WO2023140280A1 - Braking control device - Google Patents

Braking control device Download PDF

Info

Publication number
WO2023140280A1
WO2023140280A1 PCT/JP2023/001302 JP2023001302W WO2023140280A1 WO 2023140280 A1 WO2023140280 A1 WO 2023140280A1 JP 2023001302 W JP2023001302 W JP 2023001302W WO 2023140280 A1 WO2023140280 A1 WO 2023140280A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
cylinder
valve
control device
wheel
Prior art date
Application number
PCT/JP2023/001302
Other languages
French (fr)
Japanese (ja)
Inventor
和俊 余語
康典 坂田
翔太 加藤
Original Assignee
株式会社アドヴィックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アドヴィックス filed Critical 株式会社アドヴィックス
Publication of WO2023140280A1 publication Critical patent/WO2023140280A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/12Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid
    • B60T13/14Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid using accumulators or reservoirs fed by pumps
    • B60T13/148Arrangements for pressure supply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • B60T17/18Safety devices; Monitoring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/40Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition comprising an additional fluid circuit including fluid pressurising means for modifying the pressure of the braking fluid, e.g. including wheel driven pumps for detecting a speed condition, or pumps which are controlled by means independent of the braking system

Definitions

  • the present invention relates to a braking control device that generates braking force at the wheels of a vehicle by adjusting the hydraulic pressure in the wheel cylinders.
  • the braking control device disclosed in Patent Document 1 includes an electric cylinder device and a control section.
  • the electric cylinder device includes a slave cylinder and an electric motor that is a power source for the slave cylinder. No return spring is arranged in the slave cylinder of the electric cylinder device.
  • the electric motor is driven by the controller, the piston moves from the reference position in the slave cylinder. Then, an amount of brake fluid corresponding to the amount of movement of the piston from the reference position is supplied from the slave cylinder to the wheel cylinder.
  • the hydraulic pressure in the wheel cylinder increases, and braking force corresponding to the hydraulic pressure is generated at the wheels.
  • One aspect of the braking control device for solving the above problems is a device that generates braking force at the wheels of the vehicle by adjusting the hydraulic pressure in the wheel cylinder.
  • This braking control device has a slave cylinder, a piston slidable in the slave cylinder, and an electric motor capable of generating a driving force for sliding the piston.
  • An electric cylinder device that supplies brake fluid from the fluid chamber through a fluid passage to the wheel cylinder by moving the piston so that the volume of the fluid chamber formed in the slave cylinder is reduced, an electromagnetic valve arranged in the fluid passage, and a pressurization device capable of supplying the brake fluid to a portion of the fluid passage closer to the wheel cylinder than the electromagnetic valve.
  • a pressurizing unit and a controller for controlling the pressurizing unit are provided.
  • control unit When the control unit detects that the electric motor cannot be driven while the vehicle is stopped, the control unit supplies brake fluid to the pressurizing device with the electromagnetic valve closed, thereby controlling the pressurizing unit so that the pressure in the portion of the fluid path closer to the wheel cylinder than the electromagnetic valve becomes higher than the pressure in the portion closer to the slave cylinder than the electromagnetic valve. Execute stop time processing to flow.
  • the pressurizing unit when the vehicle stop process is executed, the pressurizing unit is operated to make the pressure in the portion of the liquid passage closer to the wheel cylinder than the solenoid valve higher than the pressure in the portion closer to the slave cylinder than the solenoid valve. Since the electromagnetic valve is opened after the differential pressure is increased in this manner, the brake fluid flows from the wheel cylinder to the slave cylinder. As a result, the pressure is applied to the slave cylinder, and the piston can be moved toward the reference position against the sliding resistance that hinders the movement of the piston in the electric cylinder device.
  • This braking control device for solving the above problems is a device that generates braking force at the wheels of the vehicle by adjusting the hydraulic pressure of the wheel cylinders.
  • This braking control device includes a slave cylinder, a piston slidable in the slave cylinder, and an electric motor capable of generating a driving force for sliding the piston.
  • An electric cylinder device that supplies brake fluid from the fluid chamber to the wheel cylinder through a fluid passage by moving the piston so that the volume of the fluid chamber formed in the slave cylinder is reduced, a holding valve arranged in the fluid passage, a pressure reducing valve that reduces the hydraulic pressure of the wheel cylinder in an open state, and the pressure reducing valve that is open.
  • a pressurizing unit having a pressurizing device capable of supplying brake fluid sucked from the wheel cylinder via the pressure reducing valve to a portion of the fluid passage closer to the slave cylinder than the holding valve, and a control unit for controlling the pressurizing unit.
  • the control unit detects that the electric motor has become undrivable, and there is no braking request, the control unit opens the pressure reducing valve, closes the holding valve, and operates the pressurizing device.
  • the holding valve is closed and the pressure reducing valve is opened, so the brake fluid in the wheel cylinder is sucked by the pressurizing device and supplied to the part of the fluid path closer to the slave cylinder than the holding valve. That is, the brake fluid flows from the pressure device toward the wheel cylinder.
  • the pressure is applied to the slave cylinder, and the piston can be moved toward the reference position against the sliding resistance that hinders the movement of the piston in the electric cylinder device.
  • the braking control device described above can return the piston to the reference position even if the electric motor cannot be driven and the piston has not returned to the reference position.
  • FIG. 1 is a configuration diagram showing an outline of a braking control device according to an embodiment.
  • FIG. 2 is a flow chart showing a processing routine executed to detect the state of the upstream pressurizing section of the braking control device.
  • FIG. 3 is a flowchart showing a processing routine that is executed while the vehicle is running.
  • FIG. 4 is a time chart when running processing is executed.
  • FIG. 5 is a flow chart showing a processing routine executed when the vehicle is stopped.
  • FIG. 6 is a time chart when the vehicle stop process is executed.
  • FIG. 7 is a configuration diagram showing an outline of an upstream pressurizing section of a modification.
  • the braking control device 10 is a device that generates braking force at the wheels by adjusting the hydraulic pressures of wheel cylinders 11L and 11R for the left and right front wheels and wheel cylinders 12L and 12R for the left and right rear wheels.
  • the braking control device 10 includes an upstream pressurizing section 20 and a downstream pressurizing section 30 .
  • the upstream pressure unit 20 is connected through the first fluid passage 13 to the wheel cylinders 11L and 11R for the left and right front wheels.
  • the upstream pressurizing section 20 is connected to the wheel cylinders 12L and 12R for the left and right rear wheels via the second fluid passage 14 .
  • the upstream pressurization section 20 includes a reserve tank 21 , a master cylinder 22 , an electric cylinder device 23 , a master cut valve 24 , a system cutoff valve 25 , a simulator cut valve 26 , a stroke simulator 27 and an upstream control device 28 .
  • the reserve tank 21 is a tank that stores brake fluid.
  • the master cylinder 22 is a mechanical pressurizing device that generates hydraulic pressure in response to depression of the brake pedal 15 .
  • the electric cylinder device 23 is an electric pressure device that electrically generates hydraulic pressure.
  • the master cut valve 24 and the system cutoff valve 25 constitute a switching mechanism for switching the state of the upstream pressurizing section 20 .
  • the master cut valve 24 is a normally open solenoid valve
  • the system cutoff valve 25 is a normally closed solenoid valve.
  • the simulator cut valve 26 is a normally closed electromagnetic valve that switches between a state in which the master cylinder 22 and the stroke simulator 27 are hydraulically connected and a state in which the communication is blocked.
  • the upstream control device 28 is an electronic control device that controls the electric cylinder device 23 , the master cut valve 24 , the system cutoff valve 25 and the simulator cut valve 26 .
  • a master piston 221 is slidably provided inside the master cylinder 22 .
  • a pressure chamber 222 into which brake fluid is introduced is defined inside the master cylinder 22 by the master piston 221 .
  • a brake pedal 15 is mechanically connected to the master piston 221 .
  • the operating position of the master piston 221 in the master cylinder 22 changes in conjunction with depression of the brake pedal 15 .
  • the operating position is the position of the master piston 221 within the range in which the master piston 221 can slide within the master cylinder 22 .
  • the volume of the pressure chamber 222 changes depending on the operating position of the master piston 221 .
  • the master cylinder 22 also has a biasing member 223 that biases the master piston 221 in a direction to increase the volume of the pressure chamber 222 .
  • the master cylinder 22 has two ports, an input port 224 and an output port 225, as ports for communicating the pressure chamber 222 with the outside.
  • the pressure chamber 222 is connected to the reserve tank 21 via the input port 224 .
  • the input port 224 is open when the brake pedal 15 is not operated, but is closed by the master piston 221 when the brake pedal 15 is operated and the amount of operation exceeds a certain amount.
  • the output port 225 of the master cylinder 22 is always open regardless of whether the brake pedal 15 is operated.
  • An output port 225 of the master cylinder 22 is connected to the stroke simulator 27 via the simulator cut valve 26 .
  • the stroke simulator 27 is a device that generates reaction force to the operation of the brake pedal 15 .
  • the output port 225 of the master cylinder 22 is connected to the first fluid passage 13 via the master cut valve 24 .
  • the electric cylinder device 23 has a slave cylinder 230 , a piston 231 slidable in the slave cylinder 230 , an electric motor 233 , and a linear motion conversion mechanism 234 that converts rotation of the electric motor 233 into linear motion of the piston 231 .
  • a fluid chamber 232 into which brake fluid is introduced is defined by a piston 231 .
  • the operating position of the piston 231 inside the slave cylinder 230 is changed by an electric motor 233 . That is, the electric motor 233 can generate driving force for sliding the piston 231 within the slave cylinder 230 .
  • the volume of the liquid chamber 232 changes according to the change in the operating position of the piston 231 .
  • the moving direction of the piston 231 that reduces the volume of the liquid chamber 232 is referred to as the "braking direction Za", and the direction opposite to the braking direction Za is referred to as the "releasing direction Zb". Further, the operating position of the piston 231 at which the volume of the liquid chamber 232 is maximized is referred to as a "reference position”.
  • Two ports, an input port 236 and an output port 237, are formed in the slave cylinder 230 as ports for communicating the fluid chamber 232 with the outside.
  • a fluid chamber 232 of the slave cylinder 230 is connected to the reserve tank 21 via an input port 236 .
  • the input port 236 is open when the piston 231 is positioned at the reference position, and is closed by the piston 231 when the piston 231 moves from the reference position in the braking direction Za.
  • the output port 237 of the slave cylinder 230 is always open regardless of the position of the piston 231 .
  • An output port 237 of the slave cylinder 230 is connected to the second fluid passage 14 .
  • the output port 237 of the slave cylinder 230 is connected to the first liquid passage 13 via the system cutoff valve 25 . When the system cutoff valve 25 is open, the first fluid path 13 and the second fluid path 14 are in communication with each other.
  • a cup seal 238 that fills the gap between the inner wall of the slave cylinder 230 and the piston 231 is provided in the braking direction Za from the input port 236 .
  • a cup seal 239 that fills the gap between the inner wall of the slave cylinder 230 and the piston 231 is provided in the release direction Zb from the input port 236 .
  • the two cup seals 238, 239 are made of elastic material.
  • the upstream control device 28 is an electronic control device that includes one or more processors that execute various controls and a memory that stores control programs and data.
  • the upstream control device 28 controls the electric cylinder device 23 , the master cut valve 24 , the system cutoff valve 25 and the simulator cut valve 26 .
  • Detection signals from various sensors such as a stroke sensor 280 , a master pressure sensor 281 and an output pressure sensor 282 are input to the upstream control device 28 .
  • the stroke sensor 280 is a sensor that detects a pedal stroke S, which is the amount of depression of the brake pedal 15 by the driver.
  • the master pressure sensor 281 is a sensor that detects the master pressure P0, which is the hydraulic pressure that the master cylinder 22 outputs from the output port 225 .
  • the output pressure sensor 282 is a sensor that detects a slave pressure P ⁇ b>2 that is the hydraulic pressure that the slave cylinder 230 outputs from the output port 237 .
  • the upstream control device 28 can communicate with a downstream control device 35 provided in the upstream pressure section 20 .
  • the upstream control device 28 controls the electric cylinder device 23, the master cut valve 24, the system cutoff valve 25 and the simulator cut valve 26 based on the detection results of the stroke sensor 280, master pressure sensor 281, output pressure sensor 282, and the like.
  • the downstream pressurizing section 30 is a unit capable of individually adjusting the pressure of the plurality of wheel cylinders 11L, 11R, 12L, 12R.
  • the downstream pressurizing section 30 includes a front wheel side assisting device 31 , a rear wheel side assisting device 32 , a hydraulic pressure sensor 33 and a downstream control device 35 .
  • the rear wheel side assist device 32 is a device that generates a braking force on the rear wheels by adjusting the hydraulic pressures of the wheel cylinders 12L and 12R for the left and right rear wheels.
  • the front wheel side assist device 31 is a device that generates a braking force on the front wheels by adjusting the hydraulic pressures of the wheel cylinders 11L and 11R of the left and right front wheels.
  • the hydraulic pressure sensor 33 is a sensor that detects the hydraulic pressure P ⁇ b>1 supplied to the first liquid passage 13 by the upstream pressurizing section 20 .
  • the downstream control device 35 is an electronic control device that controls the front wheel side assisting device 31 and the rear wheel side assisting device 32 .
  • the rear wheel side assisting device 32 corresponds to the "pressure unit”
  • the downstream control device 35 corresponds to the "control section".
  • the wheel cylinders 12L and 12R of the rear wheels correspond to the first wheel cylinder in this embodiment.
  • the front wheel side assisting device 31 is referred to as a "second pressure unit” and the wheel cylinder whose hydraulic pressure is adjusted by the second pressure unit is referred to as a "second wheel cylinder”
  • the wheel cylinders 11L and 11R of the front wheels correspond to the second wheel cylinder in this embodiment.
  • This hydraulic circuit includes a differential pressure control valve 301 , a holding valve 302 , a pressure reducing valve 303 , a pump 304 , a pressure regulating reservoir 306 and a reflux fluid path 307 .
  • the second fluid path 14 is connected to the fluid path 308 via the differential pressure control valve 301 .
  • the differential pressure control valve 301 is a normally open linear solenoid valve.
  • the differential pressure control valve 301 operates to adjust the differential pressure between the slave cylinder 230 side and the wheel cylinder 12L side of the differential pressure control valve 301 .
  • the differential pressure referred to here is a value obtained by subtracting the pressure of a portion closer to the slave cylinder 230 than the differential pressure control valve 301 from the pressure of the portion closer to the wheel cylinder than the differential pressure control valve 301 in the fluid passage.
  • the liquid passage 308 is connected to the wheel cylinder 12L via the holding valve 302.
  • a liquid passage 310 connects the holding valve 302 and the wheel cylinder 11L.
  • the holding valve 302 is a normally open electromagnetic valve that closes when energized and opens when energized. For example, the holding valve 302 is closed when restricting an increase in hydraulic pressure in the wheel cylinder 12L.
  • the liquid path 310 is connected to the pressure regulation reservoir 306 via the pressure reducing valve 303 .
  • the pressure reducing valve 303 is a normally closed electromagnetic valve that opens when energized and closes when energized. For example, the pressure reducing valve 303 is opened when the brake fluid is discharged from the wheel cylinder 12L.
  • the pressure reducing valve 303 and the pressure regulating reservoir 306 are connected through a liquid passage 312 .
  • the liquid path 312 is connected to the liquid path 308 through the pump liquid path 313 .
  • a pump 304 is installed in the pump fluid path 313 .
  • the pump 304 operates by receiving the rotation of the pump motor 305 .
  • the pump 304 corresponds to the "pressurizing device".
  • the pump 304 sucks the brake fluid in the pressure regulating reservoir 306 and discharges it to the fluid passage 308 according to its operation.
  • the pump 304 discharges the brake fluid to a portion between the differential pressure control valve 301 and the holding valve 302 in the fluid passage connecting the slave cylinder 230 and the wheel cylinder 12L.
  • the pressure regulating reservoir 306 is connected to the second liquid path 14 through the reflux liquid path 307 .
  • the pressure regulating reservoir 306 is in a state of blocking communication with the return fluid passage 307 when there is more brake fluid than a certain amount inside.
  • the pump 304 at this time sucks the brake fluid in the pressure regulation reservoir 306 .
  • the pressure regulating reservoir 306 communicates with the return fluid passage 307 when the brake fluid inside is reduced due to the suction of the pump 304 .
  • the pump 304 is operated while the pressure reducing valve 303 is closed, the pump 304 sucks brake fluid from the second fluid path 14 via the reflux fluid path 307 .
  • the pump 304 is operated while the pressure reducing valve 303 is open, the pump 304 sucks the brake fluid from the wheel cylinder 12L through the pressure reducing valve 303 .
  • the hydraulic circuit for the wheel cylinder 12R in the rear wheel side assisting device 32 has the same configuration as the hydraulic circuit for the wheel cylinder 12L.
  • the hydraulic circuits for the wheel cylinder 12L and the wheel cylinder 12R share the differential pressure control valve 301, the pump 304, the pressure regulating reservoir 306, the reflux liquid passage 307, the liquid passage 308, the liquid passage 312, and the pump liquid passage 313.
  • the holding valve 302 the pressure reducing valve 303, and the fluid passage 310
  • the fluid pressure circuit for the wheel cylinder 12L and the fluid pressure circuit for the wheel cylinder 12R are separate.
  • the hydraulic circuits for the wheel cylinders 11L and 11R in the front wheel side assisting device 31 have the same configuration as the hydraulic circuits for the wheel cylinders 12L and 12R in the rear wheel side assisting device 32. Note that the front wheel side assisting device 31 and the rear wheel side assisting device 32 share the pump motor 305 .
  • the downstream controller 35 is also configured as an electronic controller.
  • the downstream control device 35 controls the front wheel side assisting device 31 and the rear wheel side assisting device 32 .
  • Detection signals from the stroke sensor 350 and the hydraulic pressure sensor 33 are input to the downstream control device 35 .
  • Stroke sensor 350 is a sensor for detecting pedal stroke S, which is different from stroke sensor 280 described above.
  • detection signals from wheel speed sensors provided for each wheel are also input to the downstream control device 35 .
  • ⁇ Normal braking force control> Braking force control when the upstream pressure unit 20 is normal will be described.
  • the upstream control device 28 closes the master cut valve 24 and opens the system cutoff valve 25 and the simulator cut valve 26 .
  • the output port 237 of the slave cylinder 230 is connected to both the first fluid path 13 and the second fluid path 14 .
  • the output port 225 of the master cylinder 22 is connected only to the stroke simulator 27 without being connected to either the first fluid path 13 or the second fluid path 14 .
  • the braking control device 10 at this time is in a state in which both the front-wheel-side force-assisting device 31 and the rear-wheel-side force-assisting device 32 are connected to the reserve tank 21 via the slave cylinder 230 .
  • the brake fluid discharged by the slave cylinder 230 is sent to the wheel cylinders 11L, 11R, 12L, 12R.
  • the upstream control device 28 controls the braking force of the vehicle by adjusting the hydraulic pressure in the wheel cylinders 11L, 11R, 12L, 12R through the control of the electric cylinder device 23. Specifically, when the driver operates the brake pedal 15, the upstream control device 28 derives the required braking force based on at least one of the pedal stroke S detected by the stroke sensor 280 and the master pressure P0 detected by the master pressure sensor 281. In the case of automatic braking, upstream controller 28 obtains the requested braking force transmitted from other controllers. The upstream control device 28 drives the electric motor 233 so that the hydraulic pressure in the slave cylinder 230 increases as the required braking force increases.
  • front wheel pressure Pf front wheel pressure
  • rear wheel pressure Pr rear wheel pressure
  • the "abnormality of the upstream pressure unit 20" here means a state in which at least one of the following conditions (A1) and (A2) is satisfied.
  • A1 When power supply to the upstream pressure unit 20 is unintentionally stopped.
  • A2 When an abnormality such as a failure occurs in the electric motor 233 of the electric cylinder device 23 .
  • condition (A1) occurs, the electric motor 233, the master cut valve 24, the system cutoff valve 25, and the simulator cut valve 26 cannot be driven. Therefore, the upstream control device 28 cannot adjust the wheel pressure Pf of the front wheels and the wheel pressure Pr of the rear wheels by operating the electric cylinder device 23 .
  • condition (A2) occurs, the upstream control device 28 cannot operate the electric cylinder device 23. Therefore, the upstream control device 28 closes the system shutoff valve 25 and the simulator cut valve 26 and opens the master cut valve 24 .
  • the downstream control device 35 When the downstream control device 35 detects such an abnormality in the upstream pressurizing unit 20, the downstream control device 35 adjusts the wheel pressure Pf of the front wheels by operating the master cylinder 22 caused by the operation of the brake pedal 15 by the driver, and controls the wheel pressure Pf of the front wheels and the wheel pressure Pr of the rear wheels through the control of the front wheel side assist device 31 and the rear wheel side assist device 32, thereby controlling the braking force of the vehicle.
  • a processing routine executed by the downstream control device 35 when determining whether or not an abnormality has occurred in the upstream pressurizing section 20 will be described with reference to FIG. 2 .
  • This processing routine is repeatedly executed by the downstream control device 35 for each predetermined control cycle.
  • the downstream control device 35 determines whether or not the abnormality detection flag FLG1 is set to OFF.
  • the abnormality detection flag FLG1 is set to ON when the downstream control device 35 detects that an abnormality has occurred in the upstream pressure unit 20, and is set to OFF when the downstream control device 35 has not detected that an abnormality has occurred.
  • the downstream control device 35 shifts the process to step S13.
  • step S13 the downstream control device 35 executes upstream abnormality detection processing.
  • the upstream abnormality detection process is a process for detecting the occurrence of abnormality in the upstream pressure unit 20 .
  • the downstream controller 35 and the upstream controller 28 communicate with each other.
  • the downstream control device 35 determines that an abnormality has occurred in the upstream pressurizing section 20 .
  • the downstream control device 35 may determine that an abnormality has occurred in the upstream pressurizing section 20 even when communication with the upstream control device 28 is not possible.
  • the upstream control device 28 may stop controlling the electric motor 233 .
