high solubility and is helpful in increasing the efficacy and showing the fast effect, but it is unstable and the shelf life is shortened, and it is also difficult to release the drug and control the blood concentration. However, since the crystalline form has low solubility and low bioavailability per unit weight, stability is secured and there is an advantage in making a continuous controlled release formulation, crystalline raw materials are used in most pharmaceutical formulations except for special cases.
의약품의 결정형은 화합물의 물리적·화학적 안정성, 흡습성 및 물에 대한 용해속도에 관한 성질에 영향을 준다. 화학적으로 불안정하면 의약품 원료의 제조와 관리, 운송 및 유효기간에 제한이 생긴다. 경구제로 제제화된 후의 안정성에도 영향을 미친다. 결정형이 달라지면 결정형상, 순도 및 수득률 등이 달라지며 제제화 공정과 제조환경 및 제조비용에도 크게 영향을 미친다.The crystalline form of a drug affects the physical and chemical stability, hygroscopicity, and dissolution rate of a compound in water. Chemical instability causes restrictions on the manufacturing, management, transportation, and shelf life of pharmaceutical raw materials. It also affects the stability after formulation as an oral preparation. If the crystal form is different, the crystal shape, purity, yield, etc. are different, and it greatly affects the formulation process, manufacturing environment, and manufacturing cost.
본 발명은 경구 투여 항암제로 개발 시, 개인별 흡수 정도의 차이로 인하여 aza-T-dCyd 약물의 개인별 약물 노출(exposure)량 편차가 매우 높아, 항암 효능 상 최적으로 설계된 투여용량이 개인에 따라 치료 효과를 보일 수 없는 용량이 되기도 하고 심각한 독성을 일으키는 용량이 되기도 하는 문제점을 해결하기 위해, aza-T-dCyd 약물의 매우 좁은 치료 범위(therapeutic window)를 고려하여 약의 방출과 혈중농도 조절을 정밀하게 제어하고자 한다.When the present invention is developed as an oral anticancer agent, the individual drug exposure of the aza-T-dCyd drug varies greatly due to the difference in the degree of absorption for each individual, so that the optimally designed dose for anticancer efficacy may be a dose that cannot show a therapeutic effect for each individual or a dose that causes serious toxicity. do
이를 위해, 본 발명은 aza-T-dCyd 약물의 최고 혈중농도(Cmax)로부터 원하는 치료 효과를 발휘하는 1회 투여용량을 산출하고, 경구 투여시 개인별 흡수 차이를 최소화하여 안정적으로 aza-T-dCyd 약물의 최고 혈중농도(Cmax)를 발휘하도록, aza-T-dCyd 약물 중 결정형 A의 비율(wt%)이 허용가능한 오차범위 내 기지의 값으로 조절된 경구용 제형을 제공하고자 한다.To this end, an object of the present invention is to provide an oral dosage form in which the ratio (wt%) of crystalline Form A in aza-T-dCyd is adjusted to a known value within an acceptable error range, so as to calculate a single dose that exhibits a desired therapeutic effect from the highest blood concentration (Cmax) of the aza-T-dCyd drug, and to minimize individual differences in absorption during oral administration to stably achieve the highest blood concentration (Cmax) of the aza-T-dCyd drug.
본 발명의 제1양태는 약효가 최고 혈중농도(Cmax) 의존적인 aza-T-dCyd을 유효성분으로 하는 경구용 제형의 제조방법에 있어서, aza-T-dCyd 약물의 최고 혈중농도(Cmax)로부터 원하는 치료 효과를 발휘하는 1회 투여용량을 허용가능한 오차범위 내에서 정밀하게 설계하는 것이 특징인 경구용 제형의 제법을 제공한다.A first aspect of the present invention provides a method for preparing an oral dosage form containing aza-T-dCyd as an active ingredient, the efficacy of which is dependent on the highest blood concentration (Cmax), characterized by precisely designing a single dose that exhibits a desired therapeutic effect from the highest blood concentration (Cmax) of the aza-T-dCyd drug within an acceptable error range.
본 발명의 제2양태는 aza-T-dCyd 약물 중 결정형 A의 비율(wt%)이 조절된 경구용 제형으로서, aza-T-dCyd 화합물의 합성 결과물인 aza-T-dCyd 원료(crude materials)로부터 원하는 비율(wt%)로 결정형 A를 함유하는 결정형 원료를 준비한 후, 경구용 제형으로 제제화된 것이 특징인 경구용 제형을 제공한다.A second aspect of the present invention provides an oral dosage form in which the ratio (wt%) of crystalline Form A in the aza-T-dCyd drug is controlled, wherein the crystalline raw material containing crystalline Form A in a desired ratio (wt%) is prepared from crude materials of aza-T-dCyd, which is a synthesized product of the aza-T-dCyd compound, and then formulated into an oral dosage form.
이때, 결정형 A의 투여용량 제어에 의해 혈중에 aza-T-dCyd 약물 노출량을 허용가능한 오차 범위 내에서 안정적으로 구현할 수 있다.At this time, by controlling the dosage of crystalline form A, the exposure amount of the aza-T-dCyd drug in the blood can be stably implemented within an acceptable error range.
본 발명의 제3양태는 aza-T-dCyd을 유효성분으로 하는 경구용 제형의 제조방법에 있어서, aza-T-dCyd의 결정형 원료에서 결정형 A 및/또는 결정형 F의 비율(wt%)를 확인한 후, 경구용 제형으로 제제화하는 것이 특징인 경구용 제형의 제법을 제공한다.A third aspect of the present invention provides a method for preparing an oral dosage form containing aza-T-dCyd as an active ingredient, wherein the ratio (wt%) of crystalline Form A and/or crystalline Form F in the crystalline raw material of aza-T-dCyd is confirmed and then formulated into an oral dosage form.
본 발명의 제4양태는 동일한 1회 투여용량의 aza-T-dCyd 약물 중 결정형 A의 비율 변화에 따른 최고 혈중농도(Cmax) 변화값이 증가하는 Cmax 상 변곡점에 해당하는 결정형 A의 비율 이상으로 결정형 A를 함유하도록 aza-T-dCyd 약물의 1회 투여용량이 설계된 것이 특징인 경구용 제형을 제공한다.A fourth aspect of the present invention provides an oral dosage form wherein a single dose of the aza-T-dCyd drug is designed such that the ratio of Form A is greater than or equal to the ratio of Form A corresponding to the inflection point of the Cmax phase at which the maximum blood concentration (Cmax) change value according to the change in the ratio of Form A in the same dose of the aza-T-dCyd drug is increased.
본 발명의 제5양태는 aza-T-dCyd 약물 중 70 % 이상으로 결정형 A를 함유하는 경구용 제형을 제공한다.A fifth aspect of the present invention provides an oral dosage form containing at least 70% of Form A in the aza-T-dCyd drug.
본 발명의 제6양태는 aza-T-dCyd 약물의 1회 투여용량 설계시 결정형 A가 30mpk~70mpk 함유하는 것이 특징인 경구용 제형을 제공한다.A sixth aspect of the present invention provides an oral dosage form characterized by containing 30 mpk to 70 mpk of crystalline Form A when designing a single dose of the aza-T-dCyd drug.
본 발명의 제7양태는 약효가 최고 혈중농도(Cmax) 의존적인 aza-T-dCyd 약물 함유 경구용 제형의 제조방법에 있어서, 용매 존재하 aza-T-dCyd 화합물을 결정화시킨 후 용매를 제거하여 무용매화물 결정형으로 전환시키는 제1단계; 및 제1단계에서 준비된 무용매화물 결정형이 위에서 용해될 수 있도록 설계된 경구용 제형을 제조하는 제2단계를 포함하는 Aza-T-dCyd 약물 함유 경구용 제형의 제법을 제공한다.A seventh aspect of the present invention is a method for preparing an oral dosage form containing an aza-T-dCyd drug whose efficacy is dependent on the maximum blood concentration (Cmax), comprising the steps of crystallizing the aza-T-dCyd compound in the presence of a solvent and then removing the solvent to convert it into a non-solvate crystalline form; and a second step of preparing an oral dosage form designed so that the non-solvate crystalline form prepared in the first step can be dissolved in the stomach.
이하, 본 발명을 설명한다.Hereinafter, the present invention will be described.
본 명세서에서, 약물이란 질병의 진단, 치유, 완화, 치료 또는 예방을 위해 사용하거나(식품 또는 기기 제외) 신체 구조 또는 기능에 영향을 미치기 위해 사용하는 모든 물질이다. 예컨대, 신체 및 신체 대사에 영향을 미치는 모든 화학적 또는 생물학적 물질이다. 약물의 화학명은 약물의 원자 또는 분자 구조를 나타낸다.As used herein, a drug is any substance used to diagnose, cure, alleviate, treat, or prevent disease (excluding food or devices) or to affect the structure or function of the body. For example, any chemical or biological substance that affects the body and its metabolism. The chemical name of a drug indicates the drug's atomic or molecular structure.
본 명세서에서, aza-T-dCyd 약물은 하기 화학식 1의 화합물 뿐만 아니라 이의 약제학적 허용되는 염을 포함한다. "약제학적으로 허용되는 염"은 이 용어가 지칭하는 화합물의 비독성 산 및 염기 부가 염을 포함한다.In the present specification, the aza-T-dCyd drug includes a compound represented by Formula 1 below as well as pharmaceutically acceptable salts thereof. "Pharmaceutically acceptable salts" include non-toxic acid and base addition salts of the compounds to which the term refers.
본 명세서에서, "용매화물"은, 비공유 분자간 힘에 의해 결합된 화학량론적 또는 비화학량론적 양의 용매를 추가로 포함하는 본 명세서에 제공된 화합물 또는 이의 염을 의미한다. 용매가 물인 경우, 용매화물은 수화물이다.As used herein, "solvate" refers to a compound provided herein or a salt thereof that further comprises a stoichiometric or non-stoichiometric amount of a solvent bound by non-covalent intermolecular forces. When the solvent is water, the solvate is a hydrate.
화학식 1의 aza-T-dCyd은 4-Thio-2-deoxyribose 골격에 기반한 DNMT1 저해제로서, sugar 구조의 변화 (4'-thiodeoxyribose 구조)와 Aza-cytosine기를 동시에 보유하고 있다.aza-T-dCyd of Chemical Formula 1 is a DNMT1 inhibitor based on a 4-Thio-2-deoxyribose backbone, and has both a sugar structure change (4'-thiodeoxyribose structure) and an aza-cytosine group.
[화학식 1][Formula 1]
Figure PCTKR2023001028-appb-img-000001
Figure PCTKR2023001028-appb-img-000001
aza-T-dCyd은 세포 내에서 triphosphate로 활성화되어 DNA 합성 시 일부 dC(deoxycytidine)를 대신하여 사용되며, DNA 합성 후 DNMT1을 trapping하여 다양한 후생유전학적 작용 기전을 활성화함으로써 암세포사멸을 유도하는 Nucleoside계 항암제이다.aza-T-dCyd is activated by triphosphate in cells and used instead of some dC (deoxycytidine) during DNA synthesis. It is a nucleoside anticancer drug that induces cancer cell death by trapping DNMT1 after DNA synthesis and activating various epigenetic action mechanisms.
Decitabine/Azacytidine와 달리, aza-T-dCyd는 Thio-nucleoside 구조로 인하여, 주 약물 표적인 DNMT1의 강력한 저해와 함께 기존 내성발생 기전인 DNA 손상 복구 (Damage repair)에 참여하는 핵산 중간 분해 효소(endonuclease)를 동시에 차단하여 강력한 항암 효능을 나타낼 수 있다.Unlike Decitabine/Azacytidine, aza-T-dCyd, due to its Thio-nucleoside structure, can exhibit strong anticancer efficacy by simultaneously blocking endonuclease that participates in DNA damage repair, an existing mechanism of resistance development, along with strong inhibition of DNMT1, the main drug target.
Aza-T-dCyd 화합물은 정상세포 대비 암세포에서 빠르게 삼인산화(triphosphate)로 활성화될 수 있다. Aza-T-dCyd 화합물은 aza-T-dCyd 화합물의 삼인산화물인 aza-T-dCTP의 DNA 삽입을 통해, base excision repair 및/또는 mismatch repair를 일으켜 DNA 복제를 지연시킴으로서, replication stress를 유발하고 DNA damage response를 가중시킬 수 있다.Aza-T-dCyd compounds can be rapidly activated by triphosphate in cancer cells compared to normal cells. The Aza-T-dCyd compound delays DNA replication by causing base excision repair and/or mismatch repair through DNA insertion of aza-T-dCTP, a triphosphate of the aza-T-dCyd compound, thereby inducing replication stress and increasing DNA damage response.
Aza-T-dCyd 화합물은 dNTP de novo 합성에 중요한 ribonucleotide reductase인 RRM1 단백질 발현을 억제시키고, 세포 내 dCTP, dTTP 양의 감소를 통해 DNA replication stress를 유발하며 강한 DNA damage response를 발생시킬 수 있다.The Aza-T-dCyd compound suppresses the expression of RRM1 protein, a ribonucleotide reductase that is important for dNTP de novo synthesis, induces DNA replication stress by reducing the amount of dCTP and dTTP in cells, and can generate a strong DNA damage response.
Decitabine/Azacytidine의 경우, 우리 몸에 존재하는 Cytidine Deaminase에 의한 대사에 취약하여 PK profile이 불안정한 문제로 효력이 제한되는 단점이 있다. 놀랍게도, Decitabine/Azacytidine에 비하여 aza-T-dCTP 약물을 경구 투여 시 Cytidine Deaminase에 의하여 분해되는 속도가 느려 암 세포 내에서 cytidine deaminase에 의한 대사 내성 극복은 물론 경구투여에서도 우수한 PK profile을 가진다는 것을 발견하였다. In the case of Decitabine/Azacytidine, it is vulnerable to metabolism by Cytidine Deaminase present in our body, and its PK profile is unstable, which limits its effectiveness. Surprisingly, compared to Decitabine/Azacytidine, it was found that aza-T-dCTP was degraded by cytidine deaminase at a slower rate when administered orally, thus overcoming metabolic resistance by cytidine deaminase in cancer cells as well as having an excellent PK profile even when administered orally.
또한, aza-T-dCyd은 Thio-nucleoside 구조로 인하여 정상 세포에서 dCK (deoxycytidine kinase)에 의한 활성화 속도가 현저히 낮아짐으로써 암 세포에 선택적으로 약물의 활성 성분을 전달하게 되어 우수한 safety profile 확보가 가능하여 넓은 치료 창(therapeutic window) 범위를 확보하고 있으므로, 내성발생 기전이 작동되지 않도록 하는 높은 투여량으로 투여가 가능하다. In addition, aza-T-dCyd significantly lowers the activation rate by dCK (deoxycytidine kinase) in normal cells due to its Thio-nucleoside structure, thereby selectively delivering the active ingredient of the drug to cancer cells. As a result, it is possible to secure an excellent safety profile and secure a wide therapeutic window, so it can be administered at a high dose that prevents the mechanism of resistance development from operating.
나아가, 실시예 6의 약동학적 특성 분석을 통해, (1) aza-T-dCyd의 항암 치료 효과가 AUC 의존적이기 보다는 Cmax 의존적인 점; 및 (2) 짧은 기간 동안 더 많은 양의 aza-T-dCyd 약물에 노출시키는 것이 효율적인 항암 치료법임을 발견하였다. Furthermore, through the pharmacokinetic analysis of Example 6, (1) the anti-cancer treatment effect of aza-T-dCyd is Cmax dependent rather than AUC dependent; and (2) exposure to higher doses of the aza-T-dCyd drug for a short period of time is an effective anti-cancer therapy.
또한, (3) 실시예 7에서 다양한 pH 지점에서의 용해율 프로파일 분석을 통해, pH 1.2(위 및 대장의 pH 조건)에서 결정형 A 및 결정형 F은 유사한 용해율을 나타내나 결정형 A가 결정형 F 대비 일관된 용해율 프로파일을 보여주며, pH 6.5 및 pH 5(충수 및 소장의 pH 조건)에서 결정형 F가 결정형 A보다 용해율이 더 높고 (표 6 및 도 20 내지 22); (4) 실시예 12에서 위장관내 흡수 프로파일 분석을 통해 맹장에서 aza-T-dCyd 약물이 흡수되지 않은 점을 발견하였다.In addition, (3) through the dissolution rate profile analysis at various pH points in Example 7, Form A and Form F show similar dissolution rates at pH 1.2 (pH conditions of the stomach and large intestine), but Form A shows a consistent dissolution rate profile compared to Form F, and Form F has a higher dissolution rate than Form A at pH 6.5 and pH 5 (pH conditions of the appendix and small intestine) (Table 6 and FIGS. 20 to 22); (4) In Example 12, it was found that the aza-T-dCyd drug was not absorbed in the caecum through the analysis of the absorption profile in the gastrointestinal tract.
본 발명은 이들 발견점에 기초하여 완성하였다. The present invention was completed based on these findings.
본 발명은 개인별 흡수 정도의 차이로 인하여 aza-T-dCyd 약물의 개인별 약물 노출(exposure)량 편차가 매우 높아, 항암 효능 상 최적으로 설계된 투여용량이 개인에 따라 치료 효과를 보일 수 없는 용량이 되기도 하고 심각한 독성을 일으키는 용량이 되기도 하는 문제점을 해결하기 위해, aza-T-dCyd 약물의 매우 좁은 치료 창(therapeutic window)을 고려하여 약물의 흡수 및/또는 최고 혈중농도(Cmax)가 허용가능한 오차범위 내에서 정밀하게 제어된, aza-T-dCyd 약물 함유 경구용 제형의 설계 기술을 제공하는 것이다. In order to solve the problem that the individual drug exposure variation of the aza-T-dCyd drug is very high due to the difference in the degree of absorption between individuals, the optimally designed dose for anticancer efficacy may be a dose that cannot show a therapeutic effect or a dose that causes serious toxicity depending on the individual. To provide a design technology for an oral dosage form containing aza-T-dCyd drug that is precisely controlled in
예컨대, 약 pH 1.2(위)에서 약물의 활성 성분을 방출하는 것을 표적으로 하는 경구용 제형에서, aza-T-dCyd 약물 중 결정형 A의 비율(wt%)을 정밀하게 제어할 수 있다. For example, in an oral dosage form targeting release of the active ingredient of the drug at about pH 1.2 (above), the proportion (wt%) of Form A in the drug aza-T-dCyd can be precisely controlled.
따라서, 본 발명의 일구체예에 따라, aza-T-dCyd 약물의 최고 혈중농도(Cmax)로부터 원하는 치료 효과를 발휘하는 1회 투여용량을 산출하고, 경구 투여시 개인별 흡수 차이를 최소화하여 안정적으로 aza-T-dCyd 약물이 최고 혈중농도(Cmax)를 발휘하도록, aza-T-dCyd 약물 중 결정형 A의 비율(wt%)이 허용가능한 오차범위 내 기지의 값으로 조절된 경구용 제형을 설계할 수 있다.Therefore, according to one embodiment of the present invention, a single dose that exhibits a desired therapeutic effect is calculated from the highest blood concentration (Cmax) of the aza-T-dCyd drug, and the ratio (wt%) of Form A in the aza-T-dCyd drug is adjusted to a known value within an acceptable error range to stably exert the highest blood concentration (Cmax) of the aza-T-dCyd drug by minimizing individual differences in absorption during oral administration. can design
본 발명에 따라 aza-T-dCyd을 유효성분으로 하는 경구용 제형의 제조방법은, aza-T-dCyd 약물의 최고 혈중농도(Cmax)로부터 원하는 치료 효과를 발휘하는 1회 투여용량을 허용가능한 오차범위 내에서 정밀하게 설계하는 것이 특징이다.The method for preparing an oral dosage form containing aza-T-dCyd as an active ingredient according to the present invention is characterized by precisely designing a single dose that exhibits a desired therapeutic effect from the highest blood concentration (Cmax) of the aza-T-dCyd drug within an acceptable error range.
본 명세서에서, “aza-T-dCyd 약물의 최고 혈중농도(Cmax)로부터 원하는 치료 효과를 발휘하는 1회 투여용량을 허용가능한 오차범위 내에서 정밀하게 설계한다”는 것은, 예컨대, 약물 노출량 편차를 최소화시키도록 일정한 용해율 프로파일 및 약물의 흡수가 예측가능한 오차범위내에서 제어가능한 제형을 설계하고, 이를 기반으로 원하는 치료 효과를 발휘하는 최고 혈중농도(Cmax)를 구현하는 aza-T-dCyd 약물의 1회 투여용량을 설계하는 것일 수 있다.In the present specification, "precisely designing a single dose that exhibits a desired therapeutic effect from the highest blood concentration (Cmax) of the aza-T-dCyd drug within an acceptable error range" means, for example, designing a dosage form capable of controlling a constant dissolution rate profile and absorption of the drug within a predictable error range to minimize the variation in drug exposure, and based on this, a single administration of the aza-T-dCyd drug that achieves the highest blood concentration (Cmax) that exhibits the desired therapeutic effect It could be capacity design.
생체이용률 평가를 위한 약동학적 파라미터는 주성분 또는 그 활성대사체가 제제로부터 전신순환에 도달하는 약물의 양과 전신순환에 도달하는데 걸리는 시간이다.The pharmacokinetic parameters for evaluation of bioavailability are the amount of drug that the active ingredient or its active metabolites reach the systemic circulation from the preparation and the time it takes for them to reach the systemic circulation.
혈중 약물농도-시간 곡선 하 면적(area under the plasma level-time curve, AUC)은 약물에 노출된 정도, 즉 약물의 생체흡수율의 정도를 의미하며 전신순환에 도달한 활성약물의 총량을 반영한다. AUC의 단위는 농도·시간으로 표시한다(예, ㎍ hr/mL). AUC는 약물 생체이용률의 정도를 측정하는 것이다. 이는 총 전신 노출 정도를 나타낸다. The area under the plasma level-time curve (AUC) refers to the degree of drug exposure, that is, the degree of bioabsorption of the drug, and reflects the total amount of active drug that reaches the systemic circulation. The unit of AUC is expressed as concentration·time (eg, μg hr/mL). AUC is a measure of the degree of drug bioavailability. It represents the extent of total systemic exposure.
Cmax는 약물투여 후 최고 혈중농도로서 치료적 반응을 나타낼 정도로 전신순환에 충분히 흡수되었는지를 가리키는 지표일 뿐만 아니라, 독작용을 일으킬 수 있는지에 대한 정보도 제공하게 된다. Cmax is the highest blood concentration after drug administration and is an indicator indicating whether the drug is sufficiently absorbed into the systemic circulation to show a therapeutic response, as well as providing information on whether or not it can cause toxic effects.
tmax는 약물 투여 후 혈중농도가 최고치에 도달하는 시간으로서 약물흡수가 최고에 도달한 시점으로 약물의 흡수속도와 배설 속도가 같아지는 순간을 의미한다. tmax 이후에도 약물흡수는 지속되지만 속도가 느려진다. 따라서, 약물의 흡수를 비교할 때 흡수속도에 대한 지표가 된다. t max is the time at which the blood concentration reaches the highest value after drug administration, and refers to the moment at which the absorption rate of the drug and the excretion rate become the same as the time point at which the drug absorption reaches the highest value. After t max , drug absorption continues but slows down. Therefore, when comparing the absorption of drugs, it is an index for the rate of absorption.
IC50 값은 AUC와 관련이 있다. 통상 AUC와 생체이용률로부터 투여용량을 산출할 수 있다. IC 50 values are related to AUC. Usually, the dose can be calculated from AUC and bioavailability.
그러나, 혈중약물농도와 관련하여, 놀랍게도 aza-T-dCyd 약물은 동일한 AUC이더라도 aza-T-dCyd의 효능은 세포에 대한 노출 시간이 증가할수록 크게 감소하여, 오히려 종양의 크기가 급격히 증가하였다(실시예 6). 이는 짧은 기간 동안 더 많은 양의 aza-T-dCyd 약물을 노출시키는 것이 효율적인 항암 치료를 제공할 수 있음을 시사한다.However, with respect to the blood drug concentration, surprisingly, even if the aza-T-dCyd drug had the same AUC, the efficacy of aza-T-dCyd decreased significantly as the exposure time to the cells increased, and rather, the size of the tumor increased rapidly (Example 6). This suggests that exposure to a higher dose of aza-T-dCyd drug for a short period of time can provide efficient anticancer treatment.
따라서, AUC 보다는 Cmax 의존적인 aza-T-dCyd 약물의 효능을 극대화하기 위해, 본 발명은 aza-T-dCyd 약물의 최고 혈중농도(Cmax)로부터 원하는 치료 효과를 발휘하도록, aza-T-dCyd 약물의 1회 투여용량을 설계하는 것이 특징이다.Therefore, in order to maximize the efficacy of the aza-T-dCyd drug that is Cmax dependent rather than AUC, the present invention is characterized by designing a single dose of the aza-T-dCyd drug so as to exert a desired therapeutic effect from the highest blood concentration (Cmax) of the aza-T-dCyd drug.
예컨대, 본 발명에서 aza-T-dCyd 약물의 1회 투여용량은 5-70 mg/m2일 수 있다. 비항암용도의 경우, 5-10mg/m2일 수 있다. 항암용도의 경우, 바람직하게는 5 내지 55 mg/m2, 더욱 바람직하게는, 약 5 내지 30 mg/m2, 더욱더 바람직하게는 5 내지 20 mg/m2일 수 있다. 예컨대 병용요법시에는 5 내지 10 mg/m2일 수 있다.For example, in the present invention, a single dose of the aza-T-dCyd drug may be 5-70 mg/m 2 . For non-cancer use, it may be 5-10 mg/m 2 . For anticancer use, it may be preferably 5 to 55 mg/m 2 , more preferably about 5 to 30 mg/m 2 , and still more preferably 5 to 20 mg/m 2 . For example, in combination therapy, it may be 5 to 10 mg/m 2 .
