WO2023140201A1 - Heat medium heating device - Google Patents
Heat medium heating device Download PDFInfo
- Publication number
- WO2023140201A1 WO2023140201A1 PCT/JP2023/000928 JP2023000928W WO2023140201A1 WO 2023140201 A1 WO2023140201 A1 WO 2023140201A1 JP 2023000928 W JP2023000928 W JP 2023000928W WO 2023140201 A1 WO2023140201 A1 WO 2023140201A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heater
- pwm signal
- power consumption
- heat medium
- heating device
- Prior art date
Links
- 238000010438 heat treatment Methods 0.000 title claims abstract description 81
- 230000001172 regenerating effect Effects 0.000 claims description 10
- 239000002699 waste material Substances 0.000 abstract description 5
- 238000000034 method Methods 0.000 description 11
- 230000004308 accommodation Effects 0.000 description 10
- 230000005611 electricity Effects 0.000 description 6
- 239000000758 substrate Substances 0.000 description 5
- 238000009423 ventilation Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000004378 air conditioning Methods 0.000 description 1
- 230000002528 anti-freeze Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000007659 motor function Effects 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/22—Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/61—Types of temperature control
- H01M10/615—Heating or keeping warm
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/62—Heating or cooling; Temperature control specially adapted for specific applications
- H01M10/625—Vehicles
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/63—Control systems
- H01M10/633—Control systems characterised by algorithms, flow charts, software details or the like
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/657—Means for temperature control structurally associated with the cells by electric or electromagnetic means
- H01M10/6571—Resistive heaters
Definitions
- the present invention relates to a heat medium heating device that is mounted on a vehicle and heats a heat medium for heating the passenger compartment.
- Patent Document 1 describes a technique of forcibly consuming electric power (that is, performing so-called waste electricity) by using an electric heater to raise the temperature of a heat medium that exchanges heat with conditioned air blown into the vehicle compartment, that is, a heat medium for heating the vehicle compartment, when regenerative braking is performed when the remaining capacity of the power storage device is equal to or greater than a predetermined value.
- the stability of the cabin temperature control may be impaired.
- an object of the present invention is to provide a heat medium heating device that is configured to heat a heat medium for heating a passenger compartment, and that can suppress a decrease in the stability of passenger compartment temperature control while consuming power (discharging electricity) for protection of a power storage device.
- a heat medium heating device that is mounted on a vehicle and heats a heat medium for heating the passenger compartment.
- This heat medium heating device includes a heater that generates heat when energized and heats the heat medium, a switching element that is provided in an energization circuit to the heater and that can turn on and off the energization, a driver that turns the switching element on and off, and a control unit that generates a first PWM signal based on a heating request and outputs it to the driver to control the energization of the heater. and outputs the second PWM signal to the driver for a predetermined time in place of the first PWM signal.
- a heat medium heating device that is mounted on a vehicle and configured to heat a heat medium for heating the passenger compartment, and that can ensure the stability of the passenger compartment temperature control while consuming power (discharging electricity) for the protection of the power storage device.
- FIG. 1 is a diagram conceptually showing an in-vehicle heating device to which a heat medium heating device according to an embodiment is applied;
- FIG. It is a figure which shows the schematic structure of an example of the heater control apparatus of the heat-medium heating apparatus which concerns on embodiment.
- 6 is a flowchart showing an example of heater energization control (normal control) performed based on a heating request;
- 6 is a flowchart showing an example of heater energization control (power consumption (discharge) control) performed based on a power consumption request;
- 1 is a schematic top view of an example of a heat medium heating device according to an embodiment;
- FIG. FIG. 6 is a cross-sectional view taken along the line AA of FIG. 5;
- FIG. 6 is a cross-sectional view taken along the line BB of FIG. 5;
- 6 is a cross-sectional view taken along line CC of FIG. 5;
- FIG. 1 conceptually shows an in-vehicle heating device 10 to which a heat medium heating device 1 according to one embodiment of the present invention is applied.
- the in-vehicle heating device 10 is mainly installed in an electric motor-driven vehicle such as an electric vehicle or a hybrid vehicle, that is, an electric motor-driven vehicle that can run with the driving force of the electric motor and that is configured to charge a battery (power storage device) with regenerative electric power obtained by regenerative braking that causes the electric motor to function as a generator during deceleration.
- the in-vehicle heating device 10 is configured such that a pump P circulates a heat medium for heating the passenger compartment through a heat medium circulation path 11 . Water (including water mixed with antifreeze or the like) is usually used as the heat medium.
- the heat medium heating device 1 is provided at the first position of the heat medium circulation path 11 .
- the heat medium heating device 1 is configured to heat the heat medium flowing through the heat medium circuit 11 by the heater 3 that generates heat when energized.
- the heat medium heating device 1 is configured to heat a heat medium that has flowed in from an inflow portion (an inflow port 23, which will be described later) by the heater 3, and cause the heated heat medium to flow out from an outflow portion (an outflow port 24, which will be described later).
- the heater 3 is composed of a pair of heaters (a first heater 3A and a second heater 3B) electrically connected in parallel, although not particularly limited. The configuration of the heat medium heating device 1 will be described later.
- a heat exchanger 12 is provided at the second position of the heat medium circuit 11 .
- the heat exchanger 12 is arranged in a ventilation duct 13 for blowing air for air conditioning into the passenger compartment, and generates air for heating the passenger compartment by heat exchange between the heat medium heated by the heat medium heating device 1 and the air.
- a bypass passage 14 bypassing the heat exchanger 12 is provided in the ventilation duct 13 , and an air mix damper 15 controls the flow of air in the ventilation duct 13 .
- the heat medium heating device 1 has a heater control device that controls the heaters 3 in addition to the heaters 3 (the first heater 3A and the second heater 3B).
- FIG. 2 is a diagram showing a schematic configuration of an example of a heater control device.
- the heater control device includes an energization circuit 30 for the heaters 3 (the first heater 3A and the second heater 3B) and a microcomputer (CPU) 40 as a control section.
- the energization circuit 30 is configured to apply to the heater 3 a high voltage supplied from the battery of the motor-driven vehicle (indicated as a high voltage power source in FIG. 2).
- a first IGBT (insulated gate bipolar transistor) 31 is provided as a switching element on the output side (voltage side) of the high voltage power supply (battery) rather than the heater 3
- a second IGBT 32 is provided as a switching element on the ground side of the high voltage power supply (battery) rather than the heater 3.
- the first and second IGBTs 31 and 32 can turn on/off the electricity to the heater 3 according to the signal input to the gate.
- Two output terminals of an IGBT driver 33 are connected to the gates of the first and second IGBTs 31 and 32, respectively.
- the IGBT driver 33 has two input terminals and two output terminals, and can individually turn on/off the first and second IGBTs 31 and 32 by output signals corresponding to the input signals.
- Two output terminals of a microcomputer (CPU) 40 are connected to two input terminals of the IGBT driver 33, respectively.
- first temperature sensor 35 Second temperature sensor 36, voltage sensor 37, current sensor 38
- microcomputer 40 Signals from various sensors (first temperature sensor 35, second temperature sensor 36, voltage sensor 37, current sensor 38) are input to the microcomputer 40.
- the first temperature sensor 35 detects temperatures of the first and second IGBTs 31 and 32 .
- the first temperature sensor 35 includes a first thermistor Th1 arranged near the first and second IGBTs 31 and 32 .
- the first temperature sensor 35 includes a resistor R1 and a first thermistor Th1 that are connected in series between a constant voltage power source (denoted as “5V” in the figure) and ground, and is configured to output the terminal voltage V1 of the first thermistor Th1 to the microcomputer 40 as the temperature equivalent voltage of the first and second IGBTs 31 and 32.
- the second temperature sensor 36 detects the temperature of the heater 3 (including the temperature of the heat medium heated by the heater 3).
- the second temperature sensor 36 includes a second thermistor Th2 arranged near the heater 3 .
- the second temperature sensor 36 includes a resistor R2 and a second thermistor Th2 that are connected in series between a constant-voltage power source (denoted as “5V” in the drawing) and the ground, and is configured to output the terminal voltage V2 of the second thermistor Th2 to the microcomputer 40 as a voltage equivalent to the temperature of the heater 3.
- a voltage sensor 37 detects the voltage applied to the heater 3 .
- the voltage sensor 37 includes voltage dividing resistors R3 and R4 connected in series between the output side (voltage side) of the high voltage power supply (battery) and the ground side, and is configured to output the terminal voltage V3 of the ground side resistor R4 to the microcomputer 40 as a value equivalent to the voltage applied to the heater 3.
- the current sensor 38 detects currents flowing through the first IGBT 31 , the second IGBT 32 and the heater 3 .
- the current sensor 38 includes a resistor R5 provided between the second IGBT 32 and the ground side of the high-voltage power supply (battery), and an operational amplifier OP that detects a potential difference ⁇ V between both ends of the resistor R5.
- the first temperature sensor 35, the second temperature sensor 36, the voltage sensor 37, and the current sensor 38 are merely examples, and the first temperature sensor, the second temperature sensor, the voltage sensor 37, and the current sensor 38 having other configurations may be used.
- a request from the motor-driven vehicle is input to the microcomputer 40 .
- a heating request and a power consumption request output from the vehicle control unit (VCU) 50 of the motor-driven vehicle are input to the microcomputer 40 .
- the heating request is output from the vehicle control unit (VCU) 50 to the microcomputer 40 when the in-vehicle heating device 10 is turned on.
- the vehicle control unit (VCU) 50 is configured to calculate the target output power to the heater 3 based on the difference between the set target cabin temperature and the actual cabin temperature, and output a heating request including the calculated target output power to the microcomputer 40. Therefore, the vehicle control unit (VCU) 50 can output a heating request to the microcomputer 40 even when the target cabin temperature changes and/or when the actual cabin temperature changes, that is, when the target output power to the heater 3 changes.
- the vehicle control unit (VCU) 50 outputs a heating stop instruction to the microcomputer 40 (including stopping the output of the heating request) when the in-vehicle heating device 10 is turned off.
- the power consumption request is output from the vehicle control unit (VCU) 50 to the microcomputer 40 mainly when it is necessary to protect the battery from overcharging. In other words, the power consumption request is output irrespective of the heating request because the heater 3 forces the power of the battery to be consumed (reduces the amount of charge in the battery). again.
- the power consumption request can also be called a power disposal request.
- the vehicle control unit (VCU) 50 is configured to output the power consumption request to the microcomputer 40 when the remaining battery capacity (SOC) is equal to or higher than a first predetermined value, or when the regenerative braking is performed when the remaining battery capacity (SOC) is equal to or higher than a second predetermined value.
