WO2023014045A1 - Medicinal use of 4'-thio-5-aza-2'-deoxycytidine selected as well-designed multi-target inhibitor - Google Patents

Medicinal use of 4'-thio-5-aza-2'-deoxycytidine selected as well-designed multi-target inhibitor Download PDF

Info

Publication number
WO2023014045A1
WO2023014045A1 PCT/KR2022/011392 KR2022011392W WO2023014045A1 WO 2023014045 A1 WO2023014045 A1 WO 2023014045A1 KR 2022011392 W KR2022011392 W KR 2022011392W WO 2023014045 A1 WO2023014045 A1 WO 2023014045A1
Authority
WO
WIPO (PCT)
Prior art keywords
aza
dcyd
cancer
dna
dnmt1
Prior art date
Application number
PCT/KR2022/011392
Other languages
French (fr)
Korean (ko)
Inventor
정두영
이진수
조현용
Original Assignee
주식회사 피노바이오
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220042113A external-priority patent/KR20220138347A/en
Application filed by 주식회사 피노바이오 filed Critical 주식회사 피노바이오
Publication of WO2023014045A1 publication Critical patent/WO2023014045A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/706Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
    • A61K31/7064Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines
    • A61K31/7068Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines having oxo groups directly attached to the pyrimidine ring, e.g. cytidine, cytidylic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/63Compounds containing para-N-benzenesulfonyl-N-groups, e.g. sulfanilamide, p-nitrobenzenesulfonyl hydrazide
    • A61K31/635Compounds containing para-N-benzenesulfonyl-N-groups, e.g. sulfanilamide, p-nitrobenzenesulfonyl hydrazide having a heterocyclic ring, e.g. sulfadiazine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/706Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0053Mouth and digestive tract, i.e. intraoral and peroral administration

Definitions

  • Aza-T-dCyd 4'-thio-5-aza-2'deoxycytidine, selected as a well-designed multi-target inhibitor, Aza-T-dCyd) for medicinal use.
  • Aza-T-dCyd can be used as an anticancer drug in a variety of tailored regimens, doses, or target patient populations.
  • epigenetic regulation The mechanism of action that carries out this epigenetic regulation is called epigenetic regulation. ) other components of the chromatin structure.
  • Double DNA methylation is the most fundamental epigenetic mechanism of action, and among various gene components such as Gene Body, Promoter, and Enhancer, methylation of C base of CpG sequence controls gene expression level. In general, CpG sequences are abundant in the promoter region, and genes with high CpG methylation in the promoter are not well expressed. Conversely, genes with less CpG methylation are actively expressed (FIG. 1).
  • the DNA double helix has a width of 2 nm, a distance between nucleotides of 0.34 nm, and a length of 3.4 nm when 10 nucleotides are linked in one cycle of the double helix.
  • 146 nucleotides are wrapped around the histone protein, and the histone octamer is wrapped around 1.6 times.
  • the double helix between the nucleosome and the nucleosome consists of about 200 nucleotides, and the state in which the DNA double helix is wound around the histone octamer is called a nucleosome.
  • DNA polymerase, RNA polymerase, and transcriptional regulator bind to the DNA double strand between nucleosomes.
  • Gene expression regulation is a phenomenon in which the probability of transcription of a gene region present in DNA is changed by a transcriptional regulator.
  • Transcriptional regulators TFs
  • Different cells have different functions because of different levels of expression of transcriptional regulators.
  • Due to DNA methylation the genes expressed in each cell are different, so there is a difference in function in each cell.
  • a methyl group is attached to the 5th carbon of the cytosine hexagonal ring, and the electron regulator protein cannot be attached to that part, so the genetic information of the DNA double helix cannot be transcribed into RNA.
  • DNA methylation, histone modification, and RNA interference key processes of epigenetics, regulate gene expression.
  • RNA interference The phenomenon in which the translation process of mRNA is stopped or the mRNA is degraded by the action of miRNA is called RNA interference. miRNAs are transcribed from DNA by the action of RNA polymerase II.
  • DNA methyltransferase 3A or 3B methylates de novo DNA during tissue differentiation and development to determine the pattern of gene expression in each tissue box; (2) DNMT1 methylates DNA by faithfully replicating the DNA methylation pattern already established by each cell constituting the tissue.
  • DNMT1 In general cells, in regions where DNA methylation is highly advanced, DNMT1 binds to other proteins, especially histone proteins and other repressor proteins that suppress gene expression, to form structures that make gene expression difficult, and through this, suppress gene expression. Conversely, when DNA methylation has not progressed much, gene expression is promoted by forming a structure that facilitates gene expression. DNA methylation plays an important role in enabling the smooth expression of a set gene combination for each cell so that each cell in our body performs its designated function well. Therefore, abnormalities in these functions lead to the occurrence of various diseases.
  • MDS Myelodysplastic syndrome
  • AML acute myeloid leukemia
  • Leukemic Blast clones that produce immature leukemia cells
  • the number is overwhelmed and the blood is filled with leukemic blast cells that cannot function normally. It is a disease that ultimately leads to death due to the failure of blood function.
  • the normal hematopoiesis process in our body consists of the following processes. (1) When the hematopoietic stem cell is stimulated to produce blood cells, (2) the hematopoietic stem cell rapidly divides in one step and differentiates into progenitor cells capable of producing a sufficient number of blood cells, (3) progenitor cells After dividing and generating a sufficient number of progenitor cells, (4) stop further division/proliferation in the second step, each has its own function, and (5) go through the process of maturation into functional cells that do not divide any more ( Fig. 2).
  • Master transcription factor plays a major role in this process.
  • master transcription factors that produce progenitor cells such as CEBP/alpha act strongly to produce a sufficient number of progenitor cells.
  • the second stage is created, where Master TFs such as CEBP/epsilon are generated.
  • the 2nd stage Master TFs decompose the 1st stage Master TFs so that rapid division/proliferation no longer occurs and induces cell maturation according to the prescribed process.
  • DNMT1 is overactivated, resulting in abnormal methylation patterns, and on the contrary, it is confirmed that these diseases can be treated by normalizing the epigenetic mechanism of action through inhibition of DNMT1 (FIG. 4).
  • the causes of hypermethylation of the promoter of the Master TF gene include changes in methylation patterns due to abnormalities in DNMT family enzymes (overexpression, overactivation, deletion/mutation, etc.), and abnormalities in IDH1/2 enzymes.
  • DNMT1 a maintenance DNA methylation machinary that maintains methylation patterns during cell growth/division/survival processes, can resolve the hypermethylation pattern, thereby improving the therapeutic efficacy of MDS/AML. It is confirmed what can be brought.
  • AML acute myeloid leukemia
  • MDS myelodysplastic syndrome
  • CMML chronic myelomonocytic leukemia
  • ALL acute lymphocytic leukemia
  • SoC standard of care
  • SoC general standard of care
  • CCT hematopoietic cell transplant
  • Age itself is the most important risk factor for leukemia, especially AML and MDS, because the possibility of genetic mutations that can cause blood cancer, that is, bone marrow disease, increases markedly with aging.
  • blood cancer that is, bone marrow disease
  • the prognosis is often poor, resulting in frequent recurrence and high early mortality.
  • MDS/AML cells are treated with Decitabine/Azacytidine, a DNMT1 inhibitor, hypermethylation of CEBP/epsilon promoter, a second-stage master TF, is reduced, CEBP/epsilon is expressed, and CEBP/epsilon's down-stream effector Tumor suppressor genes such as phosphorus p27 are expressed and show anticancer efficacy.
  • DNMT1 inhibitors Two existing commercially available DNMT1 inhibitors, Dacogen (Decitabine) and Vidaza (Azacytidine), have been used as standard treatments for the treatment of MDS/AML in the elderly patient group.
  • Dacogen Decitabine
  • Vidaza Azacytidine
  • ALL acute lymphocytic leukemia
  • T-ALL T-cell origin of T-cell origin
  • Treatment options are limited after first-line chemotherapy.
  • B-cell ALL patients have various treatment options such as antibody therapy, ADC, and CAR-T
  • the treatment is limited to Nelarabine, so there is a high demand for the development of new treatments.
  • Drug tolerance is a phenomenon in which the efficacy of a drug decreases due to repeated administration of the drug. Cancer cells that survive drug treatment develop drug resistance due to a feedback mechanism for maintaining homeostasis and/or genetic mutation. Combining multiple drugs may reduce resistance.
  • T-ALL T-ALL
  • many patients show a good response to treatment using intensive chemotherapy that combines various cytotoxic anticancer drugs
  • T-ALL which has developed resistance despite the use of standard treatment, there is no suitable treatment, so development of a new treatment
  • the demand is very high.
  • resistance was found to be caused by overexpression of anti-apoptotic genes such as BCl2 (FIG. 52), and treatment with a combination of DNMT1 inhibitors (Decitabine, etc.) and Venetoclax was experimentally attempted, and excellent therapeutic synergy was achieved. effect has been confirmed.
  • additional development efforts for DNMT1 inhibitors in the T-ALL patient group are not in progress.
  • DNA which has an important function of storing genetic information
  • ROS reactive oxygen species
  • DNA damage accounts for a very small fraction of the entire human genome, when DNA damage occurs to a proto-oncogene or suppressor gene, it ultimately increases the likelihood of cancer. do.
  • cells have their own DNA repair system, which is called the DNA damage response.
  • the DNA damage response maintains the genetic integrity of cells. When DNA is damaged, the cell cycle is stopped and DNA damage is repaired. However, when DNA damage exceeds the cell's ability, the cell induces apoptosis on its own.
  • DNA repair proceeds in different processes depending on the type of damage. Mismatch Repair (MMR), which corrects errors that occur when DNA is copied by polymerases, and Base Excision Repair (BER), which repairs when one base sequence is wrong, to a greater extent than previous damages. Nucleoid Excision Repair (NER) and Double Stand Break Repair (Double Stand Break Repair) repair DNA double helix strands that are damaged due to exposure to strong damage such as IR.
  • MMR Mismatch Repair
  • BER Base Excision Repair
  • NER Nucleoid Excision Repair
  • Double Stand Break Repair Double Stand Break Repair
  • Double-strand break repair methods include homologous recombination (HR), which repairs the damaged strand using the intact strand as a template, and non-homologous end linkage (non-homologous end-linkage, which repairs damage by linking non-complementary ends in G1) -homologous end joining: NHEJ).
  • HR homologous recombination
  • NHEJ non-homologous end linkage
  • Cancer is a disease characterized by indiscriminate cell proliferation and unlimited division. In normal cells, there is something called a cell cycle checkpoint, which checks for damage to genes and cells during cell division. When DNA damage is detected, repair or, if the damage is severe, apoptosis occurs. However, if DNA continues to divide without being repaired despite this damage, cancer occurs.
  • the most representative example is the BRCA gene, which plays a role in suppressing cancer, and plays an important role in recovering DNA double-strand breaks through homologous recombination.
  • DNA damage occurs while there is a mutation in the BRCA gene, which plays an important role in DNA repair, correct DNA repair does not occur, which increases mutations in other genes.
  • mutations in the BRCA gene increase the incidence of female cancers such as breast and ovarian cancer. It is known that women with mutations in the BRCA gene have a 5- to 6-fold increase in the rate of breast cancer and a 10-fold increase in the incidence of ovarian cancer. Through this, it can be seen that DNA damage is not properly repaired and causes genetic instability of cells, thereby causing cancer.
  • a common feature of cancer is genetic instability. In most cancers, it is not known specifically what defects in the DNA damage response cause cancer cells to develop and develop, but the link between defects in the DNA damage response and cancer is indisputable.
  • Defects in homologous recombination repair are mainly due to mutations in the BRCA gene or epigenetic silencing. According to another report, loss-of-function mutations in genes involved in homologous recombination repair, such as BRCA1, BRCA2, ATM, RAD51C, and RAD51D, were found in hereditary breast cancer, uterine cancer, and pancreatic cancer.
  • cancer cells contain defects in their DNA damage response. That is, cancer cells cannot adequately cope with DNA damage. That is why substances that can damage DNA are used as anticancer agents to induce apoptosis of cancer cells.
  • a first example is the platinum salts carboplatin and cisplatin. Platinum compounds cause DNA damage by creating DNA inter- and intrastrand crosslinks. This DNA damage is repaired through nucleotide excision repair (NER) and homologous recombination repair (HRR).
  • NER nucleotide excision repair
  • HRR homologous recombination repair
  • Ovarian cancer is a cancer with a very high incidence worldwide, reaching 300,000 new patients per year. Although many patients benefit from platinum-based anticancer drugs, it is a very lethal cancer that causes 185,000 deaths annually when resistance develops. It is a disease in high demand.
  • Ovarian cancer like other solid cancers, can be divided into stages 1 to 4 (terminal stage). Because it is located deep inside the abdominal cavity and is isolated from the outside, ovarian cancer rarely shows any special subjective symptoms even if it is diagnosed in the early stages. More than 75% of patients diagnosed with ovarian cancer in 2009 were identified as stage 3 or 4, and in most cases, the recurrence rate is high even after treatment, and the survival rate is not high, making it the worst prognosis among gynecological cancers.
  • PARP inhibitors can be used as target anticancer drugs depending on the mutation status of the BRCA 1/2 gene after initial discovery, but most of the treatment processes are in chemotherapy using platinum-based anticancer drugs including cisplatin and carboplatin. are dependent
  • Bladder cancer is the second most common cancer of the urinary tract, and the main risk factors are genetic, age, and gender (men have a 4-fold higher risk than women), and smoking is estimated to be the biggest carcinogen. As a result, smokers may be up to seven times more likely to develop bladder cancer than non-smokers.
  • bladder cancer patients can be attributed to the increase in population and aging worldwide, and the diagnosis rate of bladder cancer is increasing due to the development of cancer diagnosis technology.
  • Bladder cancer is also a very lethal cancer that causes 200,000 deaths per year when resistance occurs, although many patients benefit from platinum-based anticancer drugs.
  • Bladder cancer treatment initially uses an approach to suppress the occurrence of cancer infiltrating the bladder tissue by maintenance chemotherapy after resecting the cancer tissue locally present in the bladder, but in about 40% of patients, cancer cells invade muscle tissue of the bladder. Metastasis occurs through penetration, and treatment with immune checkpoint inhibitors is possible in about 15% of these patients, but the majority of patients are treated with gemcitabine/carboplatin-based chemotherapy.
  • the cause of resistance to platinum-based anticancer drugs is epigenetic silencing of SLFN11 and various tumor suppressor genes such as p15 and p16, which cause resistance to platinum-based anticancer drugs, as in ovarian cancer. This has been proven
  • IO immuno-oncology
  • PD-1/PD-L1 immune checkpoint inhibitors and combination therapy with existing therapies have been introduced.
  • new concept pipeline treatments such as N-803, Vicinium, and Instiladrin enter the market, they can provide new treatment opportunities to non-muscle-invasive bladder cancer (NMIBC) patients.
  • NMIBC non-muscle-invasive bladder cancer
  • MIBC muscle invasive bladder cancer
  • NMIBC non-muscle invasive bladder cancer
  • mBC metastatic bladder cancer
  • the prognosis of patients undergoing chemotherapy is poor, the average survival time is less than 1 year, and many of the patients who die are due to resistance to platinum-based anticancer drugs. situation.
  • DNA-modifying agents can be used to eliminate cancer cells. DNA damage is the mechanism of action of many of the most commonly used chemotherapeutic agents, but the therapeutic agents used clinically become difficult to use as therapeutic agents due to the risk of toxicity due to the narrowing of the therapeutic window as the efficacy increases.
  • both Decitabine/Azacytidine components of the chemical structure are activated in the form of Decitabine triphosphate in cells and incorporated into DNA, and then trap the DNMT1 enzyme to form a DNA-DNMT1 covalent adduct.
  • It has a mechanism that removes hypermethylation and exhibits various anticancer effects by various intracellular signal transduction pathways that occur during the DNA damage repair process through degradation of the adduct produced thereafter.
  • Cytidine Deaminase which has the disadvantage of limited efficacy due to unstable PK profile.
  • Cytidine Deaminase which has the disadvantage of limited efficacy due to unstable PK profile.
  • the anticancer effect is limited.
  • the development of improved new drugs is strongly demanded as they have problems such as being vulnerable to resistance.
  • an oral medication that takes a cytidine deaminase inhibitor together or an oral medication (CC-486) that stabilizes the PK profile by administering an excessive amount of Azacytidine
  • CC-486 an oral medication that stabilizes the PK profile by administering an excessive amount of Azacytidine
  • the same improved new drugs have been developed, they also do not provide solutions to (2) and (3) of the problems of Decitabine/Azacytidine described above.
  • it has problems such as deterioration of the active ingredient (Decitabine) due to the combined use of Cytidine Deaminase inhibitors and gastrointestinal side effects due to excessive drug administration.
  • the present inventors found that although Aza-T-dCyd is not superior to Decitabine in terms of DNMT1 inhibition, that is, the degree of demethylation, the mechanism of anti-apoptotic gene expression or anti-apoptotic protein down-regulation is superior. In addition, it was found that the IC 50 value was much lower through the apoptotic mechanism.
  • Aza-T-dCyd in Chemical Formula 1 has a Thio-nucleoside structure, which inhibits DNMT1, the main drug target, and endonuclease, which is an existing resistance development mechanism. It was confirmed that it blocks hydrolysis at the same time, exhibits strong anti-cancer efficacy through apoptosis mechanism, has metabolic resistance by cytidine deaminase, and has an excellent PK profile even when administered orally. Bladder cancer), it was confirmed that it showed excellent efficacy compared to existing commercial DNMT1 inhibitors and competing technologies under development.
  • deoxycytidine-based compounds used for chemotherapy of cancer or viral infection require phosphorylation by cellular enzymes to be activated.
  • phosphorylation of deoxycytidine-based compounds by deoxycytidine kinase (dCK) is considered to be the rate-limiting step in the activation of the compound, and further phosphorylation to diphosphate or triphosphate happens. Due to its Thio-nucleoside structure, the activation rate by dCK (deoxycytidine kinase) in normal cells is significantly lowered, allowing the active ingredient of the drug to be selectively delivered to cancer cells, enabling a wide range of treatments with an excellent safety profile.
  • Aza-T-dCyd is used as a well-designed multi-target inhibitor to fill the unmet needs of patients in the vacuum market where there is no current treatment for hematologic cancer and solid cancer, which are not satisfied with existing treatments.
  • a first aspect of the present invention is to use the Aza-T-dCyd compound of Formula 1 or a pharmaceutically acceptable salt thereof, which exerts an anticancer effect through an apoptosis mechanism, by BER (Damage repair) method, Base Excision Repair) provides a pharmaceutical composition characterized in that it is administered at a high dose that induces apoptosis so that the drug resistance development mechanism that overactivates does not work.
  • BER Densage repair
  • Base Excision Repair Base Excision Repair
  • the Aza-T-dCyd compound can decrease DNMT1 protein in a concentration-dependent manner.
  • Aza-T-dCyd compounds can exert anticancer effects in a dose-dependent manner.
  • a patient group with resistance to DNMT1 inhibitors (2) a patient group in need of selective drug delivery to cancer cells compared to normal cells as a targeted anti-cancer agent; (3) a patient group in need of adjusting the expression level of one or more markers of drug efficacy; (4) a patient group with accumulated epigenetic DNA methylation pattern changes in cancer cells compared to normal cells; (5) A patient group in which the standard dose of DNMT1 inhibitor, which is a standard treatment, is limited due to the problem of damaging normal tissues as well as cancer cells because DNA damage is caused through the formation of DNA-DNMT1 adducts when DNMT1 inhibitor is administered; (6) a patient group in need of prevention or treatment of hematological malignancies; (7) Compared to normal individuals, lineage commitment master transcription factors selected from the group consisting of CEBP/alpha, Pu.1 and GATA factors are expressed at high levels, while the expression of CEBP/epsilon or transcription factors in the late developmental stage is not the same
  • the drug effect marker requiring expression level control may be subject to epigenetic silencing through DNA methylation in cancer cells or the transcription factor of the drug effect marker may be subject to epigenetic silencing through DNA methylation.
  • a drug efficacy marker requiring expression level control may be a differentiation induction gene, a tumor suppressor gene, or a combination thereof.
  • Non-limiting examples of drug efficacy markers requiring expression level control may include p15, p16, SLFN11, CEBP/epsilon, CDKN1B, Myc antagonists (MAD), or a combination thereof.
  • Aza-T-dCyd compounds can re-express CEBP/epsilon and/or express the p27 tumor suppressor gene, a down-stream effector of CEBP/epsilon, in cancer cells.
  • the Aza-T-dCyd compound can overcome the resistance development mechanism by lowering the efficiency or speed of the overactivated BER (Base Excision Repair) repair process through strong resistance to nucleic acid intermediate degrading enzyme (Endonuclease).
  • the patient group that requires selective drug delivery to cancer cells compared to normal cells may be an elderly patient group aged 65 years or older and/or a patient group with weakened physical functions due to an underlying disease or comorbidity.
  • the patient group in need of selective drug delivery to cancer cells compared to normal cells is a patient group whose therapeutic effect is limited due to the occurrence of resistance mechanisms due to side effects caused by acting on cells of the bone marrow, digestive tract, mucous membrane and / or skin. .
  • Aza-T-dCyd compounds induce biased and selective dimethylation to regions of DNA replicated during early replication, promoter regions important for gene expression, DNMT1-binding regions, and/or replication stress regions, but not genomic region-wide dimethylation.
  • the Aza-T-dCyd compound is a targeted anti-cancer agent that selectively attacks only cancer cells by targeting a specific part of cancer cells that differs from normal cells by reducing DNMT1, re-expression of p15 tumor suppressor gene, and/or reducing DNMT3B expression. can act as
  • the Aza-T-dCyd compound can simultaneously block endonuclease participating in DNA damage repair along with the DNMT1 inhibitory mechanism.
  • Aza-T-dCyd compounds can be rapidly activated by triphosphate in cancer cells compared to normal cells.
  • Aza-T-dCyd compound delays DNA replication by causing base excision repair and/or mismatch repair through DNA insertion of aza-T-dCTP, a triphosphate of Aza-T-dCyd compound, thereby causing replication stress and DNA Damage response can be increased.
  • the Aza-T-dCyd compound suppresses the expression of RRM1 protein, a ribonucleotide reductase that is important for dNTP de novo synthesis, induces DNA replication stress by reducing the amount of dCTP and dTTP in cells, and can generate a strong DNA damage response.
  • Aza-T-dCyd compound has a low activation rate by dCK (deoxycytidine kinase) in normal cells compared to cancer cells due to its Thio-nucleoside structure, so Aza-T-dCyd compound is selectively delivered to cancer cells to secure a safety profile can do.
  • the Aza-T-dCyd compound forms a DNMT1 trapping complex that lasts longer due to its Thio-nucleoside structure, thereby securing strong anticancer efficacy and/or the possibility of overcoming resistance in resistant patients.
  • the Aza-T-dCyd compound of Formula 1 or a pharmaceutically acceptable salt thereof when used in a pharmaceutical composition for treating hematological cancer, the Aza-T-dCyd compound does not damage DNA in normal tissue cells, hematopoietic It may not affect your ability.
  • the patient group undergoing or progressing to bone marrow cancer may be a patient group having a gene mutation that can cause bone marrow disease.
  • AML acute myeloid leukemia
  • MDS myelodysplastic syndrome
  • ALL acute lymphocytic leukemia
  • sAML recurrent secondary AML
  • It may be a treatment-related AML (t-AML) patient group or a drug-resistant/refractory patient group.
  • HCT bone marrow transplantation
  • the blast cells are leukemic blast cells (Leukemic Blast)
  • the Aza-T-dCyd compound may exert an anticancer effect by differentiating blast cells.
  • Aza-T-dCyd compounds are activated by triphosphate in cells and used instead of some dC (deoxycytidine) during DNA synthesis. Cancer cell death can be induced by activating the silencing mechanism.
  • T-cell type In the pharmaceutical composition in which the Aza-T-dCyd compound of Formula 1 or a pharmaceutically acceptable salt thereof is administered to a patient group diagnosed with ALL (acute lymphocytic leukemia), the patient group may be a relapsed and/or resistant patient group, and the anti-apoptotic gene It may be a patient group in which resistance occurs due to overexpression of .
  • ALL acute lymphocytic leukemia
  • the platinum-based anticancer agent In the pharmaceutical composition in which the Aza-T-dCyd compound of Formula 1 or a pharmaceutically acceptable salt thereof is administered to a patient group who is likely to develop resistance to a platinum-based anticancer agent or a patient group who develops resistance according to one embodiment of the present invention, the platinum-based anticancer agent
  • the possibility of resistance development can be derived from patient data on epigenetic silencing of tumor suppressor gene and/or SLFN11, which causes resistance to platinum-based anticancer drugs.
  • the patient group to be administered with a platinum-based anticancer drug has, for example, a poor prognosis. It may be a patient group who received information/diagnosis. Data values for informative poor prognosis could be the likelihood of disease recurrence and/or early mortality (average survival less than 1 year).
  • the tumor The suppressor gene may be p15 or p16.
  • the second aspect of the present invention is the Aza-T-dCyd compound of Formula 1 or its compound, which exerts an anticancer effect through an apoptosis mechanism in a patient group who has received information on or diagnosed with a poor prognosis or possibility of resistance when administered with a DNMT1 inhibitor. It provides a pharmaceutical composition characterized by administering a pharmaceutically acceptable salt at a high dose that induces apoptosis.
  • the provision of information on the prognosis or the possibility of resistance is (i) quantifying the problem of inhibiting anticancer efficacy as the removal process is overactivated after formation of the DNA-DNMT1 adduct, or (ii) classifying the patient group according to the occurrence/degree of the above problem It may have been derived from reconciliation.
  • Data values for providing poor prognosis may be the likelihood of disease recurrence and/or early mortality (average survival less than 1 year).
  • a third aspect of the present invention provides a pharmaceutical composition for oral administration comprising the Aza-T-dCyd compound of Formula 1 or a pharmaceutically acceptable salt thereof.
  • the Aza-T-dCyd compound When administered orally, the Aza-T-dCyd compound exhibits metabolism resistance by cytidine deaminase (CDA) in the liver, thereby exhibiting an excellent PK profile.
  • CDA cytidine deaminase
  • the present invention relates to 4'-thio-5-aza-2'deoxycytidine (4'-thio-5-aza-2'deoxycytidine, Aza-T-dCyd) compound or a pharmaceutically acceptable salt thereof.
  • Aza-T-dCyd (NTX-301)
  • Mcl-1 and other anti-apoptotic protein expression levels are lowered to show equal or better anticancer efficacy than Azacytidine/Venetoclax combined administration, as well as Azacytidine/Venetoclax combined administration even at very low doses when Aza-T-dCyd and Venetoclax are administered together.
  • the present invention is a process of molecular designing a well-designed multi-target inhibitor that exhibits strong anticancer efficacy by simultaneously blocking the strong inhibition of DNMT1, the main drug target, and the hydrolysis by endonuclease, which is an existing resistance development mechanism, through a multi-pharmacological approach selected Aza-T-dCyd of Chemical Formula 1 as a DNMT1 inhibitor and, in some cases, intends to use it for combined treatment with a BCL-2 inhibitor such as venetoclax.
  • a BCL-2 inhibitor such as venetoclax.
  • DNMT1 inhibitor in the case of the present invention, in which Aza-T-dCyd of Formula 1 was selected based on the analysis of the mechanism of action of existing nucleoside anticancer drugs and the mechanism of DNA damage repair activation, which is its resistance action mechanism, surprisingly, the BCL-2 inhibitor When used in combination with the compound of Formula 2 (venetoclax), a synergistic effect more than expected was exhibited (FIG. 32 and FIG. 33).
  • Aza-T-dCyd of Chemical Formula 1 is a DNMT1 inhibitor based on a 4-Thio-2-deoxyribose skeleton, and has both a sugar structure change (4'-thiodeoxyribose structure) and an Aza-cytosine group.
  • thio-deoxyribose-based nucleoside compounds did not significantly affect other DNA components after being inserted into DNA.
  • Aza-T-dCyd is activated as triphosphate in cells and is used instead of some dC (deoxycytidine) during DNA synthesis. Nucleoside induces cancer cell death by trapping DNMT1 after DNA synthesis and activating various epigenetic action mechanisms. It is an anticancer drug. In particular, Aza-T-dCyd is rapidly activated in cancer cells, incorporated into DNA, and can trap and inhibit the DNMT1 enzyme even at low concentrations.
  • the present invention is a well-designed multi-target inhibitor that exhibits strong anticancer efficacy by simultaneously blocking the strong inhibition of DNMT1, the main drug target, and the hydrolysis by endonuclease, which is an existing resistance development mechanism, through a multipharmacological approach.
  • Aza-T-dCyd was selected as a DNMT1 inhibitor.
  • next-generation DNMT1 inhibitors are a promising field with very high unmet needs, and overcoming the existing Decitabine/Azacytidine resistance by inhibiting the action of anti-apoptotic proteins can be a very promising approach.
  • DNMT1 with 4-Thio-2-deoxyribose skeleton are resistant to DNA strand cleavage by endonuclease and the mechanism corresponds to the first step of the DNA-damage repair pathway
  • DNMT1 with 4-Thio-2-deoxyribose skeleton It was judged that the inhibitor could be usefully developed as a next-generation DNMT1 inhibitor capable of overcoming drug resistance by anti-apoptotic protein and DNA-damage repair pathway.
  • NTX-301 (Aza-T-dCyd) has strong anticancer efficacy/resistance potential compared to existing DNMT1 inhibitors due to its 4-Thio-2-deoxyribose backbone.
  • the present inventors have developed a molecular design basis capable of developing next-generation nucleoside-based anticancer drugs that can easily overcome the main problems of existing nucleoside-based anticancer drugs, such as limited therapeutic effects due to various resistance mechanisms and dose-limiting toxicity in bone marrow/digestive tract, mucous membrane/skin, etc. Using technology, the present invention was completed.
  • Nucleoside derivatives are organic compounds with structures very similar to those of DNA and RNA, which perform the most core functions of cells constituting our body (maintaining life functions through replication/division), and are central to anticancer chemotherapy/antiviral chemotherapy is playing a negative role.
  • nucleoside anticancer drugs such as Cytarabine, Clofarabine, Fludarabine, 5-Fluorouracil (including Capecitabine), Gemcitabine, Decitabine, and Azacytidine. there is.
  • nucleoside anticancer drugs act not only on cancer cells but also on rapidly dividing normal cells such as bone marrow/digestive tract, mucous membrane/skin cells, etc.
  • thrombocytopenia vomiting (vomiting), Pyrexia (fever), Leukopenia (leukopenia), Diarrhea (diarrhea), Injection site erythema (erythema), Constipation (constipation), Neutropenia (neutropenia), Ecchymosis (ecchymosis) ), Petechiae (petechiae), Rigors (chills), Weakness (malaise), Hypokalemia (hypokalemia), and (ii) for Decitabine (Dacogen), Neutropenia (neutropenia), Thrombocytopenia (thrombocytopenia), Anemia (anemia) ), Fatigue (fatigue), Pyrexia (fever), Nausea (nausea), Cough (cough), Petechiae
  • the present inventors proceeded with molecular design based on the analysis of the mechanism of action of existing nucleoside-based anticancer drugs and the mechanism of activation of DNA damage repair, which is its resistance action mechanism.
  • Nucleoside-based anticancer drugs exert their anticancer efficacy through various mechanisms of action (DNA synthesis/transcription inhibition, DNA damage induction, or expression of pharmacological effects through inhibition of DNA processing-related enzymes such as DNMT1) after DNA incorporation. (FIG. 7)
  • Nucleoside-based anticancer drugs form base pairs that do not match normal DNA components during DNA incorporation, resulting in abnormal structures in DNA, which are recognized by BER (Base Excision Repair) among DNA damage repair methods, and DNA damage repair proceeds 8).
  • BER Base Excision Repair
  • nucleoside-based anticancer drugs In the early stage of administration of nucleoside-based anticancer drugs, after the anticancer drugs are incorporated into DNA, sufficient pharmacological effects are exhibited and cancer cells are efficiently killed. tolerance develops.
  • the present inventors focused on the fact that if a new Nucleoside-based compound is developed that is incorporated into DNA with an efficiency equal to or higher than that of existing Nucleoside-based anticancer drugs and exhibits the desired pharmacological efficacy well, but is also resistant to BER, it is expected to show stronger efficacy than existing anticancer drugs. did
  • the first step of BER is to break the glycosidic bond in Nucleoside/Nucleotide to create a base-free site and to create a site for DNA damage repair through Endonuclease. DNA damage is repaired by filling in base components (FIG. 6).
  • the speed and efficiency of the BER repair process are determined by the steps of cleaving the C-N bond after recognizing an abnormal base pair and the step of making a vacant nucleotide site by AP-endonuclease, making it difficult to proceed with one or more of these steps. If so, it is possible to suppress the development of resistance due to overactivation of BER by lowering the efficiency of BER.
  • DNMT1 with 4-Thio-2-deoxyribose skeleton Inhibitors can overcome drug resistance by anti-apoptotic proteins and DNA-damage repair pathways. Therefore, Aza-T-dCyd (NTX-301) has a stronger anticancer efficacy/resistance potential than conventional DNMT1 inhibitors due to its 4-Thio-2-deoxyribose skeleton (Examples 1 and 2).
  • the present inventors tried to lower the efficiency of BER by taking advantage of the strong resistance to endonuclease in the case of Thio-deoxyribose backbone-based nucleoside derivatives.
  • the mechanism of action of BER acts as a mechanism of resistance development in cancer cells, but on the contrary, in normal tissues (especially hematopoietic tissues such as bone marrow), it works as a safety device to prevent toxicity by anticancer agents, so anticancer agents that inhibit BER are selectively restricted to cancer cells. The need to be communicated is high.
  • Nucleoside-based anticancer drugs are activated by various nucleoside kinases and accumulate in cells, and nucleoside compounds that are not activated within an appropriate time are quickly removed. If the difference in activation rate between normal cells and cancer cells can be maximized, excellent safety can be secured by accumulating the active form of the drug only in cancer cells.
  • nucleoside substituted with various heteroatoms can be activated at different rates or eliminated through metabolism.
  • Thio-deoxyribose is activated relatively slowly in normal cells
  • normal Deoxyribose-based nucleoside is toxic in cancer cells. It was confirmed that it was activated at a rate equal to or higher than that and could be used during DNA synthesis. This may show a selective drug delivery effect that is relatively more accumulated in cancer cells than in normal cells.
  • Aza-T-dCyd utilizes a Thio-deoxyribose skeleton that has improved the existing Deoxyribose skeleton. Compared to the existing Deoxyribose-based nucleoside, such as Decitabine, Aza-T-dCyd is activated rapidly in cancer cells and efficiently incorporated into DNA, but is activated slowly in normal organs including normal bone marrow cells, thereby selecting cancer cells.
  • the compound that converts the deoxyribose backbone of the existing nucleoside to the 4'-thio-deoxyribose backbone and combines the Azacytosine functional group capable of well trapping the DNMT1 enzyme is a new product with differentiated efficacy and safety from existing DNMT1 inhibitors.
  • the present inventors found that other nucleoside compounds can overcome the BER resistance mechanism through the same type of nucleoside skeleton change (Deoxyribose ⁇ 4'-Thio-deoxyribose) in the case of Aza-T-dCyd And it was confirmed that it can have cancer cell-selective drug delivery properties.
  • Aza-T-dCyd is rapidly activated in cancer cells and efficiently incorporated into DNA, compared to the existing deoxyribose-based nucleoside such as Decitabine, by utilizing the Thio-deoxyribose skeleton, which is an improved form of the existing deoxyribose skeleton, but is activated slowly in normal organs including normal bone marrow cells.
  • cancer cell-selective drug delivery is possible; Not only can it secure the possibility of overcoming metabolism-related resistance by being relatively slowly affected by the main metabolic enzyme of nucleoside anticancer drug called Cytidine Deaminase, but also DNA incorporation and DNMT1 trapping through the Azacytosine functional group that can trap DNMT1 enzyme well, A longer lasting DNA-DNMT Adduct was formed to secure a stronger and differentiated effect.
  • Aza-T-dCyd has both the desired sugar structure change (4'-thiodeoxyribose structure) and an Aza-cytosine group, so the multipharmacological approach described above can be successfully applied to existing commercial DNMT1 inhibitors and competitive technologies under development. that it shows superior efficacy compared to; and a well-designed multi-target inhibitor that exhibits strong anticancer efficacy by simultaneously blocking the strong inhibition of DNMT1, the main drug target, and the hydrolysis by endonuclease, which is an existing resistance development mechanism, and completed the present invention.
  • DNMT1 which is the main drug target
  • hematological cancer myelodysplastic syndrome (MDS)/acute myeloid leukemia ( AML), T-cell acute lymphocytic leukemia (T-ALL)
  • solid cancer platinum-based anticancer drug-resistant ovarian cancer/bladder cancer
  • Aza-T-dCyd is a thio-nucleoside compound in which the deoxyribose structure of nucleoside anticancer drugs is changed to a thio-deoxyribose structure.
  • Aza-T-dCyd has the following characteristics to overcome the limitations of existing nucleoside anticancer drugs and to meet unmet needs.
  • Aza-T-dCyd can be a best-in-class DNMT1 inhibitor with strong efficacy, improved safety profile, ease of use, and the possibility of overcoming drug resistance compared to existing DNMT1 inhibitors, which are standard treatments.
  • Aza-T-dCyd is rapidly activated in cancer cells, incorporated into DNA, and can trap and inhibit the DNMT1 enzyme even at low concentrations.
  • Aza-T-dCyd shows a PK profile that can be administered orally, and in the GLP-preclinical toxicity test, superior safety compared to Decitabine/Azacytidine was confirmed.
  • Aza-T-dCyd can be a DNMT1 inhibitor with stronger efficacy, improved safety profile, ease of use, and the possibility of overcoming drug resistance compared to existing DNMT1 inhibitors, which are standard treatments.
  • Aza-T-dCyd shows a strong anticancer effect from about 0.5 mpk (mg/kg) administration group in animal models, and the drug exposure at that dose is less than 8mg/day when administered to humans (25% of MTD in phase 1 clinical trial). A wide therapeutic window can be secured at this level.
  • venetoclax can be administered up to 250 mg/day, and when used in combination with venetoclax, the dosage of Aza-T-dCyd is less than 32 mg/day, for example, 8 mg/day or more and less than 32 mg/day, preferably 8 to 8 mg/day. It may be 24 mg/day. 24 mg is equivalent to 1.5 mpk.
  • Aza-T-dCyd When combined with venetoclax, Aza-T-dCyd can be administered at 25% to 75% of the maximum tolerable dose (MTD).
  • MTD maximum tolerable dose
  • MTD Maximum Tolerated Dose
  • Aza-T-dCyd is Excellent anti-cancer efficacy and strong efficacy in non-clinical models resistant to existing treatments were confirmed, and superior efficacy compared to existing Decitabine/Azacytidine in AML animal models and Venetoclax (Venetoclaxta), which is used as a combination that is currently becoming the standard treatment, Excellent synergistic efficacy was confirmed, and a safety profile equivalent to or higher than that of Decitabine / Azacytidine confirmed in the GLP-toxicity test and phase 1 clinical test was confirmed.
  • Aza-T-dCyd shows much stronger anticancer efficacy than the existing DNMT1 inhibitor Decitabine/Azacytidine and therapies based on them in various preclinical models, while securing excellent safety compared to them in preclinical studies, so there is a high possibility of clinical development success.
  • the MTD was determined to be 32 mg, and no DLT or grade 3 or 4 adverse reactions were reported at doses of 16 mg or less, indicating good tolerability.
  • a dose-dependent PK profile was confirmed.
  • NTX-301 administration induced stable disease that lasted for more than 5 months even in patients with advanced-stage solid cancer. It was expected to be effective in carcinomas that were insensitive to the existing Decitabine and Azacitidine, such as showing the effect of inhibiting the progression of cancer.
  • Aza-T-dCyd it enables treatment of terminal cancer patients undergoing relapse, development of an anticancer drug market completely independent of the existing anticancer drug market, and combination treatment.
  • Aza-T-dCyd induces apoptosis of cancer cells more strongly than Decitabine/Azacytidine due to its selective activation in cancer cells due to the difference in structure compared to Decitabine/Azacytidine, and maintains excellent cancer cell apoptosis inducing effect even in cell lines resistant to Decitabine. In addition, it can show excellent anticancer efficacy in various animal models in which Decitabine/Azacytidine does not show any therapeutic effect.
  • Aza-T-dCyd shows a PK profile that can be administered orally (FIG. 51), and a superior safety profile compared to Decitabine/Azacitidine was confirmed in the GLP-preclinical toxicity test.
  • Aza-T-dCyd demonstrated excellent safety by not showing any obvious side effects even at drug doses higher than the dose of Decitabine, and even at very low doses, it prevented disease progression in cancer patients.
  • the slowing effect was observed, showing superior efficacy compared to existing drugs.
  • aza-T-dCyd significantly lowers the activation rate by dCK (deoxycytidine kinase) in normal cells, thereby selectively delivering the active ingredients of the drug to cancer cells, thereby securing an excellent safety profile. Since it has a wide therapeutic window, it is possible to administer at a high dose that prevents the mechanism of resistance development from operating.
  • DNA-DNMT1 adducts Because it causes DNA damage through the formation of DNA-DNMT1 adducts, there is a problem of damaging not only cancer cells but also normal tissues of the body such as bone marrow/gastrointestinal mucosa. In the cancer cells that survive thereafter, the removal process after the formation of DNA-DNMT1 adducts is overactivated, resulting in suppression of anticancer efficacy, which makes them vulnerable to the development of resistance.
  • Aza-T-dCyd can be used as a first-line and second- or third-line treatment.
  • Aza-T-dCyd has been tested through preclinical and phase 1 clinical trials. It also secures the advantage of oral administration, showing the possibility of a high competitive advantage compared to existing treatments.
  • Aza-T-dCyd's technical superiority is its strong efficacy and differentiated safety profile due to its Thio-nucleoside skeleton, and it has expanded indications compared to existing DNMT1 inhibitors (existing DNMT1 inhibitors (mainly MDS/AML) vs. Aza-T-dCyd (expanded to various hematological and solid cancers)), excellent efficacy in various situations where existing DNMT1 inhibitors are ineffective (strong efficacy in solid cancer patients in phase 1 clinical trials, etc.) and excellent safety (non-clinical and phase 1 clinical results) It has a clear competitive advantage in terms of efficacy and safety.
  • existing DNMT1 inhibitors existing DNMT1 inhibitors (mainly MDS/AML) vs. Aza-T-dCyd (expanded to various hematological and solid cancers)
  • excellent efficacy in various situations where existing DNMT1 inhibitors are ineffective strong efficacy in solid cancer patients in phase 1
  • the compound of Formula 1 and the compound of Formula 2 may each independently exist in a solid or liquid form. It can exist in the solid state, in crystalline or amorphous form, or as mixtures thereof.
  • pharmaceutically acceptable solvates may be formed.
  • solvent molecules are incorporated into the crystalline lattice during crystallization.
  • Solvates may involve non-aqueous solvents such as but not limited to ethanol, isopropanol, DMSO, acetic acid, ethanolamine or ethyl acetate, or they may involve water as a solvent incorporated into the crystalline lattice.
  • Hydrates in which water is the solvent incorporated into the crystalline lattice, are typically referred to as “hydrates”. Hydrates include stoichiometric hydrates as well as compositions containing variable amounts of water. The present invention includes all such solvates.
  • Certain compounds of the invention may exhibit polymorphism (ie, the ability to occur in different crystalline structures). These different crystalline forms are typically known as “polymorphs”.
  • the present invention includes all such polymorphs. Polymorphs have the same chemical composition, but differ in packing, geometric arrangement, and other descriptive properties of the crystalline solid state. Thus, polymorphs can have different physical properties such as shape, density, hardness, deformability, stability, and dissolution properties. Polymorphs typically exhibit different melting points, IR spectra, and X-ray powder diffraction patterns, which can be used for identification. Different polymorphs can be prepared, for example, by changing or adjusting the reaction conditions or reagents used to prepare the compound. For example, changes in temperature, pressure or solvent can create polymorphs. Additionally, one polymorph may spontaneously convert to another polymorph under certain conditions.
  • the 4'-thio-5-aza-2'-deoxycytidine (aza-T-dCyd) drug includes not only the compound of Formula 1, but also pharmaceutically acceptable salts thereof, solvates thereof, and prodrugs thereof ( prodrugs).
  • “Pharmaceutically acceptable salts thereof” refers to pharmaceutically acceptable organic or inorganic salts.
  • Exemplary salts are sulfate, citrate, acetate, oxalate, chloride, bromide, iodide, nitrate, bisulfate, phosphate, acid phosphate, isonicotinate, lactate, salicylate, acid citrate, Tartrate, oleate, tannate, pantothenate, bitartrate, ascorbate, succinate, maleate, genticinate, fumarate, gluconate, glucuronate, saccharate, formate, benzoate , glutamate, methanesulfonate, ethanesulfonate, benzenesulfonate, p-toluenesulfonate, and pamoate (i.e., 1,1'-methylene-bis-(2-hydroxy-3-naphthoate)) salts Including,
  • a pharmaceutically acceptable salt thereof may involve the inclusion of another molecule such as an acetate ion, a succinate ion or other counterion.
  • the counterion can be any organic or inorganic moiety that stabilizes the charge on the parent compound.
  • pharmaceutically acceptable salts may have more than one charged atom in their structure. It may have multiple counter ions if multiple charged atoms are part of a pharmaceutically acceptable salt.
  • a pharmaceutically acceptable salt may have one or more charged atoms and/or one or more counterion.
  • prodrug has the meaning of being used in the relevant technical field.
  • a physiologically active substance or a therapeutically active organic compound is chemically modified, and the parent compound is released or released in vivo under enzymatic or other conditions.
  • means a compound designed to A prodrug is converted into the desired compound in vivo after administration.
  • it is a useful drug, it can be used clinically by applying chemical modifications to those that have unsuitable properties in terms of side effects, stability, solubility, absorption, and duration of action.
  • Solvate means a compound of Formula 1 or a salt thereof that further comprises a stoichiometric or non-stoichiometric amount of a solvent bound by non-covalent intermolecular forces.
  • the solvent is water
  • the solvate is a hydrate.
  • cancer refers to a physiological condition in mammals that is typically characterized by unregulated cell growth.
  • examples of cancers include, but are not limited to, blood-borne tumors (eg, multiple myeloma, lymphoma, and leukemia) and solid tumors.
  • blood cancer include non-Hodgkin's lymphoma, Hodgkin's lymphoma, multiple myeloma, leukemia, lymphoma, myelodysplastic syndrome, acute lymphocytic leukemia, acute myelogenous leukemia, chronic myeloid leukemia, and the like
  • non-limiting examples of solid cancer include gastric cancer.
  • patient refers to animals such as mammals.
  • the patient is a human.
  • the patient is a non-human animal, such as a dog, cat, livestock (eg, horse, pig or donkey), chimpanzee or monkey.
  • the anticancer effect or therapeutic effect of an anticancer agent refers to an action that reduces the severity of cancer, reduces the size of a tumor, or delays or slows down the progression of cancer, which occurs while a patient is suffering from a specific cancer.
  • an anticancer agent refers to an action that reduces the severity of cancer, reduces the size of a tumor, or delays or slows down the progression of cancer, which occurs while a patient is suffering from a specific cancer.
  • the anticancer effect of an anticancer drug may be Cell Viability (change in the degree of cytotoxicity or cell number) of cancer cells after treatment with an anticancer drug in vitro and/or in vivo. there is. For example, it can be confirmed indirectly through a drug response test through a cell line or a non-clinical animal model (xenograft). In addition, even in cancer patients, the anticancer effect of the anticancer agent can be directly confirmed, and related data can be derived and used as a database. In addition, when designing an anticancer drug dosage guideline, animal model PK parameters and/or toxicity profile may be considered in parallel.
  • the anticancer effect of an anticancer agent may be inferred from in-vitro data, % Maximum effect of the anticancer agent, such as IC 50 , IC 60 , IC 70 , IC 80 and IC 90 , and the highest blood level of the drug It can also be confirmed in non-clinical animal models and clinical cancer patients through in-vivo data such as concentration (Cmax) and/or area under the blood drug concentration-time curve (AUC).
  • Cmax concentration
  • AUC blood drug concentration-time curve
  • Reactivity of an anticancer agent means clinical sensitivity in terms of anticancer effect.
  • Sensitivity and “susceptibility” when referring to treatment with an anti-cancer agent are relative terms that refer to the degree of effectiveness of a compound in alleviating or reducing the progression of the tumor or disease being treated.
  • an "effective patient's anticancer effect/response” is, for example, 5%, 10%, 15%, 20% of a patient's response, as measured by any suitable means, such as gene expression, cell counts, assays, and the like. , 25%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 200%, or more inhibition.
  • the dose is the dose at which drug efficacy is expected.
  • the medicinal effect may be an anticancer effect.
  • the reactivity (anti-cancer effect) of an anti-cancer agent is the degree of response, and the % maximum effect of the anti-cancer agent, such as IC 50 , IC 60 , IC 70 , IC 80 and IC 90 , the value of exerting toxicity to normal cells (LC 50 ) can be
  • dosage forms for oral use can be formulated using a variety of formulation techniques known in the art.
  • it may include a biodegradable (hydrolyzable) polymeric carrier used to adhere to the oral mucosa. It is designed to slowly erode over a predetermined period of time, wherein drug delivery is provided essentially entirely.
  • Drug delivery in an oral dosage form avoids the weaknesses encountered with oral drug administration, such as slow absorption, degradation of the active agent by fluid present in the gastrointestinal tract, and/or first pass and inactivation in the liver.
  • biodegradable (hydrolyzable) polymeric carriers virtually any such carrier can be used as long as the desired drug release profile is not compromised, and the carrier is compatible with any other ingredient present in the oral dosage unit.
  • polymeric carriers include hydrophilic (water-soluble and water-swellable) polymers that adhere to the wet surface of the oral mucosa.
  • Examples of polymeric carriers useful herein are acrylic acid polymers (eg, carbomers).
  • non-limiting examples of other ingredients that can be incorporated into an oral dosage form include disintegrants, diluents, binders, lubricants, flavoring agents, coloring agents, preservatives, and the like. In some embodiments, it may be in the form of a conventionally formulated tablet, lozenge, or gel for buccal or sublingual administration.
  • administration of the compound is continued at the physician's discretion when the patient's condition improves;
  • the dose of drug to be administered may be temporarily reduced or temporarily discontinued for some length of time (ie, a "holiday").
  • the length of the washout can vary between 2 days and 1 year, by way of example only, 2 days, 3 days, 4 days, 5 days, 6 days, 7 days, 10 days, 12 days, 15 days, 20 days, 28 days. days, 35 days, 50 days, 70 days, 100 days, 120 days, 150 days, 180 days, 200 days, 250 days, 280 days, 300 days, 320 days, 350 days, or 365 days.
  • the dose reduction during the washout is 10%-100%, by way of example only, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55% %, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100%.
  • a maintenance dose is administered, if necessary. Subsequently, the dosage or frequency of administration, or both, can be reduced as a function of symptoms, to a level at which improved disease, disorder or condition is maintained.
  • patients require intermittent treatment over a long period of time upon any recurrence of symptoms.
  • the amount of a given agent that will correspond to such amount will vary depending on factors such as the particular compound, the severity of the disease, the identity (eg body weight) of the subject in need of treatment, but nevertheless include, for example, the formulation to be administered, the administration It can be routinely determined in a manner known in the art depending on the route and the particular circumstances surrounding the subject to be treated. In general, however, doses used for adult human treatment will typically range from 0.02-5000 mg/day, or about 1-1500 mg/day.
  • a single dose herein may be given as a single dose or in divided doses administered simultaneously, for example as 2, 3, 4 or more sub-doses.
  • oral formulations are unit dosage forms suitable for single administration of precise dosages.
  • the formulation is divided into unit doses containing appropriate amounts of one or more compounds.
  • the unit dose is in the form of patches containing discrete amounts of the formulation.
  • Non-limiting examples are packaged tablets or capsules, and powders in vials or ampoules.
  • Aqueous suspension compositions can be packaged in single-dose non-reclosable containers. Alternatively, multi-dose reclosable containers may be used, in which case it is typical to include a preservative in the composition.
  • formulations for parenteral injection are presented in unit dosage form, including but not limited to ampoules, or in multi-dose containers, with an added preservative.
  • parenteral administration i.e., bolus, intravenous, and intratumoral injection
  • a pharmaceutically acceptable parenteral vehicle i.e., bolus, intravenous, and intratumoral injection
  • parenteral vehicle i.e., bolus, intravenous, and intratumoral injection
  • a pharmaceutically acceptable parenteral vehicle i.e., bolus, intravenous, and intratumoral injection
  • It is optionally mixed in the form of a lyophilized preparation or aqueous solution with a pharmaceutically acceptable diluent, carrier, excipient or stabilizer (Remington's Pharmaceutical Sciences (1980) 16th edition, Osol, A. Ed.).
  • Aza-T-dCyd is equipped with stronger efficacy compared to existing HMA ingredients such as Vidaza (azacytidine) and Dacogen (decitabine), an improved safety profile, convenience of administration in oral form, and the possibility of overcoming drug resistance.
  • Vidaza azacytidine
  • Dacogen decitabine
  • Aza-T-dCyd aims to become a new treatment after 2/3L, which is an unmet need, so it can obtain a status as a standard treatment preferentially in the course of anticancer treatment that must be performed according to strict treatment guidelines.
  • Aza-T-dCyd is a thio-nucleoside compound in which the deoxyribose structure of nucleoside anticancer drugs is changed to a thio-deoxyribose structure.
  • Aza-T-dCyd has the following characteristics to overcome the limitations of existing nucleoside anticancer drugs and meet the unmet needs.
  • Aza-T-dCyd has a strong efficacy and differentiated safety profile due to the Thio-nucleoside skeleton, and has expanded indications compared to existing DNMT1 inhibitors (existing DNMT1 inhibitors (mainly MDS/AML) vs. Aza-T-dCyd ( Expanded to various hematologic cancers and solid cancers)), excellent efficacy in various situations where existing DNMT1 inhibitors do not show drug efficacy (strong efficacy in solid cancer patients in phase 1 clinical trials, etc.) and excellent safety (non-clinical and phase 1 clinical results) It has a clear competitive advantage in terms of efficacy and safety.
  • 4'-thio-5-aza-2'deoxycytidine, a multi-target inhibitor including DNMT1 inhibitor, Aza-T-dCyd) can be applied in various ways in terms of administration method, dose, target patient group, or combination therapy with venetoclax, an inhibitor of BCL-2 that mediates apoptosis.
  • 1 is a schematic diagram showing the mechanism of action of epigenetics.
  • step 2 is a schematic diagram showing a normal hematopoietic process in our body.
  • the role of the master TF (especially CEBP/epsilon) that leads each step is very important in step 1, which secures cell numbers through rapid cell division, and step 2, which stops cell division and proceeds with cell maturation.
  • Figure 3 is a schematic diagram showing abnormal functions in the hematopoietic process and occurrence of leukemia due to the delay in conversion from step 1 to step 2 due to decreased expression of Master TF (CEBP/epsilon).
  • FIG. 4 is a schematic diagram showing that treatment with a DNMT inhibitor induces normal DNA methylation in hypermethylated MDS/AML hematological cancer cells and induces differentiation into normal cells and exerts anticancer effects through the re-expression of CEBP/epsilon genes.
  • FIG. 5 is a schematic diagram of the unmet needs of platinum-based anticancer drugs for the treatment of ovarian cancer and bladder cancer.
  • Figure 9 shows the results confirming that DNMT1 is inhibited when NTX-301 and Decitabine are treated at different concentrations in MV4-11 (AML cell line) cells.
  • DNMT1 is inhibited when NTX-301 and T-dCyd are treated with NCI-H23 (Lung carcinoma cells), HCT-116 (Colon carcinoma cells), and IGROV-1 (Ovarian carcinoma cells) cell lines.
  • FIG. 14 compares and analyzes re-expression patterns of the p15 tumor suppressor gene due to DNMT1 inhibition when MV4-11 cells were treated with Aza-T-dCyd and Decitabine.
  • 16 shows the results of confirming intracellular DNMT1, CEBP/epsilon, and CDKN1B levels by treating various AML cell lines (MV4-11, HL-60, and KG-1a) with Aza-T-dCyd.
  • 18 is a graph showing the growth inhibitory effect of Aza-T-dCyd on hematological cancer cell lines.
  • 25 shows the selective DNA dimethylation pattern and RNA-seq data analysis results induced by NTX-301 treatment.
  • 26 shows the pharmacokinetic evaluation results of Aza-T-dCyd for Mice.
  • 31 is a result showing inhibition of DNMT3B expression in cancer tissue after NTX-301 was tested in the Molm13 Xenograft model.
  • 33 is a comparison result of survival rate and weight difference for each treatment group compared to competing drugs in the MV4-11 systemic AML model.
  • 35 shows the results of comparison of efficacy / weight comparison of MV4-11 Luc cell line Xenograft.
  • GLP repeated dose toxicity
  • the red arrow in G indicates the time point of NTX-301 treatment.
  • P-values (versus vehicle) are assigned and presented as follows: *p ⁇ 0.05; **p ⁇ 0.001; ***p ⁇ 0.0001.
  • 49 shows the benefits provided by NTX-301 in combination therapy with VCX.
  • CI combination therapy index
  • 50 is a graph showing long-term disease control lasting 5 months or more when NTX-301 is administered to patients with advanced solid cancer.
  • 51 is the PK profile of Aza-T-dCyd in patients with advanced solid cancer in phase 1 clinical trial.
  • BCL-2 B-cell lymphoma-2 and its inhibitor, venetoclax, which mediate apoptosis.
  • Example 1 In vitro pharmacology
  • Aza-T-dCyd is a second/tertiary treatment for AML-resistant patients whose disease has progressed after Decitabine skeleton-based drug therapy, a treatment for other blood cancers such as T-cell ALL, and an adjuvant treatment for a number of solid cancers.
  • Inhibition of DNMT1, a drug target, and reduction of the intracellular amount of DNMT1 protein can be an important drug efficacy marker (PD marker) of Aza-T-dCyd.
  • Cytidine-like structural nucleoside DNMT1 inhibitors such as Decitabine are known to be incorporated into DNA to irreversibly trap DNMT1 and induce degradation through proteolytic enzyme complexes. It has been established through various basic and clinical studies, and the utilization of DNMT1 inhibitors in patients.
  • DNMT1 inhibitory efficacy was evaluated in other hematological cancer cell lines, ALL cell line and solid cancer cell line, and Aza-T-dCyd inhibited DNMT1 in a concentration-dependent manner in CCRF-CEM (ALL) (FIG. 11) and solid cancer cell line (FIG. 12). confirmed that it can be done.
  • hematopoietic stem cells differentiate or die and can be usefully used in the treatment of MDS/AML patients.
  • intracellular PD markers Re-expression of phosphorus p15 is induced.
  • p15 re-expression in p15-silenced cancer cells and cancer patients was established as a PD marker to monitor the pharmacodynamic response of DNMT1 inhibitors.
  • NTX-301 was applied to MV4-11 cells, an AML cell line, in order to confirm the re-expression pattern of tumor suppressor genes through an epigenetic regulatory mechanism caused by DNMT1 inhibition during Aza-T-dCyd treatment. It was treated by concentration. A dose-dependent re-expression of p15 tumor suppressor gene, a PD marker induced by DNMT1 inhibition, was confirmed, and strong re-expression of p15 mRNA was confirmed through RT-PCR (FIG. 13).
  • Table 1 compares the degree of p15 mRNA re-expression after treatment with a DNMT1 inhibitor (Aza-T-dCyd/Decitabine) in the MV4-11 cell line, which is an AML cell line (fold increase based on 0 nM).
  • Aza-T-dCyd has high potential as a new target anticancer agent.
  • CEBP/alpha, Pu.1, and GATA factors which are lineage commitment master TFs, are expressed at high levels, whereas the expression of late developmental stage transcription factors including CEBP/epsilon is low for each gene. The problem is that it is kept low due to hypermethylation.
  • CEBP/epsilon is a protein that induces maturation of immature hemocytes and suppresses abnormal proliferation. As the expression of this protein is induced, the expression of CDKN1B and Myc antagonists (MAD) is increased. CDKN1B, as a CDK inhibitory protein, is known to be responsible for stopping cell cycle proliferation or inducing differentiation. The expression of CEBP/epsilon and CDKN1B induces differentiation of AML malignant cells and exhibits strong anticancer efficacy.
  • CEBP/epsilon and CDKN1B expressions were confirmed and comparatively analyzed to confirm the target engagement pattern induced by DNMT1 inhibition during NTX-301 treatment in various AML cell lines (FIG. 15).
  • DNMT1 inhibition was induced in a dose-dependent manner, and CEBP/epsilon expression and CDKN1B expression were increased when NTX-301 was treated at different concentrations in THP-1 cells, an AML cell line. Maturation induction and differentiation induction functions were confirmed.
  • AML cell lines MV4-11, HL-60, and KG-1a cells were treated with Aza-T-dCyd for 72 hours and the intracellular protein expression levels were checked.
  • the expression of DNMT1 was inhibited and the expression of CEBP/epsilon and CDKN1B was confirmed to increase.
  • the expression increased the most in MV4-11 and HL-60 cells FIG. 16).
  • MV4-11 cells which were identified as responsive to Aza-T-dCyd, were treated with DNMT1 knock-out (siRNA) to construct a KO cell line that did not affect cell survival, division, or growth.
  • siRNA DNMT1 knock-out
  • Aza-T-dCyd (SRI-9639, NTX-301) showed excellent cell survival inhibitory efficacy with IC 50 values as shown in FIG. 18 .
  • Aza-T-dCyd inhibits the activation of DNA damage responses such as BER, forms a DNA-DNMT1 adduct that lasts longer compared to Decitabine, induces stronger DNA damage, and through this, strongly activates the CHK1-p53 pathway, making it more effective than Decitabine. show stronger anticancer efficacy.
  • Aza-T-dCyd is a pyrimidine analog that is metabolized by various enzymes involved in pyrimidine metabolism within cells.
  • DNA insertion of aza-T-dCTP, a metabolite of Aza-T-dCyd causes base excision repair and mismatch repair and delays DNA replication, which can cause replication stress and aggravate DNA damage response.
  • Aza-T-dCyd inserted into intracellular DNA is trapped through a covalent bond with DNMT1 and forms a DNMT1-DNA adduct.
  • the formed adduct can disrupt the progress of the DNA replication fork through its bulky structure, thereby collapsing the replication fork and causing a double-strand break, resulting in a strong DNA damage response.
  • Aza-T-dCyd treatment increases H2AX phosphorylation, a DNA damage response marker, simultaneously increases phosphorylation of Chk1, a DNA damage sensor, and increases p53 protein expression, which regulates cell cycle/death in DNA damage response, resulting in DNA damage response. As a result, it was confirmed that the tumorigenic activity of hematological malignancies was inhibited (FIG. 24).
  • Decitabine induces dimethylation across genomic regions, whereas Aza-T-dCyd induces biased and selective dimethylation in DNA regions that are replicated during early replication, promoter regions important for gene expression, DNMT1-binding regions, and replication stress regions. induce
  • Example 3 Pharmacokinetic evaluation by concentration - Mice/Rat/Dog PK profile
  • Aza-T-dCyd was administered orally and intravenously at various concentrations to mice, rats and dogs, and the PK profile was confirmed.
  • mice The animal species with the most similar drug distribution in the human body is Mice (CDA (Cytidine Deaminase) is mainly distributed in the liver, showing the most similar metabolic pattern), or rat/dog to confirm that absorption occurs well without differences between species. The PK profile of was confirmed.
  • CDA Cytidine Deaminase
  • FIG. 26 and 27 show the pharmacokinetic evaluation results of Aza-T-dCyd for Mice
  • FIG. 28 show the pharmacokinetic evaluation results for Aza-T-dCyd for rats
  • FIG. 29 show the pharmacokinetic evaluation results for Aza-T-dCyd for dogs. The results of the kinetic evaluation are shown.
  • Aza-T-dCyd is not superior to Decitabine in terms of DNMT1 inhibition, that is, the degree of demethylation, it is not only superior in expression of anti-apoptotic gene or mechanism of down-regulating anti-apoptotic protein, but also resulted in much lower IC 50 values through an apoptotic mechanism.
  • DNMT DNA methyltransferase
  • DNMT1 and DNMT3A are at least three types of activated DNMTs
  • DNMT3B are required for initiating and maintaining gene methylation and play an important role in proper development.
  • DNMT3B is predominantly overexpressed, whereas DNMT1 and DNMT3a are moderately overexpressed, suggesting that DNMT3B may play a role in cancer development.
  • the DNMT3B gene is located on chromosome 20q11.2 and shows a polymorphism by C ⁇ T nucleotide translocation in the new promoter part (C46359T) reversed by 149 base pairs (bp) from the transcription start site. It has been found to increase promoter activity by 30%. Although the mechanism of association is not clear, it is hypothesized that the T mutation increases the expression of DNMT3B, increasing the propensity for epigenetic loss of function of the tumor suppressor gene.
  • Aza-T-dCyd was orally administered in an amount of 0.4 - 1.5 mg/kg (FIG. 32).
  • Aza-T-dCyd was administered orally at 1.5, 2.0, and 2.5 mg/kg (for Decitabine/Azacytidine, standard amounts/administration schedules used in preclinical studies were used) ( Figure 33).
  • DNMT1 inhibitors Since the efficacy of DNMT1 inhibitors is related to the selective profile of DNMT1 and the de novo methyltransferases DNMT3A and DNMT3B targets, the expression of DNMT1, DNMT3A and DNMT3B was confirmed in the group administered with Aza-T-dCyd and Decitabine in the Xenograft model. (FIG. 38).
  • NTX-301 (Aza-T-dCyd) or 0.75mg/kg of Decitabine was intraperitoneally administered to the HL-60 Xenograft mice model, and tumor samples were taken on the 11th day to confirm the expression of DNMT1, DNMT3A, and DNMT3B , Aza-T-dCyd and Decitabine-administered groups showed a significant decrease in DNMT1 expression.
  • DNMT3A and DNMT3B there was a difference in the expression levels of DNMT3A and DNMT3B in the groups administered with Aza-T-dCyd and Decitabine.
  • DNMT3A expression level was not affected by Aza-T-dCyd
  • DNMT3B expression level was significantly decreased by Aza-T-dCyd, but no effect was observed by Deictabine.
  • Aza-T-dCyd was administered at doses of 0.5, 1, 1.5, and 2 mg/kg in ALL-Patients Derived Xenografts (PDX), and T-dCyd (a DNMT1 inhibitor), a thionucleoside derivative, was used as a comparison group.
  • PDX ALL-Patients Derived Xenografts
  • T-dCyd a DNMT1 inhibitor
  • Aza-T-dCyd showed excellent efficacy in various solid cancer animal models.
  • Aza-T-dCyd was administered in animal models of colorectal cancer, bladder cancer, ovarian cancer, lung cancer, etc., very excellent effects were confirmed as follows (FIG. 41).
  • NTX-301 The efficacy of NTX-301 was confirmed through tumor growth curves after administration of Aza-T-dCyd to various solid tumor xenograft models. Excellent anticancer effect was shown in the group where 1 ⁇ 2mg/kg dose of NTX-301 was repeatedly administered for QD x 5, 2 ⁇ 6 cycles (test/control (T/C) value ⁇ 40%).
  • T/C Tumor growth inhibition was observed in the group administered with Aza-T-dCyd in Coloretal (HCT-116) xenograft model, and the optimal T/C was 21%. On the other hand, Decitabine's T/C was 45%, which was not very effective.
  • NCI-H522 Non-Small Cell Lung cancer
  • T/C value was 40% at a dose of 0.5 mg/kg, showing a dose-dependent effect.
  • Tumor regression was observed in the group administered with 1mg/kg dose of NTX-301 to the Bladder Tumor (BL0381PD PDX) xenograft model, and the optimal T/C was 23%.
  • Decitabine showed toxicity after 2 cycles in the 0.75mg/kg dose group.
  • Aza-T-dCyd (NTX-301) was confirmed to have excellent stability and a wide therapeutic window in animal tests as a result of the GLP-toxicity test.
  • Aza-T-dCyd was confirmed from the above toxicity test results that it is a safe drug that can sufficiently secure a therapeutic concentration based on AUC values within a usable safe range.
  • the AUC value of Aza-T-dCyd shows efficacy even at 60h*ng/ml, and shows the best therapeutic efficacy at about 200 - 250h*ng/ml, which is about 50 of the NOAEL value in the most sensitive species. % and about 25% of the HNSTD, which means that Aza-T-dCyd has a very wide therapeutic window.
  • rat toxicology study rats were administered 2.5, 5, and 10 mg/kg of Aza-T-dCyd (15, 30, and 60 mg/m 2 ) per day.
  • Target organs of toxicity are bone marrow, thymus, heart, and testes.
  • Testicular toxicity, including reduced sperm count, was recoverable upon discontinuation of administration, and the maximum tolerated dose (MTD) was 10 mg/kg or more (>60 mg/m 2 ) per day.
  • Aza-T-dCyd was administered at doses of 0.15, 0.5, and 1.0 mg/kg (3, 10, and 20 mg/m 2 ) per day.
  • the target organs were bone marrow, thymus, gastrointestinal tract, tonsil, and testis.
  • the maximum tolerated dose (MTD) was between 0.5 - 1mg/kg (10 - 20 mg/m 2 ) per day, and the highest non-toxic dose (HNSTD) per day.
  • the 0.5 mg/kg (10 mg/m 2 ) no observable adverse effect level (NOAEL) was ⁇ 0.15 mg/kg (3 mg/m 2 ) per day.
  • NTX-310 showed good tolerability in patients with late-stage solid cancer, and showed signs of efficacy, such as inducing stable disease that lasted for more than 5 months in some patients and inhibiting cancer progression.
  • the PK profile after clinical administration of Aza-T-dCyd agrees well with the predicted results based on the results of existing non-clinical animal PK experiments, especially in the 16 and 32 mg/day administration groups, which are predicted to have the optimal effect range in humans. This is in good agreement with the predicted results from non-clinical studies, so sufficient drug exposure in the human body can be expected.
  • FIG. 46 shows the drug blood concentration upon administration of NTX-301 for each patient
  • FIG. 47 shows the highest blood concentration and drug exposure degree (AUC) when NTX-301 is administered for each dose.
  • the MTD maximum tolerated dose
  • DLT dose limiting toxicity
  • grade 3 or 4 adverse reactions were not reported.
  • the primary tumor types in the trial were colorectal adenocarcinoma, sarcoma, breast cancer, ovarian cancer, renal cell carcinoma, laryngeal squamous cell carcinoma, uterine cancer, duodenal adenocarcinoma, hepatocellular carcinoma, and paraganglioma.
  • CMML Choronic myelomonocytic leukemia

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hematology (AREA)
  • Oncology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Nutrition Science (AREA)
  • Physiology (AREA)

Abstract

The present invention relates to medicinal use of 4'-thio-5-aza-2'-deoxycytidine (Aza-T-dCyd) selected as a well-designed multi-target inhibitor. Taking advantages as a well-designed multi-target inhibitor, Aza-T-dCyd can be used as an anti-cancer drug for target patient groups with a variety of adjusted administration regimes or doses.

Description

잘 설계된 다중 표적 억제제로 선정된 4'-티오-5-아자-2'-디옥시사이티딘의 의약 용도Pharmaceutical use of 4'-thio-5-aza-2'-deoxycytidine selected as a well-designed multi-target inhibitor
본 발명은 잘 설계된 다중 표적 억제제로 선정된 4'-티오-5-아자-2'-디옥시사이티딘(4'-thio-5-aza-2'deoxycytidine, Aza-T-dCyd)의 의약 용도에 관한 것이다. 잘 설계된 다중 표적 억제제라는 점을 활용하여, Aza-T-dCyd은 다양하게 조정된 투여용법, 용량, 또는 대상 환자군에 항암 약물로 사용될 수 있다.In the present invention, 4'-thio-5-aza-2'deoxycytidine, selected as a well-designed multi-target inhibitor, Aza-T-dCyd) for medicinal use. Taking advantage of being a well-designed multi-target inhibitor, Aza-T-dCyd can be used as an anticancer drug in a variety of tailored regimens, doses, or target patient populations.
우리 몸의 유전자는 세포별로 동일한 염기 서열을 가지고 있지만, 우리 몸의 세포들은 특정 조직에 따라서 서로 다른 유전자만을 발현하며 그 외의 유전자들은 발현시키지 않는 식으로 매우 정밀하게 조절되고 있다.Genes in our body have the same base sequence for each cell, but the cells in our body express only different genes depending on the specific tissue and do not express other genes.
이러한 후천적 조절을 수행하는 작용 기전을 후생유전학 작용기전 (Epigenetic regulation)이라 하며, 이 기전은 (1) DNA의 변화, (2) DNA와 물리적으로 결합하여 크로마틴 구조를 이루는 히스톤의 변화, (3) 기타 크로마틴 구조를 이루는 다른 성분들의 변화로 이루어져 있다. The mechanism of action that carries out this epigenetic regulation is called epigenetic regulation. ) other components of the chromatin structure.
이중 DNA 메틸화는 가장 원천적인 후생유전학적 작용기전으로서 Gene Body, Promoter, Enhancer 등 다양한 유전자의 구성요소 중에서 CpG 서열의 C의 염기를 메틸화하여 유전자의 발현 정도를 조절한다. 일반적으로 CpG 서열은 Promoter 지역에 많이 존재하며, Promoter에 CpG 메틸화가 많이 진행된 유전자는 발현이 잘 되지 않는다. 반대로 CpG 메틸화가 덜 진행된 유전자는 활발하게 발현된다(도 1).Double DNA methylation is the most fundamental epigenetic mechanism of action, and among various gene components such as Gene Body, Promoter, and Enhancer, methylation of C base of CpG sequence controls gene expression level. In general, CpG sequences are abundant in the promoter region, and genes with high CpG methylation in the promoter are not well expressed. Conversely, genes with less CpG methylation are actively expressed (FIG. 1).
DNA 이중나선은 폭이 2nm, 뉴클레오타이드 사이의 거리가 0.34nm, 이중나선 한 주기에 뉴클레오타이드가 10개 연결되어 3.4nm의 길이가 된다. 히스톤 단백질을 감고 있는 뉴클레오타이드는 146개이며, 히스톤 8량체를 1.6번 감는다. 뉴클레오솜과 뉴클레오솜 사이의 이중나선은 200개 가량의 뉴클레오타이드로 되어 있으며, 히스톤 8량체에 DNA 이중나선이 감긴 상태를 뉴클레오솜(nucleosome)이라 한다. 뉴클레오솜(nucleosome) 사이의 DNA 이중 가닥에 DNA 중합효소, RNA 중합효소, 전사조절인자가 결합한다. The DNA double helix has a width of 2 nm, a distance between nucleotides of 0.34 nm, and a length of 3.4 nm when 10 nucleotides are linked in one cycle of the double helix. 146 nucleotides are wrapped around the histone protein, and the histone octamer is wrapped around 1.6 times. The double helix between the nucleosome and the nucleosome consists of about 200 nucleotides, and the state in which the DNA double helix is wound around the histone octamer is called a nucleosome. DNA polymerase, RNA polymerase, and transcriptional regulator bind to the DNA double strand between nucleosomes.
유전자 발현 조절은 전사조절인자에 의해 DNA에 존재하는 유전자 영역이 전사되는 확률이 변하는 현상이다. 전사조절인자(TF)는 세포마다 유전자가 발현되는 확률을 바꾼다. 세포마다 기능이 다른 이유는 전사조절인자의 발현 정도가 다르기 때문이다. DNA 메틸화 작용으로 세포마다 발현되는 유전자가 달라져서, 세포마다 기능에 차이가 있다. DNA를 구성하는 염기서열 중 시토신 6각형 고리 5번 탄소에 메틸기가 부착되는데, 그 부분에는 전자조절인자 단백질이 부착될 수 없어서 DNA 이중나선의 유전 정보를 RNA로 전사할 수 없다. Gene expression regulation is a phenomenon in which the probability of transcription of a gene region present in DNA is changed by a transcriptional regulator. Transcriptional regulators (TFs) change the probability of gene expression from cell to cell. Different cells have different functions because of different levels of expression of transcriptional regulators. Due to DNA methylation, the genes expressed in each cell are different, so there is a difference in function in each cell. Among the base sequences constituting DNA, a methyl group is attached to the 5th carbon of the cytosine hexagonal ring, and the electron regulator protein cannot be attached to that part, so the genetic information of the DNA double helix cannot be transcribed into RNA.
시토신의 5번 탄소 대신에 3번 질소 원자에 메틸기가 부착되면 돌연변이가 생기므로 직접수선해야 한다. 이 돌연변이 수선은 부착된 메틸기(CH3)를 CH2-OH로 바꾸고, CH2-OH를 H2C=O의 포름알데히드와 양성자(H+)로 분해해서 제거하여 원래의 시토신 분자로 만드는 과정을 거친다.If a methyl group is attached to the 3rd nitrogen atom instead of the 5th carbon of cytosine, a mutation occurs and must be repaired directly. This mutation repair changes the attached methyl group (CH 3 ) to CH 2 -OH, and the CH 2 -OH is decomposed into formaldehyde and protons (H + ) of H 2 C=O to remove it, resulting in the original cytosine molecule. goes through
후성유전학의 핵심 과정인 DNA 메틸화, 히스톤 변형, RNA 간섭은 유전자 발현을 조절한다.DNA methylation, histone modification, and RNA interference, key processes of epigenetics, regulate gene expression.
miRNA의 작용으로 mRNA의 번역과정이 중단되거나 mRNA가 분해되는 현상을 RNA 간섭이라고 한다. miRNA는 RNA 중합효소 II의 작용으로 DNA에서 전사된다.The phenomenon in which the translation process of mRNA is stopped or the mRNA is degraded by the action of miRNA is called RNA interference. miRNAs are transcribed from DNA by the action of RNA polymerase II.
우리 몸에서 DNA 메틸화는 다음의 두 단계로 이루어지는 것으로 알려져 있다: (1) DNA methyltransferase (DNMT) 3A 또는 3B가 조직의 분화 및 발생 단계에서 de novo DNA를 메틸화하여 각 조직별로 유전자 발현의 패턴을 결정함; (2) DNMT1이 조직을 구성하는 각 세포들이 이미 확립한 DNA 메틸화 패턴을 충실하게 복제하여 DNA를 메틸화함.It is known that DNA methylation in our body occurs in two steps: (1) DNA methyltransferase (DNMT) 3A or 3B methylates de novo DNA during tissue differentiation and development to determine the pattern of gene expression in each tissue box; (2) DNMT1 methylates DNA by faithfully replicating the DNA methylation pattern already established by each cell constituting the tissue.
일반적인 세포에서 DNA 메틸화가 많이 진행된 영역에는 DNMT1이 다른 단백질들, 특히 유전자 발현을 억제하는 히스톤 단백질 및 기타 Repressor 단백질들과 결합하여 유전자 발현이 어려운 구조를 형성하며 이를 통하여 유전자 발현을 억제한다. 반대로 DNA 메틸화가 많이 진행되지 않은 경우에는 유전자 발현이 용이한 구조를 형성하여 유전자 발현을 촉진한다. DNA 메틸화는 이처럼 우리 몸의 각 세포들이 정해진 기능을 잘 수행하도록 세포마다 정해진 유전자 조합을 원활하게 발현하게 하는 데 중요한 역할을 담당한다. 따라서 이들 기능에 이상이 생기면 다양한 질병의 발생으로 이어지게 된다. In general cells, in regions where DNA methylation is highly advanced, DNMT1 binds to other proteins, especially histone proteins and other repressor proteins that suppress gene expression, to form structures that make gene expression difficult, and through this, suppress gene expression. Conversely, when DNA methylation has not progressed much, gene expression is promoted by forming a structure that facilitates gene expression. DNA methylation plays an important role in enabling the smooth expression of a set gene combination for each cell so that each cell in our body performs its designated function well. Therefore, abnormalities in these functions lead to the occurrence of various diseases.
골수 이형성 증후군 (MDS) 및 급성골수성백혈병 (AML)은 골수에서 발생하는 암으로, 골수를 구성하는 조혈모세포 중 미성숙한 백혈병 세포 (Leukemic Blast)를 생산하는 클론이 정상적으로 다양한 혈액 세포를 생산하는 클론의 수를 압도하게 되어 혈액에 정상적으로 기능하지 못하는 백혈병 아세포 (Leukemic Blast)로 가득 차게 된다. 궁극적으로는 혈액 기능의 부전에 의한 사망에 이르게 되는 질병이다.Myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) are cancers that develop in the bone marrow. Among the hematopoietic stem cells that make up the bone marrow, clones that produce immature leukemia cells (Leukemic Blast) are replaced by clones that normally produce various blood cells. The number is overwhelmed and the blood is filled with leukemic blast cells that cannot function normally. It is a disease that ultimately leads to death due to the failure of blood function.
우리 몸의 정상적인 조혈 과정은 다음과 같은 과정으로 이루어져 있다. (1) 조혈모세포에 혈액 세포를 생산하라는 자극이 들어오게 되면, (2) 조혈모세포가 1단계로 빠르게 분열하여 충분한 수의 혈액 세포를 생산할 수 있는 전구 세포로 분화하게 되며, (3) 전구 세포가 분열하여 충분한 수의 전구 세포가 생긴 후, (4) 2단계로 더 이상의 분열/증식을 멈추고 각자 고유의 기능을 가지고, (5) 더 이상 분열하지 않는 기능 세포로 성숙하는 과정을 거치게 된다(도 2).The normal hematopoiesis process in our body consists of the following processes. (1) When the hematopoietic stem cell is stimulated to produce blood cells, (2) the hematopoietic stem cell rapidly divides in one step and differentiates into progenitor cells capable of producing a sufficient number of blood cells, (3) progenitor cells After dividing and generating a sufficient number of progenitor cells, (4) stop further division/proliferation in the second step, each has its own function, and (5) go through the process of maturation into functional cells that do not divide any more ( Fig. 2).
이 과정에서 주된 역할을 하는 것은 Master transcription factor (Master TF)로, 1단계에서 조혈모세포에 자극이 들어오게 되면 CEBP/alpha 등의 전구세포를 생성하는 마스터 전사인사들이 강하게 작용하여 충분한 수의 전구세포가 생성되도록 하고, 이후 충분한 수의 전구세포가 생성되면 2단계에 들어서서 CEBP/epsilon과 같은 Master TF가 생성된다. 2단계 Master TF들은 1단계 Master TF를 분해하여 더이상 빠른 분열/증식이 일어나지 않도록 하며 정해진 과정을 따라서 세포가 성숙되도록 유도한다.Master transcription factor (Master TF) plays a major role in this process. When hematopoietic stem cells are stimulated in step 1, master transcription factors that produce progenitor cells such as CEBP/alpha act strongly to produce a sufficient number of progenitor cells. are generated, and when a sufficient number of progenitor cells are generated, the second stage is created, where Master TFs such as CEBP/epsilon are generated. The 2nd stage Master TFs decompose the 1st stage Master TFs so that rapid division/proliferation no longer occurs and induces cell maturation according to the prescribed process.
MDS 및 AML에서는 이 전이 과정을 주도하는 2단계 Master TF의 유전자 Promoter가 여러 원인으로 과메틸화되면서 이 2단계 Master TF의 발현이 저하되어 있다. 이로 인해 전구 세포들이 성숙 단계로 넘어가지 못하고 지속적으로 분열/증식하면서 끊임없이 미성숙 세포를 만들어 내게 된다 (도 3). 이 과정이 추가로 진행되면서 여러 돌연변이 (FLT3-ITD 등)가 축적되며 빠르게 진행되는 악성 AML로 변해 환자가 사망에 이르게 된다.In MDS and AML, the gene promoter of the 2nd-stage Master TF leading this metastasis process is overmethylated for various reasons, and the expression of this 2nd-stage Master TF is reduced. As a result, the progenitor cells do not pass to the mature stage and continue to divide/proliferate, constantly producing immature cells (FIG. 3). As this process progresses further, multiple mutations (FLT3-ITD, etc.) accumulate and transform into rapidly progressing malignant AML, which leads to death of the patient.
MDS/AML의 상당수가 DNMT1이 과활성화되어 메틸화 패턴에 이상이 발생하며, 반대로 DNMT1의 저해를 통해 후생유전학 작용기전을 정상화하여 이러한 질병이 치료될 수 있다는 것이 확인된다 (도 4).In many cases of MDS/AML, DNMT1 is overactivated, resulting in abnormal methylation patterns, and on the contrary, it is confirmed that these diseases can be treated by normalizing the epigenetic mechanism of action through inhibition of DNMT1 (FIG. 4).
Master TF 유전자의 Promoter 과메틸화의 원인으로는 DNMT 계열 효소의 이상 (과발현, 과활성화, 결실/변이(deletion/mutation) 등)으로 인한 메틸화 패턴의 변화, IDH1/2 효소의 이상으로 인하여 메틸화 패턴의 제거가 어려워져서 발생하는 패턴의 이상, TET 효소의 이상으로 인한 메틸화 패턴의 제거가 어려워져서 발생하는 패턴의 이상, 노령으로 인한 후생유전학적 변화의 축적 등 다양한 원인이 있다.The causes of hypermethylation of the promoter of the Master TF gene include changes in methylation patterns due to abnormalities in DNMT family enzymes (overexpression, overactivation, deletion/mutation, etc.), and abnormalities in IDH1/2 enzymes. There are various causes, such as pattern abnormalities caused by difficulty in removal, pattern abnormalities caused by difficulty in removing methylation patterns due to TET enzyme abnormalities, and accumulation of epigenetic changes due to old age.
단, 어느 경우든 세포가 성장/분열/생존 유지 과정에서 메틸화 패턴을 그대로 유지해주는 Maintenance DNA methylation machinary인 DNMT1의 활성화를 저해하면 과메틸화 패턴의 해소가 가능하며, 이로인해 MDS/AML의 치료 효능을 가져올 수 있는 것이 확인되어 있다.However, in any case, inhibiting the activation of DNMT1, a maintenance DNA methylation machinary that maintains methylation patterns during cell growth/division/survival processes, can resolve the hypermethylation pattern, thereby improving the therapeutic efficacy of MDS/AML. It is confirmed what can be brought.
AML(급성골수성백혈병), MDS(골수 이형성 증후군), CMML (Chronic myelomonocytic leukemia, 만성골수단핵구백혈병) 또는 ALL(급성림프구성백혈병) 의 치료과정 및 방법은 질병의 분류, 환자의 연령과 건강 상태 등에 따라 달라지지만, 일반적인 표준치료법(SoC, standard of care)은 암종을 절제하는 수술이 동반되는 고형암과 달리 항암제를 이용하여 아세포(blast)를 감소시키기 위한 화학요법을 통한 유도요법(induction therapy), 완전 관해 도달 후 시행하는 공고요법(consolidation therapy), 관해 상태를 유지하는 유지요법(maintenance therapy) 등으로 주로 구성되며, 특히 치료가 시급한 중증 환자의 경우 골수이식(HCT, hematopoietic cell transplant)이라는 가장 효과가 좋은 방법을 실시할 수도 있으나 강력한 화학요법이나 방사선요법을 통해 환자의 비정상적인 골수를 완전히 제거한 후 실시할 수 있는 치료법이어서 신체 상태가 좋지 않은 노령 환자의 경우 그 실시 가능 여부가 매우 제한적이다.The treatment process and method for AML (acute myeloid leukemia), MDS (myelodysplastic syndrome), CMML (chronic myelomonocytic leukemia) or ALL (acute lymphocytic leukemia) depends on the classification of the disease, the patient's age and health condition, etc. Although it depends on the standard of care (SoC), general standard of care (SoC) is induction therapy through chemotherapy to reduce blasts using anticancer drugs, unlike solid cancers accompanied by surgery to remove carcinoma, complete It mainly consists of consolidation therapy after reaching remission and maintenance therapy to maintain remission. In particular, for severely ill patients who urgently need treatment, hematopoietic cell transplant (HCT) is the most effective. A good method may be performed, but since it is a treatment that can be performed after completely removing the patient's abnormal bone marrow through strong chemotherapy or radiation therapy, its feasibility is very limited in the case of elderly patients with poor physical condition.
혈액암, 즉, 골수 질환을 일으킬 수 있는 유전자 변이의 가능성은 노화(aging)로 인해 현저히 증가하기 때문에 나이 자체가 백혈병, 특히 AML과 MDS의 가장 주요한 위험 인자(risk factor)라 할 수 있으나, 신체상태가 양호한 비교적 젊은 환자들에 비해 기저질환 등 여러 요인으로 인해 신체기능이 약화된 상태의 노인 환자들의 경우 독성이 강한 기존의 화학요법을 통한 표준치료법을 적용하기 어려운 경우가 대부분이며, 설령 그를 통한 치료를 거치더라도 예후가 좋지 않은 경우가 많아 재발이 빈번하고 조기 사망률이 매우 높다.Age itself is the most important risk factor for leukemia, especially AML and MDS, because the possibility of genetic mutations that can cause blood cancer, that is, bone marrow disease, increases markedly with aging. Compared to relatively young patients in good condition, it is difficult to apply standard treatment through conventional chemotherapy, which is highly toxic, in most cases for elderly patients whose physical functions are weakened due to various factors such as underlying diseases. Even after treatment, the prognosis is often poor, resulting in frequent recurrence and high early mortality.
현재 MDS와 AML에 대한 표준치료법으로 사용되고 있는 고강도 화학요법을 통한 유도요법(induction therapy)이나 골수이식은 고령 환자들에게 적용하기 어려운 경우가 대부분이고, 설령 표준치료법 등으로 치료를 받더라도 젊은 환자들 대비 그 치료 효과가 훨씬 낮아서 약물 내성 등으로 인한 병증 재발이 높은 까닭에 이들의 특성에 맞춘 치료법 및 약물 개발이 절실하지만, 현재 이들 노인 환자, 특히 65세 이상 환자만을 치료대상으로 한 치료제는 시장에 없는 상태이다.Currently, induction therapy through high-intensity chemotherapy or bone marrow transplantation, which are currently used as standard treatments for MDS and AML, are difficult to apply to elderly patients. Since the treatment effect is much lower and the recurrence of the disease is high due to drug resistance, etc., there is an urgent need to develop therapies and drugs tailored to their characteristics, but currently there is no treatment targeting only these elderly patients, especially those over 65 years of age, on the market. It is a state.
현재 이 두 질병에 대한 아주 높은 미충족 수요(unmet needs)가 있지만, 새로운 치료법 개발을 위한 끊임없는 노력에도 대부분 성공적이지 못했고 수십 년간 표준치료법의 큰 변화도 없었으며 치료법은 크게 성공적이지 못했다. 특히, 유전체 이상이 있는 고위험 환자, 치료후 재발한 sAML(secondary AML) 환자, 과거 치료 이력에 기인한 t-AML(treatment-related AML) 환자, 약물 내성/불응성 환자, 그리고 노령환자에 있어서 더욱 그러하다.Currently, there is a very high unmet need for these two diseases, but despite constant efforts to develop new treatments, most have not been successful, and there has been no major change in standard treatment for decades, and the treatment has not been very successful. In particular, high-risk patients with genetic abnormalities, sAML (secondary AML) patients who relapsed after treatment, t-AML (treatment-related AML) patients due to past treatment history, drug resistance / refractory patients, and elderly patients It is true.
환자의 대부분, 특히 AML의 경우 65세 이상 환자의 5년 생존율이 10%가 채 되지 않을 정도로 절대다수가 조기에 사망하게 되는데, 이들 노령환자 및 재발/불응성 환자군에서의 생존기간(OS, overall survival) 연장으로 이어질 수 있는 효과적인 치료제 출시 자체는 가장 큰 미충족 수요(unmet needs)라고 할 수 있다.Most of the patients, especially in the case of AML, die prematurely, with a 5-year survival rate of less than 10% for patients aged 65 years or older. The launch of an effective treatment that can lead to prolongation of survival is itself the biggest unmet need.
유도요법에 효과가 없거나 추가적인 치료를 받은 후에도 재발하는 노령 환자들의 경우 그 예후는 아주 절망적인데, 이들의 생존기간(OS)을 개선할 수 있는 유일한 방법은 골수이식이지만, 이를 위해 사전에 반드시 진행해야 하는 체내 골수의 완전제거를 목적으로 하는 강력한 유도항암요법은 대부분의 노령환자 및 재발/불응성 환자들에게 적용이 불가능한 것이 현실이다.In the case of elderly patients who do not respond to induction therapy or who relapse after receiving additional treatment, the prognosis is very bleak. The only way to improve their survival time (OS) is bone marrow transplantation. The reality is that strong induction chemotherapy aimed at complete removal of bone marrow in the body cannot be applied to most elderly patients and relapsed/refractory patients.
이들 환자군을 타겟으로 한 혁신약물은 현재 시장에 없는 상태인 까닭에, 기존의 약물의 용량 변경 혹은 복수의 약물을 병용투여하고 있는 실정이지만 그 효과는 크지 못해 생존기간(OS) 연장이라는 치료의 목표에는 이르지 못하여 AML과 MDS 등에 대한 노인 환자의 생존율은 극히 낮은 실정이다. Since innovative drugs targeting these patients are not currently on the market, the current situation is changing the dose of existing drugs or administering multiple drugs in combination, but the effect is not great, so the goal of treatment is to extend the survival period (OS). However, the survival rate of elderly patients with AML and MDS is extremely low.
MDS/AML 세포 (세포주 또는 환자유래 샘플)에 DNMT1 저해제인 Decitabine/Azacytidine 처리 시 2단계 Master TF인 CEBP/epsilon Promoter의 과메틸화가 줄어들면서 CEBP/epsilon이 발현되고, CEBP/epsilon의 down-stream effector인 p27 등의 tumor suppressor gene이 발현되며 항암 효능을 보인다.When MDS/AML cells (cell lines or patient-derived samples) are treated with Decitabine/Azacytidine, a DNMT1 inhibitor, hypermethylation of CEBP/epsilon promoter, a second-stage master TF, is reduced, CEBP/epsilon is expressed, and CEBP/epsilon's down-stream effector Tumor suppressor genes such as phosphorus p27 are expressed and show anticancer efficacy.
기존 상용화된 2종의 DNMT1 저해제 Dacogen (Decitabine), Vidaza (Azacytidine)는 노령 환자군의 MDS/AML 치료를 위한 표준치료제로서 사용되어 오고 있으나 부족한 효능, 높은 독성, 투여 경로 (IV 또는 피하주사)에 따른 사용 편의성의 문제, 적응증확장을 통한 DNMT1 저해제 시장의 확대 등 여러 문제가 지적되었다.Two existing commercially available DNMT1 inhibitors, Dacogen (Decitabine) and Vidaza (Azacytidine), have been used as standard treatments for the treatment of MDS/AML in the elderly patient group. Several problems were pointed out, such as ease of use and expansion of the DNMT1 inhibitor market through indication expansion.
한편, 급성림프구성백혈병 (ALL)은 주로 어린 나이에 발생 (~80%)하는 질병이지만 전체 환자의 20%는 약 50세 정도의 성인에서 발생하며, 소아/청소년 ALL이 치료 예후가 상대적으로 좋은 것에 비하여 성인 ALL의 경우 예후가 매우 좋지 않아 새로운 치료제 개발 필요성이 매우 크다.On the other hand, acute lymphocytic leukemia (ALL) is a disease that mainly occurs at a young age (~80%), but 20% of all patients occur in adults around the age of 50, and pediatric/adolescent ALL has a relatively good treatment prognosis. In contrast, the prognosis of adult ALL is very poor, so the need for the development of new therapies is very great.
ALL의 다수는 B세포성 기원을 가지는 B-ALL이나 일부는 T 세포성 세포에 기원을 가지는 T-세포성 ALL (이하 T-ALL)이며, T-ALL의 경우 마땅한 targeted therapy의 개발이 제한되어 있어 1차 화학요법 치료 이후에는 치료 옵션이 제한되어 있다.The majority of ALL is B-ALL of B-cell origin, but some are T-cell origin of T-cell origin (hereinafter referred to as T-ALL), and in the case of T-ALL, the development of appropriate targeted therapy is limited. Treatment options are limited after first-line chemotherapy.
성인 ALL의 치료는 Cyclophosphoamide, Daunorubicin, Vincristine, L-asparaginase, Prednisone 등에 기반한 고강도 화학항암요법이 1차 치료 옵션이다.For the treatment of adult ALL, high-intensity chemotherapy based on Cyclophosphoamide, Daunorubicin, Vincristine, L-asparaginase, and Prednisone is the first-line treatment option.
약 30-40%의 환자는 이러한 고강도 화학항암요법에도 불구하고 재발 또는 내성을 획득하며, 이러한 재발/내성 환자 중 B세포성 ALL 환자의 경우 항체치료제, ADC, CAR-T 등 다양한 치료옵션이 존재하는 것에 비하여, T-ALL 환자의 경우 Nelarabine으로 치료제가 한정되어 있어 새로운 치료제 개발에 대한 요구가 높다.About 30-40% of patients relapse or acquire resistance despite such high-intensity chemotherapy, and among these relapsed/resistant patients, B-cell ALL patients have various treatment options such as antibody therapy, ADC, and CAR-T In contrast, in the case of T-ALL patients, the treatment is limited to Nelarabine, so there is a high demand for the development of new treatments.
약물의 내성은 약물의 반복 복용에 의해 약효가 저하하는 현상이다. 약물 처리 후 살아남은 암세포는 항상성 유지를 위한 피드백 메커니즘 및/또는 유전자 변이에 의해 약물 내성이 일어난다. 여러 약물을 병합하면 내성이 줄어들기도 한다.Drug tolerance is a phenomenon in which the efficacy of a drug decreases due to repeated administration of the drug. Cancer cells that survive drug treatment develop drug resistance due to a feedback mechanism for maintaining homeostasis and/or genetic mutation. Combining multiple drugs may reduce resistance.
T-ALL의 경우 다양한 세포독성 항암제를 조합한 intensive chemotherapy를 활용하는 치료에 많은 환자들이 좋은 반응을 보이지만, 표준치료의 활용에도 불구하고 내성이 발생한 T-ALL의 경우 마땅한 치료법이 없어 새로운 치료법의 개발 요구가 매우 높다. 이러한 내성 환자의 일부에서는 BCl2 등 Anti-apoptotic gene의 과발현에 의해 내성이 발생하는 것으로 파악되어(도 52), 시험적으로 DNMT1 저해제(Decitabine 등)와 Venetoclax 조합에 의한 치료가 시도되었으며, 우수한 치료 시너지 효과가 확인된 바 있다. 다만, 이러한 임상 결과보고에도 불구하고 T-ALL 환자군에서 DNMT1 저해제들에 대한 추가적인 개발 노력은 진행되고 있지 않은 상황이다.In the case of T-ALL, many patients show a good response to treatment using intensive chemotherapy that combines various cytotoxic anticancer drugs, but in the case of T-ALL, which has developed resistance despite the use of standard treatment, there is no suitable treatment, so development of a new treatment The demand is very high. In some of these resistant patients, resistance was found to be caused by overexpression of anti-apoptotic genes such as BCl2 (FIG. 52), and treatment with a combination of DNMT1 inhibitors (Decitabine, etc.) and Venetoclax was experimentally attempted, and excellent therapeutic synergy was achieved. effect has been confirmed. However, despite these clinical results reports, additional development efforts for DNMT1 inhibitors in the T-ALL patient group are not in progress.
다만, T-세포성 ALL의 치료에 기존 Nucleoside계 항암제가 적용되어 내성 환자들의 경우 Nucleoside 대사 내성이 발생할 가능성이 높아 기존 Decitabine을 넘어서 대사 내성을 포함한 다양한 내성 기전을 극복할 수 있는 새로운 DNMT1 저해제 개발에 대한 니즈가 높은 상황이다.However, as existing nucleoside anticancer drugs are applied to the treatment of T-cell ALL, there is a high possibility of developing nucleoside metabolism resistance in resistant patients, so there is a high possibility of developing new DNMT1 inhibitors that can overcome various resistance mechanisms including metabolic resistance beyond the existing Decitabine. There is a high demand for
한편, 유전정보를 저장하는 중요한 기능을 하는 DNA는 UV, ionizing radiation (IR), 다양한 화학약품 또는 세포호흡에 의해 생성된 활성산소종(Reactive Oxygen Species, ROS)에 의한 손상을 항상 받는다. 비록 DNA 손상(DNA damage)이 인간 전체 게놈에 비해 매우 적은 부분을 차지하더라도, DNA 손상이 원종양 유전자(proto-oncogene) 또는 억제유전자(suppressor gene)에 일어나게 될 시 궁극적으로 암이 생길 가능성이 높아지게 된다. 이러한 손상을 막기 위하여 세포는 자신만의 DNA 복구시스템이 존재하는데 이를 DNA 손상반응(DNA damage response)이라고 한다. DNA 손상반응은 세포의 유전적 완전성을 유지시켜주는데 DNA 손상시 세포주기(cell cycle)를 멈추고 DNA 손상을 복구(repair)한다. 하지만 DNA 손상이 세포의 능력을 넘으면 세포는 스스로 세포사멸(apoptosis)을 유도한다.On the other hand, DNA, which has an important function of storing genetic information, is always damaged by UV, ionizing radiation (IR), various chemicals, or reactive oxygen species (ROS) generated by cellular respiration. Although DNA damage accounts for a very small fraction of the entire human genome, when DNA damage occurs to a proto-oncogene or suppressor gene, it ultimately increases the likelihood of cancer. do. To prevent this damage, cells have their own DNA repair system, which is called the DNA damage response. The DNA damage response maintains the genetic integrity of cells. When DNA is damaged, the cell cycle is stopped and DNA damage is repaired. However, when DNA damage exceeds the cell's ability, the cell induces apoptosis on its own.
DNA복구는 손상의 종류에 따라 다른 과정으로 진행된다. DNA가 중합효소에 의해 복제될 때 생기는 오류를 고쳐주는 불일치복구(Mismatch Repair: MMR), 염기서열 하나가 잘못되었을 때 고치는 염기절단복구(Base Excision Repair: BER), 앞선 손상들보다 더 큰 범위에서 일어난 손상을 복구하는 방법으로 뉴클레오티드절단복구(Nucleoid Excision Repair: NER), IR과 같이 강력한 손상에 노출로 인해 DNA이중나선가닥이 손상되었을 때 복구해주는 이중가닥절단복구(Double Stand Break Repair)가 있다. 이중가닥절단복구방법으로는 손상되지 않은 가닥을 주형으로 사용하여 손상된 가닥을 복구하는 상동재조합(homologous recombination: HR)과 G1에서 일어나며 상보성이 없는 말단끼리 연결함으로써 손상을 복구하는 비상동말단연결(non-homologous end joining: NHEJ)이 있다. 이렇듯 많은 DNA복구과정이 있음에도 불구하고, 많은 질병들의 원인이 DNA 손상으로 인해 발생한다고 알려져 있다.DNA repair proceeds in different processes depending on the type of damage. Mismatch Repair (MMR), which corrects errors that occur when DNA is copied by polymerases, and Base Excision Repair (BER), which repairs when one base sequence is wrong, to a greater extent than previous damages. Nucleoid Excision Repair (NER) and Double Stand Break Repair (Double Stand Break Repair) repair DNA double helix strands that are damaged due to exposure to strong damage such as IR. Double-strand break repair methods include homologous recombination (HR), which repairs the damaged strand using the intact strand as a template, and non-homologous end linkage (non-homologous end-linkage, which repairs damage by linking non-complementary ends in G1) -homologous end joining: NHEJ). Although there are many DNA repair processes, it is known that the cause of many diseases is caused by DNA damage.
암(cancer)은 무분별한 세포증식, 무제한 분열이라는 특징을 갖는 질환이다. 일반적인 세포에는 세포주기 검문지점(cell cycle checkpoint)라는 것이 있어서 세포분열 시 유전자의 손상, 세포의 손상에 대해 점검이 일어난다. DNA 손상이 발견되면 수리 또는 손상이 심할 경우에는 세포사멸이 일어난다. 하지만 이런 DNA 손상이 있음에도 불구하고 수리되지 않고 계속 분열하게 된다면 암이 생긴다. 가장 대표적인 예가 암을 억제해주는 역할을 하는 BRCA 유전자로, 상동재조합을 통한 DNA이중가닥절단을 복구하는데 중요한 역할을 한다. DNA복구에 중요한 역할을 하는 BRCA 유전자에 돌연변이가 있는 상태에서 DNA 손상이 발생했을 때, 올바른 DNA복구가 일어나지 않게 되고, 이는 다른 유전자의 돌연변이를 증가시킨다. 실제로 BRCA 유전자에 변이가 생기면 유방암, 난소암 등 여성암의 발병률이 매우 높아진다. BRCA 유전자에 변이를 가진 여성의 경우는 유방암에 걸리는 비율이 일반적인 경우보다 5~6배 정도 증가하고 난소암이 발병하는 비율은 10배 정도 증가하는 것으로 알려져 있다. 이를 통해, DNA 손상이 제대로 복구되지 않아 세포의 유전적 불안정성을 일으키게 됨으로써 암을 유발한다는 것을 알 수 있다.Cancer is a disease characterized by indiscriminate cell proliferation and unlimited division. In normal cells, there is something called a cell cycle checkpoint, which checks for damage to genes and cells during cell division. When DNA damage is detected, repair or, if the damage is severe, apoptosis occurs. However, if DNA continues to divide without being repaired despite this damage, cancer occurs. The most representative example is the BRCA gene, which plays a role in suppressing cancer, and plays an important role in recovering DNA double-strand breaks through homologous recombination. When DNA damage occurs while there is a mutation in the BRCA gene, which plays an important role in DNA repair, correct DNA repair does not occur, which increases mutations in other genes. In fact, mutations in the BRCA gene increase the incidence of female cancers such as breast and ovarian cancer. It is known that women with mutations in the BRCA gene have a 5- to 6-fold increase in the rate of breast cancer and a 10-fold increase in the incidence of ovarian cancer. Through this, it can be seen that DNA damage is not properly repaired and causes genetic instability of cells, thereby causing cancer.
암이 갖는 공통된 특성은 유전적 불안정성이다. 대부분의 암에서 DNA 손상반응의 어떤 결함에 의해 암세포가 생기고 발달하는지를 구체적으로는 알지 못하지만, DNA 손상반응의 결함과 암 사이의 연관 관계는 반박할 여지가 없다.A common feature of cancer is genetic instability. In most cancers, it is not known specifically what defects in the DNA damage response cause cancer cells to develop and develop, but the link between defects in the DNA damage response and cancer is indisputable.
상동재조합복구(homologous recombination repair)에 결함이 생겨 산발성 또는 유전성 종양이 생긴다.Defects in homologous recombination repair result in sporadic or hereditary tumors.
상동재조합복구에 결함이 생기는 이유는 주로 BRCA 유전자에 돌연변이가 생기거나 후생학적 사일런싱 (epigenetic silencing)이 발생하기 때문이다. 다른 보고에 의하면 BRCA1, BRCA2, ATM, RAD51C, RAD51D 등 상동재조합복구에 관여하는 유전자들의 기능상실변이가 유전성 유방암, 자궁암, 췌장암 등에서 발견되었다.Defects in homologous recombination repair are mainly due to mutations in the BRCA gene or epigenetic silencing. According to another report, loss-of-function mutations in genes involved in homologous recombination repair, such as BRCA1, BRCA2, ATM, RAD51C, and RAD51D, were found in hereditary breast cancer, uterine cancer, and pancreatic cancer.
이처럼 암세포는 DNA 손상 반응에 결함을 내포하고 있다. 즉, 암세포는 DNA 손상에 적절하게 대처할 수 없다. 그렇기 때문에 DNA 손상을 줄 수 있는 물질을 항암제로 사용하여 암세포의 세포 사멸을 유도하는 것이다. 첫 번째 예시로 백금화합물(platinum salts)인 카보플라틴(carboplatin)과 시스플라틴(cisplatin)을 들 수 있다. 백금화합물은 DNA inter- 그리고 intrastrand crosslink을 만들어 DNA 손상을 야기한다. 이 DNA 손상은 뉴클레이티드절단복구(NER)와 상동재조합복구(HRR)를 통해서 수리된다.As such, cancer cells contain defects in their DNA damage response. That is, cancer cells cannot adequately cope with DNA damage. That is why substances that can damage DNA are used as anticancer agents to induce apoptosis of cancer cells. A first example is the platinum salts carboplatin and cisplatin. Platinum compounds cause DNA damage by creating DNA inter- and intrastrand crosslinks. This DNA damage is repaired through nucleotide excision repair (NER) and homologous recombination repair (HRR).
그래서 백금 화합물은 상동 재조합 과정에 결함이 있는 자궁암 환자에게서 효과를 보인다. 악성자궁암의 40%가량은 생식 또는 체세포 수준에서 상동재조합복구에 핵심 유전자인 BRCA1 또는 BRCA2에 돌연변이가 일어났거나 후생학적 불활성을 나타내어 상동재조합복구가 비정상적으로 일어나기 때문이다.So, platinum compounds are effective in cervical cancer patients with defects in the process of homologous recombination. About 40% of malignant cervical cancers are due to mutations in BRCA1 or BRCA2, which are key genes for homologous recombination repair at the reproductive or somatic level, or abnormal homologous recombination repair due to epigenetic inactivity.
도 5에 나타난 바와 같이, 난소암과 방광암 치료에 대한 백금계 항암제는 미충족 요구가 있다.As shown in FIG. 5 , there is an unmet need for platinum-based anticancer agents for the treatment of ovarian cancer and bladder cancer.
난소암은 전세계적으로 신규 환자가 연간 30만명에 이르는 발생빈도가 매우 높은 암으로 백금계 항암제로 많은 환자들이 치료효과를 얻지만 내성발생 시 연간 18만5천명이 사망하는 매우 치명적인 암으로 미충족 의료 수요가 매우 높은 질병이다.Ovarian cancer is a cancer with a very high incidence worldwide, reaching 300,000 new patients per year. Although many patients benefit from platinum-based anticancer drugs, it is a very lethal cancer that causes 185,000 deaths annually when resistance develops. It is a disease in high demand.
난소암은 다른 고형암과 마찬가지로 병기를 1기에서 4기(말기)까지로 나눌 수 있는데, 위치적으로 복강 안쪽 깊은 곳에 위치해 있어 외부로부터 차단된 난소의 특성상 초기 발병되더라도 특별한 자각증상이 거의 나타나지 않는 까닭에 난소암 진단을 받은 환자의 75% 이상이 3기 혹은 4기로 확인되어 대부분의 경우 치료 후에도 재발률이 높으며 이후 생존율 또한 높지 않아 부인과암 중에서 예후가 가장 나쁜 암이다.Ovarian cancer, like other solid cancers, can be divided into stages 1 to 4 (terminal stage). Because it is located deep inside the abdominal cavity and is isolated from the outside, ovarian cancer rarely shows any special subjective symptoms even if it is diagnosed in the early stages. More than 75% of patients diagnosed with ovarian cancer in 2009 were identified as stage 3 or 4, and in most cases, the recurrence rate is high even after treatment, and the survival rate is not high, making it the worst prognosis among gynecological cancers.
난소암의 치료는 초기 발견 이후 BRCA 1/2 유전자의 돌연변이 상태에 따라서 PARP 저해제를 표적항암제로 사용할 수 있으나 대부분의 치료 과정을 시스플라틴, 카보플라틴 등을 포함하는 백금계 항암제를 활용하는 화학 요법에 의존하고 있다.For the treatment of ovarian cancer, PARP inhibitors can be used as target anticancer drugs depending on the mutation status of the BRCA 1/2 gene after initial discovery, but most of the treatment processes are in chemotherapy using platinum-based anticancer drugs including cisplatin and carboplatin. are dependent
초반 항암 치료에서는 대부분의 난소암 환자들이 화학요법제에 잘 반응하는 모습을 보이나 많은 환자들에서 이들은 백금계 항암제를 포함하는 treatment regime에 빠르게 내성을 획득하며, 이들 환자 중 complete resistance patient의 경우 이후 활용 가능한 대다수의 치료요법에 반응하지 않고 빠르게 사망에 이른다.In the early stage of anticancer treatment, most ovarian cancer patients respond well to chemotherapeutic agents, but in many patients, they quickly acquire resistance to treatment regimes including platinum-based anticancer agents, and among these patients, complete resistance patients are utilized later. It does not respond to the majority of available therapies and leads to rapid death.
병증에 대한 초기 자각증상이 거의 없는 까닭에 대부분의 난소암 환자가 진단 당시 그 치료 예후가 몹시 좋지 않은 3기와 4기의 상태이고, 그중 대부분인 85%가 1차 치료 후에도 재발하며, 이후 2차 치료제로서 백금 약물을 투입한 후에도 25%는 약물 내성을 보이는데, 이들 환자군의 경우 대부분 6개월 내에 암이 재발하고 1년 이내에 반드시 사망하게 된다.Most ovarian cancer patients have very poor treatment prognosis at the time of diagnosis because there are almost no early subjective symptoms of the disease, and most of them, 85%, recur after the first treatment, and then second-line treatment As a result, 25% show drug resistance even after platinum drug is administered, and in most of these patients, cancer recurrence within 6 months and death must occur within 1 year.
현재로서는 백금 내성을 가진 환자에게 투약 가능한 3차 치료제는 시장에 없다.Currently, there is no tertiary treatment available on the market for platinum-resistant patients.
Decitabine 그리고 Azacytidine의 경우(도 6) 임상에서 백금계 항암제와의 병용투여 효과가 검증되었으나 Decitabine을 이용한 priming 시 백금계 항암제에 의한 독성이 증폭될 수 있다는 우려가 제기되었고 또한 Decitabine의 불안정한 PK profile로 인하여 난소암 등 PK profile이 중요한 고형암에서 일관된 효율을 보이는 것이 쉽지 않을 것으로 예측되어 추가적인 개발이 중단된 상태이다.In the case of Decitabine and Azacytidine (Fig. 6), the effect of combined administration with platinum-based anticancer drugs was verified in clinical practice, but concerns were raised that the toxicity caused by platinum-based anticancer drugs could be amplified during priming with Decitabine, and also due to the unstable PK profile of Decitabine. Further development has been suspended as it is predicted that it will not be easy to show consistent efficiency in solid cancers where the PK profile is important, such as ovarian cancer.
방광암은 비뇨기에 발생하는 암 중 두 번째로 흔한 암인데, 주요 위험 인자로는 유전적 요인, 고연령, 성별(남성이 여성 대비 위험도 4배 높음) 외에 흡연이 가장 큰 발암 인자로 추정되고 있는데, 통계적으로 흡연자가 비흡연자 대비 방광암 발생률이 최대 7배 정도 높아질 수 있다.Bladder cancer is the second most common cancer of the urinary tract, and the main risk factors are genetic, age, and gender (men have a 4-fold higher risk than women), and smoking is estimated to be the biggest carcinogen. As a result, smokers may be up to seven times more likely to develop bladder cancer than non-smokers.
방광암 환자 증가 추세는 전 세계적인 인구 증가와 고령화에 가장 크게 기인하다고 볼 수 있으며, 암진단 기술의 발전으로 방광암 진단율이 높아지고 있다.The increasing trend of bladder cancer patients can be attributed to the increase in population and aging worldwide, and the diagnosis rate of bladder cancer is increasing due to the development of cancer diagnosis technology.
방광암 역시 백금계 항암제로 많은 환자들이 치료효과를 얻지만 내성발생 시 연간 20만명이 사망하는 매우 치명적인 암으로 미충족 의료 수요가 매우 높은 질병이다.Bladder cancer is also a very lethal cancer that causes 200,000 deaths per year when resistance occurs, although many patients benefit from platinum-based anticancer drugs.
방광암의 치료는 초기에는 방광 내에 국소로 존재하고 있는 암 조직을 절제한 후 maintenance chemotherapy로 방광 조직을 침투하는 암의 발생을 억제하는 접근법을 쓰고 있으나 약 40%의 환자에서 암세포가 방광의 근육 조직을 뚫고 전이가 발생하게 되며, 이들 환자들 중 약 15%의 경우에는 면역 관문 억제제에 의한 치료가 가능하나 대다수의 환자들은 바로 gemcitabine/carboplatin 기반의 화학 항암 요법에 의한 치료가 진행된다.Bladder cancer treatment initially uses an approach to suppress the occurrence of cancer infiltrating the bladder tissue by maintenance chemotherapy after resecting the cancer tissue locally present in the bladder, but in about 40% of patients, cancer cells invade muscle tissue of the bladder. Metastasis occurs through penetration, and treatment with immune checkpoint inhibitors is possible in about 15% of these patients, but the majority of patients are treated with gemcitabine/carboplatin-based chemotherapy.
이러한 백금계 항암제 내성의 원인은 난소암에서와 마찬가지로 백금계 항암제 내성의 원인이 되는 p15, p16 등 다양한 tumor suppressor gene 및 SLFN11의 후생유전학적 silencing으로 실제 Decitabine을 이용한 다양한 연구자 주도 임상시험에서 이러한 resensitization 가능성이 입증되어 왔다.The cause of resistance to platinum-based anticancer drugs is epigenetic silencing of SLFN11 and various tumor suppressor genes such as p15 and p16, which cause resistance to platinum-based anticancer drugs, as in ovarian cancer. this has been proven
다만, Decitabine과 Azacytidine의 경우 이와 같이 임상에서의 효능이 검증되고 작용기전과 바이오마커의 확보 가능성이 제기되었음에도 불구하고 이들 약물을 이용한 priming 시 백금계 항암제에 의한 독성이 증폭될 수 있다는 우려가 제기되었고, 또한 decitabine 화합물의 불안정한 PK profile로 인하여 방광암 등 PK profile이 중요한 고형암에서 일관된 효율을 보이는 것이 쉽지 않을 것으로 예측되어 추가적인 개발이 중단된 상태이다. However, in the case of Decitabine and Azacytidine, although their clinical efficacy has been verified and the possibility of securing a mechanism of action and biomarkers has been raised, concerns have been raised that the toxicity of platinum-based anticancer drugs may be amplified during priming with these drugs. In addition, due to the unstable PK profile of the decitabine compound, it is predicted that it will not be easy to show consistent efficiency in solid cancers where the PK profile is important, such as bladder cancer, and further development has been discontinued.
Decitabine의 이러한 한계 (독성 및 불안정한 PK profile)에도 이를 극복할 수 있는 새로운 DNMT1 저해제를 개발하여 이러한 resensitization 치료제를 개발할 수 있다는 니즈 및 기대가 매우 높은 상황이다. 이러한 complete resistance의 원인이 p15, p16 등 다양한 tumor suppressor gene의 후생유전학적 silencing으로 추정되어, DNMT1 저해제 (Decitabine)의 개발 초기부터 DNMT1의 저해를 통하여 후생유전학적 변화를 유도함으로써 이러한 화학 요법에 대한 저항성을 극복할 수 있을 것으로 생각되었으며, 실제 Decitabine을 이용한 다양한 연구자 주도 임상시험에서 이러한 가능성이 입증되어 오고 있다. 특히 최근들어 이러한 complete resistance의 원인이 SLFN11 유전자에 의존하고 있다는 것이 확인되어 잠재적인 바이오마커가 확보되는 상황이어서 새로운 DNMT1 저해제에 대한 니즈가 매우 높은 상황이다. Despite these limitations of Decitabine (toxicity and unstable PK profile), there is a very high need and expectation that such a resensitization treatment can be developed by developing a new DNMT1 inhibitor that can overcome these limitations. The cause of this complete resistance is presumed to be epigenetic silencing of various tumor suppressor genes such as p15 and p16, and resistance to such chemotherapy by inducing epigenetic changes through inhibition of DNMT1 from the early development of DNMT1 inhibitor (Decitabine) was thought to be able to overcome this, and in fact, this possibility has been demonstrated in various researcher-led clinical trials using Decitabine. In particular, it has recently been confirmed that the cause of such complete resistance is dependent on the SLFN11 gene, and as a potential biomarker is secured, the need for a new DNMT1 inhibitor is very high.
최근 PD-1/PD-L1 면역관문억제제와 같은 면역항암요법(IO, immuno-oncology) 및 기존의 치료법과의 병용요법이 도입되고 있다. N-803, Vicinium, Instiladrin 등의 새로운 개념의 파이프라인 치료제가 시장에 진입할 경우 비근침습방광암(NMIBC) 환자들에게 새로운 치료 기회를 제공할 수 있다.Recently, immuno-oncology (IO), such as PD-1/PD-L1 immune checkpoint inhibitors, and combination therapy with existing therapies have been introduced. If new concept pipeline treatments such as N-803, Vicinium, and Instiladrin enter the market, they can provide new treatment opportunities to non-muscle-invasive bladder cancer (NMIBC) patients.
그러나, 최근까지 전이성방광암에서의 약물 내성 환자들에 대한 미충족 수요(unmet needs)를 채워줄 것으로 기대됐던 면역관문억제제가 모든 환자들에게 반응하지 않으며, 일부 환자들에게서는 재발이 관찰되는 등 해당 치료제에 대한 내성 또한 보인다는 것이 확인되고 있다. However, until recently, immune checkpoint inhibitors, which were expected to fill the unmet needs of drug-resistant patients in metastatic bladder cancer, do not respond to all patients, and relapses are observed in some patients. It has been confirmed that tolerance is also seen.
비교적 예후가 좋은 편인 1기에서 3기까지의 근침습성방광암(MIBC, muscle invasive bladder cancer)의 경우 5년 생존율이 50%에 이르며, 그보다 앞단계인 비근침습성방광암(NMIBC, non-muscle invasive bladder cancer)의 경우 88%에 이르는데 반해, 전이성방광암(mBC, metastatic bladder cancer)은 10%에 채 미치지 못하고 대부분 2년 내에 사망에 이르게 되어, 전이성방광암에 대한 효과적인 치료제 수요는 크다.In the case of muscle invasive bladder cancer (MIBC), which has a relatively good prognosis, the 5-year survival rate reaches 50%, and the earlier stage, non-muscle invasive bladder cancer (NMIBC) ) is 88%, whereas metastatic bladder cancer (mBC) is less than 10% and most of them die within 2 years, so there is a great demand for effective treatment for metastatic bladder cancer.
난소암과 마찬가지로 이들 말기 방광암 환자들의 경우에도 1차 화학요법 치료에 실패하면 약물의 내성으로 인해 이후 2차, 3차 치료제의 선택의 폭이 매우 좁아지게 되고, 결국 이들 환자군의 경우 5년 생존율은 5%에 불과한 실정이다.As with ovarian cancer, if first-line chemotherapy treatment fails in these patients with late-stage bladder cancer, the choice of second-line and third-line treatments becomes very narrow due to drug resistance, and eventually the 5-year survival rate for these patients is It is only 5%.
이들 백금 내성 전이성방광암 환자군에서의 3차, 4차 치료제는 현재 시장에 없는 상태이다. There are currently no 3rd or 4th line treatments for these platinum-resistant metastatic bladder cancer patients on the market.
화학 항암 요법 치료가 진행되는 환자의 예후는 불량하여 평균 생존 기간 1년 미만이며, 사망하는 환자의 다수가 백금계 항암제 내성에 의하여 사망하는 상황으로, 이런 백금계 항암제 내성에 대한 극복의 필요성이 높은 상황이다.The prognosis of patients undergoing chemotherapy is poor, the average survival time is less than 1 year, and many of the patients who die are due to resistance to platinum-based anticancer drugs. situation.
따라서, 다른 모든 고형암들과 마찬가지로 난소암 및 방광암도 병기, 바이오마커, 약물 내성 등에 따라 다양한 적응증에 대한 치료제 시장이 있다.Therefore, like all other solid cancers, there is a market for treatments for ovarian cancer and bladder cancer for various indications depending on stage, biomarker, and drug resistance.
암 세포와 같이 빠르게 분열하는 세포는 천천히 분열하는 정상 세포보다 세포 독성 물질의 영향에 훨씬 더 민감하기 때문에 DNA 변형 제제를 사용하여 암세포를 제거할 수 있다. DNA 손상은 가장 보편적으로 사용되는 많은 화학 요법 제제의 작용기전이지만, 임상에서 사용되는 치료제는 효력이 증가함에 따라 치료역(therapeutic window)이 좁아짐으로 인한 독성의 위험으로 치료제로 사용하기 어려워진다. Because rapidly dividing cells, such as cancer cells, are much more sensitive to the effects of cytotoxic substances than slowly dividing normal cells, DNA-modifying agents can be used to eliminate cancer cells. DNA damage is the mechanism of action of many of the most commonly used chemotherapeutic agents, but the therapeutic agents used clinically become difficult to use as therapeutic agents due to the risk of toxicity due to the narrowing of the therapeutic window as the efficacy increases.
현재 2종의 DNMT1 저해제 활성성분인 Decitabine/Azacytidine을 기반으로 다양한 약품 (주사제 및 경구제, 각 용도에 따라 활용)이 시장에 출시되어 있다(도 6).Currently, various drugs (injection and oral preparations, used according to each purpose) are released on the market based on Decitabine/Azacytidine, two types of DNMT1 inhibitor active ingredients (FIG. 6).
도 6에 도시된 바와 같은 화학구조의 Decitabine/Azacytidine 두 성분 모두 세포내에서 Decitabine triphosphate 형태로 활성화된 후 DNA에 incorporation되고, 이후 DNMT1 효소를 trapping하여 DNA-DNMT1 covalent adduct를 형성한다. 이후 생성된 adduct의 분해를 통한 DNA damage repair 수리 과정에서 발생하는 다양한 세포 내 신호전달경로에 의하여 과메틸화 제거 및 각종 항암효능을 보이는 기작을 가지고 있으나, (1) Decitabine/Azacytidine 두 성분이 모두 우리 몸에 존재하는 Cytidine Deaminase에 의한 대사에 취약하여 PK profile이 불안정한 문제로 효력이 제한되는 단점이 있고, (2) DNA-DNMT1 adduct의 형성을 통하여 DNA 손상을 주기 때문에 암세포만이 아닌 골수/위장관 점막 등 우리 몸의 정상 조직에도 손상을 주는 문제가 있어 사용량이 제한됨에 따라 항암효력에 한계가 있고, (3) 초기치료 이후 살아남은 암세포에서는 DNA-DNMT1 adduct 형성 후 제거 과정이 과활성화되면서 항암효능이 억제되는 문제'가 있어 내성 발생에 취약한 모습을 보이는 등의 문제를 가지고 있어 개량 신약의 개발이 강하게 요구되는 상황이다.As shown in FIG. 6, both Decitabine/Azacytidine components of the chemical structure are activated in the form of Decitabine triphosphate in cells and incorporated into DNA, and then trap the DNMT1 enzyme to form a DNA-DNMT1 covalent adduct. It has a mechanism that removes hypermethylation and exhibits various anticancer effects by various intracellular signal transduction pathways that occur during the DNA damage repair process through degradation of the adduct produced thereafter. It is vulnerable to metabolism by Cytidine Deaminase, which has the disadvantage of limited efficacy due to unstable PK profile. There is a problem of damaging normal tissues in our body, so the amount of use is limited, so the anticancer effect is limited. (3) In cancer cells that survived after the initial treatment, the removal process is overactivated after the formation of the DNA-DNMT1 adduct, suppressing the anticancer effect. The development of improved new drugs is strongly demanded as they have problems such as being vulnerable to resistance.
Cytidine Deaminase에 의한 대사를 위해서는 Decitabine/Azacytidine 구조에서의 5'-OH기와 3'-OH기가 모두 노출되어 있어야 하는 것에 착안하여 Astex Pharmaceuticals/Otsuka에서는 Decitabine의 3'-OH기에 deoxyguanidine을 연결한 구조의 Decitabine Prodrug, SGI-110을 개발하였다. SGI-110은 실제로 인체에 투여 시 Cytidine Deaminase에 의한 대사를 피하고, Decitabine 성분을 slow release하여 개선된 PK profile을 보이는 것이 확인되었으나, 이러한 개선된 PK profile이 실제 약리효능의 개선으로 이어지지 않는 한계가 확인되었다. Focusing on the fact that both 5'-OH and 3'-OH groups in the structure of Decitabine/Azacytidine must be exposed for metabolism by Cytidine Deaminase, Astex Pharmaceuticals/Otsuka developed a Decitabine structure in which deoxyguanidine was linked to the 3'-OH group of Decitabine. A prodrug, SGI-110, was developed. When SGI-110 was actually administered to the human body, it was confirmed that it avoids metabolism by Cytidine Deaminase and exhibits an improved PK profile by slowly releasing the Decitabine component. It became.
Cytidine Deaminase에 의한 대사 문제를 해결하기 위한 방법으로 Cytidine Deaminase 저해제를 같이 복용하는 경구투여제 (ASTX-727) 또는 과량의 Azacytidine을 투여하여 PK profile을 안정화하는 방식의 경구투여제 (CC-486)와 같은 개량 신약이 개발되었으나, 이들 역시 상기한 Decitabine/Azacytidine의 문제 중 (2) 및 (3)에 대한 해결책을 제공하지는 못하는 실정이다. 또한 Cytidine Deaminase 저해제의 병용으로 인한 활성성분 (Decitabine) 약효 저하의 문제, 과량 약물투여에 의한 위장관계 부작용 등의 문제를 가지고 있어 이런 문제점들을 해결할 수 있는 새로운 DNMT1 저해제의 개발이 필요한 상황이다.As a way to solve the metabolic problem caused by cytidine deaminase, an oral medication (ASTX-727) that takes a cytidine deaminase inhibitor together or an oral medication (CC-486) that stabilizes the PK profile by administering an excessive amount of Azacytidine Although the same improved new drugs have been developed, they also do not provide solutions to (2) and (3) of the problems of Decitabine/Azacytidine described above. In addition, it has problems such as deterioration of the active ingredient (Decitabine) due to the combined use of Cytidine Deaminase inhibitors and gastrointestinal side effects due to excessive drug administration.
본 발명자들은 놀랍게도, Decitabine 대비 Aza-T-dCyd이 DNMT1의 저해 측면, 즉 demethylation 정도 측면에서 우수하지 않음에도 불구하고, Anti-apoptotic gene의 발현 또는 Anti-apoptotic protein을 down-regulation하는 기전이 우수할 뿐만 아니라 이로인해 아폽토시스 기전을 통해 IC50 값이 훨씬 낮았다는 것을 발견하였다. Surprisingly, the present inventors found that although Aza-T-dCyd is not superior to Decitabine in terms of DNMT1 inhibition, that is, the degree of demethylation, the mechanism of anti-apoptotic gene expression or anti-apoptotic protein down-regulation is superior. In addition, it was found that the IC 50 value was much lower through the apoptotic mechanism.
또한, 도 6에 도시된 바와 같은 화학구조의 Decitabine/Azacytidine와 달리, 화학식 1의 Aza-T-dCyd는 Thio-nucleoside 구조로 인하여, 주 약물 표적인 DNMT1의 저해와 기존 내성발생 기전인 endonuclease에 의한 가수분해를 동시에 차단하며, 세포사멸(apoptosis) 기전을 통해 강력한 항암 효능을 나타내고, cytidine deaminase에 의한 대사 내성은 물론 경구투여에서도 우수한 PK profile을 가진다는 것을 확인하였으며, 혈액암 및 고형암 (난소암/방광암)에 적용가능하여 기존 상용 DNMT1 저해제 및 개발 중인 경쟁기술 대비, 탁월한 효력을 보이는 것을 확인하였다. In addition, unlike Decitabine/Azacytidine in the chemical structure shown in FIG. 6, Aza-T-dCyd in Chemical Formula 1 has a Thio-nucleoside structure, which inhibits DNMT1, the main drug target, and endonuclease, which is an existing resistance development mechanism. It was confirmed that it blocks hydrolysis at the same time, exhibits strong anti-cancer efficacy through apoptosis mechanism, has metabolic resistance by cytidine deaminase, and has an excellent PK profile even when administered orally. Bladder cancer), it was confirmed that it showed excellent efficacy compared to existing commercial DNMT1 inhibitors and competing technologies under development.
나아가, 암 또는 바이러스 감염의 화학 요법에 사용되는 데옥시사이티딘계 화합물은 활성화되기 위해 세포 효소에 의한 인산화가 필요하다. 이때 데옥시사이티딘 키나아제(deoxycytidine kinase, dCK)에 의한 데옥시사이티딘계 화합물의 인산화는 화합물의 활성화에서 속도-제한 단계인 것으로 간주되고 이인산염(diphosphate) 또는 삼인산염(triphosphate)으로의 추가 인산화가 일어난다. Aza-T-dCyd은 Thio-nucleoside 구조로 인하여 정상 세포에서 dCK (deoxycytidine kinase)에 의한 활성화 속도가 현저히 낮아짐으로써 암 세포에 선택적으로 약물의 활성 성분을 전달하게 되어 우수한 safety profile 확보가 가능하여 넓은 치료 창(therapeutic window) 범위를 확보하고 있으므로, 내성발생 기전이 작동되지 않도록 하는 높은 투여량으로 투여가 가능하다. 이에 기초하여, Aza-T-dCyd를 잘 설계된 다중 표적 억제제로 사용하여 혈액암에서 기존 치료제가 만족시키지 못하는 부분과 고형암 등에서 현재 치료제가 전혀 없는 진공의 시장에서 환자들의 미충족 수요를 채우고자 한다.Furthermore, deoxycytidine-based compounds used for chemotherapy of cancer or viral infection require phosphorylation by cellular enzymes to be activated. At this time, phosphorylation of deoxycytidine-based compounds by deoxycytidine kinase (dCK) is considered to be the rate-limiting step in the activation of the compound, and further phosphorylation to diphosphate or triphosphate happens. Due to its Thio-nucleoside structure, the activation rate by dCK (deoxycytidine kinase) in normal cells is significantly lowered, allowing the active ingredient of the drug to be selectively delivered to cancer cells, enabling a wide range of treatments with an excellent safety profile. Since it has a therapeutic window range, it is possible to administer at a high dose that prevents the mechanism of resistance development from operating. Based on this, Aza-T-dCyd is used as a well-designed multi-target inhibitor to fill the unmet needs of patients in the vacuum market where there is no current treatment for hematologic cancer and solid cancer, which are not satisfied with existing treatments.
본 발명의 제1양태는 세포사멸(apoptosis) 기전을 통해 항암 효과를 발휘하는 화학식 1의 Aza-T-dCyd 화합물 또는 이의 약학적 허용 염을, DNA 손상 복구 (Damage repair) 방법 중 하나인 BER (Base Excision Repair)를 과활성화시키는 약물 내성발생 기전이 작동되지 않도록 세포사멸을 유도하는 높은 투여량으로 투여하는 것이 특징인 약학 조성물을 제공한다.A first aspect of the present invention is to use the Aza-T-dCyd compound of Formula 1 or a pharmaceutically acceptable salt thereof, which exerts an anticancer effect through an apoptosis mechanism, by BER (Damage repair) method, Base Excision Repair) provides a pharmaceutical composition characterized in that it is administered at a high dose that induces apoptosis so that the drug resistance development mechanism that overactivates does not work.
이때, Aza-T-dCyd 화합물은 농도 의존적으로 DNMT1 단백질을 감소시킬 수 있다. 또한, Aza-T-dCyd 화합물은 용량 의존적으로 항암 효과를 발휘할 수 있다.At this time, the Aza-T-dCyd compound can decrease DNMT1 protein in a concentration-dependent manner. In addition, Aza-T-dCyd compounds can exert anticancer effects in a dose-dependent manner.
본 발명의 일구체예로, (1) DNMT1 저해제에 의해 내성이 발생된 환자군; (2) 표적항암제로 정상세포 대비 암세포에 선택적인 약물 전달이 필요한 환자군; (3) 하나 또는 둘 이상의 약물효력 마커에 대한 발현량 조절이 필요한 환자군; (4) 정상세포 대비 암세포에서 후생유전학적 DNA 메틸화 패턴 변화가 축적된 환자군; (5) DNMT1 저해제 투여시 DNA-DNMT1 adduct의 형성을 통하여 DNA 손상을 주기 때문에 암세포만이 아닌 정상 조직에도 손상을 주는 문제로 인해 표준 치료제인 DNMT1 저해제의 표준 투여량이 제한되는 환자군 ; (6) 혈액암 예방 또는 치료가 필요한 환자군; (7) 정상인 대비, CEBP/alpha, Pu.1 및 GATA factors로 구성된 군에서 선택된 lineage commitment Master 전사인자를 높은 수준으로 발현하는 한편, CEBP/epsilon 또는 후기 발달 단계 전사인자들의 발현은 각 유전자의 과메틸화로 인해 낮게 유지되는 환자군; (8) 골수 암으로 진행 중 또는 진행된 환자군; (9) AML(급성골수성백혈병), MDS(골수 이형성 증후군), CMML (Chronic myelomonocytic leukemia, 만성골수단핵구백혈병) 또는 ALL(급성림프구성백혈병)로 진단된 환자군 ; (10) 표준치료법 또는 표준 화학요법 대상에서 벗어난 건강 상태를 가진 환자군; (11) DNMT3B 발현 수준이 정상 범위를 벗어나는 환자군; (12) 비정상적인 골수 제거가 필요한 환자군; (13) 아세포(blast) 감소가 필요한 환자군; (14) 혈액 기능 부전 환자군 또는 조혈과정 이상 환자군 ; (15) 정상인 대비, DNMT1이 과활성화되어 메틸화 패턴에 이상이 발생한 환자군; (16) T-세포성 ALL(급성림프구성백혈병)로 진단된 환자군; (17) Nucleoside계 항암제 투여시 Nucleoside 대사 내성 발생 가능성이 있는 환자군; (18) 백금계 항암제에 대해 내성 발생 가능성이 있거나 내성이 발생한 환자군; (19) 백금계 항암제 투여대상 환자군 ; (20) 정상인 대비 tumor suppressor gene 및/또는 SLFN11에 대한 후생유전학적으로 silencing 된 환자군; (21) 난소암 또는 방광암 예방 또는 치료가 필요한 환자군; (22) 백금 내성 재발성 말기 난소암 환자군 또는 백금 내성 전이성방광암 환자군; (23) 전이성방광암 환자군, 치료 대상 세부 바이오마커인 p53 변이 방광암 환자군 또는 hypermethylated SLFN11 방광암 환자군; 또는 (24) 3기 또는 4기로 난소암 진단을 받은 환자군에게, 화학식 1의 Aza-T-dCyd 화합물 또는 이의 약학적 허용 염을 투여할 수 있다. As one embodiment of the present invention, (1) a patient group with resistance to DNMT1 inhibitors; (2) a patient group in need of selective drug delivery to cancer cells compared to normal cells as a targeted anti-cancer agent; (3) a patient group in need of adjusting the expression level of one or more markers of drug efficacy; (4) a patient group with accumulated epigenetic DNA methylation pattern changes in cancer cells compared to normal cells; (5) A patient group in which the standard dose of DNMT1 inhibitor, which is a standard treatment, is limited due to the problem of damaging normal tissues as well as cancer cells because DNA damage is caused through the formation of DNA-DNMT1 adducts when DNMT1 inhibitor is administered; (6) a patient group in need of prevention or treatment of hematological malignancies; (7) Compared to normal individuals, lineage commitment master transcription factors selected from the group consisting of CEBP/alpha, Pu.1 and GATA factors are expressed at high levels, while the expression of CEBP/epsilon or transcription factors in the late developmental stage is not the same as that of each gene. a group of patients whose methylation remains low; (8) a group of patients who are progressing or have progressed to bone marrow cancer; (9) a patient group diagnosed with AML (acute myeloid leukemia), MDS (myelodysplastic syndrome), CMML (chronic myelomonocytic leukemia) or ALL (acute lymphocytic leukemia); (10) patient population with health conditions that deviate from standard therapy or standard chemotherapy; (11) a group of patients whose DNMT3B expression level is outside the normal range; (12) a group of patients requiring abnormal bone marrow removal; (13) a patient group in need of blast reduction; (14) a group of patients with impaired blood function or a group of patients with hematopoiesis abnormalities; (15) a group of patients with abnormal methylation patterns due to overactivation of DNMT1 compared to normal subjects; (16) a group of patients diagnosed with T-cell ALL (acute lymphocytic leukemia); (17) Patients who may develop resistance to nucleoside metabolism when administered with nucleoside anticancer drugs; (18) a patient group with a possibility of developing resistance to platinum-based anticancer drugs or who developed resistance; (19) Platinum-based anticancer drug administration target patient group; (20) epigenetically silencing a tumor suppressor gene and/or SLFN11 compared to normal subjects; (21) a patient group in need of prevention or treatment of ovarian or bladder cancer; (22) a platinum-resistant recurrent end-stage ovarian cancer patient group or a platinum-resistant metastatic bladder cancer patient group; (23) metastatic bladder cancer patient group, p53 mutation bladder cancer patient group or hypermethylated SLFN11 bladder cancer patient group, which is a detailed biomarker for treatment; or (24) Aza-T-dCyd compound of Formula 1 or a pharmaceutically acceptable salt thereof may be administered to a patient group diagnosed with stage 3 or 4 ovarian cancer.
이때, 발현량 조절이 필요한 약물효력 마커는, 암세포에서 DNA 메틸화를 통해 후생유전학적 침묵(silencing) 대상이거나 약물효력 마커의 전사인자가 DNA 메틸화를 통해 후생유전학적 침묵(silencing) 대상일 수 있다.In this case, the drug effect marker requiring expression level control may be subject to epigenetic silencing through DNA methylation in cancer cells or the transcription factor of the drug effect marker may be subject to epigenetic silencing through DNA methylation.
발현량 조절이 필요한 약물효력 마커는 분화 유도 유전자, 항암 유전자(tumor suppressor gene) 또는 이의 조합일 수 있다. 발현량 조절이 필요한 약물효력 마커의 비제한적인 예로는 p15, p16, SLFN11, CEBP/epsilon, CDKN1B, Myc antagonists (MAD) 또는 이의 조합일 수 있다.A drug efficacy marker requiring expression level control may be a differentiation induction gene, a tumor suppressor gene, or a combination thereof. Non-limiting examples of drug efficacy markers requiring expression level control may include p15, p16, SLFN11, CEBP/epsilon, CDKN1B, Myc antagonists (MAD), or a combination thereof.
Aza-T-dCyd 화합물은 암세포에서 CEBP/epsilon 재발현시키고/시키거나 CEBP/epsilon의 down-stream effector인 p27 tumor suppressor gene을 발현시킬 수 있다.Aza-T-dCyd compounds can re-express CEBP/epsilon and/or express the p27 tumor suppressor gene, a down-stream effector of CEBP/epsilon, in cancer cells.
Aza-T-dCyd 화합물은 핵산 중간 분해 효소(Endonuclease)에 대한 강한 저항성을 통해, 내성발생 기전으로 과활성화된 BER(Base Excision Repair) 복구 과정 효율 또는 속도를 낮추어 내성 발생 기전을 극복할 수 있다.The Aza-T-dCyd compound can overcome the resistance development mechanism by lowering the efficiency or speed of the overactivated BER (Base Excision Repair) repair process through strong resistance to nucleic acid intermediate degrading enzyme (Endonuclease).
정상세포 대비 암세포에 선택적인 약물 전달이 필요한 환자군은 65세 이상의 노인 환자군 및/또는 기저질환 또는 동반질환(comorbidity)으로 인해 신체기능이 약화된 상태의 환자군인일 수 있다.The patient group that requires selective drug delivery to cancer cells compared to normal cells may be an elderly patient group aged 65 years or older and/or a patient group with weakened physical functions due to an underlying disease or comorbidity.
또한, 정상세포 대비 암세포에 선택적인 약물 전달이 필요한 환자군은 골수, 소화관, 점막 및/또는 피부의 세포에도 작용하여 나타나는 부작용으로 인해 투여량이 제한됨으로써 내성 기전 발생으로 치료효과가 제한되는 환자군 일 수 있다.In addition, the patient group in need of selective drug delivery to cancer cells compared to normal cells is a patient group whose therapeutic effect is limited due to the occurrence of resistance mechanisms due to side effects caused by acting on cells of the bone marrow, digestive tract, mucous membrane and / or skin. .
Aza-T-dCyd 화합물은 유전체 영역 전반적인 디메틸화가 아니라, early replication 동안 복제되는 DNA 영역, 유전자 발현에 중요한 promoter 지역, DNMT1-binding 지역, 및/또는 replication stress 지역으로 편향되고 선택적인 디메틸화를 유도할 수 있다.Aza-T-dCyd compounds induce biased and selective dimethylation to regions of DNA replicated during early replication, promoter regions important for gene expression, DNMT1-binding regions, and/or replication stress regions, but not genomic region-wide dimethylation. can
또한, Aza-T-dCyd 화합물은 DNMT1 감소, p15 tumor suppressor gene의 재발현 및/또는 DNMT3B 발현 감소를 통해, 정상세포와 차이가 나는 암세포의 특정 부분을 표적으로 삼아 암세포만 선택적으로 공격하는 표적항암제로 작용할 수 있다.In addition, the Aza-T-dCyd compound is a targeted anti-cancer agent that selectively attacks only cancer cells by targeting a specific part of cancer cells that differs from normal cells by reducing DNMT1, re-expression of p15 tumor suppressor gene, and/or reducing DNMT3B expression. can act as
또한, Aza-T-dCyd 화합물은 DNMT1 저해 기전과 함께 DNA 손상 복구 (Damage repair)에 참여하는 핵산 중간 분해 효소(endonuclease)를 동시에 차단할 수 있다.In addition, the Aza-T-dCyd compound can simultaneously block endonuclease participating in DNA damage repair along with the DNMT1 inhibitory mechanism.
Aza-T-dCyd 화합물은 정상세포 대비 암세포에서 빠르게 삼인산화(triphosphate)로 활성화될 수 있다.Aza-T-dCyd compounds can be rapidly activated by triphosphate in cancer cells compared to normal cells.
Aza-T-dCyd 화합물은 Aza-T-dCyd 화합물의 삼인산화물인 aza-T-dCTP의 DNA 삽입을 통해, base excision repair 및/또는 mismatch repair를 일으켜 DNA 복제를 지연시킴으로서, replication stress를 유발하고 DNA damage response를 가중시킬 수 있다.Aza-T-dCyd compound delays DNA replication by causing base excision repair and/or mismatch repair through DNA insertion of aza-T-dCTP, a triphosphate of Aza-T-dCyd compound, thereby causing replication stress and DNA Damage response can be increased.
Aza-T-dCyd 화합물은 dNTP de novo 합성에 중요한 ribonucleotide reductase인 RRM1 단백질 발현을 억제시키고, 세포 내 dCTP, dTTP 양의 감소를 통해 DNA replication stress를 유발하며 강한 DNA damage response를 발생시킬 수 있다.The Aza-T-dCyd compound suppresses the expression of RRM1 protein, a ribonucleotide reductase that is important for dNTP de novo synthesis, induces DNA replication stress by reducing the amount of dCTP and dTTP in cells, and can generate a strong DNA damage response.
Aza-T-dCyd 화합물은 Thio-nucleoside 구조로 인하여 암 세포 대비 정상세포에서 dCK (deoxycytidine kinase)에 의한 활성화 속도가 낮으므로 암 세포에 선택적으로 Aza-T-dCyd 화합물을 전달하게 되어 safety profile을 확보할 수 있다. 또한, Aza-T-dCyd 화합물은 Thio-nucleoside 구조로 인하여 더 오래 지속되는 DNMT1 trapping complex를 형성함으로써 이로 인해 강력한 항암 효능 및/또는 내성 환자에서 내성 극복 가능성을 확보할 수 있다.Aza-T-dCyd compound has a low activation rate by dCK (deoxycytidine kinase) in normal cells compared to cancer cells due to its Thio-nucleoside structure, so Aza-T-dCyd compound is selectively delivered to cancer cells to secure a safety profile can do. In addition, the Aza-T-dCyd compound forms a DNMT1 trapping complex that lasts longer due to its Thio-nucleoside structure, thereby securing strong anticancer efficacy and/or the possibility of overcoming resistance in resistant patients.
본 발명의 일구체예에 따라 화학식 1의 Aza-T-dCyd 화합물 또는 이의 약학적 허용 염을 혈액암 치료용 약학 조성물에 사용시, Aza-T-dCyd 화합물은 정상조직 내 세포에서 DNA 손상 없이, 조혈 능력에 영향을 미치지 않을 수 있다. According to one embodiment of the present invention, when the Aza-T-dCyd compound of Formula 1 or a pharmaceutically acceptable salt thereof is used in a pharmaceutical composition for treating hematological cancer, the Aza-T-dCyd compound does not damage DNA in normal tissue cells, hematopoietic It may not affect your ability.
본 발명의 일구체예에서, 골수 암으로 진행 중 또는 진행된 환자군은 골수 질환을 일으킬 수 있는 유전자 변이를 가진 환자군일 수 있다.In one embodiment of the present invention, the patient group undergoing or progressing to bone marrow cancer may be a patient group having a gene mutation that can cause bone marrow disease.
AML(급성골수성백혈병), MDS(골수 이형성 증후군) 또는 ALL(급성림프구성백혈병)로 진단된 환자군은, 특히, 유전체 이상이 있는 고위험 환자군, 재발한 secondary AML(sAML) 환자군, 과거 치료 이력에 기인한 t-AML(treatment-related AML) 환자군, 약물 내성/불응성 환자군일 수 있다.Patients diagnosed with AML (acute myeloid leukemia), MDS (myelodysplastic syndrome), or ALL (acute lymphocytic leukemia) are particularly high-risk patients with genomic abnormalities, recurrent secondary AML (sAML) patients, and past treatment history. It may be a treatment-related AML (t-AML) patient group or a drug-resistant/refractory patient group.
비정상적인 골수 제거가 필요한 환자군은 골수이식(HCT, hematopoietic cell transplant) 대상자일 수 있다.Patients who need abnormal bone marrow removal may be candidates for bone marrow transplantation (HCT, hematopoietic cell transplant).
본 발명의 일구체예에 따라 아세포(blast) 감소가 필요한 환자군에게 화학식 1의 Aza-T-dCyd 화합물 또는 이의 약학적 허용 염을 투여하는 약학 조성물에서, 아세포(blast)는 백혈병 아세포 (Leukemic Blast)일 수 있다. Aza-T-dCyd 화합물은 아세포(blast)를 분화시켜 항암효과를 발휘하는 것일 수 있다.In the pharmaceutical composition in which the Aza-T-dCyd compound of Formula 1 or a pharmaceutically acceptable salt thereof is administered to a patient group in need of blast reduction according to one embodiment of the present invention, the blast cells are leukemic blast cells (Leukemic Blast) can be The Aza-T-dCyd compound may exert an anticancer effect by differentiating blast cells.
본 발명의 일구체예에 따라 정상인 대비, DNMT1이 과활성화되어 메틸화 패턴에 이상이 발생한 환자군에게 화학식 1의 Aza-T-dCyd 화합물 또는 이의 약학적 허용 염을 투여하는 항암용 약학 조성물에서, Aza-T-dCyd 화합물은 세포 내에서 삼인산화(triphosphate)로 활성화되어 DNA 합성 시 일부 dC(deoxycytidine)를 대신하여 사용되며, DNA 합성 후 DNMT1을 비가역적으로 trapping하여 DNA-DNMT1 adduct를 형성하여 후생유전학적 silencing 기전을 활성화함으로써 암세포 사멸을 유도할 수 있다.According to one embodiment of the present invention, in the anti-cancer pharmaceutical composition in which the Aza-T-dCyd compound of Formula 1 or a pharmaceutically acceptable salt thereof is administered to a patient group in which DNMT1 is overactivated and the methylation pattern is abnormal compared to normal subjects, Aza- T-dCyd compounds are activated by triphosphate in cells and used instead of some dC (deoxycytidine) during DNA synthesis. Cancer cell death can be induced by activating the silencing mechanism.
본 발명의 일구체예에 따라 T-세포성 ALL(급성림프구성백혈병)로 진단된 환자군에게 화학식 1의 Aza-T-dCyd 화합물 또는 이의 약학적 허용 염을 투여하는 약학 조성물에서, 환자군은 재발 및/또는 내성 환자군일 수 있고, Anti-apoptotic gene의 과발현에 의해 내성이 발생하는 환자군일 수 있다.According to one embodiment of the present invention T-cell type In the pharmaceutical composition in which the Aza-T-dCyd compound of Formula 1 or a pharmaceutically acceptable salt thereof is administered to a patient group diagnosed with ALL (acute lymphocytic leukemia), the patient group may be a relapsed and/or resistant patient group, and the anti-apoptotic gene It may be a patient group in which resistance occurs due to overexpression of .
본 발명의 일구체예에 따라 백금계 항암제에 대해 내성 발생 가능성이 있거나 내성이 발생한 환자군에게 화학식 1의 Aza-T-dCyd 화합물 또는 이의 약학적 허용 염을 투여하는 약학 조성물에서, 백금계 항암제에 대해 내성 발생 가능성은 백금계 항암제 내성의 원인이 되는 tumor suppressor gene 및/또는 SLFN11의 후생유전학적 silencing에 대한 환자의 데이터 값으로부터 도출될 수 있다.In the pharmaceutical composition in which the Aza-T-dCyd compound of Formula 1 or a pharmaceutically acceptable salt thereof is administered to a patient group who is likely to develop resistance to a platinum-based anticancer agent or a patient group who develops resistance according to one embodiment of the present invention, the platinum-based anticancer agent The possibility of resistance development can be derived from patient data on epigenetic silencing of tumor suppressor gene and/or SLFN11, which causes resistance to platinum-based anticancer drugs.
본 발명의 일구체예에 따라 백금계 항암제 투여대상 환자군에게 화학식 1의 Aza-T-dCyd 화합물 또는 이의 약학적 허용 염을 투여하는 약학 조성물에서, 백금계 항암제 투여대상 환자군은 예컨대, 예후가 좋지 않은 정보제공/진단을 받은 환자군일 수 있다. 예후가 좋지 않은 정보제공의 데이터 값은 병증 재발 가능성 및/또는 조기 사망률(평균 생존 기간 1년 미만)일 수 있다.In the pharmaceutical composition in which the Aza-T-dCyd compound of Formula 1 or a pharmaceutically acceptable salt thereof is administered to a patient group to be administered with a platinum-based anticancer drug according to one embodiment of the present invention, the patient group to be administered with a platinum-based anticancer drug has, for example, a poor prognosis. It may be a patient group who received information/diagnosis. Data values for informative poor prognosis could be the likelihood of disease recurrence and/or early mortality (average survival less than 1 year).
본 발명의 일구체예에 따라 정상인 대비 tumor suppressor gene 및/또는 SLFN11에 대한 후생유전학적으로 silencing 된 환자군에게 화학식 1의 Aza-T-dCyd 화합물 또는 이의 약학적 허용 염을 투여하는 약학 조성물에서, tumor suppressor gene은 p15, p16 등일 수 있다.According to one embodiment of the present invention, in a pharmaceutical composition for administering the Aza-T-dCyd compound of Formula 1 or a pharmaceutically acceptable salt thereof to a patient group epigenetically silencing a tumor suppressor gene and/or SLFN11 compared to normal subjects, the tumor The suppressor gene may be p15 or p16.
본 발명의 제2양태는 DNMT1 저해제 투여시 좋지 않은 예후 또는 내성 발생 가능성 정보제공 또는 진단을 받은 환자군에게 세포사멸(apoptosis) 기전을 통해 항암 효과를 발휘하는 화학식 1의 Aza-T-dCyd 화합물 또는 이의 약학적 허용 염을 세포사멸을 유도하는 높은 투여량으로 투여하는 것이 특징인 약학 조성물을 제공하다. The second aspect of the present invention is the Aza-T-dCyd compound of Formula 1 or its compound, which exerts an anticancer effect through an apoptosis mechanism in a patient group who has received information on or diagnosed with a poor prognosis or possibility of resistance when administered with a DNMT1 inhibitor. It provides a pharmaceutical composition characterized by administering a pharmaceutically acceptable salt at a high dose that induces apoptosis.
이때, 예후 또는 내성 발생 가능성에 관한 정보제공은 (i) DNA-DNMT1 adduct 형성 후 제거 과정이 과활성화되면서 항암효능이 억제되는 문제를 수치화 또는 (ii) 상기 문제 발생 여부/정도에 따라 환자군을 분류화한 것으로부터 도출된 것일 수 있다. 예후가 좋지 않은 정보제공의 데이터 값은 병증 재발 가능성 및/또는 조기 사망률(평균 생존 기간 1년 미만)인 것일 수 있다.At this time, the provision of information on the prognosis or the possibility of resistance is (i) quantifying the problem of inhibiting anticancer efficacy as the removal process is overactivated after formation of the DNA-DNMT1 adduct, or (ii) classifying the patient group according to the occurrence/degree of the above problem It may have been derived from reconciliation. Data values for providing poor prognosis may be the likelihood of disease recurrence and/or early mortality (average survival less than 1 year).
본 발명의 제3양태는 화학식 1의 Aza-T-dCyd 화합물 또는 이의 약학적 허용 염을 포함하는 것이 특징인 경구 투여용 약학 조성물을 제공한다.A third aspect of the present invention provides a pharmaceutical composition for oral administration comprising the Aza-T-dCyd compound of Formula 1 or a pharmaceutically acceptable salt thereof.
경구 투여시 Aza-T-dCyd 화합물은 간에서 cytidine deaminase(CDA)에 의한 대사 내성을 발휘하고, 이로 인해 우수한 PK profile을 발휘할 수 있다.When administered orally, the Aza-T-dCyd compound exhibits metabolism resistance by cytidine deaminase (CDA) in the liver, thereby exhibiting an excellent PK profile.
이하, 본 발명을 좀더 자세히 설명한다.Hereinafter, the present invention will be described in more detail.
본 발명은 투여용법, 용량, 또는 대상 환자군으로 다양하게 한정가능한 하기 화학식 1의 4'-티오-5-아자-2'-디옥시사이티딘(4'-thio-5-aza-2'deoxycytidine, Aza-T-dCyd) 화합물 또는 이의 약학적 허용 염의 의약 용도를 제공한다.The present invention relates to 4'-thio-5-aza-2'deoxycytidine (4'-thio-5-aza-2'deoxycytidine, Aza-T-dCyd) compound or a pharmaceutically acceptable salt thereof.
[화학식 1][Formula 1]
Figure PCTKR2022011392-appb-img-000001
Figure PCTKR2022011392-appb-img-000001
최근 AML 치료제의 표준 요법이 기존 Decitabine/Azacytidine의 단독투여에서 이들 약물을 BCL-2 저해제인 Venetoclax(상품명: Venclexta)와 병용하는 것으로 변경되고 있으므로, 이에 본 발명자들은 Decitabine/Azacytidine 대신 하기 화학식 1의 Aza-T-dCyd의 경우 Venetoclax 약물과 병용투여 시 약물 효과를 비교 평가하였다. Recently, the standard therapy for AML treatment has changed from the existing Decitabine/Azacytidine monotherapy to the combination of these drugs with the BCL-2 inhibitor Venetoclax (trade name: Venclexta), so the present inventors use Aza of Formula 1 instead of Decitabine/Azacytidine. - In the case of T-dCyd, the drug effect was compared and evaluated when co-administered with Venetoclax drug.
그 결과, 놀랍게도 MV4-11 AML 세포주를 mice에 subcutaneous implant한 xenograft 모델에서 Aza-T-dCyd (NTX-301)은 임상적으로 적절한 농도(clinically relevant concentration)로 단독 처리시에도 강력한 p53 activation을 통해 Survivin, Mcl-1와 같은 anti-apoptotic protein 발현량을 낮춰 Azacytidine/Venetoclax 병용 투여와 동등하거나 더 우수한 항암 효능을 보일 뿐만아니라, Aza-T-dCyd과 Venetoclax 병용투여시 매우 낮은 약물 투여량에서도 Azacytidine/Venetoclax 병용 투여 대비 강력한 암 성장 억제 효능을 보이는 등(Aza-T-dCyd 0.5mpk 투여군에서 complete tumor regression 유도) 매우 강력한 항암 효능을 보임을 발견하였다(도 32 및 도 33). 이로부터 Aza-T-dCyd과 Venetoclax는 모두 병용 투여시 anti-apoptotic protein의 작용을 억제하는 것을 유추할 수 있다. 본 발명은 이에 기초하여 완성하였다. 이와 관련하여 자세한 내용은 2022.4.5.에 출원된 PCT/KR2022/004846에 기재되어 있으며, 상기 문헌의 내용은 본 명세서에 통합된다.As a result, surprisingly, in a xenograft model in which MV4-11 AML cell line was subcutaneously implanted into mice, Aza-T-dCyd (NTX-301), even when treated alone at a clinically relevant concentration, strongly activated Survivin through p53 activation. , Mcl-1 and other anti-apoptotic protein expression levels are lowered to show equal or better anticancer efficacy than Azacytidine/Venetoclax combined administration, as well as Azacytidine/Venetoclax combined administration even at very low doses when Aza-T-dCyd and Venetoclax are administered together. It was found to show very strong anticancer efficacy, such as showing strong cancer growth inhibitory effect compared to combined administration (induction of complete tumor regression in the Aza-T-dCyd 0.5mpk administered group) (FIG. 32 and FIG. 33). From this, it can be inferred that both Aza-T-dCyd and Venetoclax inhibit the action of anti-apoptotic protein when co-administered. The present invention was completed based on this. Details in this regard are described in PCT/KR2022/004846 filed on April 5, 2022, the contents of which are incorporated herein.
요컨대, anti-apoptotic protein의 작용을 억제하는 DNMT1 저해제는 기존 Decitabine/Azacytidine 내성을 극복하는 매우 유망한 접근 방법이 될 수 있다. 따라서, 본 발명은 다중 약리학 접근법을 통해 주 약물 표적인 DNMT1의 강력한 저해와 기존 내성발생 기전인 endonuclease에 의한 가수분해를 동시에 차단하여 강력한 항암 효능을 나타내는 well-designed multi-target inhibitor를 분자설계하는 과정에서 DNMT1 저해제로 화학식 1의 Aza-T-dCyd를 선정하고, 경우에 따라 베네토클락스(venetoclax) 와 같은 BCL-2 저해제와의 병용 치료에 사용하고자 하는 것이다.In short, DNMT1 inhibitors that inhibit the action of anti-apoptotic proteins can be a very promising approach to overcome the existing Decitabine/Azacytidine resistance. Therefore, the present invention is a process of molecular designing a well-designed multi-target inhibitor that exhibits strong anticancer efficacy by simultaneously blocking the strong inhibition of DNMT1, the main drug target, and the hydrolysis by endonuclease, which is an existing resistance development mechanism, through a multi-pharmacological approach selected Aza-T-dCyd of Chemical Formula 1 as a DNMT1 inhibitor and, in some cases, intends to use it for combined treatment with a BCL-2 inhibitor such as venetoclax.
DNMT1 저해제로, 기존 Nucleoside계 항암제의 작용기전 및 이의 내성 작용 기전인 DNA 손상 복구 활성화 기전에 대한 분석을 바탕으로, 화학식 1의 Aza-T-dCyd를 선정한 본 발명의 경우, 놀랍게도 BCL-2 저해제인 하기 화학식 2의 화합물(venetoclax)과의 병용 항암 치료시 예측이상의 상승효과를 발휘하였다(도 32 및 도 33). As a DNMT1 inhibitor, in the case of the present invention, in which Aza-T-dCyd of Formula 1 was selected based on the analysis of the mechanism of action of existing nucleoside anticancer drugs and the mechanism of DNA damage repair activation, which is its resistance action mechanism, surprisingly, the BCL-2 inhibitor When used in combination with the compound of Formula 2 (venetoclax), a synergistic effect more than expected was exhibited (FIG. 32 and FIG. 33).
[화학식 2][Formula 2]
Figure PCTKR2022011392-appb-img-000002
Figure PCTKR2022011392-appb-img-000002
화학식 1의 Aza-T-dCyd은 4-Thio-2-deoxyribose 골격에 기반한 DNMT1 저해제로서, sugar 구조의 변화 (4'-thiodeoxyribose 구조)와 Aza-cytosine기를 동시에 보유하고 있다. 분자모델링 결과 thio-deoxyribose 기반 Nucleoside 화합물들이 DNA에 삽입된 후 다른 DNA 구성 성분에 크게 영향을 미치지 않는 것으로 확인되었다. Aza-T-dCyd of Chemical Formula 1 is a DNMT1 inhibitor based on a 4-Thio-2-deoxyribose skeleton, and has both a sugar structure change (4'-thiodeoxyribose structure) and an Aza-cytosine group. As a result of molecular modeling, it was confirmed that thio-deoxyribose-based nucleoside compounds did not significantly affect other DNA components after being inserted into DNA.
Aza-T-dCyd은 세포 내에서 triphosphate로 활성화되어 DNA 합성 시 일부 dC(deoxycytidine)를 대신하여 사용되며, DNA 합성 후 DNMT1을 trapping하여 다양한 후생유전학적 작용 기전을 활성화함으로써 암세포사멸을 유도하는 Nucleoside계 항암제이다. 특히, Aza-T-dCyd는 암세포 내에서 빠르게 활성화되어, DNA에 incorporation되고, 낮은 농도에서도 DNMT1 효소를 trapping하여 잘 저해할 수 있다. Aza-T-dCyd is activated as triphosphate in cells and is used instead of some dC (deoxycytidine) during DNA synthesis. Nucleoside induces cancer cell death by trapping DNMT1 after DNA synthesis and activating various epigenetic action mechanisms. It is an anticancer drug. In particular, Aza-T-dCyd is rapidly activated in cancer cells, incorporated into DNA, and can trap and inhibit the DNMT1 enzyme even at low concentrations.
본 발명은, 후술하는 바와 같이 다중약리학 접근법을 통해 주 약물 표적인 DNMT1의 강력한 저해와 기존 내성발생 기전인 endonuclease에 의한 가수분해를 동시에 차단하여 강력한 항암 효능을 나타내는 well-designed multi-target inhibitor를 분자설계하는 과정에서, DNMT1 저해제로 Aza-T-dCyd를 선정한 것이 특징이다.As described below, the present invention is a well-designed multi-target inhibitor that exhibits strong anticancer efficacy by simultaneously blocking the strong inhibition of DNMT1, the main drug target, and the hydrolysis by endonuclease, which is an existing resistance development mechanism, through a multipharmacological approach. During the design process, Aza-T-dCyd was selected as a DNMT1 inhibitor.
차세대 DNMT1 저해제 개발은 매우 높은 unmet needs를 가진 유망한 분야이며, anti-apoptotic protein의 작용을 억제하여 기존 Decitabine/Azacytidine 내성을 극복하는 것이 매우 유망한 접근 방법이 될 수 있다.The development of next-generation DNMT1 inhibitors is a promising field with very high unmet needs, and overcoming the existing Decitabine/Azacytidine resistance by inhibiting the action of anti-apoptotic proteins can be a very promising approach.
4-Thio-2-deoxyribose 골격을 가진 nucleoside 화합물들이 endonuclease에 의한 DNA 가닥 절단에 저항성을 가지고 있으며, 해당 기전이 DNA-damage repair pathway의 첫 단계에 해당하기 때문에 4-Thio-2-deoxyribose 골격의 DNMT1 저해제는 anti-apoptotic protein과 DNA-damage repair pathway에 의한 약물 내성을 극복할 수 있는 차세대 DNMT1 저해제로 유용하게 개발될 수 있을 것으로 판단하였다. 예상대로 NTX-301 (Aza-T-dCyd)가 4-Thio-2-deoxyribose 골격으로 인하여 기존 DNMT1 저해제에 비해 강력한 항암 효능/내성 극복 가능성을 가지고 있다.Since nucleoside compounds with 4-Thio-2-deoxyribose skeleton are resistant to DNA strand cleavage by endonuclease and the mechanism corresponds to the first step of the DNA-damage repair pathway, DNMT1 with 4-Thio-2-deoxyribose skeleton It was judged that the inhibitor could be usefully developed as a next-generation DNMT1 inhibitor capable of overcoming drug resistance by anti-apoptotic protein and DNA-damage repair pathway. As expected, NTX-301 (Aza-T-dCyd) has strong anticancer efficacy/resistance potential compared to existing DNMT1 inhibitors due to its 4-Thio-2-deoxyribose backbone.
[well-designed multi-target inhibitor 기반 분자설계 플랫폼 기술을 통해 선정된 약물 Aza-T-dCyd][ Drug Aza-T-dCyd selected through well-designed multi-target inhibitor-based molecular design platform technology ]
본 발명자들은 기존 Nucleoside계 항암제들의 주요 문제점인 다양한 내성발생 기전으로 인한 치료효과 제한과 골수/소화관, 점막/피부 등에 나타나는 용량제한독성을 용이하게 극복할 수 있는 차세대 Nucleoside계 항암제 개발이 가능한 분자설계 기반기술을 사용하여, 본 발명을 완성하였다.The present inventors have developed a molecular design basis capable of developing next-generation nucleoside-based anticancer drugs that can easily overcome the main problems of existing nucleoside-based anticancer drugs, such as limited therapeutic effects due to various resistance mechanisms and dose-limiting toxicity in bone marrow/digestive tract, mucous membrane/skin, etc. Using technology, the present invention was completed.
Nucleoside 유도체는 우리 몸을 구성하는 세포의 가장 핵심 기능 (복제/분열을 통한 생명 기능 유지)을 수행하는 DNA와 RNA의 구성 성분과 매우 유사한 구조의 유기 화합물로서 항암화학요법/항바이러스 화학요법 등에서 중심적인 역할을 수행하고 있다. Nucleoside derivatives are organic compounds with structures very similar to those of DNA and RNA, which perform the most core functions of cells constituting our body (maintaining life functions through replication/division), and are central to anticancer chemotherapy/antiviral chemotherapy is playing a negative role.
1960년대 이후 Cytarabine, Clofarabine, Fludarabine, 5-Fluorouracil (Capecitabine 포함), Gemcitabine, Decitabine, Azacytidine 등 다양한 Nucleoside계 항암제가 상용화되었고, 이중 다수의 항암제들이 WHO의 Essential Medication List에 속할 정도로 주요 항암제 Class로 분류되고 있다.Since the 1960s, various nucleoside anticancer drugs have been commercialized, such as Cytarabine, Clofarabine, Fludarabine, 5-Fluorouracil (including Capecitabine), Gemcitabine, Decitabine, and Azacytidine. there is.
기존 Nucleoside계 항암제의 경우 암세포뿐만 아니라 빠르게 분열하는 정상 세포인 골수/소화관, 점막/피부 세포 등에도 작용하여, 부작용 (i) Azacytidine (Vidaza)의 경우, Nausea (메스꺼움), Anemia (빈혈), Thrombocytopenia (혈소판 감소증), Vomiting (구토), Pyrexia (발열), Leukopenia (백혈구 감소증), Diarrhea (설사), Injection site erythema (주사부위 홍반), Constipation (변비), Neutropenia (호중구 감소증), Ecchymosis (반상 출혈), Petechiae (점상 출혈), Rigors (오한), Weakness (권태감), Hypokalemia (저칼륨혈증), 및 (ii) Decitabine (Dacogen)의 경우, Neutropenia (호중구 감소증), Thrombocytopenia (혈소판 감소증), Anemia (빈혈), Fatigue (피로), Pyrexia (발열), Nausea (메스꺼움), Cough (기침), Petechiae (점상 출혈), Constipation (변비), Diarrhea (설사), Hyperglycemia (고혈당)을 나타내고, 이로 인하여 사용량이 제한됨으로써 각종 내성 기전이 발생하여 치료 효과가 제한되는 문제점을 가지고 있다.In the case of existing nucleoside anticancer drugs, they act not only on cancer cells but also on rapidly dividing normal cells such as bone marrow/digestive tract, mucous membrane/skin cells, etc. (thrombocytopenia), Vomiting (vomiting), Pyrexia (fever), Leukopenia (leukopenia), Diarrhea (diarrhea), Injection site erythema (erythema), Constipation (constipation), Neutropenia (neutropenia), Ecchymosis (ecchymosis) ), Petechiae (petechiae), Rigors (chills), Weakness (malaise), Hypokalemia (hypokalemia), and (ii) for Decitabine (Dacogen), Neutropenia (neutropenia), Thrombocytopenia (thrombocytopenia), Anemia (anemia) ), Fatigue (fatigue), Pyrexia (fever), Nausea (nausea), Cough (cough), Petechiae (petechiae), Constipation (constipation), Diarrhea (diarrhea), Hyperglycemia (hyperglycemia), which limits the usage. As a result, various resistance mechanisms occur, which has a problem in that the therapeutic effect is limited.
본 발명자들은 기존 Nucleoside계 항암제의 작용기전 및 이의 내성 작용 기전인 DNA 손상 복구 활성화 기전에 대한 분석을 바탕으로 분자설계를 진행하였다.The present inventors proceeded with molecular design based on the analysis of the mechanism of action of existing nucleoside-based anticancer drugs and the mechanism of activation of DNA damage repair, which is its resistance action mechanism.
Nucleoside계 항암제는 DNA Incorporation 이후 다양한 작용기전 (DNA 합성/전사 저해, DNA 손상 유도 또는 DNMT1 등 DNA processing 관련 효소 저해를 통한 약리효능 발현)을 통해 항암 효능을 발휘한다. (도 7)Nucleoside-based anticancer drugs exert their anticancer efficacy through various mechanisms of action (DNA synthesis/transcription inhibition, DNA damage induction, or expression of pharmacological effects through inhibition of DNA processing-related enzymes such as DNMT1) after DNA incorporation. (FIG. 7)
Nucleoside계 항암제는 DNA Incorporation 시 정상적인 DNA 구성 성분과 맞지 않는 Base pair를 형성하여 DNA에 이상 구조를 발생시키며, 이를 DNA Damage repair 방법 중 BER (Base Excision Repair)가 인지하여 DNA 손상 복구가 진행된다 (도 8).Nucleoside-based anticancer drugs form base pairs that do not match normal DNA components during DNA incorporation, resulting in abnormal structures in DNA, which are recognized by BER (Base Excision Repair) among DNA damage repair methods, and DNA damage repair proceeds 8).
Nucleoside계 항암제 투여 초기에는 DNA에 항암제가 Incorporation된 이후 충분한 약리 효능이 발휘되어 암세포가 효율적으로 사멸하는 모습을 보이나, 항암제 투여가 계속되며 BER이 과활성화되어 이 항암제들이 충분한 효력을 내기 전에 제거되면서 항암제에 대한 내성이 발생하게 된다.In the early stage of administration of nucleoside-based anticancer drugs, after the anticancer drugs are incorporated into DNA, sufficient pharmacological effects are exhibited and cancer cells are efficiently killed. tolerance develops.
따라서, 본 발명자들은 기존 Nucleoside계 항암제와 동등 이상의 효율로 DNA에 Incorporation되고 원하는 약리 효능을 잘 발현하면서도 BER에 저항성을 갖춘 새로운 Nucleoside계 화합물이 개발된다면 기존 항암제 대비 강한 효능을 보일 것으로 기대된다는 점을 착안하였다.Therefore, the present inventors focused on the fact that if a new Nucleoside-based compound is developed that is incorporated into DNA with an efficiency equal to or higher than that of existing Nucleoside-based anticancer drugs and exhibits the desired pharmacological efficacy well, but is also resistant to BER, it is expected to show stronger efficacy than existing anticancer drugs. did
BER에 대한 저항성을 갖춘 새로운 Nucleoside계 항암제 골격 확보를 위해 하기와 같은 점들을 분자설계 시 고려하였다. In order to secure a new nucleoside-based anticancer drug skeleton with resistance to BER, the following points were considered during molecular design.
BER의 첫 단계는 Nucleoside/Nucleotide에 있는 Glycosidic bond를 끊어서 Base가 없는 자리를 만들어주고, Endonuclease를 통하여 DNA 손상의 수선이 진행되는 자리를 만들어주는 것이며, 이후 다양한 효소들이 반대편 염기 정보를 통해 상보적인 다른 염기 성분을 채워줌으로써 DNA의 손상이 수선된다 (도 6).The first step of BER is to break the glycosidic bond in Nucleoside/Nucleotide to create a base-free site and to create a site for DNA damage repair through Endonuclease. DNA damage is repaired by filling in base components (FIG. 6).
BER 복구 과정의 속도 및 효율을 결정하는 것은 비정상적인 base pair를 인식한 후 C-N 결합을 끊어주는 단계와 AP-endonuclease에 의하여 비어있는 Nucleotide의 자리를 만들어주는 단계이므로, 이 단계 중 하나 이상의 진행을 어렵게 만든다면 BER의 효율을 낮추어 BER의 과활성화에 의한 내성 발생을 억제할 수 있다. The speed and efficiency of the BER repair process are determined by the steps of cleaving the C-N bond after recognizing an abnormal base pair and the step of making a vacant nucleotide site by AP-endonuclease, making it difficult to proceed with one or more of these steps. If so, it is possible to suppress the development of resistance due to overactivation of BER by lowering the efficiency of BER.
4-Thio-2-deoxyribose 골격을 가진 nucleoside 화합물들이 endonuclease에 의한 DNA 가닥 절단에 저항성을 가지고 있으며, 해당 기전이 DNA-damage repair pathway의 첫 단계에 해당하기 때문에 4-Thio-2-deoxyribose 골격의 DNMT1 저해제는 anti-apoptotic protein과 DNA-damage repair pathway에 의한 약물 내성을 극복할 수 있다. 따라서, Aza-T-dCyd(NTX-301)는 4-Thio-2-deoxyribose 골격으로 인하여 기존 DNMT1 저해제에 비해 강력한 항암 효능/내성 극복 가능성을 가지고 있다(실시예 1 및 실시예 2).Since nucleoside compounds with 4-Thio-2-deoxyribose skeleton are resistant to DNA strand cleavage by endonuclease and the mechanism corresponds to the first step of the DNA-damage repair pathway, DNMT1 with 4-Thio-2-deoxyribose skeleton Inhibitors can overcome drug resistance by anti-apoptotic proteins and DNA-damage repair pathways. Therefore, Aza-T-dCyd (NTX-301) has a stronger anticancer efficacy/resistance potential than conventional DNMT1 inhibitors due to its 4-Thio-2-deoxyribose skeleton (Examples 1 and 2).
따라서, 본 발명자들은 Thio-deoxyribose 골격 기반의 Nucleoside 유도체의 경우 Endonuclease에 강한 저항성을 가지고 있다는 점을 활용하여, BER의 효율을 낮추고자 하였다.Therefore, the present inventors tried to lower the efficiency of BER by taking advantage of the strong resistance to endonuclease in the case of Thio-deoxyribose backbone-based nucleoside derivatives.
한편, BER 작용 기전은 암세포에서는 내성 발생의 기전으로 작용하지만, 반대로 정상 조직(특히 골수 등 조혈 조직)에서는 항암제에 의한 독성을 방지하는 안전장치로 작동하기 때문에 BER을 저해하는 항암제는 암세포에만 선택적으로 전달되어야 할 필요성이 높다.On the other hand, the mechanism of action of BER acts as a mechanism of resistance development in cancer cells, but on the contrary, in normal tissues (especially hematopoietic tissues such as bone marrow), it works as a safety device to prevent toxicity by anticancer agents, so anticancer agents that inhibit BER are selectively restricted to cancer cells. The need to be communicated is high.
Nucleoside계 항암제는 세포에 들어간 이후, 다양한 Nucleoside Kinase에 의해 활성화되어 세포 내에 축적되게 되며, 적당한 시간 내에 활성화되지 않은 Nucleoside 화합물은 빠르게 제거된다. 정상 세포와 암세포에서의 활성화 속도의 차이를 극대화할 수 있으면 암세포에만 약물의 활성형을 축적시킴으로써 우수한 안전성을 확보할 수 있다.After entering cells, Nucleoside-based anticancer drugs are activated by various nucleoside kinases and accumulate in cells, and nucleoside compounds that are not activated within an appropriate time are quickly removed. If the difference in activation rate between normal cells and cancer cells can be maximized, excellent safety can be secured by accumulating the active form of the drug only in cancer cells.
기존 문헌 보고에 따르면 다양한 헤테로 원자로 치환된 Nucleoside의 경우 서로 다른 속도로 활성화되거나 대사를 통하여 제거될 수 있는데, 이중 Thio-deoxyribose의 경우 정상 세포에서는 상대적으로 느리게 활성화되는 것에 비하여 유독 암세포에서는 일반 Deoxyribose 기반 Nucleoside와 동등 이상의 속도로 활성화되어 DNA 합성 시 사용될 수 있다는 것이 확인되었다. 이는 정상 세포에 비해서 암세포에 상대적으로 많이 축적되는 선택적 약물전달 효과를 보일 수 있다.According to existing literature reports, nucleoside substituted with various heteroatoms can be activated at different rates or eliminated through metabolism. Among them, Thio-deoxyribose is activated relatively slowly in normal cells, whereas normal Deoxyribose-based nucleoside is toxic in cancer cells. It was confirmed that it was activated at a rate equal to or higher than that and could be used during DNA synthesis. This may show a selective drug delivery effect that is relatively more accumulated in cancer cells than in normal cells.
Aza-T-dCyd은 기존 Deoxyribose 골격을 개선한 Thio-deoxyribose 골격 활용으로 기존 Decitabine 등 Deoxyribose 기반 Nucleoside 대비 암세포에서는 빠르게 활성화되어 DNA에 효율적으로 incorporation되지만, 정상 골수세포를 포함한 정상적인 기관에서는 느리게 활성화됨으로써 암세포 선택적인 약물 전달이 가능해지고; Cytidine Deaminase라는 Nucleoside 항암제의 주 대사 효소에 상대적으로 느리게 영향을 받음으로써 대사 관련 내성의 극복 가능성을 확보할 수 있을 뿐만 아니라, DNMT1 효소를 잘 trapping할 수 있는 Azacytosine 관능기를 통해 DNA Incorporation 및 DNMT1 Trapping 이후, 더 오래 지속되는 DNA-DNMT Adduct를 형성하여 더 강하고 차별화된 효력을 확보하였다. Aza-T-dCyd utilizes a Thio-deoxyribose skeleton that has improved the existing Deoxyribose skeleton. Compared to the existing Deoxyribose-based nucleoside, such as Decitabine, Aza-T-dCyd is activated rapidly in cancer cells and efficiently incorporated into DNA, but is activated slowly in normal organs including normal bone marrow cells, thereby selecting cancer cells. targeted drug delivery is possible; Not only can it secure the possibility of overcoming metabolism-related resistance by being relatively slowly affected by the main metabolic enzyme of nucleoside anticancer drug called Cytidine Deaminase, but also DNA incorporation and DNMT1 trapping through the Azacytosine functional group that can trap DNMT1 enzyme well, A longer lasting DNA-DNMT Adduct was formed to secure a stronger and differentiated effect.
또한, 분자모델링 결과 thio-deoxyribose 기반 Nucleoside 화합물들이 DNA에 삽입된 후 다른 DNA 구성 성분에 크게 영향을 미치지 않는 것으로 확인되었다. 이는 thio-deoxyribose 기반의 Nucleoside 약물 설계의 타당성을 뒷받침하였다.In addition, as a result of molecular modeling, it was confirmed that thio-deoxyribose-based Nucleoside compounds did not significantly affect other DNA components after being inserted into DNA. This supported the validity of the thio-deoxyribose-based nucleoside drug design.
이상의 사항을 종합하여, 기존 Nucleoside의 deoxyribose 골격을 4‘-Thio-deoxyribose 골격으로 전환하고, DNMT1 효소를 잘 trapping할 수 있는 Azacytosine 관능기를 결합한 화합물은 기존 DNMT1 저해제와는 차별화된 효능과 안전성을 가지는 새로운 Nucleoside DNMT1 저해제로 개발이 가능할 것으로 기대 하에, 본 발명자들은 Aza-T-dCyd의 경우 동일한 종류의 Nucleoside 골격변화 (Deoxyribose → 4’-Thio-deoxyribose)를 통하여 다른 Nucleoside 화합물들도 BER 내성기전을 극복 가능하며 암세포 선택적 약물전달 특성을 가질 수 있다는 것을 확인하였다. In summary, the compound that converts the deoxyribose backbone of the existing nucleoside to the 4'-thio-deoxyribose backbone and combines the Azacytosine functional group capable of well trapping the DNMT1 enzyme is a new product with differentiated efficacy and safety from existing DNMT1 inhibitors. Under the expectation that development as a nucleoside DNMT1 inhibitor would be possible, the present inventors found that other nucleoside compounds can overcome the BER resistance mechanism through the same type of nucleoside skeleton change (Deoxyribose → 4'-Thio-deoxyribose) in the case of Aza-T-dCyd And it was confirmed that it can have cancer cell-selective drug delivery properties.
그 결과, Aza-T-dCyd은 기존 Deoxyribose 골격을 개선한 Thio-deoxyribose 골격 활용으로 기존 Decitabine 등 Deoxyribose 기반 Nucleoside 대비 암세포에서는 빠르게 활성화되어 DNA에 효율적으로 incorporation되지만, 정상 골수세포를 포함한 정상적인 기관에서는 느리게 활성화됨으로써 암세포 선택적인 약물 전달이 가능해지고; Cytidine Deaminase라는 Nucleoside 항암제의 주 대사 효소에 상대적으로 느리게 영향을 받음으로써 대사 관련 내성의 극복 가능성을 확보할 수 있을 뿐만 아니라, DNMT1 효소를 잘 trapping할 수 있는 Azacytosine 관능기를 통해 DNA Incorporation 및 DNMT1 Trapping 이후, 더 오래 지속되는 DNA-DNMT Adduct를 형성하여 더 강하고 차별화된 효력을 확보하였다. As a result, Aza-T-dCyd is rapidly activated in cancer cells and efficiently incorporated into DNA, compared to the existing deoxyribose-based nucleoside such as Decitabine, by utilizing the Thio-deoxyribose skeleton, which is an improved form of the existing deoxyribose skeleton, but is activated slowly in normal organs including normal bone marrow cells. As a result, cancer cell-selective drug delivery is possible; Not only can it secure the possibility of overcoming metabolism-related resistance by being relatively slowly affected by the main metabolic enzyme of nucleoside anticancer drug called Cytidine Deaminase, but also DNA incorporation and DNMT1 trapping through the Azacytosine functional group that can trap DNMT1 enzyme well, A longer lasting DNA-DNMT Adduct was formed to secure a stronger and differentiated effect.
요컨대, Aza-T-dCyd은 원하는 sugar 구조의 변화 (4'-thiodeoxyribose 구조)와 Aza-cytosine기를 동시에 보유하고 있으므로, 전술한 다중약리학 접근법이 성공적으로 적용되어 기존 상용 DNMT1 저해제 및 개발 중인 경쟁 기술에 비하여 탁월한 효력을 보인다는 것; 및 주 약물 표적인 DNMT1의 강력한 저해와 기존 내성발생 기전인 endonuclease에 의한 가수분해를 동시에 차단하여 강력한 항암 효능을 나타내는 well-designed multi-target inhibitor라는 것을 발견하고, 본 발명을 완성하였다.In short, Aza-T-dCyd has both the desired sugar structure change (4'-thiodeoxyribose structure) and an Aza-cytosine group, so the multipharmacological approach described above can be successfully applied to existing commercial DNMT1 inhibitors and competitive technologies under development. that it shows superior efficacy compared to; and a well-designed multi-target inhibitor that exhibits strong anticancer efficacy by simultaneously blocking the strong inhibition of DNMT1, the main drug target, and the hydrolysis by endonuclease, which is an existing resistance development mechanism, and completed the present invention.
본 발명에서, 주 약물 표적인 DNMT1의 강력한 저해와 기존 내성발생 기전인 endonuclease에 의한 가수분해를 동시에 차단하는 Aza-T-dCyd을 활용하여, 혈액암 (골수이형성증후군 (MDS)/급성골수성백혈병 (AML), T-세포성 급성림프구성백혈병 (T-ALL)) 및 고형암 (백금계항암제 내성 난소암/방광암)의 치료제로 개발 중이며, 임상 1상 단계에서 인체 안전성과 효력이 확인되었다.In the present invention, by utilizing Aza-T-dCyd, which simultaneously blocks hydrolysis by endonuclease, which is an existing resistance development mechanism and strong inhibition of DNMT1, which is the main drug target, hematological cancer (myelodysplastic syndrome (MDS)/acute myeloid leukemia ( AML), T-cell acute lymphocytic leukemia (T-ALL)), and solid cancer (platinum-based anticancer drug-resistant ovarian cancer/bladder cancer), and its safety and efficacy in humans have been confirmed in the phase 1 clinical trial.
나아가, Aza-T-dCyd은 Nucleoside 항암제의 deoxyribose 구조를 thio-deoxyribose 구조로 변경한 thio-nucleoside 화합물로서 이러한 변화를 통하여 다음의 특징을 갖춰, 기존 Nucleoside계 항암제의 한계를 극복하고 Unmet Needs를 충족시킬 수 있다.Furthermore, Aza-T-dCyd is a thio-nucleoside compound in which the deoxyribose structure of nucleoside anticancer drugs is changed to a thio-deoxyribose structure. Through this change, Aza-T-dCyd has the following characteristics to overcome the limitations of existing nucleoside anticancer drugs and to meet unmet needs. can
(1) Thio-nucleoside 구조로 인하여 더 오래 지속되는 DNMT1 trapping complex를 형성함으로써 Decitabine (상품명: Dacogen), Azacytidine (상품명: Vidaza)에 비해 차별화된 강력한 항암 효능 및 내성 AML 환자에서 내성 극복 가능성 확보;(1) By forming a DNMT1 trapping complex that lasts longer due to the Thio-nucleoside structure, it has differentiated strong anticancer efficacy compared to Decitabine (trade name: Dacogen) and Azacytidine (trade name: Vidaza) and secures the possibility of overcoming resistance in resistant AML patients;
(2) Thio-nucleoside 구조로 인하여 정상 세포에서 dCK (deoxycytidine kinase)에 의한 활성화 속도가 현저히 낮아짐으로써 암 세포에 선택적으로 약물의 활성 성분을 전달하게 되어 우수한 safety profile 확보;(2) Due to the Thio-nucleoside structure, the activation rate by dCK (deoxycytidine kinase) in normal cells is significantly lowered, thereby selectively delivering the active ingredients of the drug to cancer cells, securing an excellent safety profile;
(3) 기존 Decitabine/Azacytidine에 비하여 경구 투여 시 Cytidine Deaminase에 의하여 분해되는 속도가 느려 암 세포 내에서 대사로 인한 내성 극복 가능성 및 경구 투여 가능성 확보; 및(3) Compared to existing Decitabine/Azacytidine, when administered orally, the rate of degradation by Cytidine Deaminase is slow, securing the possibility of overcoming resistance due to metabolism in cancer cells and oral administration; and
(4) 인체에서의 투여를 통하여 안전성 및 경구 투여 PK 프로파일 확보.(4) Securing safety and oral administration PK profile through administration in human body.
따라서, Aza-T-dCyd은 표준 치료제인 기존 DNMT1 저해제에 비하여 강한 효능, 개선된 safety profile, 사용 편의성 및 치료제 내성 극복 가능성을 갖춘 Best-in-class DNMT1 저해제가 될 수 있다.Therefore, Aza-T-dCyd can be a best-in-class DNMT1 inhibitor with strong efficacy, improved safety profile, ease of use, and the possibility of overcoming drug resistance compared to existing DNMT1 inhibitors, which are standard treatments.
[Aza-T-dCyd 비임상 시험][ Aza-T-dCyd non-clinical trial ]
Aza-T-dCyd는 암세포 내에서 빠르게 활성화되어, DNA에 incorporation되고, 낮은 농도에서도 DNMT1 효소를 trapping하여 잘 저해할 수 있다. Aza-T-dCyd is rapidly activated in cancer cells, incorporated into DNA, and can trap and inhibit the DNMT1 enzyme even at low concentrations.
또한, Decitabine에 내성을 보이는 세포주에서도 탁월한 암 세포 사멸 유도 효력을 유지할 수 있다. 이러한 세포 수준에서의 효력은 동물 모델에서의 탁월한 효력으로 이어지는데, Aza-T-dCyd는 Decitabine/Azacytidine이 전혀 치료 효능을 보이지 않는 다양한 동물 모델에서 탁월한 항암 효능을 보였다. In addition, even cell lines resistant to Decitabine can maintain excellent cancer cell death-inducing effects. Such efficacy at the cellular level leads to excellent efficacy in animal models. Aza-T-dCyd showed excellent anticancer efficacy in various animal models in which Decitabine/Azacytidine did not show any therapeutic efficacy.
Aza-T-dCyd는 경구 투여가 가능한 PK profile을 보이며, GLP-전임상 독성 시험에서 기존 Decitabine/Azacytidine 대비 우수한 안전성이 확인되었다. Aza-T-dCyd shows a PK profile that can be administered orally, and in the GLP-preclinical toxicity test, superior safety compared to Decitabine/Azacytidine was confirmed.
특히, 임상시험에서 32 mg/day 용량 투여 시 높은 Disease Control Rate가 확인되었으며, 동물 시험에서 유사한 약물노출도를 보이는 투여 용량군에서 해당 질환군 (AML, T-ALL, 각종 고형암) 동물모델을 시험한 결과, 모두 기존 경쟁약물 대비 탁월한 효능을 보이는 것이 확인되었다.In particular, in clinical trials, a high Disease Control Rate was confirmed when administering a dose of 32 mg/day, and in animal tests, animal models for the corresponding disease group (AML, T-ALL, various solid cancers) were tested in the dose group showing similar drug exposure. As a result, it was confirmed that all of them showed excellent efficacy compared to existing competitive drugs.
특히 미국 국립 암연구소가 진행한 Aza-T-dCyd의 고형암 대상 임상 1a상 시험에서 경구 투여 시의 우수한 PK profile과 Circulating Tumor Cell에서의 강력한 PD 마커 확인 등 인체에서의 효능과 안전성도 확보하였다. 매우 낮은 투여용량에서도 암 환자의 질환 진전을 늦추는 효능이 관찰되어 기존 약물 대비 우수한 효력을 보였다. In particular, in the phase 1a clinical trial of Aza-T-dCyd for solid cancer conducted by the US National Cancer Institute, efficacy and safety in the human body were also secured, such as an excellent PK profile when administered orally and a strong PD marker in circulating tumor cells. Even at a very low dose, the efficacy of slowing down the progression of cancer patients was observed, showing superior efficacy compared to existing drugs.
따라서, Aza-T-dCyd은 표준 치료제인 기존 DNMT1 저해제에 비하여 강한 효능, 개선된 safety profile, 사용 편의성 및 치료제 내성 극복 가능성을 갖춘 DNMT1 저해제가 될 수 있다.Therefore, Aza-T-dCyd can be a DNMT1 inhibitor with stronger efficacy, improved safety profile, ease of use, and the possibility of overcoming drug resistance compared to existing DNMT1 inhibitors, which are standard treatments.
Aza-T-dCyd은 동물 모델에서 약 0.5 mpk (mg/kg) 투여군부터 강한 항암 효력을 보이며, 해당 용량에서의 약물 노출양은 인체 투여 시 8mg/day 이하 (임상 1상에서의 MTD의 25% 용량) 수준으로 넓은 therapeutic window를 확보할 수 있다.Aza-T-dCyd shows a strong anticancer effect from about 0.5 mpk (mg/kg) administration group in animal models, and the drug exposure at that dose is less than 8mg/day when administered to humans (25% of MTD in phase 1 clinical trial). A wide therapeutic window can be secured at this level.
한편, 베네토클락스는 250mg/day까지 투여가능하고, 베네토클락스와 병용시 Aza-T-dCyd의 투여용량은 32mg/day 미만, 예컨대, 8 mg/day 이상 32 mg/day 미만, 바람직하게는 8~24mg/day일 수 있다. 24mg은 1.5mpk에 해당한다.On the other hand, venetoclax can be administered up to 250 mg/day, and when used in combination with venetoclax, the dosage of Aza-T-dCyd is less than 32 mg/day, for example, 8 mg/day or more and less than 32 mg/day, preferably 8 to 8 mg/day. It may be 24 mg/day. 24 mg is equivalent to 1.5 mpk.
베네토클락스 약물과 병용시 Aza-T-dCyd 약물은 최대내약용량 (maximum tolerable dose, MTD)의 25% 용량 ~ 75% 용량으로 투여될 수 있다. When combined with venetoclax, Aza-T-dCyd can be administered at 25% to 75% of the maximum tolerable dose (MTD).
전임상시험 후 사람을 대상으로 처음 실시하여 독성 및 부작용의 반응을 관찰하는 1상 임상시험에서 주목표는 부작용이 발생하지 않고 피험자가 견딜 수 있는 한도 내에서 최대 용량인 최대내약용량(Maximum Tolerated Dose; MTD)을 결정하는 것이다.In the phase 1 clinical trial, which was first conducted on humans after preclinical trials to observe toxicity and side effects, the main goal was the maximum tolerated dose (Maximum Tolerated Dose; MTD) is determined.
특히, 현재의 AML 치료 표준요법인 Azacytidine과 BCL-2 저해제인 Venetoclax (상품명: 벤클렉스타)와 병용하는 요법의 효력과 Aza-T-dCyd의 효력을 비교하였을 때, Aza-T-dCyd 2.0mpk 단독투여군 (임상 1상에서 Aza-T-dCyd의 MTD 용량 32mg에 해당)이 Azacytidine/Venetoclax 투여군과 동등 수준의 효력을 보이고, Aza-T-dCyd 0.5 또는 1.0mpk와 Venetoclax 병용투여군 (임상 1상에서의 MTD 용량 32mg의 25 - 50%)은 표준 요법 (Azacytidine/Venetoclax 병용) 투여군에 비하여 현저히 강한 효력을 보이는 것을 확인하였다(도 32 및 도 33). In particular, when comparing the efficacy of Aza-T-dCyd with that of Azacytidine, the current standard treatment for AML, and Venetoclax (trade name: Venclexta), a BCL-2 inhibitor, Aza-T-dCyd 2.0mpk The monotherapy group (corresponding to the MTD dose of 32 mg of Aza-T-dCyd in phase 1 clinical trial) showed the same level of efficacy as the Azacytidine/Venetoclax administration group, and the Aza-T-dCyd 0.5 or 1.0mpk and Venetoclax combination administration group (MTD in phase 1 clinical trial) 25 - 50% of the dose of 32mg) was confirmed to show a significantly stronger effect than the standard therapy (Azacytidine/Venetoclax combination) administration group (FIGS. 32 and 33).
기존 동일 기전 약물인 Decitabine/Azacytidine의 경우 Venetoclax와의 투여를 위하여 MTD로부터 50% 용량 감량이 필요하였으며, MTD의 25%로 용량을 감량하는 경우 우수한 안전성을 보이나 효력이 약한 문제를 드러났다. NTX-301의 경우 MTD의 25%로 용량을 감량하고 Venetoclax와 병용 투여하는 경우 Azacytidine/Venetoclax 투여군에 비해 현저히 우수한 효력을 보이므로(도 49), 기존 약물의 결과와 비교 시 NTX-301이 인체에서 기존 표준 치료요법에 비하여 우수한 안전성/효력을 보일 가능성이 매우 높다.Decitabine/Azacytidine, an existing drug with the same mechanism, required a 50% dose reduction from the MTD for administration with Venetoclax, and when the dose was reduced to 25% of the MTD, it showed excellent safety, but showed a problem with weak efficacy. In the case of NTX-301, when the dose is reduced to 25% of the MTD and co-administered with Venetoclax, the effect is significantly superior to that of the Azacytidine/Venetoclax administration group (FIG. 49). It is very likely to show superior safety/efficacy compared to existing standard treatment regimens.
[전임상/임상 개발에서 확인된 우수한 효능과 안전성][ Excellent efficacy and safety confirmed in preclinical/clinical development ]
본 발명에서, 불충분한 치료 효능 및 이로 인한 내성 발생 문제 (내성 발생 이후 2차/3차 치료제의 부재로 인한 문제 증폭)를 가지고 있는 기존 상용 DNMT1 저해제인 Decitabine/Azacytidine 대비, Aza-T-dCyd은 탁월한 항암 효능 및 기존 치료제 내성 비임상 모델에서의 강력한 효능을 확인하였으며, AML 동물 모델에서 기존 Decitabine/Azacytidine 대비 탁월한 효력 및 현재 표준 치료요법으로 자리잡아가고 있는 combination으로 사용되는 Venetoclax (벤클렉스타)와 우수한 시너지 효능 확인하였고, GLP-독성 시험 및 임상 1상 시험에서 확인된 Decitabine/Azacytidine 대비 동등 이상 수준의 safety profile를 확인하였다.In the present invention, compared to Decitabine/Azacytidine, an existing commercial DNMT1 inhibitor that has insufficient therapeutic efficacy and resulting resistance problems (amplification of problems due to the absence of second/tertiary treatments after resistance develops), Aza-T-dCyd is Excellent anti-cancer efficacy and strong efficacy in non-clinical models resistant to existing treatments were confirmed, and superior efficacy compared to existing Decitabine/Azacytidine in AML animal models and Venetoclax (Venetoclaxta), which is used as a combination that is currently becoming the standard treatment, Excellent synergistic efficacy was confirmed, and a safety profile equivalent to or higher than that of Decitabine / Azacytidine confirmed in the GLP-toxicity test and phase 1 clinical test was confirmed.
Aza-T-dCyd은 다양한 전임상 모델에서 기존 DNMT1 저해제 Decitabine/Azacytidine 및 이들에 기반한 치료요법보다 훨씬 강력한 항암 효능을 보이는 동시에 전임상에서 이들 대비 탁월한 안전성을 확보해 임상개발 성공 가능성이 높다.Aza-T-dCyd shows much stronger anticancer efficacy than the existing DNMT1 inhibitor Decitabine/Azacytidine and therapies based on them in various preclinical models, while securing excellent safety compared to them in preclinical studies, so there is a high possibility of clinical development success.
MTD는 32 mg으로 결정되었으며, 16 mg 이하의 용량에서는 DLT 또는 grade 3 또는 4의 이상반응은 보고되지 않아 양호한 내약성을 나타내었다. 용량의존적인 PK profile을 확인하였으며 기존 Decitabine 또는 Azacitidine은 말기 고형암 환자에서 단독 투여 효능을 보이지 못한 것에 비해 NTX-301 투여 시 말기 고형암 환자에서도 5개월 이상 오래 지속되는 안정병변 (stable disease)를 유도하여 암의 진행을 억제하는 효과를 보이는 등 기존 Decitabine, Azacitidine이 반응하지 않았던 (insensitive) 암종에서의 효력이 기대되었다.The MTD was determined to be 32 mg, and no DLT or grade 3 or 4 adverse reactions were reported at doses of 16 mg or less, indicating good tolerability. A dose-dependent PK profile was confirmed. Compared to the existing Decitabine or Azacitidine, which did not show efficacy as a single administration in patients with late-stage solid cancer, NTX-301 administration induced stable disease that lasted for more than 5 months even in patients with advanced-stage solid cancer. It was expected to be effective in carcinomas that were insensitive to the existing Decitabine and Azacitidine, such as showing the effect of inhibiting the progression of cancer.
[기술 로드맵 상 경쟁우위][ Competitive Advantage on the Technology Roadmap ]
Aza-T-dCyd의 경우, 재발 진행중인 말기 암환자의 치료, 기존 항암제 시장과는 완전히 독립된 항암제 시장 개척, 병용 치료를 가능하게 한다.In the case of Aza-T-dCyd, it enables treatment of terminal cancer patients undergoing relapse, development of an anticancer drug market completely independent of the existing anticancer drug market, and combination treatment.
Aza-T-dCyd은 Decitabine/Azacytidine에 비하여 구조의 차이로 인한 암세포에서의 선택적인 활성화로 인해 Decitabine/Azacytidine보다 강력하게 암세포의 사멸을 유도하고 Decitabine에 내성을 보이는 세포주에서도 탁월한 암세포 사멸 유도 효력을 유지할 수 있으며, Decitabine/Azacytidine이 전혀 치료 효능을 보이지 않는 다양한 동물 모델에서 탁월한 항암 효능을 보일 수 있다. Aza-T-dCyd은 경구 투여가 가능한 PK profile을 보이며(도 51), GLP-전임상 독성 시험에서 기존 Decitabine/Azacytidine 대비 우수한 safety profile이 확인되었다.Aza-T-dCyd induces apoptosis of cancer cells more strongly than Decitabine/Azacytidine due to its selective activation in cancer cells due to the difference in structure compared to Decitabine/Azacytidine, and maintains excellent cancer cell apoptosis inducing effect even in cell lines resistant to Decitabine. In addition, it can show excellent anticancer efficacy in various animal models in which Decitabine/Azacytidine does not show any therapeutic effect. Aza-T-dCyd shows a PK profile that can be administered orally (FIG. 51), and a superior safety profile compared to Decitabine/Azacitidine was confirmed in the GLP-preclinical toxicity test.
아울러, 임상시험에서도 Aza-T-dCyd의 우수성/안전성이 이미 확인되었다. 미국 NCI 주도의 고형암 대상 단독투여 임상 1a상 시험에서 Aza-T-dCyd은 이미 Decitabine 투여용량 이상의 약물 투여량에서도 뚜렷한 부작용을 보이지 않아 우수한 안전성을 입증하였으며, 매우 낮은 투여용량에서도 암 환자의 질환 진전을 늦추는 효능이 관찰되어 기존 약물 대비 우수한 효력을 보였다. In addition, the superiority/safety of Aza-T-dCyd has already been confirmed in clinical trials. In the phase 1a clinical trial for solid cancers led by the US NCI, Aza-T-dCyd demonstrated excellent safety by not showing any obvious side effects even at drug doses higher than the dose of Decitabine, and even at very low doses, it prevented disease progression in cancer patients. The slowing effect was observed, showing superior efficacy compared to existing drugs.
시장에 출시된 DNMT1 저해제 활성 성분인 Decitabine, Azacytidine을 기반으로 다양한 약품 (주사제, 경구제, 각 용도에 따라 활용)이 시장에 출시되어 있다.Based on Decitabine and Azacytidine, which are the active ingredients of DNMT1 inhibitors released on the market, various drugs (injection, oral, and used according to each purpose) are on the market.
Decitabine/Azacytidine의 경우, 우리 몸에 존재하는 Cytidine Deaminase에 의한 대사에 취약하여 PK profile이 불안정한 문제로 효력이 제한되는 단점이 있다. 놀랍게도, Decitabine/Azacytidine에 비하여 aza-T-dCyd 약물 및 aza-T-dCTP 약물을 경구 투여 시 Cytidine Deaminase에 의하여 분해되는 속도가 느려 암 세포 내에서 cytidine deaminase에 의한 대사 내성 극복은 물론 경구투여에서도 우수한 PK profile을 가진다는 것을 발견하였다(실시예 3). In the case of Decitabine/Azacytidine, it is vulnerable to metabolism by Cytidine Deaminase present in our body, and its PK profile is unstable, which limits its effectiveness. Surprisingly, compared to Decitabine/Azacytidine, aza-T-dCyd drug and aza-T-dCTP drug are degraded by cytidine deaminase at a slower rate when administered orally, thereby overcoming metabolic resistance by cytidine deaminase in cancer cells as well as having excellent oral administration. It was found to have a PK profile (Example 3).
또한, aza-T-dCyd은 Thio-nucleoside 구조로 인하여 정상 세포에서 dCK (deoxycytidine kinase)에 의한 활성화 속도가 현저히 낮아짐으로써 암 세포에 선택적으로 약물의 활성 성분을 전달하게 되어 우수한 safety profile 확보가 가능하여 넓은 치료 창(therapeutic window) 범위를 확보하고 있으므로, 내성발생 기전이 작동되지 않도록 하는 높은 투여량으로 투여가 가능하다. In addition, due to the Thio-nucleoside structure, aza-T-dCyd significantly lowers the activation rate by dCK (deoxycytidine kinase) in normal cells, thereby selectively delivering the active ingredients of the drug to cancer cells, thereby securing an excellent safety profile. Since it has a wide therapeutic window, it is possible to administer at a high dose that prevents the mechanism of resistance development from operating.
나아가, 약동학적 특성 분석을 통해, (1) aza-T-dCyd의 항암 치료 효과가 AUC 의존적이기 보다는 Cmax 의존적인 점; 및 (2) 짧은 기간 동안 더 많은 양의 aza-T-dCyd 약물에 노출시키는 것이 효율적인 항암 치료법임을 발견하였다. Furthermore, through pharmacokinetic analysis, (1) the anti-cancer effect of aza-T-dCyd is Cmax dependent rather than AUC dependent; and (2) exposure to higher doses of the aza-T-dCyd drug for a short period of time is an effective anti-cancer therapy.
DNA-DNMT1 부가체의 형성을 통해 DNA 손상을 주기 때문에 암세포만이 아닌 골수/위장관 점막 등 우리 몸의 정상 조직에도 여러 손상을 주는 문제가 있어 사용량이 제한됨에 따라 항암 효력에 한계가 있고, 초기 치료 이후 살아남은 암세포에서는 DNA-DNMT1 부가체의 형성 후 제거 과정이 과활성화되면서 항암 효능이 억제되는 문제가 있어 내성 발생에 취약한 모습을 보이는 등의 문제를 가지고 있다.Because it causes DNA damage through the formation of DNA-DNMT1 adducts, there is a problem of damaging not only cancer cells but also normal tissues of the body such as bone marrow/gastrointestinal mucosa. In the cancer cells that survive thereafter, the removal process after the formation of DNA-DNMT1 adducts is overactivated, resulting in suppression of anticancer efficacy, which makes them vulnerable to the development of resistance.
따라서, 개량 신약의 개발이 강하게 요구되는 상황이며, 기존 치료제의 낮은 효능과 높은 독성 및 14개월 이내 내성이 발생한다는 한계점을 가지고 있어 이러한 한계점들과 재발성, 난치성 MDS/AML 환자를 위해 새로운 DNMT1 저해제로서 Aza-T-dCyd은 1차 치료제 및 2/3차 치료제로 활용이 가능하다.Therefore, there is a strong demand for the development of improved new drugs, and they have the limitations of low efficacy and high toxicity of existing treatments and resistance within 14 months. As such, Aza-T-dCyd can be used as a first-line and second- or third-line treatment.
대부분 골수이식이 불가능한 65세 이상 노령 AML/MDS 환자들을 대상으로 Aza-T-dCyd은 전임상 및 임상 1상 시험을 통해, 기존에 이들 환자군의 치료에 사용되고 있는 기존 치료제 대비 우수한 반응률, 낮은 부작용, 그리고 경구복용이라는 장점까지 확보하여 기존 치료제 대비 높은 경쟁우위의 가능성을 보인다.For AML/MDS patients aged 65 years or older, most of whom are unable to undergo bone marrow transplantation, Aza-T-dCyd has been tested through preclinical and phase 1 clinical trials. It also secures the advantage of oral administration, showing the possibility of a high competitive advantage compared to existing treatments.
노령 MDS/AML의 경우 일반적인 MDS/AML에서 다양한 표적항암제/면역항암제/세포치료제 등이 개발되고 있는 것과는 다르게 적용 가능한 개발 기술이 한정적이고, 재발성 T-ALL, 백금계 항암제 내성 난소암/방광암 등의 기술 분야에서도 적용 가능한 개발 기술이 한정적이다.In the case of elderly MDS/AML, unlike the development of various targeted anti-cancer drugs/immuno-anticancer drugs/cell therapy drugs in general MDS/AML, applicable development technologies are limited, and recurrent T-ALL, platinum-based anti-cancer drug resistant ovarian cancer/bladder cancer, etc. Even in the field of technology, applicable development technologies are limited.
Aza-T-dCyd의 기술적 우위는 Thio-nucleoside 골격에 기인하는 강력한 효능과 차별화된 safety profile로, 기존 DNMT1 저해제에 비하여 확장된 적응증 (기존 DNMT1 저해제 (MDS/AML 위주) vs. Aza-T-dCyd (다양한 혈액암 및 고형암으로 확장)), 기존 DNMT1 저해제가 효력을 보이지 않는 다양한 상황에서의 우수한 효능 (임상 1상에서의 고형암 환자에서의 강한 효능 등) 및 우수한 안전성 (비임상 및 임상 1상 결과) 등 효능 및 안전성 측면에서 확연한 경쟁우위를 보이고 있다.Aza-T-dCyd's technical superiority is its strong efficacy and differentiated safety profile due to its Thio-nucleoside skeleton, and it has expanded indications compared to existing DNMT1 inhibitors (existing DNMT1 inhibitors (mainly MDS/AML) vs. Aza-T-dCyd (expanded to various hematological and solid cancers)), excellent efficacy in various situations where existing DNMT1 inhibitors are ineffective (strong efficacy in solid cancer patients in phase 1 clinical trials, etc.) and excellent safety (non-clinical and phase 1 clinical results) It has a clear competitive advantage in terms of efficacy and safety.
[약학 조성물][ Pharmaceutical composition ]
본 발명에서 화학식 1의 화합물 및 화학식 2의 화합물은 각각 독립적으로 고체 또는 액체 형태로 존재할 수 있다. 고체 상태에서, 결정질 또는 비결정질 형태로, 또는 그의 혼합물로서 존재할 수 있다. 결정질 또는 비-결정질 화합물의 경우 제약상 허용되는 용매화물이 형성될 수 있다. 결정질 용매화물에서, 용매 분자는 결정화 동안 결정질 격자에 혼입된다. 용매화물은 비-수성 용매 예컨대 비제한적으로 에탄올, 이소프로판올, DMSO, 아세트산, 에탄올아민 또는 에틸 아세테이트를 수반할 수 있거나, 또는 이들은 결정질 격자에 혼입된 용매로서 물을 수반할 수 있다. 물이 결정질 격자에 혼입된 용매인 용매화물은 전형적으로 "수화물"로서 지칭된다. 수화물은 화학량론적 수화물뿐만 아니라 가변량의 물을 함유하는 조성물을 포함한다. 본 발명은 모든 이러한 용매화물을 포함한다.In the present invention, the compound of Formula 1 and the compound of Formula 2 may each independently exist in a solid or liquid form. It can exist in the solid state, in crystalline or amorphous form, or as mixtures thereof. For crystalline or non-crystalline compounds, pharmaceutically acceptable solvates may be formed. In crystalline solvates, solvent molecules are incorporated into the crystalline lattice during crystallization. Solvates may involve non-aqueous solvents such as but not limited to ethanol, isopropanol, DMSO, acetic acid, ethanolamine or ethyl acetate, or they may involve water as a solvent incorporated into the crystalline lattice. Solvates, in which water is the solvent incorporated into the crystalline lattice, are typically referred to as “hydrates”. Hydrates include stoichiometric hydrates as well as compositions containing variable amounts of water. The present invention includes all such solvates.
결정질 형태로 존재하는 그의 다양한 용매화물을 포함한 본 발명의 특정 화합물은 다형성 (즉, 상이한 결정질 구조로 발생하는 능력)을 나타낼 수 있다. 이들 상이한 결정질 형태는 전형적으로 "다형체"로서 공지되어 있다. 본 발명은 모든 이러한 다형체를 포함한다. 다형체는 동일한 화학적 조성을 갖지만, 패킹, 기하학적 배열, 및 결정질 고체 상태의 다른 서술적 특성에 있어서 상이하다. 따라서, 다형체는 상이한 물리적 특성 예컨대 형상, 밀도, 경도, 변형성, 안정성, 및 용해 특성을 가질 수 있다. 다형체는 전형적으로 상이한 융점, IR 스펙트럼, 및 X선 분말 회절 패턴을 나타내며, 이는 확인에 사용될 수 있다. 예를 들어 화합물의 제조에 사용되는 반응 조건 또는 시약을 변화 또는 조정함으로써 상이한 다형체가 제조될 수 있다. 예를 들어, 온도, 압력 또는 용매에서의 변화는 다형체를 생성할 수 있다. 추가로, 1종의 다형체는 특정 조건 하에 또 다른 다형체로 자발적으로 전환될 수 있다.Certain compounds of the invention, including their various solvates that exist in crystalline form, may exhibit polymorphism (ie, the ability to occur in different crystalline structures). These different crystalline forms are typically known as “polymorphs”. The present invention includes all such polymorphs. Polymorphs have the same chemical composition, but differ in packing, geometric arrangement, and other descriptive properties of the crystalline solid state. Thus, polymorphs can have different physical properties such as shape, density, hardness, deformability, stability, and dissolution properties. Polymorphs typically exhibit different melting points, IR spectra, and X-ray powder diffraction patterns, which can be used for identification. Different polymorphs can be prepared, for example, by changing or adjusting the reaction conditions or reagents used to prepare the compound. For example, changes in temperature, pressure or solvent can create polymorphs. Additionally, one polymorph may spontaneously convert to another polymorph under certain conditions.
본 명세서에서, 4'-티오-5-아자-2'-디옥시사이티딘 (aza-T-dCyd) 약물은 상기 화학식 1의 화합물뿐만 아니라 이의 약학적 허용 염, 이의 용매화물, 이의 전구약물(prodrug)을 포함한다. In the present specification, the 4'-thio-5-aza-2'-deoxycytidine (aza-T-dCyd) drug includes not only the compound of Formula 1, but also pharmaceutically acceptable salts thereof, solvates thereof, and prodrugs thereof ( prodrugs).
"이의 약학적 허용 염"은 제약상 허용되는 유기 또는 무기 염을 지칭한다. 예시적인 염은 술페이트, 시트레이트, 아세테이트, 옥살레이트, 클로라이드, 브로마이드, 아이오다이드, 니트레이트, 비술페이트, 포스페이트, 산 포스페이트, 이소니코티네이트, 락테이트, 살리실레이트, 산 시트레이트, 타르트레이트, 올레에이트, 탄네이트, 판토테네이트, 비타르트레이트, 아스코르베이트, 숙시네이트, 말레에이트, 겐티시네이트, 푸마레이트, 글루코네이트, 글루쿠로네이트, 사카레이트, 포르메이트, 벤조에이트, 글루타메이트, 메탄술포네이트, 에탄술포네이트, 벤젠술포네이트, p-톨루엔술포네이트, 및 파모에이트 (즉, 1,1'-메틸렌-비스-(2-히드록시-3-나프토에이트)) 염을 포함하나, 이에 제한되지는 않는다. 이의 약학적 허용 염은 또 다른 분자 예컨대 아세테이트 이온, 숙시네이트 이온 또는 다른 반대이온의 포함을 수반할 수 있다. 반대이온은 모 화합물 상의 전하를 안정화시키는 임의의 유기 또는 무기 모이어티일 수 있다. 게다가, 약학적 허용 염은 그의 구조 내에 1개 초과의 하전된 원자를 가질 수 있다. 다중 하전된 원자가 제약상 허용되는 염의 일부인 경우에는 다중 반대 이온을 가질 수 있다. 따라서, 약학적 허용 염은 1개 이상의 하전된 원자 및/또는 1개 이상의 반대이온을 가질 수 있다."Pharmaceutically acceptable salts thereof" refers to pharmaceutically acceptable organic or inorganic salts. Exemplary salts are sulfate, citrate, acetate, oxalate, chloride, bromide, iodide, nitrate, bisulfate, phosphate, acid phosphate, isonicotinate, lactate, salicylate, acid citrate, Tartrate, oleate, tannate, pantothenate, bitartrate, ascorbate, succinate, maleate, genticinate, fumarate, gluconate, glucuronate, saccharate, formate, benzoate , glutamate, methanesulfonate, ethanesulfonate, benzenesulfonate, p-toluenesulfonate, and pamoate (i.e., 1,1'-methylene-bis-(2-hydroxy-3-naphthoate)) salts Including, but not limited to. A pharmaceutically acceptable salt thereof may involve the inclusion of another molecule such as an acetate ion, a succinate ion or other counterion. The counterion can be any organic or inorganic moiety that stabilizes the charge on the parent compound. Moreover, pharmaceutically acceptable salts may have more than one charged atom in their structure. It may have multiple counter ions if multiple charged atoms are part of a pharmaceutically acceptable salt. Thus, a pharmaceutically acceptable salt may have one or more charged atoms and/or one or more counterion.
“전구약물(prodrug)”이란, 해당 기술 분야로 이용되고 있는 의미를 가지고 있다. 예를 들면, 생리 활성 물질(physiologically active substance) 또는 치료적 활성 유기 화합물(therapeutically active organic compound)을 화학적으로 수식하고, 생체 내에서 효소적 또는 그 외의 조건하에서 모 화합물(parent compound)을 유리 혹은 방출하도록 설계된 화합물을 의미한다. 전구약물은 투여후에 생체내에서 목적으로 하는 화합물로 변화된다. 유용한 약물임에도 불구하고 부작용, 안정성, 용해성, 흡수성, 작용시간 등에서 적합치 않는 성질을 가지고 있는 것에 화학적 수식을 가해서 임상사용 가능하게 한다.The term “prodrug” has the meaning of being used in the relevant technical field. For example, a physiologically active substance or a therapeutically active organic compound is chemically modified, and the parent compound is released or released in vivo under enzymatic or other conditions. means a compound designed to A prodrug is converted into the desired compound in vivo after administration. Although it is a useful drug, it can be used clinically by applying chemical modifications to those that have unsuitable properties in terms of side effects, stability, solubility, absorption, and duration of action.
"용매화물"은, 비공유 분자간 힘에 의해 결합된 화학량론적 또는 비화학량론적 양의 용매를 추가로 포함하는 화학식 1의 화합물 또는 이의 염을 의미한다. 용매가 물인 경우, 용매화물은 수화물이다."Solvate" means a compound of Formula 1 or a salt thereof that further comprises a stoichiometric or non-stoichiometric amount of a solvent bound by non-covalent intermolecular forces. When the solvent is water, the solvate is a hydrate.
본 명세서에서, “암”은 전형적으로 비조절된 세포 성장을 특징으로 하는, 포유류의 생리학적 상태를 지칭한다. 암의 예로는 혈액-매개성 종양(예를 들어, 다발성 골수종, 림프종 및 백혈병) 및 고형 종양이 포함되지만, 이에 한정되는 것은 아니다. 혈액암의 비제한적인 예로, 비호치킨림프종, 호치킨 림프종, 다발성 골수종, 백혈병, 림프종, 골수이형성증후군, 급성림프구성 백혈병, 급성 골수성 백혈병, 만성 골수성 백혈병 등이 있고, 고형암의 비제한적인 예로 위암, 신장암, 난소암, 자궁경부암, 자궁암, 전립선암, 폐암, 결장암, 유방암, 흑색종 및 췌장암 등이 있다.As used herein, “cancer” refers to a physiological condition in mammals that is typically characterized by unregulated cell growth. Examples of cancers include, but are not limited to, blood-borne tumors (eg, multiple myeloma, lymphoma, and leukemia) and solid tumors. Non-limiting examples of blood cancer include non-Hodgkin's lymphoma, Hodgkin's lymphoma, multiple myeloma, leukemia, lymphoma, myelodysplastic syndrome, acute lymphocytic leukemia, acute myelogenous leukemia, chronic myeloid leukemia, and the like, and non-limiting examples of solid cancer include gastric cancer. , kidney cancer, ovarian cancer, cervical cancer, uterine cancer, prostate cancer, lung cancer, colon cancer, breast cancer, melanoma, and pancreatic cancer.
본 명세서에서, "환자", “피험자” 및 "대상체"는 포유동물과 같은 동물을 지칭한다. 특정 실시양태에서, 환자는 사람이다. 다른 실시양태에서, 환자는 개, 고양이, 가축(예를 들어, 말, 돼지 또는 당나귀), 침팬지 또는 원숭이와 같은, 사람이 아닌 동물이다.As used herein, "patient", "subject" and "subject" refer to animals such as mammals. In certain embodiments, the patient is a human. In other embodiments, the patient is a non-human animal, such as a dog, cat, livestock (eg, horse, pig or donkey), chimpanzee or monkey.
본 명세서에서, 항암제에 의한 항암 효과 또는 치료 효과는 환자가 특정의 암을 앓고 있는 동안 발생하는, 암의 중증도를 감소시키거나, 종양 크기를 감소시키거나, 암의 진행을 지연 또는 둔화시키는 작용을 지칭할 수 있다.In the present specification, the anticancer effect or therapeutic effect of an anticancer agent refers to an action that reduces the severity of cancer, reduces the size of a tumor, or delays or slows down the progression of cancer, which occurs while a patient is suffering from a specific cancer. can be referred to
예컨대 항암제에 의한 항암 효과는 인비트로(in-vitro) 및/또는 인비보(in-vivo) 상으로 암 세포에 항암제를 처리한 후 암 세포의 Cell Viability(cytotoxicity 정도 또는 세포 수의 변화)일 수 있다. 예컨대, 세포주(Cell line)나 비임상 동물모델(xenograft)을 통해 약물의 반응(drug response) 검사를 통해 간접적으로 확인할 수 있다. 또한, 암 환자에서도 항암제에 의한 항암 효과를 직접 확인하여, 이와 관련된 데이터를 도출하여 데이터베이스로 사용할 수 있다. 또한, 항암제의 투약 가이드 라인 설계시 동물모델 PK 파라미터들 및/또는 독성 프로파일(profile)을 병행하여 고려할 수 있다.For example, the anticancer effect of an anticancer drug may be Cell Viability (change in the degree of cytotoxicity or cell number) of cancer cells after treatment with an anticancer drug in vitro and/or in vivo. there is. For example, it can be confirmed indirectly through a drug response test through a cell line or a non-clinical animal model (xenograft). In addition, even in cancer patients, the anticancer effect of the anticancer agent can be directly confirmed, and related data can be derived and used as a database. In addition, when designing an anticancer drug dosage guideline, animal model PK parameters and/or toxicity profile may be considered in parallel.
항암제에 의한 항암 효과는 시험관내(in-vitro) 데이터인 해당 항암제의 % 최대효과(Maximum effect) 예컨대 IC50, IC60, IC70, IC80 및 IC90로부터 유추할 수도 있고, 약물의 최고 혈중농도(Cmax) 및/또는 혈중 약물농도-시간 곡선 하 면적(AUC)과 같은 생체내(in-vivo) 데이터를 통해 비임상 동물모델 및 임상 암 환자에서도 확인할 수 있다. The anticancer effect of an anticancer agent may be inferred from in-vitro data, % Maximum effect of the anticancer agent, such as IC 50 , IC 60 , IC 70 , IC 80 and IC 90 , and the highest blood level of the drug It can also be confirmed in non-clinical animal models and clinical cancer patients through in-vivo data such as concentration (Cmax) and/or area under the blood drug concentration-time curve (AUC).
항암제의 반응성은 항암 효과 측면에 있어서 임상적 민감도를 의미한다.Reactivity of an anticancer agent means clinical sensitivity in terms of anticancer effect.
항암제를 이용한 치료와 관련하여 언급할 때 "민감도" 및 "민감한"은 치료되는 종양 또는 질환의 진행을 완화 또는 감소시키는데 있어 화합물의 효과의 정도를 지칭하는 상대적 용어이다."Sensitivity" and "susceptibility" when referring to treatment with an anti-cancer agent are relative terms that refer to the degree of effectiveness of a compound in alleviating or reducing the progression of the tumor or disease being treated.
"효과적인 환자의 항암 효과/반응"은, 예를들어, 임의의 적합한 수단, 예컨대 유전자 발현, 세포 계수, 분석 결과 등에 의해 측정되는 바와 같은, 환자 반응에서 5%, 10%, 15%, 20%, 25%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 200%, 또는 그 이상의 억제일 수 있다.An "effective patient's anticancer effect/response" is, for example, 5%, 10%, 15%, 20% of a patient's response, as measured by any suitable means, such as gene expression, cell counts, assays, and the like. , 25%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 200%, or more inhibition.
본 명세서에서, 투여용량은 약효가 기대되는 용량이다. 본 발명에서 약효는 항암 효과일 수 있다. 항암제의 반응성(항암 효과)은 반응정도로서, 해당 항암제의 % 최대효과(Maximum effect) 예컨대 IC50, IC60, IC70, IC80 및 IC90, 정상세포에 대한 독성을 발휘하는 값 (LC50)일 수 있다. In the present specification, the dose is the dose at which drug efficacy is expected. In the present invention, the medicinal effect may be an anticancer effect. The reactivity (anti-cancer effect) of an anti-cancer agent is the degree of response, and the % maximum effect of the anti-cancer agent, such as IC 50 , IC 60 , IC 70 , IC 80 and IC 90 , the value of exerting toxicity to normal cells (LC 50 ) can be
예컨대, 경구용 제형은 당해 기술에서 공지된 다양한 제형 기술을 사용하여 제제화될 수 있다. 예컨대, 구강 점막에 부착하는데 쓰이는 생체붕괴성 (가수분해성) 폴리머성 담체를 포함할 수 있다. 예정된 기간에 걸쳐 서서히 침식되도록 제작되고, 여기서 약물 전달은 본질적으로 전체적으로 제공된다.For example, dosage forms for oral use can be formulated using a variety of formulation techniques known in the art. For example, it may include a biodegradable (hydrolyzable) polymeric carrier used to adhere to the oral mucosa. It is designed to slowly erode over a predetermined period of time, wherein drug delivery is provided essentially entirely.