비임상 동물모델의 독성 프로파일(profile)로부터 해당 항암제의 무독성량(No-observed-adverse-effect level, NOAEL) 또는 심각한 독성을 유발하지 않는 최고용량 (the highest non-severe toxic dose, HNSTD)을 확인할 수 있다. NOAEL은 독성시험 기간 중(대개 1-2년) 시험약물을 계속 공급해도 동물에게 아무런 영향이 나타나지 않는 최대량을 말한다.From the toxicity profile of the non-clinical animal model, the non-toxic amount (No-observed-adverse-effect level, NOAEL) or the highest non-severe toxic dose (HNSTD) that does not cause serious toxicity can be confirmed. NOAEL refers to the maximum amount at which no effect appears on animals even if the test drug is continuously supplied during the toxicity test period (usually 1-2 years).
따라서, 사람의 적정 투여용량 산출시 해당 항암제의 무독성량(No-observed-adverse-effect level, NOAEL) 이하 또는 심각한 독성을 유발하지 않는 최고용량 (the highest non-severe toxic dose, HNSTD) 이하가 되도록 조절할 수 있으며, 항암제의 투여용량을 무독성량(NOAEL) 또는 심각한 독성을 유발하지 않는 최고용량 (HNSTD) 과 비교하여 투약 시 위험요소(risk)를 예측할 수 있다.Therefore, when calculating the appropriate dosage for humans, it can be adjusted to be less than the no-observed-adverse-effect level (NOAEL) or the highest non-severe toxic dose (HNSTD) that does not cause serious toxicity, and the dose of the anticancer agent can be compared with the non-toxic amount (NOAEL) or the highest dose that does not cause serious toxicity (HNSTD), and the risk factor (risk) during administration can be predicted.
약물투여 후 최고 혈중농도(Cmax)는 치료적 반응을 나타낼 정도로 전신순환에 충분히 흡수되었는지를 가리키는 지표일 뿐만 아니라, 독성 프로파일에 대한 정보도 제공한다. The peak blood concentration (Cmax) after administration of a drug is not only an indicator of whether a drug has been sufficiently absorbed into the systemic circulation to produce a therapeutic response, but also provides information on the toxicity profile.
정맥 내 (IV) 및 구강(PO) 투약 후 마우스에서 aza-T-dC 화합물의 약동학 (PK)을 특성화한 결과, aza-T-dC 화합물의 경구투여시 최적의 효능을 발휘하는 용량이 2.0mpk(mpk = 킬로그램 당 밀리그램)이었다. 또한, GLP Tox 실험에서 Dog을 대상으로 수행한 바, 무독성량(NOAEL)이 0.15mpk(< 3mg/m2/day), 심각한 독성을 유발하지 않는 최고용량 (HNSTD)는 0.5mpk(10mg/m2/day)로 확인되었다. Characterization of the pharmacokinetics (PK) of aza-T-dC compound in mice after intravenous (IV) and oral (PO) dosing revealed that the optimally efficacious dose of aza-T-dC compound when administered orally was 2.0 mpk (mpk = milligram per kilogram). In addition, the GLP Tox experiment was performed on dogs, and the non-toxic amount (NOAEL) was 0.15mpk (< 3mg/m 2 /day), and the highest dose (HNSTD) that did not cause serious toxicity was 0.5mpk (10mg/m 2 /day).
실시예 11에서 마우스를 대상으로 2mpk를 처리한 것과 1mpk를 2회로 처리한 결과를 비교하였을 때, 마우스의 몸무게 감소가 후자에서 심하게 나타났다는 점을 고려하여, 본 발명은 aza-T-dCyd 약물의 1회 투여용량으로부터 산출되는 aza-T-dCyd 약물의 최고 혈중농도(Cmax)가 무독성 수준(No-observed-adverse-effect level, NOAEL) 또는 심각한 독성을 유발하지 않는 최고용량 (the highest non-severe toxic dose, HNSTD)에 대응되는 값 보다 낮게 되도록, aza-T-dCyd 약물의 1회 투여용량을 설계할 수 있다. 또한, 본 발명은 AUC 가 아닌 Cmax를 기준으로 무독성 수준(NOAEL) 또는 심각한 독성을 유발하지 않는 최고용량 (HNSTD)에 대응되는 값 보다 낮게 되도록, aza-T-dCyd 약물의 1회 투여용량을 설계할 수 있으므로, 오히려 aza-T-dCyd 약물의 매우 좁은 치료 창(therapeutic window)의 범위를 확장시킬 수도 있다. In Example 11, when comparing the results of 2mpk treatment and 1mpk treatment of mice twice, in consideration of the fact that the weight loss of mice was severe in the latter, the present invention provides that the highest blood concentration (Cmax) of the aza-T-dCyd drug calculated from a single dose of the aza-T-dCyd drug is a non-toxic level (No-observed-adverse-effect level, NOAEL) or the highest that does not cause serious toxicity. A single dose of the aza-T-dCyd drug can be designed to be lower than the value corresponding to the highest non-severe toxic dose (HNSTD). In addition, since the present invention can design a single dose of the aza-T-dCyd drug to be lower than the value corresponding to the non-toxic level (NOAEL) or the highest dose that does not cause serious toxicity (HNSTD) based on Cmax rather than AUC, it is possible to expand the range of a very narrow therapeutic window of the aza-T-dCyd drug.
예컨대, 인비트로 데이터인 IC50, IC60, IC70, IC80 및 IC90를, 비임상 대동물모델에서의 부작용값(NOAEL기준 및/또는 HNSTD 기준 IC50)와 비교한 데이터 베이스를 구축할 수 있다. 또한, 이로부터 aza-T-dCyd 약물의 1회 투여용량을 산출하고, 이어서 이로부터 산출되는 aza-T-dCyd 약물의 최고 혈중농도(Cmax)가 무독성량(NOAEL) 또는 심각한 독성을 유발하지 않는 최고용량 (HNSTD)에 대응되는 Cmax 값과 비교하여, 특정 경구용 제형 내 aza-T-dCyd 약물의 1회 투여용량에서 유래되는 다양한 치료 효능 및/또는 부작용 예측 정보를 제공할 수 있다.For example, a database comparing in vitro data IC 50 , IC 60 , IC 70 , IC 80 and IC 90 with side effect values (IC 50 based on NOAEL and/or HNSTD) in a non-clinical large animal model can be constructed. In addition, a single dose of the aza-T-dCyd drug is calculated from this, and then the maximum blood concentration (Cmax) of the aza-T-dCyd drug calculated therefrom is compared with the Cmax value corresponding to the non-toxic amount (NOAEL) or the highest dose that does not cause serious toxicity (HNSTD), and various therapeutic efficacy and/or side effect prediction information derived from a single dose of the aza-T-dCyd drug in a specific oral dosage form can be provided. .
한편, 혈중에 사이티딘 디아미나제(CDA)가 존재하고, 사람마다 농도가 다르기 때문에 발생하는, 사이티딘 유사체 계열 항암제들에서 개인별 대사 속도 차이로 인한 문제점은, 다른 사이티딘 유사체 계열 항암제 대비 aza-T-dCyd의 경우 사이티딘 디아미나제 분해 속도가 낮은 장점으로 인해 그 영향은 크지 않을 뿐만 아니라, 원하는 aza-T-dCyd 약물의 최고 혈중농도(Cmax)를 좀더 긴 시간 유지할 수 있다. On the other hand, due to the presence of cytidine deaminase (CDA) in the blood and the difference in concentration from person to person, the problem due to the individual metabolic rate difference in cytidine analog-based anticancer drugs is that aza-T-dCyd has a low rate of degradation of cytidine deaminase compared to other cytidine analog-based anticancer drugs. Not only is the effect not significant, but the maximum blood concentration (Cmax) of the desired aza-T-dCyd drug can be maintained for a longer time there is
이에 더하여, 본 발명은 aza-T-dCyd 약물 중 결정형 A의 비율(wt%)을 오차 범위내 기지의 값으로 면밀하게 제어하여, 개인별 흡수 차이로 인한 문제점을 해결하는 것이 특징이다. In addition, the present invention is characterized in that the ratio (wt%) of crystalline form A in the aza-T-dCyd drug is closely controlled to a known value within an error range, thereby solving problems caused by individual differences in absorption.
이는, 경구용 제형으로 제제화하기 전에 aza-T-dCyd 다형체 중 생체이용률이 높은 결정형 A의 투여용량 또는 aza-T-dCyd 중 결정형 A의 비율(wt%)을 제어함으로써, 다양한 요인에 덜 의존적인 상태에서 aza-T-dCyd 약물의 원하는 Cmax 값을 구현할 수 있다는 발견에 기초한 것이다. 따라서, 본 발명은 약물의 흡수와 최고 혈중농도(Cmax) 조절이 허용가능한 오차범위에서 정밀하게 제어된, aza-T-dCyd 약물 함유 경구용 제형을 제공할 수 있다. This is based on the discovery that a desired Cmax value of an aza-T-dCyd drug can be achieved in a state that is less dependent on various factors by controlling the dosage (wt%) of the highly bioavailable crystalline Form A in the aza-T-dCyd polymorph or the ratio (wt%) of the crystalline Form A in the aza-T-dCyd before formulation into an oral dosage form. Accordingly, the present invention can provide an oral dosage form containing an aza-T-dCyd drug in which absorption of the drug and control of the maximum blood concentration (Cmax) are precisely controlled within an acceptable error range.
aza-T-dCyd은 하기 화학식 1로 표시되는 데시타빈의 유사체이며, 데시타빈과 마찬가지로, 다양한 형태 및 결정 구조로 제조될 수 있다.aza-T-dCyd is an analog of decitabine represented by Formula 1 and, like decitabine, can be prepared in various forms and crystal structures.
[화학식 1][Formula 1]
Figure PCTKR2023001028-appb-img-000002
Figure PCTKR2023001028-appb-img-000002
본 명세서에서, aza-T-dCyd의 다형체(polymorph)는 aza-T-dCyd의 (의사) 다형체((pseudo-)polymorph)를 포함한다.In the present specification, polymorphs of aza-T-dCyd include (pseudo-)polymorphs of aza-T-dCyd.
다형(polymorphism)은 하나의 화합물이 고체상태로서 하나 이상의 분자배열구조, 즉 결정구조를 갖는 현상으로, 화학적으로는 동일하나 물리적으로는 다른 특성을 가진다. 여기서 결정구조는 결정의 내부구조를 의미한다. 고체의 가장 큰 특징이 분자간의 특정한 거리와 특정한 결합력이며, 다형체들은 분자간의 거리와 결합력이 다르기 때문에 서로 다른 융점을 갖게 되며 따라서 용해도도 다르다.Polymorphism is a phenomenon in which one compound has more than one molecular arrangement structure, that is, a crystal structure, in a solid state, and has chemically identical but physically different characteristics. Here, the crystal structure means the internal structure of the crystal. The most important characteristics of a solid are a specific distance between molecules and a specific bonding force, and polymorphs have different melting points because of the different distance and bonding strength between molecules, and therefore have different solubility.
다형체들은 물리적인 성상이 다르기 때문에 용해도와 용해속도가 달라서 결과적으로 생체이용율(bioavailability)에 차이가 있어 bioequivalence의 문제가 나타난다.Since polymorphs have different physical properties, solubility and dissolution rate are different, and as a result, there is a difference in bioavailability, resulting in a problem of bioequivalence.
X선 분말회절장치로 시료를 측정하면 결정면들에 의해 X선이 회절되고 피크들이 2θ 각으로부터 결정면들의 거리를 알 수 있다. 회절 피크들의 강도(intensity)와 시료의 농도 사이에는 정비례관계가 성립된다.When a sample is measured with an X-ray powder diffractometer, X-rays are diffracted by the crystal planes, and the distance of the peaks from the 2θ angle of the crystal planes can be known. A direct proportional relationship is established between the intensity of the diffraction peaks and the concentration of the sample.
Pseudo-polymorphism은 화학적으로도 다르고 물리적으로도 다른 것이다. 이는 주로 용매화물(solvate)의 경우로 결정격자 내에 용매분자가 들어가서 결정을 구성하고 있다. 용매가 물일 경우 수화물(hydrate)라고 한다.Pseudo-polymorphism is chemically different and physically different. This is mainly in the case of solvates, in which solvent molecules enter the crystal lattice to form crystals. When the solvent is water, it is called a hydrate.
예컨대, aza-T-dCyd 화합물의 합성 결과물은 결정형 A와 F를 주로 함유하며 그 외에 여러가지 결정형이 포함된 형태일 수 있다(실시예 1). For example, the synthesized product of the aza-T-dCyd compound mainly contains crystalline forms A and F, and may include various other crystalline forms (Example 1).
본 발명의 일실시태양에서는, aza-T-dCyd의 결정형 A, 결정형 F, 또는 결정형 A와 결정형 F의 조합(혼합)형태를 개시한다. In one embodiment of the present invention, crystalline form A, crystalline form F, or a combination (mixed) form of crystalline form A and crystalline form F of aza-T-dCyd is disclosed.
aza-T-dCyd의 결정형 A는 분말 X 선 회절 스펙트럼에서 2θ의 회절각이 약 8º, 약 13º, 약 15º, 약 17º, 약 19º, 약 22º, 약 23º, 약 26º, 약 28º, 약 29º, 약 31º, 약 33º, 및 약 37º 의 피크를 갖는 것으로 정의될 수 있다.Crystalline Form A of aza-T-dCyd can be defined as having peaks at 2θ diffraction angles of about 8º, about 13º, about 15º, about 17º, about 19º, about 22º, about 23º, about 26º, about 28º, about 29º, about 31º, about 33º, and about 37º in a powder X-ray diffraction spectrum.
예컨대, aza-T-dCyd의 결정형 A는 2θ의 회절각이 7.7°±0.3°, 13.02°±0.3°, 15.34°±0.3°, 16.78°±0.3°, 18.62°±0.3°, 19.42°±0.3°, 21.94°±0.3°, 22.90°±0.3°, 25.70°±0.3°, 26.64°±0.3°, 27.86°±0.3°, 28.63°±0.3°, 29.45°±0.3°, 31.42°±0.3°, 32.70°±0.3°, 34.72 ±0.3, 35.97°±0.3° 및 37.46°±0.3°의 피크를 갖는 것일 수 있다. 일례로, 7.7º, 13.02º, 15.34º, 16.78º, 18.62º, 19.42º, 21.94º, 22.90º, 25.70º, 27.86º, 28.70º, 31.42º, 32.70º, 및 37.46º 의 피크를 갖는 것일 수 있다.For example, crystalline form A of aza-T-dCyd has 2θ diffraction angles of 7.7°±0.3°, 13.02°±0.3°, 15.34°±0.3°, 16.78°±0.3°, 18.62°±0.3°, 19.42°±0.3°, 21.94°±0.3°, and ±22.90°. .3°, 25.70°±0.3°, 26.64°±0.3°, 27.86°±0.3°, 28.63°±0.3°, 29.45°±0.3°, 31.42°±0.3°, 32.70°±0.3°, 34.72 ±0.3, 35.97°±0.3° and 37. It may have a peak of 46 ° ± 0.3 °. For example, it may have peaks at 7.7º, 13.02º, 15.34º, 16.78º, 18.62º, 19.42º, 21.94º, 22.90º, 25.70º, 27.86º, 28.70º, 31.42º, 32.70º, and 37.46º. there is
aza-T-dCyd의 결정형 F는 분말 X 선 회절 스펙트럼에서 2θ의 회절각이 약 6º, 약 12º, 약 13º, 약 14º, 약 16º, 약 18º, 약 20º, 약 21º, 약 22º, 약 26º, 약 27º, 약 29º, 약 30º, 약 33º, 약 35º, 약 36º, 약 39º, 및 약 41º 의 피크를 갖는 것으로 정의될 수 있다. Crystalline form F of aza-T-dCyd has diffraction angles in 2θ of about 6º, about 12º, about 13º, about 14º, about 16º, about 18º, about 20º, about 21º, about 22º, about 26º, about 27º, about 29º, about 30º, about 33º, about 35º, about 36º in the powder X-ray diffraction spectrum. º, about 39º, and about 41º.
예컨대, aza-T-dCyd의 결정형 F는 2θ의 회절각이 6.06º ± 0.3°, 12.10º ± 0.3°, 13.02º ± 0.3°, 14.38º ± 0.3°, 15.94º ± 0.3°, 17.50º ± 0.3°, 19.62º ± 0.3°, 21.18º ± 0.3°, 22.34º ± 0.3°, 26.18º ± 0.3°, 27.42º ± 0.3°, 28.50º ± 0.3°, 29.90º ± 0.3°, 32.66º ± 0.3°, 35.02º ± 0.3°, 36.30º ± 0.3°, 38.94º ± 0.3°, 및 41.06º ± 0.3° 의 피크를 갖는 것일 수 있다. 일례로 6.06º, 12.10º, 13.02º, 14.38º, 15.94º, 17.50º, 19.62º, 21.18º, 22.34º, 26.18º, 27.42º, 28.50º, 29.90º, 32.66º, 35.02º, 36.30º, 38.94º, 및 41.06º 의 피크를 갖는 것일 수 있다.For example, crystalline form F of aza-T-dCyd has 2θ diffraction angles of 6.06º ± 0.3°, 12.10º ± 0.3°, 13.02º ± 0.3°, 14.38º ± 0.3°, 15.94º ± 0.3°, 17.50º ± 0.3°, 19.62º ± 0.3°, 21.18º ± 0.3°, 22.34º ± 0.3°, 26.18º ± 0.3°, 27.42º ± 0.3°, 28.50º ± 0.3°, 29.90º ± 0.3°, 32.66º ± 0.3°, 35.02º ± 0.3°, 36.30º ± 0.3 °, 38.94º ± 0.3 °, and 41.06º ± 0.3 °. For example, 6.06º, 12.10º, 13.02º, 14.38º, 15.94º, 17.50º, 19.62º, 21.18º, 22.34º, 26.18º, 27.42º, 28.50º, 29.90º, 32.66º, 35.02º, It may have peaks at 36.30º, 38.94º, and 41.06º.
본 발명에 따른 aza-T-dCyd 약물 함유 경구용 제형의 제조방법은,A method for preparing an oral dosage form containing an aza-T-dCyd drug according to the present invention,
용매 존재하 aza-T-dCyd 화합물을 결정화시킨 후 용매를 제거하여 무용매화물 결정형으로 전환시키는 제1단계; 및A first step of crystallizing the aza-T-dCyd compound in the presence of a solvent and then converting the aza-T-dCyd compound into a non-solvate crystalline form by removing the solvent; and
제1단계에서 준비된 무용매화물 결정형이 위에서 용해될 수 있도록 설계된 경구용 제형을 제조하는 제2단계The second step of preparing an oral dosage form designed so that the non-solvate crystalline form prepared in the first step can be dissolved in the stomach.
를 포함한다.includes
제1단계는 용매화물을 함유하는 결정형 다형에서 용매를 제거하여 단일 결정형 A로 전환시키는 것일 수 있다. 따라서, 결정형 A로만 구성된 aza-T-dCyd 약물을 제공할 수 있다.The first step may be to convert the crystalline polymorph containing the solvate to a single crystalline Form A by removing the solvent. Thus, an aza-T-dCyd drug consisting only of crystalline Form A can be provided.
제2단계는 aza-T-dCyd 약물의 최고 혈중농도(Cmax)로부터 원하는 치료 효과를 발휘하는 1회 투여용량을 허용가능한 오차범위 내에서 정밀하게 설계된 aza-T-dCyd 약물 함유 경구용 제형을 제공할 수 있다.The second step is to provide an oral dosage form containing an aza-T-dCyd drug that is precisely designed within an acceptable error range for a single dose that exhibits a desired therapeutic effect from the highest blood concentration (Cmax) of the aza-T-dCyd drug.
무정형의 경우 속히 용해되어 빠른 효과를 나타내며 지속시간은 짧고, 결정형의 경우 서서히 용해되므로 효과는 느리게 나타나지만 지속시간은 길게 된다. In the case of the amorphous form, it dissolves quickly and shows a quick effect, and the duration is short. In the case of the crystalline form, it dissolves slowly, so the effect appears slowly but the duration is long.
따라서, aza-T-dCyd 약물의 물리화학적 성상(물성)도 제형개발에 직접적 영향을 미친다. 다형체들은 용해도와 안정성에 차이가 있기 때문에, 다형은 약제학적으로 매우 중요하며, 특히 생체이용률 측면에서 용해가 잘 되는 결정형을 선호하게 된다. 그러나, 단순히 용해가 잘되는 형을 선택하면 모든 문제가 다 끝나는 것이 아니고 형전환 여부를 연구해야 하므로, 실시예 4 및 5에서 aza-T-dCyd의 다형체 스크린 (Polymorph Screen) 및 특성 분석을 통해 본 발명을 완성하였다.Therefore, the physicochemical properties (physical properties) of the aza-T-dCyd drug directly affect formulation development. Since polymorphs differ in solubility and stability, polymorphs are very important pharmaceutically, and in particular, crystalline forms that are well soluble are preferred in terms of bioavailability. However, simply selecting a form that dissolves well does not end all problems, and it is necessary to study whether or not the form is converted. Therefore, the present invention was completed through polymorph screen and characterization of aza-T-dCyd in Examples 4 and 5.
본 발명자들은 실험을 통해, 이중 물리화학적으로 결정형 A 및 결정형 F 가 안정한 무수물 형태인 것임을 발견하였다. 따라서, 물리화학적 안정성이 높은 결정형 A 및/또는 결정형 F로 aza-T-dCyd 약물 원료를 구성하는 것이 개발과정에서 저장안정성, 제형 개발시 순도 조절 등에 이점이 있을 뿐만 아니라, 더욱 중요하게, 결정형이 약물의 생물학적 활성에 영향을 줄 수 있다.Through experiments, the present inventors found that crystalline form A and crystalline form F are stable anhydride forms in physical and chemical terms. Therefore, constructing the aza-T-dCyd drug raw material in crystalline form A and/or crystalline form F with high physicochemical stability not only has advantages such as storage stability and purity control during formulation development, but more importantly, the crystalline form can affect the biological activity of the drug.
또한, aza-T-dCyd 약물의 투여용량은 투여 형태(결정형) 및 투여 경로에 좌우되는 범위 내에서 변할 수 있다. In addition, the dosage of the aza-T-dCyd drug may vary within a range depending on the dosage form (crystal form) and route of administration.
예컨대, aza-T-dCyd 함유 경구용 제형은 위에서 90% 이상의 결정형 A 및/또는 결정형 F가 용해(dissolution)되도록 설계할 수 있다. 또한, aza-T-dCyd 약물 중 결정형 A 및/또는 결정형 F의 조성비 조절을 통해 aza-T-dCyd 약물의 최고 혈중농도(Cmax) 및/또는 혈중 약물농도-시간 곡선 하 면적(AUC)을 조절할 수 있다.For example, an oral dosage form containing aza-T-dCyd may be designed to dissolve 90% or more of Form A and/or Form F in the stomach. In addition, the maximum blood concentration (Cmax) and/or the area under the blood drug concentration-time curve (AUC) of the aza-T-dCyd drug may be adjusted by adjusting the composition ratio of Form A and/or Form F of the aza-T-dCyd drug.
실험을 통해 결정형 A는 강산 조건인 위에서 용해 속도/용해도가 높다는 점 및 결정형 F 대비 일관된 용해율 프로파일을 발휘한다는 것을 발견하였다. 본 발명자들은 aza-T-dCyd의 다양한 결정형을 제조하고 이 중에서 결정형 A 상태에서의 항암 효과가 가장 탁월함을 확인하였다. 따라서, 이를 약효가 Cmax 의존적인 Aza-T-dCyd 약물 함유 경구용 제형 설계 시 응용하는 것이 본 발명의 특징이다.Through experiments, it was found that Form A exhibits a high dissolution rate/solubility in strong acidic conditions and exhibits a consistent dissolution rate profile compared to Form F. The present inventors prepared various crystalline forms of aza-T-dCyd and confirmed that the anticancer effect in crystalline form A was the most excellent. Therefore, it is a feature of the present invention to apply this to the design of an oral dosage form containing an Aza-T-dCyd drug whose efficacy is dependent on Cmax.
놀랍게도, 결정형 A의 투여용량 및/또는 aza-T-dCyd 약물 중 비율 조절을 통해, aza-T-dCyd 약물의 원하는 Cmax값을 허용가능한 오차범위 내에서 안정적으로 구현할 수 있다는 것을 발견하였으며, 이를 응용하여, 개인별 편차를 최소화하여 aza-T-dCyd 약물이 원하는 치료 효과를 발휘하도록 제제화할 수 있다. Surprisingly, it has been found that the desired Cmax value of the aza-T-dCyd drug can be stably achieved within an acceptable error range by adjusting the dose of Form A and/or the ratio of the aza-T-dCyd drug, and by applying this, the aza-T-dCyd drug can be formulated to exert a desired therapeutic effect by minimizing individual variation.
즉, 통상적인 aza-T-dCyd 화합물이 여러 결정형의 혼합형태로 있을 때보다, 특정 결정형을 가짐으로써 약효를 안정적으로 나타낸다는 점에 착안하여, 결정형 A을 일정 비율 이상, 예컨대 Aza-T-dCyd 약물 중 70 % 이상으로 경구용 제형을 설계함으로써 aza-T-dCyd 약물의 동일한 1회 투여용량에서 높은 Cmax 약효를 구현할 수 있었다(실시예 10). That is, in view of the fact that the conventional aza-T-dCyd compound exhibits drug efficacy more stably by having a specific crystalline form than when it is in a mixed form of several crystalline forms, by designing an oral dosage form with a certain ratio or more of crystalline form A, for example, 70% or more of the Aza-T-dCyd drug, high Cmax efficacy could be realized at the same single dose of the aza-T-dCyd drug (Example 10).
예컨대, 무정형 약물 대비 용해도가 낮은 결정성 약물을 경구용 제형으로 제제화할 때, (부분적으로) 무정형이며 매우 수용성인 첨가제를 이에 가하여 혼합하여 용해도를 향상시켜 생체이용률을 높일 수 있다. 상기 첨가제의 비제한적인 예로는 starch, lactose, PVP, microcrystalline cellulose 등이 있다.For example, when a crystalline drug having low solubility compared to an amorphous drug is formulated into an oral dosage form, (partially) amorphous and highly water-soluble additives may be added and mixed thereto to improve solubility and increase bioavailability. Non-limiting examples of the additive include starch, lactose, PVP, and microcrystalline cellulose.