  • the downstream control device 35 receives from the upstream control device 28 that the upstream pressurizing unit 20 is normal, it determines that the upstream pressurizing unit 20 is not abnormal. Then, when the downstream control device 35 determines that the upstream pressure unit 20 is abnormal, it detects that the electric motor 233 of the electric cylinder device 23 cannot be driven.
  • downstream control device 35 After executing the upstream abnormality detection process, the downstream control device 35 shifts the process to step S15.
  • downstream control device 35 detects that an abnormality has occurred in upstream pressure unit 20 in step S15 (YES)
  • it sets an abnormality detection flag FLG1 to ON in step S17, and then terminates this processing routine.
  • the downstream control device 35 if the downstream control device 35 does not detect that the upstream pressure unit 20 is abnormal in step S15 (NO), the processing routine is once terminated. That is, the abnormality detection flag FLG1 remains off.
  • step S21 the downstream control device 35 executes upstream return detection processing.
  • the upstream return detection process is a process for detecting that the upstream pressure unit 20 has returned to normal.
  • the downstream control device 35 determines that the upstream pressurizing unit 20 is no longer abnormal and the upstream pressurizing unit 20 returns to normal. That is, the downstream control device 35 determines that the electric motor 233 of the electric cylinder device 23 can be driven.
  • the downstream control device 35 receives from the upstream control device 28 that the electric motor 233 of the electric cylinder device 23 cannot be driven or cannot communicate with the upstream control device 28, it determines that the upstream pressure unit 20 has not returned to normal.
  • the downstream control device 35 After executing the upstream return detection process, the downstream control device 35 shifts the process to step S23.
  • the downstream control device 35 detects that the upstream pressure unit 20 has returned to normal in step S23 (YES)
  • it sets the abnormality detection flag FLG1 to OFF in step S25, and then terminates this processing routine.
  • the downstream control device 35 does not detect that the upstream pressurizing section 20 has returned to normal in step S23 (NO)
  • the processing routine is once terminated. That is, the abnormality detection flag FLG1 remains set to ON.
  • This processing routine is repeatedly executed for each predetermined control cycle while the vehicle is running.
  • step S31 of this processing routine the downstream control device 35 determines whether or not the abnormality detection flag FLG1 is set to ON. If the abnormality detection flag FLG1 is set to OFF (S31: NO), the downstream control device 35 once terminates this processing routine. On the other hand, when the abnormality detection flag FLG1 is set to ON (S31: YES), the downstream control device 35 shifts the process to step S33.
  • step S33 the downstream control device 35 determines whether there is a possibility that residual pressure is generated in the wheel cylinders 12L, 12R of the rear wheels.
  • a case where residual pressure is generated in the wheel cylinders 12L and 12R of the rear wheels will be described. If an abnormality occurs in the upstream pressurizing section 20 while the wheel pressure Pf of the front wheels and the wheel pressure Pr of the rear wheels are being adjusted by the operation of the electric cylinder device 23, the electric motor 233 will not be driven. For example, if an abnormality occurs in the electric motor 233 while the piston 231 is moving in the braking direction Za from the reference position, the driving torque of the electric motor 233 acting on the piston 231 in the braking direction Za ceases to be generated.
  • the brake fluid flows from the wheel cylinders 12L, 12R toward the slave cylinder 230.
  • the piston 231 of the slave cylinder 230 tries to return to the reference position due to the brake fluid pressure flowing into the fluid chamber 232 from the output port 237 .
  • the system cutoff valve 25 is closed and the master cut valve 24 is opened.
  • the wheel cylinders 11L and 11R of the front wheels communicate with the master cylinder 22 after communication with the slave cylinder 230 is cut off.
  • the brake fluid in the wheel cylinders 11L and 11R for the front wheels is not returned to the slave cylinder 230.
  • the brake fluid pressure flowing from the output port 237 into the slave cylinder 230 does not increase so much.
  • the slave cylinder 230 is not provided with a return spring.
  • the electric cylinder device 23 when the brake fluid pressure flowing into the slave cylinder 230 causes the piston 231 to return to the reference position, the electric cylinder device 23 generates sliding resistance that prevents the piston 231 from moving in the release direction Zb. Therefore, when an abnormality occurs in the upstream pressurizing unit 20 while the wheel pressure Pf of the front wheels and the wheel pressure Pr of the rear wheels are being adjusted by the operation of the electric cylinder device 23, the piston 231 may not return to the reference position in the slave cylinder 230.
  • step S33 If it is determined in step S33 that the wheel cylinders 12L and 12R of the rear wheels may have residual pressure (YES), the downstream control device 35 proceeds to step S35. On the other hand, if it is not determined that the wheel cylinders 12L and 12R of the rear wheels may have residual pressure (S33: NO), the downstream control device 35 temporarily terminates this processing routine.
  • step S35 the downstream control device 35 determines whether or not the conditions for executing the processing during running are satisfied.
  • the downstream control device 35 determines that the execution conditions for the running process are satisfied when both of the following conditions (B1) and (B2) are satisfied.
  • B1 The accumulated elapsed time of the vehicle not stopped from the wheel speed sensor values after the previous execution of the running process has reached a predetermined first interval time TM1.
  • B2 Vehicle deceleration is not requested.
  • the running process is a process of reducing the wheel pressure Pr of the rear wheels. Even if the wheel pressure Pr is reduced by executing the running process, when the rear wheels are rotating in a state where the friction material is in contact with the part to be rubbed that rotates integrally with the rear wheels in the friction brake for the rear wheels, the temperature of the brake fluid in the wheel cylinders 12L and 12R rises due to the heat of friction, and the brake fluid expands. At this time, if the piston 231 of the electric cylinder device 23 does not return to the reference position, the wheel pressure Pr may increase because the fluid paths connecting the wheel cylinders 12L, 12R and the electric cylinder device 23 are sealed. Therefore, when the condition (B1) is satisfied, the downstream control device 35 considers that the wheel pressure Pr has increased due to the effect of the frictional heat.
  • the downstream control device 35 determines that the execution condition is satisfied when both the conditions (B1) and (B2) are satisfied. On the other hand, the downstream control device 35 determines that the execution condition is not satisfied when at least one of the conditions (B1) and (B2) is not satisfied.
  • the downstream control device 35 varies the predetermined first interval time TM1 according to the rotational speed of the rear wheels. Specifically, the downstream control device 35 sets a shorter time as the predetermined first interval time TM1 as the rotational speed of the rear wheels increases. This is because the greater the rotational speed of the rear wheels, the greater the amount of frictional heat generated by the rear wheel friction brakes.
  • step S35 When it is determined in step S35 that the conditions for executing the process during running are satisfied (YES), the downstream control device 35 shifts the process to step S37. On the other hand, if it is determined that the execution condition is not satisfied (S35: NO), the downstream control device 35 once terminates this processing routine without executing the processing during running.
  • step S37 the downstream control device 35 executes running processing. That is, the downstream control device 35 executes the running process when the vehicle is running, it is detected that the electric motor 233 cannot be driven, and there is no braking request. After completing the running process, the downstream control device 35 once ends this process routine.
  • the downstream control device 35 operates the rear wheel side assist device 32 as shown in (A) to (D) of FIG. 4 to reduce the wheel pressure Pr of the rear wheels as shown in (E) of FIG.
  • the downstream control device 35 operates the pump 304 of the rear wheel side assisting device 32, opens the differential pressure control valve 301 of the rear wheel side assisting device 32, closes the holding valve 302 of the rear wheel side assisting device 32, and opens the pressure reducing valve 303 of the rear wheel side assisting device 32.
  • the pump 304 sucks the brake fluid in the wheel cylinders 12L and 12R of the rear wheels, and the pump 304 discharges the brake fluid to the fluid passage 308 between the differential pressure control valve 301 and the holding valve 302. Since the holding valve 302 is closed and the differential pressure control valve 301 is open, the brake fluid discharged from the pump 304 passes through the differential pressure control valve 301 and flows into the slave cylinder 230 . As a result, the wheel pressure Pr of the rear wheels is reduced. Furthermore, since the pressure corresponding to the discharge pressure of the pump 304 acts on the piston 231 of the slave cylinder 230, the piston 231 can be moved toward the reference position as shown in FIG. 4(F).
  • execution of the running process ends at timings t12, t14, and t16.
  • the downstream control device 35 stops the operation of the rear wheel side assist device 32 . That is, the downstream control device 35 stops driving the pump 304 , the differential pressure control valve 301 , the holding valve 302 and the pressure reducing valve 303 of the rear wheel side assisting device 32 .
  • a processing routine executed by the downstream control device 35 when the vehicle is stopped will be described with reference to FIG. This processing routine is repeatedly executed for each predetermined control cycle when the vehicle is stopped.
  • the downstream control device 35 determines whether or not the abnormality detection flag FLG1 is set to ON. If the abnormality detection flag FLG1 is set to OFF (S41: NO), the downstream control device 35 once terminates this processing routine. On the other hand, when the abnormality detection flag FLG1 is set to ON (S41: YES), the downstream control device 35 shifts the process to step S43.
  • step S43 the downstream control device 35 determines whether there is a possibility that residual pressure is generated in the wheel cylinders 12L and 12R of the rear wheels, similar to the process of step S33 shown in FIG.
  • the downstream control device 35 shifts the process to step S45.
  • the downstream control device 35 if it is not determined that there is a possibility that residual pressure is generated in the wheel cylinders 12L, 12R (S43: NO), the downstream control device 35 once terminates this processing routine.
  • step S45 the downstream control device 35 determines whether or not the conditions for executing the vehicle stop processing are satisfied.
  • the downstream control device 35 determines that the execution condition is met when the elapsed time since the last execution of the vehicle stop process reaches the predetermined second interval time TM2.
  • the downstream control device 35 determines that the execution condition is not met when the elapsed time since the last execution of the vehicle stop process has not reached the second predetermined interval time TM2.
  • a time longer than the execution cycle of the processing routine shown in FIG. 5 is set as the second interval time TM2.
  • step S45 When it is determined in step S45 that the conditions for executing the process when the vehicle is stopped are satisfied (YES), the downstream control device 35 shifts the process to step S47. On the other hand, if it is determined that the execution condition is not satisfied (S45: NO), the downstream control device 35 temporarily terminates this processing routine without executing the vehicle stop processing.
  • step S47 the downstream control device 35 executes the vehicle stopping process. That is, when the downstream control device 35 detects that the vehicle is stopped and the electric motor 233 cannot be driven, the downstream control device 35 executes the vehicle stop processing. After completing the execution of the vehicle stop processing, the downstream control device 35 temporarily ends this processing routine.
  • the downstream control device 35 operates the rear wheel side assisting device 32 as shown in FIGS. That is, the downstream control device 35 increases the wheel pressure Pr of the rear wheels as shown in FIG. 6(E). Specifically, the downstream control device 35 operates the pump 304 of the rear wheel side assisting device 32 to reduce the indicated opening degree of the differential pressure control valve 301 of the rear wheel side assisting device 32 . At this time, the downstream control device 35 keeps the holding valve 302 of the rear wheel side assisting device 32 open and the pressure reducing valve 303 of the rear wheel side assisting device 32 closed.
  • the pump 304 sucks the brake fluid in the slave cylinder 230 .
  • the pressure in the liquid chamber 232 of the slave cylinder 230 is reduced due to the suction of the pump 304, the cup seal 238 is deformed.
  • a gap is created between the inner wall of the slave cylinder 230 and the piston 231, and the pump 304 sucks the brake fluid from the reserve tank 21 through the gap.
  • a pump 304 discharges brake fluid to a fluid passage 308 closer to the wheel cylinders 12L and 12R than the differential pressure control valve 301 is.
  • the brake fluid discharged from the pump 304 flows into the wheel cylinders 12L, 12R, increasing the wheel pressure Pr of the rear wheels.
  • the downstream control device 35 stops the operation of the rear wheel side assisting device 32 and ends the vehicle stop processing. That is, the downstream control device 35 stops the pump 304 and sets the indicated degree of opening of the differential pressure control valve 301 to 100% to open the differential pressure control valve 301 .
  • the differential pressure control valve 301 is opened with the differential pressure between the wheel cylinders 12L, 12R and the slave cylinder 230 thus increased, brake fluid flows into the slave cylinder 230 from the wheel cylinders 12L, 12R.
  • the wheel pressure Pr of the rear wheels is increased or decreased by operating the rear wheel side assist device 32, there is a possibility that the braking force required to keep the vehicle stopped will be insufficient. Therefore, in the present embodiment, it is possible to ensure the wheel pressure Pr of the front wheels by the master cylinder 22 resulting from the operation of the brake pedal 15 by the driver. Further, if the vehicle can be kept stopped by shift gear, EPB, or the like, the same process as the vehicle stop process may be performed on the front wheels to return the piston 231 to the reference position.
  • the vehicle stop processing is executed.
  • the rear wheel assist device 32 is actuated to increase the differential pressure between the rear wheel cylinders 12L, 12R and the slave cylinder 230, that is, the wheel pressure Pr of the rear wheels is increased.
  • the operation of the rear wheel side assist device 32 is stopped, and the differential pressure control valve 301 is opened. Then, a large amount of brake fluid flows from the wheel cylinders 12L, 12R toward the slave cylinder 230. As shown in FIG.
  • the hydraulic pressure of the brake fluid flowing through the output port 237 can move the piston 231 toward the reference position. Therefore, even if the electric motor 233 cannot be driven and the piston 231 has not returned to the reference position, it is possible to return the piston 231 to the reference position by executing the vehicle stop processing.
  • the vehicle stop processing is intermittently executed while the vehicle is stopped.
  • the piston 231 in the slave cylinder 230 can be gradually brought closer to the reference position, as shown in FIG. 6(F).
  • the piston 231 returns to the reference position by executing the vehicle stop processing three times.
  • the execution of the running process causes the brake fluid to flow into the slave cylinder 230 from the output port 237 .
  • the piston 231 in the slave cylinder 230 can be moved toward the reference position, as shown in FIG. 4(F).
  • the friction brake for the rear wheels may continue to contact the friction part that rotates integrally with the rear wheel. In this case, frictional heat is generated in the friction brakes, the temperature of the brake fluid in the wheel cylinders 12L, 12R rises, and the wheel pressure Pr of the rear wheels rises again.
  • the execution interval of the running process may be lengthened. In other words, the higher the running speed, the shorter the interval at which the running process is executed. For example, by varying the predetermined first interval time TM1, it is possible to adjust the execution interval of the running process.
  • the running process is not executed when there is a braking request while the vehicle is running. As a result, it is possible to suppress an increase in the frequency of operation of the rear wheel side assist device 32 .
  • the upstream pressurizing section may have a configuration different from that of the upstream pressurizing section 20 shown in FIG.
  • FIG. 7 shows an upstream pressurizing section 20A of a modified example.
  • the upstream pressurizing section 20A includes a master cylinder 22A, a stroke simulator 27, and an electric cylinder device 23. As shown in FIG.
  • the configuration of the master cylinder 22A is described, for example, in "Japanese Unexamined Patent Application Publication No. 2021-49935".
  • the master cylinder 22A includes a main cylinder 41, a cover cylinder 42, a master piston 43 and an input piston 44.
  • a brake pedal 15 is connected to the input piston 44 .
  • a master chamber 411 , a first hydraulic chamber 412 and a servo chamber 413 are defined in the main cylinder 41 by the master piston 43 .
  • a second hydraulic chamber 421 and a third hydraulic chamber 422 are defined in the cover cylinder 42 .
  • a master spring 45 is provided in the main cylinder 41 to bias the master piston 43 in a direction to increase the volume of the master chamber 411 .
  • An input spring 46 is provided in the cover cylinder 42 to bias the input piston 44 in a direction to increase the volume of the second hydraulic pressure chamber 421 .
  • the slave cylinder 230 of the electric cylinder device 23 is connected to the servo chamber 413 in the upstream pressure section 20A. That is, the electric cylinder device 23 can supply the brake fluid to the wheel cylinders 12L and 12R of the rear wheels and the servo chamber 413 .
  • the upstream pressurization section 20A has a plurality of control valves 52,53.
  • the control valve 52 When the upstream pressurizing section 20A is normal, the control valve 52 is opened and the control valve 53 is closed. In this state, the second hydraulic chamber 421 is hydraulically connected to the stroke simulator 27 and is hydraulically disconnected from the reserve tank 21 .
  • the brake pedal 15 When the brake pedal 15 is operated in this state, the pedal feeling is supplied to the brake pedal 15 by the stroke simulator 27 .
  • the electric cylinder device 23 With the control valve 52 opened and the control valve 53 closed, the electric cylinder device 23 outputs brake fluid from the output port 237 according to the amount of operation of the brake pedal 15 .
  • the output brake fluid is supplied to the second fluid passage 14 and the servo chamber 413 . By supplying the brake fluid to the servo chamber 413 , the master piston 43 slides in the direction of decreasing the volume of the master chamber 411 .
  • Brake fluid is supplied from the master chamber 411 to the first fluid passage 13 as the master piston 43 slides in this manner.
  • the upstream pressurizing section 20A controls the electric cylinder device 23 and the control valves 52 and 53 to supply brake fluid to the first fluid passage 13 and the second fluid passage 14, respectively.
  • the control valves 52 and 53 are de-energized. Then, the control valve 52 is closed and the control valve 53 is opened. As a result, the reserve tank 21 is connected to the first hydraulic pressure chamber 412 and the stroke simulator 27 . Also, the reserve tank 21 is isolated from the second hydraulic pressure chamber 421 . As a result, the second hydraulic chamber 421 is closed, and the pedal force applied to the brake pedal 15 is transmitted to the master piston 43 via the brake fluid sealed in the input piston 44 and the second hydraulic chamber 421 . The first fluid passage 13 at this time is connected to the master chamber 411 of the master cylinder 22A.
  • the front wheel side assist device 31 increases the pressure of the brake fluid output from the master cylinder 22A and sends it to the wheel cylinders 11L and 11R of the front wheels, thereby generating braking force for the front wheels.
  • the rear wheel side assist device 32 sends brake fluid to the wheel cylinders 12L and 12R of the rear wheels independently of the master cylinder 22A, thereby generating braking force for the rear wheels.
  • the control valve 52 is closed and the control valve 53 is opened as described above.
  • the downstream control device 35 executes the processing when the vehicle is stopped and the processing when the vehicle is running, so that the same functions and effects as those of the above-described embodiment can be obtained.
  • the front-wheel-side assisting device 31 may be controlled to perform processing corresponding to the stop processing and the running processing for the wheel cylinders 11L and 11R of the front wheels.
  • the front wheel side assisting device 31 may be controlled so that the brake fluid flows from the front wheel side assisting device 31 to the master chamber 411 .
  • the wheel pressure Pf of the front wheels may be increased by operating the front wheel side assist device 31 .
  • the predetermined first time interval TM1 that defines the execution interval of the running process is varied according to the rotational speed of the rear wheels, but the first time interval TM1 may be varied based on parameters other than the rotational speed of the rear wheels. For example, the higher the brake fluid temperature or the outside air temperature, the shorter the first interval time TM1 may be set. Further, the first time interval TM1 may be set according to the estimated temperature of the friction material of the friction brake, which takes into account not only the running of the vehicle but also the heat generated by braking during deceleration.
  • the downstream control device 35 does not have to execute the running process while the vehicle is running, as long as the vehicle stopping process is executed when the vehicle is stopped. - The downstream control device 35 does not have to execute the process when the vehicle is stopped if the process when the vehicle is running is to be executed while the vehicle is running.
  • the rear wheel side assist device 32 may be configured without the differential pressure control valve 301 .
  • the stop processing is intermittently repeated while the vehicle is stopped, but the present invention is not limited to this.
  • the stop process may be executed only once.
  • step S43 of FIG. 5 when it is determined in step S43 of FIG. 5 that there is a possibility that residual pressure is generated, the process proceeds to step S45, but the determination in step S43 may be omitted.
  • the abnormality detection flag FLG1 when the abnormality detection flag FLG1 is set to ON, it is preferable to shift to the process of step S45 and determine whether or not the conditions for executing the process when the vehicle is stopped are satisfied.
  • the braking control device may be configured so that the wheel cylinders 11L and 11R for the front wheels are the first wheel cylinders, the wheel cylinders 12L and 12R for the rear wheels are the second wheel cylinders, the front wheel side force device 31 is the first pressure unit, and the rear wheel side force force device 32 is the second pressure unit. That is, the applicable wheels may be applied individually or in any combination.
  • the rear-wheel-side assisting device may have a pressurizing device other than the pump 304 that can supply the brake fluid to the fluid passage between the differential pressure control valve 301 and the holding valve 302 .
  • the electric cylinder device 23 may have a configuration in which a return spring is provided in the slave cylinder 230 to bias the piston 231 in the release direction Zb. If the biasing force of this return spring is relatively small, the piston 231 cannot be returned to the reference position only by the biasing force of the return spring.
  • the braking control device 10 having such an electric cylinder device 23 the effects equivalent to those of the above-described embodiment can be obtained by executing the stop-time processing and the running-time processing.
  • the downstream control device 35 can be configured as a circuit that includes one or more dedicated hardware circuits such as one or more processors that operate according to a computer program, dedicated hardware that executes at least part of various types of processing, or a combination thereof.
  • Dedicated hardware may include, for example, an ASIC, which is an application specific integrated circuit.
  • a processor includes a CPU and memory, such as RAM and ROM, which stores program code or instructions configured to cause the CPU to perform processes.
  • Memory or storage media includes any available media that can be accessed by a general purpose or special purpose computer.

