WO2023140463A1 - Micro mirror - Google Patents

Micro mirror Download PDF

Info

Publication number
WO2023140463A1
WO2023140463A1 PCT/KR2022/015559 KR2022015559W WO2023140463A1 WO 2023140463 A1 WO2023140463 A1 WO 2023140463A1 KR 2022015559 W KR2022015559 W KR 2022015559W WO 2023140463 A1 WO2023140463 A1 WO 2023140463A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
mirror
moving electrode
electrode
electrostatic force
Prior art date
Application number
PCT/KR2022/015559
Other languages
French (fr)
Korean (ko)
Inventor
김세민
김환선
구희성
김은비
Original Assignee
주식회사 멤스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 멤스 filed Critical 주식회사 멤스
Publication of WO2023140463A1 publication Critical patent/WO2023140463A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light

Definitions

  • the present invention relates to a micromirror, and specifically, relates to a micromirror capable of maintaining a stable mirror inclination by generating an electrostatic force so as to provide a rotational force in the same direction at comb electrodes disposed on both sides of a rotating shaft by differentiating electrode body structures of a fixed electrode unit and a moving electrode unit, and by canceling unnecessary electrostatic force, thereby increasing the precision of mirror rotation and increasing the geometrical stability of rotational operation.
  • a micro mirror having a size of micrometers ( ⁇ m) and operating electrically varies the propagation path of light, a type of electromagnetic wave, so that a user can arbitrarily control a signal transmitted in a signal transmission system using light.
  • the currently introduced micromirror is an active element capable of providing a unique modulation mechanism of light signals with limited physical and chemical interactions.
  • Micro mirrors have been used as core components for optical storage devices or optical communications in the past.
  • the optical communication field is an essential technology field for smoothly transmitting increasing digital information along with the expansion of high-speed communication networks such as 5G.
  • the optical communication field such as FTTo (Fiber To The Office), FTTc (Fiber To The Curb), FTTH (Fiber To The Home), was mainly aimed at long-distance transmission of large amounts of information gathered in offices, homes, and specific areas.
  • DLP digital light processing
  • a generally known micromirror for optical communication uses a comb drive (comb driver) using electrostatic force.
  • the comb drive applies different potential values to comb-shaped electrodes facing each other and uses electrostatic force formed according to the potential difference (voltage).
  • the electrostatic force formed between the two electrodes causes the displacement of the moving electrode having a degree of freedom among the electrodes facing each other, and accordingly, a phenomenon of displacement of a mirror connected to the moving electrode can be used.
  • Such a comb drive can be divided into an in-plane comb drive and a vertical comb drive according to the geometry of operation and structure.
  • the fixed electrode and the moving electrode facing each other are formed on the same plane, and accordingly, the displacement of the moving electrode also occurs on the same plane.
  • the fixed electrode and the moving electrode are disposed at different heights, and thus the moving electrode can be rotated by the electrostatic force applied to the moving electrode.
  • a vertical comb drive is more suitable than a horizontal comb drive.
  • the vertical comb drive has a fine structure and a complicated three-dimensional electrode structure, it is difficult to manufacture.
  • This problem makes it difficult to perform complex mechanical and electrical patterning for bidirectional rotation of the mirror, and thus provides a cause for a situation in which a rotational micromirror having a unidirectional rotation function is used.
  • An object of the present invention is to provide a micro-mirror capable of increasing the precision of mirror rotation and increasing the geometrical stability of rotation operation.
  • a micro mirror in order to solve the above problem, includes a rod-shaped torsion beam having both ends fixed to a pair of supports; and a mirror unit having a plate shape and formed at the center of the torsion beam.
  • a fixing part formed around the mirror part; one moving electrode formed on one side of the torsion beam in the width direction; a moving electrode unit including a; the other side moving electrode formed on the other side of the torsion beam in the width direction; and one side fixed electrode formed in the fixing part and disposed to face the one side moving electrode; and a fixed electrode part including the other fixed electrode formed in the fixed part and arranged to face the other moving electrode, wherein when a driving voltage is applied from the outside, one electrostatic force is generated between the one fixed electrode and the one moving electrode, and the other electrostatic force is generated between the other fixed electrode and the other moving electrode, and the one electrostatic force and the other electrostatic force rotate in the same direction with the longitudinal axis of the torsion beam as a rotation axis. generate torque.
  • the micromirror according to one aspect of the present invention further includes a first conductor and a second conductor formed of a conductive material, separated by an insulating layer and stacked in a vertical direction, to which different potential values are applied from the outside and to which the driving voltage is applied, wherein the one fixed electrode and the other moving electrode form a combination, the other fixed electrode and the one moving electrode form a combination, and one of the combinations is the first conductor and the second conductor It is a first combination formed of only one, and the other may be formed including both the first conductor and the second conductor.
  • the first combination may be configured only by being disposed on a lower side of the first conductor and the second conductor.
  • the fixing part, the tension part, and the mirror may include both the first conductor and the second conductor.
  • the rotational force of the mirror can be improved by using a comb drive structure disposed on both sides of the rotation axis of the mirror to act in different directions and generate electrostatic force having the same magnitude.
  • the mirror rotation operation can be stably and precisely controlled.
  • FIG. 1 is a view showing an embodiment of a micro mirror according to the present invention.
  • FIG. 2 is a cross-sectional view of the micromirror of FIG. 1 by partially removing it;
  • FIG. 3 is a view showing a state in which a driving voltage is applied to the micromirror of FIG. 1;
  • FIG. 4 is a cross-sectional view of the micromirror of FIG. 3 by partially removing it;
  • FIG. 5 is a view explaining the operation of the micro mirror according to the present invention.
  • FIG. 1 is a view showing an embodiment of a micromirror according to the present invention
  • FIG. 2 is a view showing a cross section of the micromirror of FIG. 1 with a part removed.
  • FIG. 3 is a view showing a state in which a driving voltage is applied to the micromirror of FIG. 1
  • FIG. 4 is a view showing a cross section of the micromirror of FIG. 3 with a part removed.
  • FIG. 5 is a diagram explaining the operation of the micro mirror according to the present invention.
  • the micromirror according to the present embodiment includes a mirror unit 100, a fixed unit 200, a moving electrode unit 300, and a fixed electrode unit 400.
  • the mirror unit 100 has a rod-shaped torsion beam 120 having both ends fixed to a pair of supports 130 and a plate-shaped mirror 110 formed at the center of the torsion beam 120.
  • the torsion beam 120 is torsionally deformed without irreversible damage when the mirror 110 rotates around the central axis of the torsion beam 120 as a driving voltage is applied.
  • the mirror 110 when the driving voltage is released, the mirror 110 returns to a horizontal state with the elastic force accumulated according to torsional deformation.
  • the mirror 110 reflects light projected onto the upper surface.
  • a driving voltage is applied, the longitudinal axis of the torsion beam 120 is rotated as a rotation center to change the light path.
  • the fixed part 200 is formed around the mirror part 100, and the fixed electrode part 400 described later is formed.
  • the fixing part 200 and the support 130 are preferably formed as an integrated structure.
  • the moving electrode unit 300 includes one moving electrode 310 formed on one side of the torsion beam 120 in the width direction and the other moving electrode 320 formed on the other side of the torsion beam 120 in the width direction.
  • the fixed electrode unit 400 includes one fixed electrode 410 formed on the fixing unit 200 and disposed to face the one moving electrode 310 and the other fixed electrode 420 disposed to face the other moving electrode 320 and formed on the fixed unit 200.
  • the operation of the micro mirror according to the present embodiment is as follows.
  • the electrostatic force f1 on one side and the electrostatic force f2 on the other side generate torque that rotates the longitudinal axis of the torsion beam 120 in the same direction as a rotation axis.
  • one side comb drive d1 composed of one side moving electrode 310 and one side fixed electrode 410 and the other side moving electrode 320 and the other side comb drive d2 composed of the other side fixed electrode 420 apply rotational force in the same direction to the torsion beam 120 according to the driving voltage.
  • the comb drive formed on the opposite side that does not operate becomes unnecessary.
  • the electrostatic force generated by one side or the other side comb drive generates an interference phenomenon that hinders the ideal rotational operation of the mirror due to the horizontal electrostatic force.
  • FIG. 5 the operation of the micro-mirror according to the present embodiment will be described in detail through vector analysis of forces constituting the one-side electrostatic force f1 and the other-side electrostatic force f2.
  • FIG. 5 is a state viewed in the lateral direction p1 in FIG. 4, and in order to clearly distinguish the operation of the moving electrode unit 300 and the fixed electrode unit 400, one and the other fixed electrodes 410 and 420 are moved. It is to be noted that it shows a state in which the electrode unit 300 is spaced apart to one side and the other side.
  • the one-side electrostatic force (f1) and the other-side electrostatic force (f2) are longitudinal component forces acting in the vertical direction in the electrostatic forces (f1t, f2t) generated by the one-side and other-side comb drives (d1, d2), respectively.
  • the generated electrostatic forces f1t and f2t also include transverse component forces f1h and f2h acting in the transverse direction.
  • the moving electrode unit 300 and the fixed electrode unit 400 include a first conductor 11 and a second conductor 12 .
  • the first conductor 11 and the second conductor 12 are formed of a conductive material, separated by an insulating layer, and stacked vertically, and different potential values are applied from the outside to apply a driving voltage, thereby inducing electrostatic force to one side and the other side comb drive described above.
  • the first combination is composed only of the first conductor 11 and the second conductor 12 disposed on the lower side.
  • the electrostatic force generated between the moving electrode unit 300 and the fixed electrode unit 400 is caused by a Coulomb force between electric charges of each electrode.
  • a repulsive force acts between electrodes having the same potential difference, and an attractive force acts between electrodes having different potential differences.
  • the first conductor 11 and the second conductor 12 have different electric potentials, when a driving voltage is applied, an attractive force is generated between the adjacent conductors having different electric potentials.
  • the other moving electrode 320 composed of the second conductor 12 forms an attractive force with the first conductor 11 of the other fixed electrode 420 .
  • the first conductor 11 of the one-side moving electrode 310 forms an attractive force with the second conductor 12 of the one-side fixed electrode 410 .
  • the electrostatic force thus formed includes a longitudinal component force that rotates the moving electrode unit 300, but also generates a horizontal component force according to the arrangement structure of the moving electrode unit 300 and the fixed electrode unit 400 formed on the same plane.
  • the horizontal component forces f1h and f2h cancel each other, but the longitudinal component force rotates the torsion beam 120 and the mirror 110 around the torsion beam 120. It acts as a rotational force consisting of the sum of the electrostatic force f1 and the electrostatic force f2 on the other side.
  • the rotational operation of the mirror 110 can have a geometrically ideal shape.
  • the micromirror according to the present embodiment can prevent an irreversible inoperability state in which the moving electrode unit and the fixed electrode unit are excessively close to each other or come into contact with each other so that they cannot be separated even when the driving voltage is released.
  • a micromirror is a microstructure made of a conductive material and having a size of several microns.
  • the mirror in a state in which the driving voltage is applied and the mirror moves or rotates, the mirror cannot be restored to its original state and becomes inoperable.
  • the electrostatic force on one side and the electrostatic force on the other side act in different directions, and especially the component forces in the transverse direction (f1h, f2h) act in mutually canceling directions, displacement of the moving electrode unit and consequently inoperable state can be prevented.
  • the torsion beam 120 is torsionally deformed by the electrostatic force f1 on one side and the electrostatic force f2 on the other side generated as the driving voltage is applied.
  • the horizontal component forces f1h and f2h have a vector component in the longitudinal direction of the torsion beam 120 due to torsional deformation of the torsion beam 120 .
  • This phenomenon may act as a factor that further intensifies the above-described contact or excessive proximity of the moving electrode unit and the fixed electrode unit.
  • the micromirror according to the present embodiment cancels both the lateral component forces f1h and f2h, not only the direct action of the lateral component forces f1h and f2h, but also the torsional deformation of the torsion beam 120. It has an effect of fundamentally eliminating the indirect action accompanying.
  • the fixing part 200, the tension part 120, and the mirror 110 include both the first conductor 11 and the second conductor 12 described above.
  • electrostatic force according to the Coulomb force may be generated at the opposite ends of the fixing part 200 and the mirror 110, respectively.
  • the micromirror according to the present embodiment is preferably manufactured using SOI (Silicon on Insulator) in which a first insulating layer is formed on a silicon wafer, a second conductor 12 is formed on the upper side, the second insulating layer is formed on the upper side, and the first conductor 11 is formed on the upper side.
  • SOI Silicon on Insulator
  • the first combination (combination consisting of the other moving electrode 320 and one fixed electrode 410 in the present embodiment) can be easily formed by removing one of the one and the other moving electrodes 310 and 320 and the first conductor 11 of either one of the other and one fixed electrodes 410 and 420 in a single etching process for selectively etching.
  • first electrode metal 13 on the upper side of the first conductor 11 and the second electrode metal 14 on the upper side of the second conductor 2
  • different potentials may be applied to the first and second conductors 11 and 12 to form a driving voltage
  • the second electrode metal 14 may be formed on the upper surface of the second conductor 12 exposed by etching the first conductor 11 and the second insulating layer.

Abstract

A disclosed micro mirror allows stacked electrode body structures having different potential values and electrode body structures of a fixed electrode part and a moving electrode part to be different, so as to generate electrostatic force so that rotational force is provided in the same direction from comb electrodes arranged at both sides of a rotary shaft, and thus a stable mirror inclination is maintained, and an unnecessary electrostatic force can be offset, thereby increasing the precision of mirror rotation and increasing the geometric stability of a rotation operation.

Description

마이크로 미러micro mirror
본 발명(Disclosure)은, 마이크로 미러에 관한 것으로서, 구체적으로 적층되어 서로 다른 전위값을 가지는 전극체 구조 및 고정 전극부 및 무빙 전극부의 전극체 구조를 달리함으로써, 회전축 양측에 배치되는 콤 전극에서 동일한 방향의 회전력을 제공하도록 정전기력을 발생시켜 안정적인 미러 경사를 유지할 수 있고, 불필요한 정전기력을 상쇄함으로써, 미러 회전의 정밀도를 높이고 회전 작동의 기하학적 안정도를 높일 수 있는 마이크로 미러에 관한 것이다.The present invention (Disclosure) relates to a micromirror, and specifically, relates to a micromirror capable of maintaining a stable mirror inclination by generating an electrostatic force so as to provide a rotational force in the same direction at comb electrodes disposed on both sides of a rotating shaft by differentiating electrode body structures of a fixed electrode unit and a moving electrode unit, and by canceling unnecessary electrostatic force, thereby increasing the precision of mirror rotation and increasing the geometrical stability of rotational operation.
여기서는, 본 발명에 관한 배경기술이 제공되며, 이들이 반드시 공지기술을 의미하는 것은 아니다(This section provides background information related to the present disclosure which is not necessarily prior art).Here, background art related to the present invention is provided, and they do not necessarily mean prior art (This section provides background information related to the present disclosure which is not necessarily prior art).
마이크로미터(㎛) 단위의 크기를 가지며 전기적으로 작동하는 마이크로 미러(micro mirror)는, 전자기파의 일종인 빛의 진행 경로를 다양하게 가변함으로써, 빛을 이용한 신호전달 체계에서 전달되는 신호를 사용자가 임의로 제어할 수 있다.A micro mirror having a size of micrometers (μm) and operating electrically varies the propagation path of light, a type of electromagnetic wave, so that a user can arbitrarily control a signal transmitted in a signal transmission system using light.
즉, 현재 소개되고 있는 마이크로 미러는, 물리 화학적 상호작용이 제한적인 광신호(Light Signal)의 유일한 변조 매커니즘을 제공할 수 있는 능동 소자이다.That is, the currently introduced micromirror is an active element capable of providing a unique modulation mechanism of light signals with limited physical and chemical interactions.
마이크로 미러는, 과거 광 저장장치 또는 광통신용 핵심부품으로 이용되어왔다. Micro mirrors have been used as core components for optical storage devices or optical communications in the past.
광통신 분야는, 5G와 같이 초고속 통신망의 확대와 더불어, 늘어나는 디지털 정보를 원활하게 전송하기 위한 필수적인 기술분야이다.The optical communication field is an essential technology field for smoothly transmitting increasing digital information along with the expansion of high-speed communication networks such as 5G.
과거의 광통신 분야는, FTTo(Fiber To The Office), FTTc(Fiber To The Curb), FTTH(Fiber To The Home)과 같이 사무실이나 가정 및 특정 지역에서 모여진 대량의 정보를 장거리 전송하는 것을 주요 목적으로 하였다.In the past, the optical communication field, such as FTTo (Fiber To The Office), FTTc (Fiber To The Curb), FTTH (Fiber To The Home), was mainly aimed at long-distance transmission of large amounts of information gathered in offices, homes, and specific areas.
따라서, 고속 광원 및 구동회로에 대한 개발이 가장 중요한 개발 이슈이었다. Therefore, development of a high-speed light source and driving circuit has been the most important development issue.
그러나, 갈수록 정보량은 늘어날 뿐만 아니라, 전송 속도 역시 급속히 빨라지고 있다. However, not only the amount of information is gradually increasing, but also the transmission speed is rapidly increasing.
최근 디지털 광 처리(DLP, Digital Light Processing) 기술을 이용한 각종 장비 및 제품들이 상용화됨에 따라, 이들 장비 및 제품들에 적합한 마이크로 미러 개발이 한층 활발해지고 있다. Recently, as various equipment and products using digital light processing (DLP) technology have been commercialized, the development of micro mirrors suitable for these equipment and products has become more active.
이는 정보처리에 있어서, 처리해야할 정보량뿐만 아니라, 전송속도 또는 처리속도 역시 빨라지기 때문에, 과거의 전기적 신호에 대한 제어 방법으로는, 한계점이 분명하며, 이를 타개하기 위해 광 신호에 대한 다양한 제어 기술들이 주목받고 있음을 말해준다. This means that in information processing, not only the amount of information to be processed, but also the transmission speed or processing speed is fast, so the control method for electrical signals in the past has clear limitations, and various control technologies for optical signals are attracting attention to overcome this.
따라서 광통신 분야에 있어서도, 고집적도를 구현할 수 있으며, 기계적 작동 정밀도를 높일 수 있고, 저전력 구동이 가능한 마이크로 미러에 대한 수요가 증가할 것으로 예상된다. Therefore, even in the field of optical communication, it is expected that the demand for micro mirrors capable of realizing high integration, increasing mechanical operation precision, and driving with low power will increase.
일반적으로 알려진 광통신용 마이크로 미러는, 정전기력(electrostatic force)을 이용한 콤 드라이브(빗살 구동기, comb drive)를 이용한다.A generally known micromirror for optical communication uses a comb drive (comb driver) using electrostatic force.
콤 드라이브는, 서로 마주하는 빗살 형상의 전극에 서로 다른 전위값을 인가하고 그 전위차(전압)에 따라 형성되는 정전기력을 이용한다.The comb drive applies different potential values to comb-shaped electrodes facing each other and uses electrostatic force formed according to the potential difference (voltage).
두 개의 전극에 형성되는 정전기력은, 마주하는 전극 중에 자유도를 가지는 무빙전극의 변위(displacement)를 유발하고, 이에 따라 무빙전극에 연결된 미러의 변위(displacement) 발생 현상을 이용할 수 있다.The electrostatic force formed between the two electrodes causes the displacement of the moving electrode having a degree of freedom among the electrodes facing each other, and accordingly, a phenomenon of displacement of a mirror connected to the moving electrode can be used.
이러한 콤 드라이브는, 작동 및 구조의 기하학적 형태에 따라, 수평형 콤 드라이브(in-plane comb drive) 및 수직형 콤 드라이브(vertical comb drive)로 구분할 수 있다. Such a comb drive can be divided into an in-plane comb drive and a vertical comb drive according to the geometry of operation and structure.
수평형 콤 드라이브는, 서로 마주하는 고정전극 및 무빙전극이 동일 평면에 형성되고, 이에 따라 무빙전극의 변위 역시 동일한 평면상에서 발생한다.In the horizontal comb drive, the fixed electrode and the moving electrode facing each other are formed on the same plane, and accordingly, the displacement of the moving electrode also occurs on the same plane.
이에 반하여 수직형 콤 드라이브는, 고정전극과 무빙전극이 서로 다른 높이에 배치되고, 이에 따라 무빙전극에 인가되는 정전기력에 의해 무빙전극이 회전할 수 있는 특징을 제공한다. On the other hand, in the vertical comb drive, the fixed electrode and the moving electrode are disposed at different heights, and thus the moving electrode can be rotated by the electrostatic force applied to the moving electrode.
광 경로를 가변함으로써, 광 신호의 변조 또는 제어를 가능하게 하고자 하는 마이크로 미러의 기능적 측면을 고려할 때, 수평형 콤 드라이브 보다 수직형 콤 드라이브가 보다 적합하다 할 수 있다.Considering the functional aspect of the micromirror to enable modulation or control of an optical signal by varying an optical path, a vertical comb drive is more suitable than a horizontal comb drive.
그러나 수직형 콤 드라이브는 미세 구조이면서 복잡한 3차원 형상의 전극 구조물을 형성해야 하기 때문에, 제조가 어렵다는 단점이 있다. However, since the vertical comb drive has a fine structure and a complicated three-dimensional electrode structure, it is difficult to manufacture.
이러한 문제는 미러의 양방향 회전을 위한 복잡한 기계적, 전기적 패터닝이 어려우며, 이에 따라 단방향 회전 기능을 가지는 회전형 마이크로 미러가 사용되는 상황의 원인을 제공한다. This problem makes it difficult to perform complex mechanical and electrical patterning for bidirectional rotation of the mirror, and thus provides a cause for a situation in which a rotational micromirror having a unidirectional rotation function is used.
특히, 단방향 회전기능을 가지는 회전형 마이크로 미러에서는, 미러의 회전축의 양측 방향의 콤 드라이브를 모두 사용하지 못하고, 어느 한 방향의 콤 드라이브 만을 사용하기 때문에, 실질적으로는 미러가 회전과 동시에 이동하는 문제점이 발생한다.In particular, in a rotational micromirror having a unidirectional rotation function, since the comb drives in one direction are used instead of all of the comb drives in both directions of the rotation axis of the mirror, a problem in that the mirror actually moves simultaneously with rotation occurs.
본 발명(Disclosure)은, 미러 회전의 정밀도를 높이고, 회전 작동의 기하학적 안정도를 높일 수 있는 마이크로 미러의 제공을 일 목적으로 한다.An object of the present invention (Disclosure) is to provide a micro-mirror capable of increasing the precision of mirror rotation and increasing the geometrical stability of rotation operation.
여기서는, 본 발명의 전체적인 요약(Summary)이 제공되며, 이것이 본 발명의 외연을 제한하는 것으로 이해되어서는 아니 된다(This section provides a general summary of the disclosure and is not a comprehensive disclosure of its full scope or all of its features).This section provides a general summary of the disclosure and is not a comprehensive disclosure of its full scope or all of its features.
상기한 과제의 해결을 위해, 본 발명을 기술하는 여러 관점들 중 어느 일 관점(aspect)에 따른 마이크로 미러는, 양 끝단이 한 쌍의 지지대에 고정되는 막대형상의 토션빔; 및 판형상으로 상기 토션빔의 중심에 형성되는 미러;를 가지는 미러부; 상기 미러부 주변에 형성되는 고정부; 상기 토션빔의 폭방향 일측에 형성되는 일측 무빙전극 및; 상기 토션빔의 폭방향 타측에 형성되는 타측 무빙전극;을 포함하는 무빙 전극부; 및 상기 고정부에 형성되고 상기 일측 무빙전극과 마주하도록 배치되는 일측 고정전극; 및 상기 고정부에 형성되고 상기 타측 무빙전극과 마주하도록 배치되는 타측 고정전극을 포함하는 고정 전극부;를 포함하고, 외부에서 구동전압이 인가되면, 상기 일측 고정전극 및 상기 일측 무빙전극 사이에 일측 정전기력이 생성되고, 상기 타측 고정전극 및 상기 타측 무빙전극 사이에 타측 정전기력이 생성되며, 상기 일측 정전기력 및 상기 타측 정전기력은 상기 토션빔의 길이 방향 축을 회전축으로 하고 동일한 방향으로 회전하는 회전력(torque)을 발생시킨다.In order to solve the above problem, a micro mirror according to any one of the various aspects describing the present invention includes a rod-shaped torsion beam having both ends fixed to a pair of supports; and a mirror unit having a plate shape and formed at the center of the torsion beam. a fixing part formed around the mirror part; one moving electrode formed on one side of the torsion beam in the width direction; a moving electrode unit including a; the other side moving electrode formed on the other side of the torsion beam in the width direction; and one side fixed electrode formed in the fixing part and disposed to face the one side moving electrode; and a fixed electrode part including the other fixed electrode formed in the fixed part and arranged to face the other moving electrode, wherein when a driving voltage is applied from the outside, one electrostatic force is generated between the one fixed electrode and the one moving electrode, and the other electrostatic force is generated between the other fixed electrode and the other moving electrode, and the one electrostatic force and the other electrostatic force rotate in the same direction with the longitudinal axis of the torsion beam as a rotation axis. generate torque.
본 발명의 일 관점(aspect)에 따른 마이크로 미러는, 전도성 재질로 형성되고, 절연층에 의해 구분되어 상하 방향으로 적층되고 외부에서 서로 다른 전위값이 인가되어 상기 구동전압이 인가되는 제1 전도체 및 제2 전도체;를 더 포함하고, 상기 일측 고정전극과 상기 타측 무빙전극이 조합을 이루고, 상기 타측 고정전극과 상기 일측 무빙전극이 조합을 이루고, 상기 조합들 중 어느 하나는 상기 제1 전도체 및 상기 제2 전도체 중 어느 하나로만 형성되는 제1 조합이고, 다른 하나는 상기 제1 전도체 및 상기 제2 전도체를 모두 포함하여 형성될 수 있다.The micromirror according to one aspect of the present invention further includes a first conductor and a second conductor formed of a conductive material, separated by an insulating layer and stacked in a vertical direction, to which different potential values are applied from the outside and to which the driving voltage is applied, wherein the one fixed electrode and the other moving electrode form a combination, the other fixed electrode and the one moving electrode form a combination, and one of the combinations is the first conductor and the second conductor It is a first combination formed of only one, and the other may be formed including both the first conductor and the second conductor.
본 발명의 일 관점(aspect)에 따른 마이크로 미러에서, 상기 제1 조합은, 상기 제1 전도체 및 상기 제2 전도체 중 하측에 배치되는 것만으로 구성될 수 있다.In the micromirror according to one aspect of the present invention, the first combination may be configured only by being disposed on a lower side of the first conductor and the second conductor.
본 발명의 일 관점(aspect)에 따른 마이크로 미러에서 상기 고정부와 상기 텐션부 및 상기 미러는, 상기 제1 전도체 및 상기 제2 전도체를 모두 포함하여 형성될 수 있다.In the micromirror according to one aspect of the present invention, the fixing part, the tension part, and the mirror may include both the first conductor and the second conductor.
본 발명에 따르면, 미러의 회전축 양측에 배치되어 서로 다른 방향으로 작용하고 동일한 크기를 가지는 정전기력을 발생시키는 콤 드라이브 구조를 이용함으로써, 미러의 회전력을 향상시킬 수 있다.According to the present invention, the rotational force of the mirror can be improved by using a comb drive structure disposed on both sides of the rotation axis of the mirror to act in different directions and generate electrostatic force having the same magnitude.
본 발명에 따르면, 미러 회전 작동이 안정적이고 정밀하게 제어될 수 있다.According to the present invention, the mirror rotation operation can be stably and precisely controlled.
도 1은 본 발명에 따른 마이크로 미러의 일 실시형태를 보인 도면.1 is a view showing an embodiment of a micro mirror according to the present invention.
도 2는 도 1의 마이크로 미러의 일부를 제거하여 단면을 보인 도면.FIG. 2 is a cross-sectional view of the micromirror of FIG. 1 by partially removing it;
도 3는 도 1의 마이크로 미러에 구동 전압이 인가된 상태를 보인 도면.3 is a view showing a state in which a driving voltage is applied to the micromirror of FIG. 1;
도 4는 도 3의 마이크로 미러의 일부를 제거하여 단면을 보인 도면.FIG. 4 is a cross-sectional view of the micromirror of FIG. 3 by partially removing it;
도 5는 본 발명에 따른 마이크로 미러의 작동을 설명하는 도면.5 is a view explaining the operation of the micro mirror according to the present invention.
이하, 본 발명에 따른 마이크로 미러를 구현한 실시형태를 도면을 참조하여 자세히 설명한다.Hereinafter, an embodiment in which a micro mirror according to the present invention is implemented will be described in detail with reference to the drawings.
다만, 본 발명의 본질적인(intrinsic) 기술적 사상은 이하에서 설명되는 실시형태에 의해 그 실시 가능 형태가 제한된다고 할 수는 없고, 본 발명의 본질적인(intrinsic) 기술적 사상에 기초하여 통상의 기술자에 의해 이하에서 설명되는 실시형태를 치환 또는 변경의 방법으로 용이하게 제안될 수 있는 범위를 포섭함을 밝힌다. However, the essential (intrinsic) technical idea of the present invention cannot be said to be limited by the embodiments described below, and based on the essential (intrinsic) technical idea of the present invention, it is revealed that the range that can be easily proposed as a method of substitution or change of the embodiments described below by a person skilled in the art is covered.
또한, 이하에서 사용되는 용어는 설명의 편의를 위하여 선택한 것이므로, 본 발명의 본질적인(intrinsic) 기술적 사상을 파악하는 데 있어서, 사전적 의미에 제한되지 않고 본 발명의 기술적 사상에 부합되는 의미로 적절히 해석되어야 할 것이다. In addition, since the terms used below are selected for convenience of explanation, in understanding the essential (intrinsic) technical spirit of the present invention, they are not limited to the dictionary meaning and are appropriately interpreted in a meaning consistent with the technical spirit of the present invention.
도 1은 본 발명에 따른 마이크로 미러의 일 실시형태를 보인 도면이고, 도 2는 도 1의 마이크로 미러의 일부를 제거하여 단면을 보인 도면이다.1 is a view showing an embodiment of a micromirror according to the present invention, and FIG. 2 is a view showing a cross section of the micromirror of FIG. 1 with a part removed.
도 3는 도 1의 마이크로 미러에 구동 전압이 인가된 상태를 보인 도면이고, 도 4는 도 3의 마이크로 미러의 일부를 제거하여 단면을 보인 도면이다.FIG. 3 is a view showing a state in which a driving voltage is applied to the micromirror of FIG. 1 , and FIG. 4 is a view showing a cross section of the micromirror of FIG. 3 with a part removed.
도 5는 본 발명에 따른 마이크로 미러의 작동을 설명하는 도면이다.5 is a diagram explaining the operation of the micro mirror according to the present invention.
도 1 내지 도 5를 참조하면, 본 실시형태에 따른 미이크로 미러는, 미러부(100), 고정부(200), 무빙 전극부(300) 및 고정 전극부(400)를 가진다.1 to 5 , the micromirror according to the present embodiment includes a mirror unit 100, a fixed unit 200, a moving electrode unit 300, and a fixed electrode unit 400.
미러부(100)는, 양 끝단이 한 쌍의 지지대(130)에 고정되는 막대형상의 토션빔(120) 및 판형상으로, 토션빔(120)의 중심에 형성되는 미러(110)를 가진다.The mirror unit 100 has a rod-shaped torsion beam 120 having both ends fixed to a pair of supports 130 and a plate-shaped mirror 110 formed at the center of the torsion beam 120.
토션빔(120)은, 구동전압이 인가됨에 따라 토션빔(120)의 중심축을 중심으로 미러(110)가 회전할 때 불가역적 파손없이 비틀림 변형된다.The torsion beam 120 is torsionally deformed without irreversible damage when the mirror 110 rotates around the central axis of the torsion beam 120 as a driving voltage is applied.
또한 구동전압이 해제되면, 비틀림 변형에 따라 축적된 탄성력으로 미러(110) 수평 상태로 복귀하게 한다. Also, when the driving voltage is released, the mirror 110 returns to a horizontal state with the elastic force accumulated according to torsional deformation.
미러(110)는 상면으로 투사되는 빛을 반사한다. 구동전압이 인가되면 토션빔(120)의 길이방향 축을 회전 중심으로하여 회전하여 빛의 경로를 변경한다.The mirror 110 reflects light projected onto the upper surface. When a driving voltage is applied, the longitudinal axis of the torsion beam 120 is rotated as a rotation center to change the light path.
고정부(200)는, 미러부(100) 주변에 형성되고, 후술하는 고정 전극부(400)가 형성된다.The fixed part 200 is formed around the mirror part 100, and the fixed electrode part 400 described later is formed.
고정부(200)와 지지대(130)는, 일체형으로 결합된 구조체로 형성되는 것이 바람직하다. The fixing part 200 and the support 130 are preferably formed as an integrated structure.
무빙 전극부(300)는 토션빔(120)의 폭방향 일측에 형성되는 일측 무빙전극(310) 및 토션빔(120)의 폭방향 타측에 형성되는 타측 무빙전극(320)을 포함한다.The moving electrode unit 300 includes one moving electrode 310 formed on one side of the torsion beam 120 in the width direction and the other moving electrode 320 formed on the other side of the torsion beam 120 in the width direction.
고정 전극부(400)는, 고정부(200)에 형성되고 일측 무빙전극(310)과 마주하도록 배치되는 일측 고정전극(410) 및 고정부(200)에 형성되고 타측 무빙전극(320)과 마주하도록 배치되는 타측 고정전극(420)을 포함한다.The fixed electrode unit 400 includes one fixed electrode 410 formed on the fixing unit 200 and disposed to face the one moving electrode 310 and the other fixed electrode 420 disposed to face the other moving electrode 320 and formed on the fixed unit 200.
본 실시형태에 따른 마이크로 미러의 작동은 다음과 같다. The operation of the micro mirror according to the present embodiment is as follows.
도 3 내지 도 4를 참조하면, 본 실시형태에 따른 마이크로 미러는, 외부에서 구동전압이 인가되면, 일측 고정전극(410) 및 일측 무빙전극(310) 사이에 일측 정전기력(f1)이 생성되고, 타측 고정전극(420) 및 타측 무빙전극(320) 사이에 타측 정전기력(f2)이 생성된다. 3 and 4, in the micromirror according to the present embodiment, when a driving voltage is applied from the outside, one side electrostatic force f1 is generated between one fixed electrode 410 and one moving electrode 310, and the other side static force f2 is generated between the other fixed electrode 420 and the other moving electrode 320.
이때, 일측 정전기력(f1) 및 타측 정전기력(f2)은 토션빔(120)의 길이 방향 축을 회전축으로 하여 동일한 방향으로 회전시키는 회전력(torque)을 발생시킨다.At this time, the electrostatic force f1 on one side and the electrostatic force f2 on the other side generate torque that rotates the longitudinal axis of the torsion beam 120 in the same direction as a rotation axis.
이에 따라, 본 실시형태에 따른 마이크로 미러는, 구동전압에 따라 일측 무빙전극(310)과 일측 고정전극(410)으로 구성되는 일측 콤 드라이브(d1) 및 타측 무빙전극(320)과 타측 고정전극(420)으로 구성되는 타측 콤 드라이브(d2)가 동일한 방향의 회전력을 토션빔(120)에 인가하게 된다. Accordingly, in the micromirror according to the present embodiment, one side comb drive d1 composed of one side moving electrode 310 and one side fixed electrode 410 and the other side moving electrode 320 and the other side comb drive d2 composed of the other side fixed electrode 420 apply rotational force in the same direction to the torsion beam 120 according to the driving voltage.
앞서 기술한 바와 같이, 일측 콤 드라이브 또는 타측 콤 드라이브 중 어느 하나만 정전기력으로 작동하게 되면, 작동하지 않는 반대측에 형성된 콤 드라이브가 불필요하게 된다. As described above, if only one of the one side comb drive or the other side comb drive operates with electrostatic force, the comb drive formed on the opposite side that does not operate becomes unnecessary.
또한, 일측 또는 타측 콤 드라이브 각각에 의한 정전기력은, 가로 방향의 정전기력으로 인해 미러의 이상적인 회전작동을 방해하는 간섭현상을 발생시킨다.In addition, the electrostatic force generated by one side or the other side comb drive generates an interference phenomenon that hinders the ideal rotational operation of the mirror due to the horizontal electrostatic force.
도 5에서 일측 정전기력(f1) 및 타측 정전기력(f2)를 구성하는 힘의 벡터 분석을 통하여 이들의 본 실시형태에 따른 마이크로 미러의 작동을 상세히 설명한다.In FIG. 5 , the operation of the micro-mirror according to the present embodiment will be described in detail through vector analysis of forces constituting the one-side electrostatic force f1 and the other-side electrostatic force f2.
도 5는 도 4에서 측방향(p1)으로 바라본 상태이며, 무빙 전극부(300) 및 고정 전극부(400)의 작동을 명확히 구분하기 위해, 일측 및 타측 고정전극(410, 420)를 무빙 전극부(300)를 중심으로 일측과 타측으로 이격시킨 상태를 도시한 것임을 밝혀둔다. FIG. 5 is a state viewed in the lateral direction p1 in FIG. 4, and in order to clearly distinguish the operation of the moving electrode unit 300 and the fixed electrode unit 400, one and the other fixed electrodes 410 and 420 are moved. It is to be noted that it shows a state in which the electrode unit 300 is spaced apart to one side and the other side.
일측 정전기력(f1) 및 타측 정전기력(f2)은 일측 및 타측 콤 드라이브(d1, d2)에 의해 발생하는 발생 정전기력(f1t, f2t) 각각에서 상하 방향으로 작용하는 세로방향 분력(component force)이다.The one-side electrostatic force (f1) and the other-side electrostatic force (f2) are longitudinal component forces acting in the vertical direction in the electrostatic forces (f1t, f2t) generated by the one-side and other-side comb drives (d1, d2), respectively.
발생 정전기력(f1t, f2t)은 가로 방향으로 작용하는 가로방향 분력(f1h, f2h)도 포함한다. The generated electrostatic forces f1t and f2t also include transverse component forces f1h and f2h acting in the transverse direction.
이때, 무빙 전극부(300) 및 고정 전극부(400)는 제1 전도체(11) 및 제2 전도체(12)를 포함한다. At this time, the moving electrode unit 300 and the fixed electrode unit 400 include a first conductor 11 and a second conductor 12 .
제1 전도체(11) 및 제2 전도체(12)는, 전도성 재질로 형성되고, 절연층에 의해 구분되어 상하 방향으로 적층되고, 외부에서 서로 다른 전위값이 인가되어 구동전압을 인가함으로써, 앞서 기술한 일측 및 타측 콤 드라이브에 정전기력을 유도한다.The first conductor 11 and the second conductor 12 are formed of a conductive material, separated by an insulating layer, and stacked vertically, and different potential values are applied from the outside to apply a driving voltage, thereby inducing electrostatic force to one side and the other side comb drive described above.
도 1 내지 도 4를 참조하면, 본 실시형태에 따른 마이크로 미러는, 일측 고정전극(410)과 타측 무빙전극(320)이 조합을 이루고, 타측 고정전극(420)과 일측 무빙전극(310) 또 다른 조합을 이룰 때, 이 조합들 중 어느 하나는 제1 전도체(11) 및 제2 전도체(12) 중 어느 하나로만 형성되는 제1 조합이되고, 다른 하나는 제1 전도체(11) 및 제2 전도체(12)를 모두 포함하여 형성되는 제2 조합이 된다.1 to 4, in the micro mirror according to the present embodiment, when one fixed electrode 410 and the other moving electrode 320 form a combination, and the other fixed electrode 420 and one side moving electrode 310 form another combination, one of these combinations is a first combination formed of only one of the first conductor 11 and the second conductor 12, and the other is the first conductor 11 ) and a second combination formed by including both the second conductor 12.
이때 제1 조합은, 제1 전도체(11) 및 제2 전도체(12) 중 하측에 배치되는 것 만으로 구성되는 것이 바람직하다. At this time, it is preferable that the first combination is composed only of the first conductor 11 and the second conductor 12 disposed on the lower side.
무빙 전극부(300)와 고정 전극부(400) 사이에 발생하는 정전기력(electrostatic force)는 각 전극이 가지는 전하 사이의 쿨롱 힘(coulomb force)에 기인한다. The electrostatic force generated between the moving electrode unit 300 and the fixed electrode unit 400 is caused by a Coulomb force between electric charges of each electrode.
같은 전위차를 가지는 전극 사이에는 척력이, 서로 다른 전위차를 가지는 전극 사이에는 인력이 작용한다.A repulsive force acts between electrodes having the same potential difference, and an attractive force acts between electrodes having different potential differences.
본 실시형태에 따른 마이크로 미러에서는 제1 전도체(11)와 제2 전도체(12)가 서도 다른 전위(electric potential)를 가짐에 따라 구동전압이 인가되면, 인접한 서로 다른 전위를 가지는 전도체와의 사이에 인력이 발생한다. In the micromirror according to the present embodiment, since the first conductor 11 and the second conductor 12 have different electric potentials, when a driving voltage is applied, an attractive force is generated between the adjacent conductors having different electric potentials.
도 5를 참조하면, 제2 전도체(12)로 구성되는 타측 무빙전극(320)은 타측 고정전극(420)의 제1 전도체(11)와 인력이 형성된다.Referring to FIG. 5 , the other moving electrode 320 composed of the second conductor 12 forms an attractive force with the first conductor 11 of the other fixed electrode 420 .
동시에, 일측 무빙전극(310)의 제1 전도체(11)는 일측 고정전극(410)의 제2 전도체(12)와 인력이 형성된다.At the same time, the first conductor 11 of the one-side moving electrode 310 forms an attractive force with the second conductor 12 of the one-side fixed electrode 410 .
이렇게 형성되는 정전기력은 무빙 전극부(300)를 회전시키는 세로방향 분력을 포함하면서도, 동일 평면상에 형성되는 무빙 전극부(300) 및 고정 전극부(400)의 배치 구조에 따라 가로방향 분력도 발생한다.The electrostatic force thus formed includes a longitudinal component force that rotates the moving electrode unit 300, but also generates a horizontal component force according to the arrangement structure of the moving electrode unit 300 and the fixed electrode unit 400 formed on the same plane.
이때, 본 실시형태에 따른 마이크로 미러는, 가로방향 분력(f1h, f2h)은 서로 상쇄되지만, 세로방향 분력은 토션빔(120)을 중심으로 토션빔(120) 및 미러(110)를 회전시키는 일측 정전기력(f1) 및 타측 정전기력(f2)의 합으로 이루어지는 회전력으로 작용한다. At this time, in the micromirror according to the present embodiment, the horizontal component forces f1h and f2h cancel each other, but the longitudinal component force rotates the torsion beam 120 and the mirror 110 around the torsion beam 120. It acts as a rotational force consisting of the sum of the electrostatic force f1 and the electrostatic force f2 on the other side.
토션빔(120) 및 미러(110)의 회전력에 기여하지 않으면서, 선형으로 작용하는 가로방향 분력(f1h, f2h)은 상쇄하고, 세로방향 분력은 상호 보강하도록 함으로써, 본 실시형태에 따른 마이크로 미러는, 미러(110)의 회전 작동이 기하학적으로 이상적 형태를 가질 수 있다.By not contributing to the rotational force of the torsion beam 120 and the mirror 110, the horizontal component forces f1h and f2h acting linearly are canceled, and the longitudinal component forces mutually reinforce. In the micromirror according to the present embodiment, the rotational operation of the mirror 110 can have a geometrically ideal shape.
또한, 본 실시형태에 따른 마이크로 미러는, 무빙 전극부와 고정 전극부가 과도하게 근접하거나 접촉하여, 구동전압이 해제되더라도 이격되지 못하는 비가역적 작동 불능 상태가 발생하는 것을 방지할 수 있다.In addition, the micromirror according to the present embodiment can prevent an irreversible inoperability state in which the moving electrode unit and the fixed electrode unit are excessively close to each other or come into contact with each other so that they cannot be separated even when the driving voltage is released.
마이크로 미러는, 전도성 재질로 형성되고 수 마이크로 단위의 크기를 가지는 미세 구조물이다. A micromirror is a microstructure made of a conductive material and having a size of several microns.
일상 생활과 같은 거시 세계에서는 크기가 작아 심각한 문제를 일으키지 않는 정전기나 반데르발스 힘(van der Waals)과 같은 미세 작용힘도, 마이크로 미러와 같은 극도로 작은 미시적 구조물에는 큰 영향을 미친다.Microscopic forces such as static electricity and van der Waals, which do not cause serious problems due to their small size in the macroscopic world such as everyday life, have a great effect on extremely small microscopic structures such as micromirrors.
각 구조물의 물성에 의한 복원력이 상술한 미세 작용힘을 보다 작으면, 토션빔 또는 토션빔에 형성된 무빙 전극부가 고정 전극부와 접촉하거나 또는 과도하게 근접한 상태를 해소할 수 없게 된다. If the restoring force due to the physical properties of each structure is smaller than the above-described fine acting force, the state in which the torsion beam or the moving electrode formed in the torsion beam is in contact with or excessively close to the fixed electrode cannot be resolved.
즉, 구동 전압이 인가되어 미러가 이동하거나 회전한 상태에서 원 상태로 복원되지 못하여 작동 불능상태가 된다.That is, in a state in which the driving voltage is applied and the mirror moves or rotates, the mirror cannot be restored to its original state and becomes inoperable.
본 실시형태에 따른 마이크로 미러는, 일측 정전기력과 타측 정전기력이 서로 다른 방향으로 작용하고 특히 가로방향 분력(f1h, f2h) 분력은 서로 상쇄하는 방향으로 작용하기 때문에, 무빙 전극부의 이동 변위와 이에 따른 작동 불능 상태를 방지할 수 있다.In the micromirror according to the present embodiment, since the electrostatic force on one side and the electrostatic force on the other side act in different directions, and especially the component forces in the transverse direction (f1h, f2h) act in mutually canceling directions, displacement of the moving electrode unit and consequently inoperable state can be prevented.
가로방향 분력(f1h, f2h)을 상쇄하면 토션빔(120)의 좌굴(buckling) 현상을 방지하는 효과도 동시에 기대할 수 있다.If the horizontal component forces f1h and f2h are offset, an effect of preventing buckling of the torsion beam 120 can be expected at the same time.
상술한 바와 같이, 토션빔(120)은, 구동전압이 인가됨에 따라 발생하는 일측 정전기력(f1) 및 타측 정전기력(f2)에 의해 비틀림 변형된다.As described above, the torsion beam 120 is torsionally deformed by the electrostatic force f1 on one side and the electrostatic force f2 on the other side generated as the driving voltage is applied.
이때, 가로방향 분력(f1h, f2h)은 토션빔(120)의 비틀림 변형에 의해 토션빔(120)의 길이방향 벡터 성분을 가지게 된다.At this time, the horizontal component forces f1h and f2h have a vector component in the longitudinal direction of the torsion beam 120 due to torsional deformation of the torsion beam 120 .
즉, 토션빔(120)이 비틀림 변형되어 미러가 기울어질 때, 토션빔(120)은 길이 방향으로 가압되어 휘어지는 좌굴(buckling)현상이 발생한다. That is, when the torsion beam 120 is torsionally deformed and the mirror tilts, the torsion beam 120 is pressed in the longitudinal direction and a buckling phenomenon occurs.
이러한 현상은 앞서 기술한 무빙 전극부 및 고정 전극부의 접촉 또는 과도한 근접 상태를 더욱 심화시키는 요인으로 작용할 수 있다.This phenomenon may act as a factor that further intensifies the above-described contact or excessive proximity of the moving electrode unit and the fixed electrode unit.
그러나 본 실시형태에 따른 마이크로 미러는, 가로방향 분력(f1h, f2h)을 모두 상쇄하기 때문에, 가로방향 분력(f1h, f2h)의 직접적인 작용뿐만 아니라, 토션빔(120)의 비틀림 변형과 함께 수반되는 간접적 작용를 원천적으로 제거할 수 있는 효과를 가진다.However, since the micromirror according to the present embodiment cancels both the lateral component forces f1h and f2h, not only the direct action of the lateral component forces f1h and f2h, but also the torsional deformation of the torsion beam 120. It has an effect of fundamentally eliminating the indirect action accompanying.
본 실시형태에 따른 마이크로 미러에서, 고정부(200)와 텐션부(120) 및 미러는(110), 상술한 제1 전도체(11) 및 제2 전도체(12)를 모두 포함하여 형성되는 것이 바람직하다. In the micromirror according to the present embodiment, it is preferable that the fixing part 200, the tension part 120, and the mirror 110 include both the first conductor 11 and the second conductor 12 described above.
이에 따라 고정부(200)와 미러(110) 각각의 마주하는 끝단에서도 쿨롱 힘에 따른 정전기력이 생성될 수 있다. Accordingly, electrostatic force according to the Coulomb force may be generated at the opposite ends of the fixing part 200 and the mirror 110, respectively.
구동 전압이 인가되어 무빙 전극부(300) 및 고정 전극부(400) 사이에 발생하는 정전기력에 따라 미러(110)가 회전하면, 미러(110)와 고정부(200) 각각의 마주하는 끝 단 사이에도 기울어진 상태를 유지하도록 하는 인력이 발생한다. When the mirror 110 rotates according to the electrostatic force generated between the moving electrode unit 300 and the fixed electrode unit 400 when a driving voltage is applied, an attractive force is generated between the opposite ends of the mirror 110 and the fixed unit 200 to maintain the tilted state.
따라서, 기울어진 상태를 안정적으로 유지할 수 있다. Therefore, it is possible to stably maintain the tilted state.
본 실시형태에 따른 마이크로 미러는, 실리콘 웨이퍼 상에 제1 절연층이 형성되고, 그 상측에 제2 전도체(12)가 형성되고, 그 상측에 제2 절연층이 형성되고, 그 상측에 제1 전도체(11)가 형성된 SOI(Silicon on Insulator)를 이용하여 제조되는 것이 바람직하다. The micromirror according to the present embodiment is preferably manufactured using SOI (Silicon on Insulator) in which a first insulating layer is formed on a silicon wafer, a second conductor 12 is formed on the upper side, the second insulating layer is formed on the upper side, and the first conductor 11 is formed on the upper side.
이에 따르면, 제1 조합(본 실시형태에 있어서 타측 무빙전극(320) 및 일측 고정전극(410)으로 이루어지는 조합)을, 일측 및 타측 무빙전극(310, 320)중 어느 한 쪽, 그리고 타측 및 일측 고정전극(410, 420)중 어느 한쪽의 제1 전도체(11)를 선택적으로 식각하는 단 1회의 식각공정으로 제거함으로써, 쉽게 형성할 수 있다.According to this, the first combination (combination consisting of the other moving electrode 320 and one fixed electrode 410 in the present embodiment) can be easily formed by removing one of the one and the other moving electrodes 310 and 320 and the first conductor 11 of either one of the other and one fixed electrodes 410 and 420 in a single etching process for selectively etching.
또한, 제1 전도체(11) 상측에 제1 전극메탈(13) 및 제2 전도체(2) 상측에 제2 전극메탈(14)을 형성함으로써, 제1, 2 전도체(11, 12)에 서로 다른 전위를 인가하여 구동전압을 형성할 수 있다.In addition, by forming the first electrode metal 13 on the upper side of the first conductor 11 and the second electrode metal 14 on the upper side of the second conductor 2, different potentials may be applied to the first and second conductors 11 and 12 to form a driving voltage.
제2 전극메탈(14)는 제1 전도체(11) 및 제2 절연층을 식각하여 노출된 제2 전도체(12) 상면에 형성할 수 있다.The second electrode metal 14 may be formed on the upper surface of the second conductor 12 exposed by etching the first conductor 11 and the second insulating layer.

Claims (6)

  1. 양 끝단이 한 쌍의 지지대에 고정되는 막대형상의 토션빔; 및 판형상으로 상기 토션빔의 중심에 형성되는 미러;를 가지는 미러부;A rod-shaped torsion beam having both ends fixed to a pair of supports; and a mirror unit having a plate shape and formed at the center of the torsion beam.
    상기 미러부 주변에 형성되는 고정부;a fixing part formed around the mirror part;
    상기 토션빔의 폭방향 일측에 형성되는 일측 무빙전극 및; 상기 토션빔의 폭방향 타측에 형성되는 타측 무빙전극;을 포함하는 무빙 전극부; 및one moving electrode formed on one side of the torsion beam in the width direction; a moving electrode unit including a; the other side moving electrode formed on the other side of the torsion beam in the width direction; and
    상기 고정부에 형성되고 상기 일측 무빙전극과 마주하도록 배치되는 일측 고정전극; 및 상기 고정부에 형성되고 상기 타측 무빙전극과 마주하도록 배치되는 타측 고정전극을 포함하는 고정 전극부;를 포함하고, one side fixed electrode formed in the fixing part and disposed to face the one side moving electrode; And a fixed electrode part including the other fixed electrode formed in the fixed part and disposed to face the other moving electrode;
    외부에서 구동전압이 인가되면, 상기 일측 고정전극 및 상기 일측 무빙전극 사이에 일측 정전기력이 생성되고, 상기 타측 고정전극 및 상기 타측 무빙전극 사이에 타측 정전기력이 생성되며, 상기 일측 정전기력 및 상기 타측 정전기력은 상기 토션빔의 길이 방향 축을 회전축으로 하고 동일한 방향으로 회전하는 회전력(torque)을 발생시키는 마이크로 미러.When a driving voltage is applied from the outside, one electrostatic force is generated between the one fixed electrode and the one moving electrode, and the other electrostatic force is generated between the other fixed electrode and the other moving electrode. The one side electrostatic force and the other side electrostatic force generate torque rotating in the same direction with the longitudinal axis of the torsion beam as a rotation axis.
  2. 청구항 1에 있어서, The method of claim 1,
    전도성 재질로 형성되고, 절연층에 의해 구분되어 상하 방향으로 적층되고 외부에서 서로 다른 전위값이 인가되어 상기 구동전압이 인가되는 제1 전도체 및 제2 전도체;를 더 포함하고, A first conductor and a second conductor formed of a conductive material, separated by an insulating layer, stacked vertically, and applied with different potential values from the outside to which the driving voltage is applied; further comprising,
    상기 일측 고정전극과 상기 타측 무빙전극이 조합을 이루고, 상기 타측 고정전극과 상기 일측 무빙전극이 조합을 이루고, The one fixed electrode and the other moving electrode form a combination, the other fixed electrode and the one side moving electrode form a combination,
    상기 조합들 중 어느 하나는 상기 제1 전도체 및 상기 제2 전도체 중 어느 하나로만 형성되는 제1 조합이고, 다른 하나는 상기 제1 전도체 및 상기 제2 전도체를 모두 포함하여 형성되는 제2 조합인 마이크로 미러.One of the combinations is a first combination formed of only one of the first conductor and the second conductor, and the other is a second combination formed including both the first conductor and the second conductor.
  3. 청구항 2에 있어서, The method of claim 2,
    상기 제1 조합은, The first combination,
    상기 제1 전도체 및 상기 제2 전도체 중 하측에 배치되는 것만으로 구성되는 마이크로 미러.A micromirror configured only by being disposed on the lower side of the first conductor and the second conductor.
  4. 청구항 2에 있어서, The method of claim 2,
    상기 고정부와 상기 텐션부 및 상기 미러는, The fixing part, the tension part, and the mirror,
    상기 제1 전도체 및 상기 제2 전도체를 모두 포함하여 형성되는 마이크로 미러.A micro mirror formed by including both the first conductor and the second conductor.
  5. 청구항 2에 있어서, The method of claim 2,
    상기 구동전압은 상기 제1 전도체와 상기 제2 전도체 사이에 인가되는 것을 특징으로 하는 마이크로 미러.The micro mirror, characterized in that the driving voltage is applied between the first conductor and the second conductor.
  6. 청구항 2에 있어서, The method of claim 2,
    상기 제1 전도체는 전체가 전기적으로 연결된 상태로 적층되어 구비되고,The first conductors are stacked and provided in a state in which the entirety is electrically connected,
    상기 제2 전도체는 상기 제1 전도체와 전기적으로 분리되되 전체적으로 전기적으로 연결된 상태로 적층되어 구비되는 마이크로 미러.The second conductor is electrically separated from the first conductor, but is provided in a laminated state electrically connected as a whole.
PCT/KR2022/015559 2022-01-20 2022-10-14 Micro mirror WO2023140463A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0008719 2022-01-20
KR1020220008719A KR102585787B1 (en) 2022-01-20 2022-01-20 Micro Mirror

Publications (1)

Publication Number Publication Date
WO2023140463A1 true WO2023140463A1 (en) 2023-07-27

Family

ID=87348910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/015559 WO2023140463A1 (en) 2022-01-20 2022-10-14 Micro mirror

Country Status (2)

Country Link
KR (1) KR102585787B1 (en)
WO (1) WO2023140463A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050053053A (en) * 2003-12-02 2005-06-08 삼성전자주식회사 Micro mirror and method for fabricating thereof
KR20060018683A (en) * 2004-08-25 2006-03-02 엘지전자 주식회사 Electrostatic mems scanning micromirror and fabrication method thereof
KR100682961B1 (en) * 2006-01-20 2007-02-15 삼성전자주식회사 Rotational micro mirror
KR20080003996A (en) * 2006-07-04 2008-01-09 삼성전자주식회사 Scanning apparatus and method
KR102343643B1 (en) * 2021-04-23 2021-12-27 탈렌티스 주식회사 Optical scanner using dual SOI and method for manufacturing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100469062B1 (en) 2002-08-13 2005-02-02 한국전자통신연구원 Scanning micromirror for optical communication systems and method for manufacturing the same
KR20060010419A (en) * 2004-07-28 2006-02-02 삼성전자주식회사 Optical scanner and laser image projector adopting the same
KR102337083B1 (en) * 2021-04-27 2021-12-08 주식회사 멤스 MEMS mirror including capping layer and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050053053A (en) * 2003-12-02 2005-06-08 삼성전자주식회사 Micro mirror and method for fabricating thereof
KR20060018683A (en) * 2004-08-25 2006-03-02 엘지전자 주식회사 Electrostatic mems scanning micromirror and fabrication method thereof
KR100682961B1 (en) * 2006-01-20 2007-02-15 삼성전자주식회사 Rotational micro mirror
KR20080003996A (en) * 2006-07-04 2008-01-09 삼성전자주식회사 Scanning apparatus and method
KR102343643B1 (en) * 2021-04-23 2021-12-27 탈렌티스 주식회사 Optical scanner using dual SOI and method for manufacturing the same

Also Published As

Publication number Publication date
KR102585787B1 (en) 2023-10-06
KR20230112450A (en) 2023-07-27

Similar Documents

Publication Publication Date Title
US6220561B1 (en) Compound floating pivot micromechanisms
EP0880040B1 (en) Micro machined optical switch
US6533947B2 (en) Microelectromechanical mirror and mirror array
KR950010659B1 (en) Micro light shutter and manufacturing method thereof
US7256927B2 (en) Double-electret mems actuator
JP5646456B2 (en) MEMS device that rotates independently on two rotation axes
KR100452112B1 (en) Electrostatic Actuator
JP3722021B2 (en) Light switch
US20060268383A1 (en) Optical scanner having multi-layered comb electrodes
JP5988592B2 (en) Movable mirror, wavefront correction device and fundus examination apparatus
WO2010121121A2 (en) Long travel range mems actuator
US7038830B2 (en) Micro-oscillation element
JP2016200834A (en) Movable mirror
WO2023140463A1 (en) Micro mirror
JPWO2004034126A1 (en) Micro movable element with torsion bar
JP2004061937A (en) Movable micro device
US20030210453A1 (en) Optical device and a movable mirror driving method
WO2015053422A1 (en) Mems scanner
US6394617B1 (en) Method and apparatus for latched bimorph optical switchs
JP4544574B2 (en) Optical deflection device
JP3828501B2 (en) Optical switch device
CN109192560A (en) A kind of MEMS inertia switch based on the short cant beam bistable structure of three-stage
KR100677204B1 (en) A deformable micromirror with two dimension
JP5408817B2 (en) Micromirror element and micromirror array
CN112946973B (en) Imaging device, electronic apparatus, and imaging anti-shake method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22922322

Country of ref document: EP

Kind code of ref document: A1