본 발명의 경구용 제형은 산성 조건인 위에서 aza-T-dCyd 약물 80% 이상이 용출되도록 붕해되는 담체를 함유하는 것일 수 있다.The oral dosage form of the present invention may contain a disintegrating carrier so that at least 80% of the aza-T-dCyd drug is dissolved in an acidic stomach.
무정형이 용해도가 높아 약효를 높이고 속효성을 나타내는 데는 도움이 되지만 약의 방출과 혈중농도 조절이 어렵다는 점; 맹장에서 aza-T-dCyd 약물이 흡수되지 않은 점(실시예 12); 및 pH 5(소장의 pH 조건) 대비 pH 1.2(위의 pH 조건)에서 결정형 A 및 결정형 F은 용해속도/용해도가 높고 유사한 용해율을 나타내나 결정형 A가 결정형 F 대비 일관된 용해율 프로파일을 보여주는 점을 이용하여, 본 발명은 (1) aza-T-dCyd 약물의 1회 투여용량 및 (2) 위에서 일관된 용해율 프로파일을 보여주는 결정형 A의 aza-T-dCyd 약물 중 비율을 제어함으로써, aza-T-dCyd 약물의 매우 좁은 치료 창(therapeutic window)에도 불구하고, 허용가능한 오차범위 내에서 높은 Cmax을 용이하게 구현할 수 있다. The amorphous form has high solubility, which helps to increase the efficacy of the drug and show rapid action, but it is difficult to release the drug and control the blood concentration; no absorption of the aza-T-dCyd drug from the cecum (Example 12); Form A and Form F have high dissolution rate/solubility and similar dissolution rates at pH 5 (pH condition of the small intestine) and pH 1.2 (pH condition of the stomach). However, taking advantage of the fact that Form A shows a consistent dissolution rate profile compared to Form F, the present invention provides (1) a single dose of aza-T-dCyd drug and (2) aza-T-d by controlling the ratio of Form A to aza-T-dCyd drug showing a consistent dissolution profile in the stomach, Despite the very narrow therapeutic window of Cyd drugs, high Cmax can be easily achieved within an acceptable margin of error.
또한, 고형제제의 흡수에 있어 용출이 율속단계이고, 약물의 흡수는 대부분 소장에서 이루어지고, 결정형 A의 경우 상대적으로 위의 pH에서 용해도 및 용해속도가 크다는 점을 활용하여, 본 발명은 위에서 예컨대 90% 이상의 결정형 A가 용해(dissolution)되도록 위산에 의해 분해되는 경구용 제형을 설계함으로써, 소장 초입에서 대부분의 aza-T-dCyd 약물 흡수를 통해, 다른 결정형 대비 낮은 1회 투여용량으로 원하는 치료효과를 발휘하는 높은 Cmax를, 독성 부작용 가능성을 현저히 낮추면서, 정밀하게 제어할 수 있다. In addition, taking advantage of the fact that dissolution is a rate-limiting step in absorption of solid dosage forms, absorption of most drugs occurs in the small intestine, and crystalline form A has relatively high solubility and dissolution rate at the pH of the stomach, the present invention designs an oral dosage form that is decomposed by gastric acid so that, for example, 90% or more of crystalline form A dissolves in the stomach, thereby absorbing most of the aza-T-dCyd drug at the beginning of the small intestine, thereby exhibiting the desired therapeutic effect with a lower single dose than other crystalline forms. A high Cmax can be precisely controlled with significantly reduced potential for toxic side effects.
나아가, 본 발명은 (i) 원하는 치료 효과를 발휘하는 Aza-T-dCyd 약물의 최고 혈중농도(Cmax), 선택적으로 (ii) 경구용 제형으로부터 전신순환에 도달하는 aza-T-dCyd 약물의 양 및 선택적으로 (iii) aza-T-dCyd 약물이 전신순환에 도달하는데 걸리는 시간을 정밀하게 제어하도록, aza-T-dCyd 약물의 1회 투여용량 및 aza-T-dCyd 약물 중 결정형 A의 비율을 설계하는 것이 특징이다.Furthermore, the present invention provides a single dose of the aza-T-dCyd drug and a crystalline form of the aza-T-dCyd drug to precisely control (i) the highest blood concentration (Cmax) of the drug Aza-T-dCyd that exerts the desired therapeutic effect, optionally (ii) the amount of the drug aza-T-dCyd that reaches the systemic circulation from the oral dosage form, and optionally (iii) the time it takes for the drug drug aza-T-dCyd to reach the systemic circulation. It is characterized by designing the ratio of A.
aza-T-dCyd 약물 중 결정형 A의 비율은 wt%, mole%일 수 있으나 이에 제한되지 않는다.The ratio of crystalline form A in the aza-T-dCyd drug may be wt% or mole%, but is not limited thereto.
본 발명은 치료적 반응을 나타낼 정도로 전신순환에 충분히 흡수되었는지를 가리키는 약물투여 후 최고 혈중농도(Cmax)를 용이하게 제어하기 위해, aza-T-dCyd 약물의 1회 투여용량 및 aza-T-dCyd 약물 중 결정형 A의 비율을 설계할 수 있다. The present invention can design a single dose of aza-T-dCyd drug and the ratio of crystalline form A in aza-T-dCyd drug in order to easily control the maximum blood concentration (Cmax) after drug administration, which indicates whether the drug is sufficiently absorbed into the systemic circulation to produce a therapeutic response.
또한, aza-T-dCyd 약물의 투여용량 및 aza-T-dCyd 약물 중 결정형 A의 비율(wt%) 조절을 통해, 즉 aza-T-dCyd 약물의 투여용량 및 결정형 A의 투여용량 조절을 통해, 경구용 제형으로부터 전신순환에 도달하는 약물의 양과 전신순환에 도달하는데 걸리는 시간도 용이하게 제어할 수 있다.In addition, by adjusting the dosage of the aza-T-dCyd drug and the ratio (wt%) of the crystalline form A in the aza-T-dCyd drug, that is, the amount of the drug reaching the systemic circulation from the oral dosage form and the time taken to reach the systemic circulation can be easily controlled by adjusting the dosage of the aza-T-dCyd drug and the dosage of the crystalline form A.
결정형 A의 경우, 소장 대비 위에서 용출율이 최대이고 맹장에서 흡수가 안되는 점을 착안하여, 위산에 의해 분해되는 경구용 제형을 통해 위에서 예컨대 90% 이상의 결정형 A가 용해(dissolution)되도록 설계함으로써, 본 발명은 결정형 A의 투여용량 또는 aza-T-dCyd 약물 중 비율(wt%) 조절을 통해, 경구형 제제로부터 전신순환에 도달하는 약물의 양과 전신순환에 도달하는데 걸리는 시간을 용이하게 제어할 수 있다.In the case of crystalline Form A, by designing an oral dosage form that is degraded by gastric acid so that, for example, 90% or more of Form A is dissolved in the stomach, focusing on the fact that the dissolution rate is the highest in the stomach compared to the small intestine and is not absorbed in the caecum, the present invention can easily control the amount of the drug reaching the systemic circulation from the oral formulation and the time taken to reach the systemic circulation by adjusting the dose of Form A or the ratio (wt%) of the aza-T-dCyd drug.
예컨대, 본 발명은 경구용 제형에서 aza-T-dCyd 약물 중 결정형 A의 비율(wt%) 조절을 위해, aza-T-dCyd 약물의 합성 결과물인 aza-T-dCyd 원료(crude materials)로부터 원하는 비율(wt%)로 결정형 A를 함유하는 결정형 원료를 준비한 후, 경구 투여형 제형으로 제제화할 수 있다. For example, in order to control the ratio (wt%) of crystalline form A in the aza-T-dCyd drug in the oral dosage form of the present invention, a crystalline raw material containing crystalline form A in a desired ratio (wt%) can be prepared from aza-T-dCyd crude materials, which are synthesized products of the aza-T-dCyd drug, and then formulated into an oral dosage form.
따라서, 본 발명은 aza-T-dCyd 약물 중 결정형 A의 비율(wt%)이 조절된 경구용 제형으로서, aza-T-dCyd 약물의 합성 결과물인 aza-T-dCyd 원료(crude materials)로부터 원하는 비율(wt%)로 결정형 A를 함유하는 결정형 원료를 준비한 후, 경구 투여형 제형으로 제제화된 것이 특징인 경구용 제형을 제공한다.Accordingly, the present invention provides an oral dosage form in which the ratio (wt%) of crystalline Form A in the aza-T-dCyd drug is controlled, wherein the crystalline raw material containing Form A in a desired ratio (wt%) is prepared from crude materials of aza-T-dCyd, which is a synthetic product of the aza-T-dCyd drug, and then formulated into an oral dosage form.
본 명세서에서, aza-T-dCyd 약물의 합성 결과물인 aza-T-dCyd 원료(crude materials)로부터 원하는 비율(wt%)로 결정형 A를 함유하는 결정형 원료를 준비한다는 것은, 결정형 A의 원하는 비율(wt%)을 ±10% 오차범위, 바람직하게는 ±5% 오차범위 내로 제어하는 공정일 수 있고, 결정형 A의 원하는 비율(wt%)이 ±10% 오차범위, 바람직하게는 ±5% 오차범위 내에 있음을 확인하는 공정일 수도 있다.In the present specification, preparing a crystalline raw material containing crystalline form A in a desired ratio (wt%) from aza-T-dCyd crude materials, which are the synthetic product of the aza-T-dCyd drug, can be a process of controlling the desired ratio (wt%) of crystalline form A within a ±10% error range, preferably within a ±5% error range, and the desired ratio (wt%) of crystalline form A is within a ±10% error range, preferably ±5% error range. It may be a verification process.
또한, 본 발명의 경구용 제형은 동일한 1회 투여용량의 aza-T-dCyd 약물 중 결정형 A의 비율 변화에 따른 최고 혈중농도(Cmax) 변화값이 증가하는 Cmax 상 변곡점에 해당하는 결정형 A의 비율 이상으로 결정형 A를 함유하도록 aza-T-dCyd 약물의 1회 투여용량이 설계된 것이 특징이다.In addition, the oral dosage form of the present invention is characterized in that a single dosage of the aza-T-dCyd drug is designed so that the dosage of the aza-T-dCyd drug contains more than the ratio of Form A corresponding to the inflection point of the Cmax phase at which the maximum blood concentration (Cmax) change value increases according to the change in the ratio of Form A in the same single dose of the aza-T-dCyd drug.
Aza-T-dCyd 약물 중 결정형 A의 비율을 설계하는데 고려되는 Cmax 변곡점은 aza-T-dCyd 약물 중 결정형 A의 비율이 50% ~ 80%일 때 나타날 수 있다. The Cmax inflection point considered in designing the ratio of Form A in the drug Aza-T-dCyd may appear when the ratio of Form A in the drug Aza-T-dCyd is 50% to 80%.
도 25에 예시된 바와 같이, aza-T-dCyd 약물 중 결정형 A가 70% 이상에서 예측을 넘어서는 높은 Cmax를 발휘하였다. 따라서, 도 25에 예시된 PK 데이터에 기반하여, aza-T-dCyd 약물 중 결정형 A의 비율은 70% 이상일 수 있다. As illustrated in FIG. 25 , among the drugs of aza-T-dCyd, crystalline form A exhibited a high Cmax beyond prediction at 70% or more. Therefore, based on the PK data illustrated in FIG. 25 , the ratio of crystalline Form A in the aza-T-dCyd drug may be 70% or more.
예컨대, 도 25에 예시된 바와 같이, aza-T-dCyd 약물 중 결정형 A의 비율 측면에서 변곡점이 70%이면, aza-T-dCyd 약물 중 결정형 A의 비율이 70% 이상이 되도록 경구용 제형을 설계할 수 있다. 바람직하게는 경구용 제형 내 aza-T-dCyd 약물 중 결정형 A의 비율은 100%일 수 있으며, 이 경우 실시예 6 및 실시예 11에서 시사된 바와 같이 치료효과/독성부작용이 Cmax에 의존적인 aza-T-dCyd 약물의 생체이용률을 경구 투여시 정밀하게 제어할 수 있다. 이때, 경구용 제형 내 aza-T-dCyd 약물 중 결정형 A의 비율은 100%로 하기 위해, aza-T-dCyd 화합물 합성 후, 결정형 A로 모두 전환시킨 후, 경구 투여형 제형으로 제제화시킬 수 있다.For example, as illustrated in FIG. 25 , if the inflection point is 70% in terms of the ratio of Form A in the aza-T-dCyd drug, the oral dosage form can be designed such that the ratio of Form A in the aza-T-dCyd drug is 70% or more. Preferably, the ratio of crystalline Form A in the aza-T-dCyd drug in the oral dosage form may be 100%. In this case, as suggested in Examples 6 and 11, the bioavailability of the aza-T-dCyd drug whose therapeutic effect/toxic side effect depends on Cmax can be precisely controlled during oral administration. At this time, in order to set the ratio of crystalline form A in the aza-T-dCyd drug in the oral dosage form to 100%, after synthesizing the aza-T-dCyd compound and converting all of the aza-T-dCyd to crystalline form A, the oral dosage form may be formulated.
본 명세서에서, “암”은 전형적으로 비조절된 세포 성장을 특징으로 하는, 포유류의 생리학적 상태를 지칭하거나 설명한다. 암의 예로는 혈액-매개성 종양(예를 들어, 다발성 골수종, 림프종 및 백혈병) 및 고형 종양이 포함되지만, 이에 한정되는 것은 아니다. 혈액암의 비제한적인 예로, 비호치킨림프종, 호치킨 림프종, 다발성 골수종, 백혈병, 림프종, 골수이형성증후군, 급성립므구성 백혈병, 급성 골수성 백혈병, 만성 골수성 백혈병 등이 있고, 고형암의 비제한적인 예로 위암, 신장암, 난소암, 자궁경부암, 자궁암, 전립선암, 폐암, 결장암, 유방암, 흑색종 및 췌장암 등이 있다.As used herein, “cancer” refers to or describes a physiological condition in mammals that is typically characterized by unregulated cell growth. Examples of cancers include, but are not limited to, blood-borne tumors (eg, multiple myeloma, lymphoma, and leukemia) and solid tumors. Non-limiting examples of hematological cancers include non-Hodgkin's lymphoma, Hodgkin's lymphoma, multiple myeloma, leukemia, lymphoma, myelodysplastic syndrome, acute granulocytic leukemia, acute myelogenous leukemia, chronic myeloid leukemia, etc. Non-limiting examples of solid cancers include gastric cancer, kidney cancer, ovarian cancer, cervical cancer, uterine cancer, prostate cancer, lung cancer, colon cancer, breast cancer, melanoma, and pancreatic cancer.
본 명세서에서, "환자" 및 "대상체"는 포유동물과 같은 동물을 지칭한다. 특정 실시양태에서, 환자는 사람이다. 다른 실시양태에서, 환자는 개, 고양이, 가축(예를 들어, 말, 돼지 또는 당나귀), 침팬지 또는 원숭이와 같은, 사람이 아닌 동물이다.As used herein, “patient” and “subject” refer to animals such as mammals. In certain embodiments, the patient is a human. In other embodiments, the patient is a non-human animal, such as a dog, cat, livestock (eg, horse, pig or donkey), chimpanzee or monkey.
본 명세서에서, 항암제에 의한 항암 효과 또는 치료 효과는 환자가 특정의 암을 앓고 있는 동안 발생하는, 암의 중증도를 감소시키거나, 종양 크기를 감소시키거나, 암의 진행을 지연 또는 둔화시키는 작용을 지칭할 수 있다.In the present specification, the anticancer effect or therapeutic effect of an anticancer agent may refer to an action that reduces the severity of cancer, reduces the size of a tumor, or delays or slows down the progression of cancer, which occurs while a patient is suffering from a specific cancer.
예컨대 항암제에 의한 항암 효과는 인비트로(in-vitro) 및/또는 인비보(in-vivo) 상으로 암 세포에 항암제를 처리한 후 암 세포의 Cell Viability(cytotoxicity 정도 또는 세포 수의 변화)일 수 있다. 예컨대, 세포주(Cell line)나 비임상 동물모델(xenograft)을 통해 약물의 반응(drug response) 검사를 통해 간접적으로 확인할 수 있다. 또한, 암 환자에서도 항암제에 의한 항암 효과를 직접 확인하여, 이와 관련된 데이터를 도출하여 데이터베이스로 사용할 수 있다. 또한, 항암제의 투약 가이드 라인 설계시 동물모델 PK 파라미터들 및/또는 독성 프로파일(profile)을 병행하여 고려할 수 있다.For example, the anticancer effect of an anticancer agent may be Cell Viability (a change in the degree of cytotoxicity or the number of cells) of cancer cells after treatment with the anticancer agent in vitro and/or in vivo. For example, it can be confirmed indirectly through a drug response test through a cell line or a non-clinical animal model (xenograft). In addition, even in cancer patients, the anticancer effect of the anticancer agent can be directly confirmed, and related data can be derived and used as a database. In addition, when designing an anticancer drug dosage guideline, animal model PK parameters and/or toxicity profile may be considered in parallel.
항암제에 의한 항암 효과는 시험관내(in-vitro) 데이터인 해당 항암제의 % 최대효과(Maximum effect) 예컨대 IC50, IC60, IC70, IC80 및 IC90로부터 유추할 수도 있고, 약물의 최고 혈중농도(Cmax) 및/또는 혈중 약물농도-시간 곡선 하 면적(AUC)과 같은 생체내(in-vivo) 데이터를 통해 비임상 동물모델 및 임상 암 환자에서도 확인할 수 있다. The anticancer effect of an anticancer agent may be inferred from in-vitro data, such as the % maximum effect of the anticancer agent, such as IC 50 , IC 60 , IC 70 , IC 80 and IC 90 , and the highest blood concentration of the drug (Cmax) and / or blood drug concentration - It can also be confirmed in non-clinical animal models and clinical cancer patients through in-vivo data such as area under the time curve (AUC). .
항암제의 반응성은 항암 효과 측면에 있어서 임상적 민감도를 의미한다.Reactivity of an anticancer agent means clinical sensitivity in terms of anticancer effect.
항암제를 이용한 치료와 관련하여 언급할 때 "민감도" 및 "민감한"은 치료되는 종양 또는 질환의 진행을 완화 또는 감소시키는데 있어 화합물의 효과의 정도를 지칭하는 상대적 용어이다."Sensitivity" and "susceptibility" when referring to treatment with an anti-cancer agent are relative terms that refer to the degree of effectiveness of a compound in alleviating or reducing the progression of the tumor or disease being treated.
"효과적인 환자의 항암 효과/반응"은, 예를들어, 임의의 적합한 수단, 예컨대 유전자 발현, 세포 계수, 분석 결과 등에 의해 측정되는 바와 같은, 환자 반응에서 5%, 10%, 15%, 20%, 25%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 200%, 또는 그 이상의 억제일 수 있다.An "effective patient's anticancer effect/response" can be, for example, a 5%, 10%, 15%, 20%, 25%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 200%, or more inhibition of a patient's response, as measured by any suitable means, such as gene expression, cell counts, assays, and the like.
본 명세서에서, 투여용량은 약효가 기대되는 용량이다. 본 발명에서 약효는 항암 효과일 수 있다. 항암제의 반응성(항암 효과)은 반응정도로서, 해당 항암제의 % 최대효과(Maximum effect) 예컨대 IC50, IC60, IC70, IC80 및 IC90, 정상세포에 대한 독성을 발휘하는 값 (LC50)일 수 있다. In the present specification, the dose is the dose at which drug efficacy is expected. In the present invention, the medicinal effect may be an anticancer effect. The reactivity (anti-cancer effect) of an anti-cancer agent is the degree of response, and may be the % maximum effect of the anti-cancer agent, such as IC 50 , IC 60 , IC 70 , IC 80 and IC 90 , and a value that exhibits toxicity to normal cells (LC 50 ).
예컨대, 경구용 제형은 당해 기술에서 공지된 다양한 제형 기술을 사용하여 제제화될 수 있다. 예컨대, 구강 점막에 부착하는데 쓰이는 생체붕괴성 (가수분해성) 폴리머성 담체를 포함할 수 있다. 예정된 기간에 걸쳐 서서히 침식되도록 제작되고, 여기서 약물 전달은 본질적으로 전체적으로 제공된다.For example, dosage forms for oral use can be formulated using a variety of formulation techniques known in the art. For example, it may include a biodegradable (hydrolyzable) polymeric carrier used to adhere to the oral mucosa. It is designed to slowly erode over a predetermined period of time, wherein drug delivery is provided essentially entirely.
경구용 제형에서 약물 전달은, 당해 분야의 숙련가에 의해 인정되는 바와 같이, 경구 약물 투여에 마주치는 약점, 예를 들면, 느린 흡수, 위장관에서 존재하는 유체에 의한 활성제의 분해 및/또는 간에서의 초회통과 불활성화를 피한다. 생체붕괴성 (가수분해성) 폴리머성 담체에 대해, 사실상 임의의 그와 같은 담체가 원하는 약물 방출 프로파일이 손상되지 않는 한 사용될 수 있고, 담체는 aza-T-dCyd 및 구강 복용량 단위로 존재하는 임의의 다른 성분과 양립가능하다는 것이 인정될 것이다. 일반적으로, 폴리머성 담체는 구강 점막의 습성 표면에 부착되는 친수성 (수용성 및 수팽윤성) 폴리머를 포함한다. 본 명세서에서 유용한 폴리머성 담체의 예는 아크릴산 폴리머 및 co, 예를 들면, 하기로서 공지된 것들을 포함한다: “카보머” (Carbopol ®( B.F. Goodrich로부터 수득될 수 있음)은 하나의 그와 같은 폴리머이다). 일부 구현예에서, 경구용 제형에 편입될 수 있는 다른 성분의 비제한적인 예들은 붕해제, 희석제, 결합제, 윤활제, 풍미제, 착색제, 보존제 등이 있다. 일부 구현예에서, 구강 또는 설하 투여에 대해, 종래의 방식으로 제형화된 정제, 로젠지, 또는 겔의 형태일 수 있다. Drug delivery in an oral dosage form avoids the weaknesses encountered with oral drug administration, such as slow absorption, degradation of the active agent by fluid present in the gastrointestinal tract and/or first pass and inactivation in the liver, as recognized by those skilled in the art. For biodegradable (hydrolysable) polymeric carriers, it will be appreciated that virtually any such carrier may be used provided that the desired drug release profile is not compromised, and that the carrier is compatible with aza-T-dCyd and any other ingredient present in an oral dosage unit. Generally, polymeric carriers include hydrophilic (water-soluble and water-swellable) polymers that adhere to the wet surface of the oral mucosa. Examples of polymeric carriers useful herein include acrylic acid polymers and co, eg, those known as “carbomers” (Carbopol ® (available from B.F. Goodrich) is one such polymer). In some embodiments, non-limiting examples of other ingredients that can be incorporated into an oral dosage form include disintegrants, diluents, binders, lubricants, flavoring agents, coloring agents, preservatives, and the like. In some embodiments, it may be in the form of a conventionally formulated tablet, lozenge, or gel for buccal or sublingual administration.
일부 구현예에서, 상기 환자의 상태가 개선되는 경우에 의사의 재량에 따라 화합물의 투여는 계속해서 제공되고; 대안적으로, 투여될 약물의 용량은 일시적으로 감소되거나 일시적으로 어떤 시간의 길이 (즉, “휴약”) 동안에 중단될 수 있다. 휴약의 길이는 2 일 내지 1 년 사이에서 변할 수 있고, 단지 예로써, 2 일, 3 일, 4 일, 5 일, 6 일, 7 일, 10 일, 12 일, 15 일, 20 일, 28 일, 35 일, 50 일, 70 일, 100 일, 120 일, 150 일, 180일, 200 일, 250 일, 280 일, 300 일, 320 일, 350 일, 또는 365 일을 포함한다. 일부 구현예에서, 휴약 동안의 용량 감소는 10%-100%이고, 단지 예로써, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 또는 100%를 포함한다.In some embodiments, administration of the compound is continued at the physician's discretion when the patient's condition improves; Alternatively, the dose of drug to be administered may be temporarily reduced or temporarily discontinued for some length of time (ie, a "holiday"). The length of the washout can vary between 2 days and 1 year, by way of example only, 2 days, 3 days, 4 days, 5 days, 6 days, 7 days, 10 days, 12 days, 15 days, 20 days, 28 days, 35 days, 50 days, 70 days, 100 days, 120 days, 150 days, 180 days, 200 days, 250 days. , 280 days, 300 days, 320 days, 350 days, or 365 days. In some embodiments, the dose reduction during the washout is 10%-100%, by way of example only, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100 contains %.
환자의 병태의 개선이 일어나면, 유지 용량은, 필요하면, 투여된다. 그 뒤에, 복용량 또는 투여 빈도, 또는 둘 모두는, 개선된 질환, 장애 또는 병태가 유지되는 수준으로, 증상의 함수로서 감소될 수 있다. 그러나 환자는 증상의 임의의 재발시 장기간에 걸쳐 간헐적 치료를 필요로 한다.When improvement of the patient's condition occurs, a maintenance dose is administered, if necessary. Subsequently, the dosage or frequency of administration, or both, can be reduced as a function of symptoms, to a level at which improved disease, disorder or condition is maintained. However, patients require intermittent treatment over a long period of time upon any recurrence of symptoms.
그와 같은 양에 상응할 주어진 제제의 양은 치료가 필요한 대상체 또는 숙주의 인자 예컨대 특정한 화합물, 질환의 중증도, 동일성 (예를 들면, 체중)에 따라 변할 것이지만, 그럼에도 불구하고 예를 들면, 투여될 특정 제제, 투여 경로, 및 치료될 대상체 또는 숙주를 포함하는 경우를 둘러싸는 특정에 상환에 따라 당해기술에서 공지된 방식으로 일상적으로 결정될 수 있다. 일반적으로, 그러나, 성인 인간 치료에 이용된 용량은 전형적으로 0.02-5000 mg/1일, 또는 약 1-1500 mg/1일의 범위일 것이다.The amount of a given agent that will correspond to such amount will vary with factors of the subject or host in need of treatment such as the particular compound, severity of the disease, identity (e.g., body weight), but can nevertheless be routinely determined in a manner known in the art, depending on, for example, the particular agent to be administered, the route of administration, and the particulars surrounding the case involving the subject or host to be treated. In general, however, doses used for adult human treatment will typically range from 0.02-5000 mg/day, or about 1-1500 mg/day.