Abstract

A braking control device 10 comprises: an electric cylinder device 23, the power source of which is an electric motor 233; a rear-wheel-side assist device 32 which has a differential pressure control valve 301 and a pump 304; and a downstream control device 35 which controls the rear-wheel-side assist device 32. When a vehicle is stopped and it has been detected that driving of the electric motor 233 is impossible, the downstream control device 35 performs a during-stop process for operating the pump 304 in a state where the differential pressure control valve 301 is closed, such that pressure in a fluid passage on a side further toward wheel cylinders 12L, 12R than the differential pressure control valve 301 becomes higher than pressure on a side further toward a slave cylinder 230 than the differential pressure control valve 301, and thereafter opening the differential pressure control valve 301 to cause brake fluid to flow from the wheel cylinders 12L, 12R to a fluid chamber 232 of the slave cylinder 230.

Description

制動制御装置Braking control device
 本発明は、ホイールシリンダ内の液圧を調整することによって車両の車輪で制動力を発生させる制動制御装置に関する。 The present invention relates to a braking control device that generates braking force at the wheels of a vehicle by adjusting the hydraulic pressure in the wheel cylinders.
 特許文献1に開示されている制動制御装置は、電動シリンダ装置と制御部とを備えている。電動シリンダ装置はスレイブシリンダとスレイブシリンダの動力源である電気モータとを備えている。当該電動シリンダ装置のスレイブシリンダ内にはリターンスプリングが配置されていない。制御部によって電気モータが駆動されると、スレイブシリンダ内ではピストンが基準位置から移動する。すると、ピストンの基準位置からの移動量に応じた量のブレーキ液がスレイブシリンダからホイールシリンダに供給される。これにより、ホイールシリンダ内の液圧が高くなるため、当該液圧に応じた制動力が車輪で発生する。 The braking control device disclosed in Patent Document 1 includes an electric cylinder device and a control section. The electric cylinder device includes a slave cylinder and an electric motor that is a power source for the slave cylinder. No return spring is arranged in the slave cylinder of the electric cylinder device. When the electric motor is driven by the controller, the piston moves from the reference position in the slave cylinder. Then, an amount of brake fluid corresponding to the amount of movement of the piston from the reference position is supplied from the slave cylinder to the wheel cylinder. As a result, the hydraulic pressure in the wheel cylinder increases, and braking force corresponding to the hydraulic pressure is generated at the wheels.
特許第5946544号公報Japanese Patent No. 5946544
 電動シリンダ装置の作動によってホイールシリンダ内の液圧を調整している状況下で、制御部及び電気モータの少なくとも一方で異常が発生して電気モータの駆動が不能となる場合を考える。この場合、ホイールシリンダからスレイブシリンダにブレーキ液が戻るため、スレイブシリンダ内ではピストンが基準位置に向けて移動しようとする。しかし、電動シリンダ装置ではピストンの移動を妨げる摺動抵抗が発生するため、ピストンを基準位置まで戻すことができない可能性がある。ピストンが基準位置まで戻らないと、ホイールシリンダに液圧が残る可能性がある。 Consider the case where the electric motor cannot be driven due to an abnormality occurring in at least one of the control unit and the electric motor while the hydraulic pressure in the wheel cylinder is being adjusted by the operation of the electric cylinder device. In this case, since the brake fluid returns from the wheel cylinder to the slave cylinder, the piston in the slave cylinder tries to move toward the reference position. However, since the electric cylinder device generates sliding resistance that hinders the movement of the piston, there is a possibility that the piston cannot be returned to the reference position. If the piston does not return to the reference position, hydraulic pressure may remain in the wheel cylinder.
 こうした課題は、ピストンを基準位置に向けて付勢する力が比較的小さいリターンスプリングがスレイブシリンダ内に配置されている場合であっても生じうる。 These problems can arise even if a return spring with a relatively small force that urges the piston toward the reference position is arranged in the slave cylinder.
 上記課題を解決するための制動制御装置の一態様は、ホイールシリンダ内の液圧を調整することによって車両の車輪で制動力を発生させる装置である。この制動制御装置は、スレイブシリンダ、前記スレイブシリンダ内で摺動可能なピストン、及び前記ピストンを摺動させる駆動力を発生可能な電気モータを有し、前記スレイブシリンダ内に形成された液室の容積が小さくなるように前記ピストンを移動させることにより、前記液室から液路を介してブレーキ液を前記ホイールシリンダに供給する電動シリンダ装置と、前記液路に配置されている電磁弁、及び前記液路において前記電磁弁よりも前記ホイールシリンダ側の部分にブレーキ液を供給可能な加圧装置を有する加圧ユニットと、前記加圧ユニットを制御する制御部と、を備えている。前記制御部は、前記車両が停止しており、前記電気モータの駆動が不能になったことを検知している場合、前記電磁弁を閉弁させた状態で前記加圧装置にブレーキ液を供給させることにより、前記液路のうち、前記電磁弁よりも前記ホイールシリンダ側の部分の圧力が前記電磁弁よりも前記スレイブシリンダ側の部分の圧力よりも高くなるように前記加圧ユニットを制御した後、前記電磁弁を開弁させることにより、前記ホイールシリンダから前記スレイブシリンダの前記液室にブレーキ液を流動させる停車時処理を実行する。 One aspect of the braking control device for solving the above problems is a device that generates braking force at the wheels of the vehicle by adjusting the hydraulic pressure in the wheel cylinder. This braking control device has a slave cylinder, a piston slidable in the slave cylinder, and an electric motor capable of generating a driving force for sliding the piston. An electric cylinder device that supplies brake fluid from the fluid chamber through a fluid passage to the wheel cylinder by moving the piston so that the volume of the fluid chamber formed in the slave cylinder is reduced, an electromagnetic valve arranged in the fluid passage, and a pressurization device capable of supplying the brake fluid to a portion of the fluid passage closer to the wheel cylinder than the electromagnetic valve. A pressurizing unit and a controller for controlling the pressurizing unit are provided. When the control unit detects that the electric motor cannot be driven while the vehicle is stopped, the control unit supplies brake fluid to the pressurizing device with the electromagnetic valve closed, thereby controlling the pressurizing unit so that the pressure in the portion of the fluid path closer to the wheel cylinder than the electromagnetic valve becomes higher than the pressure in the portion closer to the slave cylinder than the electromagnetic valve. Execute stop time processing to flow.
 上記構成では、停車時処理が実行されると、加圧ユニットの作動によって、液路のうち、電磁弁よりもホイールシリンダ側の部分の圧力が電磁弁よりもスレイブシリンダ側の部分の圧力よりも高くなる。このように差圧を大きくしてから電磁弁が開弁されるため、ホイールシリンダからスレイブシリンダに向けてブレーキ液が流れるようになる。これにより、スレイブシリンダに圧力がかかり電動シリンダ装置でのピストンの移動を妨げる摺動抵抗に抗してピストンを基準位置に向けて移動させることができる。 With the above configuration, when the vehicle stop process is executed, the pressurizing unit is operated to make the pressure in the portion of the liquid passage closer to the wheel cylinder than the solenoid valve higher than the pressure in the portion closer to the slave cylinder than the solenoid valve. Since the electromagnetic valve is opened after the differential pressure is increased in this manner, the brake fluid flows from the wheel cylinder to the slave cylinder. As a result, the pressure is applied to the slave cylinder, and the piston can be moved toward the reference position against the sliding resistance that hinders the movement of the piston in the electric cylinder device.
 上記課題を解決するための制動制御装置の一態様は、ホイールシリンダの液圧を調整することによって車両の車輪で制動力を発生させる装置である。この制動制御装置は、スレイブシリンダ、前記スレイブシリンダ内で摺動可能なピストン、及び前記ピストンを摺動させる駆動力を発生可能な電気モータを有し、前記スレイブシリンダ内に形成された液室の容積が小さくなるように前記ピストンを移動させることにより、前記液室から液路を介してブレーキ液を前記ホイールシリンダに供給する電動シリンダ装置と、前記液路に配置されている保持弁、開弁した状態で前記ホイールシリンダの液圧を減少させる減圧弁、及び前記減圧弁が開弁している場合には当該減圧弁を介して前記ホイールシリンダから吸引したブレーキ液を前記液路のうちの前記保持弁よりも前記スレイブシリンダ側の部分に供給可能な加圧装置を有する加圧ユニットと、前記加圧ユニットを制御する制御部と、を備えている。前記制御部は、前記車両が走行しており、前記電気モータの駆動が不能になったことを検知していて且つ制動要求が無い場合、前記減圧弁を開弁させた一方で前記保持弁を閉弁させ、前記加圧装置を作動させる走行時処理を実行する。 One aspect of the braking control device for solving the above problems is a device that generates braking force at the wheels of the vehicle by adjusting the hydraulic pressure of the wheel cylinders. This braking control device includes a slave cylinder, a piston slidable in the slave cylinder, and an electric motor capable of generating a driving force for sliding the piston. An electric cylinder device that supplies brake fluid from the fluid chamber to the wheel cylinder through a fluid passage by moving the piston so that the volume of the fluid chamber formed in the slave cylinder is reduced, a holding valve arranged in the fluid passage, a pressure reducing valve that reduces the hydraulic pressure of the wheel cylinder in an open state, and the pressure reducing valve that is open. In some cases, a pressurizing unit having a pressurizing device capable of supplying brake fluid sucked from the wheel cylinder via the pressure reducing valve to a portion of the fluid passage closer to the slave cylinder than the holding valve, and a control unit for controlling the pressurizing unit. When the vehicle is running, the control unit detects that the electric motor has become undrivable, and there is no braking request, the control unit opens the pressure reducing valve, closes the holding valve, and operates the pressurizing device.
 上記構成では、走行時処理が実行されると、保持弁が閉弁されて減圧弁が開弁されるため、ホイールシリンダのブレーキ液が、加圧装置によって吸引されて、液路のうち保持弁よりもスレイブシリンダ側の部分に供給される。すなわち、加圧装置からホイールシリンダに向けてブレーキ液が流れるようになる。これにより、スレイブシリンダに圧力がかかり電動シリンダ装置でのピストンの移動を妨げる摺動抵抗に抗してピストンを基準位置に向けて移動させることができる。 In the above configuration, when the running process is executed, the holding valve is closed and the pressure reducing valve is opened, so the brake fluid in the wheel cylinder is sucked by the pressurizing device and supplied to the part of the fluid path closer to the slave cylinder than the holding valve. That is, the brake fluid flows from the pressure device toward the wheel cylinder. As a result, the pressure is applied to the slave cylinder, and the piston can be moved toward the reference position against the sliding resistance that hinders the movement of the piston in the electric cylinder device.
 したがって、上記の制動制御装置は、電気モータを駆動させることができなくなってピストンが基準位置に戻っていなくても、当該ピストンを基準位置まで戻すことが可能となる。 Therefore, the braking control device described above can return the piston to the reference position even if the electric motor cannot be driven and the piston has not returned to the reference position.
図1は、実施形態の制動制御装置の概略を示す構成図である。FIG. 1 is a configuration diagram showing an outline of a braking control device according to an embodiment. 図2は、同制動制御装置の上流加圧部の状態を検知するために実行される処理ルーチンを示すフローチャートである。FIG. 2 is a flow chart showing a processing routine executed to detect the state of the upstream pressurizing section of the braking control device. 図3は、車両の走行時に実行される処理ルーチンを示すフローチャートである。FIG. 3 is a flowchart showing a processing routine that is executed while the vehicle is running. 図4は、走行時処理が実行された場合のタイムチャートである。FIG. 4 is a time chart when running processing is executed. 図5は、車両の停止時に実行される処理ルーチンを示すフローチャートである。FIG. 5 is a flow chart showing a processing routine executed when the vehicle is stopped. 図6は、停車時処理が実行された場合のタイムチャートである。FIG. 6 is a time chart when the vehicle stop process is executed. 図7は、変更例の上流加圧部の概略を示す構成図である。FIG. 7 is a configuration diagram showing an outline of an upstream pressurizing section of a modification.
 以下、制動制御装置を具体化した一実施形態を図1~図6に従って説明する。
 図1に示すように、制動制御装置10は、左右前輪のホイールシリンダ11L,11R及び左右後輪のホイールシリンダ12L,12Rの液圧を調整することによって車輪で制動力を発生させる装置である。制動制御装置10は上流加圧部20と下流加圧部30とを備えている。
An embodiment embodying a braking control device will be described below with reference to FIGS. 1 to 6. FIG.
As shown in FIG. 1, the braking control device 10 is a device that generates braking force at the wheels by adjusting the hydraulic pressures of wheel cylinders 11L and 11R for the left and right front wheels and wheel cylinders 12L and 12R for the left and right rear wheels. The braking control device 10 includes an upstream pressurizing section 20 and a downstream pressurizing section 30 .
 <上流加圧部20の構成>
 上流加圧部20は、第1液路13を通じて左右前輪のホイールシリンダ11L,11Rに接続されている。上流加圧部20は、第2液路14を介して左右後輪のホイールシリンダ12L,12Rに接続されている。上流加圧部20は、リザーブタンク21、マスタシリンダ22、電動シリンダ装置23、マスタカット弁24、系統遮断弁25、シミュレータカット弁26、ストロークシミュレータ27及び上流制御装置28を備えている。リザーブタンク21はブレーキ液を貯留するタンクである。マスタシリンダ22は、ブレーキペダル15の踏込みに応じて液圧を発生する機械式の加圧装置である。電動シリンダ装置23は、電動により液圧を発生する電動加圧装置である。マスタカット弁24及び系統遮断弁25は上流加圧部20の状態を切替える切替機構を構成する。マスタカット弁24は常開式の電磁弁であり、系統遮断弁25は常閉式の電磁弁である。シミュレータカット弁26は、マスタシリンダ22とストロークシミュレータ27とを液圧的に連通した状態と同連通を遮断した状態とを切替える常閉式の電磁弁である。上流制御装置28は、電動シリンダ装置23、マスタカット弁24、系統遮断弁25及びシミュレータカット弁26を制御する電子制御装置である。
<Structure of Upstream Pressure Unit 20>
The upstream pressure unit 20 is connected through the first fluid passage 13 to the wheel cylinders 11L and 11R for the left and right front wheels. The upstream pressurizing section 20 is connected to the wheel cylinders 12L and 12R for the left and right rear wheels via the second fluid passage 14 . The upstream pressurization section 20 includes a reserve tank 21 , a master cylinder 22 , an electric cylinder device 23 , a master cut valve 24 , a system cutoff valve 25 , a simulator cut valve 26 , a stroke simulator 27 and an upstream control device 28 . The reserve tank 21 is a tank that stores brake fluid. The master cylinder 22 is a mechanical pressurizing device that generates hydraulic pressure in response to depression of the brake pedal 15 . The electric cylinder device 23 is an electric pressure device that electrically generates hydraulic pressure. The master cut valve 24 and the system cutoff valve 25 constitute a switching mechanism for switching the state of the upstream pressurizing section 20 . The master cut valve 24 is a normally open solenoid valve, and the system cutoff valve 25 is a normally closed solenoid valve. The simulator cut valve 26 is a normally closed electromagnetic valve that switches between a state in which the master cylinder 22 and the stroke simulator 27 are hydraulically connected and a state in which the communication is blocked. The upstream control device 28 is an electronic control device that controls the electric cylinder device 23 , the master cut valve 24 , the system cutoff valve 25 and the simulator cut valve 26 .
 <マスタシリンダ22の構成>
 マスタシリンダ22の内部にはマスタピストン221が摺動自在に設けられている。また、マスタシリンダ22の内部には、ブレーキ液が導入される圧力室222がマスタピストン221により区画形成されている。マスタピストン221には、ブレーキペダル15が機械的に連結されている。そして、マスタシリンダ22におけるマスタピストン221の動作位置は、ブレーキペダル15の踏込みに連動して変化する。動作位置とは、マスタシリンダ22内でマスタピストン221が摺動可能な範囲における同マスタピストン221の位置である。圧力室222の容積は、マスタピストン221の動作位置により変化する。また、マスタシリンダ22は、圧力室222の容積を増大させる方向にマスタピストン221を付勢する付勢部材223を有している。
<Configuration of Master Cylinder 22>
A master piston 221 is slidably provided inside the master cylinder 22 . A pressure chamber 222 into which brake fluid is introduced is defined inside the master cylinder 22 by the master piston 221 . A brake pedal 15 is mechanically connected to the master piston 221 . The operating position of the master piston 221 in the master cylinder 22 changes in conjunction with depression of the brake pedal 15 . The operating position is the position of the master piston 221 within the range in which the master piston 221 can slide within the master cylinder 22 . The volume of the pressure chamber 222 changes depending on the operating position of the master piston 221 . The master cylinder 22 also has a biasing member 223 that biases the master piston 221 in a direction to increase the volume of the pressure chamber 222 .
 また、マスタシリンダ22は、圧力室222を外部に連通するポートとして、入力ポート224及び出力ポート225の2つのポートを有している。圧力室222は、入力ポート224を介してリザーブタンク21に接続されている。入力ポート224は、ブレーキペダル15が操作されていないときには開放されているが、ブレーキペダル15が操作されてその操作量が一定量を超えるとマスタピストン221により閉塞される。一方、マスタシリンダ22の出力ポート225は、ブレーキペダル15の操作の有無に拘わらず、常時開放されている。マスタシリンダ22の出力ポート225は、シミュレータカット弁26を介してストロークシミュレータ27に接続されている。ストロークシミュレータ27は、ブレーキペダル15の操作に対する反力を発生させる装置である。また、マスタシリンダ22の出力ポート225は、マスタカット弁24を介して第1液路13に接続されてもいる。 In addition, the master cylinder 22 has two ports, an input port 224 and an output port 225, as ports for communicating the pressure chamber 222 with the outside. The pressure chamber 222 is connected to the reserve tank 21 via the input port 224 . The input port 224 is open when the brake pedal 15 is not operated, but is closed by the master piston 221 when the brake pedal 15 is operated and the amount of operation exceeds a certain amount. On the other hand, the output port 225 of the master cylinder 22 is always open regardless of whether the brake pedal 15 is operated. An output port 225 of the master cylinder 22 is connected to the stroke simulator 27 via the simulator cut valve 26 . The stroke simulator 27 is a device that generates reaction force to the operation of the brake pedal 15 . Also, the output port 225 of the master cylinder 22 is connected to the first fluid passage 13 via the master cut valve 24 .
 <電動シリンダ装置23の構成>
 電動シリンダ装置23は、スレイブシリンダ230と、スレイブシリンダ230内で摺動可能なピストン231と、電気モータ233と、電気モータ233の回転をピストン231の直動に変換する直動変換機構234とを有している。スレイブシリンダ230の内部には、ブレーキ液が導入される液室232がピストン231により区画形成されている。スレイブシリンダ230の内部でのピストン231の動作位置は、電気モータ233により変更される。すなわち、電気モータ233は、スレイブシリンダ230内でピストン231を摺動させる駆動力を発生可能である。ピストン231の動作位置の変化に応じて液室232の容積が変化する。液室232の容積を小さくするピストン231の移動方向を「制動方向Za」とし、制動方向Zaの反対方向を「解除方向Zb」という。また、液室232の容積が最大となるピストン231の動作位置を「基準位置」という。
<Configuration of electric cylinder device 23>
The electric cylinder device 23 has a slave cylinder 230 , a piston 231 slidable in the slave cylinder 230 , an electric motor 233 , and a linear motion conversion mechanism 234 that converts rotation of the electric motor 233 into linear motion of the piston 231 . Inside the slave cylinder 230 , a fluid chamber 232 into which brake fluid is introduced is defined by a piston 231 . The operating position of the piston 231 inside the slave cylinder 230 is changed by an electric motor 233 . That is, the electric motor 233 can generate driving force for sliding the piston 231 within the slave cylinder 230 . The volume of the liquid chamber 232 changes according to the change in the operating position of the piston 231 . The moving direction of the piston 231 that reduces the volume of the liquid chamber 232 is referred to as the "braking direction Za", and the direction opposite to the braking direction Za is referred to as the "releasing direction Zb". Further, the operating position of the piston 231 at which the volume of the liquid chamber 232 is maximized is referred to as a "reference position".
 スレイブシリンダ230には、液室232と外部とを連通するポートとして、入力ポート236及び出力ポート237の2つのポートが形成されている。スレイブシリンダ230の液室232は、入力ポート236を介してリザーブタンク21に接続されている。入力ポート236は、ピストン231が基準位置に位置するときには開放されており、ピストン231が基準位置から制動方向Zaに移動するとピストン231により閉塞される。一方、スレイブシリンダ230の出力ポート237は、ピストン231の位置によらず、常時開放されている。スレイブシリンダ230の出力ポート237は、第2液路14に接続されている。さらにスレイブシリンダ230の出力ポート237は、系統遮断弁25を介して第1液路13に接続されている。系統遮断弁25の開弁時には、第1液路13及び第2液路14は互いに連通した状態となる。 Two ports, an input port 236 and an output port 237, are formed in the slave cylinder 230 as ports for communicating the fluid chamber 232 with the outside. A fluid chamber 232 of the slave cylinder 230 is connected to the reserve tank 21 via an input port 236 . The input port 236 is open when the piston 231 is positioned at the reference position, and is closed by the piston 231 when the piston 231 moves from the reference position in the braking direction Za. On the other hand, the output port 237 of the slave cylinder 230 is always open regardless of the position of the piston 231 . An output port 237 of the slave cylinder 230 is connected to the second fluid passage 14 . Furthermore, the output port 237 of the slave cylinder 230 is connected to the first liquid passage 13 via the system cutoff valve 25 . When the system cutoff valve 25 is open, the first fluid path 13 and the second fluid path 14 are in communication with each other.
 なお、入力ポート236よりも制動方向Zaには、スレイブシリンダ230の内壁とピストン231との隙間を埋めるカップシール238が設けられている。入力ポート236よりも解除方向Zbには、スレイブシリンダ230の内壁とピストン231との隙間を埋めるカップシール239が設けられている。2つのカップシール238,239は弾性材料によって構成されている。 A cup seal 238 that fills the gap between the inner wall of the slave cylinder 230 and the piston 231 is provided in the braking direction Za from the input port 236 . A cup seal 239 that fills the gap between the inner wall of the slave cylinder 230 and the piston 231 is provided in the release direction Zb from the input port 236 . The two cup seals 238, 239 are made of elastic material.
 <上流制御装置28の構成>
 上流制御装置28は、各種制御を実行する1つ又は複数のプロセッサと、制御用のプログラムやデータを記憶したメモリとを備える電子制御装置である。上流制御装置28は、電動シリンダ装置23、マスタカット弁24、系統遮断弁25及びシミュレータカット弁26を制御する。また、上流制御装置28には、ストロークセンサ280、マスタ圧センサ281及び出力圧センサ282などの各種センサの検出信号が入力される。ストロークセンサ280は、運転者によるブレーキペダル15の踏込量であるペダルストロークSを検出するセンサである。マスタ圧センサ281は、マスタシリンダ22が出力ポート225から出力する液圧であるマスタ圧P0を検出するセンサである。出力圧センサ282は、スレイブシリンダ230が出力ポート237から出力する液圧であるスレイブ圧P2を検出するセンサである。また、上流制御装置28は、上流加圧部20に設けられた下流制御装置35と通信可能である。
<Configuration of upstream control device 28>
The upstream control device 28 is an electronic control device that includes one or more processors that execute various controls and a memory that stores control programs and data. The upstream control device 28 controls the electric cylinder device 23 , the master cut valve 24 , the system cutoff valve 25 and the simulator cut valve 26 . Detection signals from various sensors such as a stroke sensor 280 , a master pressure sensor 281 and an output pressure sensor 282 are input to the upstream control device 28 . The stroke sensor 280 is a sensor that detects a pedal stroke S, which is the amount of depression of the brake pedal 15 by the driver. The master pressure sensor 281 is a sensor that detects the master pressure P0, which is the hydraulic pressure that the master cylinder 22 outputs from the output port 225 . The output pressure sensor 282 is a sensor that detects a slave pressure P<b>2 that is the hydraulic pressure that the slave cylinder 230 outputs from the output port 237 . Further, the upstream control device 28 can communicate with a downstream control device 35 provided in the upstream pressure section 20 .
 上流制御装置28は、ストロークセンサ280、マスタ圧センサ281及び出力圧センサ282などの検出結果に基づき、電動シリンダ装置23、マスタカット弁24、系統遮断弁25及びシミュレータカット弁26を制御する。 The upstream control device 28 controls the electric cylinder device 23, the master cut valve 24, the system cutoff valve 25 and the simulator cut valve 26 based on the detection results of the stroke sensor 280, master pressure sensor 281, output pressure sensor 282, and the like.
 <下流加圧部30の構成>