- the second predetermined value is preferably set to a value greater than the first predetermined value, but may be the same as the first predetermined value.
- the vehicle control unit (VCU) 50 is configured to output the power consumption request including the power value to be consumed by the heater 3 (hereinafter referred to as "power consumption set value") to the microcomputer 40.
- the microcomputer 40 controls energization to the heaters 3 (first heater 3A, second heater 3B) based on signals from the various sensors and/or requests from the motor-driven vehicle. Specifically, in the present embodiment, the microcomputer 40 generates a PWM (pulse width modulation) signal and outputs the generated PWM signal to the IGBT driver 33 to turn on/off the first and second IGBTs 31 and 32, thereby controlling the energization of the heater 3 (the first heater 3A and the second heater 3B).
- PWM pulse width modulation
- FIG. 3 is a flowchart showing an example of heater energization control (normal control) performed by the microcomputer 40 based on a heating request.
- step S1 the microcomputer 40 determines whether or not a heating request has been input, and proceeds to step S2 when a heating request has been input.
- step S2 the microcomputer 40 calculates the power output to the heater 3 (hereinafter referred to as “heater output power”). Specifically, the microcomputer 40 detects the voltage applied to the heater 3 (hereinafter referred to as “heater voltage”) based on the terminal voltage V3 of the resistor R4 input from the voltage sensor 37, and calculates the current flowing through the heater 3 (hereinafter referred to as “heater current”) based on the resistance value r of the resistor R5 and the potential difference ⁇ V across the resistor R4 input from the current sensor 38. Then, the microcomputer 40 calculates the heater output power by multiplying the detected heater voltage and the calculated heater current.
- the microcomputer 40 calculates the heater output power by multiplying the detected heater voltage and the calculated heater current.
- step S3 the microcomputer 40 generates a PWM signal (hereinafter referred to as "first PWM signal”) based on the heating request. Specifically, the microcomputer 40 generates the first PWM signal by calculating a new duty ratio based on the target output power included in the heating request input in step S1 (or step S5), the heater output power calculated in step S2, and the current duty ratio (including the case where the duty ratio is 0).
- step S4 the microcomputer 40 outputs the first PWM signal generated in step S3 to the IGBT driver 33.
- step S5 the microcomputer 40 determines whether or not a new heating request has been input. When a new heating request is input, the microcomputer 40 returns to step S2 to generate and output a new first PWM signal. On the other hand, if no new heating request is input, the microcomputer 40 proceeds to the process of step S6.
- step S6 the microcomputer 40 determines whether or not a heating stop instruction has been input (whether or not there is no heating request). When the heating stop instruction is input (the heating request is no longer required), the microcomputer 40 proceeds to the process of step S7, stops outputting the first PWM signal, and stops energizing the heater 3. FIG. In this case, the duty ratio is set to zero. On the other hand, if the heating stop instruction is not input (the heating request has not disappeared), the microcomputer 40 returns to the process of step S4 and continues outputting the first PWM signal to the IGBT driver 33 .
- FIG. 4 is a flowchart showing an example of heater energization control (power consumption (waste power) control) performed by the microcomputer 40 based on the power consumption request.
- step S11 the microcomputer 40 determines whether or not a power consumption request has been input. If a power consumption request has been input, the process proceeds to step S12.
- step S12 the microcomputer 40 calculates the heater output power, in other words, the current power consumption of the heater 3, as in the process of step S2 in FIG.
- step S13 the microcomputer 40 determines whether the power consumption set value included in the power consumption request input in step S11 is greater than the current power consumption of the heater 3 calculated in step S12. If the power consumption set value is greater than the current power consumption of the heater 3, the microcomputer 40 proceeds to the process of step S14. On the other hand, if the power consumption set value is equal to or less than the current power consumption of the heater 3, the microcomputer 40 proceeds to the process of step S20.
- step S14 the microcomputer 40 saves the current duty ratio (including the case where the duty ratio is 0) of the PWM signal (that is, the first PWM signal) being output to the IGBT driver 33.
- step S15 the microcomputer 40 generates a PWM signal (hereinafter referred to as "second PWM signal”) based on the power consumption request. Specifically, the microcomputer 40 generates the second PWM signal by calculating a new duty ratio (>current duty ratio) based on the power consumption set value included in the power consumption request input in step S11, the current power consumption of the heater 3 calculated in step S12, and the current duty ratio.
- second PWM signal a PWM signal
- step S16 the microcomputer 40 outputs the second PWM signal generated in step S15 to the IGBT driver 33.
- the microcomputer 40 outputs the second PWM signal generated in step S15 to the IGBT driver 33 instead of the first PWM signal.
- step S17 the microcomputer 40 determines whether or not a predetermined time T has elapsed since the start of outputting the second PWM signal to the IGBT driver 33.
- the predetermined time T can be set arbitrarily.
- the predetermined time T is set to a short period of time during which the passenger compartment temperature does not substantially change even if the PWM signal having a duty ratio of 100% or a value close to it is continuously output to the IGBT driver 33 for the predetermined period of time T, i.e., a short period of time during which the passenger does not notice the change in the vehicle compartment temperature.
- the predetermined time T is set to 5 seconds or less, preferably about 2 seconds, and the microcomputer 40 counts the carrier cycle of the PWM signal to determine whether the predetermined time T has passed.
- step S18 the microcomputer 40 stops outputting the second PWM signal. This ensures a state in which the second PWM signal is continuously output to the IGBT driver 33 for at least the predetermined time T regardless of whether or not there is a heating request.
- step S ⁇ b>19 the microcomputer 40 generates a PWM signal having the duty ratio saved in step S ⁇ b>14 and outputs the generated PWM signal to the IGBT driver 33 .
- the microcomputer 40 outputs the PWM signal having the duty ratio saved in the process of step S14 to the IGBT driver 33 for a plurality of carrier cycles, for example, for two carrier cycles.
- the microcomputer 40 ends this flow.
- the microcomputer 40 can quickly and stably restore the heater energization control from the power consumption (discharge) control to the normal control.
- step S13 if the power consumption set value included in the power consumption request input in step S11 is equal to or less than the current power consumption of the heater 3, it is considered that the microcomputer 40 has already output the first PWM signal with a relatively high duty ratio to the IGBT driver 33 when the power consumption request is input. Therefore, the microcomputer 40 continues outputting the first PWM signal to the IGBT driver 33 in step S20. In other words, when the heater 3 consumes sufficient power by normal control based on the heating request, the microcomputer 40 maintains the normal control based on the heating request even if the power consumption request is input (does not switch the control).
- the microcomputer 40 waits for the elapse of the predetermined time T (step S21), and then terminates this flow.
- a heating stop instruction is input (no heating request) immediately after a power consumption request is input, a state in which the first PWM signal is output to the IGBT driver 33 for at least a predetermined time T is ensured.
- the microcomputer 40 stops outputting the PWM signal to the IGBT driver 33 for overheat protection when the temperature of the first and second IGBTs 31 and 32 exceeds a predetermined value, when the temperature of the heater 3 exceeds a predetermined value, when the voltage applied to the heater 3 exceeds a predetermined value, or when the current flowing through the first IGBT 31, the second IGBT 32, and the heater 3 exceeds a predetermined value. .
- the first and second IGBTs 31 and 32 are forcibly turned OFF, and power supply to the heater 3 is stopped.
- FIG. 5 is a schematic top view of an example of the heat medium heating device 1
- FIG. 6 is a sectional view taken along line AA in FIG. 5
- FIG. 7 is a schematic sectional view taken along line BB in FIG. 5
- FIG. 8 is a sectional view taken along line CC in FIG.
- the heat medium heating device 1 has a housing 2 .
- the housing 2 is constructed by integrally fastening a plurality of housing members (here, a first housing member 2A, a second housing member 2B, and a third housing portion 2C) with bolts (not shown) or the like.
- the housing 2 has a heater housing chamber 21 that houses the heaters 3 (the first heater 3A and the second heater 3B), and a board housing chamber 22 that houses the control board 4 on which the heater control device (energization circuit 30, microcomputer 40) is mounted.
- the heater housing chamber 21 is formed by fastening the first housing member 2A and the second housing member 2B together
- the substrate housing chamber 22 is formed by fastening the third housing member 2C to the fastening body of the first housing member 2A and the second housing member 2B.
- the heater accommodation chamber 21 includes a first accommodation portion 21A, a second accommodation portion 21B, and a communication portion 21C that communicates the first accommodation portion 21A and the second accommodation portion 21B.
- 21 A of 1st accommodating parts and the 2nd accommodating part 21B are provided in parallel, 21 C of communication parts connect these between 21 A of 1st accommodating parts, and the 2nd accommodating part 21B.
- the first heater 3A is accommodated in the first accommodation portion 21A, and the second heater 3B is accommodated in the second accommodation portion 21B.
- the first heater 3A and the second heater 3B have a substantially cylindrical outer shape.
- the first housing portion 21A and the second housing portion 21B are formed as substantially cylindrical spaces having a larger diameter than the first heater 3A and the second heater 3B. Therefore, a first annular space is formed between the inner surface of the first accommodating portion 21A and the outer surface of the first heater 3A, and a second annular space is formed between the inner surface of the second accommodating portion 21B and the outer surface of the second heater 3B. These first and second annular spaces communicate with each other through a communicating portion 21C.
- the housing 2 has an inlet 23 through which the heat medium flows into the heater housing chamber 21 and an outlet 24 through which the heat medium flows out of the heater housing chamber 21 .
- the inflow port 23 is formed to allow the heat medium to flow into one side of the heater housing chamber 21 (first housing portion 21A) in the longitudinal direction
- the outflow port 24 is formed to flow the heat medium out of the other side of the heater housing chamber 21 (first housing portion 21A) in the longitudinal direction.
- the inlet 23 and the outlet 24 are provided on the same side surface of the housing 2 .
- the inflow port 23 and the outflow port 24 may be formed on different sides of the housing 2 .
- the heater housing chamber 21 , the inlet 23 and the outlet 24 constitute a heat medium flow path within the housing 2 , and this heat medium flow path constitutes a part of the heat medium circulation path 11 . That is, the heat medium flowing through the heat medium circulation path 11 flows into the heater accommodation chamber 21 through the inlet 23 , flows through the heater accommodation chamber 21 , and then flows out of the heater accommodation chamber 21 through the outlet 24 .