본 명세서에서 1회 투여용량은 단회 용량으로 또는 동시에, 예를 들면 2, 3, 4 또는 그 초과의 하위-용량으로서 투여된 분할 용량으로 제공될 수 있다.A single dose herein may be given as a single dose or in divided doses administered simultaneously, for example as 2, 3, 4 or more sub-doses.
일부 구현예에서, 경구용 제형은 정확한 복용량의 단일 투여에 적합한 단위 복용 형태이다. 단위 복용 형태에서, 제형은 적절한 양의 1종 이상의 화합물을 함유하는 단위 용량으로 분할된다. 일부 구현예에서, 단위 복용량은 별개의 양의 제형을 함유하는 패장의 형태이다. 비-제한적인 예는 포장된 정제 또는 캡슐, 및 분말 바이알에서 또는 앰풀이다. 수성 서스펜션 조성물은 단일-용량 비-재밀폐가능 용기 내에서 포장될 있다. 대안적으로, 다중-용량 재밀폐가능 용기가 사용될 수 있고, 이 경우에 조성물 중 보존제를 포함하는 것이 전형적이다. In some embodiments, oral formulations are unit dosage forms suitable for single administration of precise dosages. In unit dosage form, the formulation is divided into unit doses containing appropriate amounts of one or more compounds. In some embodiments, the unit dose is in the form of patches containing discrete amounts of the formulation. Non-limiting examples are packaged tablets or capsules, and powders in vials or ampoules. Aqueous suspension compositions can be packaged in single-dose non-reclosable containers. Alternatively, multi-dose reclosable containers may be used, in which case it is typical to include a preservative in the composition.
단지 예로써, 일부 구현예에서, 비경구 주사용 제형은 부가된 보존제와 함께, 비제한적으로 앰플을 포함하는 단위 복용 형태, 또는 다중-용량 용기로 제공된다.By way of example only, in some embodiments, formulations for parenteral injection are presented in unit dosage form, including but not limited to ampoules, or in multi-dose containers, with an added preservative.
약물이 생체 내에서 효과적으로 작용하기 위해서는 약물의 체내 농도가 일정 기간 이상 치료효과범위(therapeutic range) 내에 유지되어야 한다. 약물이 체내에 과량 존재하면 독성을 나타내게 되고 너무 적은 양의 경우에는 치료 효과가 나타나지 않는다. 따라서, 본 발명은 결정형 수준에서 aza-T-dCyd 약물의 다형을 조절하여 생체 이용률을 조절할 수 있다. 또한, 본 발명은 aza-T-dCyd 결정형의 다형(polymorphism)을 이용하여, aza-T-dCyd 약물의 방출, 흡수를 제어함으로써, AUC 보다는 Cmax 의존적인 aza-T-dCyd 약물의 부작용을 줄이고 효능을 극대화시키는 1회 투여용량을 설계할 수 있다. In order for a drug to act effectively in vivo, the concentration of the drug in the body must be maintained within a therapeutic range for a certain period of time or longer. When a drug is present in excess in the body, it exhibits toxicity, and when the amount is too small, the therapeutic effect does not appear. Therefore, the bioavailability of the aza-T-dCyd drug can be controlled by adjusting the polymorphism of the aza-T-dCyd drug at the crystalline level. In addition, the present invention uses the polymorphism of the aza-T-dCyd crystalline form to control the release and absorption of the aza-T-dCyd drug, thereby reducing the side effects of the aza-T-dCyd drug that is Cmax dependent rather than the AUC and maximizing the efficacy of the aza-T-dCyd drug.
나아가, 본 발명은, 1회 투여용량을 기준으로, 부작용인 체내 독성과 관련있는 aza-T-dCyd 약물의 1회 투여용량 내에서 최고 혈중농도(Cmax)를 구현하기 위해, aza-T-dCyd 약물 다형체 중 결정형 A의 비율(wt%)이 조절된 경구용 제형을 제공할 수 있다. 또한, aza-T-dCyd 약물의 투여용량 및 Aza-T-dCyd 약물 중 결정형 A의 비율(wt%) 조절을 통해, 경구형 제제로부터 전신순환에 도달하는 약물의 양과 전신순환에 도달하는데 걸리는 시간을 정밀하게, 용이하게 제어할 수 있다.Furthermore, the present invention can provide an oral dosage form in which the ratio (wt%) of crystalline Form A among polymorphs of aza-T-dCyd drug is adjusted in order to achieve the highest blood concentration (Cmax) within a single dose of the aza-T-dCyd drug, which is related to toxicity in the body, which is a side effect, based on a single dose. In addition, by adjusting the dosage of the aza-T-dCyd drug and the ratio (wt%) of crystalline Form A in the Aza-T-dCyd drug, the amount of the drug reaching the systemic circulation from the oral formulation and the time it takes to reach the systemic circulation can be precisely and easily controlled.
도 1은 aza-T-dCyd 출발 물질(SM: 아직 특정 결정화 조건이 적용되지 않은 aza-T-dCyd)에 대한 대표적인 HT-XRPD 및 HR-XRPD 패턴을 보여준다.Figure 1 shows representative HT-XRPD and HR-XRPD patterns for aza-T-dCyd starting material (SM: aza-T-dCyd for which no specific crystallization conditions have yet been applied).
도 2는 aza-T-dCyd 결정형 A의 대표적인 시뮬레이션된 XRPD 및 HR-XRPD를 보여준다.Figure 2 shows representative simulated XRPD and HR-XRPD of aza-T-dCyd crystalline Form A.
도 3은 aza-T-dCyd 출발 물질(SM)의 대표적인 TGMS 분석을 보여준다.Figure 3 shows a representative TGMS analysis of aza-T-dCyd starting material (SM).
도 4는 aza-T-dCyd 출발 물질(SM)의 대표적인 DSC 추적(trace)를 나타낸다.Figure 4 shows a representative DSC trace of aza-T-dCyd starting material (SM).
도 5는 두 번째 사이클링 DSC 이후의 aza-T-dCyd 결정형 A의 대표적인 시뮬레이션된 XRPD 및 HT-XRPD를 보여준다.5 shows representative simulated XRPD and HT-XRPD of aza-T-dCyd Form A after second cycling DSC.
도 6은 aza-T-dCyd 출발 물질(SM)의 순환 DSC를 보여준다.Figure 6 shows the cycle DSC of aza-T-dCyd starting material (SM).
도 7A 및 도 7B는 aza-T-dCyd 출발 물질(SM)의 LCMS의 대표적인 결과를 보여준다. 구체적으로, 도 7A는 aza-T-dCyd 출발 물질(SM)의 대표적인 LC 크로마토그램을 보여준다. 도 7B는 액체 크로마토그래피로부터의 aza-T-dCyd의 대표적인 MS 스펙트럼을 보여준다.7A and 7B show representative results of LCMS of aza-T-dCyd starting material (SM). Specifically, FIG. 7A shows a representative LC chromatogram of aza-T-dCyd starting material (SM). 7B shows a representative MS spectrum of aza-T-dCyd from liquid chromatography.
도 8A-C는 물에서 용액을 형성한 후 aza-T-dCyd 출발 물질(SM)의 LCMS의 대표적인 결과를 보여준다. 구체적으로, 도 8a는 물에 제형화된 aza-T-dCyd의 LC 크로마토그램을 나타낸다. 도 8b는 3.8분에 용출된 불순물의 MS 스펙트럼을 나타낸다. 도 8c는 4.4분에서 용출된 aza-T-dCyd의 MS 스펙트럼을 나타낸다.Figures 8A-C show representative results of LCMS of aza-T-dCyd starting material (SM) after forming a solution in water. Specifically, FIG. 8A shows an LC chromatogram of aza-T-dCyd formulated in water. Figure 8b shows the MS spectrum of the impurity eluted at 3.8 minutes. Figure 8c shows the MS spectrum of aza-T-dCyd eluted at 4.4 min.
도 9는 다양한 용액에서 aza-T-dCyd의 화학적 안정성을 나타내는 대표적인 데이터를 나타낸다.Figure 9 presents representative data showing the chemical stability of aza-T-dCyd in various solutions.
도 10은 시간 경과에 따른 다양한 용액에서 aza-T-dCyd의 화학적 안정성을 나타내는 대표적인 데이터를 보여준다.10 shows representative data showing the chemical stability of aza-T-dCyd in various solutions over time.
도 11은 aza-T-dCyd의 형태 A의 대표적인 XRPD 패턴을 나타낸다.11 shows a representative XRPD pattern of Form A of aza-T-dCyd.
도 12는 aza-T-dCyd 및 aza-T-dCyd 출발 물질(SM)의 결정형 A, B, A+C1, A+C2, A+D1, 및 A+D2의 대표적인 XRPD 패턴을 나타낸다.12 shows representative XRPD patterns of Forms A, B, A+C1, A+C2, A+D1, and A+D2 of aza-T-dCyd and aza-T-dCyd starting material (SM).
도 13A-C는 결정형 A의 대표적인 화학적 분석을 보여준다. 도 13A는 결정형 A의 TGMS 분석을 나타낸다. 도 13B는 결정형 A의 DSC 분석을 나타낸다. 도 13C는 결정형 A의 LCMS 분석을 보여준다.13A-C show representative chemical analyzes of Form A. 13A shows the TGMS analysis of Form A. 13B shows the DSC analysis of Form A. 13C shows the LCMS analysis of Form A.
도 14는 aza-T-dCyd 및 aza-T-dCyd 출발 물질(SM)의 결정형 E, F, G1, G2, H, I, J, F+K 및 L 의 대표적인 XRPD 패턴을 보여준다.14 shows representative XRPD patterns of crystalline Forms E, F, G1, G2, H, I, J, F+K and L of aza-T-dCyd and aza-T-dCyd starting material (SM).
도 15A-C는 결정형 F의 대표적인 화학적 분석을 보여준다. 도 15A는 결정형 F의 TGMS 분석을 나타낸다. 도 15B는 결정형 F의 DSC 분석을 나타낸다. 도 15C는 결정형 F의 LCMS 분석을 보여준다.15A-C show representative chemical analyzes of Form F. 15A shows the TGMS analysis of Form F. 15B shows the DSC analysis of Form F. 15C shows the LCMS analysis of Form F.
도 16은 aza-T-dCyd의 형태 F의 대표적인 XRPD 패턴을 보여준다.16 shows a representative XRPD pattern of Form F of aza-T-dCyd.
도 17 및 18은 암컷 NOD-SCID 마우스에 aza-T-dCyd 출발 물질(SM)을 투여했을 때 종양 크기를 나타내는 생체 내 루시퍼라제 활성 데이터를 나타낸다.17 and 18 present in vivo luciferase activity data showing tumor size when aza-T-dCyd starting material (SM) was administered to female NOD-SCID mice.
도 19는 혈액암 세포(Mv4-11)에 aza-T-dCyd 출발물질(SM)을 처리한 경우 최대 억제 농도의 절반(IC50)을 나타낸 것이다.Fig. 19 shows the half-maximal inhibitory concentration (IC50) when hematological malignant cells (Mv4-11) were treated with aza-T-dCyd starting material (SM).
도 20은 pH 1.2에서 결정형 A 및 결정형 F의 용해 속도 프로파일을 나타낸다.20 shows the dissolution rate profiles of Form A and Form F at pH 1.2.
도 21은 pH 5.0에서 결정형 A 및 결정형 F의 용해 속도 프로파일을 나타낸다.21 shows the dissolution rate profiles of Form A and Form F at pH 5.0.
도 22는 pH 6.5에서 결정형 A 및 결정형 F의 용해 속도 프로파일을 나타낸다.22 shows the dissolution rate profiles of Form A and Form F at pH 6.5.
도 23은 K562 세포주가 결정형 A 또는 SM으로 처리되었을 때의 IC50 값을 나타낸다.Figure 23 shows IC 50 values when the K562 cell line was treated with crystalline Form A or SM.
도 24는 HL-60 세포주가 결정형 A 또는 SM으로 처리된 경우의 IC50 값을 나타낸다.Figure 24 shows the IC 50 values when the HL-60 cell line was treated with Form A or SM.
도 25는 Aza-T-dCyd 약물 중 결정형 A의 비율(wt%) 를 조절하여 경구 투여후 0.25, 0.5, 1, 2, 4, 6, 8, 및 24 hr에서 혈액 샘플링하여 PK 분석 결과이다. 25 shows PK analysis results obtained by blood sampling at 0.25, 0.5, 1, 2, 4, 6, 8, and 24 hr after oral administration by adjusting the ratio (wt%) of crystalline form A in Aza-T-dCyd drug.
도 26A 및 B는 각각 aza-T-dCyd 화합물 1mpk와 3mpk를 PO와 IC로 투여한 용해 속도 프로파일을 나타낸다.26A and B show dissolution rate profiles of PO and IC administration of 1mpk and 3mpk of aza-T-dCyd compound, respectively.
이하, 본 발명을 실시예를 통하여 보다 구체적으로 설명한다. 다만, 하기 실시예는 본 발명의 기술적 특징을 명확하게 예시하기 위한 것일 뿐 본 발명의 보호범위를 한정하는 것은 아니다.Hereinafter, the present invention will be described in more detail through examples. However, the following examples are only intended to clearly illustrate the technical features of the present invention, but do not limit the protection scope of the present invention.
Aza-T-dCyd 약물의 제형 설계를 위해, Aza-T-dCyd 약물의 결정형의 다형(polymorphism)에 대해 생체이용율을 평가하기 위해, 하기 실시예들을 통해 시험관 시험 및 동물모델에서 약동학적 파라미터(pharmacokinetic parameters)를 측정하였다.In order to design the formulation of the drug Aza-T-dCyd and to evaluate the bioavailability of the polymorphism of the crystalline form of the drug Aza-T-dCyd, pharmacokinetic parameters were measured in in vitro tests and animal models through the following examples.
실시예 1: 출발 물질의 특성화Example 1: Characterization of starting materials
대략 4.0g의 aza-T-dCyd를 제조하고 X-선 분말 회절법(XRPD), 시차 주사 열량계법(DSC), 열중량계-질량 스펙스럼 분석법(TGMS), 및 액체 크로마토그래피/ 질량 스펙스럼 분석법(LCMS)으로 분석하였다. 출발 물질(SM)은 아직 특정 결정화 조건을 거치지 않은 aza-T-dCyd이다. 도 1은 상부 및 하부 패턴에서 각각 고처리량 XRPD(HT-XRPD) 및 고해상도 XRPD(HR-XRPD)를 보여준다. 출발 물질은 단결정 구조 분석에 적합한 결정을 포함한다. 출발 물질을 결정화시킨 결과, 비중심대칭 단사정계 P21 공간군을 가진 결정형이 되었고, 이를 결정형 A로 지칭한다. 표 1은 결정형 A의 관련 치수를 제공한다.Approximately 4.0 g of aza-T-dCyd was prepared and analyzed by X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), thermogravimetry-mass spectrometry (TGMS), and liquid chromatography/mass spectrometry (LCMS). The starting material (SM) is aza-T-dCyd that has not yet been subjected to specific crystallization conditions. Figure 1 shows high-throughput XRPD (HT-XRPD) and high-resolution XRPD (HR-XRPD) in the top and bottom patterns, respectively. The starting materials include crystals suitable for single crystal structure analysis. As a result of crystallization of the starting material, a crystalline form having an asymmetric monoclinic P21 space group was obtained, which is referred to as crystalline form A. Table 1 provides the relevant dimensions of Form A.
Figure PCTKR2023001028-appb-img-000003
Figure PCTKR2023001028-appb-img-000003
출발 물질의 HR-XRPD 패턴을, 결정형 A로 된 단결정의 모의 패턴(simulated pattern)인 HR-XRPD 패턴과 비교하고, 도 2에 도시하였다. 결정형 A는 7.7°, 13.02°, 15.34°, 16.78°, 18.62°, 19.42°, 21.94°, 22.90°, 25.70°, 27.86°, 28.70°, 31.42°, 32.70°, and 37.46° 2θ에서 피크를 가진다. 이러한 비교에 기초하여, 출발 물질은 약 70%의 결정형 A 및 약 30%의 다른 결정질 형태의 aza-T-dCyd를 포함하는 것으로 계산된다.The HR-XRPD pattern of the starting material was compared with the HR-XRPD pattern, which is a simulated pattern of a single crystal of crystalline Form A, and is shown in FIG. 2 . The crystal A has peaks in 7.7 °, 13.02 °, 15.34 °, 16.78 °, 18.62 °, 19.42 °, 21.94 °, 22.90 °, 25.70 °, 27.86 °, 28.70 °, 31.42 °, 32.70 °, and 37.46 ° 2 θ. Based on this comparison, the starting material is calculated to contain about 70% of crystalline Form A and about 30% of the other crystalline forms of aza-T-dCyd.
25-300℃(10℃/분) 사이에서 출발 물질의 TGMS 분석 결과, 가장 가능성 있는 유기 용매로 인해 100-170℃ 사이에서 11.7%의 질량 손실을 나타내었다(도 3). 질량 손실과 동시에 열 흐름 신호는 두 개의 흡열 현상을 보여주었으며 그 사이에 발열 현상이 있었다. 용융 및 분해 시작으로 인해 195°C 부근에서 세 번째 흡열 현상이 관찰되었다.TGMS analysis of the starting material between 25-300 °C (10 °C/min) showed a mass loss of 11.7% between 100-170 °C, most likely due to organic solvents (Fig. 3). Simultaneously with the mass loss, the heat flow signal showed two endotherms with an exotherm in between. A third endotherm was observed around 195 °C due to the onset of melting and decomposition.
25-300℃(10℃/분) 사이에서 출발 물질의 DSC 분석 결과는 TGMS 분석 동안 관찰된 열 흐름 신호와 일치하고, 141 °C에서 발열 현상과 함께 131℃ 및 162℃에서 2가지 흡열 현상을 나타내었다. 세 번째 흡열 현상이 196.4°C의 Tpeak에서 관찰되었으며, 이는 비용매화 무수상의 용융(melting of a non-solvated anhydrous phase)과 관련있다(도 4).DSC analysis of the starting material between 25-300 °C (10 °C/min) showed two endotherms at 131 °C and 162 °C with an exotherm at 141 °C, consistent with the heat flow signal observed during the TGMS analysis. A third endothermic event was observed at T peak of 196.4 °C, which was related to the melting of a non-solvated anhydrous phase (Fig. 4).
XRPD 및 단결정 구조 분석으로부터 출발 물질이 결정질 상의 혼합물로 이루어진 것으로 밝혀졌다. 열적 현상의 특성을 추가로 조사하기 위해 출발 물질에 대해 두 가지 순환 DSC 실험을 수행했다. 한 샘플을 170°C로 가열하고 실온으로 다시 냉각했다. 수득된 고체를 XRPD로 분석한 결과, 결정형 A의 모의 패턴과 일치하였다(도 5). 두 번째 사이클링 DSC 실험에서 출발 물질을 170°C로 가열하고 25°C로 냉각한 다음 300°C로 가열했다(도 6). 냉각하는 동안 열적 현상은 관찰되지 않았으며 두 번째 가열 사이클에서는 194°C에서 흡열성 용융 현상만 관찰되어 결정형 A의 용융 온도를 확인했다.XRPD and single crystal structure analysis revealed that the starting material consisted of a mixture of crystalline phases. To further investigate the nature of the thermal phenomena, two cyclic DSC experiments were performed on the starting materials. One sample was heated to 170°C and cooled back to room temperature. As a result of analyzing the obtained solid by XRPD, it was consistent with the simulated pattern of crystalline Form A (FIG. 5). In a second cycling DSC experiment, the starting material was heated to 170 °C, cooled to 25 °C and then heated to 300 °C (Fig. 6). No thermal phenomena were observed during cooling, and only endothermic melting was observed at 194 °C in the second heating cycle, confirming the melting temperature of Form A.
Figure PCTKR2023001028-appb-img-000004
Figure PCTKR2023001028-appb-img-000004
실시예 2: 무정형 물질의 생성Example 2: Production of amorphous material
다형체 스크린(polymorph screen)을 위해, aza-T-dCyd의 동결 건조 용액법을 통해 출발 물질로부터 무정형 물질을 생성하였다. 동결 건조 실험을 위한 유기 용매 중 aza-T-dCyd 용액을 얻기 위해 aza-T-dCyd에 물, 물/1,4-디옥산(50/50), 물/THF(50/50) 및 물/ tert-부틸 알코올(50/50%(v/v))를 첨가하였다. aza-T-dCyd 용액을 동결 건조한 결과, 불순물을 포함하는 불량한 결정 물질들이 생성되었다.For the polymorph screen, an amorphous material was generated from the starting material via a lyophilized solution method of aza-T-dCyd. Water, water/1,4-dioxane (50/50), water/THF (50/50) and water/tert-butyl alcohol (50/50% (v/v)) were added to aza-T-dCyd to obtain a solution of aza-T-dCyd in organic solvent for freeze-drying experiments. Lyophilization of the aza-T-dCyd solution resulted in poor crystalline materials containing impurities.
실시예 3: 용해도 연구Example 3: Solubility Study
aza-T-dCyd의 열역학적 용해도는 진탕 플라스크 방법에 따라 결정되었다. 결정질 aza-T-dCyd의 현탁액을 25개의 순수한 용매에서 제조하였다. 저농도 현탁액(thin suspensions)이 얻어질 때까지 소량의 용매를 aza-T-dCyd에 첨가하였다. 이어서, 샘플을 24시간 동안 연속 교반 하에 실온에서 평형화시켰다. 평형화 후, 소량의 모액을 여과하고 HPLC로 분석하였다. 용질의 농도는 aza-T-dCyd의 보정 곡선에 대해 결정되었다. 실온에서 aza-T-dCyd의 용해도 값은 미국 약전 분류(USP29)에 따라 표 3에 나열되어 있다. aza-T-dCyd는 DMF 및 DMA와 같은 고비점 용매에 용해되었다. 일반적으로, aza-T-dCyd는 극성 용매에 약간 또는 매우 약간 용해되고 비극성 용매에 거의 용해되지 않았다.The thermodynamic solubility of aza-T-dCyd was determined according to the shake flask method. A suspension of crystalline aza-T-dCyd was prepared in 25 pure solvents. A small amount of solvent was added to aza-T-dCyd until thin suspensions were obtained. The sample was then equilibrated at room temperature under continuous stirring for 24 hours. After equilibration, a small amount of mother liquor was filtered and analyzed by HPLC. Concentrations of solutes were determined against a calibration curve of aza-T-dCyd. The solubility values of aza-T-dCyd at room temperature are listed in Table 3 according to the United States Pharmacopoeia classification (USP29). aza-T-dCyd was dissolved in high-boiling solvents such as DMF and DMA. In general, aza-T-dCyd is slightly or very slightly soluble in polar solvents and sparingly soluble in non-polar solvents.
Figure PCTKR2023001028-appb-img-000005
Figure PCTKR2023001028-appb-img-000005
실시예 4: 다형체 스크린 (Polymorph Screen)Example 4: Polymorph Screen
다양한 순수 유기 용매 및 다양한 조성의 용매 혼합물로, 6가지 상이한 결정화법을 조합하여, 다형체 스크린을 수행하였다. 용액에서 열악한 aza-T-dCyd의 열 안정성과 물 및 케톤에서 aza-T-dCyd의 제한된 안정성을 고려하여 스크리닝 실험 조건은 다음과 같이 선택되었다 : (1) 결정질 출발 물질로 실험을 시작했음 ; (2) 화합물이 제한된 시간(<5일) 동안 용액에 머물렀음; (3) 고온을 피했음(<50 °C); (4) 고체 aza-T-dCyd는 습기 흡수를 피하기 위해 가능한 한 건조한 조건(상대 습도 약 20%) 하에 글로브박스에서 취급됨; (5) 물을 피하고 케톤 사용을 제한했음; 및 (6) 얻어진 고체의 물리적 안정성을 평가하기 위한 완만한 응력 조건.A polymorph screen was performed with various pure organic solvents and solvent mixtures of various compositions, combining six different crystallization methods. Considering the poor thermal stability of aza-T-dCyd in solution and the limited stability of aza-T-dCyd in water and ketones, the screening experimental conditions were chosen as follows: (1) the experiment was started with a crystalline starting material; (2) the compound stayed in solution for a limited time (<5 days); (3) avoided high temperatures (<50 °C); (4) solid aza-T-dCyd is handled in a glovebox under as dry conditions as possible (relative humidity about 20%) to avoid moisture absorption; (5) avoided water and limited ketone use; and (6) moderate stress conditions to evaluate the physical stability of the resulting solid.
다음과 같은 결정화법이 적용되었다.The following crystallization method was applied.
용매 평형 실험( Solvent equilibration experiments ). Solvent equilibration experiments .
용매 평형 실험은 1일 동안 RT 및 5일 동안 5°C의 두 가지 온도에서 수행되었다. aza-T-dCyd의 현탁액은 결정질 출발 물질과 함께 다른 용매에서 제조되었고 평형 시간이 완료되면 고체가 모액으로부터 분리되었다.Solvent equilibration experiments were performed at two temperatures: RT for 1 day and 5 °C for 5 days. Suspensions of aza-T-dCyd were prepared in different solvents along with the crystalline starting material and the solid was separated from the mother liquor upon completion of the equilibration time.
증발 결정화 실험( Evaporative crystallization experiments ). Evaporative crystallization experiments .
증발 결정화 실험은 실온에서 수행된 용매 평형 실험 및 용매 혼합물로부터 회수된 여과된 모액을 사용하여 설정되었다. 용매를 주변 조건에서 천천히 증발시킨 다음, 50℃에서 진공(10mbar) 하에 추가로 건조시켰다.Evaporative crystallization experiments were set up using solvent equilibration experiments performed at room temperature and filtered mother liquors recovered from solvent mixtures. The solvent was slowly evaporated at ambient conditions and then further dried under vacuum (10 mbar) at 50 °C.
반용매 실험( Anti-solvent experiments ). Anti-solvent experiments .
역 첨가(reverse addition)에 의해 10개의 용매와 반용매의 조합을 사용하여 반용매 실험을 수행했다. 소량의 aza-T-dCyd의 고농축 용액을 20mL의 반용매에 첨가했다(1단계).Anti-solvent experiments were performed using 10 solvent and anti-solvent combinations by reverse addition. A small amount of a highly concentrated solution of aza-T-dCyd was added to 20 mL of anti-solvent (Step 1).
열순환 실험( Thermocycling experiments ). Thermocycling experiments .
열순환 실험은 실온에서 다양한 용매 및 용매 혼합물에서 aza-T-dCyd 현탁액을 제조하여 수행되었다. 생성된 현탁액을 5 내지 50℃의 온도 프로파일에 적용하였다.Thermocycling experiments were performed by preparing aza-T-dCyd suspensions in various solvents and solvent mixtures at room temperature. The resulting suspension was subjected to a temperature profile of 5 to 50 °C.
초음파 처리 실험( Sonication experiments ). Sonication experiments .
초음파 처리 실험은 소량의 용매 존재 하에 결정질 출발 물질을 초음파 처리하여 수행하였다.Sonication experiments were performed by sonicating crystalline starting materials in the presence of small amounts of solvent.
용액 실험으로의 증기 확산( Vapor diffusion into solution experiments ). Vapor diffusion into solution experiments .
용액으로의 증기 확산 실험은 반용매 결정화의 느린 방법으로 수행되었습니다. 포화 aza-T-dCyd 용액을 실온에서 일주일 동안 반용매 증기에 노출시켰다.Vapor diffusion experiments into solution were performed with the slow method of anti-solvent crystallization. A saturated aza-T-dCyd solution was exposed to anti-solvent vapor for one week at room temperature.
수득된 모든 고체를 RT 및 20% 상대 습도의 글로브박스에서 밤새 건조시킨 후 및 RT에서 진공(10mbar) 하에 밤새 건조시킨 후 HT-XRPD에 의해 분석하였다. 모액이 회수되면 모액(ML)을 증발시키고 회수된 고체를 HT-XRPD로 분석하였다. 그 후, 모든 고체를 2일 동안 가속 노화 조건(25°C/60% RH)에 노출시킨 다음 HT-XRPD로 재분석했다.All solids obtained were analyzed by HT-XRPD after drying overnight in a glovebox at RT and 20% relative humidity and after drying overnight under vacuum (10 mbar) at RT. When the mother liquor was recovered, the mother liquor (ML) was evaporated and the recovered solid was analyzed by HT-XRPD. All solids were then exposed to accelerated aging conditions (25°C/60% RH) for 2 days and then reanalyzed by HT-XRPD.
결정형 A는 스크리닝 실험으로부터 회수된 가장 풍부한 결정상이었다. 결정형 A는 모든 결정화 방법과 다양한 용매 및 용매 혼합물에서 발견되었다. 용매 평형 실험으로부터, 결정형 A는 aza-T-dCyd가 약간 용해되거나 매우 약간 용해되는 용매로부터 순수한 상으로 수득되는 것으로 관찰되었다.Form A was the most abundant crystalline phase recovered from the screening experiment. Form A was found in all crystallization methods and in various solvents and solvent mixtures. From solvent equilibrium experiments, it was observed that Form A was obtained as a pure phase from solvents in which aza-T-dCyd was slightly or very slightly soluble.
일부 고형물에서, 결정형 A의 XRPD 패턴 외에, 출발 물질에서 이미 관찰된 피크의 존재가 검출되었고 전술한 바와 같다. aza-T-dCyd 배치는 결정형 A 70% 및 기타 결정상 30%를 함유했다. 30%의 다른 상의 존재는 XRPD 패턴에 나타나는 피크인 16.0°, 17.6°, 24.8°, 26.3° 및 34.1° 2θ에서 가장 명확하게 강조 표시되었다. 다형체 스크린 실험에서 회수된 고형물을 평가하여 이러한 불순물 피크의 할당 및 분류를 시도하였다. 출발 물질, 결정형 A, 결정형 B, 결정형 A+C1, 결정형 A+C2, 결정형 A+D1, 및 결정형 A+D2의 XRPD 패턴의 개요가 도 11에 도시되어 있다.In some solids, in addition to the XRPD pattern of Form A, the presence of peaks previously observed in the starting material was detected and described above. The aza-T-dCyd batch contained 70% Form A and 30% other crystalline phases. The presence of 30% of the other phases was highlighted most clearly at 16.0°, 17.6°, 24.8°, 26.3° and 34.1° 2θ, peaks appearing in the XRPD pattern. The solids recovered in the polymorph screen experiments were evaluated to attempt assignment and classification of these impurity peaks. An overview of the XRPD patterns of the starting materials, Form A, Form B, Form A+C1, Form A+C2, Form A+D1, and Form A+D2, is shown in FIG. 11 .
26.3° 2θ에서의 피크는 결정형 B에 속하였다. 16.0° 2θ에서 관찰된 피크는 결정형 C1을 나타내고 16.0 및 17.6° 2θ에서의 피크는 결정형 C2에 기인하였다. 24.8°2θ에서 관찰된 피크는 결정형 D1에 기인하고 24.8 및 34.1°2θ에서의 피크는 결정형 D2에 기인한다. 이 할당에 따라 일부 고형물은 결정형 A+D1/D2, A+C1/C2 또는 A+B+D2로 분류되었다.The peak at 26.3° 2θ belonged to Form B. The observed peak at 16.0° 2θ represents Form C1 and the peaks at 16.0 and 17.6° 2θ were attributed to Form C2. The observed peak at 24.8° 2θ is attributed to Form D1 and the peaks at 24.8 and 34.1° 2θ are attributed to Form D2. According to this assignment, some solids were classified as crystalline forms A+D1/D2, A+C1/C2 or A+B+D2.
결정형 B는 실온 및 5℃ 둘 다에서 DMA 및 DMF에서의 용매 평형화에 의해 및 또한 DMSO/2-에틸-1-헥산올(50/ 50)에서의 열순환 실험으로부터 순수한 상으로서 수득되었다. 결정형 B는 물리적으로 불안정하여 25ºC, 상대 습도 60%에서 보관한 후 결정형 A으로 전환되었다.Form B was obtained as a pure phase by solvent equilibration in DMA and DMF both at room temperature and 5° C. and also from thermocycling experiments in DMSO/2-ethyl-1-hexanol (50/50). Form B was physically unstable and converted to Form A after storage at 25ºC and 60% relative humidity.
클래스 C 및 D는 순수한 결정질 상으로 관찰되지 않았지만 항상 결정형 A와 혼합되어 있었다. 대부분의 경우, 이들 혼합물은 25℃, 60% 상대 습도에서 보관 후 결정형 A로 전환되었다.Classes C and D were not observed as pure crystalline phases but were always admixed with Form A. In most cases, these mixtures converted to Form A after storage at 25° C. and 60% relative humidity.
새로운 결정형은 결정형 A의 종자(seed)가 존재하지 않는 용액 기반 결정화 방법에서 발견되었다. 이러한 새로운 형태는 결정형 E, F, G1, G2, H, I, J, K로 분류되었다. 결정형 E는 DMA/클로로포름의 반용매 첨가 또는 DMA/TBME(80/20)의 증발 결정화법에서 얻었다. 결정형 E는 25ºC, 상대 습도 60%에서 보관 후 결정형 A로 전환되었다.A new crystalline form was discovered in a solution-based crystallization method in which no seeds of crystalline form A were present. These new forms have been classified as crystalline forms E, F, G1, G2, H, I, J, and K. Form E was obtained by antisolvent addition of DMA/chloroform or evaporative crystallization of DMA/TBME (80/20). Form E was converted to Form A after storage at 25ºC and 60% relative humidity.
결정형 F는 다양한 용매에서 증기 확산 또는 증발 결정화로부터 얻었다. 결정형 F은 물리적으로 안정적이었다. 결정형 F의 피크는 6.06°, 12.10°, 13.02°, 14.38°, 15.94°, 17.50°, 19.62°, 21.18°, 22.34°, 26.18°, 27.42°, 28.50°, 29.90°, 32.66°, 35.02°, 36.30°, 38.94°, 및 41.06° 2θ이었다.Form F was obtained from vapor diffusion or evaporative crystallization in various solvents. Form F was physically stable. The peaks of Form F are 6.06°, 12.10°, 13.02°, 14.38°, 15.94°, 17.50°, 19.62°, 21.18°, 22.34°, 26.18°, 27.42°, 28.50°, 29.90°, 32.66°, 35.0 2°, 36.30°, 38.94°, and 41.06° 2θ.
결정형 G1 및 G2는 유사한 XRPD 패턴을 가지며, 여기서 일부 피크는 두 형태 사이에서 이동한다. 결정형 G1은 용매 첨가 방지 또는 초음파 처리로부터 얻었다. DMA/EtOH를 사용한 증발 결정화법으로부터 결정형 G2를 얻었다. 결정형 G1과 결정형 G2는 모두 25℃, 60% 상대 습도에서 보관한 후 결정형 A로 전환되었다.Crystalline forms G1 and G2 have similar XRPD patterns, where some peaks shift between the two forms. Form G1 was obtained from avoiding solvent addition or from sonication. Form G2 was obtained from evaporative crystallization using DMA/EtOH. Both Form G1 and Form G2 were converted to Form A after storage at 25°C and 60% relative humidity.
여러 용매 혼합물에서 증발 결정화법으로부터 결정형 H을 얻었다. 이 형태는 불안정하다. NMP에서 얻은 경우 결정형 H은 결정형 F으로 전환되었다. 다른 용매에서 얻은 경우 결정형 H은 결정형 A으로 전환되었다.Form H was obtained from evaporative crystallization in several solvent mixtures. This form is unstable. When obtained from NMP, Form H was converted to Form F. Form H was converted to Form A when obtained from other solvents.
결정형 I은 DMSO/IPA로부터의 증발 결정화로부터 얻었다. 결정형 I은 25℃, 상대습도 60%에서 보관한 후 결정형 A으로 전환되었다.Form I was obtained from evaporative crystallization from DMSO/IPA. Form I was converted to Form A after storage at 25°C and 60% relative humidity.
결정형 J는 용매로서 DMF 및 반용매로서 THF를 갖는 용액으로의 증기 확산으로부터 수득하였다. 결정형 J은 25℃, 상대습도 60%에서 보관한 후 결정형 A으로 전환되었다.Form J was obtained from vapor diffusion into a solution with DMF as solvent and THF as anti-solvent. Form J was converted to Form A after storage at 25°C and 60% relative humidity.
결정형 K는 DMF로부터의 증발 결정화 후 결정형 F와의 혼합물에서 관찰되었다. K형은 25℃, 상대습도 60%에서 보관한 후 결정형 F로 전환되었다.Form K was observed in mixtures with Form F after evaporative crystallization from DMF. Form K was converted to form F after storage at 25°C and 60% relative humidity.
결정형 L은 25℃ 및 65% 상대 습도에서 저장한 후 고체에서 관찰되었다.Form L was observed in the solid after storage at 25° C. and 65% relative humidity.
이들 신규 형태 각각에 대한 XRPD 패턴은 도 12에 도시되어 있다.The XRPD patterns for each of these new forms are shown in FIG. 12 .
실시예 5: AZA-T-DCYD의 신규 형태의 특성화Example 5: Characterization of a novel form of AZA-T-DCYD
상기 스크린에서 식별된 각각의 고유한 형태는 TGMS 및 LCMS에 의해 추가로 특성화되었다. 결정형 A 및 F는 무수물인 것으로 보인 반면, 다른 형태는 용매화되었다. 표 4는 전술한 결정형의 aza-T-dCyd에 대한 결정화 조건을 요약하였고, 표 5는 다양한 aza-T-dCyd 결정형의 특성을 요약한 것이다(AAC는 25°C, 60% 상대 습도에서의 보관을 나타냄).Each unique form identified in the screen was further characterized by TGMS and LCMS. Forms A and F appear to be anhydrous, while the other forms are solvated. Table 4 summarizes the crystallization conditions for the aforementioned crystalline forms of aza-T-dCyd, and Table 5 summarizes the properties of the various aza-T-dCyd crystalline forms (AAC indicates storage at 25 °C, 60% relative humidity).
Figure PCTKR2023001028-appb-img-000006
Figure PCTKR2023001028-appb-img-000006
Figure PCTKR2023001028-appb-img-000007
Figure PCTKR2023001028-appb-img-000007
TFE에서 RT의 용매 평형화 실험에서 얻은 결정형 A를 분석적 특성화에 사용했다. TGMS 결과는 30 - 190 °C의 온도 범위에서 약 0.7%의 잔류 용매 방출을 보여주었다(도 12A). 용융 및 분해(decomposition)로 인해 205℃에서 DSC 트레이스에서 흡열 현상이 관찰되었다(도 12B). LCMS 분석을 통해 결정형 A의 순도 100%(면적%)의 무결성(integrity)을 확인했다(도 12C).Form A obtained from solvent equilibration experiments of RT in TFE was used for analytical characterization. TGMS results showed residual solvent release of about 0.7% in the temperature range of 30 - 190 °C (FIG. 12A). An endotherm was observed in the DSC trace at 205 °C due to melting and decomposition (Fig. 12B). LCMS analysis confirmed the integrity of 100% (area %) purity of Form A (FIG. 12C).
DMF/아세토니트릴(80/20, v/v)을 사용한 증발 결정화 실험에서 얻은 결정형 F를 특성화에 사용했다. TGMS 결과는 30 내지 140℃에서 1.1%의 작은 손실을 나타내었으며, 이는 대부분 잔류 용매로 인한 것일 수 있다(도 15A). DSC 트레이스는 용융 및 분해로 인해 약 170℃에서 하나의 흡열 현상을 나타내었다(도 15B). LCMS 분석을 통해 API의 순도 100%(면적%)의 무결성을 확인했다(도 15C).Form F obtained from evaporative crystallization experiments using DMF/acetonitrile (80/20, v/v) was used for characterization. The TGMS results showed a small loss of 1.1% between 30 and 140 °C, which may be mostly due to residual solvent (FIG. 15A). The DSC trace showed one endothermic event at about 170 °C due to melting and decomposition (Fig. 15B). LCMS analysis confirmed the integrity of the API with 100% purity (area %) (FIG. 15C).
결정형 A는 결정형 F보다 더 높은 용융 온도를 갖고 열역학적으로 더 안정한 형태로 간주될 수 있다. 결정형 A과 F형은 모두 무수물(anhydrous)이다.Form A has a higher melting temperature than Form F and can be considered a more thermodynamically stable form. Both crystalline forms A and F are anhydrous.
결정형 B, C2, D2, E, G1, G2, H, I, J 및 K는 각각 용매화되고 2일 동안 25℃, 60% 상대 습도에서 저장될 때 결정형 A로 전환된다.Forms B, C2, D2, E, G1, G2, H, I, J and K, respectively, convert to Form A when solvated and stored at 25° C., 60% relative humidity for 2 days.
실온에서 DMA에서의 용매 평형화 실험으로부터 얻은 결정형 B를 추가로 특성규명하였다. TGMS 결과는 30~170°C 사이에서 25.0%의 질량 손실로 가열 시 점진적인 질량 손실을 보여주었다. 가열 시 점진적인 질량 손실로 인해 분해가 시작되는 온도가 명확하지 않다. 결정형 B는 상이한 용매로 형성될 수 있는 비화학량론적 용매화물일 수 있다. LCMS 분석은 97.3% aza-T-dCyd의 고체의 순도와 2.7%(면적%)의 불순물의 존재를 나타내었다.Form B obtained from solvent equilibration experiments in DMA at room temperature was further characterized. The TGMS results showed a gradual mass loss upon heating between 30 and 170 °C with a mass loss of 25.0%. The temperature at which decomposition begins is not clear due to the gradual loss of mass on heating. Form B can be a non-stoichiometric solvate that can be formed with different solvents. LCMS analysis indicated a solid purity of 97.3% aza-T-dCyd and the presence of impurities of 2.7% (area %).
결정형 C2는 다른 형태와의 혼합물에서 XRPD 패턴에서 관찰된 2개의 추가 피크를 나타내었다. TGMS 분석은 30 - 160 °C의 온도 범위에서 0.7%의 질량 손실을 보여주었다. 열 흐름 신호는 190°C 부근에서 단 하나의 흡열 현상을 나타내었으며, 이는 결정형 A의 용융 및 분해와 관련될 수 있다. 결정형 A과의 혼합물에서 C2형은 미량으로만 존재하기 때문에 C2형에 대한 조사는 결론이 나지 않는다. 따라서 이 형태의 성격은 여전히 불분명하다. 그러나 전체 고형물 샘플의 화학적 순도가 100%(면적%)였기 때문에 aza-T-dCyd의 진정한 (의사) 다형체((pseudo-)polymorph)로 보인다.Form C2 showed two additional peaks observed in the XRPD pattern in mixtures with other forms. TGMS analysis showed a mass loss of 0.7% over the temperature range of 30 - 160 °C. The heat flow signal showed only one endothermic event around 190 °C, which could be related to the melting and decomposition of Form A. The investigation of form C2 is inconclusive because form C2 is only present in trace amounts in mixtures with crystalline form A. Therefore, the nature of this form is still unclear. However, it appears to be a true (pseudo-)polymorph of aza-T-dCyd, as the chemical purity of the total solid sample was 100% (area %).
결정형 D2는 결정형 A와의 혼합물에서 XRPD 패턴에서 관찰된 2개의 추가 피크를 나타냈다. 결정형 A+D2의 TGMS 분석은 결정형 D2가 용매화된 형태일 가능성이 가장 높음을 보여주었다. 90~170°C에서 5.1%의 질량 손실이 관찰되었다. 결과는 방출된 용매에 대해 결정적이지 않았다. 결정형 혼합물에 대한 LCMS 분석은 100%(면적%)의 화학적 순도로 aza-T-dCyd의 무결성을 확인했다.Form D2 exhibited two additional peaks observed in the XRPD pattern in mixtures with Form A. TGMS analysis of Form A+D2 showed that Form D2 was most likely the solvated form. A mass loss of 5.1% was observed between 90 and 170 °C. The results were inconclusive with respect to the released solvent. LCMS analysis of the crystalline mixture confirmed the integrity of aza-T-dCyd with a chemical purity of 100% (area %).
DMA를 사용한 증발 결정화 실험에서 얻은 결정형 E를 TGMS 및 LCMS로 추가 분석했다. TGMS 결과는 DMA의 25.8% 질량 손실을 나타내었으며, 이는 용매 1몰 당량에 해당한다. 용매는 90 내지 160℃ 사이에서 단계적 방식으로 방출되었는데, 이는 결정형 E가 모노-DMA 용매화물임을 시사한다. 탈용매화 후 흡열 현상이 200°C에서 기록되었으며, 아마도 결정형 A의 용융에 해당했을 것이다. 화합물 무결성은 LCMS 분석에 의해 확인되었다.Form E from evaporative crystallization experiments using DMA was further analyzed by TGMS and LCMS. The TGMS results showed a 25.8% mass loss of DMA, which corresponds to 1 molar equivalent of solvent. The solvent was released in a stepwise manner between 90 and 160 °C, suggesting that Form E is a mono-DMA solvate. After desolvation, an endothermic event was recorded at 200 °C, probably corresponding to melting of Form A. Compound integrity was confirmed by LCMS analysis.
클래스 G는 용매화물의 등구조 클래스(isostructural class)이다. 결정형 G1 및 G2는 TGMS 및 LCMS에 의해 추가로 특성화되었다. LCMS 분석은 화합물 무결성을 확인했다(100%의 면적%). NMP 및 시클로헥산을 사용한 반용매 첨가 실험에서 얻은 결정형 G1을 특성화에 사용했다. TGMS 결과는 90과 160 °C 사이에서 단계적으로 27.5%의 질량 손실을 보였다. 27.5% 질량 손실은 aza-T-dCyd 분자당 약 1분자의 NMP에 해당하므로 결정형 G1은 모노-NMP 용매화물일 수 있다. DSC 신호는 용매 손실로 인한 110 및 150°C 부근의 두 가지 흡열 현상과 200°C에서의 세 번째 흡열 현상을 기록했으며, 이는 결정형 A의 용융에 해당할 수 있다. 결정형 G2은 DMA/에탄올 (80/20, v/v)에서 증발 결정화에 의해 얻어졌다. 70~120°C에서 TGMS에 의해 관찰된 14.6%의 질량 손실은 DMA의 0.5몰 당량에 해당한다. 이는 결정형 G2가 hemi-DMA 용매화물일 수 있음을 시사하였다. DSC 신호에서 용매 손실로 인해 80 및 90°C 부근에서 두 개의 흡열 현상이 관찰되었고 용융 및 분해로 인해 195°C 부근에서 세 번째 흡열 현상이 관찰되었다.Class G is an isostructural class of solvates. Crystalline forms G1 and G2 were further characterized by TGMS and LCMS. LCMS analysis confirmed compound integrity (area % of 100%). Form G1 obtained from antisolvent addition experiments using NMP and cyclohexane was used for characterization. TGMS results showed a stepwise mass loss of 27.5% between 90 and 160 °C. The 27.5% mass loss corresponds to approximately one molecule of NMP per molecule of aza-T-dCyd, so Form G1 may be a mono-NMP solvate. The DSC signal recorded two endotherms around 110 and 150 °C due to solvent loss and a third endotherm at 200 °C, which may correspond to the melting of Form A. Form G2 was obtained by evaporative crystallization in DMA/ethanol (80/20, v/v). The 14.6% mass loss observed by TGMS between 70 and 120 °C corresponds to 0.5 molar equivalents of DMA. This suggested that Form G2 may be a hemi-DMA solvate. In the DSC signal, two endotherms were observed around 80 and 90 °C due to solvent loss, and a third endotherm around 195 °C due to melting and decomposition.
NMP/THF(80/20, v/v)로부터의 증발 결정화로부터 수득된 결정형 H를 결정형 H의 특성화에 사용하였다. TGMS 분석에 의해 관찰된 점진적 질량 손실은 30 내지 180°에서 15.3%였다. C는 NMP의 약 0.5몰 당량에 해당한다. 동시에 130°C 부근에서 광범위한 흡열 현상이 관찰되었다. 결정형 H은 다른 용매를 사용한 실험에서 관찰되었으며 따라서 결정 구조에 다른 용매 분자를 통합할 수 있는 비화학량론적 용매화물일 가능성이 가장 높다. 약 220°C에서 분해로 인해 DSC 추적에서 두 번째 광범위한 흡열 현상이 관찰되었다. TGMS 데이터에서 용매 손실이 끝나는 위치와 열분해가 시작된 위치가 명확하지 않다. 현상들(events)이 부분적으로 겹칠 수 있다. 건조 샘플을 얻으려면 고형물을 24시간 동안 50°C에서 진공 건조해야 했다. 이는 LCMS 데이터에서 고형물의 순도가 82%(면적%)임을 나타내므로 순도에 영향을 미쳤을 수 있다.Form H obtained from evaporative crystallization from NMP/THF (80/20, v/v) was used for characterization of Form H. The gradual mass loss observed by TGMS analysis was 15.3% from 30 to 180°. C corresponds to about 0.5 molar equivalent of NMP. At the same time, an extensive endotherm was observed around 130 °C. Form H was observed in experiments with other solvents and is therefore most likely a non-stoichiometric solvate capable of incorporating other solvent molecules into the crystal structure. A second extensive endotherm was observed in the DSC trace due to decomposition at around 220 °C. From the TGMS data, it is not clear where solvent loss ends and where thermal decomposition begins. Events may partially overlap. To obtain dry samples, the solids had to be vacuum dried at 50 °C for 24 hours. This may have affected the purity as the LCMS data indicated that the solid was 82% (area %) pure.
결정형 I은 DMSO/IPA(80/20, v/v)로부터 증발 결정화에 의해 얻었다. TGMS 데이터는 30~170°C에서 14.7%의 점진적인 질량 손실을 보여주었다. 14.7%의 질량 손실은 DMSO의 약 0.5몰 당량에 해당한다. 결정형 I은 hemi-DMSO 용매화물일 수 있다. DSC 추적은 질량 손실로 인해 70ºC와 110°C에서 두 가지 광범위한 흡열 현상을 보여주었고, 190°C 부근에서 용융 및 분해 과정으로 인한 세 번째 흡열 현상을 보여주었다.Form I was obtained by evaporative crystallization from DMSO/IPA (80/20, v/v). TGMS data showed a gradual mass loss of 14.7% between 30 and 170 °C. A mass loss of 14.7% corresponds to about 0.5 molar equivalent of DMSO. Form I may be a hemi-DMSO solvate. The DSC trace showed two broad endotherms at 70ºC and 110 °C due to mass loss, and a third endotherm around 190 °C due to melting and decomposition processes.
DMF 및 THF를 사용하여 용액으로 증기 확산(vapor diffusion)에 의해 침전된 결정형 J는 추가로 특성화되었다. TGMS 데이터는 120과 170 °C 사이에서 단계적으로 THF의 7.6%의 질량 손실을 보여주었다. 질량 손실은 THF의 약 0.3몰 당량에 해당하고 결정형 J은 따라서 비화학량론적 용매화물일 가능성이 가장 높다. DSC 추적은 용매 손실로 인해 120 및 150°C에서 두 가지 흡열 현상을 기록했으며 세 번째 흡열 현상은 200°C에서 기록되어 결정형 A의 용융/분해 이벤트와 일치한다.Form J, precipitated by vapor diffusion from solution using DMF and THF, was further characterized. TGMS data showed a 7.6% mass loss of THF stepwise between 120 and 170 °C. The mass loss corresponds to about 0.3 molar equivalents of THF and Form J is therefore most likely a non-stoichiometric solvate. The DSC trace recorded two endotherms at 120 and 150 °C due to solvent loss, and the third endotherm recorded at 200 °C, consistent with the melting/decomposition event of Form A.
형태 K는 형태 F와의 혼합물에서 1회 관찰되었고 DMF 용액으로부터 증발에 의해 수득되었다. 혼합물을 추가로 특성화하였다. TGMS 분석은 아마도 DMF의 손실로 인해 30~160°C 사이에서 6.3%의 질량 손실을 보여주었다. 질량 손실은 110°C 주변에서 작은 흡열 현상을 동반했다. 180 및 195 °C에서 두 가지 큰 흡열 현상이 관찰되었다. 195°C에서의 흡열은 결정형 A의 용융 및 분해로 인한 것일 수 있다. 결정형 K은 결정형 F(비용매화 형태)과의 혼합물이기 때문에 결정형 K은 용매화된 형태일 가능성이 가장 높다.Form K was observed once in a mixture with Form F and was obtained by evaporation from a DMF solution. The mixture was further characterized. TGMS analysis showed a mass loss of 6.3% between 30 and 160 °C, probably due to the loss of DMF. The mass loss was accompanied by a small endotherm around 110 °C. Two large endotherms were observed at 180 and 195 °C. The endotherm at 195 °C may be due to melting and decomposition of Form A. Since Form K is a mixture with Form F (the unsolvated form), Form K is most likely the solvated form.
결정형 L은 25℃, 60% 상대 습도 및 매우 낮은 수율에서의 저장 후에만 관찰되는 불량한 결정질 고형물이였다. TGMS 분석에서 30 ~ 170°C 사이에서 2.8%의 질량 손실이 관찰되었으며 분해가 뒤따랐다. DSC 추적에서 열 현상이 없는 것은 분석에 사용된 소량의 샘플 때문일 수 있다. 질량 손실이 결정 구조에 갇힌 용매 때문인지 아니면 잔류 용매 때문인지는 확실하지 않다. 더 이상의 특성화를 수행할 수 없으므로 결정형 L의 특성이 불분명하다.Form L was a poor crystalline solid observed only after storage at 25° C., 60% relative humidity and very low yield. TGMS analysis observed a mass loss of 2.8% between 30 and 170 °C followed by decomposition. The absence of thermal events in the DSC traces may be due to the small amount of sample used for analysis. It is not clear whether the mass loss is due to solvent trapped in the crystal structure or residual solvent. The nature of Form L is unclear as no further characterization could be performed.
아세토니트릴의 aza-T-dCyd 용액에서 단결정을 성장시키려는 시도에서 얻은 결정은 아세토니트릴 용매화물인 것으로 나타났다. 이 단계는 어떤 스크리닝 실험에서도 관찰되지 않았다. 용매화물은 a = 9.2948(15), b = 7.3509(9), c = 10.2312(15) Å, β = 107.661(2)°, V = 666.10(17) Å3, Z = 2의 셀 단위 치수 및 1.423g/cm3의 밀도를 갖는 단사정계 P21 공간 그룹으로 결정화되었다. 단결정만이 형성(매우 낮은 수율)되었기 때문에 이 형태에 대해 더 이상의 특성화를 수행하지 않았으며 물리적 안정성도 조사해야 한다.Attempts to grow single crystals from aza-T-dCyd solutions in acetonitrile have shown that the resulting crystals are acetonitrile solvates. This step was not observed in any of the screening experiments. The solvate crystallized into a monoclinic P21 space group with cell dimension of a = 9.2948(15), b = 7.3509(9), c = 10.2312(15) Å, β = 107.661(2)°, V = 666.10(17) Å 3 , Z = 2 and density of 1.423 g/cm 3 . Since only single crystals were formed (very low yield), no further characterization was performed on this form and its physical stability should also be investigated.
실시예 6: aza-T-dCyd의 약동학적 특성Example 6: Pharmacokinetics of aza-T-dCyd
aza-T-dCyd(출발 물질; SM; 특정 결정화 조건을 아직 거치지 않은 aza-T-dCyd)의 약동학적 특성은 다음과 같이 연구되었다.The pharmacokinetic properties of aza-T-dCyd (starting material; SM; aza-T-dCyd not yet subjected to specific crystallization conditions) were studied as follows.
Aza-T-dCyd 출발 물질(SM)은 4개의 그룹으로 분할된 6마리의 암컷 NOD-SCID 마우스에 투여되었다. 그룹 1은 비히클 대조군 그룹이었다. 그룹 2는 2.0 mg/kg의 aza-T-dCyd 출발물질(SM)을 1일 1회 투약하였고, 그룹 3은 1.0 mg/kg의 aza-T-dCyd 출발물질(SM)을 1일 2회 투약하였다. 그룹 2과 그룹 3에서는 상기 양의 aza-T-dCyd 출발물질(SM)을 5일 동안 투약한 후 2일 휴약하고, 다시 5일간 투약한 후 9일간의 휴약하였다. 이 주기가 반복되었다. 그룹 4는 aza-T-dCyd 출발물질(SM) 1.0 mg/kg을 5일 동안 하루 1회 투약 후 2일 휴약으로 이 주기를 반복하였다. 형광제를 이용하여 마우스의 종양 크기를 측정하였으며, 그 결과는 도 17에 나타난 바와 같다. Aza-T-dCyd starting material (SM) was administered to 6 female NOD-SCID mice divided into 4 groups. Group 1 was the vehicle control group. Group 2 was administered with 2.0 mg/kg of aza-T-dCyd starting material (SM) once a day, and group 3 was administered with 1.0 mg/kg of aza-T-dCyd starting material (SM) twice a day. In Groups 2 and 3, the aza-T-dCyd starting material (SM) was administered in the above amount for 5 days, followed by a 2-day break, another 5 days of administration, and then a 9-day break. This cycle repeated itself. Group 4 administered aza-T-dCyd starting material (SM) 1.0 mg/kg once a day for 5 days and then repeated this cycle with a 2-day break. The tumor size of the mouse was measured using a fluorescent agent, and the results are shown in FIG. 17 .
도 17에 나타난 바와 같이, 그룹 1(비히클 대조군)에서 종양 크기가 증가하였다. 또한, 그룹 2에서 종양 크기의 증가가 가장 크게 억제되는 것을 확인하였다. 대조적으로, 그룹 3에서 SM의 AUC는 그룹 2와 같을 것이라고 예상함에도 불구하고, 투약 40일 후에 종양의 크기가 급격히 증가함을 관찰할 수 있었다. 이로부터 aza-T-dCyd가 AUC 의존적이라기 보다는 Cmax 의존적임을 알 수 있었다.As shown in FIG. 17 , tumor size increased in group 1 (vehicle control group). In addition, it was confirmed that the increase in tumor size was most significantly suppressed in group 2. In contrast, despite the expectation that the AUC of SM in group 3 would be the same as in group 2, it was observed that the size of the tumor rapidly increased after 40 days of administration. From this, it was found that aza-T-dCyd was Cmax dependent rather than AUC dependent.
또한, 도 18에 도시된 바와 같이, 43일째의 결과를 입증하여 그룹 2(2.0mg/kg, 1일 1회)의 종양 크기가 그룹 1(1.0mg/kg, 1일 2회)보다 유의하게 작았다.In addition, as shown in FIG. 18, the tumor size of group 2 (2.0 mg/kg, once a day) was significantly smaller than that of group 1 (1.0 mg/kg, twice a day), demonstrating the results on day 43.
또한, 혈액암 세포(Mv4-11)에 aza-T-dCyd 출발물질(SM)을 처리한 후 1시간, 2시간, 4시간에 최대 억제 농도의 반값(IC50)을 측정하였다. 그 결과를 도 19에 나타내었다. 1시간에 측정된 IC50은 약 160nM이었으며, 따라서 2시간에 IC50은 80nM, 4시간에 IC50은 20nM일 것으로 예상되었다. 그러나 2시간에 측정된 IC50은 약 120nM으로 예상 값인 80nM보다 훨씬 높았다. 또한, 4시간에 측정된 IC50은 약 80nM으로 기대치인 20nM보다 훨씬 높았다. 따라서, aza-T-dCyd 출발물질(SM)의 효율은 세포에 대한 화합물의 노출 시간이 증가할수록 크게 감소함을 확인하였다. 이는 짧은 기간 동안 더 많은 양의 aza-T-dCyd 출발 물질(SM)을 노출시키는 것이 효율적인 치료를 제공할 수 있음을 시사한다.In addition, hematological malignant cells (Mv4-11) were treated with aza-T-dCyd starting material (SM), and the half-maximal inhibitory concentration (IC 50 ) was measured at 1 hour, 2 hours, and 4 hours. The results are shown in FIG. 19 . The measured IC 50 at 1 hour was about 160 nM, so the IC 50 at 2 hours was expected to be 80 nM and the IC 50 at 4 hours to be 20 nM. However, the IC 50 measured at 2 h was about 120 nM, much higher than the expected value of 80 nM. In addition, the IC 50 measured at 4 hours was about 80 nM, much higher than the expected value of 20 nM. Accordingly, it was confirmed that the efficiency of the aza-T-dCyd starting material (SM) decreased significantly as the exposure time of the compound to cells increased. This suggests that exposure to a higher amount of aza-T-dCyd starting material (SM) for a short period of time can provide an efficient treatment.
따라서, 상기 데이터는 후술하는 실시예 7에서 결정형 A 또는 결정형 F와 같은 큰 용해 프로파일을 갖는 결정질 다형체가, 열등한 용해 프로파일을 가지는 aza-T-dCyd 출발 물질(SM) 및 다른 결정질 다형체보다 우수하다는 것을 시사한다. 또한 동일한 이유에서, 상기 데이터는 결정형 A 또는 결정형 F와 같은 결정질 다형체가 aza-T-dCyd 출발 물질(SM) 및 다른 결정질 다형체보다 개선된 PK 프로파일을 나타낸다는 것을 시사한다. Thus, the data suggest that crystalline polymorphs with large dissolution profiles, such as Form A or Form F in Example 7 described below, are superior to aza-T-dCyd starting material (SM) and other crystalline polymorphs with inferior dissolution profiles. Also for the same reason, the data suggest that crystalline polymorphs such as Form A or Form F exhibit improved PK profiles over the aza-T-dCyd starting material (SM) and other crystalline polymorphs.
즉, 통상적으로 결정형이 무결정형에 비해 용해도 등에서 불리한 측면이 있음에도 불구하고, 결정형 A와 F의 경우 물리화학적으로 안정한 형태이면서도 pH 조건에 따른 용해특성이 매우 균일하고 빠르게 안정적으로 용해되므로, 제형개발의 필요에 따라 결정형을 제어하여 사용가능하다. That is, although the crystalline form usually has disadvantages in solubility compared to the amorphous form, in the case of crystalline forms A and F, although they are physicochemically stable forms, the dissolution characteristics according to the pH condition are very uniform and rapidly. Since they dissolve stably, the crystalline form can be controlled and used according to the need for formulation development.
실시예 7: 다양한 pH 지점에서 결정형 A 및 결정형 F의 용해율 프로파일Example 7: Dissolution Profiles of Form A and Form F at Various pH Points
pH 1.2, pH 6.5 및 pH 5.0에서 결정형 A과 결정형 F의 용해율(dissolution rate)을 측정하여 표 6 및 도 20-22에 나타내었다.The dissolution rates of Form A and Form F were measured at pH 1.2, pH 6.5 and pH 5.0 and are shown in Table 6 and FIGS. 20-22.
Figure PCTKR2023001028-appb-img-000008
Figure PCTKR2023001028-appb-img-000008
표 6 및 도 20 내지 22에 도시된 바와 같이, pH 1.2(위 및 대장의 pH 조건)에서, 결정형 A 및 결정형 F에서 유사한 용해율이 나타난 반면, 결정형 A는 결정형 F와 비교하여 보다 일관된 용해율 프로파일을 나타내었다. pH 6.5 및 pH 5(충수 및 소장의 pH 조건)에서, 결정형 F가 결정형 A보다 더 높은 용해율을 나타내었다.As shown in Table 6 and FIGS. 20 to 22, at pH 1.2 (gastric and colonic pH conditions), Form A and Form F exhibited similar dissolution rates, whereas Form A exhibited a more consistent dissolution profile compared to Form F. At pH 6.5 and pH 5 (pH conditions of the appendix and small intestine), Form F showed a higher dissolution rate than Form A.
이는 결정형 A가 약 pH 1.2(예를 들어, 위 또는 대장)에서 약물의 활성 성분을 방출하는 것을 표적으로 하는 다양한 약물 형태로 제조될 수 있음을 시사한다. 또한, 이는 결정형 F가 약 pH 5.0 내지 6.5(예를 들어, 소장)에서 약물의 활성 성분을 방출하는 것을 표적으로 하는 다양한 약물 형태로 제조될 수 있음을 시사한다.This suggests that Form A can be prepared into a variety of drug forms that target release of the drug's active ingredient at about pH 1.2 (e.g., stomach or large intestine). Further, this suggests that Form F can be made into various drug forms that target release of the drug's active ingredient at about pH 5.0-6.5 (eg, small intestine).
실시예 8: AZA-T-DCYD 출발 물질, 결정형 A 및 결정형 F의 약동학적 비교Example 8: Pharmacokinetic Comparison of AZA-T-DCYD Starting Material, Form A and Form F
aza-T-dCyd(출발 물질, SM, 아직 특정 결정화 조건을 거치지 않은 aza-T-dCyd), 결정형 A 및 결정형 F의 약동학적 특성을 다음과 같이 연구했다.The pharmacokinetic properties of aza-T-dCyd (starting material, SM, aza-T-dCyd not yet subjected to specific crystallization conditions), Form A and Form F were studied as follows.
aza-T-dCyd 출발물질(starting material, SM), 결정형 A, 결정형 F은 각각 미정질셀룰로오스와 8:92(w/w) 혼합된 캡슐 형태로 제조되었으며, 2 mg/kg의 SM, 결정형 A 또는 결정형 F. SM 캡슐, 결정형 A 캡슐 및 결정형 F 캡슐 각각은 2마리의 수컷 SD 쥐(즉, 총 6마리의 수컷 SD 쥐)에게 2 mg/kg 용량으로 투여되었다. 표 7-9에 나타난 바와 같이, 캡슐 투여 후 0.25, 0.5, 1, 2, 4, 6, 8 및 24시간에서, 시험된 SD 쥐의 각 SM, 결정형 A 및 결정형 F의 혈장 농도를 측정하였다.The aza-T-dCyd starting material (SM), crystalline form A, and crystalline form F were prepared in the form of capsules mixed with microcrystalline cellulose in an 8:92 (w/w) ratio, respectively, at 2 mg/kg of SM, crystalline form A or crystalline form F. Each of the SM capsules, crystalline A capsule, and crystalline Form F capsule was administered at a dose of 2 mg/kg to 2 male SD rats (i.e., a total of 6 male SD rats). As shown in Tables 7-9, plasma concentrations of each of SM, Form A and Form F in tested SD rats were measured at 0.25, 0.5, 1, 2, 4, 6, 8 and 24 hours after capsule administration.
변동 계수(coefficient of variation, CV)coefficient of variation ( CV )
표준편차(standard deviation)standard deviation
Figure PCTKR2023001028-appb-img-000009
Figure PCTKR2023001028-appb-img-000009
Figure PCTKR2023001028-appb-img-000010
Figure PCTKR2023001028-appb-img-000010
Figure PCTKR2023001028-appb-img-000011
Figure PCTKR2023001028-appb-img-000011
또한, 약동학적 파라미터는 하기 표 10-12와 같이 구하였다.In addition, pharmacokinetic parameters were obtained as shown in Tables 10-12 below.
Figure PCTKR2023001028-appb-img-000012
Figure PCTKR2023001028-appb-img-000012
Figure PCTKR2023001028-appb-img-000013
Figure PCTKR2023001028-appb-img-000013
Figure PCTKR2023001028-appb-img-000014
Figure PCTKR2023001028-appb-img-000014
위에 나타난 바와 같이 결정형 A와 결정형 F는 SM에 비해 더 큰 Cmax 값을 보였다. 특히 결정형 A는 SM보다 약 1.3배 높은 Cmax 값을, 결정형 F는 SM보다 약 1.4배 높은 Cmax 값을 보였다. 또한 결정형 A과 결정형 B 모두 SM보다 약 30% 높은 AUC 값을 보였다.As shown above, Form A and Form F showed higher Cmax values than SM. In particular, Form A showed a Cmax value about 1.3 times higher than SM, and Form F showed a Cmax value about 1.4 times higher than SM. In addition, both crystalline form A and crystalline form B showed about 30% higher AUC values than SM.
실시예 9: AZA-T-DCYD 출발 물질 및 결정형 A의 절반 최대 억제 농도(IC50) 비교Example 9: AZA-T-DCYD Comparison of half maximal inhibitory concentration (IC 50 ) of starting material and Form A
K562 및 HL-60 세포주는 37°C, 95% 공기 및 5% CO2에서 RPMI(10% FBS, 1% 페니실린-스트렙토마이신) 배지에서 배양 및 유지되었다. K562 및 HL-60 세포주를 각각 96웰 플레이트에 3000개 세포/웰(90μl)의 밀도로 시딩했다. 결정형 A과 SM은 3배 희석액을 사용하여 10μl를 처리하여 최종 농도 10μM로 각 웰에 처리하였다. 세포를 37°C, 95% 공기 및 5% CO2에서 3일 동안 항온배양했다. 96-웰 플레이트를 평형화하기 위해 30분 동안 실온에 두었다. 그런 다음, 100 μl의 CellTiter-Glo® Luminescent Cell Viability Assay Reagent를 96-웰에 첨가하고 실온에서 10분 동안 항온배양했다. 발광도는 Luminometer를 이용하여 측정하였고 IC50 값은 GraphPrism을 이용하여 분석하였다.K562 and HL-60 cell lines were cultured and maintained in RPMI (10% FBS, 1% penicillin-streptomycin) medium at 37°C, 95% air and 5% CO 2 . K562 and HL-60 cell lines were each seeded in 96-well plates at a density of 3000 cells/well (90 μl). Crystalline A and SM were treated in 10 μl using a 3-fold dilution, and each well was treated at a final concentration of 10 μM. Cells were incubated for 3 days at 37°C, 95% air and 5% CO 2 . The 96-well plate was left at room temperature for 30 minutes to equilibrate. Then, 100 μl of CellTiter-Glo® Luminescent Cell Viability Assay Reagent was added to the 96-well and incubated for 10 minutes at room temperature. Luminescence was measured using a Luminometer, and IC 50 values were analyzed using GraphPrism.
도 23 및 도 24에 도시된 바와 같이, 결정형 A는 SM보다 약 5% 낮은 IC50 값을 나타내어 더 큰 효과를 제공한다.As shown in FIGS. 23 and 24 , Form A exhibits an IC 50 value about 5% lower than SM, providing a greater effect.
실시예 10: Aza-T-dCyd 약물 중 결정형 A의 비율(wt%)에 따른 Rat의 PK 실험Example 10: PK experiment in rats according to the ratio (wt%) of crystalline form A in drug Aza-T-dCyd
Aza-T-dCyd 약물의 투여용량 중 결정형 A의 함량(wt%)을 변화시키면서 제조된 캡슐 제형 1 capsule/rat을 수컷 SD 쥐(Rat)에서 경구투여 시 PK 실험을 통해 Cmax의 결과를 확인하였다. 표 13에 나타난 바와 같이, 치료효과가 Cmax 의존적인 Aza-T-dCyd 약물에서, 경구투여 시 최적의 치료효과는 Aza-T-dCyd 약물 중 결정형 A의 비율(wt%)이 중요한 요인이다.When 1 capsule/rat of the capsule formulation prepared by varying the content (wt%) of Aza-T-dCyd drug was orally administered to male SD rats, the result of Cmax was confirmed through a PK experiment. As shown in Table 13, in the Aza-T-dCyd drug whose therapeutic effect is dependent on Cmax, the optimal therapeutic effect when administered orally is an important factor in the ratio (wt%) of crystalline form A in the Aza-T-dCyd drug.
구체적으로 경구투여 시 PK 실험을 위한 시료는 하기와 같이 준비하였다. 순수한 결정형 A 100%인 Aza-T-dCyd 약물 원료를 준비하였다. Aza-T-dCyd 화합물 합성 후 순수한 결정형 F를 수득할 수 없었고, 얻어진 Aza-T-dCyd 약물 원료는 결정형 F 52%, 결정형 A 15%, 정의되지 않은 다른 형태들 33%로 구성된 다결정형이었다. 이 다결정의 Aza-T-dCyd 약물 원료는 다결정형 F'으로 명명하였다. 순수한 결정형 A 100%인 Aza-T-dCyd 약물 원료와 다결정형 F' 로 명명된 Aza-T-dCyd 약물 원료를 다양한 조성비로 혼합하고, 부형제로서 microcrystalline cellulose를 첨가하여 PK 실험을 위한 경구 투여형 캡슐 샘플을 준비하였다. 이때. Aza-T-dCyd 약물 원료와 부형제의 비율을 8:92(w/w)이다. Specifically, samples for PK experiments upon oral administration were prepared as follows. A drug raw material of Aza-T-dCyd with 100% pure crystalline form A was prepared. After synthesizing the Aza-T-dCyd compound, pure crystalline Form F could not be obtained, and the obtained Aza-T-dCyd drug substance was a polycrystalline form composed of 52% of crystalline form F, 15% of crystalline form A, and 33% of other undefined forms. This polycrystalline Aza-T-dCyd drug substance was named polycrystalline form F'. 100% pure crystalline Aza-T-dCyd drug substance and polycrystalline form F' named Aza-T-dCyd drug substance were mixed in various composition ratios, and microcrystalline cellulose was added as an excipient to prepare oral dosage form capsule samples for PK experiments. At this time. The ratio of Aza-T-dCyd drug raw material and excipient is 8:92 (w/w).
PK실험을 위한 실험군은 총 11 group으로 구성되어 있으며, 각 실험군의 Aza-T-dCyd 약물 중 결정형 A의 비율(mole %) (결정형 A : 다른 형태들)는 하기 표 13과 같다. The experimental group for the PK experiment consisted of a total of 11 groups, and the ratio (mole %) of Aza-T-dCyd in each experimental group (crystal form A: other forms) of Aza-T-dCyd is shown in Table 13 below.
Figure PCTKR2023001028-appb-img-000015
Figure PCTKR2023001028-appb-img-000015
경구 투여후 0.25, 0.5, 1, 2, 4, 6, 8, 및 24 hr에서 혈액 샘플링하여 PK 분석을 수행하였으며, 그 결과는 표 14 및 도 25에 나타내었다. PK analysis was performed by blood sampling at 0.25, 0.5, 1, 2, 4, 6, 8, and 24 hr after oral administration, and the results are shown in Table 14 and FIG. 25.
Figure PCTKR2023001028-appb-img-000016
Figure PCTKR2023001028-appb-img-000016
Aza-T-dCyd 약물은 결정형 A의 비율이 70% 이상에서 Cmax가 852~897 ng/mL 수준으로 현저히 높아졌다. 구체적으로, Rat에서 Aza-T-dCyd 약물 중 결정형 A의 비율이 70% 이상이면 안정적으로 Cmax가 850 ng/mL을 나타나지만, 70% 미만에서는 Cmax가 442~703 ng/mL을 갖는다.Aza-T-dCyd significantly increased Cmax to 852-897 ng/mL when the ratio of crystalline form A was 70% or more. Specifically, when the ratio of crystalline form A in the Aza-T-dCyd drug is 70% or more in rats, the Cmax stably shows 850 ng/mL, but when the ratio is less than 70%, the Cmax has 442-703 ng/mL.
이는 치료 효과 측면에서 Cmax 의존적인 Aza-T-dCyd 약물의 특성상 Aza-T-dCyd 약물 중 결정형 A의 비율이 70wt% 이상으로 설계 및 품질제어하는 것이 매우 중요하다는 것을 시사한다.This suggests that it is very important to design and quality control the ratio of crystalline form A in the Aza-T-dCyd drug to 70 wt% or more due to the characteristics of the Cmax-dependent Aza-T-dCyd drug in terms of therapeutic effect.
실시예 11: Aza-T-dCyd 약물의 부작용 제어Example 11: Side Effect Control of Drug Aza-T-dCyd
전술한 바와 같이, 마우스를 대상으로 2mpk를 처리한 것과 1mpk를 2회로 처리한 결과를 비교하였을 때, 마우스의 몸무게 감소가 후자에서 심하게 나타났다. 또한 In vivo luciferase activity를 측정하였을 때, 2회로 나누어 처리한 경우, 상승속도가 더욱 가파른 것으로 보아, 1회에 2mpk를 처리할 경우 tumor 저해 효능이 더욱 뛰어나다는 것을 예측할 수 있다. As described above, when comparing the results of treating mice with 2mpk and 1mpk twice, the weight loss of mice was severe in the latter. In addition, when the in vivo luciferase activity was measured, when the treatment was divided into two times, the rate of increase was steeper, so it can be predicted that the tumor inhibitory effect is more excellent when 2mpk is treated at one time.
즉, Aza-T-dCyd 약물에 여러 번 노출되는 것보다, 단기간에 빠른 처리를 통해 약효를 충분히 나타내는 것이 원하는 치료효과를 발휘할 수 있다.That is, rather than exposure to the Aza-T-dCyd drug several times, a desired therapeutic effect can be exerted by sufficiently exhibiting the drug effect through rapid treatment in a short period of time.
따라서, 본 발명은 aza-T-dCyd 약물의 최고 혈중농도(Cmax)로부터 원하는 치료 효과를 발휘하는, aza-T-dCyd 약물의 1회 투여용량을 설계함으로써, 환자 개인별 약물 노출량의 편차가 매우 높아 어떤 개인에게는 최적의 투여 용량에 해당하는 것이 다른 개인에게는 치료 효과를 보일 수 없는 용량이 되고, 또다른 개인에게는 심각한 독성을 일으키는 용량이 되어 치료 범위(therapeutic window)가 매우 좁아지게 되는 문제점을 해결할 수 있다.Therefore, the present invention can solve the problem that the variance in drug exposure among individual patients is very high, so that the optimal administration dose for one individual becomes a dose that cannot show a therapeutic effect for another individual, and for another individual, a dose that causes severe toxicity, resulting in a very narrow therapeutic window.
실시예 12: 경구 투여형 제제화시 위장관내 흡수 프로파일Example 12: Absorption profile in the gastrointestinal tract when formulated for oral dosage form
위장관 내 흡수 프로파일을 확인하기 위해, Aza-T-dCyd 약물을 마우스에 경구투여(PO)하였고, 맹장에 캐뉼러로 Aza-T-dCyd 약물을 찔러넣은 후, 도 26과 같은 혈장 농도(plasma concentration) 그래프들을 얻었다.To confirm the absorption profile in the gastrointestinal tract, the Aza-T-dCyd drug was orally administered (PO) to the mice, and after inserting the Aza-T-dCyd drug into the caecum with a cannula, plasma concentration graphs as shown in FIG. 26 were obtained.
도 26A 및 B는 각각 1mpk와 3mpk를 PO와 IC로 투여한 결과로, PO의 경우에는 일반적으로 위장관을 통해 약물이 흡수되어 나타내는 혈장 농도 분포 그래프를 나타낸다. 그러나, IC의 경우 plasma에 매우 적은 양의 약물이 존재하는 것으로 보이며, 즉, PO에 비해 plasma에 매우 낮은 노출도를 보인다. 즉, 경구 투여시 Aza-T-dCyd 약물은 맹장(대장이 시작되는 부위에 주머니처럼 부풀어있는 소화기관)에서 흡수되지 않는다.26A and 26B show plasma concentration distribution graphs showing drug absorption through the gastrointestinal tract in the case of PO as a result of PO and IC administration of 1mpk and 3mpk, respectively. However, in the case of IC, a very small amount of drug appears to be present in the plasma, that is, it shows a very low exposure to plasma compared to PO. That is, when administered orally, Aza-T-dCyd is not absorbed from the caecum (the digestive organ that swells like a pouch at the beginning of the large intestine).
즉, 대장이 시작되는 부위인 맹장 이후에서는 aza-T-dCyd 약물은 흡수되지 않는다는 것을 유추할 수 있으므로, aza-T-dCyd 약물의 좁은 치료창에서 독성 부작용 제어 가능하다.That is, since it can be inferred that the aza-T-dCyd drug is not absorbed in the postcecal region, which is the starting point of the large intestine, toxic side effects can be controlled in a narrow treatment window of the aza-T-dCyd drug.
Aza-T-dCyd 약물의 경우, 위에서 용해 소장 초입에서 흡수가 많이 안정적으로 될 수 있도록 제제화하는 것이 약의 효능을 개선하는 것과 밀접한 관련이 있음을 유추할 수 있다. In the case of the Aza-T-dCyd drug, it can be inferred that formulation so that the drug is dissolved in the stomach and absorbed at the beginning of the small intestine is highly stable and is closely related to improving the efficacy of the drug.
또한, 소장에서 추가 용해가 없으므로 Cmax가 치료창 범위 내에서 구현가능하여, 좁은 치료창으로 인한 독성 부작용도 해결가능하다.In addition, since there is no additional dissolution in the small intestine, Cmax can be implemented within the therapeutic window range, and toxic side effects due to the narrow therapeutic window can also be solved.
실시예의 전술한 설명은 예시 및 설명의 목적으로 제공되었다. 이는 공개를 완전하게 하거나 제한하려는 의도가 아닙니다. 특정 실시예의 개별 요소 또는 특징은 일반적으로 그 특정 실시예로 제한되지 않지만, 적용 가능한 경우, 특별히 도시되거나 설명되지 않더라도 상호 교환 가능하고 선택된 실시예에서 사용될 수 있다. 같은 것도 여러 가지로 다양할 수 있습니다. 그러한 변형은 본 개시 내용에서 벗어나는 것으로 간주되어서는 안 되며, 그러한 모든 수정은 본 개시 내용의 범위 내에 포함되도록 의도된다.The foregoing description of embodiments has been presented for purposes of illustration and description. It is not intended to be exhaustive or limiting the disclosure. Individual elements or features of a particular embodiment are generally not limited to that particular embodiment, but, where applicable, are interchangeable and can be used in a selected embodiment, even if not specifically shown or described. The same thing can be different in many ways. Such variations are not to be regarded as a departure from this disclosure, and all such modifications are intended to be included within the scope of this disclosure.

Claims (26)

  1. 약효가 최고 혈중농도(Cmax) 의존적인 5-아자-4'-티오-2'-데옥시사이티딘(aza-T-dCyd)을 유효성분으로 하는 경구용 제형의 제조방법에 있어서,In the method for preparing an oral dosage form containing 5-aza-4'-thio-2'-deoxycytidine (aza-T-dCyd), the efficacy of which is dependent on the highest blood concentration (Cmax), as an active ingredient,
    aza-T-dCyd 약물의 최고 혈중농도(Cmax)로부터 원하는 치료 효과를 발휘하는 1회 투여용량을 허용가능한 오차범위 내에서 정밀하게 설계하는 것이 특징인 경구용 제형의 제법.A method for preparing an oral dosage form characterized by precisely designing a single dose that exhibits a desired therapeutic effect from the highest blood concentration (Cmax) of an aza-T-dCyd drug within an acceptable error range.
  2. 제1항에 있어서, 치료 효과는 항암 효과인 것이 특징인 경구용 제형의 제법.The method of claim 1, wherein the therapeutic effect is an anti-cancer effect.
  3. 제1항에 있어서, aza-T-dCyd 약물의 1회 투여용량으로부터 산출되는 aza-T-dCyd 약물의 최고 혈중농도(Cmax)가 무독성 수준(No-observed-adverse-effect level, NOAEL) 또는 심각한 독성을 유발하지 않는 최고용량 (the highest non-severe toxic dose, HNSTD)에 대응되는 값 보다 낮게 되도록, aza-T-dCyd 약물의 1회 투여용량을 설계하는 것이 특징인 경구용 제형의 제법.The method of claim 1, wherein the single dose of aza-T-dCyd is designed so that the highest blood concentration (Cmax) of the aza-T-dCyd drug calculated from the single dose of the aza-T-dCyd drug is lower than the value corresponding to the no-observed-adverse-effect level (NOAEL) or the highest non-severe toxic dose (HNSTD) that does not cause serious toxicity. Preparation of oral dosage forms.
  4. 제1항에 있어서, (i) 원하는 치료 효과를 발휘하는 aza-T-dCyd 약물의 최고 혈중농도(Cmax), 선택적으로 (ii) 경구용 제형으로부터 전신순환에 도달하는 aza-T-dCyd 약물의 양 및 선택적으로 (iii) aza-T-dCyd 약물이 전신순환에 도달하는데 걸리는 시간을 정밀하게 제어하도록, aza-T-dCyd 약물의 1회 투여용량 및 aza-T-dCyd 약물 중 결정형 A의 비율을 설계하는 것이 특징인 경구용 제형의 제법.The method of claim 1 , wherein: (i) the highest blood concentration (Cmax) of the aza-T-dCyd drug that exerts the desired therapeutic effect, optionally (ii) the amount of the aza-T-dCyd drug that reaches the systemic circulation from the oral dosage form, and optionally (iii) the time taken for the aza-T-dCyd drug to reach the systemic circulation; A method for preparing an oral dosage form characterized by designing the ratio of Form A.
  5. 제1항에 있어서, 경구용 제형에서 aza-T-dCyd 약물 중 결정형 A의 비율(wt%) 조절을 위해, aza-T-dCyd 화합물의 합성 결과물인 aza-T-dCyd 원료(crude materials)로부터 원하는 비율로 결정형 A를 함유하는 결정형 원료를 준비한 후, 경구용 제형으로 제제화하는 것이 특징인 경구용 제형의 제법.The method of claim 1, wherein in order to adjust the ratio (wt%) of crystalline form A in the aza-T-dCyd drug in the oral dosage form, a crystalline raw material containing crystalline form A in a desired ratio is prepared from aza-T-dCyd crude materials, which are synthesized products of the aza-T-dCyd compound, and then formulated into an oral dosage form.
  6. 제5항에 있어서, aza-T-dCyd 화합물의 합성 결과물인 aza-T-dCyd 원료(crude materials)로부터 원하는 비율로 결정형 A를 함유하는 결정형 원료를 준비한다는 것은, (i) 결정형 A의 원하는 비율(wt%)을 ±10% 오차범위 내로 제어하는 공정인 또는 (ii) 결정형 A의 원하는 비율(wt%)이 ±10% 오차범위 내에 있음을 확인하는 공정인 것이 특징인 경구용 제형의 제법.The preparation method of an oral dosage form according to claim 5, wherein preparing the crystalline raw material containing crystalline Form A in a desired ratio from aza-T-dCyd crude materials, which are synthesized products of the aza-T-dCyd compound, is (i) a process of controlling the desired ratio (wt%) of Form A within ±10% error range or (ii) a process of confirming that the desired ratio (wt%) of Form A is within ±10% error range.
  7. 5-아자-4'-티오-2'-데옥시사이티딘(aza-T-dCyd) 약물 중 결정형 A의 비율(wt%)이 조절된 경구용 제형으로서, aza-T-dCyd 화합물의 합성 결과물인 aza-T-dCyd 원료(crude materials)로부터 원하는 비율로 결정형 A를 함유하는 결정형 원료를 준비한 후, 경구용 제형으로 제제화된 것이 특징인 경구용 제형.An oral dosage form in which the ratio (wt%) of crystalline form A in 5-aza-4'-thio-2'-deoxycytidine (aza-T-dCyd) drug is controlled, wherein the oral dosage form is formulated into an oral dosage form after preparing a crystalline raw material containing crystalline form A in a desired ratio from aza-T-dCyd crude materials, which is a synthetic product of an aza-T-dCyd compound.
  8. 제7항에 있어서, 결정형 A의 투여용량에 의해 혈중에 aza-T-dCyd 약물 노출량을 허용가능한 오차 범위 내에서 안정적으로 구현하는 것이 특징인 경구용 제형.[Claim 8] The oral dosage form according to claim 7, wherein the dose of crystalline Form A stably realizes the exposure amount of aza-T-dCyd in the blood within an acceptable error range.
  9. 제7항에 있어서, 위에서 90% 이상의 결정형 A가 용해(dissolution)되도록 설계된 것이 특징인 경구용 제형.8. The oral dosage form according to claim 7, which is designed to dissolve 90% or more of Form A in the stomach.
  10. 제7항에 있어서, 산성 조건인 위에서 aza-T-dCyd 약물 80% 이상이 용출되도록 붕해되는 담체를 함유하는 것이 특징인 경구용 제형.[Claim 8] The oral dosage form according to claim 7, which contains a carrier disintegrating so that at least 80% of the aza-T-dCyd drug is dissolved in an acidic stomach.
  11. 제7항에 있어서, aza-T-dCyd 약물 중 결정형 A는 70wt% 이상인 것이 특징인 경구용 제형.[Claim 8] The oral dosage form according to claim 7, wherein the amount of crystalline form A in the aza-T-dCyd drug is 70wt% or more.
  12. 제7항에 있어서, aza-T-dCyd 약물의 1회 투여용량 내 결정형 A를 5-70 mg/m2, 바람직하게는 5 내지 55 mg/m2, 더욱 바람직하게는 약 5 내지 30 mg/m2, 더욱더 바람직하게는 5 내지 20 mg/m2 로 함유하는 것을 특징으로 하는 경구용 제형.8. The oral dosage form according to claim 7, which contains 5-70 mg/m 2 , preferably 5-55 mg/m 2 , more preferably about 5-30 mg/m 2 , even more preferably 5-20 mg/m 2 of Form A in a single dose of the drug aza-T-dCyd.
  13. 제7항에 있어서, aza-T-dCyd 화합물의 합성 결과물인 aza-T-dCyd 원료(crude materials)로부터 원하는 비율(wt%)로 결정형 A를 함유하는 결정형 원료를 준비한다는 것은, (i) 결정형 A의 원하는 비율(wt%)을 ±10% 오차범위 내로 제어하는 공정 또는 (ii) 결정형 A의 원하는 비율(wt%)을 ±10% 오차범위 내에 있음을 확인하는 공정인 것이 특징인 경구용 제형.The method of claim 7, wherein the preparation of the crystalline raw material containing the crystalline form A in a desired ratio (wt%) from the aza-T-dCyd crude materials, which are synthesized products of the aza-T-dCyd compound, means that (i) the desired ratio (wt%) of the crystalline form A is within ±10% error range or (ii) the desired percentage (wt%) of Form A within a ±10% margin of error. An oral dosage form characterized in that it is a process for confirming that it is within.
  14. 5-아자-4'-티오-2'-데옥시사이티딘(aza-T-dCyd)을 유효성분으로 하는 경구용 제형의 제조방법에 있어서,In the method for preparing an oral dosage form containing 5-aza-4'-thio-2'-deoxycytidine (aza-T-dCyd) as an active ingredient,
    aza-T-dCyd의 결정형 원료에서 결정형 A 및/또는 결정형 F의 비율을 확인한 후, 경구용 제형으로 제제화하는 것이 특징인 경구용 제형의 제법.A method for preparing an oral dosage form characterized in that the ratio of crystalline form A and/or crystalline form F in the crystalline raw material of aza-T-dCyd is confirmed and then formulated into an oral dosage form.
  15. 제14항에 있어서, aza-T-dCyd 함유 경구용 제형이 위에서 90% 이상의 결정형 A 및/또는 결정형 F가 용해(dissolution)되도록 설계하는 것이 특징인 경구용 제형의 제법.15. The method of claim 14, wherein the aza-T-dCyd-containing oral dosage form is designed to dissolve 90% or more of Form A and/or Form F in the stomach.
  16. 제14항에 있어서, aza-T-dCyd 약물 중 결정형 A 및/또는 결정형 F의 조성비 조절을 통해 aza-T-dCyd 약물의 최고 혈중농도(Cmax) 및/또는 혈중 약물농도-시간 곡선 하 면적(AUC)을 조절하는 것이 특징인 경구용 제형의 제법.The method according to claim 14, wherein the maximum blood concentration (Cmax) and/or the area under the drug concentration-time curve (AUC) of the aza-T-dCyd drug is adjusted by adjusting the composition ratio of Form A and/or Form F of the aza-T-dCyd drug.
  17. 동일한 1회 투여용량의 aza-T-dCyd 약물 중 결정형 A의 비율 변화에 따른 최고 혈중농도(Cmax) 변화값이 증가하는 Cmax 상 변곡점에 해당하는 결정형 A의 비율 이상으로 결정형 A를 함유하도록 aza-T-dCyd 약물의 1회 투여용량이 설계된 것이 특징인 경구용 제형. An oral dosage form characterized in that a single dose of the aza-T-dCyd drug is designed to contain more than the ratio of Form A corresponding to the Cmax phase inflection point at which the maximum blood concentration (Cmax) change value according to the change in the ratio of Form A in the same dose of aza-T-dCyd drug is increased.
  18. 제17항에 있어서, aza-T-dCyd 약물의 1회 투여용량 내 결정형 A를 5-70 mg/m2, 바람직하게는 5 내지 55 mg/m2, 더욱 바람직하게는 약 5 내지 30 mg/m2, 더욱더 바람직하게는 5 내지 20 mg/m2로 함유하는 것을 특징으로 하는 경구용 제형.18. The oral dosage form according to claim 17, which contains 5-70 mg/m 2 , preferably 5-55 mg/m 2 , more preferably about 5-30 mg/m 2 , even more preferably 5-20 mg/m 2 of Form A in a single dose of the drug aza-T-dCyd.
  19. 제17항에 있어서, aza-T-dCyd 약물 중 결정형 A의 비율(wt%)는 70%이상인 것이 특징인 경구용 제형. [Claim 18] The oral dosage form according to claim 17, wherein the ratio (wt%) of crystalline Form A in the drug of aza-T-dCyd is 70% or more.
  20. 5-아자-4'-티오-2'-데옥시사이티딘(aza-T-dCyd) 약물 중 70 wt% 이상으로 분말 X 선 회절 스펙트럼으로 정의된 결정형 A를 함유하는 경구용 제형. 5-aza-4'-thio-2'-deoxycytidine (aza-T-dCyd) An oral dosage form containing at least 70 wt % of Form A as defined by a powder X-ray diffraction spectrum in the drug.
  21. 5-아자-4'-티오-2'-데옥시사이티딘(aza-T-dCyd) 약물의 1회 투여용량 설계시 분말 X 선 회절 스펙트럼으로 정의된 결정형 A가 5-70 mg/m2, 바람직하게는 5 내지 55 mg/m2, 더욱 바람직하게는 약 5 내지 30 mg/m2, 더욱더 바람직하게는 5 내지 20 mg/m2 함유하는 것이 특징인 경구용 제형.5-70 mg/m 2 , preferably 5 to 55 mg/m 2 , more preferably about 5 to 30 mg/m 2 , still more preferably 5 to 20 mg/m 2 of crystalline Form A defined by powder X-ray diffraction spectrum when designing a single dose of 5-aza-4'-thio-2'-deoxycytidine (aza-T-dCyd). .
  22. 약효가 최고 혈중농도(Cmax) 의존적인 5-아자-4'-티오-2'-데옥시사이티딘(aza-T-dCyd) 약물 함유 경구용 제형의 제조방법에 있어서,In the method for preparing an oral dosage form containing 5-aza-4'-thio-2'-deoxycytidine (aza-T-dCyd) drug whose efficacy is dependent on the highest blood concentration (Cmax),
    용매 존재하 aza-T-dCyd 화합물을 결정화시킨 후 용매를 제거하여 무용매화물 결정형으로 전환시키는 제1단계; 및A first step of crystallizing the aza-T-dCyd compound in the presence of a solvent and then converting the aza-T-dCyd compound into a non-solvate crystalline form by removing the solvent; and
    제1단계에서 준비된 무용매화물 결정형이 위에서 용해될 수 있도록 설계된 경구용 제형을 제조하는 제2단계The second step of preparing an oral dosage form designed so that the non-solvate crystalline form prepared in the first step can be dissolved in the stomach.
    를 포함하는 aza-T-dCyd 약물 함유 경구용 제형의 제법.A method for preparing an oral dosage form containing an aza-T-dCyd drug comprising:
  23. 제22항에 있어서, 제1단계에서 준비된 무용매화물 결정형은 분말 X 선 회절 스펙트럼으로 정의된 결정형 A인 것이 특징인 aza-T-dCyd 약물 함유 경구용 제형의 제법.23. The preparation method of an aza-T-dCyd drug-containing oral dosage form according to claim 22, wherein the non-solvate crystalline form prepared in the first step is crystalline form A defined by a powder X-ray diffraction spectrum.
  24. 제23항에 있어서, 제1단계는 용매화물을 함유하는 결정형 다형에서 용매를 제거하여 단일 결정형 A로 전환시키는 것이 특징인 aza-T-dCyd 약물 함유 경구용 제형의 제법.24. The preparation method of the aza-T-dCyd drug-containing oral dosage form according to claim 23, wherein the first step is to convert the crystalline polymorph containing the solvate into a single crystalline form A by removing the solvent.
  25. 제23항에 있어서, aza-T-dCyd 약물은 결정형 A로만 구성된 것이 특징인 aza-T-dCyd 약물 함유 경구용 제형의 제법.24. The method of claim 23, wherein the aza-T-dCyd drug is composed only of crystalline Form A.
  26. 제22항에 있어서, 제2단계는 aza-T-dCyd 약물의 최고 혈중농도(Cmax)로부터 원하는 치료 효과를 발휘하는 1회 투여용량을 허용가능한 오차범위 내에서 정밀하게 설계된 aza-T-dCyd 약물 함유 경구용 제형을 제공하는 것이 특징인 aza-T-dCyd 약물 함유 경구용 제형의 제법.23. The preparation method of an oral dosage form containing aza-T-dCyd according to claim 22, wherein the second step is to provide an oral dosage form containing an aza-T-dCyd drug that is precisely designed within an acceptable error range for a single dose that exhibits a desired therapeutic effect from the highest blood concentration (Cmax) of the aza-T-dCyd drug.
PCT/KR2023/001028 2022-01-21 2023-01-20 Oral formulation containing 5-aza-4'-thio-2'-deoxycytidine and preparation method therefor WO2023140691A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20220009156 2022-01-21
KR10-2022-0009156 2022-01-21

Publications (1)

Publication Number Publication Date
WO2023140691A1 true WO2023140691A1 (en) 2023-07-27

Family

ID=87348573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/001028 WO2023140691A1 (en) 2022-01-21 2023-01-20 Oral formulation containing 5-aza-4'-thio-2'-deoxycytidine and preparation method therefor

Country Status (2)

Country Link
KR (1) KR20230113186A (en)
WO (1) WO2023140691A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006037024A2 (en) * 2004-09-27 2006-04-06 Supergen, Inc. Salts of decitabine
KR20140088603A (en) * 2011-11-01 2014-07-10 셀진 코포레이션 Methods for treating cancers using oral formulations of cytidine analogs
KR20170054997A (en) * 2015-11-09 2017-05-18 서울대학교산학협력단 Composition for inhibiting myeloid-derived suppressor cells comprising decitabine or its pharmaceutically acceptable salt as an active ingredient

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006037024A2 (en) * 2004-09-27 2006-04-06 Supergen, Inc. Salts of decitabine
KR20140088603A (en) * 2011-11-01 2014-07-10 셀진 코포레이션 Methods for treating cancers using oral formulations of cytidine analogs
KR20170054997A (en) * 2015-11-09 2017-05-18 서울대학교산학협력단 Composition for inhibiting myeloid-derived suppressor cells comprising decitabine or its pharmaceutically acceptable salt as an active ingredient

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JAIDEEP V. THOTTASSERY, VIJAYA SAMBANDAM, PAULA W. ALLAN, JOSEPH A. MADDRY, YULIA Y. MAXUITENKO, KAMAL TIWARI, MELINDA HOLLINGSHEA: "Novel DNA methyltransferase-1 (DNMT1) depleting anticancer nucleosides, 4′-thio-2′-deoxycytidine and 5-aza-4′-thio-2′-deoxycytidine", CANCER CHEMOTHERAPY AND PHARMACOLOGY, SPRINGER VERLAG , BERLIN, DE, vol. 74, no. 2, 1 August 2014 (2014-08-01), DE , pages 291 - 302, XP055643162, ISSN: 0344-5704, DOI: 10.1007/s00280-014-2503-z *
SOOK HONG: "Pinotbio, Inc.'s DNMT1 Inhibition Targeted Anti-cancer Drugs Candidate, Disease Control Rate 78.6%", HIT NEWS, 9 June 2021 (2021-06-09), XP093078245, Retrieved from the Internet <URL: http://www.hitnews.co.kr/news/articleView.html?idxno=34533> [retrieved on 20230902] *

Also Published As

Publication number Publication date
KR20230113186A (en) 2023-07-28

Similar Documents

Publication Publication Date Title
WO2012124973A2 (en) Combined formulation with improved stability
WO2021162451A1 (en) Pharmaceutical composition for preventing or treating cancer, containing bile acids or derivatives thereof, biguanide-based compounds, and two or more kinds of antiviral agents as active ingredients
WO2021246797A1 (en) Pharmaceutical composition for preventing or treating cancer containing antiviral agent and antidepressant as active ingredients
WO2021256861A1 (en) Novel acid secretion inhibitor and use thereof
WO2022035115A1 (en) Composition for prevention and treatment of skeletal muscle-related diseases containing alnus japonica extract or compound isolated therefrom and use thereof
AU2018374682B2 (en) Salts of 4-amino-N-(1-((3-chloro-2-fluorophenyl)amino)-6-methylisoquinolin-5-yl)thieno(3,2-d)pyrimidine-7-carboxamide, and crystalline forms thereof
WO2019031898A2 (en) Pharmaceutical composition and method for preparing same
WO2021010715A1 (en) Pharmaceutical composition for preventing or treating bone diseases
WO2020106119A1 (en) Pharmaceutical composition comprising histone deacetylase 6 inhibitors
WO2023140691A1 (en) Oral formulation containing 5-aza-4&#39;-thio-2&#39;-deoxycytidine and preparation method therefor
WO2021194298A1 (en) Nanoparticles comprising drug dimers, and use thereof
WO2015026172A1 (en) Indole amide compound as inhibitor of necrosis
WO2019147089A1 (en) Pharmaceutical composition for preventing or treating cancer comprising, as active ingredient, calcium channel inhibitor or pharmaceutically acceptable salt thereof
WO2016052866A1 (en) Solid pharmaceutical composition comprising amlodipine and losartan
WO2020096416A1 (en) Compound inhibiting yap-tead binding, and pharmaceutical composition for preventing or treating cancer, comprising compound as active ingredient
WO2011014009A2 (en) Novel di-substituted phenoxyacetyl-based compound or pharmaceutically acceptable salt thereof, production method for same and pharmaceutical composition for suppressing multiple drug resistance comprising same as an active ingredient
WO2018151580A1 (en) Immediate-release and sustained-release pharmaceutical preparation including itopride hydrochloride
WO2012060482A1 (en) Cdk-inhibiting pyrrolopyrimidinone carboxamide derivative or pharmaceutically acceptable salt thereof, and pharmaceutical composition containing same as active ingredient for preventing or treating liver cell cancer
WO2021149900A1 (en) Disubstituted adamantyl derivative or pharmaceutically acceptable salt thereof, and pharmaceutical composition for suppressing cancer growth comprising same as active ingredient
WO2021100897A1 (en) Pharmaceutical composition for preventing or treating cancer, comprising biguanide-based compound and ferrocene or ferrocene derivative as active ingredients
WO2020130385A1 (en) Pharmaceutical composition containing tamsulosin hydrochloride with excellent acid resistance and preparation method therefor
WO2020080912A1 (en) Modified nucleic acid having improved treatment efficacy, and anticancer pharmaceutical composition containing same
WO2023014045A1 (en) Medicinal use of 4&#39;-thio-5-aza-2&#39;-deoxycytidine selected as well-designed multi-target inhibitor
WO2023113243A1 (en) Modified oligonucleotide-drug conjugate and use thereof
WO2018217009A1 (en) Composition for preventing or treating muscle related diseases, containing an angelica keiskei extract or compound isolated therefrom, and use thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23743534

Country of ref document: EP

Kind code of ref document: A1