 下流加圧部30は、複数のホイールシリンダ11L,11R,12L,12Rをそれぞれ個別に調圧可能なユニットである。下流加圧部30は、前輪側助勢装置31、後輪側助勢装置32、液圧センサ33及び下流制御装置35を備えている。後輪側助勢装置32は、左右後輪のホイールシリンダ12L,12Rの液圧を調整することによって、後輪で制動力を発生させる装置である。前輪側助勢装置31は、左右前輪のホイールシリンダ11L,11Rの液圧を調整することによって、前輪で制動力を発生させる装置である。液圧センサ33は、上流加圧部20が第1液路13に供給する液圧P1を検出するセンサである。下流制御装置35は、前輪側助勢装置31及び後輪側助勢装置32を制御する電子制御装置である。本実施形態では、後輪側助勢装置32が「加圧ユニット」に対応し、下流制御装置35が「制御部」に対応する。
<Structure of Downstream Pressure Unit 30>
The downstream pressurizing section 30 is a unit capable of individually adjusting the pressure of the plurality of wheel cylinders 11L, 11R, 12L, 12R. The downstream pressurizing section 30 includes a front wheel side assisting device 31 , a rear wheel side assisting device 32 , a hydraulic pressure sensor 33 and a downstream control device 35 . The rear wheel side assist device 32 is a device that generates a braking force on the rear wheels by adjusting the hydraulic pressures of the wheel cylinders 12L and 12R for the left and right rear wheels. The front wheel side assist device 31 is a device that generates a braking force on the front wheels by adjusting the hydraulic pressures of the wheel cylinders 11L and 11R of the left and right front wheels. The hydraulic pressure sensor 33 is a sensor that detects the hydraulic pressure P<b>1 supplied to the first liquid passage 13 by the upstream pressurizing section 20 . The downstream control device 35 is an electronic control device that controls the front wheel side assisting device 31 and the rear wheel side assisting device 32 . In the present embodiment, the rear wheel side assisting device 32 corresponds to the "pressure unit", and the downstream control device 35 corresponds to the "control section".
 なお、後輪側助勢装置32を「第1加圧ユニット」とし、第1加圧ユニットによって液圧が調整されるホイールシリンダを「第1ホイールシリンダ」としたとき、本実施形態では後輪のホイールシリンダ12L,12Rが第1ホイールシリンダに対応する。また、前輪側助勢装置31を「第2加圧ユニット」とし、第2加圧ユニットによって液圧が調整されるホイールシリンダを「第2ホイールシリンダ」としたとき、本実施形態では前輪のホイールシリンダ11L,11Rが第2ホイールシリンダに対応する。 When the rear wheel side assisting device 32 is referred to as the "first pressure unit" and the wheel cylinder whose hydraulic pressure is adjusted by the first pressure unit is referred to as the "first wheel cylinder", the wheel cylinders 12L and 12R of the rear wheels correspond to the first wheel cylinder in this embodiment. Further, when the front wheel side assisting device 31 is referred to as a "second pressure unit" and the wheel cylinder whose hydraulic pressure is adjusted by the second pressure unit is referred to as a "second wheel cylinder", the wheel cylinders 11L and 11R of the front wheels correspond to the second wheel cylinder in this embodiment.
 <前輪側助勢装置31及び後輪側助勢装置32の構成>
 ここではまず、後輪側助勢装置32におけるホイールシリンダ12L用の液圧回路の構成について説明する。この液圧回路は、差圧制御弁301、保持弁302、減圧弁303、ポンプ304、調圧リザーバ306及び還流液路307を備えている。
<Structures of Front Wheel Side Assisting Device 31 and Rear Wheel Side Assisting Device 32>
Here, first, the configuration of the hydraulic circuit for the wheel cylinder 12L in the rear wheel side assisting device 32 will be described. This hydraulic circuit includes a differential pressure control valve 301 , a holding valve 302 , a pressure reducing valve 303 , a pump 304 , a pressure regulating reservoir 306 and a reflux fluid path 307 .
 第2液路14は、差圧制御弁301を介して液路308に接続されている。差圧制御弁301は常開式のリニア電磁弁である。差圧制御弁301は、差圧制御弁301よりもスレイブシリンダ230側とホイールシリンダ12L側との差圧を調整すべく作動する。ここでいう差圧とは、液路のうち、差圧制御弁301よりもホイールシリンダ側の部分の圧力から差圧制御弁301よりもスレイブシリンダ230側の部分の圧力を引いた値である。 The second fluid path 14 is connected to the fluid path 308 via the differential pressure control valve 301 . The differential pressure control valve 301 is a normally open linear solenoid valve. The differential pressure control valve 301 operates to adjust the differential pressure between the slave cylinder 230 side and the wheel cylinder 12L side of the differential pressure control valve 301 . The differential pressure referred to here is a value obtained by subtracting the pressure of a portion closer to the slave cylinder 230 than the differential pressure control valve 301 from the pressure of the portion closer to the wheel cylinder than the differential pressure control valve 301 in the fluid passage.
 液路308は、保持弁302を介して、ホイールシリンダ12Lに接続されている。液路310は保持弁302とホイールシリンダ11Lとを接続している。保持弁302は、通電時には閉弁して通電停止時には開弁する常開式の電磁弁である。例えば、保持弁302はホイールシリンダ12Lの液圧の増大を規制する際に閉弁される。液路310は、減圧弁303を介して調圧リザーバ306に接続されている。減圧弁303は、通電時には開弁して通電停止時には閉弁する常閉式の電磁弁である。例えば、減圧弁303はホイールシリンダ12Lからブレーキ液を流出させる際に開弁される。減圧弁303と調圧リザーバ306とは、液路312を通じて接続されている。 The liquid passage 308 is connected to the wheel cylinder 12L via the holding valve 302. A liquid passage 310 connects the holding valve 302 and the wheel cylinder 11L. The holding valve 302 is a normally open electromagnetic valve that closes when energized and opens when energized. For example, the holding valve 302 is closed when restricting an increase in hydraulic pressure in the wheel cylinder 12L. The liquid path 310 is connected to the pressure regulation reservoir 306 via the pressure reducing valve 303 . The pressure reducing valve 303 is a normally closed electromagnetic valve that opens when energized and closes when energized. For example, the pressure reducing valve 303 is opened when the brake fluid is discharged from the wheel cylinder 12L. The pressure reducing valve 303 and the pressure regulating reservoir 306 are connected through a liquid passage 312 .
 液路312は、ポンプ液路313を通じて液路308に接続されている。ポンプ液路313には、ポンプ304が設置されている。ポンプ304は、ポンプ用モータ305の回転を受けて作動する。ポンプ304が「加圧装置」に対応する。ポンプ304は、その作動に応じて、調圧リザーバ306内のブレーキ液を吸引して液路308に吐出する。ポンプ304は、スレイブシリンダ230とホイールシリンダ12Lとを繋ぐ液路のうち、差圧制御弁301と保持弁302との間の部分にブレーキ液を吐出する。 The liquid path 312 is connected to the liquid path 308 through the pump liquid path 313 . A pump 304 is installed in the pump fluid path 313 . The pump 304 operates by receiving the rotation of the pump motor 305 . The pump 304 corresponds to the "pressurizing device". The pump 304 sucks the brake fluid in the pressure regulating reservoir 306 and discharges it to the fluid passage 308 according to its operation. The pump 304 discharges the brake fluid to a portion between the differential pressure control valve 301 and the holding valve 302 in the fluid passage connecting the slave cylinder 230 and the wheel cylinder 12L.
 調圧リザーバ306は、還流液路307を通じて第2液路14に接続されている。調圧リザーバ306は、内部にある程度よりも多い量のブレーキ液が存在するときには、還流液路307との連通を遮断した状態となっている。このときのポンプ304は、調圧リザーバ306内のブレーキ液を吸引する。一方、調圧リザーバ306は、ポンプ304の吸引により内部のブレーキ液が減少すると、還流液路307と連通した状態となる。これにより、減圧弁303が閉弁している状況下でポンプ304を作動させた場合、ポンプ304は、還流液路307を介して第2液路14からブレーキ液を吸引する。一方、減圧弁303が開弁している状況下でポンプ304を作動させた場合、ポンプ304は、減圧弁303を介してホイールシリンダ12L内のブレーキ液を吸引する。 The pressure regulating reservoir 306 is connected to the second liquid path 14 through the reflux liquid path 307 . The pressure regulating reservoir 306 is in a state of blocking communication with the return fluid passage 307 when there is more brake fluid than a certain amount inside. The pump 304 at this time sucks the brake fluid in the pressure regulation reservoir 306 . On the other hand, the pressure regulating reservoir 306 communicates with the return fluid passage 307 when the brake fluid inside is reduced due to the suction of the pump 304 . As a result, when the pump 304 is operated while the pressure reducing valve 303 is closed, the pump 304 sucks brake fluid from the second fluid path 14 via the reflux fluid path 307 . On the other hand, when the pump 304 is operated while the pressure reducing valve 303 is open, the pump 304 sucks the brake fluid from the wheel cylinder 12L through the pressure reducing valve 303 .
 なお、後輪側助勢装置32におけるホイールシリンダ12R用の液圧回路は、ホイールシリンダ12L用の液圧回路と同様の構成をなしている。ホイールシリンダ12L用、ホイールシリンダ12R用の液圧回路は、差圧制御弁301、ポンプ304、調圧リザーバ306、還流液路307、液路308、液路312及びポンプ液路313を共有している。そして、保持弁302、減圧弁303及び液路310については、ホイールシリンダ12L用の液圧回路とホイールシリンダ12R用の液圧回路とがそれぞれ個別のものを有している。 The hydraulic circuit for the wheel cylinder 12R in the rear wheel side assisting device 32 has the same configuration as the hydraulic circuit for the wheel cylinder 12L. The hydraulic circuits for the wheel cylinder 12L and the wheel cylinder 12R share the differential pressure control valve 301, the pump 304, the pressure regulating reservoir 306, the reflux liquid passage 307, the liquid passage 308, the liquid passage 312, and the pump liquid passage 313. As for the holding valve 302, the pressure reducing valve 303, and the fluid passage 310, the fluid pressure circuit for the wheel cylinder 12L and the fluid pressure circuit for the wheel cylinder 12R are separate.
 一方、前輪側助勢装置31におけるホイールシリンダ11L用、及びホイールシリンダ11R用の液圧回路も、後輪側助勢装置32におけるホイールシリンダ12L用、及びホイールシリンダ12R用の液圧回路と同様の構成となっている。なお、前輪側助勢装置31及び後輪側助勢装置32は、ポンプ用モータ305を共有している。 On the other hand, the hydraulic circuits for the wheel cylinders 11L and 11R in the front wheel side assisting device 31 have the same configuration as the hydraulic circuits for the wheel cylinders 12L and 12R in the rear wheel side assisting device 32. Note that the front wheel side assisting device 31 and the rear wheel side assisting device 32 share the pump motor 305 .
 <下流制御装置35>
 下流制御装置35も、上流制御装置28と同様に、電子制御装置として構成されている。下流制御装置35は、前輪側助勢装置31及び後輪側助勢装置32を制御する。また、下流制御装置35には、ストロークセンサ350及び液圧センサ33の検出信号が入力されている。ストロークセンサ350は、上述のストロークセンサ280とは別の、ペダルストロークSの検出用のセンサである。また、図示しないが、各車輪に設けられた車輪速度センサの検出信号も下流制御装置35に入力される。
<Downstream control device 35>
Like the upstream controller 28, the downstream controller 35 is also configured as an electronic controller. The downstream control device 35 controls the front wheel side assisting device 31 and the rear wheel side assisting device 32 . Detection signals from the stroke sensor 350 and the hydraulic pressure sensor 33 are input to the downstream control device 35 . Stroke sensor 350 is a sensor for detecting pedal stroke S, which is different from stroke sensor 280 described above. Although not shown, detection signals from wheel speed sensors provided for each wheel are also input to the downstream control device 35 .
 <正常時の制動力制御>
 上流加圧部20が正常である場合の制動力制御について説明する。正常時には、上流制御装置28は、マスタカット弁24を閉弁するとともに、系統遮断弁25及びシミュレータカット弁26を開弁した状態としている。これにより、スレイブシリンダ230の出力ポート237は、第1液路13及び第2液路14の双方に接続された状態となる。一方、マスタシリンダ22の出力ポート225は、第1液路13及び第2液路14の何れにも接続されずに、ストロークシミュレータ27にのみ接続された状態となる。すなわち、このときの制動制御装置10は、前輪側助勢装置31及び後輪側助勢装置32の双方がスレイブシリンダ230を経由してリザーブタンク21に接続した状態となる。この状態では、スレイブシリンダ230により吐出されたブレーキ液がホイールシリンダ11L,11R,12L,12Rに送られる。
<Normal braking force control>
Braking force control when the upstream pressure unit 20 is normal will be described. During normal operation, the upstream control device 28 closes the master cut valve 24 and opens the system cutoff valve 25 and the simulator cut valve 26 . As a result, the output port 237 of the slave cylinder 230 is connected to both the first fluid path 13 and the second fluid path 14 . On the other hand, the output port 225 of the master cylinder 22 is connected only to the stroke simulator 27 without being connected to either the first fluid path 13 or the second fluid path 14 . In other words, the braking control device 10 at this time is in a state in which both the front-wheel-side force-assisting device 31 and the rear-wheel-side force-assisting device 32 are connected to the reserve tank 21 via the slave cylinder 230 . In this state, the brake fluid discharged by the slave cylinder 230 is sent to the wheel cylinders 11L, 11R, 12L, 12R.
 正常時には、上流制御装置28が、電動シリンダ装置23の制御を通じてホイールシリンダ11L,11R,12L,12R内の液圧を調整することで車両の制動力を制御する。具体的には、運転者がブレーキペダル15を操作する場合、上流制御装置28は、ストロークセンサ280によって検出されたペダルストロークS及びマスタ圧センサ281によって検出されたマスタ圧P0のうちの少なくとも一方に基づいて要求制動力を導出する。自動制動の場合、上流制御装置28は、他の制御装置から送信された要求制動力を取得する。そして、上流制御装置28は、要求制動力が大きいほどスレイブシリンダ230内の液圧が高くなるように電気モータ233を駆動させる。 During normal operation, the upstream control device 28 controls the braking force of the vehicle by adjusting the hydraulic pressure in the wheel cylinders 11L, 11R, 12L, 12R through the control of the electric cylinder device 23. Specifically, when the driver operates the brake pedal 15, the upstream control device 28 derives the required braking force based on at least one of the pedal stroke S detected by the stroke sensor 280 and the master pressure P0 detected by the master pressure sensor 281. In the case of automatic braking, upstream controller 28 obtains the requested braking force transmitted from other controllers. The upstream control device 28 drives the electric motor 233 so that the hydraulic pressure in the slave cylinder 230 increases as the required braking force increases.
 なお、以下の説明では、左右前輪のホイールシリンダ11L,11Rの液圧を「前輪のホイール圧Pf」といい、左右後輪のホイールシリンダ12L,12Rの液圧を「後輪のホイール圧Pr」という。 In the following description, the hydraulic pressure of the left and right front wheel cylinders 11L and 11R is referred to as "front wheel pressure Pf", and the hydraulic pressure of the left and right rear wheel cylinders 12L and 12R is referred to as "rear wheel pressure Pr".
 <異常時の制動力制御>
 上流加圧部20に異常が発生している場合の制動力制御について説明する。ここでいう「上流加圧部20の異常」は、以下の条件(A1)及び(A2)のうち少なくとも一方を満たしている状態のことである。
(A1)上流加圧部20への電力の供給が意図せず停止された場合。
(A2)電動シリンダ装置23の電気モータ233に故障などの異常が発生した場合。
<Braking force control at abnormal time>
Braking force control when an abnormality occurs in the upstream pressurizing section 20 will be described. The "abnormality of the upstream pressure unit 20" here means a state in which at least one of the following conditions (A1) and (A2) is satisfied.
(A1) When power supply to the upstream pressure unit 20 is unintentionally stopped.
(A2) When an abnormality such as a failure occurs in the electric motor 233 of the electric cylinder device 23 .
 条件(A1)が発生した場合、電気モータ233、マスタカット弁24、系統遮断弁25及びシミュレータカット弁26を駆動させることができなくなる。そのため、上流制御装置28は、電動シリンダ装置23の作動によって、前輪のホイール圧Pf及び後輪のホイール圧Prを調整することができない。 When condition (A1) occurs, the electric motor 233, the master cut valve 24, the system cutoff valve 25, and the simulator cut valve 26 cannot be driven. Therefore, the upstream control device 28 cannot adjust the wheel pressure Pf of the front wheels and the wheel pressure Pr of the rear wheels by operating the electric cylinder device 23 .
 条件(A2)が発生した場合、上流制御装置28は、電動シリンダ装置23を作動させることができない。そのため、上流制御装置28は、系統遮断弁25及びシミュレータカット弁26を閉弁させ、且つマスタカット弁24を開弁させる。 When condition (A2) occurs, the upstream control device 28 cannot operate the electric cylinder device 23. Therefore, the upstream control device 28 closes the system shutoff valve 25 and the simulator cut valve 26 and opens the master cut valve 24 .
 このような上流加圧部20の異常を下流制御装置35が検知すると、下流制御装置35は、運転者のブレーキペダル15の操作に起因したマスタシリンダ22の作動によって前輪のホイール圧Pfを調整し、前輪側助勢装置31及び後輪側助勢装置32の制御を通じて前輪のホイール圧Pf及び後輪のホイール圧Prを調整することで車両の制動力を制御する。 When the downstream control device 35 detects such an abnormality in the upstream pressurizing unit 20, the downstream control device 35 adjusts the wheel pressure Pf of the front wheels by operating the master cylinder 22 caused by the operation of the brake pedal 15 by the driver, and controls the wheel pressure Pf of the front wheels and the wheel pressure Pr of the rear wheels through the control of the front wheel side assist device 31 and the rear wheel side assist device 32, thereby controlling the braking force of the vehicle.
 <下流制御装置35の制御>
 図2を参照し、上流加圧部20に異常が発生しているか否かを判断する際に下流制御装置35が実行する処理ルーチンを説明する。本処理ルーチンは、下流制御装置35によって所定の制御サイクル毎に繰り返し実行される。
<Control of downstream control device 35>
A processing routine executed by the downstream control device 35 when determining whether or not an abnormality has occurred in the upstream pressurizing section 20 will be described with reference to FIG. 2 . This processing routine is repeatedly executed by the downstream control device 35 for each predetermined control cycle.
 本処理ルーチンにおいてステップS11では、下流制御装置35は、異常検知フラグFLG1にオフがセットされているか否かを判定する。異常検知フラグFLG1は、上流加圧部20に異常が発生していることを下流制御装置35が検知している場合にはオンがセットされ、異常が発生していることを下流制御装置35が検知していない場合にはオフがセットされるフラグである。異常検知フラグFLG1にオフがセットされている場合(S11:YES)、下流制御装置35は処理をステップS13に移行する。 At step S11 in this processing routine, the downstream control device 35 determines whether or not the abnormality detection flag FLG1 is set to OFF. The abnormality detection flag FLG1 is set to ON when the downstream control device 35 detects that an abnormality has occurred in the upstream pressure unit 20, and is set to OFF when the downstream control device 35 has not detected that an abnormality has occurred. When the abnormality detection flag FLG1 is set to OFF (S11: YES), the downstream control device 35 shifts the process to step S13.
 ステップS13において、下流制御装置35は上流異常検知処理を実行する。上流異常検知処理は、上流加圧部20での異常の発生を検知するための処理である。上述したように下流制御装置35と上流制御装置28とは相互に通信している。下流制御装置35は、電動シリンダ装置23の電気モータ233を駆動させることができない旨を上流制御装置28から受信した場合、上流加圧部20に異常が発生していると判定する。下流制御装置35は、上流制御装置28と通信できない場合にも、上流加圧部20に異常が発生していると判定してもよい。このように上流制御装置28と下流制御装置35との間で通信異常が発生した場合、上流制御装置28は電気モータ233の制御を停止してもよい。一方、下流制御装置35は、上流加圧部20が正常である旨を上流制御装置28から受信した場合、上流加圧部20に異常が発生していないと判定する。そして、下流制御装置35は、上流加圧部20に異常が発生していると判定した場合、電動シリンダ装置23の電気モータ233の駆動が不能になったことを検知する。 In step S13, the downstream control device 35 executes upstream abnormality detection processing. The upstream abnormality detection process is a process for detecting the occurrence of abnormality in the upstream pressure unit 20 . As described above, the downstream controller 35 and the upstream controller 28 communicate with each other. When the downstream control device 35 receives from the upstream control device 28 that the electric motor 233 of the electric cylinder device 23 cannot be driven, the downstream control device 35 determines that an abnormality has occurred in the upstream pressurizing section 20 . The downstream control device 35 may determine that an abnormality has occurred in the upstream pressurizing section 20 even when communication with the upstream control device 28 is not possible. When a communication error occurs between the upstream control device 28 and the downstream control device 35 in this way, the upstream control device 28 may stop controlling the electric motor 233 . On the other hand, when the downstream control device 35 receives from the upstream control device 28 that the upstream pressurizing unit 20 is normal, it determines that the upstream pressurizing unit 20 is not abnormal. Then, when the downstream control device 35 determines that the upstream pressure unit 20 is abnormal, it detects that the electric motor 233 of the electric cylinder device 23 cannot be driven.
 上流異常検知処理を実行すると、下流制御装置35は処理をステップS15に移行する。下流制御装置35は、ステップS15において上流加圧部20で異常が発生していることを検知した場合(YES)、ステップS17において異常検知フラグFLG1にオンをセットし、その後に本処理ルーチンを一旦終了する。一方、下流制御装置35は、ステップS15において上流加圧部20で異常が発生していることを検知していない場合(NO)、本処理ルーチンを一旦終了する。すなわち、異常検知フラグFLG1にはオフがセットされたままとなる。 After executing the upstream abnormality detection process, the downstream control device 35 shifts the process to step S15. When downstream control device 35 detects that an abnormality has occurred in upstream pressure unit 20 in step S15 (YES), it sets an abnormality detection flag FLG1 to ON in step S17, and then terminates this processing routine. On the other hand, if the downstream control device 35 does not detect that the upstream pressure unit 20 is abnormal in step S15 (NO), the processing routine is once terminated. That is, the abnormality detection flag FLG1 remains off.
 その一方でステップS11において異常検知フラグFLG1にオンがセットされている場合(NO)、下流制御装置35は処理をステップS21に移行する。ステップS21において、下流制御装置35は上流復帰検知処理を実行する。上流復帰検知処理は、上流加圧部20が正常に戻ったことを検知するための処理である。下流制御装置35は、上流加圧部20が正常である旨を上流制御装置28から受信した場合、上流加圧部20の異常が解消され、上流加圧部20が正常に戻ったと判定する。すなわち、下流制御装置35は電動シリンダ装置23の電気モータ233を駆動させることができるようになったと判定する。一方、下流制御装置35は、電動シリンダ装置23の電気モータ233を駆動させることができない旨を上流制御装置28から受信したり、上流制御装置28と通信することができなかったりした場合、上流加圧部20が正常に戻っていないと判定する。 On the other hand, if the abnormality detection flag FLG1 is set to ON in step S11 (NO), the downstream control device 35 shifts the process to step S21. In step S21, the downstream control device 35 executes upstream return detection processing. The upstream return detection process is a process for detecting that the upstream pressure unit 20 has returned to normal. When receiving from the upstream control device 28 that the upstream pressurizing unit 20 is normal, the downstream control device 35 determines that the upstream pressurizing unit 20 is no longer abnormal and the upstream pressurizing unit 20 returns to normal. That is, the downstream control device 35 determines that the electric motor 233 of the electric cylinder device 23 can be driven. On the other hand, when the downstream control device 35 receives from the upstream control device 28 that the electric motor 233 of the electric cylinder device 23 cannot be driven or cannot communicate with the upstream control device 28, it determines that the upstream pressure unit 20 has not returned to normal.
 上流復帰検知処理を実行すると、下流制御装置35は処理をステップS23に移行する。下流制御装置35は、ステップS23において上流加圧部20が正常に戻ったことを検知した場合(YES)、ステップS25において異常検知フラグFLG1にオフをセットし、その後に本処理ルーチンを一旦終了する。一方、下流制御装置35は、ステップS23において上流加圧部20が正常に戻ったことを検知していない場合(NO)、本処理ルーチンを一旦終了する。すなわち、異常検知フラグFLG1にはオンがセットされたままとなる。 After executing the upstream return detection process, the downstream control device 35 shifts the process to step S23. When the downstream control device 35 detects that the upstream pressure unit 20 has returned to normal in step S23 (YES), it sets the abnormality detection flag FLG1 to OFF in step S25, and then terminates this processing routine. On the other hand, if the downstream control device 35 does not detect that the upstream pressurizing section 20 has returned to normal in step S23 (NO), the processing routine is once terminated. That is, the abnormality detection flag FLG1 remains set to ON.
 次に図3を参照し、車両が走行している場合に下流制御装置35が実行する処理ルーチンについて説明する。本処理ルーチンは、車両が走行している場合には所定の制御サイクル毎に繰り返し実行される。 Next, with reference to FIG. 3, a processing routine executed by the downstream control device 35 when the vehicle is running will be described. This processing routine is repeatedly executed for each predetermined control cycle while the vehicle is running.