- the heat medium is heated by the heaters 3 (the first heater 3A and the second heater 3B) when flowing through the heater housing chamber 21, and more particularly when flowing mainly through the first annular space and the second annular space.
- the substrate storage chamber 22 is provided adjacent to the heater storage chamber 21 with the wall portion 25 interposed therebetween. Specifically, in the housing 2, the substrate storage chamber 22 is separated from the heater storage chamber 21 by the wall portion 25, the heater storage chamber 21 is arranged on one side (lower side) of the wall portion 25, and the substrate storage chamber 22 is arranged on the other side (upper side) of the wall portion 25. In other words, the wall portion 25 defines a portion of the heater housing chamber 21 and a portion of the substrate housing chamber 22 .
- a plurality of (here, four) board mounting portions 26 for mounting the control board 4 are provided in the board housing chamber 22 .
- the plurality of board mounting portions 26 are provided on the wall portion 25 .
- each of the plurality of board mounting portions 26 is formed in a boss shape protruding from the wall portion 25 to the other side (upper side), and a screw hole (not shown) is formed on the upper surface.
- the heat medium heating device 1 includes heaters 3 (3A, 3B) that generate heat when energized to heat the heat medium, first and second IGBTs 31, 32 (switching elements) that are provided in an energization circuit 30 to the heater 3 and that can turn on and off the energization of the heater 3, an IGBT driver 33 (driver) that drives the first and second IGBTs 31, 32 on and off, and a first PWM signal based on a heating request to generate an IGB. and a microcomputer 40 (controller) that controls energization of the heater 3 for heating the passenger compartment by outputting to the T driver 33 .
- the microcomputer 40 saves the duty ratio of the first PWM signal at that time, generates a second PWM signal based on the power consumption request, and outputs the second PWM signal to the IGBT driver 33 for a predetermined time instead of the first PWM signal, thereby consuming the power of the battery by the heater 3.
- the predetermined time T is set to a short time of 5 seconds or less so as not to substantially change the vehicle interior temperature.
- the power consumption request includes a power consumption set value as the power to be consumed by the heater 3, and when the power consumption request is input, the microcomputer compares the power consumption of the heater 3 at that time with the power consumption set value included in the power consumption request, generates a second PWM signal when the power consumption of the heater 3 at that time is lower than the power consumption set value, and outputs the second PWM signal to the IGBT driver 33 for a predetermined time T instead of the first PWM signal.
- the microcomputer 40 ensures a state in which the first PWM signal is continuously output to the IGBT driver 33 for at least a predetermined time T. For this reason, it is possible to further suppress the deterioration in the stability of the passenger compartment temperature control due to the suppression of control switching, while enabling the power consumption according to the power consumption request.
- the microcomputer 40 stops outputting the second PWM signal, generates a PWM signal having the saved duty ratio, and outputs it to the IGBT driver 33 for a plurality of carrier cycles. Therefore, the power consumption (waste of electricity) control is smoothly returned to the normal control, and it is possible to prevent the stability of the vehicle interior temperature control from being impaired at the time of the return.
- 1...heat medium heating device 3...heater, 3A...first heater, 3B...second heater, 30...energizing circuit to heater, 31...first IGBT (switching element), 32...second IGBT (switching element), 33...IGBT driver (driver), 37...voltage sensor, 38...current sensor, 40...microcomputer (control section), 50...vehicle control unit VCU
Landscapes
- Engineering & Computer Science (AREA)
- Electrochemistry (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Automation & Control Theory (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- Air-Conditioning For Vehicles (AREA)
- Secondary Cells (AREA)
Abstract
[Problem] To provide a heat medium heating device that is configured so as to heat a heat medium for heating a vehicle interior and that can suppress a decrease in stability of vehicle interior temperature control while consuming power (waste power) for protection or the like of a power storage device. [Solution] This heat medium heating device includes: a heater for heating a heat medium through generating heat by electrification; a switching element that is provided to an electrification circuit with respect to the heater and that is capable of turning on and off electrification; a driver for driving on/off the switching element; and a control unit for controlling electrification of the heater by generating a first PWM signal based on a heating request and outputting the signal to the driver. When a power consumption request has been inputted, the control unit stores a duty ratio of the first PWM signal, generates a second PWM signal based on the power consumption request, and outputs the second PWM signal in place of the first PWM signal to the driver for a predetermined time.
Description
本発明は、車両に搭載されて車室暖房用の熱媒体を加熱する熱媒体加熱装置に関する。
The present invention relates to a heat medium heating device that is mounted on a vehicle and heats a heat medium for heating the passenger compartment.
電気自動車やハイブリッド自動車などの電動機搭載車両においては、減速時に電動機を発電機として機能させる回生制動が利用される。この回生制動で得られる回生電力は、蓄電装置に充電され得るが、過充電から蓄電装置を保護する必要もある。この点に関し、特許文献1には、蓄電装置の残容量が所定値以上のときに回生制動が行われる場合、車室内に吹き出される空調空気と熱交換する熱媒体、すなわち、車室暖房用の熱媒体を電気ヒータによって昇温させ、強制的に電力を消費させる(すなわち、いわゆる廃電を行う)技術が記載されている。
In vehicles equipped with electric motors, such as electric vehicles and hybrid vehicles, regenerative braking is used to make the motor function as a generator during deceleration. The regenerative electric power obtained by this regenerative braking can be used to charge the power storage device, but it is also necessary to protect the power storage device from overcharging. Regarding this point, Patent Document 1 describes a technique of forcibly consuming electric power (that is, performing so-called waste electricity) by using an electric heater to raise the temperature of a heat medium that exchanges heat with conditioned air blown into the vehicle compartment, that is, a heat medium for heating the vehicle compartment, when regenerative braking is performed when the remaining capacity of the power storage device is equal to or greater than a predetermined value.
しかし、例えば暖房要求に基づいて電気ヒータが通電されているときに、蓄電装置の保護などのために電気ヒータによる強制的な電力消費(廃電)が要求されると、車室温度制御の安定性が損なわれてしまうおそれがある。
However, for example, when the electric heater is energized based on a heating request, if forced power consumption (discharge of electricity) by the electric heater is requested to protect the power storage device, the stability of the cabin temperature control may be impaired.
そこで、本発明は、車室暖房用の熱媒体を加熱するように構成され、蓄電装置の保護などのための電力消費(廃電)を行いつつ、車室温度制御の安定性の低下を抑制することのできる熱媒体加熱装置を提供することを目的とする。
Therefore, an object of the present invention is to provide a heat medium heating device that is configured to heat a heat medium for heating a passenger compartment, and that can suppress a decrease in the stability of passenger compartment temperature control while consuming power (discharging electricity) for protection of a power storage device.
本発明の一側面によると、車両に搭載されて車室暖房用の熱媒体を加熱する熱媒体加熱装置が提供される。この熱媒体加熱装置は、通電により発熱して前記熱媒体を加熱するヒータと、前記ヒータへの通電回路に設けられて通電をオン・オフ可能なスイッチング素子と、前記スイッチング素子をオン・オフ駆動するドライバと、暖房要求に基づく第1のPWM信号を生成して前記ドライバに出力することで前記ヒータへの通電を制御する制御部とを含み、前記制御部は、電力消費要求を入力すると、そのときの前記第1のPWM信号のデューティ比を保存し、前記電力消費要求に基づく第2のPWM信号を生成し、及び前記第1のPWM信号に代えて前記第2のPWM信号を前記ドライバに所定時間出力する。
According to one aspect of the present invention, there is provided a heat medium heating device that is mounted on a vehicle and heats a heat medium for heating the passenger compartment. This heat medium heating device includes a heater that generates heat when energized and heats the heat medium, a switching element that is provided in an energization circuit to the heater and that can turn on and off the energization, a driver that turns the switching element on and off, and a control unit that generates a first PWM signal based on a heating request and outputs it to the driver to control the energization of the heater. and outputs the second PWM signal to the driver for a predetermined time in place of the first PWM signal.
本発明によれば、車両に搭載されて車室暖房用の熱媒体を加熱するように構成され、蓄電装置の保護などのための電力消費(廃電)を行いつつ、車室温度制御の安定性を確保することのできる熱媒体加熱装置を提供することができる。
According to the present invention, it is possible to provide a heat medium heating device that is mounted on a vehicle and configured to heat a heat medium for heating the passenger compartment, and that can ensure the stability of the passenger compartment temperature control while consuming power (discharging electricity) for the protection of the power storage device.
以下、本発明の実施の形態を添付図面に基づいて説明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
図1は、本発明の一実施形態に係る熱媒体加熱装置1が適用された車載暖房装置10を概念的に示している。車載暖房装置10は、主に、電気自動車やハイブリッド自動車などの電動機駆動車両、すなわち、電動機の駆動力で走行可能であり、且つ、減速時に電動機を発電機として機能させる回生制動で得られた回生電力をバッテリ(蓄電装置)に充電するように構成された電動機駆動車両に搭載される。車載暖房装置10は、ポンプPにより車室暖房用の熱媒体が熱媒体循環路11を循環するように構成されている。熱媒体には、通常、水(不凍液などが混入されたものを含む)が用いられる。
FIG. 1 conceptually shows an in-vehicle heating device 10 to which a heat medium heating device 1 according to one embodiment of the present invention is applied. The in-vehicle heating device 10 is mainly installed in an electric motor-driven vehicle such as an electric vehicle or a hybrid vehicle, that is, an electric motor-driven vehicle that can run with the driving force of the electric motor and that is configured to charge a battery (power storage device) with regenerative electric power obtained by regenerative braking that causes the electric motor to function as a generator during deceleration. The in-vehicle heating device 10 is configured such that a pump P circulates a heat medium for heating the passenger compartment through a heat medium circulation path 11 . Water (including water mixed with antifreeze or the like) is usually used as the heat medium.
熱媒体加熱装置1は、熱媒体循環路11の第1位置に設けられている。熱媒体加熱装置1は、通電により発熱するヒータ3により、熱媒体循環路11を流れる熱媒体を加熱するように構成されている。具体的には、熱媒体加熱装置1は、流入部(後述する流入口23)から流入した熱媒体をヒータ3によって加熱し、加熱された熱媒体を流出部(後述する流出口24)から流出させるように構成されている。特に限定されないが、本実施形態において、ヒータ3は、電気的に並列に接続された一対のヒータ(第1ヒータ3A、第2ヒータ3B)で構成されている。なお、熱媒体加熱装置1の構成については後述する。
The heat medium heating device 1 is provided at the first position of the heat medium circulation path 11 . The heat medium heating device 1 is configured to heat the heat medium flowing through the heat medium circuit 11 by the heater 3 that generates heat when energized. Specifically, the heat medium heating device 1 is configured to heat a heat medium that has flowed in from an inflow portion (an inflow port 23, which will be described later) by the heater 3, and cause the heated heat medium to flow out from an outflow portion (an outflow port 24, which will be described later). In this embodiment, the heater 3 is composed of a pair of heaters (a first heater 3A and a second heater 3B) electrically connected in parallel, although not particularly limited. The configuration of the heat medium heating device 1 will be described later.