경구용 제형에서 약물 전달은, 경구 약물 투여에 마주치는 약점, 예를 들면, 느린 흡수, 위장관에서 존재하는 유체에 의한 활성제의 분해 및/또는 간에서의 초회통과 불활성화를 피한다. 생체붕괴성 (가수분해성) 폴리머성 담체에 대해, 사실상 임의의 그와 같은 담체가 원하는 약물 방출 프로파일이 손상되지 않는 한 사용될 수 있고, 담체는 구강 복용량 단위로 존재하는 임의의 다른 성분과 양립가능하다. 일반적으로, 폴리머성 담체는 구강 점막의 습성 표면에 부착되는 친수성 (수용성 및 수팽윤성) 폴리머를 포함한다. 본 명세서에서 유용한 폴리머성 담체의 예는 아크릴산 폴리머(예, 카보머)가 있다. 일부 구현예에서, 경구용 제형에 편입될 수 있는 다른 성분의 비제한적인 예들은 붕해제, 희석제, 결합제, 윤활제, 풍미제, 착색제, 보존제 등이 있다. 일부 구현예에서, 구강 또는 설하 투여에 대해, 종래의 방식으로 제형화된 정제, 로젠지, 또는 겔의 형태일 수 있다. Drug delivery in an oral dosage form avoids the weaknesses encountered with oral drug administration, such as slow absorption, degradation of the active agent by fluid present in the gastrointestinal tract, and/or first pass and inactivation in the liver. For biodegradable (hydrolyzable) polymeric carriers, virtually any such carrier can be used as long as the desired drug release profile is not compromised, and the carrier is compatible with any other ingredient present in the oral dosage unit. . Generally, polymeric carriers include hydrophilic (water-soluble and water-swellable) polymers that adhere to the wet surface of the oral mucosa. Examples of polymeric carriers useful herein are acrylic acid polymers (eg, carbomers). In some embodiments, non-limiting examples of other ingredients that can be incorporated into an oral dosage form include disintegrants, diluents, binders, lubricants, flavoring agents, coloring agents, preservatives, and the like. In some embodiments, it may be in the form of a conventionally formulated tablet, lozenge, or gel for buccal or sublingual administration.
일부 구현예에서, 상기 환자의 상태가 개선되는 경우에 의사의 재량에 따라 화합물의 투여는 계속해서 제공되고; 대안적으로, 투여될 약물의 용량은 일시적으로 감소되거나 일시적으로 어떤 시간의 길이 (즉, “휴약”) 동안에 중단될 수 있다. 휴약의 길이는 2 일 내지 1 년 사이에서 변할 수 있고, 단지 예로써, 2 일, 3 일, 4 일, 5 일, 6 일, 7 일, 10 일, 12 일, 15 일, 20 일, 28 일, 35 일, 50 일, 70 일, 100 일, 120 일, 150 일, 180일, 200 일, 250 일, 280 일, 300 일, 320 일, 350 일, 또는 365 일을 포함한다. 일부 구현예에서, 휴약 동안의 용량 감소는 10%-100%이고, 단지 예로써, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 또는 100%를 포함한다.In some embodiments, administration of the compound is continued at the physician's discretion when the patient's condition improves; Alternatively, the dose of drug to be administered may be temporarily reduced or temporarily discontinued for some length of time (ie, a "holiday"). The length of the washout can vary between 2 days and 1 year, by way of example only, 2 days, 3 days, 4 days, 5 days, 6 days, 7 days, 10 days, 12 days, 15 days, 20 days, 28 days. days, 35 days, 50 days, 70 days, 100 days, 120 days, 150 days, 180 days, 200 days, 250 days, 280 days, 300 days, 320 days, 350 days, or 365 days. In some embodiments, the dose reduction during the washout is 10%-100%, by way of example only, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55% %, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 100%.
환자의 병태의 개선이 일어나면, 유지 용량은, 필요하면, 투여된다. 그 뒤에, 복용량 또는 투여 빈도, 또는 둘 모두는, 개선된 질환, 장애 또는 병태가 유지되는 수준으로, 증상의 함수로서 감소될 수 있다. 그러나 환자는 증상의 임의의 재발시 장기간에 걸쳐 간헐적 치료를 필요로 한다.When improvement of the patient's condition occurs, a maintenance dose is administered, if necessary. Subsequently, the dosage or frequency of administration, or both, can be reduced as a function of symptoms, to a level at which improved disease, disorder or condition is maintained. However, patients require intermittent treatment over a long period of time upon any recurrence of symptoms.
그와 같은 양에 상응할 주어진 제제의 양은 치료가 필요한 대상체의 인자 예컨대 특정한 화합물, 질환의 중증도, 동일성 (예를 들면, 체중)에 따라 변할 것이지만, 그럼에도 불구하고 예를 들면, 투여될 제형, 투여 경로, 및 치료될 대상체를 둘러싸는 특정에 상황에 따라 당해기술에서 공지된 방식으로 일상적으로 결정될 수 있다. 일반적으로, 그러나, 성인 인간 치료에 이용된 용량은 전형적으로 0.02-5000 mg/1일, 또는 약 1-1500 mg/1일의 범위일 것이다.The amount of a given agent that will correspond to such amount will vary depending on factors such as the particular compound, the severity of the disease, the identity (eg body weight) of the subject in need of treatment, but nevertheless include, for example, the formulation to be administered, the administration It can be routinely determined in a manner known in the art depending on the route and the particular circumstances surrounding the subject to be treated. In general, however, doses used for adult human treatment will typically range from 0.02-5000 mg/day, or about 1-1500 mg/day.
본 명세서에서 1회 투여용량은 단회 용량으로 또는 동시에, 예를 들면 2, 3, 4 또는 그 초과의 하위-용량으로서 투여된 분할 용량으로 제공될 수 있다.A single dose herein may be given as a single dose or in divided doses administered simultaneously, for example as 2, 3, 4 or more sub-doses.
일부 구현예에서, 경구용 제형은 정확한 복용량의 단일 투여에 적합한 단위 복용 형태이다. 단위 복용 형태에서, 제형은 적절한 양의 1종 이상의 화합물을 함유하는 단위 용량으로 분할된다. 일부 구현예에서, 단위 복용량은 별개의 양의 제형을 함유하는 패장의 형태이다. 비-제한적인 예는 포장된 정제 또는 캡슐, 및 분말 바이알에서 또는 앰풀이다. 수성 서스펜션 조성물은 단일-용량 비-재밀폐가능 용기 내에서 포장될 있다. 대안적으로, 다중-용량 재밀폐가능 용기가 사용될 수 있고, 이 경우에 조성물 중 보존제를 포함하는 것이 전형적이다. In some embodiments, oral formulations are unit dosage forms suitable for single administration of precise dosages. In unit dosage form, the formulation is divided into unit doses containing appropriate amounts of one or more compounds. In some embodiments, the unit dose is in the form of patches containing discrete amounts of the formulation. Non-limiting examples are packaged tablets or capsules, and powders in vials or ampoules. Aqueous suspension compositions can be packaged in single-dose non-reclosable containers. Alternatively, multi-dose reclosable containers may be used, in which case it is typical to include a preservative in the composition.
일부 구현예에서, 비경구 주사용 제형은 부가된 보존제와 함께, 비제한적으로 앰플을 포함하는 단위 복용 형태, 또는 다중-용량 용기로 제공된다.In some embodiments, formulations for parenteral injection are presented in unit dosage form, including but not limited to ampoules, or in multi-dose containers, with an added preservative.
전형적으로 제약상 허용되는 비경구 비히클과 함께 단위 투여 주사가능한 형태로, 비경구 투여, 즉 볼루스, 정맥내, 및 종양내 주사를 위해 제조된다. 제약상 허용되는 희석제, 담체, 부형제 또는 안정화제 (Remington's Pharmaceutical Sciences (1980) 16th edition, Osol, A. Ed.)와 함께 동결건조 제제 또는 수용액 형태로 임의로 혼합된다.It is typically prepared for parenteral administration, i.e., bolus, intravenous, and intratumoral injection, in unit dose injectable form with a pharmaceutically acceptable parenteral vehicle. It is optionally mixed in the form of a lyophilized preparation or aqueous solution with a pharmaceutically acceptable diluent, carrier, excipient or stabilizer (Remington's Pharmaceutical Sciences (1980) 16th edition, Osol, A. Ed.).
Aza-T-dCyd은 기존 HMA 성분의 Vidaza(azacytidine), Dacogen(decitabine) 대비 보다 강력한 효능, 개선된 safety profile, 경구형태로 투약의 편의성 및 치료제 내성 극복 가능성을 갖춘 것이다.Aza-T-dCyd is equipped with stronger efficacy compared to existing HMA ingredients such as Vidaza (azacytidine) and Dacogen (decitabine), an improved safety profile, convenience of administration in oral form, and the possibility of overcoming drug resistance.
Aza-T-dCyd은 미충족수요인 2/3L 이후의 새로운 치료제로서의 지위를 목표로 하고 있기에, 엄격한 치료 지침에 따라 진행해야 하는 항암치료 과정에서 우선적으로 표준치료제로서의 지위 얻을 수 있다.Aza-T-dCyd aims to become a new treatment after 2/3L, which is an unmet need, so it can obtain a status as a standard treatment preferentially in the course of anticancer treatment that must be performed according to strict treatment guidelines.
특히, Aza-T-dCyd은 Nucleoside 항암제의 deoxyribose 구조를 thio-deoxyribose 구조로 변경한 thio-nucleoside 화합물로서 이러한 변화를 통하여 다음의 특징을 갖춰, 기존 Nucleoside계 항암제의 한계를 극복하고 Unmet Needs를 충족시킬 수 있다.In particular, Aza-T-dCyd is a thio-nucleoside compound in which the deoxyribose structure of nucleoside anticancer drugs is changed to a thio-deoxyribose structure. Through this change, Aza-T-dCyd has the following characteristics to overcome the limitations of existing nucleoside anticancer drugs and meet the unmet needs. can
(1) Thio-nucleoside 구조로 인하여 더 오래 지속되는 DNMT1 trapping complex를 형성함으로써 Decitabine (상품명: Dacogen), Azacytidine (상품명: Vidaza)에 비해 차별화된 강력한 항암 효능 및 내성 AML 환자에서 내성 극복 가능성 확보;(1) By forming a DNMT1 trapping complex that lasts longer due to the Thio-nucleoside structure, it has differentiated strong anticancer efficacy compared to Decitabine (trade name: Dacogen) and Azacytidine (trade name: Vidaza) and secures the possibility of overcoming resistance in resistant AML patients;
(2) Thio-nucleoside 구조로 인하여 정상 세포에서 dCK (deoxycytidine kinase)에 의한 활성화 속도가 현저히 낮아짐으로써 암 세포에 선택적으로 약물의 활성 성분을 전달하게 되어 우수한 safety profile 확보;(2) Due to the Thio-nucleoside structure, the activation rate by dCK (deoxycytidine kinase) in normal cells is significantly lowered, thereby selectively delivering the active ingredients of the drug to cancer cells, securing an excellent safety profile;
(3) 기존 Decitabine/Azacytidine에 비하여 경구 투여 시 Cytidine Deaminase에 의하여 분해되는 속도가 느려 암 세포 내에서 대사로 인한 내성 극복 가능성 및 경구 투여 가능성 확보; 및(3) Compared to existing Decitabine/Azacytidine, when administered orally, the rate of degradation by Cytidine Deaminase is slow, securing the possibility of overcoming resistance due to metabolism in cancer cells and oral administration; and
(4) 인체에서의 투여를 통하여 안전성 및 경구 투여 PK 프로파일 확보.(4) Securing safety and oral administration PK profile through administration in human body.
또한, Aza-T-dCyd는 Thio-nucleoside 골격에 기인하는 강력한 효능과 차별화된 safety profile로, 기존 DNMT1 저해제에 비하여 확장된 적응증 (기존 DNMT1 저해제 (MDS/AML 위주) vs. Aza-T-dCyd (다양한 혈액암 및 고형암으로 확장)), 기존 DNMT1 저해제가 약물 효능을 보이지 않는 다양한 상황에서의 우수한 효능 (임상 1상에서의 고형암 환자에서의 강한 효능 등) 및 우수한 안전성 (비임상 및 임상 1상 결과) 등 효능 및 안전성 측면에서 확연한 경쟁우위를 보이고 있다.In addition, Aza-T-dCyd has a strong efficacy and differentiated safety profile due to the Thio-nucleoside skeleton, and has expanded indications compared to existing DNMT1 inhibitors (existing DNMT1 inhibitors (mainly MDS/AML) vs. Aza-T-dCyd ( Expanded to various hematologic cancers and solid cancers)), excellent efficacy in various situations where existing DNMT1 inhibitors do not show drug efficacy (strong efficacy in solid cancer patients in phase 1 clinical trials, etc.) and excellent safety (non-clinical and phase 1 clinical results) It has a clear competitive advantage in terms of efficacy and safety.
따라서, 본 발명에 따라 DNMT1 저해제를 포함 다중 표적 억제제인 4'-티오-5-아자-2'-디옥시사이티딘(4'-thio-5-aza-2'deoxycytidine, Aza-T-dCyd)은 투여용법, 용량, 대상 환자군 또는 세포자멸사 (Apoptosis)를 매개하는 BCL-2의 억제제인 베네토클락스(Venetoclax)의 병용요법 측면에서 다양하게 응용가능하다.Therefore, according to the present invention, 4'-thio-5-aza-2'deoxycytidine, a multi-target inhibitor including DNMT1 inhibitor, Aza-T-dCyd) can be applied in various ways in terms of administration method, dose, target patient group, or combination therapy with venetoclax, an inhibitor of BCL-2 that mediates apoptosis.
도 1은 후생유전학 작용기전을 나타낸 모식도이다.1 is a schematic diagram showing the mechanism of action of epigenetics.
도 2는 우리 몸의 정상 조혈 과정을 나타낸 모식도이다. 빠른 세포 분열을 통해 세포 수를 확보하는 단계 1 및 세포 분열을 멈추고 세포 성숙이 진행되는 단계 2에서 각 단계를 주도하는 Master TF (특히, CEBP/epsilon)의 역할이 매우 중요하다.2 is a schematic diagram showing a normal hematopoietic process in our body. The role of the master TF (especially CEBP/epsilon) that leads each step is very important in step 1, which secures cell numbers through rapid cell division, and step 2, which stops cell division and proceeds with cell maturation.
도 3은 Master TF (CEBP/epsilon)의 발현 저하에 따른 단계 1에서 단계 2로의 전환 지연으로 인한 조혈과정 이상 기능과 백혈병 발생을 나타낸 모식도이다.Figure 3 is a schematic diagram showing abnormal functions in the hematopoietic process and occurrence of leukemia due to the delay in conversion from step 1 to step 2 due to decreased expression of Master TF (CEBP/epsilon).
도 4는 DNMT 저해제 처리 시 과메틸화된 MDS/AML 혈액암 세포의 정상적인 DNA 메틸화가 유도되어 CEBP/epsilon 유전자의 재발현을 통해 정상적인 세포로의 분화 유도 및 항암 효과를 발휘하는 것을 나타낸 모식도이다. 4 is a schematic diagram showing that treatment with a DNMT inhibitor induces normal DNA methylation in hypermethylated MDS/AML hematological cancer cells and induces differentiation into normal cells and exerts anticancer effects through the re-expression of CEBP/epsilon genes.
도 5는 난소암과 방광암 치료에 대한 백금계 항암제의 unmet needs를 도식화한 것이다.5 is a schematic diagram of the unmet needs of platinum-based anticancer drugs for the treatment of ovarian cancer and bladder cancer.
도 6은 Decitabine과 Azacytidine의 화학구조이다.6 is the chemical structure of Decitabine and Azacytidine.
도 7은 Nucleoside계 항암제의 작용기전이다.7 is a mechanism of action of nucleoside-based anticancer drugs.
도 8은 BER 작용기전에 의한 Nucleoside계 항암제 DNA 손상수리 프로세스이다.8 is a DNA damage repair process of nucleoside-based anticancer drugs by BER action mechanism.
도 9는 MV4-11 (AML세포주) 세포에 NTX-301 및 Decitabine을 농도별 처리 시 DNMT1을 저해함을 확인한 결과이다.Figure 9 shows the results confirming that DNMT1 is inhibited when NTX-301 and Decitabine are treated at different concentrations in MV4-11 (AML cell line) cells.
도 10은 KG-1a (AML세포주) 세포에 NTX-301 및 T-dCyd 처리 시 DNMT1 저해함을 확인한 결과이다.10 is a result confirming that DNMT1 is inhibited when KG-1a (AML cell line) cells are treated with NTX-301 and T-dCyd.
도 11은 CCRF-CEM (ALL 세포주) 세포에 NTX-301 및 T-dCyd 처리시 DNMT1 저해함을 확인한 결과이다.11 is a result confirming that DNMT1 is inhibited when NTX-301 and T-dCyd are treated in CCRF-CEM (ALL cell line) cells.
도 12는 NCI-H23 (Lung carcinoma cells), HCT-116 (Colon carcinoma cells), and IGROV-1 (Ovarian carcinoma cells) 세포주에 NTX-301 및 T-dCyd 처리 시 DNMT1 저해함을 확인한 결과이다.12 is a result confirming that DNMT1 is inhibited when NTX-301 and T-dCyd are treated with NCI-H23 (Lung carcinoma cells), HCT-116 (Colon carcinoma cells), and IGROV-1 (Ovarian carcinoma cells) cell lines.
도 13은 MV4-11 세포에 Aza-T-dCyd 처리 시 DNMT1 저해로 인한 p15 tumor suppressor gene의 re-expression을 확인한 결과이다.13 is a result confirming re-expression of the p15 tumor suppressor gene due to DNMT1 inhibition when Aza-T-dCyd was treated in MV4-11 cells.
도 14는 MV4-11 세포에 Aza-T-dCyd 및 Decitabine 처리 시 DNMT1 저해로 인한 p15 tumor suppressor gene의 re-expression 양상을 비교 분석한 것이다.FIG. 14 compares and analyzes re-expression patterns of the p15 tumor suppressor gene due to DNMT1 inhibition when MV4-11 cells were treated with Aza-T-dCyd and Decitabine.
도 15는 THP-1 세포에 NTX-301(Aza-T-dCyd)을 농도별로 처리 시 유도되는 CEBP/epsilon 발현 양상을 확인한 결과이다.15 is a result confirming the CEBP/epsilon expression pattern induced when THP-1 cells were treated with NTX-301 (Aza-T-dCyd) at each concentration.
도 16은 다양한 AML 세포주 (MV4-11, HL-60, KG-1a)에 Aza-T-dCyd를 처리하여 세포 내 DNMT1, CEBP/epsilon, CDKN1B 수치를 확인한 결과이다.16 shows the results of confirming intracellular DNMT1, CEBP/epsilon, and CDKN1B levels by treating various AML cell lines (MV4-11, HL-60, and KG-1a) with Aza-T-dCyd.
도 17은 NTX-301 target engagement를 확인한 결과이다.17 is a result of confirming NTX-301 target engagement.
도 18은 혈액암 세포주에 대한 Aza-T-dCyd의 성장억제 효과를 보여주는 도표이다.18 is a graph showing the growth inhibitory effect of Aza-T-dCyd on hematological cancer cell lines.
도 19는 혈액암 세포주에 대한 Aza-T-dCyd과 Decitabine의 성장억제 효과 비교 도표이다.19 is a comparison chart of the growth inhibitory effects of Aza-T-dCyd and Decitabine on hematological cancer cell lines.
도 20은 Aza-T-dCyd의 DNA damage response 작용기전이다.20 is the mechanism of action of Aza-T-dCyd's DNA damage response.
도 21은 Aza-T-dCyd의 작용기전이다.21 shows the mechanism of action of Aza-T-dCyd.
도 22는 NTX-301 처리 시 pyrimidine level 및 RRM1 발현 측정 결과들이다.22 shows the measurement results of pyrimidine level and RRM1 expression upon NTX-301 treatment.
도 23은 NTX-301 처리 시 형성된 DNA adduct로 인해 DNA replication stress 관련 유전자들의 발현 증가 및 세포주 별 약물에 대한 효능 확인 결과이다.23 shows the results of confirming the increased expression of DNA replication stress-related genes and the efficacy of drugs for each cell line due to DNA adducts formed during NTX-301 treatment.
도 24는 NTX-301 처리 시 p53 pathway 활성화로 인한 DNA damage response 마커 증가 확인 결과들이다.24 shows the results confirming the increase in DNA damage response markers due to p53 pathway activation during NTX-301 treatment.
도 25는 NTX-301 처리 시 유도되는 선택적 DNA 디메틸화 양상 및 RNA-seq 데이터 분석 결과들이다.25 shows the selective DNA dimethylation pattern and RNA-seq data analysis results induced by NTX-301 treatment.
도 26은 Mice에 대한 Aza-T-dCyd의 약동력학 평가 결과들이다.26 shows the pharmacokinetic evaluation results of Aza-T-dCyd for Mice.
도 27은 Mice에 대한 Aza-T-dCyd의 약동력학 평가 결과들이다.27 shows the pharmacokinetic evaluation results of Aza-T-dCyd for Mice.
도 28은 Rat 에 대한 Aza-T-dCyd의 약동력학 평가 결과들이다.28 shows the pharmacokinetic evaluation results of Aza-T-dCyd in rats.
도 29는 Dog 에 대한 Aza-T-dCyd의 약동력학 평가 결과들이다.29 shows the pharmacokinetic evaluation results of Aza-T-dCyd for dogs.
도 30은 Molm13 Xenograft 모델에서의 각 치료군 별 tumor growth 및 몸무게 차이 비교를 나타낸 것이다.30 shows a comparison of tumor growth and body weight differences for each treatment group in the Molm13 Xenograft model.
도 31은 NTX-301의 Molm13 Xenograft 모델 시험 후 암 조직에서의 DNMT3B 발현 억제를 나타낸 결과이다.31 is a result showing inhibition of DNMT3B expression in cancer tissue after NTX-301 was tested in the Molm13 Xenograft model.
도 32는 MV4-11 전신 AML 모델에서의 경쟁 약물 대비 각 치료군 별 생존율 및 몸무게 차이 비교 결과이다.32 is a comparison result of the survival rate and weight difference for each treatment group compared to competing drugs in the MV4-11 systemic AML model.
도 33은 MV4-11 전신 AML 모델에서의 경쟁 약물 대비 각 치료군 별 생존율 및 몸무게 차이 비교 결과이다.33 is a comparison result of survival rate and weight difference for each treatment group compared to competing drugs in the MV4-11 systemic AML model.
도 34는 MV4-11 전신 AML 모델에서의 각 치료군별 CBC 일부 수치 비교 결과들이다.34 is a comparison result of some CBC values for each treatment group in the MV4-11 systemic AML model.
도 35는 MV4-11 Luc cell line Xenograft 효능 비교 / 체중비교 결과들이다.35 shows the results of comparison of efficacy / weight comparison of MV4-11 Luc cell line Xenograft.
도 36은 MV4-11 Luc cell line Xenograft에서 body luminescence 비교 결과들이다.36 shows body luminescence comparison results in MV4-11 Luc cell line Xenograft.
도 37은 HL-60 Xenograft 모델에서의 Aza-T-dCyd 항암 효능 확인 결과이다.37 is a result of confirming the anticancer efficacy of Aza-T-dCyd in the HL-60 Xenograft model.
도 38은 HL-60 leukemia Xenograft 모델에 Aza-T-dCyd 처리 후 DNMT1, DNMT3A, DNMT3B 변화 확인 결과들이다.38 shows the results of confirming changes in DNMT1, DNMT3A, and DNMT3B after treatment with Aza-T-dCyd in the HL-60 leukemia Xenograft model.
도 39는 MV4-11 AML 세포주 xenograft 모델에서 NTX-301과 Venetoclax 병용투여 약효를 보여주는 것이다.39 shows the drug efficacy of the combined administration of NTX-301 and Venetoclax in the MV4-11 AML cell line xenograft model.
도 40은 ALL PDX models에 Aza-T-dCyd 및 T-dCyd 효능 확인 결과이다.40 shows the results of confirming the efficacy of Aza-T-dCyd and T-dCyd in ALL PDX models.
도 41은 고형암 Xenograft 모델에서의 NTX-301의 항암 효능 확인 결과들이다.41 shows results confirming the anticancer efficacy of NTX-301 in a solid cancer Xenograft model.
도 42는 Comet assay 실험 시 Aza-T-dCyd 용량군 별 체중 변화 측정 결과이다.42 is a result of measuring body weight change for each dose group of Aza-T-dCyd in the Comet assay experiment.
도 43은 NTX-301 용량군 별 Comet assay 결과들이다.43 shows Comet assay results for each NTX-301 dose group.
도 44는 in vivo 골수 세포에서의 세포 생존능 및 조성평가 결과이다.44 shows results of cell viability and composition evaluation in in vivo bone marrow cells.
도 45는 Aza-T-dCyd 설치류와 비설치류 반복투여 독성 (GLP) 결과를 나타낸 도표이다.45 is a graph showing repeated dose toxicity (GLP) results of Aza-T-dCyd in rodents and non-rodents.
도 46은 각 환자별 NTX-301 투여 시 약물 혈중 농도를 나타낸 것이다.46 shows the drug blood concentration upon administration of NTX-301 for each patient.
도 47은 용량별 NTX-301 투여 시 혈중 최고 농도 및 약물 노출 정도 (AUC)를 나타낸 것이다.47 shows the highest blood concentration and drug exposure degree (AUC) upon administration of NTX-301 by dose.
도 48은 NTX-301의 개선된 치료 지수를 입증한 AML의 전임상 모델에 관한 것이다. 48 relates to a preclinical model of AML demonstrating an improved therapeutic index of NTX-301.
A, B : MV4-11 종양이 있는 암컷 NOD/SCID 마우스(그룹당 n = 8, 6개 그룹)에 대해, NTX-301[(1.5, 2.0, 또는 2.5mg/kg)(p.o.)], DAC[(2.5mg/kg)(i.p.)] 또는 AZA[5.0mg/kg(i.p.)]로 처리 시, 생존 확률의 Kaplan-Meier 플롯(A) 및 종료점까지의 시간을 보여주는 플롯(빈사 상태 또는 연구의 마지막 날)(B)이다.A, B: For female NOD/SCID mice bearing MV4-11 tumors (n = 8 per group, 6 groups), NTX-301 [(1.5, 2.0, or 2.5 mg/kg) (p.o.)], DAC[ (2.5 mg/kg) (i.p.)] or AZA [5.0 mg/kg (i.p.)], Kaplan-Meier plot of survival probability (A) and plot showing time to endpoint (moribund state or end of study). day) (B).
C, D : MV4-11 종양이 있는 암컷 NOD/SCID 마우스 (그룹당 n = 8, 3개 그룹)에 대해, NTX-301[(2.0mg/kg)(p.o.)] 또는 AZA[(5.0mg/kg)(i.p.)로 처리 시, 생물발광 방출(광자/초)의 정량화에 의해 측정된 종양 성장(C) 및 42일째의 생물발광 이미지(D)이다.C, D: For female NOD/SCID mice bearing MV4-11 tumors (n = 8 per group, 3 groups), NTX-301 [(2.0 mg/kg) (p.o.)] or AZA [(5.0 mg/kg) ) (i.p.), tumor growth measured by quantification of bioluminescence emission (photons/sec) (C) and bioluminescence images at day 42 (D).
E, F : 루시페라제 표지된 MV4-11 종양이 있는 암컷 NOD/SCID 마우스(그룹당 n = 6, 4개 그룹)에 대해, NTX 301 처리 시[(1.0 또는 2.0mg/kg에서 매일) 또는 1.0mg/kg에서 매일 2회(p.o.)], 생물발광 이미지(E) 및 생물발광 방출(광자/초)의 정량화 그래프(F)이다.E, F: For female NOD/SCID mice bearing luciferase-labeled MV4-11 tumors (n = 6 per group, 4 groups), upon treatment with NTX 301 [(daily at 1.0 or 2.0 mg/kg) or 1.0 twice daily (p.o.) at mg/kg], bioluminescence image (E) and quantification graph of bioluminescence emission (photons/sec) (F).
G-I : 피하 MOLM-13 종양이 있는 암컷 NMRI 누드 마우스(그룹당 n = 6, 5개 그룹)에 대해, NTX-301 처리 시 [(0.2, 0.4, 0.8, 또는 1.5 mg/kg) (i.p.)], 종양 성장(G), 종양 그램당 세포 수(H) 및 항-CD33 염색 강도(I)이다. G에서 빨간색 화살표는 NTX-301 처리 시점을 나타낸다. G-I: female NMRI nude mice (n = 6 per group, 5 groups) bearing subcutaneous MOLM-13 tumors, upon NTX-301 treatment [(0.2, 0.4, 0.8, or 1.5 mg/kg) (i.p.)], Tumor growth (G), number of cells per gram of tumor (H) and anti-CD33 staining intensity (I). The red arrow in G indicates the time point of NTX-301 treatment.
AZA 아자시티딘, DAC 데시타빈, NTX NTX-301; mpk mg/kg, p.o. 경구 투여, i.p. 복강 내 투여. P-값(vehicle 대비)은 다음과 같이 지정되고 표시된다: *p < 0.05; **p < 0.001; ***p < 0.0001.AZA azacytidine, DAC decitabine, NTX NTX-301; mpk mg/kg, p.o. Oral administration, i.p. Intraperitoneal administration. P-values (versus vehicle) are assigned and presented as follows: *p < 0.05; **p < 0.001; ***p < 0.0001.
도 49는 NTX-301이 VCX와의 병용요법 시 제공되는 이점을 보여준다.49 shows the benefits provided by NTX-301 in combination therapy with VCX.
A : MV4-11 세포에서 NTX-301 또는 DAC로 48시간 처리하여 유도된 전사체 변화 중 VCX에 대한 민감성 또는 내성을 조절하는 유전자들이 상당히 농축되는 것을 보여주는 GSEA 플롯이다.A: A GSEA plot showing that genes controlling sensitivity or resistance to VCX are significantly enriched among transcriptome changes induced by treatment with NTX-301 or DAC in MV4-11 cells for 48 hours.
B : 72시간 동안 NTX-301 + VCX(왼쪽) 또는 DAC+ VCX(오른쪽) 처리 시 모 세포 (Con) 및 TP53-녹다운(shp53) MV4-11 세포의 생존(%)을 보여주는 라인 플롯이다.B: A line plot showing survival (%) of parental cells (Con) and TP53 -knockdown (shp53) MV4-11 cells when treated with NTX-301 + VCX (left) or DAC + VCX (right) for 72 hours.
C : 모세포(상단) 및 TP53-녹다운(하단, shp53) MV4-11 세포에서 표시된 농도에서 NTX-301 + VCX 또는 DAC + VCX로 72시간 처리 시 병용요법 지수(CI) 값을 나타내는 매트릭스이다. CI 값 < 1(파란색)은 시너지 약물 조합을 나타낸다. 더 진한 파란색은 더 강한 시너지 효과와 상관 관계가 있으며 CI 값 > 1(회색)은 시너지 효과가 없음을 나타낸다.C: Matrix showing combination therapy index (CI) values in parental (top) and TP53 -knockdown (bottom, shp53) MV4-11 cells treated with NTX-301 + VCX or DAC + VCX at the indicated concentrations for 72 hours. CI values < 1 (blue) indicate synergistic drug combinations. Darker blue correlates with stronger synergy, and CI values > 1 (gray) indicate no synergy.
D : NTX-301 또는 AZA를 단독 요법으로 또는 VCX와의 병용 요법으로 처리했을 때 암컷 BALB/c 누드 마우스에 피하 이식된 MV4-11 종양의 성장(그룹당 n = 5마리, 8개 그룹)을 보여주는 그래프이다.D: Graph showing the growth of subcutaneously implanted MV4-11 tumors in female BALB/c nude mice (n = 5 mice per group, 8 groups) when treated with NTX-301 or AZA as monotherapy or in combination with VCX. am.
E : NTX-301 또는 AZA를 단독 요법으로 또는 VCX와의 병용 요법으로 치료할 때 MV4-11 세포를 정맥 주사한 암컷 NCG 마우스(그룹당 n = 8 마리, 6개 그룹)의 생존 확률을 보여주는 Kaplan-Meier 곡선이다. E : Kaplan-Meier curve showing survival probability of female NCG mice (n = 8 mice per group, 6 groups) intravenously injected with MV4-11 cells when treated with NTX-301 or AZA as monotherapy or in combination with VCX am.
AZA 아자시티딘, DAC 데시타빈, NTX NTX-301, VCX 베네토클락스. *p < 0.05; **p < 0.01; ***p < 0.001.AZA azacytidine, DAC decitabine, NTX NTX-301, VCX venetoclax. *p < 0.05; **p < 0.01; ***p < 0.001.
도 50은 말기 고형암 환자에게 NTX-301 투여시 5개월 이상 지속되는 장기간의 disease control을 보여주는 그래프이다.50 is a graph showing long-term disease control lasting 5 months or more when NTX-301 is administered to patients with advanced solid cancer.
도 51은 임상 1상에서 진행성 고형암 환자의 Aza-T-dCyd의 PK profile이다. 51 is the PK profile of Aza-T-dCyd in patients with advanced solid cancer in phase 1 clinical trial.
도 52는 세포자멸사 (Apoptosis)를 매개하는 B세포 림프종(B-cell lymphoma, BCL)-2 및 이의 저해제인 베네토클락스의 작용기전이다.52 shows the mechanism of action of B-cell lymphoma (BCL)-2 and its inhibitor, venetoclax, which mediate apoptosis.
이하, 본 발명을 실시예를 통하여 보다 구체적으로 설명한다. 다만, 하기 실시예는 본 발명의 기술적 특징을 명확하게 예시하기 위한 것일 뿐 본 발명의 보호범위를 한정하는 것은 아니다.Hereinafter, the present invention will be described in more detail through examples. However, the following examples are only intended to clearly illustrate the technical features of the present invention, but do not limit the protection scope of the present invention.
실시예 1 : In vitro pharmacologyExample 1: In vitro pharmacology
1-1. DNMT1 Inhibition 1-1. DNMT1 Inhibition
Aza-T-dCyd은 Decitabine 골격 기반 약물치료 이후 질환이 진전된 AML 내성 환자에게 사용 가능한 2차/3차 치료제, T-세포성 ALL등 다른 혈액암에 대한 치료제 및 다수의 고형암에 대한 보조 치료제로 개발할 계획이고, 약물 표적인 DNMT1의 저해 및 DNMT1 단백질의 세포 내 양 감소는 Aza-T-dCyd의 중요한 약물효력 마커(PD 마커)가 될 수 있다. Aza-T-dCyd is a second/tertiary treatment for AML-resistant patients whose disease has progressed after Decitabine skeleton-based drug therapy, a treatment for other blood cancers such as T-cell ALL, and an adjuvant treatment for a number of solid cancers. Inhibition of DNMT1, a drug target, and reduction of the intracellular amount of DNMT1 protein can be an important drug efficacy marker (PD marker) of Aza-T-dCyd.
Decitabine 등 Cytidine 유사 구조 nucleoside DNMT1 저해제는 DNA에 incoporation되어 DNMT1을 비가역적으로 trap하고 단백질 분해효소 복합체를 통해 분해를 유도한다고 알려져 있으며, 이러한 DNMT1 단백질의 손실은 분화 유도/항암 유전자의 발현을 촉진하게 된다는 것이 다양한 기초 및 임상 연구, 환자에서의 DNMT1 저해제의 활용을 통하여 확립되어 있다.Cytidine-like structural nucleoside DNMT1 inhibitors such as Decitabine are known to be incorporated into DNA to irreversibly trap DNMT1 and induce degradation through proteolytic enzyme complexes. It has been established through various basic and clinical studies, and the utilization of DNMT1 inhibitors in patients.
1-1-1. AML cell line에서의 세포 내 DNMT1 단백질 감소 확인1-1-1. Confirmation of intracellular DNMT1 protein reduction in AML cell line
AML cell line에서 Aza-T-dCyd의 DNMT1 저해 효능을 평가하기 위하여 표준 AML 세포주인 MV4-11(도 9)과 KG-1a (도 10)에 Aza-T-dCyd과 양성 대조 물질인 Decitabine을 처리하고 DNMT1 단백질에 대한 Western blotting을 수행하였다. 도 9 및 도 10에서 볼 수 있는 것과 같이 Aza-T-dCyd은 두 세포주 모두에서 농도 의존적으로 DNMT1 단백질을 감소시키는 것을 확인하였다. 특히 매우 낮은 농도인 20nM 수준에서도 DNMT1을 완전히 감소시키는 것을 확인하였다. In order to evaluate the DNMT1 inhibitory efficacy of Aza-T-dCyd in AML cell lines, standard AML cell lines MV4-11 (FIG. 9) and KG-1a (FIG. 10) were treated with Aza-T-dCyd and the positive control substance Decitabine. and Western blotting was performed for DNMT1 protein. As shown in FIGS. 9 and 10 , it was confirmed that Aza-T-dCyd decreased DNMT1 protein in a concentration-dependent manner in both cell lines. In particular, it was confirmed that DNMT1 was completely reduced even at a very low concentration of 20 nM.
1-1-2. ALL cell line/고형암 세포주1-1-2. ALL cell line/solid cancer cell line
동일한 DNMT1 저해 효능 평가를 다른 혈액암 세포주인 ALL cell line과 고형암 세포주에서 진행하였으며, CCRF-CEM (ALL) (도 11) 및 고형암 세포주(도 12)에서 Aza-T-dCyd이 농도 의존적으로 DNMT1 저해를 할 수 있음을 확인하였다.The same DNMT1 inhibitory efficacy was evaluated in other hematological cancer cell lines, ALL cell line and solid cancer cell line, and Aza-T-dCyd inhibited DNMT1 in a concentration-dependent manner in CCRF-CEM (ALL) (FIG. 11) and solid cancer cell line (FIG. 12). confirmed that it can be done.
1-2. Cellular Pharmacodynamics1-2. Cellular Pharmacodynamics
1-2-1. p15 Tumor Suppressor Gene의 재발현 확인1-2-1. Confirmation of re-expression of the p15 Tumor Suppressor Gene
MDS 및 AML 환자 조혈모세포의 DNA에는 다수의 tumor suppressor gene의 발현 promoter 부분의 cytosine의 다수가 메틸화되어 이들의 발현이 억제되고 이로 인하여 DNA damage repair, Cell cycle checkpoint 등 중요한 기능이 정상에 비해 억제되는 문제가 야기된다.In the DNA of hematopoietic stem cells of patients with MDS and AML, many of the cytosine in the expression promoter of a number of tumor suppressor genes are methylated, and their expression is suppressed. As a result, important functions such as DNA damage repair and cell cycle checkpoint are suppressed compared to normal. is caused
다수의 tumor suppressor genes의 비정상적인 DNA 메틸화는 AML을 포함한 많은 종류의 Leukemia에서 보고되었으며, 특히 p15 tumor suppressor genes의 CpG island 과메틸화로 인한 비활성화로 인해 비정상적인 세포증식이 유도된다. Abnormal DNA methylation of multiple tumor suppressor genes has been reported in many types of Leukemia, including AML.
Decitabine과 같이 DNA의 메틸화를 정상화할 수 있는 후생유전학 조절 약물 처리로 인해 메틸화 패턴을 정상화할 경우 이들 조혈모세포가 분화 또는 사멸하여 MDS/AML 환자의 치료에 유용하게 사용될 수 있으며, 이때 세포 내 PD 마커인 p15의 재발현이 유도된다. 기존 Decitabine/Azacytidine 임상시험 및 환자치료를 통하여 p15가 silencing된 암세포 및 암환자에서의 p15 re-expression은 DNMT1 저해제의 Pharmacodynamic 반응을 모니터링하는 PD 마커로 확립되었다.When the methylation pattern is normalized by treatment with an epigenetic control drug that can normalize DNA methylation, such as Decitabine, these hematopoietic stem cells differentiate or die and can be usefully used in the treatment of MDS/AML patients. At this time, intracellular PD markers Re-expression of phosphorus p15 is induced. Through existing Decitabine/Azacytidine clinical trials and patient treatment, p15 re-expression in p15-silenced cancer cells and cancer patients was established as a PD marker to monitor the pharmacodynamic response of DNMT1 inhibitors.
따라서, Aza-T-dCyd 처리 시 DNMT1 저해로 인한 후생유전학적 조절 기전을 통해 tumor suppressor genes의 re-expression 양상을 확인하기 위하여 AML 세포주를 대상으로 AML cell line인 MV4-11 세포에 NTX-301을 농도별로 처리하였다. DNMT1 저해로 인해 유도되는 PD 마커인 p15 tumor suppressor gene의 용량의존적인 re-expression을 확인하였으며, RT-PCR을 통하여 p15 mRNA의 강력한 재발현을 확인하였다 (도 13).Therefore, NTX-301 was applied to MV4-11 cells, an AML cell line, in order to confirm the re-expression pattern of tumor suppressor genes through an epigenetic regulatory mechanism caused by DNMT1 inhibition during Aza-T-dCyd treatment. It was treated by concentration. A dose-dependent re-expression of p15 tumor suppressor gene, a PD marker induced by DNMT1 inhibition, was confirmed, and strong re-expression of p15 mRNA was confirmed through RT-PCR (FIG. 13).
MV4-11 세포에서의 DNMT1 저해제의 효능을 비교하기 위해 Aza-T-dCyd 및 Decitabine 처리 시 p15 tumor suppressor gene의 발현을 확인하고자 Quantitative RT-PCR을 수행한 결과, Aza-T-dCyd 을 60 nM, 200 nM의 농도로 처리한 조건에서 p15 tumor suppressor gene의 발현량이 유의하게 용량의존적으로 증가함을 확인하였다 (도 14과 표 1). 또한, Aza-T-dCyd에 의해 Decitabine보다 더 우수한 p15 upregulation이 유도됨을 확인할 수 있었다. To compare the efficacy of DNMT1 inhibitors in MV4-11 cells, quantitative RT-PCR was performed to confirm the expression of the p15 tumor suppressor gene when Aza-T-dCyd and Decitabine were treated. As a result, Aza-T-dCyd was 60 nM, It was confirmed that the expression level of the p15 tumor suppressor gene was significantly increased in a dose-dependent manner under the condition of treatment at a concentration of 200 nM (FIG. 14 and Table 1). In addition, it was confirmed that p15 upregulation was induced by Aza-T-dCyd more than Decitabine.
따라서, Aza-T-dCyd 처리 시 DNMT1 감소 및 p15 tumor suppressor gene의 재발현을 확인한 결과는 Aza-T-dCyd 이 새로운 표적항암제로서의 개발 가능성이 높다.Therefore, the results confirming the reduction of DNMT1 and the re-expression of the p15 tumor suppressor gene upon treatment with Aza-T-dCyd suggest that Aza-T-dCyd is highly likely to be developed as a new target anti-cancer drug.
하기 표 1은 AML 세포인 MV4-11 세포주에서 DNMT1 저해제 (Aza-T-dCyd /Decitabine) 처리 후 p15 mRNA re-expression 정도를 비교한 것이다(0 nM 기준으로 증가한 배수 표시).Table 1 below compares the degree of p15 mRNA re-expression after treatment with a DNMT1 inhibitor (Aza-T-dCyd/Decitabine) in the MV4-11 cell line, which is an AML cell line (fold increase based on 0 nM).
Figure PCTKR2022011392-appb-img-000003
Figure PCTKR2022011392-appb-img-000003
또한, Aza-T-dCyd에 의해 Decitabine보다 더 우수한 p15 upregulation이 유도됨을 확인할 수 있었다. In addition, it was confirmed that Aza-T-dCyd induced better p15 upregulation than Decitabine.
따라서, Aza-T-dCyd 처리 시 DNMT1 감소 및 p15 tumor suppressor gene의 재발현을 확인한 결과 Aza-T-dCyd은 새로운 표적항암제로서의 가능성이 높다.Therefore, as a result of confirming the reduction of DNMT1 and the re-expression of the p15 tumor suppressor gene when treated with Aza-T-dCyd, Aza-T-dCyd has high potential as a new target anticancer agent.
1-2-2. 추가 PD 마커 (CEBP/epsilon, CDKN1B)의 변화 확인1-2-2. Confirmation of changes in additional PD markers (CEBP/epsilon, CDKN1B)
MDS/CMML/AML 환자의 악성 세포의 경우 lineage commitment Master TF인 CEBP/alpha, Pu.1, GATA factors를 높은 수준으로 발현하는 반면, CEBP/epsilon을 포함한 후기 발달 단계 전사인자들의 발현은 각 유전자의 과메틸화로 인해 낮게 유지되고 있다는 문제가 있다.In the case of malignant cells from MDS/CMML/AML patients, CEBP/alpha, Pu.1, and GATA factors, which are lineage commitment master TFs, are expressed at high levels, whereas the expression of late developmental stage transcription factors including CEBP/epsilon is low for each gene. The problem is that it is kept low due to hypermethylation.
CEBP/epsilon은 미성숙 혈구 세포의 성숙을 유도하고, 비정상적인 증식을 억제하는 단백질로서, 이 단백질의 발현이 유도됨에 따라 CDKN1B와 Myc antagonists (MAD)의 발현 증가가 유도된다. CDKN1B은 CDK 저해 단백질로서 세포 주기상 증식을 중단시키거나 분화를 유도하는 기능을 담당한다고 알려져 있다. 이러한 CEBP/epsilon과 CDKN1B 발현은 AML 악성 세포의 분화를 유도하여 강력한 항암효능을 나타낸다.CEBP/epsilon is a protein that induces maturation of immature hemocytes and suppresses abnormal proliferation. As the expression of this protein is induced, the expression of CDKN1B and Myc antagonists (MAD) is increased. CDKN1B, as a CDK inhibitory protein, is known to be responsible for stopping cell cycle proliferation or inducing differentiation. The expression of CEBP/epsilon and CDKN1B induces differentiation of AML malignant cells and exhibits strong anticancer efficacy.
Decitabine 약물 처리 시 DNMT1을 저해하여 DNA 탈메틸화 유도와 함께 CEBP/epsilon의 re-expression을 유도하여 세포사멸 및 세포분화를 야기하고, 이를 통해 우수한 항암 효능을 나타낸다는 것이 보고된 바 있다.It has been reported that treatment with decitabine inhibits DNMT1 to induce DNA demethylation and re-expression of CEBP/epsilon, resulting in apoptosis and cell differentiation, thereby exhibiting excellent anticancer efficacy.
다양한 AML 세포주를 대상으로 NTX-301 처리 시 DNMT1 저해로 인해 유도되는 target engagement 양상을 확인하고자 CEBP/epsilon 및 CDKN1B 발현 확인 및 비교 분석하였다(도 15).CEBP/epsilon and CDKN1B expressions were confirmed and comparatively analyzed to confirm the target engagement pattern induced by DNMT1 inhibition during NTX-301 treatment in various AML cell lines (FIG. 15).
AML 세포주인 THP-1 세포에 농도별로 NTX-301 처리 시, 용량 의존적으로 DNMT1 저해가 유도되고, CEBP/epsilon 발현 및 CDKN1B 발현이 증가하는 상관관계를 확인함으로써 Aza-T-dCyd의 미성숙 혈구 세포의 성숙유도 및 분화유도 기능을 확인하였다.DNMT1 inhibition was induced in a dose-dependent manner, and CEBP/epsilon expression and CDKN1B expression were increased when NTX-301 was treated at different concentrations in THP-1 cells, an AML cell line. Maturation induction and differentiation induction functions were confirmed.
AML 세포주인 MV4-11, HL-60, KG-1a 세포에 Aza-T-dCyd을 72시간 동안 처리한 다음 세포 내 단백질 발현 수치를 확인한 결과, DNMT1의 발현은 저해되고 CEBP/epsilon 및 CDKN1B의 발현은 증가함을 확인하였다. 특히 MV4-11과 HL-60 세포에서 가장 크게 발현 증가함을 확인하였다(도 16).AML cell lines MV4-11, HL-60, and KG-1a cells were treated with Aza-T-dCyd for 72 hours and the intracellular protein expression levels were checked. As a result, the expression of DNMT1 was inhibited and the expression of CEBP/epsilon and CDKN1B was confirmed to increase. In particular, it was confirmed that the expression increased the most in MV4-11 and HL-60 cells (FIG. 16).
1-3. Target engagement1-3. Target engagement
기존 실험을 통해, Aza-T-dCyd 에 대한 responsive 세포주로 확인된 MV4-11 세포에 DNMT1 knock-out (siRNA) 처리 시 세포의 생존, 분열 및 성장에 영향을 주지 않는 KO 세포주를 제작하였다.Through previous experiments, MV4-11 cells, which were identified as responsive to Aza-T-dCyd, were treated with DNMT1 knock-out (siRNA) to construct a KO cell line that did not affect cell survival, division, or growth.
제작한 DNMT1 knock-out 세포주에 NTX-301을 농도별로 처리 시 cytotoxicity가 감소함을 확인할 수 있었으며, 이는 MV4-11 세포에 대한 약리작용이 약해지는 결과라 판단된다. 이를 통해, Aza-T-dCyd 은 DNMT1을 통해서 강력한 약물 효력을 가짐을 확인하였다 (도 17).When the DNMT1 knock-out cell line produced was treated with NTX-301 at different concentrations, it was confirmed that cytotoxicity was reduced, which is considered to be the result of weakening the pharmacological action on MV4-11 cells. Through this, it was confirmed that Aza-T-dCyd has a strong drug effect through DNMT1 (FIG. 17).
1-4. Cellular cytotoxicity1-4. Cellular cytotoxicity
Leukemia 세포주를 대상으로 DNMT1 저해제인 Aza-T-dCyd의 세포증식에 대한 저해 효과를 확인하기 위해 growth-inhibitory activity를 측정하였다.Growth-inhibitory activity was measured to confirm the inhibitory effect of Aza-T-dCyd, a DNMT1 inhibitor, on cell proliferation in Leukemia cell lines.
1-4-1. AML1-4-1. AML
다양한 AML 세포주에서 Aza-T-dCyd (SRI-9639, NTX-301)은 도 18과 같은 IC50 값을 가지며 탁월한 세포 생존 저해 효능을 보였다.In various AML cell lines, Aza-T-dCyd (SRI-9639, NTX-301) showed excellent cell survival inhibitory efficacy with IC 50 values as shown in FIG. 18 .
1-4-2. Leukemia 세포주의 세포 증식에 대한 DNMT1 저해제의 효과 비교1-4-2. Comparison of effects of DNMT1 inhibitors on cell proliferation of Leukemia cell lines
Leukemia 세포주를 대상으로 DNMT1 저해제인 Aza-T-dCyd 및 Decitabine의 세포증식에 대한 효과를 확인하기 위해 growth-inhibitory activity를 측정하였다. DNMT1 저해제를 각 72시간 동안 처리한 결과, Leukemia cell growth를 억제하는데 효과가 있다고 알려진 Decitabine의 GI50값 (half macimal growth inhibitory concentrations)은 0.024μM ~ 4.3μM였고, Aza-T-dCyd은 GI50 값은 0.014μM ~ 0.69μM로 측정되었다. 전반적으로 세포증식에 대한 저해 효능을 비교하였을 때, Decitabine 대비 Aza-T-dCyd의 효능이 상당히 우수함을 확인하였다(도 19).Growth-inhibitory activity was measured to confirm the effect of Aza-T-dCyd and Decitabine, which are DNMT1 inhibitors, on cell proliferation in Leukemia cell lines. As a result of treatment with DNMT1 inhibitors for 72 hours each, the GI 50 value (half macimal growth inhibitory concentrations) of Decitabine, which is known to be effective in inhibiting leukemia cell growth, was 0.024 μM to 4.3 μM, and the GI 50 value of Aza-T-dCyd was was measured from 0.014 μM to 0.69 μM. Overall, when comparing the inhibitory efficacy against cell proliferation, it was confirmed that the efficacy of Aza-T-dCyd was significantly superior to that of Decitabine (FIG. 19).
1-4-3. 암종별 세포주에서 Aza-T-dCyd 의 IC50값 결과1-4-3. Results of IC50 values of Aza-T-dCyd in cell lines by carcinoma type
Aza-T-dCyd에 대한 바이오마커를 확보하기 위해 200개 세포주에 대한 세포 독성 평가를 수행한 약물 활성 profiling 분석하였다.In order to secure a biomarker for Aza-T-dCyd, cytotoxicity was evaluated for 200 cell lines, and drug activity profiling analysis was performed.
200개 세포주에 대한 약물 활성 profiling 및 유전체 분석 결과를 통한 Aza-T-dCyd의 약물 responsiveness 분석 결과, 다양한 고형암에서 강력한 효력 확보 가능함을 확인하였다(표 2).As a result of drug responsiveness analysis of Aza-T-dCyd through drug activity profiling and genome analysis on 200 cell lines, it was confirmed that strong efficacy can be secured in various solid cancers (Table 2).
200개 세포주에 대한 약물 활성 profiling 및 유전체 분석 결과를 통한 Aza-T-dCyd의 약물 responsiveness 분석 결과, 다양한 고형암에서 강력한 효력 확보 가능함을 확인하였다(표 2).As a result of drug responsiveness analysis of Aza-T-dCyd through drug activity profiling and genome analysis on 200 cell lines, it was confirmed that strong efficacy can be secured in various solid cancers (Table 2).
세포주cell line 암 종류cancer type Aza-T-dCyd IC50 (uM)Aza-T-dCyd IC50 (uM)
NALM-6NALM-6 ALLALL 0.03380.0338
RS4;11RS4;11 ALLALL 0.02030.0203
JurkatJurkat ALLALL 0.06950.0695
MOLT-16MOLT-16 ALLALL 0.01820.0182
CCRFCEMCCRFCEM ALLALL 0.1190.119
MOLT-4MOLT-4 ALLALL 0.0350.035
HL-60HL-60 AMLAML 0.5140.514
KG-1KG-1 AMLAML 0.4610.461
MV-4-11MV-4-11 AMLAML 0.1830.183
THP-1THP-1 AMLAML 5.125.12
MC116MC116 B-cell lymphomaB-cell lymphoma 0.02970.0297
JeKo-1JeKo-1 B-cell lymphomaB-cell lymphoma 0.03850.0385
DBDB B-cell lymphomaB-cell lymphoma 0.1350.135
DOHH-2DOHH-2 B-cell lymphomaB-cell lymphoma 0.6090.609
HTHT B-cell lymphomaB-cell lymphoma 1.031.03
NU-DUL-1NU-DUL-1 B-cell lymphomaB-cell lymphoma 0.02450.0245
SU-DHL-10SU-DHL-10 B-cell lymphomaB-cell lymphoma 0.03660.0366
SU-DHL-4SU-DHL-4 B-cell lymphomaB-cell lymphoma 0.01750.0175
SU-DHL-8SU-DHL-8 B-cell lymphomaB-cell lymphoma 0.07060.0706
ARH-77ARH-77 B-cell lymphomaB-cell lymphoma 0.4130.413
BC-1BC-1 B-cell lymphomaB-cell lymphoma 0.3380.338
IM-9IM-9 B-cell lymphomaB-cell lymphoma 1.051.05
MHH-PREB-1MHH-PREB-1 B-cell lymphomaB-cell lymphoma 0.03890.0389
RPMI 8226RPMI 8226 B-cell myelomaB-cell myeloma 3.273.27
SKO-007SKO-007 B-cell myelomaB-cell myeloma 4.294.29
CA46CA46 Burkitt's lymphomaBurkitt's lymphoma 0.02550.0255
DaudiDaudi Burkitt's lymphomaBurkitt's lymphoma 0.4510.451
GA-10GA-10 Burkitt's lymphomaBurkitt's lymphoma 0.03350.0335
NAMALWANAMALWA Burkitt's lymphomaBurkitt's lymphoma 0.01090.0109
RajiRaji Burkitt's lymphomaBurkitt's lymphoma 0.07520.0752
EB2EB2 Burkitt's lymphomaBurkitt's lymphoma 8.198.19
MEG01MEG01 CMLCML 1.071.07
BV-173BV-173 CMLCML 0.005320.00532
CML-T1CML-T1 CMLCML 0.1090.109
EM-2EM-2 CMLCML 0.2550.255
TF-1TF-1 ErythroleukemiaErythroleukemia 0.7330.733
L-428L-428 Hodgkin's lymphomaHodgkin's lymphoma 0.3650.365
RPMI 6666RPMI 6666 Hodgkin's lymphomaHodgkin's lymphoma 1.051.05
H9H9 T-cell LymphomaT-cell Lymphoma 0.4680.468
J-RT3-T3-5J-RT3-T3-5 T-cell LymphomaT-cell Lymphoma 0.1060.106
OE33OE33 Head and NeckHead and Neck 0.1610.161
A-673A-673 SarcomaSarcoma 0.6980.698
A375A375 Skin (Melanoma)Skin (Melanoma) 0.06670.0667
C32C32 Skin (Melanoma)Skin (Melanoma) >10>10
H4H4 CNS (Glioma)CNS (Glioma) 0.08010.0801
U-118 MGU-118 MG CNS (Glioma)CNS (Glioma) >10>10
56375637 BladderBladder 0.2960.296
HT-1197HT-1197 BladderBladder 7.137.13
HT1376HT1376 BladderBladder 3.283.28
J82J82 BladderBladder 1.981.98
T24T24 BladderBladder 1.531.53
TCCSUPTCCSUP BladderBladder 1.181.18
UM-UC-3UM-UC-3 BladderBladder 0.2890.289
SCaBERSCaBER BladderBladder 0.1870.187
647-V647-V BladderBladder 0.4080.408
BFTC-905BFTC-905 BladderBladder 0.1190.119
Hs 821.THs 821.T SarcomaSarcoma >10>10
AU565AU565 BreastBreast >10>10
CAMA-1CAMA-1 BreastBreast >10>10
MDA MB 231MDA MB 231 BreastBreast 0.210.21
MDA MB 415MDA MB 415 BreastBreast >10>10
MDA MB 453MDA MB 453 BreastBreast 1.891.89
MDA MB 468MDA MB 468 BreastBreast 1.341.34
SK-BR-3SK-BR-3 BreastBreast 9.329.32
EFM-19EFM-19 BreastBreast 3.953.95
ChaGoK1ChaGoK1 Lung (NSCLC)Lung (NSCLC) 3.413.41
LS1034LS1034 ColonColon 1.411.41
LS411NLS411N ColonColon 0.2650.265
NCI-H508NCI-H508 ColonColon 0.5420.542
NCI-H747NCI-H747 ColonColon 0.3190.319
Caki-1Caki-1 KidneyKidney 0.08560.0856
HCT-15HCT-15 ColonColon 1.021.02
SW1417SW1417 ColonColon >10>10
SW403SW403 ColonColon 0.6190.619
SW480SW480 ColonColon 1.581.58
SW620SW620 ColonColon 0.2340.234
HCT-116HCT-116 ColonColon 0.10.1
SK-MEL-28SK-MEL-28 Skin (Melanoma)Skin (Melanoma) 2.52.5
DaoyDaoy CNS (Medulloblastoma)Medulloblastoma (CNS) 3.613.61
A204A204 SarcomaSarcoma 0.1570.157
Hs 729Hs 729 SarcomaSarcoma >10>10
RL95-2RL95-2 Female GU (Uterus)Female GU (Uterus) 0.7050.705
OE19OE19 Head and NeckHead and Neck >10>10
OE21OE21 Head and NeckHead and Neck 0.1520.152
HT-1080HT-1080 SarcomaSarcoma 0.120.12
AGSAGS StomachStomach 0.05840.0584
Hs 746THs 746T StomachStomach 0.6660.666
A172A172 CNS (Glioma)CNS (Glioma) >10>10
DBTRG-05MGDBTRG-05MG CNS (Glioma)CNS (Glioma) >10>10
DK-MGDK-MG CNS (Glioma)CNS (Glioma) >10>10
T98GT98G CNS (Glioma)CNS (Glioma) 1.391.39
U-87 MGU-87 MG CNS (Glioma)CNS (Glioma) 1.641.64
HepG2HepG2 LiverLiver 0.8920.892
OVCAR3OVCAR3 Female GU (Ovary)Female GU (Ovary) 3.443.44
FaDuFaDu Head and NeckHead and Neck 0.2080.208
HuCCT1HuCCT1 LiverLiver 0.1050.105
BT20BT20 BreastBreast >10>10
BT474BT474 BreastBreast >10>10
Hs 578THs 578T BreastBreast >10>10
MCF7MCF7 BreastBreast 6.476.47
ZR-75-1ZR-75-1 BreastBreast >10>10
COR-L23COR-L23 Lung (NSCLC)Lung (NSCLC) 0.09440.0944
A549A549 Lung (NSCLC)Lung (NSCLC) 0.190.19
COR-L105COR-L105 Lung (NSCLC)Lung (NSCLC) 2.242.24
D283 MedD283 Med CNS (Medulloblastoma)Medulloblastoma (CNS) 0.06880.0688
G-361G-361 Skin (Melanoma)Skin (Melanoma) 1.081.08
Hs 688(A).THs 688(A).T Skin (Melanoma)Skin (Melanoma) >10>10
Hs 852.THs 852.T Skin (Melanoma)Skin (Melanoma) >10>10
MALME3MMALME3M Skin (Melanoma)Skin (Melanoma) 7.457.45
MeWoMeWo Skin (Melanoma)Skin (Melanoma) 1.041.04
RPMI-7951RPMI-7951 Skin (Melanoma)Skin (Melanoma) 0.5270.527
SH-4SH-4 Skin (Melanoma)Skin (Melanoma) 0.6980.698
SK-MEL-3SK-MEL-3 Skin (Melanoma)Skin (Melanoma) 0.5220.522
WM-266-4WM-266-4 Skin (Melanoma)Skin (Melanoma) 0.4290.429
TTTT Endocrine (Thyroid)Endocrine (Thyroid) >10>10
SK-N-ASSK-N-AS CNS (Neuroblastoma)Neuroblastoma (CNS) 1.171.17
SK-N-FISK-N-FI CNS (Neuroblastoma)Neuroblastoma (CNS) 2.712.71
MG-63MG-63 Bone (Osteosarcoma)Bone (Osteosarcoma) 0.990.99
SKOV3SKOV3 Female GU (Ovary)Female GU (Ovary) 2.922.92
HuP-T4HuP-T4 PancreasPancreas 0.3210.321
Hs 766THs 766T PancreasPancreas 9.49.4
PSN-1PSN-1 PancreasPancreas 0.1910.191
YAPCYAPC PancreasPancreas 1.051.05
AsPC-1AsPC-1 PancreasPancreas 2.122.12
BxPC-3BxPC-3 PancreasPancreas 0.6990.699
CFPAC-1CFPAC-1 PancreasPancreas 1.751.75
Capan-1Capan-1 PancreasPancreas 3.323.32
HPAF-IIHPAF-II PancreasPancreas 0.7370.737
Mia PaCa-2Mia PaCa-2 PancreasPancreas 0.8810.881
NCIH441NCIH441 Lung (NSCLC)Lung (NSCLC) 1.31.3
ACHNACHN KidneyKidney 0.2310.231
Caki-2Caki-2 KidneyKidney 0.3630.363
Detroit 562Detroit 562 Head and NeckHead and Neck 0.08110.0811
22Rv122Rv1 ProstateProstate 2.712.71
DU145DU145 ProstateProstate 0.4320.432
PC-3PC-3 ProstateProstate 0.4410.441
NCI-H292NCI-H292 Lung (NSCLC)Lung (NSCLC) 0.1940.194
SW1463SW1463 ColonColon 0.3030.303
SW837SW837 ColonColon 0.3540.354
HT-29HT-29 ColonColon 0.3230.323
769-P769-P KidneyKidney 0.06570.0657
786-O786-O KidneyKidney 0.2490.249
A498A498 KidneyKidney 0.07380.0738
A-704A-704 KidneyKidney >10>10
A-253A-253 Head and NeckHead and Neck 0.6010.601
KATO IIIKATO III StomachStomach 0.8070.807
DMS114DMS114 Lung (SCLC)Lung (SCLC) 2.22.2
DMS273DMS273 Lung (SCLC)Lung (SCLC) 5.665.66
DMS53DMS53 Lung (SCLC)Lung (SCLC) 4.224.22
NCIH446NCIH446 Lung (SCLC)Lung (SCLC) 3.043.04
NCI-H69NCI-H69 Lung (SCLC)Lung (SCLC) >10>10
SKMES1SKMES1 Lung (NSCLC)Lung (NSCLC) 0.3140.314
SW579SW579 Endocrine (Thyroid)Endocrine (Thyroid) 1.051.05
BHT-101BHT-101 Endocrine (Thyroid)Endocrine (Thyroid) 0.2350.235
Cal 27Cal 27 Head and NeckHead and Neck 0.3190.319
SCC-25SCC-25 Head and NeckHead and Neck 0.1260.126
SCC-4SCC-4 Head and NeckHead and Neck 2.862.86
SCC-9SCC-9 Head and NeckHead and Neck 1.831.83
Calu6Calu6 Lung (NSCLC)Lung (NSCLC) 0.2890.289
639-V639-V BladderBladder 1.571.57
SK-UT-1SK-UT-1 SarcomaSarcoma 0.3430.343
MES-SAMES-SA SarcomaSarcoma 0.1350.135
A388A388 Skin (Head and Neck)Skin (Head and Neck) 0.190.19
A427A427 Lung (NSCLC)Lung (NSCLC) 0.07750.0775
A431A431 Skin (Head and Neck)Skin (Head and Neck) 0.2560.256
A7A7 Skin (Melanoma)Skin (Melanoma) 1.191.19
BE(2)CBE(2)C CNS (Neuroblastoma)Neuroblastoma (CNS) 0.3730.373
BM-1604BM-1604 ProstateProstate 4.414.41
C32TGC32TG Skin (Melanoma)Skin (Melanoma) 0.9530.953
C-33AC-33A Female GU (Cervix)Female GU (Cervix) 0.4970.497
C-4 IIC-4 II Female GU (Cervix)Female GU (Cervix) 0.7730.773
CGTH-W-1CGTH-W-1 Endocrine (Thyroid)Endocrine (Thyroid) 0.1430.143
Colo 205Colo 205 ColonColon 0.08110.0811
Colo 320DMColo 320DM ColonColon 0.09230.0923
DLD-1DLD-1 ColonColon 0.2210.221
HeLaHeLa Female GU (Cervix)Female GU (Cervix) 1.811.81
Hs 936.T(C1)Hs 936.T(C1) Skin (Melanoma)Skin (Melanoma) 0.3980.398
HT-3HT-3 Female GU (Cervix)Female GU (Cervix) 0.8180.818
JARJAR PlacentaPlacenta 0.2960.296
KHOS-240SKHOS-240S Bone (Osteosarcoma)Bone (Osteosarcoma) 0.2540.254
LS-174TLS-174T ColonColon >10>10
MS751MS751 Female GU (Cervix)Female GU (Cervix) >10>10
NCI-H295RNCI-H295R Endocrine (Adrenal gland)Endocrine (adrenal gland) >10>10
NTERA-2 cl.D1NTERA-2 cl.D1 TestisTestis 0.04270.0427
PA-1PA-1 Female GU (Ovary)Female GU (Ovary) 0.03920.0392
PFSK-1PFSK-1 CNS (Glioma)CNS (Glioma) 7.617.61
SJRH30SJRH30 SarcomaSarcoma 0.2910.291
SK-NEP-1SK-NEP-1 KidneyKidney >10>10
SK-PN-DWSK-PN-DW SarcomaSarcoma 0.8470.847
SNB-19SNB-19 CNS (Glioma)CNS (Glioma) 0.170.17
SU.86.86SU.86.86 PancreasPancreas 0.5080.508
SW872SW872 SarcomaSarcoma 0.730.73
SW900SW900 Lung (SCLC)Lung (SCLC) 1.981.98
SW962SW962 Female GU (Vulva)Female GU (Vulva) >10>10
SW982SW982 SarcomaSarcoma 0.1710.171
T47DT47D BreastBreast >10>10
U-138MGU-138MG CNS (Glioma)CNS (Glioma) >10>10
VA-ES-BJVA-ES-BJ SarcomaSarcoma 0.2410.241
WiDrWiDr ColonColon 0.2630.263
D341 MedD341 Med CNS (Medulloblastoma)Medulloblastoma (CNS) NANA
실시예 2: Aza-T-dCyd의 작용기전 연구Example 2: A study on the mechanism of action of Aza-T-dCyd
도 20 및 도 21에는 각각 Aza-T-dCyd의 DNA damage response 작용기전 및 Aza-T-dCyd의 작용기전이 도시되어 있다.20 and 21 show the DNA damage response mechanism of Aza-T-dCyd and the mechanism of action of Aza-T-dCyd, respectively.
Aza-T-dCyd은 BER 등 DNA damage response의 활성화를 저해함으로써 Decitabine과 비교 시 더욱 오래 지속되는 DNA-DNMT1 adduct를 형성하여 더욱 강한 DNA damage를 유도하며 이를 통하여 CHK1-p53 pathway를 강하게 활성화함으로써 Decitabine 대비 더욱 강한 항암 효능을 보인다.Aza-T-dCyd inhibits the activation of DNA damage responses such as BER, forms a DNA-DNMT1 adduct that lasts longer compared to Decitabine, induces stronger DNA damage, and through this, strongly activates the CHK1-p53 pathway, making it more effective than Decitabine. show stronger anticancer efficacy.
2-1. DNA damage response 유도2-1. Induction of DNA damage response
① DNA incorporation 및 Pyrimidine metabolism 저해① Inhibition of DNA incorporation and Pyrimidine metabolism
Aza-T-dCyd은 pyrimidine analog로서 세포 내에서 다양한 pyrimidine metabolism 관련 효소에 의해 대사가 진행된다.Aza-T-dCyd is a pyrimidine analog that is metabolized by various enzymes involved in pyrimidine metabolism within cells.
세포에 Aza-T-dCyd 처리 시 dNTP de novo 합성에 중요한 ribonucleotide reductase인 RRM1 단백질 발현이 억제되고, 세포 내 dCTP, dTTP 양의 감소를 통해, 세포 내 pyrimidine 대사과정에 영향을 줄 수 있음을 확인하였다(도 22). 암세포가 DNA를 복제할 때 중요한 precursor로서 작용하는 dCTP, dTTP의 감소는 replication stress를 유발하며 강한 DNA damage response를 발생시킬 수 있다.It was confirmed that when cells were treated with Aza-T-dCyd, the expression of RRM1 protein, a ribonucleotide reductase important for dNTP de novo synthesis, was suppressed, and the amount of dCTP and dTTP in cells was reduced, thereby affecting the intracellular pyrimidine metabolism. (FIG. 22). Reduction of dCTP and dTTP, which act as important precursors when cancer cells replicate DNA, induces replication stress and can generate a strong DNA damage response.
Aza-T-dCyd의 대사산물인 aza-T-dCTP의 DNA 삽입은 base excision repair, mismatch repair를 일으키고 DNA 복제를 지연시킴으로서 replication stress를 유발하고 DNA damage response를 가중시킬 수 있다.DNA insertion of aza-T-dCTP, a metabolite of Aza-T-dCyd, causes base excision repair and mismatch repair and delays DNA replication, which can cause replication stress and aggravate DNA damage response.
② DNMT1-DNA adduct 형성을 통한 DNA damage response 유도② Induction of DNA damage response through formation of DNMT1-DNA adduct
Aza-T-dCyd 처리 시 세포 내 DNA로 삽입된 Aza-T-dCyd은 DNMT1과의 공유결합을 통해서 trap되며 DNMT1-DNA adduct를 형성한다. When treated with Aza-T-dCyd, Aza-T-dCyd inserted into intracellular DNA is trapped through a covalent bond with DNMT1 and forms a DNMT1-DNA adduct.
형성된 adduct는 bulky한 구조를 통해 DNA replication fork의 진행을 방해함으로서 replication fork를 붕괴시키고, double-strand break를 일으켜 강한 DNA damage response를 야기할 수 있다.The formed adduct can disrupt the progress of the DNA replication fork through its bulky structure, thereby collapsing the replication fork and causing a double-strand break, resulting in a strong DNA damage response.
Pyrimidine metabolism, DNA incorporation, DNMT1 adduct 형성은 결과적으로 강한 DNA damage response를 일으킨다. Pyrimidine metabolism, DNA incorporation, and DNMT1 adduct formation result in a strong DNA damage response.
도 23에서 Aza-T-dCyd 처리 시 형성된 DNA adduct로 인해 DNA replication stress 관련 유전자들의 발현 증가 및 세포주 별 약물에 대한 효능을 확인하였다.In FIG. 23 , due to the DNA adduct formed during Aza-T-dCyd treatment, the increased expression of DNA replication stress-related genes and the efficacy of drugs for each cell line were confirmed.
③ DDR-p53 pathway 활성화로 인한 DNA damage response 촉진③ Accelerate DNA damage response by activating the DDR-p53 pathway
Aza-T-dCyd 처리 시 DNA damage response 마커인 H2AX 인산화를 증가시키고, 동시에 DNA damage sensor인 Chk1의 인산화 증가, DNA damage 반응에서 세포 주기/사멸을 조절하는 p53 단백질 발현의 증가를 일으켜 DNA damage response를 촉진시켜 결과적으로 혈액암의 tumorigenic activity를 억제함을 확인하였다(도 24). Aza-T-dCyd treatment increases H2AX phosphorylation, a DNA damage response marker, simultaneously increases phosphorylation of Chk1, a DNA damage sensor, and increases p53 protein expression, which regulates cell cycle/death in DNA damage response, resulting in DNA damage response. As a result, it was confirmed that the tumorigenic activity of hematological malignancies was inhibited (FIG. 24).
2-2.2-2. DNA demethylationDNA demethylation
Aza-T-dCyd을 처리하면 강한 DNMT1 depletion을 유도하며 전반적인 DNA 메틸화 레벨의 감소를 유발한다.Treatment with Aza-T-dCyd induces strong DNMT1 depletion and decreases overall DNA methylation levels.
Decitabine은 유전체 영역 전반적인 디메틸화를 유발시키는 반면, Aza-T-dCyd 은 early replication 동안 복제되는 DNA 영역, 유전자 발현에 중요한 promoter 지역, DNMT1-binding 지역, replication stress 지역 등으로 편향되고 선택적인 디메틸화를 유도한다.Decitabine induces dimethylation across genomic regions, whereas Aza-T-dCyd induces biased and selective dimethylation in DNA regions that are replicated during early replication, promoter regions important for gene expression, DNMT1-binding regions, and replication stress regions. induce
Aza-T-dCyd 처리로 인한 DNA 디메틸화를 통해, 억제되어 있던 다양한 tumor suppressor gene 및 AML 세포의 분화 유도에 필요한 유전자가 재활성되었으며, RNA-seq 데이터 분석을 통해 해당 유전자들의 재활성화된 발현패턴을 확인하였다(도 25).Through DNA dimethylation caused by Aza-T-dCyd treatment, various tumor suppressor genes that had been suppressed and genes necessary for inducing differentiation of AML cells were reactivated, and through RNA-seq data analysis, expression patterns of the genes were reactivated was confirmed (FIG. 25).
실시예 3: 농도별 약동학적 평가 - Mice/Rat/Dog PK profile Example 3 : Pharmacokinetic evaluation by concentration - Mice/Rat/Dog PK profile
Aza-T-dCyd을 Mice, Rat 및 Dog에 다양한 농도로 경구 및 정맥투여하면서 PK profile을 확인하였다.Aza-T-dCyd was administered orally and intravenously at various concentrations to mice, rats and dogs, and the PK profile was confirmed.
실제 인체에서의 약물 분포가 가장 유사한 동물종은 Mice (인체와 동일하게 간에 CDA(Cytidine Deaminase)가 주로 분포하여 가장 유사한 대사 패턴을 보임)이나 종간 차이 없이 흡수가 잘 일어나는지 확인하기 위해 Rat/Dog에서의 PK profile을 확인하였다.The animal species with the most similar drug distribution in the human body is Mice (CDA (Cytidine Deaminase) is mainly distributed in the liver, showing the most similar metabolic pattern), or rat/dog to confirm that absorption occurs well without differences between species. The PK profile of was confirmed.
Mice, Rat 및 Dog 모두에서 우수한 경구투여 가능성을 보이고 있으며, Mice에서의 투여 결과 우수한 약물효능을 확보할 수 있는 수준의 Cmax/AUC 값을 용이하게 확보할 수 있는 것을 확인하였다. 즉, 경구 투여로 0.5mpk 이상의 Aza-T-dCyd 투여 시 in vivo에서 용이한 약물 효력 확보 가능하다.Mice, rats, and dogs all show excellent oral administration potential, and as a result of administration in mice, it was confirmed that a Cmax / AUC value at a level that can secure excellent drug efficacy can be easily secured. That is, when administering Aza-T-dCyd at 0.5 mpk or more by oral administration, it is possible to easily secure drug efficacy in vivo.
도 26 및 도 27에는 Mice에 대한 Aza-T-dCyd의 약동력학 평가 결과, 도 28에는 Rat에 대한 Aza-T-dCyd 의 약동력학 평가 결과, 도 29에는 Dog 에 대한 Aza-T-dCyd 의 약동력학 평가 결과가 나타나 있다.26 and 27 show the pharmacokinetic evaluation results of Aza-T-dCyd for Mice, FIG. 28 show the pharmacokinetic evaluation results for Aza-T-dCyd for rats, and FIG. 29 show the pharmacokinetic evaluation results for Aza-T-dCyd for dogs. The results of the kinetic evaluation are shown.
이러한 결과 및 약물 효능을 예측하기 위한 기초연구 결과 (혈중/조직 중 deoxycytidine 농도와 약물 효능의 관계 - Mice에서의 혈중 dC 농도는 약 1.5uM, Human에서의 혈중 dC 농도는 약 0.01uM으로, 해당 혈중 dC 농도에서 NTX-301의 IC50 value는 Mice에서 Human에 비해 2배 이상 높게 나타남)를 바탕으로 인체에서의 효력을 나타내는 투여량의 예측 결과 단독 투여 시 32mg/day, 병용투여 시 8 - 16mg/day 수준으로 예측되었으며, 해당 결과는 후술하는 임상 1상에서의 MTD 이하 범위에 해당한다.These results and the results of basic research to predict drug efficacy (relationship between blood/tissue concentration and drug efficacy - blood dC concentration in Mice is about 1.5uM, blood dC concentration in Human is about 0.01uM, Based on the IC 50 value of NTX-301 at dC concentration, which is more than twice as high as that of human in Mice), the result of predicting the dose showing efficacy in the human body is 32mg/day when administered alone and 8 - 16mg/day when administered in combination. It was predicted at the day level, and the result corresponds to the range below the MTD in the phase 1 clinical trial described below.
실시예 4 : In vivo Pharmacology (PK/PD correlation)Example 4: In vivo Pharmacology (PK/PD correlation)
놀랍게도, DNMT1의 저해 측면, 즉 demethylation 정도 측면에서 Decitabine 대비 Aza-T-dCyd이 우수하지 않음에도 불구하고, Anti-apoptotic gene의 발현 또는 Anti-apoptotic protein을 down-regulation하는 기전이 우수할 뿐만 아니라 이로인해 아폽토시스 기전을 통해 IC50 값이 훨씬 낮았다.Surprisingly, despite the fact that Aza-T-dCyd is not superior to Decitabine in terms of DNMT1 inhibition, that is, the degree of demethylation, it is not only superior in expression of anti-apoptotic gene or mechanism of down-regulating anti-apoptotic protein, but also resulted in much lower IC 50 values through an apoptotic mechanism.
한편, DNA 메틸화는 DNA methyltransferase (DNMT)에 의해 일어나는데 적어도 3가지 종류의 활성화된 DNMT가 존재한다(DNMT1, DNMT3A, DNMT3B). DNMT3a와 DNMT3B는 쥐를 이용한 실험에서 유전자의 메틸화를 시작하고 유지하는데 필요하며 적절한 발달에 중요한 역할을 한다는 것이 밝혀졌다. 암 조직에서는 주로 DNMT3B 의 두드러진 과발현이 발견되는데 비하여 DNMT1, DNMT3a의 과발현은 중간정도로 발견된다는 사실로 DNMT3B가 암발생에 일정한 역할을 할 것이다. DNMT3B 유전자는 염색체 20q11.2에 자리하고 있으며 전사 시작부위에서 149 염기쌍(bp)만큼 역으로 새로운 촉진자 부분(C46359T)에 C→T 염기전위에 의한 다형성을 보인다. 이것은 촉진자의 활성도를 30% 증가시키는 것으로 밝혀져 있다. 연관성의 기전은 명확하지는 않지만 T 변이가 DNMT3B의 표현을 증가시켜 암억제 유전자의 후성적인 기능손실의 경향을 증가시키는 것으로 가정하였다.Meanwhile, DNA methylation is induced by DNA methyltransferase (DNMT), and there are at least three types of activated DNMTs (DNMT1, DNMT3A, and DNMT3B). Experiments using mice have shown that DNMT3a and DNMT3B are required for initiating and maintaining gene methylation and play an important role in proper development. In cancer tissues, DNMT3B is predominantly overexpressed, whereas DNMT1 and DNMT3a are moderately overexpressed, suggesting that DNMT3B may play a role in cancer development. The DNMT3B gene is located on chromosome 20q11.2 and shows a polymorphism by C→T nucleotide translocation in the new promoter part (C46359T) reversed by 149 base pairs (bp) from the transcription start site. It has been found to increase promoter activity by 30%. Although the mechanism of association is not clear, it is hypothesized that the T mutation increases the expression of DNMT3B, increasing the propensity for epigenetic loss of function of the tumor suppressor gene.
4-1. MDS/AML4-1. MDS/AML
Aza-T-dCyd의 동물 모델에서의 효능을 확인하기 위해, 또한 Aza-T-dCyd이 용량 의존적으로 우수한 약효를 보이는지 확인하기 위해, Molm13 Xenograft 모델 실험(MV4-11 전신 AML 모델 실험)을 수행하였다 (도 30).In order to confirm the efficacy of Aza-T-dCyd in an animal model and to confirm whether Aza-T-dCyd exhibits excellent drug efficacy in a dose-dependent manner, a Molm13 Xenograft model experiment (MV4-11 systemic AML model experiment) was performed. (FIG. 30).
Decitabine/Azacytidine이 치료효과를 전혀 보이지 않는 AML 동물 모델인 Molm13 Xenograft 모델 수립 후, Aza-T-dCyd을 0.2 - 1.5mg/kg의 양으로 경구투여 진행하였다.After establishing the Molm13 Xenograft model, an AML animal model in which Decitabine/Azacytidine does not show any therapeutic effect, Aza-T-dCyd was orally administered at a dose of 0.2 - 1.5 mg/kg.
Aza-T-dCyd의 투여는 기존 Decitabine/Azacytidine에 대한 문헌에 기재된 것과 다르게 독성 신호(체중 변화) 없이 용량 의존적으로 강력한 항암 효과를 보이는 것을 확인하였다.It was confirmed that the administration of Aza-T-dCyd showed a strong anticancer effect in a dose-dependent manner without toxic signals (weight change), unlike those described in the literature on Decitabine/Azacytidine.
Aza-T-dCyd 투여 후 암 조직을 채취하여 분석 (Western blotting)한 결과 (도 31), Aza-T-dCyd은 농도 의존적으로 DNMT1과 DNMT3B를 강력하게 억제하는 것으로 확인되었으며, 이러한 DNMT3B의 억제는 Aza-T-dCyd의 강력한 항암효과에 크게 기여하는 것으로 판단된다.After administration of Aza-T-dCyd, cancer tissues were collected and analyzed (Western blotting), and as a result (FIG. 31), it was confirmed that Aza-T-dCyd strongly inhibited DNMT1 and DNMT3B in a concentration-dependent manner, and this inhibition of DNMT3B It is judged to contribute greatly to the strong anticancer effect of Aza-T-dCyd.
Molm13 AML Xenograft 모델 시험에서 Aza-T-dCyd의 투여는 DNMT1의 저해와 동시에 DNMT3B의 강력한 발현 억제를 통하여 강한 항암 효능을 보였다 (0.4mg/kg 농도 이상의 Aza-T-dCyd를 처리하였을 때 약 90 kDa 크기의 DNMT3B 단백질의 명확한 감소가 관찰됨).In the Molm13 AML Xenograft model test, administration of Aza-T-dCyd showed strong anticancer efficacy through inhibition of DNMT1 and strong expression of DNMT3B at the same time (about 90 kDa when treated with Aza-T-dCyd at a concentration of 0.4 mg/kg or higher). A clear reduction of DNMT3B protein in size was observed).
Snap-frozen Molm13-tumors는 분말로 분쇄하고 SDS-PAGE sample buffer 125μg/μL로 용해하였다. 비교를 위해 Molm13 (50,000cells/μL)를 용해하고 SDS-PAGE로 분리 및 Actin (CIR-fluorescence)과 DNMT3B (ECL+)로 염색한결과, 0.4mg/kg 농도 이상의 Aza-T-dCyd 처리하였을 때 90kDa의 DNMT3B band의 명확한 감소가 관찰되었다.Snap-frozen Molm13-tumors were ground into powder and dissolved in 125 μg/μL of SDS-PAGE sample buffer. For comparison, Molm13 (50,000 cells/μL) was dissolved, separated by SDS-PAGE, and stained with Actin (CIR-fluorescence) and DNMT3B (ECL+). A clear decrease in the DNMT3B band of was observed.
실제 인체에서의 질환을 보다 정확하게 묘사할 수 있는 전신 MV4-11 engraftment 모델의 수립 후 Aza-T-dCyd 을 0.4 - 1.5mg/kg의 양으로 경구투여 진행하였다 (도 32).After establishing a systemic MV4-11 engraftment model that can more accurately describe diseases in the actual human body, Aza-T-dCyd was orally administered in an amount of 0.4 - 1.5 mg/kg (FIG. 32).
Aza-T-dCyd 의 투여는 0.4mg/kg의 최소용량 투여로도 통계적으로 유의미한 수준의 survival improvement를 가져오는 것을 확인할 수 있으며, 최대 투여용량 군에서는 실험 종료 시까지 전체 그룹의 절반 이상의 mice가 생존 / 모든 투여에서 큰 독성신호 (체중 변화) 없이 용량 의존적인 강한 항암 효과 확인하였다.It was confirmed that the administration of Aza-T-dCyd resulted in a statistically significant level of survival improvement even at the minimum dose of 0.4mg/kg, and in the maximum dose group, more than half of the mice in the entire group survived until the end of the experiment. / In all administrations, a strong dose-dependent anticancer effect was confirmed without significant toxicity signals (weight change).
Aza-T-dCyd의 경쟁약물 대비 우수한 효능을 확인하기 위하여 Aza-T-dCyd이 용량 의존적으로 우수한 약효를 보이는지 확인하기 위한 MV4-11 전신 AML 모델 실험을 수행하였다.In order to confirm the superior efficacy of Aza-T-dCyd compared to competing drugs, an MV4-11 systemic AML model experiment was performed to determine whether Aza-T-dCyd showed superior efficacy in a dose-dependent manner.
전신 MV4-11 engraftment 모델의 수립 후, Aza-T-dCyd을 1.5, 2.0, 2.5mg/kg의 양으로 경구투여 진행하였다 (Decitabine/Azacytidine의 경우 전임상 시험에서 사용되는 표준양/투여 일정 사용) (도 33).After establishing the systemic MV4-11 engraftment model, Aza-T-dCyd was administered orally at 1.5, 2.0, and 2.5 mg/kg (for Decitabine/Azacytidine, standard amounts/administration schedules used in preclinical studies were used) ( Figure 33).
Decitabine이 전혀 치료 효과를 보이지 못하고, Azacytidine의 경우 혈구검사 결과 leukemia의 진행을 전혀 억제하지 못하는 증상을 보이는 것에 비하여 Aza-T-dCyd은 매우 우수한 AML 대상 항암효능을 보였으며, 모든 투여용량군에서 우수한 survival improvement를 보이는 것을 확인하였다.While Decitabine showed no therapeutic effect, and Azacytidine showed symptoms that showed no inhibition of leukemia progression as a result of blood test results, Aza-T-dCyd showed very excellent anticancer efficacy against AML, and was excellent in all dose groups. It was confirmed that survival improvement was shown.
전신 MV4-11 engraftment 모델의 수립 후, Aza-T-dCyd 및 Decitabine/Azacytidine 투여 그룹에서의 치료전 (Day 21)과 치료 중간 시점 (Day 36, 56, 77)에서의 혈액을 채취하여 CBC (Complete blood count) 수치값을 분석 진행하였다 (도 34).After establishment of the whole-body MV4-11 engraftment model, blood was collected before treatment (Day 21) and mid-treatment ( Day 36, 56, 77) in the Aza-T-dCyd and Decitabine/Azacytidine administration groups, and CBC (Complete blood count) numerical values were analyzed (FIG. 34).
Aza-T-dCyd 투여 그룹에서 백혈구 (WBC), 적혈구 (RBC), 호중구 (Neutrophil) 및 혈소판 (Platelet) 등 주요 항목에 변화가 없는 것을 확인하였다. 반면 Decitabine 그룹의 경우 혈액샘플 수득 전에 모든 개체가 사망하였고, Azacytidine 그룹의 경우 심각한 호중구 감소증 (Neutropenia)이 나타나는 것을 확인하였다.In the group administered with Aza-T-dCyd, it was confirmed that there were no changes in major parameters such as white blood cells (WBC), red blood cells (RBC), neutrophils, and platelets. On the other hand, in the case of the Decitabine group, all subjects died before blood samples were obtained, and in the case of the Azacytidine group, severe neutropenia was confirmed.
전신 MV4-11 engraftment 모델에서의 항암 효능이 직접적으로 암세포의 수를 억제하는 능력과 관련 있는지 확인하기 위하여 Luciferase transfected Mv4-11 세포주를 이용하여 전신 engraftment 후 body luminescence를 측정하는 실험을 수행하여 luminescence 확인과 더불어 사망과 체중 변화도 확인하였다(도 35).In order to confirm whether the anticancer efficacy in the whole body MV4-11 engraftment model is directly related to the ability to suppress the number of cancer cells, an experiment was performed to measure body luminescence after whole body engraftment using a Luciferase transfected Mv4-11 cell line to confirm luminescence and In addition, death and weight change were also confirmed (FIG. 35).
Aza-T-dCyd 처리군에서 실제 Azacytidine 처리군보다 강하게 body luminescence를 억제하는 것을 확인하였다 (도 36).It was confirmed that body luminescence was suppressed more strongly in the Aza-T-dCyd-treated group than in the actual Azacytidine-treated group (FIG. 36).
HL-60 AML Xenograft 모델에 NTX-301(Aza-T-dCyd) 2.0 mg/kg 투여 시 강력한 종양 억제 효능을 보이는 것에 비하여, 최대 투여용량의 Decitabine 0.75 mg/kg (해당 용량 이상 투여 시 동물사망으로 실험 진행 불가)은 전혀 종양 억제 효능을 보이지 않았다 (도 37).Compared to the strong tumor suppression effect shown when 2.0 mg/kg of NTX-301 (Aza-T-dCyd) was administered to the HL-60 AML Xenograft model, the maximum dose of Decitabine 0.75 mg/kg (if administered above the corresponding dose, the animal died). The experiment could not proceed) did not show any tumor suppression efficacy (FIG. 37).
DNMT1 저해제의 효능은 DNMT1과 de novo methyltransferases DNMT3A, DNMT3B 타겟에 대한 선택적인 profile과 연관이 있으므로, 해당 Xenograft 모델에서 Aza-T-dCyd 및 Decitabine을 투여한 그룹에서 DNMT1, DNMT3A 및 DNMT3B의 발현을 확인하였다 (도 38).Since the efficacy of DNMT1 inhibitors is related to the selective profile of DNMT1 and the de novo methyltransferases DNMT3A and DNMT3B targets, the expression of DNMT1, DNMT3A and DNMT3B was confirmed in the group administered with Aza-T-dCyd and Decitabine in the Xenograft model. (FIG. 38).
HL-60 Xenograft mice 모델에 2mg/kg의 NTX-301 (Aza-T-dCyd) 또는 0.75mg/kg의 Decitabine을 복강 내 투여한 다음, 11일째 종양 샘플을 채취하여 DNMT1, DNMT3A, DNMT3B 발현 확인한 결과, Aza-T-dCyd 과 Decitabine 투여한 그룹에서 모두 DNMT1 발현이 상당히 감소함을 확인하였다. 반면, DNMT3A와 DNMT3B의 발현 level은 Aza-T-dCyd 및 Decitabine 투여 그룹에서 차이가 존재하였다. DNMT3A 발현 정도는 Aza-T-dCyd 에는 영향을 받지 않았으며 DNMT3B 발현 level은 Aza-T-dCyd 에 의해 현저하게 감소하였으나, Deictabine에 의한 효과는 관찰되지 않았다.2mg/kg of NTX-301 (Aza-T-dCyd) or 0.75mg/kg of Decitabine was intraperitoneally administered to the HL-60 Xenograft mice model, and tumor samples were taken on the 11th day to confirm the expression of DNMT1, DNMT3A, and DNMT3B , Aza-T-dCyd and Decitabine-administered groups showed a significant decrease in DNMT1 expression. On the other hand, there was a difference in the expression levels of DNMT3A and DNMT3B in the groups administered with Aza-T-dCyd and Decitabine. DNMT3A expression level was not affected by Aza-T-dCyd, and DNMT3B expression level was significantly decreased by Aza-T-dCyd, but no effect was observed by Deictabine.
높은 DNMT3B 발현은 AML의 좋지 않은 예후와 관련이 있다는 보고가 있으며, 이는 Aza-T-dCyd에 의한 DNMT3B의 저해 효과로 인해 NTX-301이 leukiemia 모델에서 우수한 항암 효과가 있음을 시사한다.It has been reported that high DNMT3B expression is associated with poor prognosis of AML, suggesting that NTX-301 has excellent anticancer effects in a leukiemia model due to the inhibitory effect of DNMT3B by Aza-T-dCyd.
최근 AML 치료제의 표준 요법이 기존 Decitabine/Azacytidine의 단독투여에서 이들 약물을 Bcl2 저해제인 Venetoclax와 병용하는 것으로 변경되고 있으며, 이에 Aza-T-dCyd 이 이들 약물 병용투여 시의 약물 효과를 평가를 진행하였다. 우선적으로 MV4-11 AML 세포주를 mice에 subcutaneous implant한 xenograft 모델에서 Aza-T-dCyd 과 Venetoclax 병용투여군은 매우 우수한 효능을 보이는 것을 확인할 수 있었다. Recently, the standard therapy for AML treatment has changed from single administration of Decitabine/Azacytidine to combining these drugs with Venetoclax, a Bcl2 inhibitor. Accordingly, Aza-T-dCyd evaluated the drug effect when these drugs were administered in combination. . First of all, in the xenograft model in which the MV4-11 AML cell line was subcutaneously implanted into mice, it was confirmed that the Aza-T-dCyd and Venetoclax co-administered group showed very good efficacy.
Aza-T-dCyd 0.5mpk 투여군에서도 complete tumor regression을 유도하여, Azacytidine과 Venetoclax의 병용투여군보다 강력한 암 성장 억제 효능을 보이는 것을 확인할 수 있었다 (도 39).It was confirmed that complete tumor regression was induced even in the Aza-T-dCyd 0.5mpk administration group, and showed a stronger cancer growth inhibitory effect than the combination administration group of Azacytidine and Venetoclax (FIG. 39).
Aza-T-dCyd / Venetoclax 병용투여군의 경쟁약물 대비 우수한 효능을 확인하기 위하여 수행한 MV4-11 전신 AML 모델 실험에서도 Aza-T-dCyd 을 Venetoclax의 표준용량과 병용투여하는 경우 매우 낮은 용량의 Aza-T-dCyd 투여만으로도 경쟁약물 대비 우수한 효능을 보이는 것을 확인할 수 있다. In the MV4-11 systemic AML model experiment conducted to confirm the superior efficacy of the Aza-T-dCyd / Venetoclax combined administration group compared to competing drugs, when Aza-T-dCyd was administered in combination with the standard dose of Venetoclax, a very low dose of Aza- It can be confirmed that T-dCyd administration alone shows superior efficacy compared to competing drugs.
4-2.4-2. T-ALLT-ALL
Aza-T-dCyd을 또 다른 적응증인 T-ALL에서의 효력을 확인하기 위하여, 환자 유래 ALL 동물 모델에서의 Aza-T-dCyd의 효력 평가를 수행하였으며, 도 40에서 볼 수 있는 것과 같이 매우 우수한 효력을 확인할 수 있었다. In order to confirm the efficacy of Aza-T-dCyd in another indication, T-ALL, the efficacy of Aza-T-dCyd in a patient-derived ALL animal model was evaluated, and as shown in FIG. effect could be confirmed.
Aza-T-dCyd은 ALL-Patients Derived Xenografts (PDX)에서 0.5, 1, 1.5, 2mg/kg 용량으로 투여되었으며, 비교군으로 Thionucleoside 유도체의 하나인 T-dCyd (DNMT1 저해제)을 사용하였다. Aza-T-dCyd은 1.5mg/kg 까지 견딜 수 있는 용량으로 pediatric ALL PDX에 매우 효과적이며, 매우 미충족 요구(unmet needs)가 높은 ALL의 subtype인 ETP를 포함한 T-ALL에서도 효과를 확인할 수 있었다. 특히, AML에서의 투여용량에 비하여 낮은 투여용량에서도 강력한 tumor regression을 유도하고 이러한 remission 상태를 장기간 유지할 수 있다는 것이 확인되어 향후 ALL 치료제로의 개발가능성이 매우 높음을 확인할 수 있었다. Aza-T-dCyd was administered at doses of 0.5, 1, 1.5, and 2 mg/kg in ALL-Patients Derived Xenografts (PDX), and T-dCyd (a DNMT1 inhibitor), a thionucleoside derivative, was used as a comparison group. Aza-T-dCyd is very effective in pediatric ALL PDX at a dose that can be tolerated up to 1.5 mg/kg, and it was also effective in T-ALL including ETP, a subtype of ALL with very high unmet needs. In particular, it was confirmed that a strong tumor regression could be induced even at a low dose compared to the dose in AML and this remission state could be maintained for a long period of time, confirming that the development potential as a future ALL treatment was very high.
4-3. 각종 고형암 4-3. various solid cancers
Aza-T-dCyd은 기존 DNMT1 저해제들과는 다르게 다양한 고형암 동물모델에서도 탁월한 효능을 확인할 수 있었다. 대장암, 방광암, 난소암, 폐암 등의 동물모델에서 Aza-T-dCyd 투여 시 아래와 같이 매우 우수한 효력을 확인할 수 있었다 (도 41). Unlike existing DNMT1 inhibitors, Aza-T-dCyd showed excellent efficacy in various solid cancer animal models. When Aza-T-dCyd was administered in animal models of colorectal cancer, bladder cancer, ovarian cancer, lung cancer, etc., very excellent effects were confirmed as follows (FIG. 41).
다양한 고형암 xenograft 모델에 Aza-T-dCyd 투여 후의 tumor growth curves를 통해서 NTX-301의 효능 확인하였다. 1 ~ 2mg/kg 용량의 NTX-301을 QD x 5, 2 ~ 6 cycle 동안 반복하여 투여한 그룹에서 우수한 항암 효과를 보임 (test/control (T/C) 값≤40%로 증명됨).The efficacy of NTX-301 was confirmed through tumor growth curves after administration of Aza-T-dCyd to various solid tumor xenograft models. Excellent anticancer effect was shown in the group where 1 ~ 2mg/kg dose of NTX-301 was repeatedly administered for QD x 5, 2 ~ 6 cycles (test/control (T/C) value ≤ 40%).
Coloretal (HCT-116) xenograft 모델에 Aza-T-dCyd 투여한 그룹에서 종양성장 억제가 관찰되었으며, optimal T/C는 21%임. 반면, Decitabine의 T/C는 45%로 크게 효과가 있지 않았다. Tumor growth inhibition was observed in the group administered with Aza-T-dCyd in Coloretal (HCT-116) xenograft model, and the optimal T/C was 21%. On the other hand, Decitabine's T/C was 45%, which was not very effective.
Non-Small Cell Lung cancer (NCI-H522) xenograft 모델에 Aza-T-dCyd 투여 후 종양 성장 억제가 관찰되었으며, optimal T/C는 31% 였다.After administration of Aza-T-dCyd to the Non-Small Cell Lung cancer (NCI-H522) xenograft model, tumor growth inhibition was observed, and the optimal T/C was 31%.
Ovarian (OVCAR-3) xenograft 모델에 1mg/kg 용량의 Aza-T-dCyd을 투여한 그룹에서 tumor regression이 관찰되었고, optimal T/C는 4%였음. 0.5mg/kg 용량에서 T/C value가 40%임을 통해 용량 의존적인 효과를 보임을 확인하였다.Tumor regression was observed in the group administered with 1mg/kg dose of Aza-T-dCyd in the Ovarian (OVCAR-3) xenograft model, and the optimal T/C was 4%. It was confirmed that the T/C value was 40% at a dose of 0.5 mg/kg, showing a dose-dependent effect.
Bladder Tumor (BL0381PD PDX) xenograft 모델에 1mg/kg 용량의 NTX-301을 투여한 그룹에서 tumor regression이 관찰되었고, optimal T/C는 23%였다. Decitabine의 경우 0.75mg/kg 용량 투여군에서 2주기 후 독성을 보였다.Tumor regression was observed in the group administered with 1mg/kg dose of NTX-301 to the Bladder Tumor (BL0381PD PDX) xenograft model, and the optimal T/C was 23%. Decitabine showed toxicity after 2 cycles in the 0.75mg/kg dose group.
실시예 5: Safety (GLP-Toxicity)Example 5: Safety (GLP-Toxicity)
Aza-T-dCyd 화합물에 대한 예비독성 평가로 2주간 전신 투여 후 mice에서의 독성 증상 (조직 변화) 및 골수에서의 DNA 손상 여부를 확인하는 실험 및 4주간 전신 투여 후 mice 골수에서의 세포 조성을 평가하는 예비 독성실험을 수행하였다.As a preliminary toxicity evaluation of the Aza-T-dCyd compound, an experiment to check toxicity symptoms (tissue change) in mice and DNA damage in bone marrow after 2 weeks of systemic administration and evaluation of cell composition in bone marrow of mice after 4 weeks of systemic administration A preliminary toxicity test was performed.
도 42에는 Comet assay 실험 시 Aza-T-dCyd 용량군 별 체중 변화 측정 결과가 도시되어 있다.42 shows the results of measuring body weight change for each Aza-T-dCyd dose group during the Comet assay experiment.
2주간의 전신 투여 기간 중 유의미한 체중변화가 관찰되지 않았으며, 2주 후 부검 진행 시 장기에서의 손상도 나타나지 않은 것을 확인하였다.During the 2-week systemic administration period, no significant weight change was observed, and it was confirmed that no organ damage was observed during autopsy 2 weeks later.
또한, 2주의 투여 후 골수를 채취하여 DNA 손상을 확인하는 Comet assay를 진행하였을 때, 약물을 전혀 처리하지 않은 대조군에 비하여 DNA 손상을 나타내는 각종 지표들의 변화가 나타나지 않음을 확인하였다 (도 43).In addition, when bone marrow was collected after administration for 2 weeks and Comet assay was performed to confirm DNA damage, it was confirmed that there was no change in various indicators indicating DNA damage compared to the control group not treated with the drug at all (FIG. 43).
4주간의 연속 투여 후 mice 골수에서의 세포조성을 평가하였으며, 해당 실험결과 골수를 구성하는 각종 세포의 변화가 나타나지 않아 Aza-T-dCyd이 정상 동물에서 조혈 능력에 유의미한 영향을 끼치지 않는 것이 확인되었다 (도 44 및 도 45).After 4 weeks of continuous administration, cell composition in the bone marrow of mice was evaluated. As a result of the experiment, there was no change in various cells constituting the bone marrow, confirming that Aza-T-dCyd did not significantly affect hematopoietic ability in normal animals. (FIGS. 44 and 45).
Aza-T-dCyd(NTX-301)은 GLP-독성시험 결과 동물 시험에서 매우 우수한 안정성과 넓은 therapeutic window가 확인되었다. Aza-T-dCyd (NTX-301) was confirmed to have excellent stability and a wide therapeutic window in animal tests as a result of the GLP-toxicity test.
Aza-T-dCyd은 상기 독성시험 결과로부터 치료농도를 충분히 확보할 수 있는 안전한 약물임을 사용 가능한 안전한 범위의 AUC값으로부터 확인하였다.Aza-T-dCyd was confirmed from the above toxicity test results that it is a safe drug that can sufficiently secure a therapeutic concentration based on AUC values within a usable safe range.
MDS/AML모델에서 Aza-T-dCyd의 AUC 값이 60h*ng/ml에서도 약효를 보이고, 약 200 - 250h*ng/ml에서 가장 우수한 치료효능을 보이며, 이는 가장 민감한 종에서 NOAEL 값의 약 50%이고 HNSTD의 약 25% 정도로서, Aza-T-dCyd이 매우 넓은 therapeutic window를 가지고 있음을 의미한다. In the MDS/AML model, the AUC value of Aza-T-dCyd shows efficacy even at 60h*ng/ml, and shows the best therapeutic efficacy at about 200 - 250h*ng/ml, which is about 50 of the NOAEL value in the most sensitive species. % and about 25% of the HNSTD, which means that Aza-T-dCyd has a very wide therapeutic window.
그외의 고형암들과 ALL 등 다른 동물 모델에서는 더 낮은 AUC 노출에서도 우수한 치료효과를 보였다.Other solid cancers and other animal models, such as ALL, showed excellent therapeutic effects even at lower AUC exposures.
GLP-Tox 실험은 Rat, Dog에서 수행되었으며, PO로 QD x 5d 2cycle로 진행되었다. GLP-Tox experiments were conducted in rats and dogs, and QD x 5d 2cycles were conducted as PO.
GLP rat Toxicology 연구에서 Rat은 하루에 2.5, 5, 10mg/kg의 Aza-T-dCyd (15, 30, 60mg/m2)을 투여받았다. 독성 대상기관은 골수, 흉선, 심장, 고환이다. 감소된 정자를 포함한 고환독성은 투여중단 시 회복이 가능하고, 최대내약용량 (MTD)은 하루에 10mg/kg 이상 (>60mg/m2)이었다.In the GLP rat toxicology study, rats were administered 2.5, 5, and 10 mg/kg of Aza-T-dCyd (15, 30, and 60 mg/m 2 ) per day. Target organs of toxicity are bone marrow, thymus, heart, and testes. Testicular toxicity, including reduced sperm count, was recoverable upon discontinuation of administration, and the maximum tolerated dose (MTD) was 10 mg/kg or more (>60 mg/m 2 ) per day.
GLP dog Toxicology 연구에서 Aza-T-dCyd은 하루에 0.15, 0.5, 1.0mg/kg (3, 10, 20mg/m2)으로 투여되었다. 대상기관은 골수, 흉선, 위장관, 편도선, 고환이고, 최대내약용량 (MTD)는 하루에 0.5 - 1mg/kg (10 - 20 mg/m2) 사이였고, 가장 높은 비독성 선량 (HNSTD)은 하루 0.5mg/kg (10mg/m2) 관찰불가 역효가레벨 (NOAEL)은 하루 < 0.15mg/kg (3mg/m2)이었다.In the GLP dog toxicology study, Aza-T-dCyd was administered at doses of 0.15, 0.5, and 1.0 mg/kg (3, 10, and 20 mg/m 2 ) per day. The target organs were bone marrow, thymus, gastrointestinal tract, tonsil, and testis. The maximum tolerated dose (MTD) was between 0.5 - 1mg/kg (10 - 20 mg/m 2 ) per day, and the highest non-toxic dose (HNSTD) per day The 0.5 mg/kg (10 mg/m 2 ) no observable adverse effect level (NOAEL) was < 0.15 mg/kg (3 mg/m 2 ) per day.
실시예 6: 임상개발Example 6: Clinical Development
Aza-T-dCyd의 투여 환자군에서는 약물 표적인 DNMT1을 잘 저해한다는 PD 마커인 p15 re-expression이 Circulating Tumor Cell에서 확인되었다. In patients treated with Aza-T-dCyd, p15 re-expression, a PD marker that inhibits DNMT1, a drug target, was confirmed in circulating tumor cells.
Aza-T-dCyd의 투여 환자군에서 Aza-T-dCyd의 PK profile을 확인하였다(도 51). 실제 환자군에서 Aza-T-dCyd의 높은 효력을 보일 것으로 기대한다. NTX-310은 말기 고형암 환자에서 양호한 내약성을 나타내었으며 일부 환자에서 5개월 이상 오래 지속되는 안정병변 (stable disease)를 유도, 암의 진행을 억제하는 효과를 보이는 등 유효성에 대한 시그널을 보여주였다.The PK profile of Aza-T-dCyd was confirmed in the patient group administered with Aza-T-dCyd (FIG. 51). We expect high efficacy of Aza-T-dCyd in actual patient population. NTX-310 showed good tolerability in patients with late-stage solid cancer, and showed signs of efficacy, such as inducing stable disease that lasted for more than 5 months in some patients and inhibiting cancer progression.
Aza-T-dCyd의 임상 투여 후 PK profile은 기존 비임상 동물 PK 실험 결과를 기반으로 예측된 결과와 잘 부합하며, 특히 인체에서 최적 효력 범위로 예측되고 있는 16, 32mg/day 투여군에서의 PK profile이 비임상에서의 예측 결과와 잘 일치하고 있어서 인체에서의 충분한 약물 노출량을 기대할 수 있다.The PK profile after clinical administration of Aza-T-dCyd agrees well with the predicted results based on the results of existing non-clinical animal PK experiments, especially in the 16 and 32 mg/day administration groups, which are predicted to have the optimal effect range in humans. This is in good agreement with the predicted results from non-clinical studies, so sufficient drug exposure in the human body can be expected.
도 46에는 각 환자별 NTX-301 투여 시 약물 혈중 농도, 도 47 에는 용량별 NTX-301 투여 시 혈중 최고 농도 및 약물 노출 정도 (AUC)가 나타나 있다.46 shows the drug blood concentration upon administration of NTX-301 for each patient, and FIG. 47 shows the highest blood concentration and drug exposure degree (AUC) when NTX-301 is administered for each dose.
65세 이상의 MDS/AML 환자로 골수 이식 및/또는 표준 화학 치료 요법의 적용이 불가능하며, 기존 표준 치료법의 사용 후에도 병이 진전하여 추가적인 표준 치료법이 없는 환자 및 T-ALL 환자를 대상으로 Aza-T-dCyd의 치료제로의 안전성/가능성을 검증하고 있다(도 51).Aza-T for patients with MDS/AML over the age of 65 who are not eligible for bone marrow transplantation and/or standard chemotherapy and who do not have additional standard therapies due to progression of the disease even after using standard therapies and for T-ALL patients -The safety/possibility of dCyd as a therapeutic agent is being verified (FIG. 51).
첫번째 사람 대상 임상시험에서는 (FIH, First in Human) 고형암 환자에서 단계용량 증량한 결과, MTD (maximum tolerated dose, 최대 내약 용량)는 32 mg으로 결정되었으며, 16 mg 이하의 용량에서는 DLT (dose limiting toxicity, 용량제한독성) 및 grade 3 또는 4의 이상반응은 보고되지 않았다. 해당 임상시험의 원발성 종양 유형은 결직장 선암종, 육종, 유방암, 난소암, 신장 세포암, 후두 편평 세포암, 자궁암, 십이지장 선암, 간세포암, 부신경절종 등이었다. In the first human clinical trial (FIH, First in Human), as a result of stepwise dose increase in solid cancer patients, the MTD (maximum tolerated dose) was determined to be 32 mg, and at doses of 16 mg or less, DLT (dose limiting toxicity) , dose-limiting toxicity) and grade 3 or 4 adverse reactions were not reported. The primary tumor types in the trial were colorectal adenocarcinoma, sarcoma, breast cancer, ovarian cancer, renal cell carcinoma, laryngeal squamous cell carcinoma, uterine cancer, duodenal adenocarcinoma, hepatocellular carcinoma, and paraganglioma.
또다른 의뢰자(피노바이오) 주도의 고형암 환자 대상 1상 임상시험에서 단계적 용량증량 및 확장시험군에서 백금계 항암제 내성 난소암/방광암 환자의 re-sensitization agent로서의 Aza-T-dCyd의 안전성/가능성을 평가하고 있다. 해당 임상시험의 원발성 종양 유형은 자궁내막암, 우측 편도 편평세포암, 전립선암, 대장암, 전이성 선낭성암, 췌장선암, 유방암, 원위 담관의 선암 환자이다. In a phase 1 clinical trial for solid cancer patients led by another sponsor (Pinobio), the safety/possibility of Aza-T-dCyd as a re-sensitization agent for ovarian cancer/bladder cancer patients resistant to platinum-based anticancer drugs was evaluated in the gradual dose increase and expansion test group. are evaluating The primary tumor types in this clinical trial were endometrial cancer, right tonsillar squamous cell carcinoma, prostate cancer, colorectal cancer, metastatic adencystic carcinoma, pancreatic adenocarcinoma, breast cancer, and adenocarcinoma of the distal bile duct.
나아가, MDS, AML, CMML 환자를 대상으로 한 1/2상 임상시험을 수행하고 있다. 참고로, CMML(Chronic myelomonocytic leukemia) 경우 동물모델에서 시험 결과도 잘 나왔으며 현재 PDX 진행중이다.Furthermore, we are conducting phase 1/2 clinical trials for patients with MDS, AML, and CMML. For reference, in the case of CMML (Chronic myelomonocytic leukemia), test results in animal models have also come out well, and PDX is currently in progress.

Claims (21)

  1. 세포사멸(apoptosis) 기전을 통해 항암 효과를 발휘하는 화학식 1의 Aza-T-dCyd 화합물 또는 이의 약학적 허용 염을, DNA 손상 복구 (Damage repair) 방법 중 하나인 BER (Base Excision Repair)를 과활성화시키는 약물 내성발생 기전이 작동되지 않도록 세포사멸을 유도하는 높은 투여량으로 투여하는 것이 특징인 약학 조성물. Aza-T-dCyd compound of Formula 1 or a pharmaceutically acceptable salt thereof, which exerts an anticancer effect through an apoptosis mechanism, overactivates BER (Base Excision Repair), one of the DNA damage repair methods A pharmaceutical composition characterized in that it is administered at a high dose that induces apoptosis so that the mechanism of drug resistance is not activated.
    [화학식 1][Formula 1]
    Figure PCTKR2022011392-appb-img-000004
    Figure PCTKR2022011392-appb-img-000004
  2. 제1항에 있어서, Aza-T-dCyd 화합물은 용량 의존적으로 항암 효과를 발휘하는 것이 특징인 약학 조성물.The pharmaceutical composition according to claim 1, wherein the Aza-T-dCyd compound exhibits an anticancer effect in a dose-dependent manner.
  3. 제1항에 있어서, (1) DNMT1 저해제에 의해 내성이 발생된 환자군; (2) 표적항암제로 정상세포 대비 암세포에 선택적인 약물 전달이 필요한 환자군; (3) 하나 또는 둘 이상의 약물효력 마커에 대한 발현량 조절이 필요한 환자군; (4) 정상세포 대비 암세포에서 후생유전학적 DNA 메틸화 패턴 변화가 축적된 환자군; (5) DNMT1 저해제 투여시 DNA-DNMT1 adduct의 형성을 통하여 DNA 손상을 주기 때문에 암세포만이 아닌 정상 조직에도 손상을 주는 문제로 인해 표준 치료제인 DNMT1 저해제의 표준 투여량이 제한되는 환자군 ; (6) 혈액암 예방 또는 치료가 필요한 환자군; (7) 정상인 대비, CEBP/alpha, Pu.1 및 GATA factors로 구성된 군에서 선택된 lineage commitment Master 전사인자를 높은 수준으로 발현하는 한편, CEBP/epsilon 또는 후기 발달 단계 전사인자들의 발현은 각 유전자의 과메틸화로 인해 낮게 유지되는 환자군; (8) 골수 암으로 진행 중 또는 진행된 환자군; (9) AML(급성골수성백혈병), MDS(골수 이형성 증후군), CMML (만성골수단핵구백혈병) 또는 ALL(급성림프구성백혈병)로 진단된 환자군 ; (10) 표준치료법 또는 표준 화학요법 대상에서 벗어난 건강 상태를 가진 환자군; (11) DNMT3B 발현 수준이 정상 범위를 벗어나는 환자군; (12) 비정상적인 골수 제거가 필요한 환자군; (13) 아세포(blast) 감소가 필요한 환자군; (14) 혈액 기능 부전 환자군 또는 조혈과정 이상 환자군 ; (15) 정상인 대비, DNMT1이 과활성화되어 메틸화 패턴에 이상이 발생한 환자군; (16) T-세포성 ALL(급성림프구성백혈병)로 진단된 환자군; (17) Nucleoside계 항암제 투여시 Nucleoside 대사 내성 발생 가능성이 있는 환자군; (18) 백금계 항암제에 대해 내성 발생 가능성이 있거나 내성이 발생한 환자군; (19) 백금계 항암제 투여대상 환자군 ; (20) 정상인 대비 tumor suppressor gene 및/또는 SLFN11에 대한 후생유전학적으로 silencing 된 환자군; (21) 난소암 또는 방광암 예방 또는 치료가 필요한 환자군; (22) 백금 내성 재발성 말기 난소암 환자군 또는 백금 내성 전이성방광암 환자군; (23) 전이성방광암 환자군, 치료 대상 세부 바이오마커인 p53 변이 방광암 환자군 또는 hypermethylated SLFN11 방광암 환자군; 또는 (24) 3기 또는 4기로 난소암 진단을 받은 환자군에게 화학식 1의 Aza-T-dCyd 화합물 또는 이의 약학적 허용 염을 투여하는 것이 특징인 약학 조성물.The method according to claim 1, wherein (1) a patient group with resistance to DNMT1 inhibitors; (2) a patient group in need of selective drug delivery to cancer cells compared to normal cells as a targeted anti-cancer agent; (3) a patient group in need of adjusting the expression level of one or more markers of drug efficacy; (4) a patient group with accumulated epigenetic DNA methylation pattern changes in cancer cells compared to normal cells; (5) A patient group in which the standard dose of DNMT1 inhibitor, which is a standard treatment, is limited due to the problem of damaging normal tissues as well as cancer cells because DNA damage is caused through the formation of DNA-DNMT1 adducts when DNMT1 inhibitor is administered; (6) a patient group in need of prevention or treatment of hematological malignancies; (7) Compared to normal individuals, lineage commitment master transcription factors selected from the group consisting of CEBP/alpha, Pu.1 and GATA factors are expressed at high levels, while the expression of CEBP/epsilon or transcription factors in the late developmental stage is not the same as that of each gene. a group of patients whose methylation remains low; (8) a group of patients who are progressing or have progressed to bone marrow cancer; (9) a patient group diagnosed with AML (acute myeloid leukemia), MDS (myelodysplastic syndrome), CMML (chronic myelomonocytic leukemia) or ALL (acute lymphocytic leukemia); (10) patient population with health conditions that deviate from standard therapy or standard chemotherapy; (11) a group of patients whose DNMT3B expression level is outside the normal range; (12) a group of patients requiring abnormal bone marrow removal; (13) a patient group in need of blast reduction; (14) a group of patients with impaired blood function or a group of patients with hematopoiesis abnormalities; (15) a group of patients with abnormal methylation patterns due to overactivation of DNMT1 compared to normal subjects; (16) a group of patients diagnosed with T-cell ALL (acute lymphocytic leukemia); (17) Patients who may develop resistance to nucleoside metabolism when administered with nucleoside anticancer drugs; (18) a patient group with a possibility of developing resistance to platinum-based anticancer drugs or who developed resistance; (19) Platinum-based anticancer drug administration target patient group; (20) epigenetically silencing a tumor suppressor gene and/or SLFN11 compared to normal subjects; (21) a patient group in need of prevention or treatment of ovarian or bladder cancer; (22) a platinum-resistant recurrent end-stage ovarian cancer patient group or a platinum-resistant metastatic bladder cancer patient group; (23) metastatic bladder cancer patient group, p53 mutation bladder cancer patient group or hypermethylated SLFN11 bladder cancer patient group, which is a detailed biomarker for treatment; or (24) A pharmaceutical composition characterized by administering the Aza-T-dCyd compound of Formula 1 or a pharmaceutically acceptable salt thereof to a patient group diagnosed with stage 3 or 4 ovarian cancer.
  4. 제3항에 있어서, Aza-T-dCyd 화합물은 핵산 중간 분해 효소(Endonuclease)에 대한 강한 저항성을 통해, 내성발생 기전으로 과활성화된 BER(Base Excision Repair) 복구 과정 효율 또는 속도를 낮추어 내성 발생 기전을 극복하는 것이 특징인 약학 조성물.The method of claim 3, wherein the Aza-T-dCyd compound has strong resistance to nucleic acid intermediate degrading enzyme (Endonuclease), resistance development mechanism by lowering the efficiency or speed of the overactivated BER (Base Excision Repair) repair process. A pharmaceutical composition characterized by overcoming.
  5. 제3항에 있어서, 정상세포 대비 암세포에 선택적인 약물 전달이 필요한 환자군은 65세 이상의 노인 환자군 및/또는 기저질환 또는 동반질환(comorbidity)으로 인해 신체기능이 약화된 상태의 환자군; 또는 골수, 소화관, 점막 및/또는 피부의 세포에도 작용하여 나타나는 부작용으로 인해 투여량이 제한됨으로써 내성 기전 발생으로 치료효과가 제한되는 환자군인 것이 특징인 약학 조성물. According to claim 3, the patient group in need of selective drug delivery to cancer cells compared to normal cells is an elderly patient group aged 65 years or older and/or a patient group with weakened physical function due to an underlying disease or comorbidity; Or a pharmaceutical composition characterized in that the patient group whose therapeutic effect is limited due to the occurrence of a resistance mechanism is limited due to side effects that also appear by acting on cells of the bone marrow, digestive tract, mucous membrane and / or skin.
  6. 제3항에 있어서, Aza-T-dCyd 화합물은 DNMT1 감소, p15 tumor suppressor gene의 재발현 및/또는 DNMT3B 발현 감소를 통해, 정상세포와 차이가 나는 암세포의 특정 부분을 표적으로 삼아 암세포만 선택적으로 공격하는 표적항암제로 작용하는 것이 특징인 약학 조성물.The method of claim 3, wherein the Aza-T-dCyd compound targets a specific part of cancer cells that differs from normal cells by reducing DNMT1, re-expressing p15 tumor suppressor gene, and/or decreasing DNMT3B expression, thereby selectively targeting only cancer cells. A pharmaceutical composition characterized by acting as an attacking target anticancer agent.
  7. 제1항에 있어서, Aza-T-dCyd 화합물은 정상세포 대비 암세포에서 빠르게 삼인산화(triphosphate)로 활성화되는 것이 특징인 약학 조성물.The pharmaceutical composition according to claim 1, wherein the Aza-T-dCyd compound is rapidly activated by triphosphate in cancer cells compared to normal cells.
  8. 제7항에 있어서, Aza-T-dCyd 화합물은 Aza-T-dCyd 화합물의 삼인산화물인 aza-T-dCTP의 DNA 삽입을 통해, base excision repair 및/또는 mismatch repair를 일으켜 DNA 복제를 지연시킴으로서, replication stress를 유발하고 DNA damage response를 가중시키는 것이 특징인 항암용 약학 조성물.The method of claim 7, wherein the Aza-T-dCyd compound delays DNA replication by causing base excision repair and/or mismatch repair through DNA insertion of aza-T-dCTP, a triphosphate of the Aza-T-dCyd compound, An anti-cancer pharmaceutical composition characterized by inducing replication stress and aggravating DNA damage response.
  9. 제1항에 있어서, Aza-T-dCyd 화합물은 dNTP de novo 합성에 중요한 ribonucleotide reductase인 RRM1 단백질 발현을 억제시키고, 세포 내 dCTP, dTTP 양의 감소를 통해 DNA replication stress를 유발하며 강한 DNA damage response를 발생시킬 수 있는 것이 특징인 약학 조성물.The method of claim 1, wherein the Aza-T-dCyd compound inhibits the expression of RRM1 protein, which is an important ribonucleotide reductase for dNTP de novo synthesis, induces DNA replication stress by reducing the amount of dCTP and dTTP in cells, and induces a strong DNA damage response A pharmaceutical composition characterized in that it can generate.
  10. 제1항에 있어서, Aza-T-dCyd 화합물은 Thio-nucleoside 구조로 인하여 암 세포 대비 정상세포에서 dCK (deoxycytidine kinase)에 의한 활성화 속도가 낮으므로 암 세포에 선택적으로 Aza-T-dCyd 화합물을 전달하게 되어 safety profile을 확보하는 것이 특징인 약학 조성물.The method of claim 1, wherein the Aza-T-dCyd compound has a low activation rate by dCK (deoxycytidine kinase) in normal cells compared to cancer cells due to its Thio-nucleoside structure, so the Aza-T-dCyd compound is selectively delivered to cancer cells. A pharmaceutical composition characterized by securing a safety profile.
  11. 제3항에 있어서, 발현량 조절이 필요한 약물효력 마커는, 암세포에서 DNA 메틸화를 통해 후생유전학적 침묵(silencing) 대상이거나 약물효력 마커의 전사인자가 DNA 메틸화를 통해 후생유전학적 침묵(silencing) 대상인 것이 특징인 약학 조성물.The method of claim 3, wherein the drug effect marker requiring expression level control is subject to epigenetic silencing through DNA methylation in cancer cells, or the transcription factor of the drug effect marker is subject to epigenetic silencing through DNA methylation. A pharmaceutical composition characterized in that
  12. 제11항에 있어서, 발현량 조절이 필요한 약물효력 마커는 분화 유도 유전자, 항암 유전자(tumor suppressor gene) 또는 이의 조합인 것이 특징인 항암용 약학 조성물.The anti-cancer pharmaceutical composition according to claim 11, wherein the drug efficacy marker requiring expression level control is a differentiation induction gene, a tumor suppressor gene, or a combination thereof.
  13. 제11항에 있어서, 발현량 조절이 필요한 약물효력 마커는 p15, p16, SLFN11, CEBP/epsilon, CDKN1B, Myc antagonists (MAD) 또는 이의 조합인 것이 특징인 항암용 약학 조성물.[Claim 12] The anti-cancer pharmaceutical composition according to claim 11, wherein the pharmacological markers requiring expression level control are p15, p16, SLFN11, CEBP/epsilon, CDKN1B, Myc antagonists (MAD), or a combination thereof.
  14. 제1항에 있어서, Aza-T-dCyd 화합물은 암세포에서 CEBP/epsilon 재발현시키고/시키거나 CEBP/epsilon의 down-stream effector인 p27 tumor suppressor gene을 발현시키는 것이 특징인 약학 조성물.The pharmaceutical composition according to claim 1, wherein the Aza-T-dCyd compound re-expresses CEBP/epsilon in cancer cells and/or expresses the p27 tumor suppressor gene, which is a down-stream effector of CEBP/epsilon.
  15. 제3항에 있어서, Aza-T-dCyd 화합물은 정상조직 내 세포에서 DNA 손상 없이, 조혈 능력에 영향을 미치지 않는 것이 특징인 약학 조성물.The pharmaceutical composition according to claim 3, wherein the Aza-T-dCyd compound does not affect the hematopoietic ability without DNA damage in normal tissue cells.
  16. 제1항에 있어서, Aza-T-dCyd 화합물은 세포 내에서 삼인산화(triphosphate)로 활성화되어 DNA 합성 시 일부 dC(deoxycytidine)를 대신하여 사용되며, DNA 합성 후 DNMT1을 비가역적으로 trapping하여 DNA-DNMT1 adduct를 형성하여 후생유전학적 silencing 기전을 활성화함으로써 암세포 사멸을 유도하는 것이 특징인 약학 조성물.The method of claim 1, wherein the Aza-T-dCyd compound is activated by triphosphate in the cell and used instead of some dC (deoxycytidine) during DNA synthesis, and after DNA synthesis, DNMT1 is irreversibly trapped to form DNA- A pharmaceutical composition characterized by inducing cancer cell death by forming a DNMT1 adduct and activating the epigenetic silencing mechanism.
  17. DNMT1 저해제 투여시 좋지 않은 예후 또는 내성 발생 가능성 정보제공 또는 진단을 받은 환자군에게 세포사멸(apoptosis) 기전을 통해 항암 효과를 발휘하는 화학식 1의 Aza-T-dCyd 화합물 또는 이의 약학적 허용 염을 세포사멸을 유도하는 높은 투여량으로 투여하는 것이 특징인 약학 조성물.Aza-T-dCyd compound of Formula 1 or a pharmaceutically acceptable salt thereof, which exerts an anticancer effect through an apoptosis mechanism, to a patient group who has received information on or diagnosed with poor prognosis or the possibility of resistance when DNMT1 inhibitor is administered to apoptosis A pharmaceutical composition characterized in that it is administered in a high dose that induces.
    [화학식 1][Formula 1]
    Figure PCTKR2022011392-appb-img-000005
    Figure PCTKR2022011392-appb-img-000005
  18. 제17항에 있어서, 예후 또는 내성 발생 가능성에 관한 정보제공은 (i) DNA-DNMT1 adduct 형성 후 제거 과정이 과활성화되면서 항암효능이 억제되는 문제를 수치화 또는 (ii) 상기 문제 발생 여부/정도에 따라 환자군을 분류화한 것으로부터 도출된 것이 특징인 약학 조성물.The method of claim 17, wherein the provision of information on prognosis or the possibility of resistance is (i) quantifying the problem of inhibition of anticancer efficacy as the removal process is overactivated after formation of the DNA-DNMT1 adduct, or (ii) whether or not the problem occurs / degree A pharmaceutical composition characterized in that it is derived from classifying the patient group according to.
  19. 제17항에 있어서, 예후가 좋지 않은 정보제공의 데이터 값은 병증 재발 가능성 및/또는 조기 사망률(평균 생존 기간 1년 미만)인 것이 특징인 약학 조성물.18. The pharmaceutical composition according to claim 17, characterized in that the data value of providing information of poor prognosis is the possibility of disease recurrence and/or early mortality (mean survival less than 1 year).
  20. 화학식 1의 Aza-T-dCyd 화합물 또는 이의 약학적 허용 염을 포함하는 것이 특징인 경구 투여용 약학 조성물. A pharmaceutical composition for oral administration comprising the Aza-T-dCyd compound of Formula 1 or a pharmaceutically acceptable salt thereof.
    [화학식 1][Formula 1]
    Figure PCTKR2022011392-appb-img-000006
    Figure PCTKR2022011392-appb-img-000006
  21. 제20항에 있어서, 경구 투여시 Aza-T-dCyd 화합물은 간에서 cytidine deaminase(CDA)에 의한 대사 내성을 발휘하는 것이 특징인 경구 투여용 약학 조성물.21. The pharmaceutical composition for oral administration according to claim 20, wherein the Aza-T-dCyd compound exhibits metabolic resistance by cytidine deaminase (CDA) in the liver when administered orally.
PCT/KR2022/011392 2021-08-02 2022-08-02 Medicinal use of 4'-thio-5-aza-2'-deoxycytidine selected as well-designed multi-target inhibitor WO2023014045A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR20210101179 2021-08-02
KR10-2021-0101179 2021-08-02
KR20210101180 2021-08-02
KR10-2021-0101180 2021-08-02
KR10-2021-0101181 2021-08-02
KR20210101181 2021-08-02
KR10-2022-0042113 2022-04-05
KR1020220042113A KR20220138347A (en) 2021-04-05 2022-04-05 Combination therapy of 4'-thio-5-aza-2'-deoxycytidine and venetoclax

Publications (1)

Publication Number Publication Date
WO2023014045A1 true WO2023014045A1 (en) 2023-02-09

Family

ID=85156220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/011392 WO2023014045A1 (en) 2021-08-02 2022-08-02 Medicinal use of 4'-thio-5-aza-2'-deoxycytidine selected as well-designed multi-target inhibitor

Country Status (2)

Country Link
KR (1) KR20230019802A (en)
WO (1) WO2023014045A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210005638A (en) * 2018-04-19 2021-01-14 써던 리서취 인스티튜트 4'-thio-nucleotide and -nucleoside prodrugs for the treatment of cancer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210005638A (en) * 2018-04-19 2021-01-14 써던 리서취 인스티튜트 4'-thio-nucleotide and -nucleoside prodrugs for the treatment of cancer

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HONG SOOK: "PinoBio DNMT1 inhibition target anti-cancer drug candidate, disease control rate 78.6%", 9 June 2021 (2021-06-09), pages 1 - 4, XP093031918, Retrieved from the Internet <URL:http://www.hitnews.co.kr/news/articleView.html?idxno=34533> [retrieved on 20221013] *
JAIDEEP V. THOTTASSERY, VIJAYA SAMBANDAM, PAULA W. ALLAN, JOSEPH A. MADDRY, YULIA Y. MAXUITENKO, KAMAL TIWARI, MELINDA HOLLINGSHEA: "Novel DNA methyltransferase-1 (DNMT1) depleting anticancer nucleosides, 4′-thio-2′-deoxycytidine and 5-aza-4′-thio-2′-deoxycytidine", CANCER CHEMOTHERAPY AND PHARMACOLOGY, vol. 74, no. 2, 1 August 2014 (2014-08-01), DE , pages 291 - 302, XP055643162, ISSN: 0344-5704, DOI: 10.1007/s00280-014-2503-z *
M. CECILIA MONGE B., GERALDINE HELEN O'SULLIVAN COYNE, RICHARD PIEKARZ, NAOKO TAKEBE, ASHLEY BRUNS, ARJUN MITTRA, SABRINA SHARMIN : "Trial in progress abstract phase I trial of 5-aza-4’-thio-2’-deoxycytidine (Aza-TdC) in patients with advanced solid tumors", JOURNAL OF CLINICAL ONCOLOGY, vol. 37, no. 15_supplement, 26 May 2019 (2019-05-26), pages 1 - 2, XP009543145, ISSN: 0732-183X, DOI: 10.1200/JCO.2019.37.15_suppl.TPS3148 *
NGUYEN JAMES, O'SULLIVAN COYNE GERALDINE HELEN, TAKEBE NAOKO, NAQASH ABDUL RAFEH, MUKHERJEE JESSICA, BRUNS ASHLEY, PIEKARZ RICHARD: "Phase I trial of 5-aza-4’-thio-2’-deoxycytidine (Aza-TdC) in patients with advanced solid tumors", JOURNAL OF CLINICAL ONCOLOGY, vol. 39, no. 15_suppl, 20 May 2021 (2021-05-20), US , pages 3088 - 3088, XP009543146, ISSN: 0732-183X, DOI: 10.1200/JCO.2021.39.15_suppl.3088 *

Also Published As

Publication number Publication date
KR20230019802A (en) 2023-02-09

Similar Documents

Publication Publication Date Title
WO2021246797A1 (en) Pharmaceutical composition for preventing or treating cancer containing antiviral agent and antidepressant as active ingredients
WO2021167389A1 (en) Pharmaceutical composition for preventing or treating cancer, containing mtor-signaling inhibitor as active ingredient
WO2021162451A1 (en) Pharmaceutical composition for preventing or treating cancer, containing bile acids or derivatives thereof, biguanide-based compounds, and two or more kinds of antiviral agents as active ingredients
WO2023014045A1 (en) Medicinal use of 4&#39;-thio-5-aza-2&#39;-deoxycytidine selected as well-designed multi-target inhibitor
WO2017003267A1 (en) Peptide having anti-viral effect and composition containing same
WO2020013435A1 (en) Pharmaceutical composition for preventing or treating cancer, comprising gossypol, phenformin, and anticancer agent
WO2014030972A1 (en) Anticancer composition
WO2022215995A1 (en) Combined therapy of 4&#39;-thio-5-aza-2&#39;-deoxycytidine and venetoclax
WO2014185733A1 (en) Composition for treating neoplastic diseases, containing medicinal herb products
WO2021235812A1 (en) Pharmaceutical composition for preventing or treating non-small cell lung cancer associated with ron mutation, and method using same
WO2021201654A1 (en) Pharmaceutical composition for preventing or treating mucositis induced by radiotherapy, chemotherapy, or combination thereof, comprising glp-2 derivatives or long-acting conjugate of same
WO2018124758A2 (en) Compound bearing beta-galactoside-introduced self-immolative linker
WO2022031150A1 (en) Conjugate including deoxycytidine-based anticancer agent and silyl ether-containing linker
WO2020096416A1 (en) Compound inhibiting yap-tead binding, and pharmaceutical composition for preventing or treating cancer, comprising compound as active ingredient
WO2015046783A1 (en) Pharmaceutical composition for treatment of radiation- or drug-resistant cancer comprising hrp-3 inhibitor
WO2019147089A1 (en) Pharmaceutical composition for preventing or treating cancer comprising, as active ingredient, calcium channel inhibitor or pharmaceutically acceptable salt thereof
WO2023033481A1 (en) Adp-ribose binding peptide having anticancer activity and use thereof
WO2017048069A1 (en) Novel pyrazoline derivative and use thereof
WO2022211508A1 (en) Antibody-drug conjugate including antibody against human cldn18.2, and use thereof
WO2019194583A1 (en) 3-phenyl-2,8-dihydropyrano[2,3-f]chromene derivative and pharmaceutical composition comprising same
WO2023038368A1 (en) Use of adenosine diphosphate ribose as adjuvant therapy for radiation and/or anticancer therapy
WO2022065968A1 (en) Pharmaceutical composition comprising evodiamine as active ingredient for prevention or treatment of non-small cell lung cancer
WO2012060482A1 (en) Cdk-inhibiting pyrrolopyrimidinone carboxamide derivative or pharmaceutically acceptable salt thereof, and pharmaceutical composition containing same as active ingredient for preventing or treating liver cell cancer
WO2023140691A1 (en) Oral formulation containing 5-aza-4&#39;-thio-2&#39;-deoxycytidine and preparation method therefor
WO2021182918A1 (en) Pharmaceutical composition for preventing or treating cancer comprising azole derivatives or pharmaceutically acceptable salt thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22853422

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE