WO2023140389A1 - Alloy for semiconductor production apparatuses, alloy member for semiconductor production apparatuses, and product - Google Patents

Alloy for semiconductor production apparatuses, alloy member for semiconductor production apparatuses, and product Download PDF

Info

Publication number
WO2023140389A1
WO2023140389A1 PCT/JP2023/002127 JP2023002127W WO2023140389A1 WO 2023140389 A1 WO2023140389 A1 WO 2023140389A1 JP 2023002127 W JP2023002127 W JP 2023002127W WO 2023140389 A1 WO2023140389 A1 WO 2023140389A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
element group
less
semiconductor manufacturing
group
Prior art date
Application number
PCT/JP2023/002127
Other languages
French (fr)
Japanese (ja)
Inventor
富生 岩崎
潤樹 菅原
寛 大沼
秀峰 小関
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Publication of WO2023140389A1 publication Critical patent/WO2023140389A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent

Definitions

  • the present invention relates to alloys for semiconductor manufacturing equipment used in chambers and the like of semiconductor manufacturing equipment, alloy members for semiconductor manufacturing equipment, and products using the same.
  • a semiconductor chip is obtained by dividing a semiconductor wafer into individual chips through a dicing process after thinning a semiconductor wafer to a predetermined thickness in a back grinding process, an etching process, or the like. At this time, in the semiconductor wafer, the process of laminating each layer in the chamber, the process of partially removing the layers by etching, and the like are repeated.
  • a reactive gas is used in such a lamination process and etching process.
  • reactive gases containing chlorine and bromine may be used.
  • Such reactive gas affects not only the semiconductor wafer but also the inner surface of the chamber, etc., and may corrode the inner surface of the chamber.
  • Patent Document 1 In order to suppress such corrosion in semiconductor manufacturing equipment, a method has been proposed in which the surfaces of various parts in the chamber are coated with ceramics such as Al 2 O 3 , AlN, and TiN (for example, Patent Document 1).
  • An object of the present invention is to provide an alloy for semiconductor manufacturing equipment, an alloy member for semiconductor manufacturing equipment, and a product using the same, which can be suitably used in semiconductor manufacturing equipment.
  • Non-Patent Documents 1 to 6 disclose technical documents necessary for supplementary explanation of the embodiments of the present invention.
  • Non-Patent Document 1 describes a method of simulating the process of atomic motion based on the fundamental equations of quantum mechanics, that is, the calculation principle of the first-principles molecular dynamics method. The electrons and nuclei that make up the atoms in a material obey the laws of quantum mechanics, so this simulation can be used to assess the properties of the material.
  • Non-Patent Document 2 mentions a method of calculating the diffusion coefficient by molecular dynamics simulation.
  • Non-Patent Document 3 refers to a method of calculating adsorption energy by molecular dynamics simulation.
  • Other Non-Patent Documents 4 to 6 will be referred to in the section of the mode for carrying out the invention which will be described later.
  • a first invention for achieving the above-mentioned object is an alloy for semiconductor manufacturing equipment, which contains Ta and Mo as the first element group, at least one selected from the group of Nb, Hf, Zr, Ti and W as the second element group, and inevitable impurity elements, Ta is 10 at% or more and 35 at% or less, Mo is 5 at% or more and 25 at% or less, and each element of the second element group is 10 at% or more and 35 at% or less. , the sum of the first element group, the second element group and the unavoidable element is 100 at %, and the adsorption energy for Cl ions and Br radicals is 0.2 eV or less.
  • each element of the second element may be 10 at% or more and 25 at% or less, and the sum of the first element, the second element, the third element, and the inevitable element may be 100 at%.
  • the adsorption energy to chloride ions and bromine radicals is low, and the diffusion coefficient of chloride ions and bromine radicals is small, so the reactivity to chloride ions and bromine radicals is low, and corrosion resistance can be obtained when used in semiconductor manufacturing equipment.
  • a second invention is an alloy member for a semiconductor manufacturing apparatus, comprising Ta and Mo as the first element group, at least one selected from the group consisting of Nb, Hf, Zr, and W as the second element group, and an unavoidable impurity element, wherein Ta is 10 at% or more and 35 at% or less and Mo is 5 at% or more and 25 at% or less, each element of the second element group is 10 at% or more and 35 at% or less, and the first element group, the An alloy member for semiconductor manufacturing equipment, characterized in that the sum of the second element group and unavoidable elements is 100 at %, and at least a part of the alloy has an adsorption energy of 0.2 eV or less for Cl ions and Br radicals.
  • the alloy may further contain at least one selected from the group of Au, Pt, and Ag as a third element group, each element of the third element group being 10 at% or more and 25 at% or less, and the sum of the first element group, the second element group, the third element group, and unavoidable elements may be 100 at%.
  • the second invention since the adsorption energy with chloride ions and bromine radicals is low, reactivity with chloride ions and bromine radicals is low, and corrosion resistance when used in semiconductor manufacturing equipment can be obtained.
  • a third invention is a product at least partly comprising the alloy member for a semiconductor manufacturing apparatus according to the second invention.
  • the product may be a semiconductor manufacturing device.
  • the third invention it is possible to obtain a product using an alloy member for semiconductor manufacturing equipment with high corrosion resistance.
  • a highly corrosion-resistant semiconductor manufacturing apparatus can be obtained.
  • an alloy for semiconductor manufacturing equipment that can be suitably used in semiconductor manufacturing equipment, an alloy member for semiconductor manufacturing equipment, and a product using the same.
  • the difficulty of adsorbing chlorine ions and the like is expressed, for example, by the low adsorption energy (also called detachment energy) disclosed in Non-Patent Document 5, and it can be said that the smaller the adsorption energy, the more difficult it is to adsorb.
  • the adsorption energy is obtained by calculation, and the calculation method will be described later.
  • the adsorption energy is governed by the lattice constant and the lattice mismatch, which is the relative difference between them.
  • the lattice constant and the lattice mismatch which is the relative difference between them, are more dominant factors than other factors (surface energy, cohesive energy, electronegativity). Therefore, in the present invention, attention is focused on the lattice mismatch, which is the relative difference in lattice constant. Then, the present inventors have found that corrosive gas resistance can be obtained by using a material having a large lattice mismatch with respect to chlorine ions and the like.
  • the lattice mismatch is also called lattice mismatch, and is obtained by calculation, the calculation method of which will be described later.
  • Non-Patent Document 5 describes the bonding strength such as the interface strength between the wiring film and the barrier film of electronic components, and has aimed to reduce the lattice mismatch, ideally to zero. Contrary to these, the present invention obtains resistance to chloride ions and the like by increasing the lattice mismatch, that is, obtains the property of being difficult to react with chloride ions and the like, and is the opposite of the conventional idea.
  • the diffusion coefficient that penetrates from the surface to the inside As a result of examining the relationship between the lattice mismatch and the diffusion coefficient of chloride ions and the like for several alloys, it was found that the adsorption energy and the diffusion coefficient of chloride ions and the like (hereinafter sometimes simply referred to as the diffusion coefficient) can be suppressed by increasing the lattice mismatch.
  • the diffusion coefficient of chlorine ions and the like can also be obtained by calculation, and the calculation method will be described later.
  • the alloy according to this embodiment contains Ta and Mo as the first element group. Moreover, at least one selected from the group consisting of Nb, Hf, Zr, and W is included as the second element group.
  • Mo is 5 to 25 at%
  • each element of the second element is 10 to 35 at%.
  • at least one selected from the group of Au, Pt and Ag may be included as the third element group.
  • the third element group is included, when the total of the first element group, the second element group and the third element group is 100 at %, the amount of each element of the third element group contained is 10 at % to 25 at %.
  • the range of the element ratios of the first element group, the second element group and the third element group is recognized as the content of the elements constituting the high entropy alloy. It should be noted that the element ratio of all the elements constituting the alloy may be equal. For example, the maximum content of each constituent element is less than 50 atomic %, preferably 35 atomic % or less. Moreover, if the third element group is included, the mechanical properties are lowered, but higher corrosive gas resistance can be obtained.
  • the alloy according to the present embodiment may contain unavoidable impurities. For example, unavoidable elements such as C, N, and O may each be contained at 500 ppm or less.
  • FIG. 1 is a diagram showing the adsorption energy for chloride ions for some alloys
  • FIG. 2 is a diagram showing the diffusion coefficient of chloride ions in the alloy. 1 and 2 are calculated values assuming that there are no water molecules. Bromine radicals, although not shown, exhibit substantially the same tendency. It can be seen from FIG. 1 that the adsorption energy decreases as the temperature rises. In this embodiment, the adsorption energy of chlorine ions and the like is desirably 0.2 eV or less. In addition, even when water molecules are present, the same tendency as when water molecules are absent is shown.
  • the diffusion coefficient of chloride ions and the like at 800° C. is desirably 1.0 ⁇ 10 ⁇ 22 m 2 /s or less.
  • the alloy according to the present embodiment preferably has a small adsorption energy and a small diffusion coefficient in order to suppress the chlorine ions from approaching the surface and reacting with them or from penetrating and reacting with them.
  • the alloy according to the present embodiment has an adsorption energy (adsorption energy at 800°C) of chlorine ions and the like of 0.2 eV or less. It can be said that the adsorption energy is one indicator of the resistance to chlorine ions and the like.
  • the adsorption energy in this embodiment is more preferably 0.15 eV or less at room temperature, more preferably 0.1 eV or less, still more preferably 0.05 eV or less, still more preferably 0.035 eV or less, and even more preferably 0.031 eV.
  • alloys according to this embodiment have a body-centered cubic (bcc) crystal structure.
  • the crystal structure is observed by X-ray diffraction (XRD).
  • XRD X-ray diffraction
  • alloys having a single type of bcc structure alloys having a plurality of types of bcc structures may also be used.
  • the alloy according to the present embodiment most preferably has a body-centered cubic lattice structure in its entirety, preferably at a volume ratio (content ratio) of 60% or more, more preferably at a volume ratio (content ratio) of 80% or more.
  • Each item can be calculated using a molecular dynamics simulation as disclosed in Non-Patent Document 1 and the like.
  • the lattice constant for calculating the lattice mismatch was defined as follows based on Non-Patent Document 5. That is, the mismatch between the short-side lattice constant a and the long-side lattice constant b of the face-centered rectangular lattice representing the plane with the highest atomic number density, that is, the close-packed crystal plane described below, is expressed in percent, and is defined as the short-side lattice mismatch ⁇ a and the long-side lattice mismatch ⁇ b. Since ⁇ a with a short interatomic distance is more important, ⁇ a is defined as lattice mismatch in this embodiment unless otherwise specified. It is known from Non-Patent Document 5 and others that crystal planes other than the close-packed crystal planes defined here have a weak contribution to the adsorption energy and therefore do not have much effect.
  • the adsorption energy represents the energy required to change the adsorption state to the detachment state, and is obtained by subtracting the energy in the adsorption state from the energy in the detachment state, as shown in Equation (3) in Non-Patent Document 3.
  • Adsorption energies were calculated using self-developed molecular dynamics software, and in parallel with Dmol3 and Forcite of Materials Studio of Dassault Systèmes, and it was confirmed that the results of the two agree. The larger this value, the easier it is to adsorb.
  • the diffusion coefficient is obtained from the following Einstein relational expression 1 (formula (A) and formula (B)), as shown in formula (2) of Non-Patent Document 2.
  • Equation (B) is obtained by dividing the mean square displacement from t 0 to t + t 0 at the reference time set after sufficient relaxation by 6t, and actually converges in a finite time step, so the diffusion coefficient can be calculated without calculating to infinity.
  • r i (t+t 0 ) ⁇ r i (t 0 ) can be calculated from the equation of motion.
  • the diffusion coefficient of penetration in the direction perpendicular to the interface it can be calculated from the mean square displacement of the displacement in that direction. The larger the diffusion coefficient, the easier the penetration. In other words, it means that chlorine ions and the like easily enter and react from the surface.
  • Table 2 shows the calculation results of adsorption energies and diffusion coefficients for 13 alloys according to this embodiment. Each alloy is 100 at % in total, and Table 3 shows the element ratio of each alloy. Calculation results for lattice mismatch are omitted.
  • All the alloys according to the examples satisfy the adsorption energy of chloride ions and the like of 0.2 eV or less (0.05 eV or less) and the diffusion coefficient of chloride ions and the like of 1.0 ⁇ 10 ⁇ 22 m 2 /s or less (chlorine ions are 1.0 ⁇ 10 ⁇ 24 m 2 /s or less) in any calculation.
  • the adsorption energy of chloride ions and the like was 0.032 eV or less at room temperature, and the diffusion coefficient of chloride ions and the like was 4.0 ⁇ 10 ⁇ 27 m 2 /s or less, showing good results.
  • the alloy according to the present embodiment can be applied to an alloy member at least partially containing the alloy (for example, the surface of the base material) and to a product at least partially including the alloy member.
  • it is preferably applied to the inner surface of a chamber in a semiconductor manufacturing apparatus.
  • modeling can be performed by irradiating an alloy powder having a desired element ratio with an electron beam or a laser beam to melt and solidify.

Abstract

An alloy for semiconductor production apparatuses according to the present invention contains Ta and Mo as a first element group. This alloy for semiconductor production apparatuses additionally contains, as a second element group, at least one element that is selected from the group consisting of Nb, Hf, Zr and W. If the total of the first element group and the second element group is taken as 100 at%, Ta is 10 at% or more but 35 at% or less (hereinafter expressed as 10-35 at% that is the elemental ratio thereof), Mo is 5-25 at%, and each one of the second elements is 10-35 at%. In addition, the adsorption energy of chloride ions or the like is 0.2 eV or less.

Description

半導体製造装置用合金、半導体製造装置用合金部材および製造物Alloys for semiconductor manufacturing equipment, alloy parts and products for semiconductor manufacturing equipment
 本発明は、半導体製造装置のチャンバ等に用いられる半導体製造装置用合金、半導体製造装置用合金部材およびこれを用いた製造物に関する。 The present invention relates to alloys for semiconductor manufacturing equipment used in chambers and the like of semiconductor manufacturing equipment, alloy members for semiconductor manufacturing equipment, and products using the same.
 半導体チップは、半導体ウェハをバックグラインド工程やエッチング工程等において所定厚みに薄膜化した後、ダイシング工程を経て個々のチップに分割することにより得られる。この際、半導体ウェハは、チャンバ内で各層を積層する工程とエッチングによって部分的に除去する工程等が繰り返される。 A semiconductor chip is obtained by dividing a semiconductor wafer into individual chips through a dicing process after thinning a semiconductor wafer to a predetermined thickness in a back grinding process, an etching process, or the like. At this time, in the semiconductor wafer, the process of laminating each layer in the chamber, the process of partially removing the layers by etching, and the like are repeated.
 このような積層工程やエッチング工程では、反応性のガスが用いられる。例えば、塩素や臭素を含む反応性ガスが用いられることがある。このような反応性のガスは、半導体ウェハのみではなく、チャンバ等の内面などへも影響し、チャンバ内面を腐食させるおそれがある。 A reactive gas is used in such a lamination process and etching process. For example, reactive gases containing chlorine and bromine may be used. Such reactive gas affects not only the semiconductor wafer but also the inner surface of the chamber, etc., and may corrode the inner surface of the chamber.
 このような、半導体製造装置における腐食を抑制するため、Al、AlN、TiN等のセラミックスでチャンバ内の各部の表面をコーティングする方法が提案されている(例えば、特許文献1)。 In order to suppress such corrosion in semiconductor manufacturing equipment, a method has been proposed in which the surfaces of various parts in the chamber are coated with ceramics such as Al 2 O 3 , AlN, and TiN (for example, Patent Document 1).
特開2004-72110号公報JP-A-2004-72110
 一方、従来のセラミックスコーティング等による耐食性の向上ではなく、金属部材として利用される合金自体の耐食性の向上も望まれている。本発明は、半導体製造装置において好適に使用可能な半導体製造装置用合金、半導体製造装置用合金部材およびこれを用いた製造物を提供することを目的とする。 On the other hand, it is desired to improve the corrosion resistance of the alloy itself, which is used as a metal member, instead of improving the corrosion resistance of conventional ceramic coatings. An object of the present invention is to provide an alloy for semiconductor manufacturing equipment, an alloy member for semiconductor manufacturing equipment, and a product using the same, which can be suitably used in semiconductor manufacturing equipment.
 なお、非特許文献1~6は、本発明の実施形態を補足説明する上で必要となる技術文献を開示するものである。例えば非特許文献1は、量子力学の基本方程式に基づいて原子が運動する過程をシミュレーションする方法、すなわち第一原理的分子動力学法の計算原理について述べられている。材料中の原子を構成する電子と原子核は量子力学の法則に従うため、このシミュレーションによって材料の特性を評価することができる。非特許文献2は、分子動力学法シミュレーションによって拡散係数を計算する方法について言及している。また、非特許文献3は、分子動力学法シミュレーションによって吸着エネルギを計算する方法について言及している。他の非特許文献4~6は後述する発明を実施する形態の欄において言及する。 Non-Patent Documents 1 to 6 disclose technical documents necessary for supplementary explanation of the embodiments of the present invention. For example, Non-Patent Document 1 describes a method of simulating the process of atomic motion based on the fundamental equations of quantum mechanics, that is, the calculation principle of the first-principles molecular dynamics method. The electrons and nuclei that make up the atoms in a material obey the laws of quantum mechanics, so this simulation can be used to assess the properties of the material. Non-Patent Document 2 mentions a method of calculating the diffusion coefficient by molecular dynamics simulation. Also, Non-Patent Document 3 refers to a method of calculating adsorption energy by molecular dynamics simulation. Other Non-Patent Documents 4 to 6 will be referred to in the section of the mode for carrying out the invention which will be described later.
 前述した目的を達成するための第1の発明は、半導体製造装置用合金であって、第1元素群として、Ta及びMoと、第2元素群としてNb、Hf、Zr、Ti及びWの群より選択される少なくとも一種と、不可避不純物元素とを含み、Taが10at%以上35at%以下、及びMoが5at%以上25at%以下、前記第2元素群の各元素は、それぞれ10at%以上35at%以下であり、前記第1元素群、前記第2元素群及び不可避元素の総和が100at%であり、Clイオン及びBrラジカルに対する吸着エネルギが0.2eV以下であることを特徴とする半導体製造装置用合金である。 A first invention for achieving the above-mentioned object is an alloy for semiconductor manufacturing equipment, which contains Ta and Mo as the first element group, at least one selected from the group of Nb, Hf, Zr, Ti and W as the second element group, and inevitable impurity elements, Ta is 10 at% or more and 35 at% or less, Mo is 5 at% or more and 25 at% or less, and each element of the second element group is 10 at% or more and 35 at% or less. , the sum of the first element group, the second element group and the unavoidable element is 100 at %, and the adsorption energy for Cl ions and Br radicals is 0.2 eV or less.
 さらに、第3元素としてAu、Pt、及びAgの群より選択される少なくとも一種を含み、前記第2元素の各元素は、10at%以上25at%以下であり、前記第1元素、前記第2元素、前記第3元素及び不可避元素の総和が100at%であってもよい。 Furthermore, at least one selected from the group of Au, Pt, and Ag may be included as a third element, each element of the second element may be 10 at% or more and 25 at% or less, and the sum of the first element, the second element, the third element, and the inevitable element may be 100 at%.
 第1の発明によれば、塩素イオン及び臭素ラジカルとの吸着エネルギが低く、また、塩素イオン及び臭素ラジカルの拡散係数が小さいため、塩素イオン及び臭素ラジカルに対する反応性が低く、半導体製造装置に使用した際の耐食性を得ることができる。 According to the first invention, the adsorption energy to chloride ions and bromine radicals is low, and the diffusion coefficient of chloride ions and bromine radicals is small, so the reactivity to chloride ions and bromine radicals is low, and corrosion resistance can be obtained when used in semiconductor manufacturing equipment.
 さらに、第3元素群を加えることで、より高い耐食性を得ることができる。 Furthermore, by adding the third element group, higher corrosion resistance can be obtained.
 第2の発明は、半導体製造装置用合金部材であって、第1元素群として、Ta及びMoと、第2元素群としてNb、Hf、Zr、及びWの群より選択される少なくとも一種と、不可避不純物元素とを含み、Taが10at%以上35at%以下、及びMoが5at%以上25at%以下、前記第2元素群の各元素は、それぞれ10at%以上35at%以下であり、前記第1元素群、前記第2元素群及び不可避元素の総和が100at%であり、Clイオン及びBrラジカルに対する吸着エネルギが0.2eV以下である合金を少なくとも一部に有することを特徴とする半導体製造装置用合金部材である。 A second invention is an alloy member for a semiconductor manufacturing apparatus, comprising Ta and Mo as the first element group, at least one selected from the group consisting of Nb, Hf, Zr, and W as the second element group, and an unavoidable impurity element, wherein Ta is 10 at% or more and 35 at% or less and Mo is 5 at% or more and 25 at% or less, each element of the second element group is 10 at% or more and 35 at% or less, and the first element group, the An alloy member for semiconductor manufacturing equipment, characterized in that the sum of the second element group and unavoidable elements is 100 at %, and at least a part of the alloy has an adsorption energy of 0.2 eV or less for Cl ions and Br radicals.
 前記合金が、さらに、第3元素群としてAu、Pt、及びAgの群より選択される少なくとも一種を含み、前記第3元素群の各元素は、10at%以上25at%以下であり、前記第1元素群、前記第2元素群、前記第3元素群及び不可避元素の総和が100at%であってもよい。 The alloy may further contain at least one selected from the group of Au, Pt, and Ag as a third element group, each element of the third element group being 10 at% or more and 25 at% or less, and the sum of the first element group, the second element group, the third element group, and unavoidable elements may be 100 at%.
 第2の発明によれば、塩素イオン及び臭素ラジカルとの吸着エネルギが低いため、塩素イオン及び臭素ラジカルに対する反応性が低く、半導体製造装置に使用した際の耐食性を得ることができる。 According to the second invention, since the adsorption energy with chloride ions and bromine radicals is low, reactivity with chloride ions and bromine radicals is low, and corrosion resistance when used in semiconductor manufacturing equipment can be obtained.
 さらに、第3元素群を加えることで、より高い耐食性を得ることができる。 Furthermore, by adding the third element group, higher corrosion resistance can be obtained.
 第3の発明は、第2の発明にかかる半導体製造装置用合金部材を、少なくとも一部に備えた製造物である。 A third invention is a product at least partly comprising the alloy member for a semiconductor manufacturing apparatus according to the second invention.
 前記製造物が、半導体製造装置であってもよい。 The product may be a semiconductor manufacturing device.
 第3の発明によれば、耐食性の高い半導体製造装置用合金部材を用いた製造物を得ることができる。特に、耐食性の高い半導体製造装置を得ることができる。 According to the third invention, it is possible to obtain a product using an alloy member for semiconductor manufacturing equipment with high corrosion resistance. In particular, a highly corrosion-resistant semiconductor manufacturing apparatus can be obtained.
 本発明によれば、半導体製造装置において好適に使用可能な半導体製造装置用合金、半導体製造装置用合金部材およびこれを用いた製造物を提供することができる。 According to the present invention, it is possible to provide an alloy for semiconductor manufacturing equipment that can be suitably used in semiconductor manufacturing equipment, an alloy member for semiconductor manufacturing equipment, and a product using the same.
塩素イオンの吸着エネルギを示す図。The figure which shows the adsorption energy of a chloride ion. 塩素イオンの金属中の拡散係数を示す図。The figure which shows the diffusion coefficient in the metal of a chloride ion.
 以下、添付図面を参照しながら、本発明の実施形態について説明する。例えば、半導体製造装置において腐食性ガスに含まれるハロゲンのイオンやラジカルに対する耐食性(腐食性ガス耐性ということがある)を得るためには、塩素イオン、塩素ラジカル、臭素イオン又は臭素ラジカル等(以下、単に塩素イオン等とする)と反応をしにくくする必要がある。このため、本発明において最も重要視した塩素イオン等との反応のしにくさは、塩素イオン等が吸着しにくく(塩素イオン等が接近しにくく)、かつ塩素イオン等が侵入しにくい(表面から塩素イオン等が拡散しにくい)ことが重要である。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. For example, in order to obtain corrosion resistance (sometimes referred to as corrosive gas resistance) against halogen ions and radicals contained in corrosive gases in semiconductor manufacturing equipment, it is necessary to make it difficult to react with chlorine ions, chlorine radicals, bromide ions, bromine radicals, etc. (hereinafter simply referred to as chloride ions, etc.). For this reason, the difficulty of reacting with chlorine ions, etc., which is most important in the present invention, is that chlorine ions, etc. are difficult to adsorb (chlorine ions, etc. are difficult to approach), and chlorine ions, etc. are difficult to penetrate (chlorine ions, etc. are difficult to diffuse from the surface).
 塩素イオン等の吸着しにくさは、例えば非特許文献5に開示されている吸着エネルギ(剥離エネルギとも呼ぶ)の低さで表現され、吸着エネルギが小さいほど吸着しにくいといえる。なお、吸着エネルギは計算により求められるが、その算出方法は後述する。  The difficulty of adsorbing chlorine ions and the like is expressed, for example, by the low adsorption energy (also called detachment energy) disclosed in Non-Patent Document 5, and it can be said that the smaller the adsorption energy, the more difficult it is to adsorb. The adsorption energy is obtained by calculation, and the calculation method will be described later.
 吸着エネルギは、例えば非特許文献6に示されているように、格子定数とその相対差である格子ミスマッチとが支配因子となっている。つまり、他の因子(表面エネルギ、凝集エネルギ、電気陰性度)よりも格子定数とその相対差である格子ミスマッチが支配的な因子といえる。このため、本発明では、格子定数の相対差である格子ミスマッチに着目した。そして、塩素イオン等に対する格子ミスマッチの大きい材料を用いることにより、腐食性ガス耐性が得られることを知見するに至った。なお、格子ミスマッチは、格子不整合とも称され、計算により求められるが、その算出方法は後述する。 As shown in Non-Patent Document 6, for example, the adsorption energy is governed by the lattice constant and the lattice mismatch, which is the relative difference between them. In other words, it can be said that the lattice constant and the lattice mismatch, which is the relative difference between them, are more dominant factors than other factors (surface energy, cohesive energy, electronegativity). Therefore, in the present invention, attention is focused on the lattice mismatch, which is the relative difference in lattice constant. Then, the present inventors have found that corrosive gas resistance can be obtained by using a material having a large lattice mismatch with respect to chlorine ions and the like. The lattice mismatch is also called lattice mismatch, and is obtained by calculation, the calculation method of which will be described later.
 なお、従来の金属材料の分野において、格子ミスマッチが着目される例として、例えば非特許文献5では、電子部品の配線膜とバリア膜の界面強度のような接合強度について記載され、格子ミスマッチを小さく、理想的には格子ミスマッチがゼロになることが目指されてきた。本発明は、これらとは逆に、格子ミスマッチを大きくすることにより塩素イオン等に対する耐性、つまり塩素イオン等と反応しにくい性質を得るものであって、これまでとは発想が逆である。 In addition, in the field of conventional metal materials, as an example of attention paid to lattice mismatch, for example, Non-Patent Document 5 describes the bonding strength such as the interface strength between the wiring film and the barrier film of electronic components, and has aimed to reduce the lattice mismatch, ideally to zero. Contrary to these, the present invention obtains resistance to chloride ions and the like by increasing the lattice mismatch, that is, obtains the property of being difficult to react with chloride ions and the like, and is the opposite of the conventional idea.
 また、塩素イオン等が表面から侵入して反応しないことが腐食性ガス耐性を高める上で重要であるため、塩素イオン等の侵入しやすさを、表面から内部へ入り込む拡散係数で評価される。いくつかの合金について、格子ミスマッチと塩素イオン等の拡散係数との関係について検討した結果、格子ミスマッチを大きくすれば、吸着エネルギおよび塩素イオン等の拡散係数(以下、単に拡散係数ということがある)を小さく抑えることができることがわかった。なお、塩素イオン等の拡散係数も計算で求められるが、その算出方法は後述する。 In addition, since it is important for increasing the resistance to corrosive gases that chlorine ions, etc., enter from the surface and do not react, the ease of penetration of chlorine ions, etc. is evaluated by the diffusion coefficient that penetrates from the surface to the inside. As a result of examining the relationship between the lattice mismatch and the diffusion coefficient of chloride ions and the like for several alloys, it was found that the adsorption energy and the diffusion coefficient of chloride ions and the like (hereinafter sometimes simply referred to as the diffusion coefficient) can be suppressed by increasing the lattice mismatch. The diffusion coefficient of chlorine ions and the like can also be obtained by calculation, and the calculation method will be described later.
 次に、本実施の形態に係る合金についてより詳細に説明する。発明者らは、鋭意研究の結果、Ta及びMoを主成分、例えばTaおよびMoの合計で15at%以上とする多元素合金は、塩素イオン等に対する格子ミスマッチが大きく、この結果、吸着エネルギ及び拡散係数が小さくなり、良好な特性を有することを見出した。表1には、本実施の形態にかかる合金の各成分範囲を示す。 Next, the alloy according to this embodiment will be described in more detail. As a result of intensive research, the inventors have found that a multi-element alloy containing Ta and Mo as main components, for example, a total of 15 at% or more of Ta and Mo, has a large lattice mismatch with respect to chlorine ions and the like, and as a result, the adsorption energy and diffusion coefficient are small, and it has good characteristics. Table 1 shows the range of each component of the alloy according to this embodiment.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本実施形態に係る合金は、第1元素群としてTa及びMoを含む。また、さらに、第2元素群としてNb、Hf、Zr、及びWの群より選択される少なくとも一種を含む。なお、第1元素群と第2元素群を合計で100at%としたとき、Taは10at%以上35at%以下(at%=元素比。以下、10~35at%として記載する。)であり、Moは5~25at%であり、第2元素の各元素は、それぞれ10~35at%である。また、さらに、第3元素群として、Au、Pt、及びAgの群より選択される少なくとも一種を含んでもよい。第3元素群を含む場合には、第1元素群、第2元素群及び第3元素群を合計で100at%としたとき、含有されるそれぞれの第3元素群の元素の量は10at%~25at%である。 The alloy according to this embodiment contains Ta and Mo as the first element group. Moreover, at least one selected from the group consisting of Nb, Hf, Zr, and W is included as the second element group. When the total of the first element group and the second element group is 100 at%, Ta is 10 at% or more and 35 at% or less (at% = element ratio. Hereinafter, described as 10 to 35 at%.), Mo is 5 to 25 at%, and each element of the second element is 10 to 35 at%. Further, at least one selected from the group of Au, Pt and Ag may be included as the third element group. When the third element group is included, when the total of the first element group, the second element group and the third element group is 100 at %, the amount of each element of the third element group contained is 10 at % to 25 at %.
 第1元素群、第2元素群及び第3元素群の元素比の範囲は、ハイエントロピー合金を構成する元素の含有量として認識されている。なお、合金を構成する全元素の元素比を等比としてもよい。例えば、各構成元素の含有量は、最大でも50at%未満であり、好ましくは35at%以下である。また、第3元素群を含むと機械的性質は低下するが、より高い腐食性ガス耐性を得ることができる。なお、本実施形態に係る合金は、不可避的不純物を含有し得る。例えば、C、N、Oなどの不可避元素がそれぞれ500ppm以下で含有し得る。 The range of the element ratios of the first element group, the second element group and the third element group is recognized as the content of the elements constituting the high entropy alloy. It should be noted that the element ratio of all the elements constituting the alloy may be equal. For example, the maximum content of each constituent element is less than 50 atomic %, preferably 35 atomic % or less. Moreover, if the third element group is included, the mechanical properties are lowered, but higher corrosive gas resistance can be obtained. In addition, the alloy according to the present embodiment may contain unavoidable impurities. For example, unavoidable elements such as C, N, and O may each be contained at 500 ppm or less.
 図1は、いくつかの合金について、塩素イオンに対する吸着エネルギを示す図であり、図2は、塩素イオンの合金中の拡散係数を示す図である。なお、図1、図2ともに、水分子がないとした場合の計算値である。なお、臭素ラジカルについては図示を省略するが、略同様の傾向を示す。図1より、温度が上昇すると吸着エネルギが小さくなることがわかる。本実施形態では、塩素イオン等の吸着エネルギは、0.2eV以下であることが望ましい。また、水分子がある場合についても、水分子がないとした場合と同様の傾向を示す。 FIG. 1 is a diagram showing the adsorption energy for chloride ions for some alloys, and FIG. 2 is a diagram showing the diffusion coefficient of chloride ions in the alloy. 1 and 2 are calculated values assuming that there are no water molecules. Bromine radicals, although not shown, exhibit substantially the same tendency. It can be seen from FIG. 1 that the adsorption energy decreases as the temperature rises. In this embodiment, the adsorption energy of chlorine ions and the like is desirably 0.2 eV or less. In addition, even when water molecules are present, the same tendency as when water molecules are absent is shown.
 また、図2より、温度が上昇すると拡散係数が大きくなることがわかる。本実施形態では、800℃における塩素イオン等の拡散係数は、1.0×10-22/s以下であることが望ましい。このように、塩素イオン等の吸着エネルギを所定値以下とすることで、塩素イオン等が合金表面の元素へ接近しにくくし、さらに、塩素イオン等の拡散係数を所定値以下とすることで塩素イオン等が、合金表面から内部へ侵入しにくくなる。このため、腐食性ガス耐性を高めることができる。 Moreover, it can be seen from FIG. 2 that the diffusion coefficient increases as the temperature rises. In this embodiment, the diffusion coefficient of chloride ions and the like at 800° C. is desirably 1.0×10 −22 m 2 /s or less. Thus, by setting the adsorption energy of chlorine ions, etc. to a predetermined value or less, it becomes difficult for chlorine ions, etc., to approach the elements on the alloy surface, and furthermore, by setting the diffusion coefficient of chlorine ions, etc. to a predetermined value or less, it becomes difficult for chlorine ions, etc., to penetrate inside from the alloy surface. Therefore, corrosive gas resistance can be enhanced.
 次に、本実施形態にかかる合金の各評価項目について、より詳細に説明する。 Next, each evaluation item of the alloy according to this embodiment will be described in more detail.
 [格子ミスマッチ]
 前述したように、本実施形態に係る合金は、塩素イオン等が表面に近づいて反応、あるいは侵入して反応するのを抑えるために、吸着エネルギが小さく、拡散係数が小さいことが好ましい。
[Lattice mismatch]
As described above, the alloy according to the present embodiment preferably has a small adsorption energy and a small diffusion coefficient in order to suppress the chlorine ions from approaching the surface and reacting with them or from penetrating and reacting with them.
 [塩素イオン等の吸着エネルギ]
 腐食性ガスに対する耐性を高くする、つまり塩素イオン等と接触した際に、塩素イオン等と反応しにくくするには、塩素イオン等が接近しにくい状態にして、塩素イオン等が吸着しにくい状態にすることが重要となる。塩素イオン等の吸着しやすさは、以下で述べる吸着エネルギで評価でき、吸着エネルギが小さいほど吸着しにくいといえる。詳細は後述するシミュレーションとともに述べる。
[Adsorption energy of chlorine ions, etc.]
In order to increase the resistance to corrosive gases, that is, to make it difficult to react with chlorine ions, etc. when it comes into contact with them, it is important to make it difficult for chlorine ions, etc. to approach and to make it difficult for chlorine ions, etc. to adsorb. The ease with which chlorine ions and the like are adsorbed can be evaluated by the adsorption energy described below, and it can be said that the smaller the adsorption energy, the more difficult it is to adsorb. The details will be described together with the simulation described later.
 前述したように、本実施形態に係る合金は、塩素イオン等の吸着エネルギ(800℃における吸着エネルギ)が0.2eV以下である。吸着エネルギは塩素イオン等に対する耐性を示す一つの指針と言える。本実施形態における吸着エネルギは、より好ましくは室温下で0.15eV以下とし、さらに好ましくは0.1eV以下、さらに好ましくは0.05eV以下、さらに好ましくは0.035eV以下、よりさらに好ましくは0.031eVとする。 As described above, the alloy according to the present embodiment has an adsorption energy (adsorption energy at 800°C) of chlorine ions and the like of 0.2 eV or less. It can be said that the adsorption energy is one indicator of the resistance to chlorine ions and the like. The adsorption energy in this embodiment is more preferably 0.15 eV or less at room temperature, more preferably 0.1 eV or less, still more preferably 0.05 eV or less, still more preferably 0.035 eV or less, and even more preferably 0.031 eV.
 [塩素イオン等の拡散係数]
 塩素イオン等が表面から侵入して反応しないことが耐性を高める上で重要である。塩素イオン等の侵入しやすさは、表面から内部へ入り込む拡散係数で評価することができる。拡散係数は塩素イオン等に対する耐性を示す一つの指針と言える。拡散係数について詳細は後述する。
[Diffusion coefficient of chloride ions, etc.]
It is important to prevent chloride ions and the like from penetrating from the surface and reacting with them in order to increase resistance. The ease of entry of chlorine ions and the like can be evaluated by the diffusion coefficient of penetration from the surface to the inside. It can be said that the diffusion coefficient is one indicator of resistance to chlorine ions and the like. Details of the diffusion coefficient will be described later.
 [結晶構造]
 本実施形態に係る合金は、いずれも結晶構造が体心立方格子(body-centered cubic:bcc)の構造をなしている。結晶構造は、X線回折(XRD:X-ray diffraction)により観察される。なお、単一種のbcc構造からなる合金に加えて、複数種のbcc構造からなる合金でもよい。また、本実施形態に係る合金は、最も好ましくは、組織の全体が体心立方格子構造を有するが、好ましくは体積比率(含有比率)で60%以上、より好ましくは体積比率(含有比率)で80%以上の組織が体心立方格子構造を有する。
[Crystal structure]
All of the alloys according to this embodiment have a body-centered cubic (bcc) crystal structure. The crystal structure is observed by X-ray diffraction (XRD). In addition to alloys having a single type of bcc structure, alloys having a plurality of types of bcc structures may also be used. In addition, the alloy according to the present embodiment most preferably has a body-centered cubic lattice structure in its entirety, preferably at a volume ratio (content ratio) of 60% or more, more preferably at a volume ratio (content ratio) of 80% or more.
 次に、本実施形態の各項目の計算方法について説明する。各項目については、非特許文献1等に開示されているような分子動力学シミュレーションを用いて計算することができる。 Next, the calculation method for each item in this embodiment will be described. Each item can be calculated using a molecular dynamics simulation as disclosed in Non-Patent Document 1 and the like.
 [格子ミスマッチの計算方法]
 格子ミスマッチを計算するための格子定数は、非特許文献5に基づいて、次のように定義した。すなわち、原子数密度が最も高い面、即ち下記する最密結晶面を表す面心長方格子の短辺格子定数aと長辺格子定数bのミスマッチをパーセントで表し、短辺格子ミスマッチΔa、長辺格子ミスマッチΔbとした。そして、原子間距離の短いΔaのほうが重要であるために、本実施形態において特に断りの無い限り、Δaを格子ミスマッチとする。なお、ここで定義した最密結晶面以外の結晶面は、吸着エネルギへの寄与が弱いために、あまり影響しないことが非特許文献5などから知られているので、最密結晶面をもとに判断した。
[Calculation method of lattice mismatch]
The lattice constant for calculating the lattice mismatch was defined as follows based on Non-Patent Document 5. That is, the mismatch between the short-side lattice constant a and the long-side lattice constant b of the face-centered rectangular lattice representing the plane with the highest atomic number density, that is, the close-packed crystal plane described below, is expressed in percent, and is defined as the short-side lattice mismatch Δa and the long-side lattice mismatch Δb. Since Δa with a short interatomic distance is more important, Δa is defined as lattice mismatch in this embodiment unless otherwise specified. It is known from Non-Patent Document 5 and others that crystal planes other than the close-packed crystal planes defined here have a weak contribution to the adsorption energy and therefore do not have much effect.
 以上で定義した格子ミスマッチを計算するためには、非特許文献5などの分子動力学シミュレーションによって、緩和計算をおこない、安定な結晶構造を求めることで、前記のa、bを算出できるため、これをもとに格子ミスマッチを計算することができる。格子定数と格子ミスマッチの計算については、自作の分子動力学ソフトウェアを用いて計算し、併行してダッソーシステムズ(Dassault Systemes)社のMaterials StudioのDmol3およびForciteで計算し、両者の結果が一致することを確認した。 In order to calculate the lattice mismatch defined above, a relaxation calculation is performed by molecular dynamics simulation such as Non-Patent Document 5, and a stable crystal structure is obtained, so that the above a and b can be calculated. The lattice constant and lattice mismatch were calculated using self-made molecular dynamics software, and in parallel with Dmol3 and Forcite of Materials Studio of Dassault Systemes, and it was confirmed that the results of both agree.
 [吸着エネルギの計算方法]
 吸着エネルギは、吸着状態を剥離状態にする上で必要なエネルギを表し、非特許文献3の式(3)に示されている通り、剥離状態のエネルギから吸着状態のエネルギを引き算することで得られる。吸着エネルギの計算については、自作の分子動力学ソフトウェアを用いて計算し、併行してダッソーシステムズ社のMaterials StudioのDmol3およびForciteで計算し、両者の結果が一致することを確認した。この値が大きいほど、吸着しやすいことを表す。
[Calculation method of adsorption energy]
The adsorption energy represents the energy required to change the adsorption state to the detachment state, and is obtained by subtracting the energy in the adsorption state from the energy in the detachment state, as shown in Equation (3) in Non-Patent Document 3. Adsorption energies were calculated using self-developed molecular dynamics software, and in parallel with Dmol3 and Forcite of Materials Studio of Dassault Systèmes, and it was confirmed that the results of the two agree. The larger this value, the easier it is to adsorb.
 [拡散係数の計算方法]
 拡散係数は、非特許文献2の式(2)に示されている通り、次のアインシュタインの関係式である式1(式(A)、式(B))から求められる。
[How to calculate the diffusion coefficient]
The diffusion coefficient is obtained from the following Einstein relational expression 1 (formula (A) and formula (B)), as shown in formula (2) of Non-Patent Document 2.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 式(B)は、十分に緩和した後に設定した基準となる時刻のt0からt+t0までの平均二乗変位を6tで割り算したもので、実際には有限の時間ステップで収束するので、無限大まで計算しなくても拡散係数を算出することができる。なお、ri(t+t0)-ri(t0)は、運動方程式から算出することができる。なお、界面に垂直な方向に侵入する拡散係数を求める場合には、その方向への変位の平均二乗変位から算出することができる。この拡散係数が大きいほど、侵入しやすいことを表す。つまり、塩素イオン等が表面から侵入して反応しやすいことを意味する。 Equation (B) is obtained by dividing the mean square displacement from t 0 to t + t 0 at the reference time set after sufficient relaxation by 6t, and actually converges in a finite time step, so the diffusion coefficient can be calculated without calculating to infinity. Note that r i (t+t 0 )−r i (t 0 ) can be calculated from the equation of motion. When obtaining the diffusion coefficient of penetration in the direction perpendicular to the interface, it can be calculated from the mean square displacement of the displacement in that direction. The larger the diffusion coefficient, the easier the penetration. In other words, it means that chlorine ions and the like easily enter and react from the surface.
 [計算結果]
 次に、本実施形態に係る各合金を説明する。表2には、本実施形態に係る13種類の合金について、吸着エネルギと拡散係数の計算結果を示す。なお、各合金は、トータルで100at%であり、各合金の元素比を表3に示す。なお、格子ミスマッチについての計算結果は省略する。
[Calculation result]
Next, each alloy according to this embodiment will be described. Table 2 shows the calculation results of adsorption energies and diffusion coefficients for 13 alloys according to this embodiment. Each alloy is 100 at % in total, and Table 3 shows the element ratio of each alloy. Calculation results for lattice mismatch are omitted.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 実施例に係る全ての合金は、いずれの計算においても、塩素イオン等の吸着エネルギが0.2eV以下(0.05eV以下)を満たし、塩素イオン等の拡散係数が1.0×10-22/s以下(塩素イオンは、1.0×10-24/s以下)を満たす結果となった。特に、Au、Pt、Agを含む合金では、塩素イオン等の吸着エネルギが室温下で0.032eV以下であり、塩素イオン等の拡散係数も4.0×10-27/s以下であり、良好な結果となった。 All the alloys according to the examples satisfy the adsorption energy of chloride ions and the like of 0.2 eV or less (0.05 eV or less) and the diffusion coefficient of chloride ions and the like of 1.0×10 −22 m 2 /s or less (chlorine ions are 1.0×10 −24 m 2 /s or less) in any calculation. In particular, in alloys containing Au, Pt, and Ag, the adsorption energy of chloride ions and the like was 0.032 eV or less at room temperature, and the diffusion coefficient of chloride ions and the like was 4.0×10 −27 m 2 /s or less, showing good results.
 このように、本実施形態に係る合金は、その合金を少なくとも一部(例えば母材の表面)に含む合金部材、およびその合金部材を少なくとも一部に備えた製造物に適用することができる。特に半導体製造装置におけるチャンバの内面等に適用することが好ましい。例えば、所望の元素比の合金粉末に電子ビーム又はレーザビームを照射し、溶融凝固させることにより造形を行うことができる。 In this way, the alloy according to the present embodiment can be applied to an alloy member at least partially containing the alloy (for example, the surface of the base material) and to a product at least partially including the alloy member. In particular, it is preferably applied to the inner surface of a chamber in a semiconductor manufacturing apparatus. For example, modeling can be performed by irradiating an alloy powder having a desired element ratio with an electron beam or a laser beam to melt and solidify.
 以上、添付図を参照しながら、本発明の実施の形態を説明したが、本発明の技術的範囲は、前述した実施の形態に左右されない。当業者であれば、特許請求の範囲に記載された技術的思想の範疇内において各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。 Although the embodiments of the present invention have been described above with reference to the attached drawings, the technical scope of the present invention is not affected by the above-described embodiments. It is clear that a person skilled in the art can conceive of various modifications or modifications within the scope of the technical idea described in the claims, and these are naturally within the technical scope of the present invention.

Claims (6)

  1.  半導体製造装置用合金であって、
     第1元素群として、Ta及びMoと、
     第2元素群としてNb、Hf、Zr、Ti及びWの群より選択される少なくとも一種と、
     Taが10at%以上35at%以下、及びMoが5at%以上25at%以下、前記第2元素群の各元素は、それぞれ10at%以上35at%以下であり、
     Clイオン及びBrラジカルに対する吸着エネルギが0.2eV以下であることを特徴とする半導体製造装置用合金。
    An alloy for semiconductor manufacturing equipment,
    Ta and Mo as the first element group,
    at least one selected from the group consisting of Nb, Hf, Zr, Ti and W as the second element group;
    Ta is 10 at% or more and 35 at% or less, Mo is 5 at% or more and 25 at% or less, and each element of the second element group is 10 at% or more and 35 at% or less,
    An alloy for semiconductor manufacturing equipment, characterized in that the adsorption energy for Cl ions and Br radicals is 0.2 eV or less.
  2.  さらに、第3元素群としてAu、Pt、及びAgの群より選択される少なくとも一種を含み、
     前記第3元素群の各元素は、10at%以上25at%以下であり、
     前記第1元素群、前記第2元素群、前記第3元素群及び不可避元素の総和が100at%であることを特徴とする請求項1記載の半導体製造装置用合金。
    Further, containing at least one selected from the group of Au, Pt, and Ag as the third element group,
    Each element of the third element group is 10 at% or more and 25 at% or less,
    2. The alloy for semiconductor manufacturing equipment according to claim 1, wherein the sum of said first element group, said second element group, said third element group and unavoidable elements is 100 at %.
  3.  半導体製造装置用合金部材であって、
     第1元素群として、Ta及びMoと、
     第2元素群としてNb、Hf、Zr、及びWの群より選択される少なくとも一種と、
     Taが10at%以上35at%以下、及びMoが5at%以上25at%以下、前記第2元素群の各元素は、それぞれ10at%以上35at%以下であり、
     Clイオン及びBrラジカルに対する吸着エネルギが0.2eV以下である合金を少なくとも一部に有することを特徴とする半導体製造装置用合金部材。
    An alloy member for semiconductor manufacturing equipment,
    Ta and Mo as the first element group,
    at least one selected from the group consisting of Nb, Hf, Zr, and W as the second element group;
    Ta is 10 at% or more and 35 at% or less, Mo is 5 at% or more and 25 at% or less, and each element of the second element group is 10 at% or more and 35 at% or less,
    1. An alloy member for semiconductor manufacturing equipment, comprising at least a part of an alloy having an adsorption energy of 0.2 eV or less for Cl ions and Br radicals.
  4.  前記合金が、さらに、第3元素群としてAu、Pt、及びAgの群より選択される少なくとも一種を含み、
     前記第3元素群の各元素は、10at%以上25at%以下であり、
     前記第1元素群、前記第2元素群、前記第3元素群及び不可避元素の総和が100at%であることを特徴とする請求項3記載の半導体製造装置用合金部材。
    The alloy further contains at least one selected from the group of Au, Pt, and Ag as a third element group,
    Each element of the third element group is 10 at% or more and 25 at% or less,
    4. The alloy member for semiconductor manufacturing equipment according to claim 3, wherein the sum of said first element group, said second element group, said third element group and unavoidable elements is 100 at %.
  5.  請求項3または請求項4に記載の半導体製造装置用合金部材を、少なくとも一部に備えた製造物。 A product at least partly comprising the alloy member for semiconductor manufacturing equipment according to claim 3 or claim 4.
  6.  前記製造物が、半導体製造装置であることを特徴とする請求項5に記載の製造物。 The product according to claim 5, wherein the product is a semiconductor manufacturing device.
PCT/JP2023/002127 2022-01-24 2023-01-24 Alloy for semiconductor production apparatuses, alloy member for semiconductor production apparatuses, and product WO2023140389A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-008439 2022-01-24
JP2022008439 2022-01-24

Publications (1)

Publication Number Publication Date
WO2023140389A1 true WO2023140389A1 (en) 2023-07-27

Family

ID=87348352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/002127 WO2023140389A1 (en) 2022-01-24 2023-01-24 Alloy for semiconductor production apparatuses, alloy member for semiconductor production apparatuses, and product

Country Status (1)

Country Link
WO (1) WO2023140389A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018070949A (en) * 2016-10-28 2018-05-10 国立大学法人大阪大学 Alloy made of multicomponent system
WO2021193529A1 (en) * 2020-03-26 2021-09-30 日立金属株式会社 Alloy and member
WO2021251145A1 (en) * 2020-06-10 2021-12-16 国立大学法人大阪大学 Multicomponent system alloy
CN114606424A (en) * 2022-05-11 2022-06-10 北京科技大学 High-strength high-toughness Mo-Nb-Ta-Hf-Zr refractory high-entropy alloy and preparation method thereof
JP2023047623A (en) * 2021-09-27 2023-04-06 国立大学法人東北大学 Heat-resistant alloy and method for producing heat-resistant alloy

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018070949A (en) * 2016-10-28 2018-05-10 国立大学法人大阪大学 Alloy made of multicomponent system
WO2021193529A1 (en) * 2020-03-26 2021-09-30 日立金属株式会社 Alloy and member
WO2021251145A1 (en) * 2020-06-10 2021-12-16 国立大学法人大阪大学 Multicomponent system alloy
JP2023047623A (en) * 2021-09-27 2023-04-06 国立大学法人東北大学 Heat-resistant alloy and method for producing heat-resistant alloy
CN114606424A (en) * 2022-05-11 2022-06-10 北京科技大学 High-strength high-toughness Mo-Nb-Ta-Hf-Zr refractory high-entropy alloy and preparation method thereof

Similar Documents

Publication Publication Date Title
Los et al. Extended Tersoff potential for boron nitride: Energetics and elastic properties of pristine and defective h-BN
Ardeljan et al. Room temperature deformation mechanisms of Mg/Nb nanolayered composites
Ivashchenko et al. Phase stability and mechanical properties of niobium nitrides
Kim et al. Microcompression study of Al-Nb nanoscale multilayers
Benedek et al. The effect of misfit on heterophase interface energies
Gupta et al. Depth dependence of vacancy formation energy at (100),(110), and (111) Al surfaces: A first-principles study
Liu et al. Theoretical strength and charge redistribution of fcc Ni in tension and shear
Imafuku et al. Computer simulations of the structures of the metallic superlattices Au/Ni and Cu/Ni and their elastic moduli
Neumeier et al. Partitioning behavior of Nb, Ta, and Zr in fully lamellar γ/α2 titanium aluminides and its effect on the lattice misfit and creep behavior
Wang et al. The ideal strength of gold under uniaxial stress: an ab initio study
WO2023140389A1 (en) Alloy for semiconductor production apparatuses, alloy member for semiconductor production apparatuses, and product
Schönecker et al. Lattice dynamics and metastability of fcc metals in the hcp structure and the crucial role of spin-orbit coupling in platinum
Zhang et al. Modelling of the elastic properties of crystalline silicon using lattice dynamics
Fu et al. Mechanisms for ion-irradiation-induced relaxation of stress in mosaic structured Cu thin films
Hemzalová et al. Ab initio study of thermodynamic, electronic, magnetic, structural, and elastic properties of Ni 4 N allotropes
Chatelier et al. Revealing the epitaxial interface between Al13Fe4 and Al5Fe2 enabling atomic Al interdiffusion
Yadav et al. Ab initio modeling of zincblende AlN layer in Al-AlN-TiN multilayers
Wu et al. Controlled epitaxial growth of body-centered cubic and face-centered cubic Cu on MgO for integration on Si
Shi et al. Ultrahigh mechanical flexibility induced superior piezoelectricity of InSeBr-type 2D Janus materials
Wessel et al. Adhesion of the TiN/Fe interface with point defects from first principles
Luo et al. Structure and solid state reactions of laser‐deposited and sputtered Fe/Nb and Fe/Ag multilayers
Melnikov et al. Adhesion at the interfaces between BCC metals and α-Al 2 O 3
Pei et al. The local strain distribution in bilayer materials: A multiscale study
Ji et al. Metastable tetragonal states of zirconium: Theory and experiment
Teweldeberhan et al. Calculated pressure dependence of the localized vibrational mode of nitrogen in GaN x As 1− x

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23743381

Country of ref document: EP

Kind code of ref document: A1