熱媒体循環路11の第2位置には熱交換器12が設けられている。熱交換器12は、車室に空調用空気を吹き出す通風ダクト13内に配置され、熱媒体加熱装置1で加熱された熱媒体と空気との熱交換により車室暖房用の空気を生成する。また、通風ダクト13内には熱交換器12をバイパスするバイパス通路14が設けられており、エアミックスダンパ15により、通風ダクト13内の空気の流れが制御される。
A heat exchanger 12 is provided at the second position of the heat medium circuit 11 . The heat exchanger 12 is arranged in a ventilation duct 13 for blowing air for air conditioning into the passenger compartment, and generates air for heating the passenger compartment by heat exchange between the heat medium heated by the heat medium heating device 1 and the air. A bypass passage 14 bypassing the heat exchanger 12 is provided in the ventilation duct 13 , and an air mix damper 15 controls the flow of air in the ventilation duct 13 .
熱媒体加熱装置1は、ヒータ3(第1ヒータ3A、第2ヒータ3B)に加えて、ヒータ3を制御するヒータ制御装置を有している。図2は、ヒータ制御装置の一例の概略構成を示す図である。本実施形態において、ヒータ制御装置は、ヒータ3(第1ヒータ3A、第2ヒータ3B)への通電回路30と、制御部としてのマイコン(CPU)40とを含む。
The heat medium heating device 1 has a heater control device that controls the heaters 3 in addition to the heaters 3 (the first heater 3A and the second heater 3B). FIG. 2 is a diagram showing a schematic configuration of an example of a heater control device. In this embodiment, the heater control device includes an energization circuit 30 for the heaters 3 (the first heater 3A and the second heater 3B) and a microcomputer (CPU) 40 as a control section.
通電回路30は、ヒータ3に対して、前記電動機駆動車両の前記バッテリ(図2には高電圧電源として表記)から供給される高電圧を印加するように構成されている。
The energization circuit 30 is configured to apply to the heater 3 a high voltage supplied from the battery of the motor-driven vehicle (indicated as a high voltage power source in FIG. 2).
通電回路30において、ヒータ3よりも高電圧電源(バッテリ)の出力側(電圧側)にはスイッチング素子としての第1のIGBT(絶縁ゲート型バイポーラトランジスタ)31が設けられ、ヒータ3よりも高電圧電源(バッテリ)の接地側にはスイッチング素子として第2のIGBT32が設けられている。第1及び第2のIGBT31、32は、ゲートに入力される信号に応じて、ヒータ3への通電をオン・オフすることが可能である。第1及び第2のIGBT31、32の各ゲートには、IGBTドライバ33の2つの出力端子がそれぞれ接続されている。
In the energization circuit 30, a first IGBT (insulated gate bipolar transistor) 31 is provided as a switching element on the output side (voltage side) of the high voltage power supply (battery) rather than the heater 3, and a second IGBT 32 is provided as a switching element on the ground side of the high voltage power supply (battery) rather than the heater 3. The first and second IGBTs 31 and 32 can turn on/off the electricity to the heater 3 according to the signal input to the gate. Two output terminals of an IGBT driver 33 are connected to the gates of the first and second IGBTs 31 and 32, respectively.
IGBTドライバ33は、2つの入力端子と2つの出力端子とを有し、各入力信号に応じた各出力信号により、第1及び第2のIGBT31、32を個別にオン・オフ駆動することが可能である。IGBTドライバ33の2つの入力端子には、マイコン(CPU)40の2つの出力端子がそれぞれ接続されている。
The IGBT driver 33 has two input terminals and two output terminals, and can individually turn on/off the first and second IGBTs 31 and 32 by output signals corresponding to the input signals. Two output terminals of a microcomputer (CPU) 40 are connected to two input terminals of the IGBT driver 33, respectively.
マイコン40には、各種のセンサ(第1温度センサ35、第2温度センサ36、電圧センサ37、電流センサ38)からの信号が入力されている。
Signals from various sensors (first temperature sensor 35, second temperature sensor 36, voltage sensor 37, current sensor 38) are input to the microcomputer 40.
第1温度センサ35は、第1及び第2のIGBT31、32の温度を検知する。第1温度センサ35は、第1及び第2のIGBT31、32の近傍に配置された第1サーミスタTh1を含む。具体的には、本実施形態において、第1温度センサ35は、定電圧電源(図には「5V」と表記されている)と接地との間に直列に接続された抵抗R1及び第1サーミスタTh1を含み、第1サーミスタTh1の端子電圧V1を、第1及び第2のIGBT31、32の温度相当電圧としてマイコン40に出力するように構成されている。
The first temperature sensor 35 detects temperatures of the first and second IGBTs 31 and 32 . The first temperature sensor 35 includes a first thermistor Th1 arranged near the first and second IGBTs 31 and 32 . Specifically, in the present embodiment, the first temperature sensor 35 includes a resistor R1 and a first thermistor Th1 that are connected in series between a constant voltage power source (denoted as “5V” in the figure) and ground, and is configured to output the terminal voltage V1 of the first thermistor Th1 to the microcomputer 40 as the temperature equivalent voltage of the first and second IGBTs 31 and 32.
第2温度センサ36は、ヒータ3の温度(ヒータ3によって加熱された熱媒体の温度を含む)を検知する。第2温度センサ36は、ヒータ3の近傍に配置された第2サーミスタTh2を含む。具体的には、本実施形態において、第2温度センサ36は、定電圧電源(図には「5V」と表記)と接地との間に直列に接続された抵抗R2及び第2サーミスタTh2を含み、第2サーミスタTh2の端子電圧V2を、ヒータ3の温度相当電圧としてマイコン40に出力するように構成されている。
The second temperature sensor 36 detects the temperature of the heater 3 (including the temperature of the heat medium heated by the heater 3). The second temperature sensor 36 includes a second thermistor Th2 arranged near the heater 3 . Specifically, in the present embodiment, the second temperature sensor 36 includes a resistor R2 and a second thermistor Th2 that are connected in series between a constant-voltage power source (denoted as “5V” in the drawing) and the ground, and is configured to output the terminal voltage V2 of the second thermistor Th2 to the microcomputer 40 as a voltage equivalent to the temperature of the heater 3.
電圧センサ37は、ヒータ3に印加される電圧を検知する。本実施形態において、電圧センサ37は、高電圧電源(バッテリ)の出力側(電圧側)と接地側との間に直列に接続された分圧抵抗R3、R4を含み、接地側の抵抗R4の端子電圧V3を、ヒータ3に印加される電圧相当値としてマイコン40に出力するように構成されている。
A voltage sensor 37 detects the voltage applied to the heater 3 . In this embodiment, the voltage sensor 37 includes voltage dividing resistors R3 and R4 connected in series between the output side (voltage side) of the high voltage power supply (battery) and the ground side, and is configured to output the terminal voltage V3 of the ground side resistor R4 to the microcomputer 40 as a value equivalent to the voltage applied to the heater 3.
電流センサ38は、第1のIGBT31、第2のIGBT32及びヒータ3に流れる電流を検知する。本実施形態において、電流センサ38は、第2のIGBT32と高電圧電源(バッテリ)の接地側との間に設けられた抵抗R5と、抵抗R5の両端の電位差ΔVを検出するオペアンプOPとを含み、オペアンプOPによって検出された電位差ΔVを、第1のIGBT31、第2のIGBT32及びヒータ3に流れる電流相当値としてマイコン40に出力するように構成されている。
The current sensor 38 detects currents flowing through the first IGBT 31 , the second IGBT 32 and the heater 3 . In the present embodiment, the current sensor 38 includes a resistor R5 provided between the second IGBT 32 and the ground side of the high-voltage power supply (battery), and an operational amplifier OP that detects a potential difference ΔV between both ends of the resistor R5.
マイコン40は、第1温度センサ35から入力される第1サーミスタTh1の端子電圧V1に基づき第1及び第2のIGBT31、32の温度を検出し、第2温度センサ36から入力される第2サーミスタTh2の端子電圧V2に基づきヒータ3の温度を検出する。また、マイコン40は、電圧センサ37から入力される抵抗R4の端子電圧V3に基づきヒータ3に印加される電圧を検出し、抵抗R5の抵抗値rと、電流センサ38から入力される抵抗R5の両端の電位差ΔVとに基づき、第1のIGBT31、第2のIGBT32及びヒータ3に流れる電流(=ΔV/r)を検出する。
The microcomputer 40 detects the temperatures of the first and second IGBTs 31 and 32 based on the terminal voltage V1 of the first thermistor Th1 input from the first temperature sensor 35, and detects the temperature of the heater 3 based on the terminal voltage V2 of the second thermistor Th2 input from the second temperature sensor 36. Further, the microcomputer 40 detects the voltage applied to the heater 3 based on the terminal voltage V3 of the resistor R4 input from the voltage sensor 37, and detects the current (=ΔV/r) flowing through the first IGBT 31, the second IGBT 32, and the heater 3 based on the resistance value r of the resistor R5 and the potential difference ΔV across the resistor R5 input from the current sensor 38.
なお、上記の第1温度センサ35、第2温度センサ36、電圧センサ37、及び電流センサ38は一例にすぎず、他の構成の第1温度センサ、第2温度センサ、電圧センサ37及び電流センサ38が用いられてもよい。
The first temperature sensor 35, the second temperature sensor 36, the voltage sensor 37, and the current sensor 38 are merely examples, and the first temperature sensor, the second temperature sensor, the voltage sensor 37, and the current sensor 38 having other configurations may be used.
また、マイコン40には、前記電動機駆動車両側からの要求が入力される。特に限定されないが、本実施形態においては、前記電動機駆動車両の車両制御装置(VCU)50から出力された暖房要求及び電力消費要求がマイコン40に入力されるようになっている。
In addition, a request from the motor-driven vehicle is input to the microcomputer 40 . Although not particularly limited, in the present embodiment, a heating request and a power consumption request output from the vehicle control unit (VCU) 50 of the motor-driven vehicle are input to the microcomputer 40 .