 本処理ルーチンにおいてステップS31では、下流制御装置35は、異常検知フラグFLG1にオンがセットされているか否かを判定する。異常検知フラグFLG1にオフがセットされている場合(S31:NO)、下流制御装置35は本処理ルーチンを一旦終了する。一方、異常検知フラグFLG1にオンがセットされている場合(S31:YES)、下流制御装置35は処理をステップS33に移行する。 In step S31 of this processing routine, the downstream control device 35 determines whether or not the abnormality detection flag FLG1 is set to ON. If the abnormality detection flag FLG1 is set to OFF (S31: NO), the downstream control device 35 once terminates this processing routine. On the other hand, when the abnormality detection flag FLG1 is set to ON (S31: YES), the downstream control device 35 shifts the process to step S33.
 ステップS33において、下流制御装置35は、後輪のホイールシリンダ12L,12Rに残圧が発生している可能性があるか否かを判定する。
 ここで後輪のホイールシリンダ12L,12Rに残圧が発生している場合について説明する。電動シリンダ装置23の作動によって前輪のホイール圧Pf及び後輪のホイール圧Prを調整していた最中に上流加圧部20で異常が発生した場合、電気モータ233が駆動しなくなる。例えばピストン231が基準位置から制動方向Zaに移動しているときに電気モータ233に異常が発生した場合、ピストン231に対して制動方向Zaに作用していた電気モータ233の駆動トルクが発生しなくなる。そのため、ホイールシリンダ12L,12Rからスレイブシリンダ230に向けてブレーキ液が流れる。これにより、出力ポート237から液室232に流入するブレーキ液圧によって、スレイブシリンダ230ではピストン231が基準位置に戻ろうとする。また、上流加圧部20で異常が発生すると、系統遮断弁25が閉弁されるとともにマスタカット弁24が開弁される。これにより、前輪のホイールシリンダ11L,11Rは、スレイブシリンダ230との連通が遮断された上でマスタシリンダ22と連通する。その結果、前輪のホイールシリンダ11L,11R内のブレーキ液はスレイブシリンダ230に戻されない。そのため、出力ポート237からスレイブシリンダ230内に流入するブレーキ液圧はそれほど大きくならない。また、本実施形態ではスレイブシリンダ230にリターンスプリングが設けられていない。さらに、スレイブシリンダ230内に流入するブレーキ液圧によってピストン231が基準位置に戻る場合、電動シリンダ装置23ではピストン231の解除方向Zbへの移動を妨げる摺動抵抗が発生する。そのため、電動シリンダ装置23の作動によって前輪のホイール圧Pf及び後輪のホイール圧Prを調整していた最中に上流加圧部20で異常が発生した場合、スレイブシリンダ230内ではピストン231が基準位置に戻らないことがある。ピストン231が基準位置に戻らないと、後輪のホイールシリンダ12L,12Rに残圧が発生してしまう。なお、車両が走行している場合などのようにブレーキペダル15が操作されていない場合、前輪のホイールシリンダ11L,11Rのブレーキ液はマスタシリンダ22内を介してリザーブタンク21に戻される。そのため、電動シリンダ装置23の作動によって前輪のホイール圧Pf及び後輪のホイール圧Prを調整していた最中に上流加圧部20で異常が発生しても、前輪のホイールシリンダ11L,11Rに残圧が発生しない。
In step S33, the downstream control device 35 determines whether there is a possibility that residual pressure is generated in the wheel cylinders 12L, 12R of the rear wheels.
Here, a case where residual pressure is generated in the wheel cylinders 12L and 12R of the rear wheels will be described. If an abnormality occurs in the upstream pressurizing section 20 while the wheel pressure Pf of the front wheels and the wheel pressure Pr of the rear wheels are being adjusted by the operation of the electric cylinder device 23, the electric motor 233 will not be driven. For example, if an abnormality occurs in the electric motor 233 while the piston 231 is moving in the braking direction Za from the reference position, the driving torque of the electric motor 233 acting on the piston 231 in the braking direction Za ceases to be generated. Therefore, the brake fluid flows from the wheel cylinders 12L, 12R toward the slave cylinder 230. As shown in FIG. As a result, the piston 231 of the slave cylinder 230 tries to return to the reference position due to the brake fluid pressure flowing into the fluid chamber 232 from the output port 237 . Further, when an abnormality occurs in the upstream pressurizing section 20, the system cutoff valve 25 is closed and the master cut valve 24 is opened. As a result, the wheel cylinders 11L and 11R of the front wheels communicate with the master cylinder 22 after communication with the slave cylinder 230 is cut off. As a result, the brake fluid in the wheel cylinders 11L and 11R for the front wheels is not returned to the slave cylinder 230. Therefore, the brake fluid pressure flowing from the output port 237 into the slave cylinder 230 does not increase so much. Further, in this embodiment, the slave cylinder 230 is not provided with a return spring. Furthermore, when the brake fluid pressure flowing into the slave cylinder 230 causes the piston 231 to return to the reference position, the electric cylinder device 23 generates sliding resistance that prevents the piston 231 from moving in the release direction Zb. Therefore, when an abnormality occurs in the upstream pressurizing unit 20 while the wheel pressure Pf of the front wheels and the wheel pressure Pr of the rear wheels are being adjusted by the operation of the electric cylinder device 23, the piston 231 may not return to the reference position in the slave cylinder 230. If the piston 231 does not return to the reference position, residual pressure will be generated in the wheel cylinders 12L and 12R of the rear wheels. When the brake pedal 15 is not operated such as when the vehicle is running, the brake fluid in the wheel cylinders 11L and 11R of the front wheels is returned to the reserve tank 21 through the master cylinder 22. Therefore, even if an abnormality occurs in the upstream pressurizing part 20 while the wheel pressure Pf of the front wheels and the wheel pressure Pr of the rear wheels are being adjusted by the operation of the electric cylinder device 23, residual pressure is not generated in the wheel cylinders 11L and 11R of the front wheels.
 そこで、電動シリンダ装置23の作動によって前輪のホイール圧Pf及び後輪のホイール圧Prを調整していた最中に異常検知フラグFLG1がオフからオンに切り替わった場合は、後輪のホイールシリンダ12L,12Rに残圧が発生している可能性ありと見なせる。ステップS33において後輪のホイールシリンダ12L,12Rに残圧が発生している可能性があると判定した場合(YES)、下流制御装置35は処理をステップS35に移行する。一方、後輪のホイールシリンダ12L,12Rに残圧が発生している可能性があると判定していない場合(S33:NO)、下流制御装置35は本処理ルーチンを一旦終了する。 Therefore, if the abnormality detection flag FLG1 is switched from OFF to ON while the wheel pressure Pf of the front wheels and the wheel pressure Pr of the rear wheels are being adjusted by operating the electric cylinder device 23, it can be considered that residual pressure may be generated in the wheel cylinders 12L and 12R of the rear wheels. If it is determined in step S33 that the wheel cylinders 12L and 12R of the rear wheels may have residual pressure (YES), the downstream control device 35 proceeds to step S35. On the other hand, if it is not determined that the wheel cylinders 12L and 12R of the rear wheels may have residual pressure (S33: NO), the downstream control device 35 temporarily terminates this processing routine.
 ステップS35において、下流制御装置35は走行時処理の実行条件が成立しているか否かを判定する。本実施形態では、下流制御装置35は、以下の条件(B1)及び(B2)の何れもが成立している場合、走行時処理の実行条件が成立していると判定する。
(B1)走行時処理を前回に実行してからの車輪速度センサ値から、車両が停止していない状態の累積経過時間が所定の第1間隔時間TM1に達したこと。
(B2)車両の減速が要求されていないこと。
In step S35, the downstream control device 35 determines whether or not the conditions for executing the processing during running are satisfied. In the present embodiment, the downstream control device 35 determines that the execution conditions for the running process are satisfied when both of the following conditions (B1) and (B2) are satisfied.
(B1) The accumulated elapsed time of the vehicle not stopped from the wheel speed sensor values after the previous execution of the running process has reached a predetermined first interval time TM1.
(B2) Vehicle deceleration is not requested.
 詳しくは後述するが、走行時処理は、後輪のホイール圧Prを減圧させる処理である。走行時処理を実行してホイール圧Prを減圧しても、後輪用の摩擦ブレーキにおいて後輪と一体に回転する被摩擦部に摩擦材が接触している状態で後輪が回転している場合、摩擦熱によってホイールシリンダ12L,12R内のブレーキ液の温度が上昇するため、ブレーキ液が膨張する。このとき、電動シリンダ装置23のピストン231が基準位置に戻っていないと、ホイールシリンダ12L,12Rと電動シリンダ装置23とを接続する液路は密閉状態になっているので、ホイール圧Prが増大することがある。そこで、下流制御装置35は、上記条件(B1)が成立した場合、上記の摩擦熱の影響によってホイール圧Prが増大したと見なす。 Although the details will be described later, the running process is a process of reducing the wheel pressure Pr of the rear wheels. Even if the wheel pressure Pr is reduced by executing the running process, when the rear wheels are rotating in a state where the friction material is in contact with the part to be rubbed that rotates integrally with the rear wheels in the friction brake for the rear wheels, the temperature of the brake fluid in the wheel cylinders 12L and 12R rises due to the heat of friction, and the brake fluid expands. At this time, if the piston 231 of the electric cylinder device 23 does not return to the reference position, the wheel pressure Pr may increase because the fluid paths connecting the wheel cylinders 12L, 12R and the electric cylinder device 23 are sealed. Therefore, when the condition (B1) is satisfied, the downstream control device 35 considers that the wheel pressure Pr has increased due to the effect of the frictional heat.
 車両に減速が要求されている場合、上記の摩擦熱の影響によってホイール圧Prが増大しても大きな問題はないと考えられる。なお、車両に減速が要求されている場合とは車両に対して制動要求がある場合と云える。一方、車両に減速が要求されていない場合とは、車両に対して制動要求が無い場合と云える。 When the vehicle is required to decelerate, it is considered that there will be no major problem even if the wheel pressure Pr increases due to the above frictional heat. The case where the vehicle is requested to decelerate can be said to be the case where the vehicle is requested to brake. On the other hand, when the vehicle is not required to decelerate, it can be said that the vehicle is not required to brake.
 そこで、下流制御装置35は、上記条件(B1)及び(B2)の何れもが成立している場合、実行条件が成立したと判定する。一方、下流制御装置35は、上記条件(B1)及び(B2)のうち少なくとも1つが成立していない場合、実行条件が成立していないと判定する。 Therefore, the downstream control device 35 determines that the execution condition is satisfied when both the conditions (B1) and (B2) are satisfied. On the other hand, the downstream control device 35 determines that the execution condition is not satisfied when at least one of the conditions (B1) and (B2) is not satisfied.
 なお、下流制御装置35は、後輪の回転速度に応じて所定の第1間隔時間TM1を可変させる。具体的には、下流制御装置35は、後輪の回転速度が大きいほど短い時間を所定の第1間隔時間TM1として設定する。これは、後輪の回転速度が大きいほど、後輪用の摩擦ブレーキで発生する摩擦熱の量が多くなるためである。 Note that the downstream control device 35 varies the predetermined first interval time TM1 according to the rotational speed of the rear wheels. Specifically, the downstream control device 35 sets a shorter time as the predetermined first interval time TM1 as the rotational speed of the rear wheels increases. This is because the greater the rotational speed of the rear wheels, the greater the amount of frictional heat generated by the rear wheel friction brakes.
 ステップS35において走行時処理の実行条件が成立していると判定した場合(YES)、下流制御装置35は処理をステップS37に移行する。一方、実行条件が成立していないと判定した場合(S35:NO)、下流制御装置35は、走行時処理を実行することなく、本処理ルーチンを一旦終了する。 When it is determined in step S35 that the conditions for executing the process during running are satisfied (YES), the downstream control device 35 shifts the process to step S37. On the other hand, if it is determined that the execution condition is not satisfied (S35: NO), the downstream control device 35 once terminates this processing routine without executing the processing during running.
 ステップS37において、下流制御装置35は走行時処理を実行する。すなわち、下流制御装置35は、車両が走行しており、電気モータ233の駆動が不能になったことを検知していて且つ制動要求が無い場合、走行時処理を実行する。走行時処理の実行を終了すると、下流制御装置35は本処理ルーチンを一旦終了する。 In step S37, the downstream control device 35 executes running processing. That is, the downstream control device 35 executes the running process when the vehicle is running, it is detected that the electric motor 233 cannot be driven, and there is no braking request. After completing the running process, the downstream control device 35 once ends this process routine.
 図4を参照し、走行時処理について詳述する。
 図4に示す例では、タイミングt11,t13,t15で走行時処理の実行条件が成立する。走行時処理において、下流制御装置35は、図4の(A)~(D)に示すように後輪側助勢装置32を作動させることにより、図4の(E)に示すように後輪のホイール圧Prを減圧させる。走行時処理において、下流制御装置35は、後輪側助勢装置32のポンプ304を作動させ、後輪側助勢装置32の差圧制御弁301を開弁させ、後輪側助勢装置32の保持弁302を閉弁させ、後輪側助勢装置32の減圧弁303を開弁させる。
Referring to FIG. 4, the processing during running will be described in detail.
In the example shown in FIG. 4, the execution conditions for the running process are established at timings t11, t13, and t15. In the running process, the downstream control device 35 operates the rear wheel side assist device 32 as shown in (A) to (D) of FIG. 4 to reduce the wheel pressure Pr of the rear wheels as shown in (E) of FIG. In the running process, the downstream control device 35 operates the pump 304 of the rear wheel side assisting device 32, opens the differential pressure control valve 301 of the rear wheel side assisting device 32, closes the holding valve 302 of the rear wheel side assisting device 32, and opens the pressure reducing valve 303 of the rear wheel side assisting device 32.
 このように後輪側助勢装置32を作動させると、後輪のホイールシリンダ12L,12R内のブレーキ液をポンプ304が吸引し、ポンプ304が差圧制御弁301と保持弁302との間の液路308にブレーキ液を吐出する。保持弁302が閉弁しており、差圧制御弁301が開弁しているため、ポンプ304から吐出されたブレーキ液が差圧制御弁301を通過してスレイブシリンダ230内に流入する。その結果、後輪のホイール圧Prが減圧される。さらに、ポンプ304の吐出圧に応じた圧力が、スレイブシリンダ230のピストン231に作用するため、図4の(F)に示すようにピストン231を基準位置に向けて移動させることができる。 When the rear wheel assisting device 32 is operated in this way, the pump 304 sucks the brake fluid in the wheel cylinders 12L and 12R of the rear wheels, and the pump 304 discharges the brake fluid to the fluid passage 308 between the differential pressure control valve 301 and the holding valve 302. Since the holding valve 302 is closed and the differential pressure control valve 301 is open, the brake fluid discharged from the pump 304 passes through the differential pressure control valve 301 and flows into the slave cylinder 230 . As a result, the wheel pressure Pr of the rear wheels is reduced. Furthermore, since the pressure corresponding to the discharge pressure of the pump 304 acts on the piston 231 of the slave cylinder 230, the piston 231 can be moved toward the reference position as shown in FIG. 4(F).
 図4に示す例では、タイミングt12,t14,t16で走行時処理の実行が終了する。すると、下流制御装置35は後輪側助勢装置32の作動を停止させる。すなわち、下流制御装置35は、後輪側助勢装置32のポンプ304、差圧制御弁301、保持弁302及び減圧弁303の駆動を停止させる。 In the example shown in FIG. 4, execution of the running process ends at timings t12, t14, and t16. Then, the downstream control device 35 stops the operation of the rear wheel side assist device 32 . That is, the downstream control device 35 stops driving the pump 304 , the differential pressure control valve 301 , the holding valve 302 and the pressure reducing valve 303 of the rear wheel side assisting device 32 .
 図5を参照し、車両が停止している場合に下流制御装置35が実行する処理ルーチンについて説明する。本処理ルーチンは、車両が停止している場合には所定の制御サイクル毎に繰り返し実行される。 A processing routine executed by the downstream control device 35 when the vehicle is stopped will be described with reference to FIG. This processing routine is repeatedly executed for each predetermined control cycle when the vehicle is stopped.
 本処理ルーチンにおいてステップS41では、下流制御装置35は、異常検知フラグFLG1にオンがセットされているか否かを判定する。異常検知フラグFLG1にオフがセットされている場合(S41:NO)、下流制御装置35は本処理ルーチンを一旦終了する。一方、異常検知フラグFLG1にオンがセットされている場合(S41:YES)、下流制御装置35は処理をステップS43に移行する。 At step S41 in this processing routine, the downstream control device 35 determines whether or not the abnormality detection flag FLG1 is set to ON. If the abnormality detection flag FLG1 is set to OFF (S41: NO), the downstream control device 35 once terminates this processing routine. On the other hand, when the abnormality detection flag FLG1 is set to ON (S41: YES), the downstream control device 35 shifts the process to step S43.
 ステップS43において、下流制御装置35は、図3に示したステップS33の処理と同様に後輪のホイールシリンダ12L,12Rに残圧が発生している可能性があるか否かを判定する。後輪のホイールシリンダ12L,12Rに残圧が発生している可能性があると判定した場合(S43:YES)、下流制御装置35は処理をステップS45に移行する。一方、ホイールシリンダ12L,12Rに残圧が発生している可能性があると判定していない場合(S43:NO)、下流制御装置35は本処理ルーチンを一旦終了する。 In step S43, the downstream control device 35 determines whether there is a possibility that residual pressure is generated in the wheel cylinders 12L and 12R of the rear wheels, similar to the process of step S33 shown in FIG. When determining that there is a possibility that residual pressure is generated in the wheel cylinders 12L and 12R of the rear wheels (S43: YES), the downstream control device 35 shifts the process to step S45. On the other hand, if it is not determined that there is a possibility that residual pressure is generated in the wheel cylinders 12L, 12R (S43: NO), the downstream control device 35 once terminates this processing routine.
 ステップS45において、下流制御装置35は停車時処理の実行条件が成立しているか否かを判定する。本実施形態では、下流制御装置35は、停車時処理を前回に実行してからの経過時間が所定の第2間隔時間TM2に達した場合、実行条件が成立したと判定する。一方、下流制御装置35は、停車時処理を前回に実行してからの経過時間が所定の第2間隔時間TM2に達していない場合、実行条件が成立していないと判定する。図5に示す処理ルーチンの実行サイクルよりも長い時間が第2間隔時間TM2として設定されている。 In step S45, the downstream control device 35 determines whether or not the conditions for executing the vehicle stop processing are satisfied. In the present embodiment, the downstream control device 35 determines that the execution condition is met when the elapsed time since the last execution of the vehicle stop process reaches the predetermined second interval time TM2. On the other hand, the downstream control device 35 determines that the execution condition is not met when the elapsed time since the last execution of the vehicle stop process has not reached the second predetermined interval time TM2. A time longer than the execution cycle of the processing routine shown in FIG. 5 is set as the second interval time TM2.
 ステップS45において停車時処理の実行条件が成立していると判定した場合(YES)、下流制御装置35は処理をステップS47に移行する。一方、実行条件が成立していないと判定した場合(S45:NO)、下流制御装置35は、停車時処理を実行することなく、本処理ルーチンを一旦終了する。 When it is determined in step S45 that the conditions for executing the process when the vehicle is stopped are satisfied (YES), the downstream control device 35 shifts the process to step S47. On the other hand, if it is determined that the execution condition is not satisfied (S45: NO), the downstream control device 35 temporarily terminates this processing routine without executing the vehicle stop processing.
 ステップS47において、下流制御装置35は停車時処理を実行する。すなわち、下流制御装置35は、車両が停止しており、電気モータ233の駆動が不能になったことを検知している場合、停車時処理を実行する。停車時処理の実行を終了すると、下流制御装置35は本処理ルーチンを一旦終了する。 In step S47, the downstream control device 35 executes the vehicle stopping process. That is, when the downstream control device 35 detects that the vehicle is stopped and the electric motor 233 cannot be driven, the downstream control device 35 executes the vehicle stop processing. After completing the execution of the vehicle stop processing, the downstream control device 35 temporarily ends this processing routine.
 図6を参照し、停車時処理について詳述する。
 図6に示す例では、タイミングt21,t23,t25で停車時処理の実行条件が成立する。停車時処理において、下流制御装置35は、図6の(A)~(D)に示すように後輪側助勢装置32を作動させることにより、液路のうち、差圧制御弁301よりもホイールシリンダ12L,12R側の部分の圧力を差圧制御弁301よりもスレイブシリンダ230側の部分の圧力よりも高くする。すなわち、下流制御装置35は、図6の(E)に示すように後輪のホイール圧Prを増大させる。具体的には、下流制御装置35は、後輪側助勢装置32のポンプ304を作動させ、後輪側助勢装置32の差圧制御弁301の指示開度を小さくする。このとき、下流制御装置35は、後輪側助勢装置32の保持弁302の開弁及び後輪側助勢装置32の減圧弁303の閉弁を保持する。
With reference to FIG. 6, the processing at the time of stop will be described in detail.
In the example shown in FIG. 6, the conditions for executing the stop processing are established at timings t21, t23, and t25. In the vehicle stop processing, the downstream control device 35 operates the rear wheel side assisting device 32 as shown in FIGS. That is, the downstream control device 35 increases the wheel pressure Pr of the rear wheels as shown in FIG. 6(E). Specifically, the downstream control device 35 operates the pump 304 of the rear wheel side assisting device 32 to reduce the indicated opening degree of the differential pressure control valve 301 of the rear wheel side assisting device 32 . At this time, the downstream control device 35 keeps the holding valve 302 of the rear wheel side assisting device 32 open and the pressure reducing valve 303 of the rear wheel side assisting device 32 closed.
 このように後輪側助勢装置32を作動させると、ポンプ304がスレイブシリンダ230内のブレーキ液を吸引する。こうしたポンプ304の吸引によってスレイブシリンダ230の液室232の圧力が減少すると、カップシール238が変形する。その結果、スレイブシリンダ230の内壁とピストン231との間に隙間が生じるため、ポンプ304は当該隙間を介してリザーブタンク21からブレーキ液を吸引する。ポンプ304が差圧制御弁301よりもホイールシリンダ12L,12R側の液路308にブレーキ液を吐出する。これにより、ポンプ304から吐出されたブレーキ液がホイールシリンダ12L,12Rに流入するため、後輪のホイール圧Prが増大される。 When the rear wheel side assist device 32 is operated in this way, the pump 304 sucks the brake fluid in the slave cylinder 230 . When the pressure in the liquid chamber 232 of the slave cylinder 230 is reduced due to the suction of the pump 304, the cup seal 238 is deformed. As a result, a gap is created between the inner wall of the slave cylinder 230 and the piston 231, and the pump 304 sucks the brake fluid from the reserve tank 21 through the gap. A pump 304 discharges brake fluid to a fluid passage 308 closer to the wheel cylinders 12L and 12R than the differential pressure control valve 301 is. As a result, the brake fluid discharged from the pump 304 flows into the wheel cylinders 12L, 12R, increasing the wheel pressure Pr of the rear wheels.
 そして、下流制御装置35は、タイミングt22,t24,t26で、後輪側助勢装置32の作動を停止させて停車時処理を終了する。すなわち、下流制御装置35は、ポンプ304を停止させ、差圧制御弁301の指示開度を100%に設定して差圧制御弁301を開弁させる。このようにホイールシリンダ12L,12Rとスレイブシリンダ230との差圧を大きくした状態で差圧制御弁301が開弁されると、ホイールシリンダ12L,12Rからスレイブシリンダ230内にブレーキ液が流入する。すなわち、停車時処理では、後輪側助勢装置32を作動させて差圧を増大させた後、当該差圧の増大を停止して差圧制御弁301を開弁させることにより、ホイールシリンダ12L,12Rからスレイブシリンダ230にブレーキ液を流動させる。その結果、図6の(F)に示すように、スレイブシリンダ230内では、出力ポート237からスレイブシリンダ230内に流入したブレーキ液圧によって、ピストン231が基準位置に向けて移動する。 Then, at timings t22, t24, and t26, the downstream control device 35 stops the operation of the rear wheel side assisting device 32 and ends the vehicle stop processing. That is, the downstream control device 35 stops the pump 304 and sets the indicated degree of opening of the differential pressure control valve 301 to 100% to open the differential pressure control valve 301 . When the differential pressure control valve 301 is opened with the differential pressure between the wheel cylinders 12L, 12R and the slave cylinder 230 thus increased, brake fluid flows into the slave cylinder 230 from the wheel cylinders 12L, 12R. That is, in the stop processing, after the rear wheel side assist device 32 is operated to increase the differential pressure, the increase in the differential pressure is stopped and the differential pressure control valve 301 is opened, thereby causing the brake fluid to flow from the wheel cylinders 12L, 12R to the slave cylinder 230. As a result, as shown in (F) of FIG. 6 , in slave cylinder 230 , piston 231 moves toward the reference position due to the brake fluid pressure that has flowed into slave cylinder 230 from output port 237 .
 こうした後輪側助勢装置32の作動によって後輪のホイール圧Prを増減させていると、車両の停止を維持するための制動力が不足する可能性がある。そこで、本実施形態では、運転者のブレーキペダル15の操作に起因するマスタシリンダ22による前輪のホイール圧Prの確保が可能としている。また、シフトギヤやEPBなどで車両の停止を維持できる場合、停車時処理と同等の処理を前輪に対しても行い、ピストン231を基準位置に戻すことにしてもよい。 If the wheel pressure Pr of the rear wheels is increased or decreased by operating the rear wheel side assist device 32, there is a possibility that the braking force required to keep the vehicle stopped will be insufficient. Therefore, in the present embodiment, it is possible to ensure the wheel pressure Pr of the front wheels by the master cylinder 22 resulting from the operation of the brake pedal 15 by the driver. Further, if the vehicle can be kept stopped by shift gear, EPB, or the like, the same process as the vehicle stop process may be performed on the front wheels to return the piston 231 to the reference position.
 <本実施形態の作用及び効果>
 車両が停止しており、電動シリンダ装置23の電気モータ233の駆動が不能になったことが検知されている場合、停車時処理が実行される。停車時処理が実行されると、後輪側助勢装置32の作動によって、後輪のホイールシリンダ12L,12Rとスレイブシリンダ230との差圧が増大される、すなわち後輪のホイール圧Prが増大される。この状態で後輪側助勢装置32の作動が停止され、差圧制御弁301が開弁される。すると、ホイールシリンダ12L,12Rからスレイブシリンダ230に向けて多くのブレーキ液が流れるようになる。その結果、スレイブシリンダ230内では、出力ポート237を介して流入したブレーキ液の液圧によってピストン231を基準位置に向けて移動させることができる。したがって、電気モータ233を駆動させることができなくなってピストン231が基準位置に戻っていなくても、停車時処理を実行することによってピストン231を基準位置まで戻すことが可能となる。
<Actions and effects of the present embodiment>
When the vehicle is stopped and it is detected that the electric motor 233 of the electric cylinder device 23 cannot be driven, the vehicle stop processing is executed. When the vehicle stop process is executed, the rear wheel assist device 32 is actuated to increase the differential pressure between the rear wheel cylinders 12L, 12R and the slave cylinder 230, that is, the wheel pressure Pr of the rear wheels is increased. In this state, the operation of the rear wheel side assist device 32 is stopped, and the differential pressure control valve 301 is opened. Then, a large amount of brake fluid flows from the wheel cylinders 12L, 12R toward the slave cylinder 230. As shown in FIG. As a result, in the slave cylinder 230, the hydraulic pressure of the brake fluid flowing through the output port 237 can move the piston 231 toward the reference position. Therefore, even if the electric motor 233 cannot be driven and the piston 231 has not returned to the reference position, it is possible to return the piston 231 to the reference position by executing the vehicle stop processing.
 図6に示したように停車時処理を1回実行しただけでは、ピストン231を基準位置に戻せないことがある。この点、本実施形態では、車両が停止している間では、停車時処理が間欠的に実行される。このように停車時処理を何度も実行することにより、図6の(F)に示すように、スレイブシリンダ230内においてピストン231を基準位置に徐々に接近させることができる。図6に示す例では、停車時処理を3回実行することにより、ピストン231が基準位置に戻る。 As shown in FIG. 6, it may not be possible to return the piston 231 to the reference position by executing the vehicle stop processing only once. In this respect, in the present embodiment, the vehicle stop processing is intermittently executed while the vehicle is stopped. By repeatedly executing the vehicle stop processing in this manner, the piston 231 in the slave cylinder 230 can be gradually brought closer to the reference position, as shown in FIG. 6(F). In the example shown in FIG. 6, the piston 231 returns to the reference position by executing the vehicle stop processing three times.
 ところで、車両の走行中に後輪のホイールシリンダ12L,12Rに残圧が発生している場合は、車両の運転者に引きずり感を与えてしまう。そこで、本実施形態では、車両が走行しており、電動シリンダ装置23の電気モータ233の駆動が不能になったことが検知されている場合、走行時処理が実行される。走行時処理が実行されると、後輪側助勢装置32の作動によって、後輪のホイールシリンダ12L,12R内のブレーキ液がスレイブシリンダ230内に戻される。その結果、図4の(E)に示すように後輪のホイール圧Prを減少させることができる。したがって、車両の走行中に引きずり感を運転者に与えてしまうことを抑制できる。 By the way, if residual pressure is generated in the wheel cylinders 12L and 12R of the rear wheels while the vehicle is running, the driver of the vehicle will feel dragged. Therefore, in this embodiment, when the vehicle is running and it is detected that the electric motor 233 of the electric cylinder device 23 is disabled, the running process is executed. When the running process is executed, the brake fluid in the wheel cylinders 12L and 12R of the rear wheels is returned to the slave cylinder 230 by the operation of the rear wheel side assisting device 32 . As a result, the wheel pressure Pr of the rear wheels can be reduced as shown in FIG. 4(E). Therefore, it is possible to prevent the driver from feeling dragged while the vehicle is running.
 さらに、走行時処理の実行によって、出力ポート237からスレイブシリンダ230内にブレーキ液が流入することになる。その結果、図4の(F)に示すように、スレイブシリンダ230内においてピストン231を基準位置に向けて移動させることができる。 Furthermore, the execution of the running process causes the brake fluid to flow into the slave cylinder 230 from the output port 237 . As a result, the piston 231 in the slave cylinder 230 can be moved toward the reference position, as shown in FIG. 4(F).
 なお、車両の走行中に走行時処理を実行してホイールシリンダ12L,12R内のブレーキ液を減少させても、後輪用の摩擦ブレーキでは、後輪と一体に回転する被摩擦部に摩擦部が接触している状態が継続することがある。この場合、摩擦ブレーキで摩擦熱が発生し、ホイールシリンダ12L,12R内のブレーキ液の温度が上昇し、後輪のホイール圧Prが再び高くなる。 Even if the brake fluid in the wheel cylinders 12L and 12R is reduced by executing the running process while the vehicle is running, the friction brake for the rear wheels may continue to contact the friction part that rotates integrally with the rear wheel. In this case, frictional heat is generated in the friction brakes, the temperature of the brake fluid in the wheel cylinders 12L, 12R rises, and the wheel pressure Pr of the rear wheels rises again.
 本実施形態では、図4に示すように車両の走行中においては走行時処理を間欠的に繰り返し実行するようにしている。これにより、車両の走行中に引きずり感を運転者に与えてしまうことの抑制効果を高くできる。 In this embodiment, as shown in FIG. 4, while the vehicle is running, the running process is intermittently and repeatedly executed. As a result, it is possible to enhance the effect of suppressing the driver from feeling dragged while the vehicle is running.
 なお、車両の走行速度が低い状態が続くのであれば、摩擦ブレーキの摩擦材の温度はそれほど上昇しない。そのため、走行時処理の実行間隔を長くしてもよい。言い換えると、走行速度が高いほど、走行時処理の実行間隔を短くするとよい。例えば、上記の所定の第1間隔時間TM1を可変させることにより、走行時処理の実行間隔を調整できる。 Note that if the vehicle continues to travel at low speed, the temperature of the friction material of the friction brake will not rise that much. Therefore, the execution interval of the running process may be lengthened. In other words, the higher the running speed, the shorter the interval at which the running process is executed. For example, by varying the predetermined first interval time TM1, it is possible to adjust the execution interval of the running process.
 ちなみに、車両の走行中であっても、ブレーキペダル15が操作されるなどして車両の減速が要求されることがある。すなわち、制動要求があることがある。本実施形態では、車両走行中において制動要求がある場合には走行時処理が実行されない。これにより、後輪側助勢装置32の作動頻度が高くなることを抑制できる。 By the way, even while the vehicle is running, it may be necessary to decelerate the vehicle by operating the brake pedal 15 or the like. That is, there may be a braking request. In this embodiment, the running process is not executed when there is a braking request while the vehicle is running. As a result, it is possible to suppress an increase in the frequency of operation of the rear wheel side assist device 32 .
 <変更例>
 上記実施形態は、以下のように変更して実施することができる。上記実施形態及び以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
<Change example>
The above embodiment can be implemented with the following modifications. The above embodiments and the following modifications can be combined with each other within a technically consistent range.
 ・上流加圧部は、電動シリンダ装置23を備える構成であれば、図1に示した上流加圧部20とは異なる構成であってもよい。
 図7には、変更例の上流加圧部20Aが図示されている。この上流加圧部20Aは、マスタシリンダ22Aと、ストロークシミュレータ27と、電動シリンダ装置23とを備えている。
The upstream pressurizing section may have a configuration different from that of the upstream pressurizing section 20 shown in FIG.
FIG. 7 shows an upstream pressurizing section 20A of a modified example. The upstream pressurizing section 20A includes a master cylinder 22A, a stroke simulator 27, and an electric cylinder device 23. As shown in FIG.
 マスタシリンダ22Aの構成は、例えば「特開2021-49935号公報」に記載されている。マスタシリンダ22Aは、メインシリンダ41、カバーシリンダ42、マスタピストン43及び入力ピストン44を備えている。入力ピストン44にブレーキペダル15が連結されている。メインシリンダ41内には、マスタピストン43によってマスタ室411、第1液圧室412及びサーボ室413が区画形成されている。カバーシリンダ42内には第2液圧室421及び第3液圧室422が区画形成されている。メインシリンダ41内には、マスタ室411の容積を大きくする方向にマスタピストン43を付勢するマスタスプリング45が設けられている。カバーシリンダ42内には、第2液圧室421の容積を大きくする方向に入力ピストン44を付勢する入力スプリング46が設けられている。 The configuration of the master cylinder 22A is described, for example, in "Japanese Unexamined Patent Application Publication No. 2021-49935". The master cylinder 22A includes a main cylinder 41, a cover cylinder 42, a master piston 43 and an input piston 44. A brake pedal 15 is connected to the input piston 44 . A master chamber 411 , a first hydraulic chamber 412 and a servo chamber 413 are defined in the main cylinder 41 by the master piston 43 . A second hydraulic chamber 421 and a third hydraulic chamber 422 are defined in the cover cylinder 42 . A master spring 45 is provided in the main cylinder 41 to bias the master piston 43 in a direction to increase the volume of the master chamber 411 . An input spring 46 is provided in the cover cylinder 42 to bias the input piston 44 in a direction to increase the volume of the second hydraulic pressure chamber 421 .
 上流加圧部20Aにおいては、電動シリンダ装置23のスレイブシリンダ230がサーボ室413に接続されている。すなわち、電動シリンダ装置23は、後輪のホイールシリンダ12L,12R及びサーボ室413にブレーキ液を供給可能である。また、上流加圧部20Aは複数の制御弁52,53を有している。 The slave cylinder 230 of the electric cylinder device 23 is connected to the servo chamber 413 in the upstream pressure section 20A. That is, the electric cylinder device 23 can supply the brake fluid to the wheel cylinders 12L and 12R of the rear wheels and the servo chamber 413 . In addition, the upstream pressurization section 20A has a plurality of control valves 52,53.
 この上流加圧部20Aが正常である場合には、制御弁52が開弁され、制御弁53が閉弁される。この状態では、第2液圧室421は、ストロークシミュレータ27と液圧的に連通し、リザーブタンク21とは液圧的に遮断される。この状態でブレーキペダル15が操作された場合、ストロークシミュレータ27によってペダルフィーリングがブレーキペダル15に供給される。制御弁52が開弁されて制御弁53が閉弁された状態で、電動シリンダ装置23はブレーキペダル15の操作量に応じてブレーキ液を出力ポート237から出力する。出力されたブレーキ液は第2液路14とサーボ室413に供給される。サーボ室413にブレーキ液が供給されることでマスタピストン43はマスタ室411の容積を小さくする方向に摺動する。マスタピストン43がこのように摺動することに伴いマスタ室411から第1液路13にブレーキ液が供給される。このように正常時には、上流加圧部20Aは電動シリンダ装置23と制御弁52,53を制御して第1液路13と第2液路14のそれぞれにブレーキ液と供給する。 When the upstream pressurizing section 20A is normal, the control valve 52 is opened and the control valve 53 is closed. In this state, the second hydraulic chamber 421 is hydraulically connected to the stroke simulator 27 and is hydraulically disconnected from the reserve tank 21 . When the brake pedal 15 is operated in this state, the pedal feeling is supplied to the brake pedal 15 by the stroke simulator 27 . With the control valve 52 opened and the control valve 53 closed, the electric cylinder device 23 outputs brake fluid from the output port 237 according to the amount of operation of the brake pedal 15 . The output brake fluid is supplied to the second fluid passage 14 and the servo chamber 413 . By supplying the brake fluid to the servo chamber 413 , the master piston 43 slides in the direction of decreasing the volume of the master chamber 411 . Brake fluid is supplied from the master chamber 411 to the first fluid passage 13 as the master piston 43 slides in this manner. Thus, in normal operation, the upstream pressurizing section 20A controls the electric cylinder device 23 and the control valves 52 and 53 to supply brake fluid to the first fluid passage 13 and the second fluid passage 14, respectively.
 上流加圧部20Aに異常が発生すると、制御弁52,53は非通電状態となる。すると、制御弁52は閉弁し、制御弁53は開弁する。その結果、リザーブタンク21は第1液圧室412及びストロークシミュレータ27に接続される。また、リザーブタンク21は第2液圧室421とは遮断される。これにより第2液圧室421は密閉状態となり、ブレーキペダル15に加わった踏力が、入力ピストン44及び第2液圧室421に密閉されたブレーキ液を介してマスタピストン43に伝達される状態となる。このときの第1液路13は、マスタシリンダ22Aのマスタ室411に接続される。よって、このときの制動制御装置10は、前輪側助勢装置31が、マスタシリンダ22Aから出力されたブレーキ液を増圧して前輪のホイールシリンダ11L,11Rに送ることで、前輪の制動力を発生させる。また、このときの制動制御装置10は、後輪側助勢装置32が、マスタシリンダ22Aとは独立して後輪のホイールシリンダ12L、12Rにブレーキ液を送ることで、後輪の制動力を発生させる。 When an abnormality occurs in the upstream pressurizing section 20A, the control valves 52 and 53 are de-energized. Then, the control valve 52 is closed and the control valve 53 is opened. As a result, the reserve tank 21 is connected to the first hydraulic pressure chamber 412 and the stroke simulator 27 . Also, the reserve tank 21 is isolated from the second hydraulic pressure chamber 421 . As a result, the second hydraulic chamber 421 is closed, and the pedal force applied to the brake pedal 15 is transmitted to the master piston 43 via the brake fluid sealed in the input piston 44 and the second hydraulic chamber 421 . The first fluid passage 13 at this time is connected to the master chamber 411 of the master cylinder 22A. Therefore, in the brake control device 10 at this time, the front wheel side assist device 31 increases the pressure of the brake fluid output from the master cylinder 22A and sends it to the wheel cylinders 11L and 11R of the front wheels, thereby generating braking force for the front wheels. Also, in the braking control device 10 at this time, the rear wheel side assist device 32 sends brake fluid to the wheel cylinders 12L and 12R of the rear wheels independently of the master cylinder 22A, thereby generating braking force for the rear wheels.
 上記のように上流加圧部20Aが正常であり、電動シリンダ装置23の作動によって後輪のホイール圧Prが調整されている状況下で、上流加圧部20Aに異常が発生し、電気モータ233の駆動が不能になることがあり得る。この場合、上述したように制御弁52が閉弁され、制御弁53が開弁される。このときに下流制御装置35が停車時処理や走行時処理を実行することにより、上記実施形態と同等の作用及び効果を得ることができる。 Under the circumstances where the upstream pressurizing section 20A is normal and the wheel pressure Pr of the rear wheel is adjusted by the operation of the electric cylinder device 23 as described above, an abnormality may occur in the upstream pressurizing section 20A and the electric motor 233 may become inoperable. In this case, the control valve 52 is closed and the control valve 53 is opened as described above. At this time, the downstream control device 35 executes the processing when the vehicle is stopped and the processing when the vehicle is running, so that the same functions and effects as those of the above-described embodiment can be obtained.
 また、図7に示す変更例では、電気モータ233の駆動が不能になることで、スレイブシリンダ230のピストン231が基準位置に戻らない可能性がある。この場合、マスタシリンダ22Aのサーボ室413にも液圧が残る可能性がある。サーボ室413に液圧が残ることでマスタピストン43も基準位置に戻らないと、前輪のホイールシリンダ11L,11Rに液圧が発生した状態となり得る。そのため、図7に示す変更例においては、前輪側助勢装置31を制御して、前輪のホイールシリンダ11L,11Rを対象に停車時処理や走行時処理に相当する処理を実行してもよい。例えば、前輪側助勢装置31からマスタ室411にブレーキ液が流動するよう前輪側助勢装置31を制御してもよい。 Also, in the modification shown in FIG. 7, there is a possibility that the piston 231 of the slave cylinder 230 will not return to the reference position due to the electric motor 233 not being driven. In this case, hydraulic pressure may remain in the servo chamber 413 of the master cylinder 22A. If the hydraulic pressure remains in the servo chamber 413 and the master piston 43 does not return to the reference position, hydraulic pressure may be generated in the wheel cylinders 11L and 11R of the front wheels. Therefore, in the modification shown in FIG. 7, the front-wheel-side assisting device 31 may be controlled to perform processing corresponding to the stop processing and the running processing for the wheel cylinders 11L and 11R of the front wheels. For example, the front wheel side assisting device 31 may be controlled so that the brake fluid flows from the front wheel side assisting device 31 to the master chamber 411 .
 ・停車時処理が実行されている場合には、前輪側助勢装置31の作動によって前輪のホイール圧Pfを増大させてもよい。
 ・上記実施形態では、走行時処理の実行間隔を規定する所定の第1間隔時間TM1を、後輪の回転速度に応じて可変させているが、後輪の回転速度以外のパラメータに基づいて第1間隔時間TM1を可変させてもよい。例えば、ブレーキ液の温度や外気温が高いほど短い時間を第1間隔時間TM1として設定するようにしてもよい。また、車両の走行だけでなく、減速時の制動による発熱を加味した摩擦ブレーキの摩擦材の推定温度に応じて第1間隔時間TM1を設定してもよい。
When the vehicle stop processing is being executed, the wheel pressure Pf of the front wheels may be increased by operating the front wheel side assist device 31 .
In the above embodiment, the predetermined first time interval TM1 that defines the execution interval of the running process is varied according to the rotational speed of the rear wheels, but the first time interval TM1 may be varied based on parameters other than the rotational speed of the rear wheels. For example, the higher the brake fluid temperature or the outside air temperature, the shorter the first interval time TM1 may be set. Further, the first time interval TM1 may be set according to the estimated temperature of the friction material of the friction brake, which takes into account not only the running of the vehicle but also the heat generated by braking during deceleration.
 ・車両の制動頻度が高いほど、後輪のホイールシリンダ12L,12Rに残圧が発生する機会が多いと推測できる。そのため、車両の走行中における制動頻度が多いほど、短い間隔で走行時処理を間欠的に実行するとよい。 · It can be inferred that the higher the braking frequency of the vehicle, the more opportunities there are for residual pressure to occur in the wheel cylinders 12L and 12R of the rear wheels. Therefore, it is preferable to intermittently execute the running process at shorter intervals as the braking frequency increases while the vehicle is running.
 ・第1間隔時間TM1を可変させなくてもよい。
 ・走行時処理の実行条件は、車両の減速が要求されていること、すなわち制動要求が無いことを含んでいなくてもよい。
- It is not necessary to change the first interval time TM1.
- The condition for executing the process during running does not have to include the fact that deceleration of the vehicle is requested, that is, there is no braking request.
 ・車両の走行中に走行時処理を間欠的に繰り返し実行しなくてもよい。
 ・車両が走行しており、電気モータ233の駆動が不能になったことを検知しており、且つ後輪のホイールシリンダ12L,12Rに残圧が発生している可能性がある場合、車両が走行している間は走行時処理を実行し続けてもよい。
- It is not necessary to intermittently repeat the running process while the vehicle is running.
When the vehicle is running, it is detected that the electric motor 233 has become undrivable, and there is a possibility that residual pressure is generated in the wheel cylinders 12L and 12R of the rear wheels, the running process may continue to be executed while the vehicle is running.
 ・下流制御装置35は、車両の停止時に停車時処理を実行するのであれば、車両の走行中に走行時処理を実行しなくてもよい。
 ・下流制御装置35は、車両の走行中に走行時処理を実行するのであれば、停車時処理を実行しなくてもよい。この場合、後輪側助勢装置32は、差圧制御弁301を有しない構成であってもよい。
The downstream control device 35 does not have to execute the running process while the vehicle is running, as long as the vehicle stopping process is executed when the vehicle is stopped.
- The downstream control device 35 does not have to execute the process when the vehicle is stopped if the process when the vehicle is running is to be executed while the vehicle is running. In this case, the rear wheel side assist device 32 may be configured without the differential pressure control valve 301 .
 ・上記実施形態では、車両の停止している期間内に、停車時処理を間欠的に繰り返し実行するようにしているが、これに限らない。例えば、一回の停車期間中では、停車時処理を1回のみ実行するようにしてもよい。 · In the above embodiment, the stop processing is intermittently repeated while the vehicle is stopped, but the present invention is not limited to this. For example, during one stop period, the stop process may be executed only once.
 ・上記実施形態では、図5のステップS43で残圧が発生している可能性があると判定した場合にはステップS45の処理に移行するようにしていたが、ステップS43の判定を省略してもよい。この場合、異常検知フラグFLG1にオンがセットされている場合には、ステップS45の処理に移行して停車時処理の実行条件が成立しているか否かを判定するようにするとよい。 · In the above embodiment, when it is determined in step S43 of FIG. 5 that there is a possibility that residual pressure is generated, the process proceeds to step S45, but the determination in step S43 may be omitted. In this case, when the abnormality detection flag FLG1 is set to ON, it is preferable to shift to the process of step S45 and determine whether or not the conditions for executing the process when the vehicle is stopped are satisfied.
 ・制動制御装置は、前輪のホイールシリンダ11L,11Rを第1ホイールシリンダとし、後輪のホイールシリンダ12L,12Rを第2ホイールシリンダとし、前輪側助勢装置31を第1加圧ユニットとし、後輪側助勢装置32を第2加圧ユニットとする構成であってもよい。つまり、適用する車輪は、個別でも、どの組み合わせでもよい。 The braking control device may be configured so that the wheel cylinders 11L and 11R for the front wheels are the first wheel cylinders, the wheel cylinders 12L and 12R for the rear wheels are the second wheel cylinders, the front wheel side force device 31 is the first pressure unit, and the rear wheel side force force device 32 is the second pressure unit. That is, the applicable wheels may be applied individually or in any combination.
 ・後輪側助勢装置は、差圧制御弁301と保持弁302との間の液路にブレーキ液を供給可能な加圧装置としてポンプ304以外のものを有する構成であってもよい。
 ・電動シリンダ装置23は、スレイブシリンダ230内にピストン231を解除方向Zbに付勢するリターンスプリングが設けられた構成であってもよい。このリターンスプリングの付勢力が比較的小さい場合、リターンスプリングの付勢力だけではピストン231を基準位置に戻せない。このような電動シリンダ装置23を備える制動制御装置10では、停車時処理や走行時処理を実行することによって上記実施形態と同等の効果を得ることができる。
The rear-wheel-side assisting device may have a pressurizing device other than the pump 304 that can supply the brake fluid to the fluid passage between the differential pressure control valve 301 and the holding valve 302 .
The electric cylinder device 23 may have a configuration in which a return spring is provided in the slave cylinder 230 to bias the piston 231 in the release direction Zb. If the biasing force of this return spring is relatively small, the piston 231 cannot be returned to the reference position only by the biasing force of the return spring. In the braking control device 10 having such an electric cylinder device 23, the effects equivalent to those of the above-described embodiment can be obtained by executing the stop-time processing and the running-time processing.
 ・下流制御装置35は、コンピュータプログラムに従って動作する1つ以上のプロセッサ、各種処理のうち少なくとも一部の処理を実行する専用のハードウェアなどの1つ以上の専用のハードウェア回路又はこれらの組み合わせを含む回路として構成し得る。専用のハードウェアとしては、例えば、特定用途向け集積回路であるASICを挙げることができる。プロセッサは、CPU並びに、RAM及びROMなどのメモリを含み、メモリは、処理をCPUに実行させるように構成されたプログラムコード又は指令を格納している。メモリ、すなわち記憶媒体は、汎用又は専用のコンピュータでアクセスできるあらゆる利用可能な媒体を含む。 - The downstream control device 35 can be configured as a circuit that includes one or more dedicated hardware circuits such as one or more processors that operate according to a computer program, dedicated hardware that executes at least part of various types of processing, or a combination thereof. Dedicated hardware may include, for example, an ASIC, which is an application specific integrated circuit. A processor includes a CPU and memory, such as RAM and ROM, which stores program code or instructions configured to cause the CPU to perform processes. Memory or storage media includes any available media that can be accessed by a general purpose or special purpose computer.

Claims (4)

  1.  ホイールシリンダ内の液圧を調整することによって車両の車輪で制動力を発生させる制動制御装置であって、
     スレイブシリンダ、前記スレイブシリンダ内で摺動可能なピストン、及び前記ピストンを摺動させる駆動力を発生可能な電気モータを有し、前記スレイブシリンダ内に形成された液室の容積が小さくなるように前記ピストンを移動させることにより、前記液室から液路を介してブレーキ液を前記ホイールシリンダに供給する電動シリンダ装置と、
     前記液路に配置されている電磁弁、及び前記液路において前記電磁弁よりも前記ホイールシリンダ側の部分にブレーキ液を供給可能な加圧装置を有する加圧ユニットと、
     前記加圧ユニットを制御する制御部と、を備え、
     前記制御部は、
     前記車両が停止しており、前記電気モータの駆動が不能になったことを検知している場合、
     前記電磁弁を閉弁させた状態で前記加圧装置にブレーキ液を供給させることにより、前記液路のうち、前記電磁弁よりも前記ホイールシリンダ側の部分の圧力が前記電磁弁よりも前記スレイブシリンダ側の部分の圧力よりも高くなるように前記加圧ユニットを制御した後、前記電磁弁を開弁させることにより、前記ホイールシリンダから前記スレイブシリンダの前記液室にブレーキ液を流動させる停車時処理を実行する
     制動制御装置。
    A braking control device that generates a braking force at a vehicle wheel by adjusting hydraulic pressure in a wheel cylinder,
    an electric cylinder device comprising a slave cylinder, a piston slidable within the slave cylinder, and an electric motor capable of generating a driving force for sliding the piston, the electric cylinder device supplying brake fluid from the fluid chamber to the wheel cylinder through a fluid path by moving the piston so as to reduce the volume of a fluid chamber formed in the slave cylinder;
    a pressurizing unit having an electromagnetic valve arranged in the fluid path and a pressurizing device capable of supplying brake fluid to a portion of the fluid path closer to the wheel cylinder than the electromagnetic valve;
    A control unit that controls the pressure unit,
    The control unit
    When the vehicle is stopped and it is detected that the electric motor has become inoperable,
    A braking control device for executing stop-time processing for causing brake fluid to flow from the wheel cylinder to the fluid chamber of the slave cylinder by opening the electromagnetic valve after controlling the pressurizing unit so that the pressure in a portion of the fluid passage closer to the wheel cylinder than the electromagnetic valve is higher than the pressure in a portion closer to the slave cylinder than the electromagnetic valve by supplying brake fluid to the pressurizing device while the electromagnetic valve is closed.
  2.  ホイールシリンダの液圧を調整することによって車両の車輪で制動力を発生させる制動制御装置であって、
     スレイブシリンダ、前記スレイブシリンダ内で摺動可能なピストン、及び前記ピストンを摺動させる駆動力を発生可能な電気モータを有し、前記スレイブシリンダ内に形成された液室の容積が小さくなるように前記ピストンを移動させることにより、前記液室から液路を介してブレーキ液を前記ホイールシリンダに供給する電動シリンダ装置と、
     前記液路に配置されている保持弁、開弁した状態で前記ホイールシリンダの液圧を減少させる減圧弁、及び前記減圧弁が開弁している場合には当該減圧弁を介して前記ホイールシリンダから吸引したブレーキ液を前記液路のうちの前記保持弁よりも前記スレイブシリンダ側の部分に供給可能な加圧装置を有する加圧ユニットと、
     前記加圧ユニットを制御する制御部と、を備え、
     前記制御部は、
     前記車両が走行しており、前記電気モータの駆動が不能になったことを検知していて且つ制動要求が無い場合、
     前記減圧弁を開弁させた一方で前記保持弁を閉弁させ、前記加圧装置を作動させる走行時処理を実行する
     制動制御装置。
    A braking control device that generates a braking force at a vehicle wheel by adjusting the hydraulic pressure of a wheel cylinder,
    an electric cylinder device comprising a slave cylinder, a piston slidable within the slave cylinder, and an electric motor capable of generating a driving force for sliding the piston, the electric cylinder device supplying brake fluid from the fluid chamber to the wheel cylinder through a fluid path by moving the piston so as to reduce the volume of a fluid chamber formed in the slave cylinder;
    a pressurization unit having a holding valve disposed in the fluid path, a pressure reducing valve that reduces the hydraulic pressure of the wheel cylinder when the valve is open, and a pressurizing device that can supply brake fluid sucked from the wheel cylinder via the pressure reducing valve when the pressure reducing valve is open to a portion of the fluid path closer to the slave cylinder than the holding valve;
    A control unit that controls the pressure unit,
    The control unit
    When the vehicle is running, it is detected that the electric motor has become inoperable, and there is no braking request,
    A braking control device that executes a running process of opening the pressure reducing valve, closing the holding valve, and operating the pressurization device.
  3.  前記電磁弁は差圧制御弁であり、
     前記加圧ユニットは、
      前記液路のうちの前記差圧制御弁と前記ホイールシリンダとの間の部分に配置されていて、前記ホイールシリンダ内の液圧の増大を規制する際に閉弁される電磁弁である保持弁と、
      前記ホイールシリンダからブレーキ液を流出させる際に開弁される電磁弁である減圧弁と、をさらに有し、
     前記加圧装置は、前記減圧弁が開弁している場合には当該減圧弁を介して前記ホイールシリンダ内のブレーキ液を吸引し、当該ブレーキ液を前記液路のうちの前記差圧制御弁と前記保持弁との間の部分に吐出するポンプであり、
     前記制御部は、
     前記車両が走行しており、前記電気モータの駆動が不能になったことを検知している場合、
     前記減圧弁及び前記差圧制御弁を開弁させた一方で前記保持弁を閉弁させ、前記加圧装置を作動させる走行時処理を実行する
     請求項1に記載の制動制御装置。
    The solenoid valve is a differential pressure control valve,
    The pressure unit is
    a holding valve, which is an electromagnetic valve disposed in a portion of the fluid path between the differential pressure control valve and the wheel cylinder and which is closed when restricting an increase in fluid pressure in the wheel cylinder;
    a pressure reducing valve, which is an electromagnetic valve that is opened when brake fluid flows out from the wheel cylinder,
    The pressurizing device is a pump that sucks the brake fluid in the wheel cylinder via the pressure reducing valve when the pressure reducing valve is open and discharges the brake fluid to a portion of the fluid passage between the differential pressure control valve and the holding valve,
    The control unit
    When the vehicle is running and it is detected that the electric motor has become inoperable,
    2. The braking control device according to claim 1, wherein running processing is executed to open the pressure reducing valve and the differential pressure control valve, close the holding valve, and operate the pressurizing device.
  4.  前記制御部は、前記車両の走行中に、前記車両の走行速度が高いほど、又は、前記車両の制動頻度が多いほど、短い間隔で前記走行時処理を間欠的に実行する
     請求項2又は請求項3に記載の制動制御装置。
    4. The braking control device according to claim 2, wherein the control unit intermittently executes the running process at shorter intervals as the running speed of the vehicle increases or as the braking frequency of the vehicle increases during running of the vehicle.
PCT/JP2023/001302 2022-01-20 2023-01-18 Braking control device WO2023140280A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-007161 2022-01-20
JP2022007161A JP2023106046A (en) 2022-01-20 2022-01-20 Braking control device

Publications (1)

Publication Number Publication Date
WO2023140280A1 true WO2023140280A1 (en) 2023-07-27

Family

ID=87348262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/001302 WO2023140280A1 (en) 2022-01-20 2023-01-18 Braking control device

Country Status (2)

Country Link
JP (1) JP2023106046A (en)
WO (1) WO2023140280A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008174169A (en) * 2007-01-22 2008-07-31 Honda Motor Co Ltd Braking device
JP2011178343A (en) * 2010-03-03 2011-09-15 Hitachi Automotive Systems Ltd Brake device
JP2015013526A (en) * 2013-07-04 2015-01-22 本田技研工業株式会社 Vehicle brake system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008174169A (en) * 2007-01-22 2008-07-31 Honda Motor Co Ltd Braking device
JP2011178343A (en) * 2010-03-03 2011-09-15 Hitachi Automotive Systems Ltd Brake device
JP2015013526A (en) * 2013-07-04 2015-01-22 本田技研工業株式会社 Vehicle brake system

Also Published As

Publication number Publication date
JP2023106046A (en) 2023-08-01

Similar Documents

Publication Publication Date Title
KR101878110B1 (en) Braking system
CN109789856B (en) Vehicle brake device
JP2012101591A (en) Vehicle brake device
CN109562748B (en) Vehicle brake device
US10507815B2 (en) Brake system
JP2017081522A (en) Fluid pressure control device
US20180339684A1 (en) Hydraulic control device for vehicles
CN108290561A (en) Hydraulic control device
JP6540641B2 (en) Vehicle braking system
WO2023140280A1 (en) Braking control device
JP2021102396A (en) Brake control device
JP7206834B2 (en) vehicle braking device
JP6338047B2 (en) Brake system
JPH11157439A (en) Vehicle braking device with pedal stroke simulator
JP6575488B2 (en) Brake control device for vehicle
JP7318458B2 (en) vehicle braking device
WO2024070484A1 (en) Braking device
JP7424165B2 (en) Vehicle braking device
JP7443872B2 (en) Vehicle braking device
JP7456340B2 (en) Vehicle braking device
JP5977691B2 (en) Brake control device
WO2020235531A1 (en) Braking control device
WO2021106897A1 (en) Braking control device for vehicle
WO2023054492A1 (en) Brake device for vehicle
JP6615939B2 (en) Brake control device, brake system, and brake fluid pressure generation method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23743274

Country of ref document: EP

Kind code of ref document: A1