前記暖房要求は、車載暖房装置10がオン状態になると、車両制御装置(VCU)50からマイコン40に出力される。特に限定されないが、本実施形態において、車両制御装置(VCU)50は、設定された目標車室温度と実際の車室温度との差に基づいてヒータ3への目標出力電力を算出し、算出された目標出力電力を含む暖房要求をマイコン40に出力するように構成されている。よって、車両制御装置(VCU)50は、目標車室温度が変化したとき及び/実際の車室温度が変化したとき、すなわち、ヒータ3への目標出力電力が変化した場合にも暖房要求をマイコン40に出力することができる。なお、本実施形態において、車両制御装置(VCU)50は、車載暖房装置10がオフ状態になると、暖房停止指示をマイコン40に出力する(前記暖房要求の出力を停止することを含む)。
The heating request is output from the vehicle control unit (VCU) 50 to the microcomputer 40 when the in-vehicle heating device 10 is turned on. Although not particularly limited, in the present embodiment, the vehicle control unit (VCU) 50 is configured to calculate the target output power to the heater 3 based on the difference between the set target cabin temperature and the actual cabin temperature, and output a heating request including the calculated target output power to the microcomputer 40. Therefore, the vehicle control unit (VCU) 50 can output a heating request to the microcomputer 40 even when the target cabin temperature changes and/or when the actual cabin temperature changes, that is, when the target output power to the heater 3 changes. In this embodiment, the vehicle control unit (VCU) 50 outputs a heating stop instruction to the microcomputer 40 (including stopping the output of the heating request) when the in-vehicle heating device 10 is turned off.
前記電力消費要求は、主に前記バッテリを過充電から保護する必要がある場合に、車両制御装置(VCU)50からマイコン40に出力される。つまり、前記電力消費要求は、ヒータ3によって前記バッテリの電力を強制的に消費させる(前記バッテリの充電量を減少させる)ため、前記暖房要求とは無関係に出力される。また。前記電力消費要求は、廃電要求ということもできる。
The power consumption request is output from the vehicle control unit (VCU) 50 to the microcomputer 40 mainly when it is necessary to protect the battery from overcharging. In other words, the power consumption request is output irrespective of the heating request because the heater 3 forces the power of the battery to be consumed (reduces the amount of charge in the battery). again. The power consumption request can also be called a power disposal request.
本実施形態において、車両制御装置(VCU)50は、前記バッテリの残容量(SOC)が第1所定値以上である場合、又は、前記バッテリの残容量(SOC)が第2所定値以上のときに前記回生制動が行われる場合に、前記電力消費要求をマイコン40に出力するように構成されている。前記第2所定値は、前記第1所定値より大きい値に設定されるのが好ましいが、前記第1所定値と同じであってもよい。特に限定されないが、本実施形態において、車両制御装置(VCU)50は、ヒータ3によって消費させる電力値(以下「消費電力設定値」という)を含む前記電力消費要求をマイコン40に出力するように構成されている。
In this embodiment, the vehicle control unit (VCU) 50 is configured to output the power consumption request to the microcomputer 40 when the remaining battery capacity (SOC) is equal to or higher than a first predetermined value, or when the regenerative braking is performed when the remaining battery capacity (SOC) is equal to or higher than a second predetermined value. The second predetermined value is preferably set to a value greater than the first predetermined value, but may be the same as the first predetermined value. Although not particularly limited, in the present embodiment, the vehicle control unit (VCU) 50 is configured to output the power consumption request including the power value to be consumed by the heater 3 (hereinafter referred to as "power consumption set value") to the microcomputer 40.
マイコン40は、前記各種のセンサからの信号及び/又は前記電動機駆動車両側からの要求に基づいてヒータ3(第1ヒータ3A、第2ヒータ3B)への通電を制御する。具体的には、本実施形態において、マイコン40は、PWM(パルス幅変調)信号を生成し、生成されたPWM信号をIGBTドライバ33に出力することで第1及び第2のIGBT31、32をオン・オフ駆動し、これによって、ヒータ3(第1ヒータ3A、第2ヒータ3B)への通電を制御するように構成されている。
The microcomputer 40 controls energization to the heaters 3 (first heater 3A, second heater 3B) based on signals from the various sensors and/or requests from the motor-driven vehicle. Specifically, in the present embodiment, the microcomputer 40 generates a PWM (pulse width modulation) signal and outputs the generated PWM signal to the IGBT driver 33 to turn on/off the first and second IGBTs 31 and 32, thereby controlling the energization of the heater 3 (the first heater 3A and the second heater 3B).
以下、本実施形態におけるマイコン40によるヒータ通電制御について説明する。
The heater energization control by the microcomputer 40 in this embodiment will be described below.
[通常制御]
図3は、マイコン40が暖房要求に基づいて行うヒータ通電制御(通常制御)の一例を示すフローチャートである。 [Normal control]
FIG. 3 is a flowchart showing an example of heater energization control (normal control) performed by themicrocomputer 40 based on a heating request.
図3は、マイコン40が暖房要求に基づいて行うヒータ通電制御(通常制御)の一例を示すフローチャートである。 [Normal control]
FIG. 3 is a flowchart showing an example of heater energization control (normal control) performed by the
ステップS1において、マイコン40は、暖房要求が入力されたか否かを判定し、暖房要求が入力されるとステップS2の処理に進む。
In step S1, the microcomputer 40 determines whether or not a heating request has been input, and proceeds to step S2 when a heating request has been input.
ステップS2において、マイコン40は、ヒータ3に出力されている電力(以下「ヒータ出力電力」という)を算出する。具体的には、マイコン40は、電圧センサ37から入力される抵抗R4の端子電圧V3に基づいてヒータ3に印加されている電圧(以下「ヒータ電圧」という)を検出し、抵抗R5の抵抗値rと電流センサ38から入力される抵抗R4の両端の電位差ΔVとに基づいてヒータ3に流れている電流(以下「ヒータ電流」という)を算出する。そして、マイコン40は、検出されたヒータ電圧と算出されたヒータ電流とを乗算してヒータ出力電力を算出する。
In step S2, the microcomputer 40 calculates the power output to the heater 3 (hereinafter referred to as "heater output power"). Specifically, the microcomputer 40 detects the voltage applied to the heater 3 (hereinafter referred to as "heater voltage") based on the terminal voltage V3 of the resistor R4 input from the voltage sensor 37, and calculates the current flowing through the heater 3 (hereinafter referred to as "heater current") based on the resistance value r of the resistor R5 and the potential difference ΔV across the resistor R4 input from the current sensor 38. Then, the microcomputer 40 calculates the heater output power by multiplying the detected heater voltage and the calculated heater current.
ステップS3において、マイコン40は、暖房要求に基づくPWM信号(以下「第1のPWM信号」という)を生成する。具体的には、マイコン40は、ステップS1(又はステップS5)で入力された暖房要求に含まれた目標出力電力、ステップS2で算出されたヒータ出力電力、及び、現在のデューティ比(デューティ比が0の場合を含む)に基づいて新たなデューティ比を算出することで第1のPWM信号を生成する。
In step S3, the microcomputer 40 generates a PWM signal (hereinafter referred to as "first PWM signal") based on the heating request. Specifically, the microcomputer 40 generates the first PWM signal by calculating a new duty ratio based on the target output power included in the heating request input in step S1 (or step S5), the heater output power calculated in step S2, and the current duty ratio (including the case where the duty ratio is 0).
ステップS4において、マイコン40は、ステップS3で生成された第1のPWM信号をIGBTドライバ33に出力する。
In step S4, the microcomputer 40 outputs the first PWM signal generated in step S3 to the IGBT driver 33.
ステップS5において、マイコン40は、新たな暖房要求が入力されたか否かを判定する。新たな暖房要求が入力された場合、マイコン40は、ステップS2の処理に戻って、新たな第1のPWM信号の生成及び出力を行う。他方、新たな暖房要求が入力されない場合、マイコン40は、ステップS6の処理に進む。
In step S5, the microcomputer 40 determines whether or not a new heating request has been input. When a new heating request is input, the microcomputer 40 returns to step S2 to generate and output a new first PWM signal. On the other hand, if no new heating request is input, the microcomputer 40 proceeds to the process of step S6.
ステップS6において、マイコン40は、暖房停止指示が入力されたか否か(暖房要求がなくなったか否か)を判定する。暖房停止指示が入力された(暖房要求がなくなった)場合、マイコン40は、ステップS7の処理に進み、第1のPWM信号の出力を停止してヒータ3への通電を停止する。この場合、デューティ比は0に設定される。他方、暖房停止指示が入力されない(暖房要求がなくなっていない)場合、マイコン40は、ステップS4の処理に戻り、IGBTドライバ33に対する第1のPWM信号の出力を継続する。
In step S6, the microcomputer 40 determines whether or not a heating stop instruction has been input (whether or not there is no heating request). When the heating stop instruction is input (the heating request is no longer required), the microcomputer 40 proceeds to the process of step S7, stops outputting the first PWM signal, and stops energizing the heater 3. FIG. In this case, the duty ratio is set to zero. On the other hand, if the heating stop instruction is not input (the heating request has not disappeared), the microcomputer 40 returns to the process of step S4 and continues outputting the first PWM signal to the IGBT driver 33 .
[電力消費(廃電)制御]
図4は、マイコン40が電力消費要求に基づいて行うヒータ通電制御(電力消費(廃電)制御)の一例を示すフローチャートである。 [Power consumption (waste power) control]
FIG. 4 is a flowchart showing an example of heater energization control (power consumption (waste power) control) performed by themicrocomputer 40 based on the power consumption request.
図4は、マイコン40が電力消費要求に基づいて行うヒータ通電制御(電力消費(廃電)制御)の一例を示すフローチャートである。 [Power consumption (waste power) control]
FIG. 4 is a flowchart showing an example of heater energization control (power consumption (waste power) control) performed by the
ステップS11において、マイコン40は、電力消費要求が入力されたか否かを判定し、電力消費要求が入力されるとステップS12の処理に進む。
In step S11, the microcomputer 40 determines whether or not a power consumption request has been input.If a power consumption request has been input, the process proceeds to step S12.
ステップS12において、マイコン40は、図3のステップS2の処理と同様に、ヒータ出力電力、換言すれば、ヒータ3の現在の消費電力を算出する。
In step S12, the microcomputer 40 calculates the heater output power, in other words, the current power consumption of the heater 3, as in the process of step S2 in FIG.
ステップS13において、マイコン40は、ステップS11で入力された電力消費要求に含まれた消費電力設定値が、ステップS12で算出されたヒータ3の現在の消費電力よりも大きいか否かを判定する。消費電力設定値がヒータ3の現在の消費電力よりも大きい場合、マイコン40は、ステップS14の処理に進む。他方、消費電力設定値がヒータ3の現在の消費電力以下である場合、マイコン40は、ステップS20の処理に進む。
In step S13, the microcomputer 40 determines whether the power consumption set value included in the power consumption request input in step S11 is greater than the current power consumption of the heater 3 calculated in step S12. If the power consumption set value is greater than the current power consumption of the heater 3, the microcomputer 40 proceeds to the process of step S14. On the other hand, if the power consumption set value is equal to or less than the current power consumption of the heater 3, the microcomputer 40 proceeds to the process of step S20.
ステップS14において、マイコン40は、IGBTドライバ33に出力しているPWM信号(すなわち、第1のPWM信号)の現在のデューティ比(デューティ比が0の場合を含む)を保存する。
In step S14, the microcomputer 40 saves the current duty ratio (including the case where the duty ratio is 0) of the PWM signal (that is, the first PWM signal) being output to the IGBT driver 33.
ステップS15において、マイコン40は、電力消費要求に基づくPWM信号(以下「第2のPWM信号」という)を生成する。具体的には、マイコン40は、ステップS11で入力された電力消費要求に含まれた消費電力設定値、ステップS12で算出されたヒータ3の現在の消費電力、及び、現在のデューティ比に基づいて新たなデューティ比(>現在のデューティ比)を算出することで第2のPWM信号を生成する。
In step S15, the microcomputer 40 generates a PWM signal (hereinafter referred to as "second PWM signal") based on the power consumption request. Specifically, the microcomputer 40 generates the second PWM signal by calculating a new duty ratio (>current duty ratio) based on the power consumption set value included in the power consumption request input in step S11, the current power consumption of the heater 3 calculated in step S12, and the current duty ratio.
ステップS16において、マイコン40は、ステップS15で生成された第2のPWM信号をIGBTドライバ33に出力する。なお、マイコン40は、すでに第1のPWM信号を出力している場合には、第1のPWM信号に代えて、ステップS15で生成された第2のPWM信号をIGBTドライバ33に出力する。
In step S16, the microcomputer 40 outputs the second PWM signal generated in step S15 to the IGBT driver 33. When the microcomputer 40 has already output the first PWM signal, the microcomputer 40 outputs the second PWM signal generated in step S15 to the IGBT driver 33 instead of the first PWM signal.
ステップS17において、マイコン40は、IGBTドライバ33への第2のPWM信号の出力開始から所定時間Tが経過したか否かを判定し、所定時間Tが経過するとステップS18の処理に進む。所定時間Tは、任意に設定可能である。本実施形態において、所定時間Tは、デューティ比が100%又はそれに近い値のPWM信号をIGBTドライバ33に所定時間T継続して出力した場合であっても、車室温度を実質的に変化させない短時間、すなわち、乗員が車室温度の変化に気づかない短時間に設定されている。特に限定されないが、本実施形態において、所定時間Tは、5秒以下、好ましくは2秒程度に設定されており、マイコン40は、PWM信号のキャリア周期をカウントすることで所定時間Tが経過したか否かを判定する。
In step S17, the microcomputer 40 determines whether or not a predetermined time T has elapsed since the start of outputting the second PWM signal to the IGBT driver 33. When the predetermined time T has elapsed, the process proceeds to step S18. The predetermined time T can be set arbitrarily. In this embodiment, the predetermined time T is set to a short period of time during which the passenger compartment temperature does not substantially change even if the PWM signal having a duty ratio of 100% or a value close to it is continuously output to the IGBT driver 33 for the predetermined period of time T, i.e., a short period of time during which the passenger does not notice the change in the vehicle compartment temperature. Although not particularly limited, in the present embodiment, the predetermined time T is set to 5 seconds or less, preferably about 2 seconds, and the microcomputer 40 counts the carrier cycle of the PWM signal to determine whether the predetermined time T has passed.
ステップS18において、マイコン40は、第2のPWM信号の出力を停止する。これにより、暖房要求の有無にかかわらず、第2のPWM信号を少なくとも所定時間T継続してIGBTドライバ33に出力する状態が確保される。
In step S18, the microcomputer 40 stops outputting the second PWM signal. This ensures a state in which the second PWM signal is continuously output to the IGBT driver 33 for at least the predetermined time T regardless of whether or not there is a heating request.
ステップS19において、マイコン40は、ステップS14の処理で保存されたデューティ比を有するPWM信号を生成し、生成されたPWM信号をIGBTドライバ33に出力する。好ましくは、マイコン40は、ステップS14の処理で保存されたデューティ比を有するPWM信号をIGBTドライバ33に複数キャリア周期分、例えば、2キャリア周期分、出力する。そして、マイコン40は、ステップS14の処理で保存されたデューティ比を有するPWM信号のIGBTドライバ33に対する複数キャリア周期分の出力が完了すると、本フローを終了する。これにより、例えば、電力消費要求が入力されたときにすでに暖房要求に基づく前記通常制御が実施されていた場合、マイコン40は、ヒータ通電制御を、前記電力消費(廃電)制御から前記通常制御へと速やかに且つ安定的に復帰させることができる。
In step S<b>19 , the microcomputer 40 generates a PWM signal having the duty ratio saved in step S<b>14 and outputs the generated PWM signal to the IGBT driver 33 . Preferably, the microcomputer 40 outputs the PWM signal having the duty ratio saved in the process of step S14 to the IGBT driver 33 for a plurality of carrier cycles, for example, for two carrier cycles. When the output of the PWM signal having the duty ratio saved in step S14 to the IGBT driver 33 for a plurality of carrier cycles is completed, the microcomputer 40 ends this flow. As a result, for example, when the normal control based on the heating request is already being performed when the power consumption request is input, the microcomputer 40 can quickly and stably restore the heater energization control from the power consumption (discharge) control to the normal control.
他方、ステップS13の処理において、ステップS11で入力された電力消費要求に含まれた消費電力設定値がヒータ3の現在の消費電力以以下である場合には、マイコン40は、電力消費要求が入力された時点で、すでにデューティ比が比較的高い第1のPWM信号をIGBTドライバ33に出力していると考えられる。したがって、マイコン40は、ステップS20において、IGBTドライバ33に対する第1のPWM信号の出力を継続する。つまり、暖房要求に基づく通常制御によってヒータ3が十分に電力を消費している場合には、マイコン40は、電力消費要求が入力されても暖房要求に基づく通常制御を維持する(制御の切り替えを行わない)。
On the other hand, in the process of step S13, if the power consumption set value included in the power consumption request input in step S11 is equal to or less than the current power consumption of the heater 3, it is considered that the microcomputer 40 has already output the first PWM signal with a relatively high duty ratio to the IGBT driver 33 when the power consumption request is input. Therefore, the microcomputer 40 continues outputting the first PWM signal to the IGBT driver 33 in step S20. In other words, when the heater 3 consumes sufficient power by normal control based on the heating request, the microcomputer 40 maintains the normal control based on the heating request even if the power consumption request is input (does not switch the control).
そして、マイコン40は、所定時間Tの経過を待ってから(ステップS21)、本フローを終了する。これにより、電力消費要求が入力された直後に暖房停止指示が入力された(暖房要求がなくなった)ような場合でも、第1のPWM信号をIGBTドライバ33に少なくとも所定時間T出力する状態が確保される。
Then, the microcomputer 40 waits for the elapse of the predetermined time T (step S21), and then terminates this flow. As a result, even when a heating stop instruction is input (no heating request) immediately after a power consumption request is input, a state in which the first PWM signal is output to the IGBT driver 33 for at least a predetermined time T is ensured.
なお、詳細な説明は省略するが、マイコン40は、過熱保護などのため、第1及び第2のIGBT31、32の温度が所定値を超えたとき、ヒータ3の温度が所定値を超えたとき、ヒータ3に印加される電圧が所定値を超えたとき、又は、第1のIGBT31、第2のIGBT32及びヒータ3に流れる電流が所定値を超えたときには、IGBTドライバ33に対するPWM信号の出力を停止する。これにより、第1及び第2のIGBT31、32が強制的にOFFとなり、ヒータ3への通電が停止される。この結果、第1及び第2のIGBT31、32及びヒータ3の過熱保護を図ることができる。
Although detailed description is omitted, the microcomputer 40 stops outputting the PWM signal to the IGBT driver 33 for overheat protection when the temperature of the first and second IGBTs 31 and 32 exceeds a predetermined value, when the temperature of the heater 3 exceeds a predetermined value, when the voltage applied to the heater 3 exceeds a predetermined value, or when the current flowing through the first IGBT 31, the second IGBT 32, and the heater 3 exceeds a predetermined value. . As a result, the first and second IGBTs 31 and 32 are forcibly turned OFF, and power supply to the heater 3 is stopped. As a result, it is possible to protect the first and second IGBTs 31 and 32 and the heater 3 from overheating.
次に、図5~図8を参照して熱媒体加熱装置1の一例の構成について説明する。図5は、熱媒体加熱装置1の一例の概略上面図であり、図6は、図5のA-A断面図であり、図7は、図5のB-B概略断面図であり、図8は、図5のC-C断面図である。
Next, an example configuration of the heat medium heating device 1 will be described with reference to FIGS. 5 to 8. FIG. 5 is a schematic top view of an example of the heat medium heating device 1, FIG. 6 is a sectional view taken along line AA in FIG. 5, FIG. 7 is a schematic sectional view taken along line BB in FIG. 5, and FIG. 8 is a sectional view taken along line CC in FIG.
熱媒体加熱装置1は、ハウジング2を有する。ハウジング2は、複数のハウジング部材(ここでは、第1ハウジング部材2A、第2ハウジング部材2B、及び第3ハウジング部2C)が図示省略のボルトなどによって一体的に締結されて構成されている。
The heat medium heating device 1 has a housing 2 . The housing 2 is constructed by integrally fastening a plurality of housing members (here, a first housing member 2A, a second housing member 2B, and a third housing portion 2C) with bolts (not shown) or the like.
ハウジング2は、内部に、ヒータ3(第1ヒータ3A、第2ヒータ3B)を収容するヒータ収容室21と、前記ヒータ制御装置(通電回路30、マイコン40)が実装された制御基板4を収容する基板収容室22とを有する。本実施形態において、ヒータ収容室21は、第1ハウジング部材2Aと第2ハウジング部材2Bとが締結されることによって形成され、基板収容室22は、第1ハウジング部材2Aと第2ハウジング部材2Bとの締結体に対してさらに第3ハウジング部材2Cが締結されることによって形成されている。
The housing 2 has a heater housing chamber 21 that houses the heaters 3 (the first heater 3A and the second heater 3B), and a board housing chamber 22 that houses the control board 4 on which the heater control device (energization circuit 30, microcomputer 40) is mounted. In this embodiment, the heater housing chamber 21 is formed by fastening the first housing member 2A and the second housing member 2B together, and the substrate housing chamber 22 is formed by fastening the third housing member 2C to the fastening body of the first housing member 2A and the second housing member 2B.
ヒータ収容室21は、第1収容部21Aと、第2収容部21Bと、第1収容部21Aと第2収容部21Bを連通する連通部21Cとを含む。第1収容部21Aと第2収容部21Bとは、並列して設けられており、連通部21Cは、第1収容部21Aと第2収容部21Bとの間でこれらを連通している。そして、第1収容部21Aに第1ヒータ3Aが収容され、第2収容部21Bに第2ヒータ3Bが収容されている。
The heater accommodation chamber 21 includes a first accommodation portion 21A, a second accommodation portion 21B, and a communication portion 21C that communicates the first accommodation portion 21A and the second accommodation portion 21B. 21 A of 1st accommodating parts and the 2nd accommodating part 21B are provided in parallel, 21 C of communication parts connect these between 21 A of 1st accommodating parts, and the 2nd accommodating part 21B. The first heater 3A is accommodated in the first accommodation portion 21A, and the second heater 3B is accommodated in the second accommodation portion 21B.
本実施形態において、第1ヒータ3A及び第2ヒータ3Bは、略円柱状の外形を有している。第1収容部21A及び第2収容部21Bは、第1ヒータ3A及び第2ヒータ3Bよりも大径の略円柱状の空間として形成されている。したがって、第1収容部21Aの内面と第1ヒータ3Aの外面との間には第1環状空間が形成され、第2収容部21Bの内面と第2ヒータ3Bの外面との間には第2環状空間が形成されている。そして、これら第1、第2環状空間は、連通部21Cを介して連通している。
In this embodiment, the first heater 3A and the second heater 3B have a substantially cylindrical outer shape. The first housing portion 21A and the second housing portion 21B are formed as substantially cylindrical spaces having a larger diameter than the first heater 3A and the second heater 3B. Therefore, a first annular space is formed between the inner surface of the first accommodating portion 21A and the outer surface of the first heater 3A, and a second annular space is formed between the inner surface of the second accommodating portion 21B and the outer surface of the second heater 3B. These first and second annular spaces communicate with each other through a communicating portion 21C.
また、ハウジング2は、ヒータ収容室21に熱媒体を流入させる流入口23と、熱媒体をヒータ収容室21から流出させる流出口24とを有する。流入口23は、ヒータ収容室21(第1収容部21A)の長手方向の一方側に熱媒体を流入させるように形成され、流出口24は、ヒータ収容室21(第1収容部21A)の長手方向の他方側から熱媒体を流出させるように形成されている。本実施形態において、流入口23と流出口24とは、ハウジング2の同じ側面に設けられている。しかし、これに限られるものではなく、流入口23と流出口24とがハウジング2の異なる側面に形成されてもよい。
Further, the housing 2 has an inlet 23 through which the heat medium flows into the heater housing chamber 21 and an outlet 24 through which the heat medium flows out of the heater housing chamber 21 . The inflow port 23 is formed to allow the heat medium to flow into one side of the heater housing chamber 21 (first housing portion 21A) in the longitudinal direction, and the outflow port 24 is formed to flow the heat medium out of the other side of the heater housing chamber 21 (first housing portion 21A) in the longitudinal direction. In this embodiment, the inlet 23 and the outlet 24 are provided on the same side surface of the housing 2 . However, it is not limited to this, and the inflow port 23 and the outflow port 24 may be formed on different sides of the housing 2 .
ヒータ収容室21、流入口23及び流出口24は、ハウジング2内における熱媒体流路を構成しており、この熱媒体流路は、熱媒体循環路11の一部を構成する。つまり、熱媒体循環路11を流れる熱媒体は、流入口23を介してヒータ収容室21に流入し、ヒータ収容室21を流れた後、流出口24を介してヒータ収容室21から流出するようになっている。そして、熱媒体は、ヒータ収容室21を流れる際、さらに言えば、主に前記第1環状空間及び前記第2環状空間を流れる際に、ヒータ3(第1ヒータ3A、第2ヒータ3B)によって加熱される。
The heater housing chamber 21 , the inlet 23 and the outlet 24 constitute a heat medium flow path within the housing 2 , and this heat medium flow path constitutes a part of the heat medium circulation path 11 . That is, the heat medium flowing through the heat medium circulation path 11 flows into the heater accommodation chamber 21 through the inlet 23 , flows through the heater accommodation chamber 21 , and then flows out of the heater accommodation chamber 21 through the outlet 24 . The heat medium is heated by the heaters 3 (the first heater 3A and the second heater 3B) when flowing through the heater housing chamber 21, and more particularly when flowing mainly through the first annular space and the second annular space.
基板収容室22は、壁部25を挟んでヒータ収容室21に隣接して設けられている。具体的には、ハウジング2内において、基板収容室22は、壁部25によってヒータ収容室21と区画されており、壁部25の一方側(下側)にヒータ収容室21が配置され、壁部25の他方側(上側)に基板収容室22が配置されている。換言すれば、壁部25は、ヒータ収容室21の一部を画定すると共に、基板収容室22の一部を画定している。
The substrate storage chamber 22 is provided adjacent to the heater storage chamber 21 with the wall portion 25 interposed therebetween. Specifically, in the housing 2, the substrate storage chamber 22 is separated from the heater storage chamber 21 by the wall portion 25, the heater storage chamber 21 is arranged on one side (lower side) of the wall portion 25, and the substrate storage chamber 22 is arranged on the other side (upper side) of the wall portion 25. In other words, the wall portion 25 defines a portion of the heater housing chamber 21 and a portion of the substrate housing chamber 22 .
基板収容室22内には、制御基板4を取り付けるための複数(ここでは4つ)の基板取付部26が設けられている。本実施形態において、複数の基板取付部26は、壁部25に設けられている。具体的には、複数の基板取付部26のそれぞれは、壁部25から前記他方側(上側)に突出するボス状に形成されており、上面にねじ穴(図示省略)が形成されている。
A plurality of (here, four) board mounting portions 26 for mounting the control board 4 are provided in the board housing chamber 22 . In this embodiment, the plurality of board mounting portions 26 are provided on the wall portion 25 . Specifically, each of the plurality of board mounting portions 26 is formed in a boss shape protruding from the wall portion 25 to the other side (upper side), and a screw hole (not shown) is formed on the upper surface.
実施形態に係る熱媒体加熱装置1によれば以下の効果が得られる。
According to the heat medium heating device 1 according to the embodiment, the following effects can be obtained.
実施形態に係る熱媒体加熱装置1は、通電により発熱して熱媒体を加熱するヒータ3(3A、3B)と、ヒータ3への通電回路30に設けられてヒータ3への通電をオン・オフ可能な第1及び第2のIGBT31、32(スイッチング素子)と、第1及び第2のIGBT31、32をオン・オフ駆動するIGBTドライバ33(ドライバ)と、暖房要求に基づく第1のPWM信号を生成してIGBTドライバ33に出力することで車室暖房のためにヒータ3への通電を制御するマイコン40(制御部)とを含む。また、マイコン40は、電力消費要求を入力すると、そのときの第1のPWM信号のデューティ比を保存し、電力消費要求に基づく第2のPWM信号を生成し、及び第1のPWM信号に代えて第2のPWM信号をIGBTドライバ33に所定時間T出力し、これによって、ヒータ3によって前記バッテリの電力を消費する。ここで、所定時間Tは、車室温度を実質的に変化させないよう5秒以下の短時間に設定されている。
The heat medium heating device 1 according to the embodiment includes heaters 3 (3A, 3B) that generate heat when energized to heat the heat medium, first and second IGBTs 31, 32 (switching elements) that are provided in an energization circuit 30 to the heater 3 and that can turn on and off the energization of the heater 3, an IGBT driver 33 (driver) that drives the first and second IGBTs 31, 32 on and off, and a first PWM signal based on a heating request to generate an IGB. and a microcomputer 40 (controller) that controls energization of the heater 3 for heating the passenger compartment by outputting to the T driver 33 . Further, when a power consumption request is input, the microcomputer 40 saves the duty ratio of the first PWM signal at that time, generates a second PWM signal based on the power consumption request, and outputs the second PWM signal to the IGBT driver 33 for a predetermined time instead of the first PWM signal, thereby consuming the power of the battery by the heater 3. Here, the predetermined time T is set to a short time of 5 seconds or less so as not to substantially change the vehicle interior temperature.
このため、電力消費要求に応じた電力消費を可能としつつ、車室温度制御の安定性が低下することが抑制され得る。
Therefore, it is possible to suppress the deterioration of the stability of the passenger compartment temperature control while enabling power consumption according to the power consumption request.
また、電力消費要求は、ヒータ3によって消費させる電力としての消費電力設定値を含み、マイコンは、電力消費要求を入力すると、そのときのヒータ3の消費電力と電力消費要求に含まれた消費電力設定値とを比較し、そのときのヒータ3の消費電力が消費電力設定値よりも低い場合に、第2のPWM信号を生成し、第1のPWM信号に代えて第2のPWM信号をIGBTドライバ33に所定時間Tだけ出力する。他方、マイコン40は、そのときのヒータ3の消費電力が消費電力設定値以上である場合、第1のPWM信号をIGBTドライバ33に少なくとも所定時間T継続して出力する状態を確保する。このため、電力消費要求に応じた電力消費を可能としつつ、制御の切り替えが抑制されて車室温度制御の安定性が低下することがさらに抑制され得る。
In addition, the power consumption request includes a power consumption set value as the power to be consumed by the heater 3, and when the power consumption request is input, the microcomputer compares the power consumption of the heater 3 at that time with the power consumption set value included in the power consumption request, generates a second PWM signal when the power consumption of the heater 3 at that time is lower than the power consumption set value, and outputs the second PWM signal to the IGBT driver 33 for a predetermined time T instead of the first PWM signal. On the other hand, when the power consumption of the heater 3 at that time is equal to or higher than the power consumption set value, the microcomputer 40 ensures a state in which the first PWM signal is continuously output to the IGBT driver 33 for at least a predetermined time T. For this reason, it is possible to further suppress the deterioration in the stability of the passenger compartment temperature control due to the suppression of control switching, while enabling the power consumption according to the power consumption request.
また、マイコン40は、所定時間Tの経過後、第2のPWM信号の出力を停止し、保存されたデューティ比を有するPWM信号を生成してIGBTドライバ33に複数キャリア周期分出力する。このため、電力消費(廃電)制御から通常制御への復帰が滑らかに行われると共に、復帰時に車室温度制御の安定性が損なわれることも抑制され得る。
Also, after the predetermined time T has elapsed, the microcomputer 40 stops outputting the second PWM signal, generates a PWM signal having the saved duty ratio, and outputs it to the IGBT driver 33 for a plurality of carrier cycles. Therefore, the power consumption (waste of electricity) control is smoothly returned to the normal control, and it is possible to prevent the stability of the vehicle interior temperature control from being impaired at the time of the return.
以上、本発明の実施形態について説明したが、本発明は、上述の実施形態に限定されるものではなく、本発明の技術的思想に基づいてさらなる変形が可能であることはもちろんである。
Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and it goes without saying that further modifications are possible based on the technical concept of the present invention.
1…熱媒体加熱装置、3…ヒータ、3A…第1ヒータ、3B…第2ヒータ、30…ヒータへの通電回路、31…第1のIGBT(スイッチング素子)、32…第2のIGBT(スイッチング素子)、33…IGBTドライバ(ドライバ)、37…電圧センサ、38…電流センサ、40…マイコン(制御部)、50…車両制御装置VCU
1...heat medium heating device, 3...heater, 3A...first heater, 3B...second heater, 30...energizing circuit to heater, 31...first IGBT (switching element), 32...second IGBT (switching element), 33...IGBT driver (driver), 37...voltage sensor, 38...current sensor, 40...microcomputer (control section), 50...vehicle control unit VCU
Claims (6)
- 車両に搭載されて車室暖房用の熱媒体を加熱する熱媒体加熱装置であって、
通電により発熱して前記熱媒体を加熱するヒータと、
前記ヒータへの通電回路に設けられて通電をオン・オフ可能なスイッチング素子と、
前記スイッチング素子をオン・オフ駆動するドライバと、
暖房要求に基づく第1のPWM信号を生成して前記ドライバに出力することで前記ヒータへの通電を制御する制御部と、
を含み、
前記制御部は、電力消費要求を入力すると、そのときの前記第1のPWM信号のデューティ比を保存し、前記電力消費要求に基づく第2のPWM信号を生成し、及び前記第1のPWM信号に代えて前記第2のPWM信号を前記ドライバに所定時間出力する、
熱媒体加熱装置。 A heat medium heating device that is mounted on a vehicle and heats a heat medium for heating a passenger compartment,
a heater that generates heat when energized to heat the heat medium;
a switching element provided in a circuit for energizing the heater and capable of turning on and off the energization;
a driver that drives the switching element on and off;
a control unit that controls energization of the heater by generating a first PWM signal based on a heating request and outputting it to the driver;
including
When the power consumption request is input, the control unit stores the duty ratio of the first PWM signal at that time, generates a second PWM signal based on the power consumption request, and outputs the second PWM signal to the driver for a predetermined time instead of the first PWM signal.
Heat medium heating device. - 前記電力消費要求は、前記ヒータによって消費させる消費電力設定値を含み、
前記制御部は、前記電力消費要求を入力すると、そのときの前記ヒータの消費電力と前記消費電力設定値とを比較し、前記ヒータの消費電力が前記消費電力設定値よりも低い場合に、前記第2のPWM信号を生成し、前記第1のPWM信号に代えて前記第2のPWM信号を前記ドライバに所定時間出力する、
請求項1に記載の熱媒体加熱装置。 the power consumption request includes a power consumption set value to be consumed by the heater;
When the power consumption request is input, the control unit compares the power consumption of the heater at that time with the power consumption set value, and if the power consumption of the heater is lower than the power consumption set value, generates the second PWM signal, and outputs the second PWM signal to the driver instead of the first PWM signal for a predetermined time.
The heat medium heating device according to claim 1. - 前記制御部は、前記ヒータの消費電力が前記消費電力設定値以上である場合、前記第2のPWM信号を生成することなく、前記第1のPWM信号を前記ドライバに少なくとも前記所定時間出力する状態を確保する、
請求項2に記載の熱媒体加熱装置。 When the power consumption of the heater is equal to or greater than the power consumption set value, the control unit ensures a state in which the first PWM signal is output to the driver for at least the predetermined time without generating the second PWM signal.
The heat medium heating device according to claim 2. - 前記制御部は、前記所定時間の経過後、前記第2のPWM信号の出力を停止し、保存されたデューティ比を有するPWM信号を生成して前記ドライバに複数キャリア周期分出力する、請求項1~3のいずれか一つに記載の熱媒体加熱装置。 The heat medium heating device according to any one of claims 1 to 3, wherein the control unit stops outputting the second PWM signal after the predetermined time has elapsed, generates a PWM signal having a saved duty ratio, and outputs the PWM signal to the driver for a plurality of carrier cycles.
- 前記所定時間は、車室温度を実質的に変化させないよう5秒以下の短時間に設定されている、請求項1~4のいずれか一つに記載の熱媒体加熱装置。 The heat medium heating device according to any one of claims 1 to 4, wherein the predetermined time is set to a short period of 5 seconds or less so as not to substantially change the temperature of the vehicle compartment.
- 前記車両は、電動機の駆動力で走行可能であり且つ回生制動で得られた回生電力を蓄電装置に充電するように構成された電動機駆動車両であり、
前記電力消費要求は、前記蓄電装置の残容量が所定値以下の場合、又は前記蓄電装置の残容量が所定値以下ときに前記回生制動が行われる場合に前記車両側から前記制御部に出力される、
請求項1~5に記載の熱媒体加熱装置。 The vehicle is an electric-motor-driven vehicle configured to be able to run with the driving force of the electric motor and to charge a power storage device with regenerative electric power obtained by regenerative braking,
The power consumption request is output from the vehicle to the control unit when the remaining capacity of the power storage device is equal to or less than a predetermined value, or when the regenerative braking is performed when the remaining capacity of the power storage device is equal to or less than a predetermined value.
A heat medium heating device according to any one of claims 1 to 5.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022008163A JP2023107067A (en) | 2022-01-21 | 2022-01-21 | Heat medium heating device |
JP2022-008163 | 2022-01-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023140201A1 true WO2023140201A1 (en) | 2023-07-27 |
Family
ID=87348807
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/000928 WO2023140201A1 (en) | 2022-01-21 | 2023-01-16 | Heat medium heating device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2023107067A (en) |
WO (1) | WO2023140201A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0835716A (en) * | 1994-07-21 | 1996-02-06 | Mitsubishi Electric Corp | Controller for air conditioner |
JP2007032875A (en) * | 2005-07-22 | 2007-02-08 | Toshiba Kyaria Kk | Air-conditioning management device and air-conditioning management system |
WO2013054853A1 (en) * | 2011-10-12 | 2013-04-18 | サンデン株式会社 | Device for controlling in-vehicle heater |
JP2018052165A (en) * | 2016-09-26 | 2018-04-05 | 株式会社デンソー | Air conditioner for vehicle |
WO2018135168A1 (en) * | 2017-01-20 | 2018-07-26 | 株式会社デンソー | Auxiliary machine device and vehicle air-conditioning system |
WO2019239812A1 (en) * | 2018-06-14 | 2019-12-19 | パナソニックIpマネジメント株式会社 | Information processing method, information processing program, and information processing system |
-
2022
- 2022-01-21 JP JP2022008163A patent/JP2023107067A/en active Pending
-
2023
- 2023-01-16 WO PCT/JP2023/000928 patent/WO2023140201A1/en unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0835716A (en) * | 1994-07-21 | 1996-02-06 | Mitsubishi Electric Corp | Controller for air conditioner |
JP2007032875A (en) * | 2005-07-22 | 2007-02-08 | Toshiba Kyaria Kk | Air-conditioning management device and air-conditioning management system |
WO2013054853A1 (en) * | 2011-10-12 | 2013-04-18 | サンデン株式会社 | Device for controlling in-vehicle heater |
JP2018052165A (en) * | 2016-09-26 | 2018-04-05 | 株式会社デンソー | Air conditioner for vehicle |
WO2018135168A1 (en) * | 2017-01-20 | 2018-07-26 | 株式会社デンソー | Auxiliary machine device and vehicle air-conditioning system |
WO2019239812A1 (en) * | 2018-06-14 | 2019-12-19 | パナソニックIpマネジメント株式会社 | Information processing method, information processing program, and information processing system |
Also Published As
Publication number | Publication date |
---|---|
JP2023107067A (en) | 2023-08-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5827535B2 (en) | In-vehicle heater control system | |
JP3451141B2 (en) | Battery temperature controller | |
CN111712965B (en) | Battery system | |
US10106012B2 (en) | Air-conditioner for vehicle | |
JP5257220B2 (en) | Battery system | |
JP5293244B2 (en) | Electric heater drive device | |
WO2017017867A1 (en) | Cooling device | |
JP2011207472A (en) | Electrical heating device | |
JP6774030B2 (en) | Charge control device and charge control method for electric vehicles | |
WO2023140201A1 (en) | Heat medium heating device | |
JP6579320B2 (en) | In-vehicle battery temperature control device | |
JP6554604B2 (en) | High voltage equipment cooling system for electric vehicles | |
JP2003002039A (en) | Air conditioner for vehicle and electrical load control device for vehicle | |
JP2018122826A (en) | Rotary electric machine unit | |
US7187853B2 (en) | Speed control of a d.c. motor | |
WO2018135168A1 (en) | Auxiliary machine device and vehicle air-conditioning system | |
JP5119575B2 (en) | Battery module and temperature control method thereof | |
JP7400261B2 (en) | Vehicle electrical cooling system | |
JP2014108682A (en) | Vehicular air conditioning system | |
JP7580294B2 (en) | Electric vehicle cooling system | |
JP2016107910A (en) | Vehicle power supply system | |
JP4465913B2 (en) | Electric load control device and vehicle air conditioner | |
JP2015207502A (en) | Liquid heating device for vehicle | |
WO2019238695A1 (en) | Heating device and associated control method | |
CN113272167B (en) | Power converter device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23743195 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |