WO2023140062A1 - Metal member - Google Patents

Metal member Download PDF

Info

Publication number
WO2023140062A1
WO2023140062A1 PCT/JP2022/048018 JP2022048018W WO2023140062A1 WO 2023140062 A1 WO2023140062 A1 WO 2023140062A1 JP 2022048018 W JP2022048018 W JP 2022048018W WO 2023140062 A1 WO2023140062 A1 WO 2023140062A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
metal member
less
area
hydroxide
Prior art date
Application number
PCT/JP2022/048018
Other languages
French (fr)
Japanese (ja)
Inventor
牧子 佐藤
賢 大久保
快允 小鍛冶
Original Assignee
ナミックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナミックス株式会社 filed Critical ナミックス株式会社
Publication of WO2023140062A1 publication Critical patent/WO2023140062A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces

Definitions

  • the present invention relates to metal members.
  • the dielectric and conductor When the dielectric and conductor are pressed, they are pressed at a high temperature, so if the heat resistance of the conductor is insufficient, the conductor surface will deteriorate and adhesion to the dielectric cannot be obtained. In addition, since the soldered portion in the substrate manufacturing process becomes hot, the soldering may peel off the surface of the conductor. Furthermore, electronic parts for automobiles and the like are sometimes used at high temperatures, and long-term heat-resistant adhesion is required. In this way, when a conductor is required to have heat resistance, various surface treatments are applied to the metal parts used for the conductor.
  • Japanese Patent Application Laid-Open No. 2021-147701 discloses a technique for forming a film made of quaternary metal oxides of chromium, molybdenum, zinc, and nickel and their compounds as a heat-resistant layer on the surface of a conductor so as to suppress the occurrence of blisters even when a heat load is applied by high-temperature press working.
  • WO2019/093494 reports a technique for obtaining high heat resistance with low roughness and high adhesion by forming a metal layer on copper oxide.
  • heat resistance of the conductor can be improved by bringing the metal foil surface of the inner layer circuit into contact with an acidic treatment liquid containing noble metal ions and copper ions as surface treatment of the inner layer conductor.
  • WO2017/138338 discloses that forming an appropriate amount of coupling layer on the surface of a conductor is effective in improving the heat resistance of the conductor.
  • Thermoplastic resins are known as dielectrics with excellent electrical properties.
  • Thermoplastic resins have excellent electrical properties, but require high-temperature pressing. For example, when laminating with PTFE, it is pressed at a high temperature of 300° C. or higher.
  • high-temperature pressing For example, when laminating with PTFE, it is pressed at a high temperature of 300° C. or higher.
  • SiC silicon carbide
  • the present invention provides a novel metal member.
  • One embodiment of the present invention is a metal member containing a first metal, wherein N and Si are detected by elemental analysis of the surface of the metal member by X-ray Photoelectron Spectroscopy (XPS), the value of the atomic number ratio (N/Si) of N and Si is 0.04 or more and 0.8 or less or 0.05 or more and 0.8 or less, and the metal member satisfies any of the following:
  • the color difference ⁇ E * ab before and after the alkali metal elution test for the surface is 15 or less.
  • It has a second metal layer on the surface, and the area percentage of the hydroxide peak area of the second metal with respect to the total peak area derived from the second metal is 70 Area% or less or 63 Area% or less in waveform separation of the spectrum of the surface by XPS.
  • the second metal may be nickel.
  • Another embodiment of the present invention is a metal member containing a first metal, wherein the hydroxide and SiOx of the first metal are detected by elemental analysis of the surface of the metal member by Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS), and the peak value of SiOx is greater than the peak value of the hydroxide of the first metal. Elemental analysis of the surface by TOF-SIMS may further detect Si and alkali metal, and the Si peak value may be greater than the alkali metal peak value.
  • TOF-SIMS Time-of-Flight Secondary Ion Mass Spectrometry
  • N and Si are detected by elemental analysis of the surface by X-ray photoelectron spectroscopy (XPS), and the ratio of the number of atoms of N and Si (N/Si) may be 0.04 or more and 0.8 or less, or 0.05 or more and 0.8 or less.
  • XPS X-ray photoelectron spectroscopy
  • a further embodiment of the present invention is a metal member containing a first metal, having a second metal layer on the surface, wherein SiOx is detected by elemental analysis of the surface of the metal member by TOF-SIMS, and in waveform separation of the spectrum of the surface by X-ray Photoelectron Spectroscopy (XPS), the area percentage of the hydroxide peak area of the second metal with respect to the total peak area derived from the second metal is 70 Area% or less or 6. It is a metal member having a content of 3 Area % or less.
  • the second metal may be nickel.
  • the amount of alkali metal eluted from the surface may be 0.2 ppm or less.
  • a further embodiment of the present invention is a method for manufacturing a metal member using a metal material, the method comprising a first step of treating the metal material with a coupling agent and a second step of treating the metal material with water glass.
  • the first step may occur before, after, or before or after the second step.
  • a further embodiment of the present invention is a method for manufacturing a metal member using a metal material, comprising a third step of treating the metal material with water glass containing a coupling agent.
  • a fourth step of treating the metal material with a coupling agent may be included. The third step may occur before, after, or before or after the fourth step.
  • the coupling agent may be one or more selected from the group consisting of 3-glycidyloxypropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, vinyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-isocyanatopropyltriethoxysilane, 3-ureidopropyltrialkoxysilane, and 3-acryloxypropyltrimethoxysilane. .
  • a fifth step of oxidizing the metal material and/or a sixth step of plating the metal material may be included before the first step and the second step.
  • a fifth step of oxidizing the metal material and/or a sixth step of plating the metal material may be included before the third step and the fourth step.
  • FIG. 4 is a diagram showing analysis results of each test piece by TOF-SIMS in an example of the present invention
  • FIG. 4 is a diagram showing analysis results of each test piece by TOF-SIMS in a comparative example of the present invention
  • the metal material may have metal on the surface, and the portion inside the metal surface may be other than metal, but the inner portion may also be metal and the entire metal material may be made of metal.
  • the surface and inner portion of the metal member may be of the same metal or different metals.
  • the inside of the metal material is made of the same metal as the metal on the surface, the metal may be uniform throughout as a metal lump.
  • the thickness of the metal on the surface is more than 1 nm, but may be 10 nm or more, or 100 nm or more.
  • Elemental analysis of the surface of the metal member by Time-of-Flight Secondary Ion Mass Spectrometry preferably detects hydroxides of metals of the same type as the metal on the surface (referred to herein as metal hydroxides) and SiOx.
  • metal hydroxides hydroxides of metals of the same type as the metal on the surface
  • SiOx hydroxides of metals of the same type as the metal on the surface
  • the presence of SiOx improves heat resistance and water resistance when metal is adhered to resin. It is believed that this is because SiOx functions as a protective film against heat and water.
  • Metal hydroxides and SiOx can also be detected and analyzed by elemental analysis of metal surfaces by X-ray Photoelectron Spectroscopy (XPS).
  • XPS X-ray Photoelectron Spectroscopy
  • TOF-SIMS targets molecules within 1 nm from the surface
  • XPS targets molecules within several nm to several tens of nm (for example, within 2 nm, 10 nm, or 20 nm) from the surface.
  • the analysis conditions are not particularly limited and can be determined appropriately by those skilled in the art.
  • the peak value of SiOx is preferably larger than the peak value of metal hydroxide.
  • SiOx has the effect of a protective film, and when the metal member is adhered to the resin, the heat resistance and water resistance are improved, and the transmission loss is reduced.
  • the metal hydroxide and SiOx are strongly bonded by dehydration condensation, and when the metal hydroxide is greater than the SiOx, a large amount of the metal hydroxide that is not bonded to SiOx remains on the metal surface, and when the metal is adhered to the resin, the adhesive strength is weakened, or when the SiOx and the metal member surface are used as a conductor due to the formation of a minute space between the SiOx and the metal member surface, the transmission loss is deteriorated.
  • Si and alkali metals are further detected, and the peak value of Si is preferably larger than the peak value of alkali metals. This reduces the transmission loss when the metal member is used as the conductor.
  • the Si adhesion amount on the surface of the metal member is preferably 30 ⁇ g/dm 2 or more, more preferably 35 ⁇ g/dm 2 or more. If the Si adhesion amount is small, SiOx is not formed, or even if it is formed, the amount is small, and the effect as a protective film cannot be obtained.
  • the portion where Si exists on the surface of the metal member or the entire metal member is dissolved in an acidic solution, the mass of silicon is measured by high frequency inductively coupled plasma emission spectrometry (ICP emission spectrometry), and the volume is calculated from the density.
  • the average thickness and the adhesion amount per unit area can be calculated.
  • the total mass of silicon may be measured by dissolving the metal itself having the silicon layer and detecting only the amount of silicon forming the silicon layer.
  • the amount of alkali metal ions eluted from the surface of the metal member including the SiOx layer is preferably 0.2 ppm or less, more preferably 0.18 ppm or less, and further preferably 0.10 ppm or less.
  • the amount of eluted alkali metal is obtained by measuring the mass of Na, K ions, Li ions, etc. in the eluate by ICP emission spectrometry, and obtaining the total amount.
  • the metal member is a thin piece such as a metal foil
  • the metal member cut into a size of 40 mm ⁇ 18 mm is used as a test piece, and only the treated surface is immersed in 20 mL of pure water at 121 ° C., 85% humidity, 2 atmospheres, and treated for 60 hours.
  • the alkali metal ion is derived from the chemical agent that forms the SiOx layer, it is considered that the alkali metal ion exists in the SiOx layer.
  • the more SiO2 the smaller the dielectric loss tangent.
  • the dielectric constant of alkali metals is high, it is believed that less alkali metals are preferable from the viewpoint of transmission loss. Also, since alkali metals may corrode metal members, the smaller the content, the better.
  • XPS X-ray Photoelectron Spectroscopy
  • the amount and composition of each metal and each compound can be measured.
  • the amount and composition of each metal and the compound containing the metal can be obtained by waveform separation of Cu2P3, and in the case of nickel, by waveform separation of Ni2P.
  • the ratio of the number of atoms of N and Si (N/Si) is preferably 0.04 or more, more preferably 0.05 or more, more preferably 0.24 or more, further preferably 0.33 or more, further preferably 0.39 or more, preferably 0.80 or less, and more preferably 0.54 or less.
  • the ratio of the number of atoms of N and Si (N/Si) is less than 0.04, the coupling layer is not formed in an amount suitable for the SiOx layer, resulting in poor adhesion, or insufficient removal of the alkali metal, resulting in poor transmission loss.
  • the atomic number ratio (N/Si) of N and Si is greater than 0.80, the SiOx layer is not formed, or the SiOx layer is insufficient, resulting in poor heat resistance and moisture resistance.
  • ⁇ E * ab is preferably 15 or less, 14 or less, 13 or less, 12 or less, or 11 or less.
  • the standard deviation is preferably 4 or less, more preferably 2 or less, and even more preferably 1.95 or less.
  • the treatment conditions are, for example, 121° C. in pure water, 85% humidity, 2 atm, and 60 hours. If SiOx is not bonded to the surface, it is considered that high-temperature and high-humidity processing oxidizes the expression and increases the color difference.
  • the metal member disclosed herein may have a layer containing or consisting of a second metal (herein referred to as a second metal layer or a second metal layer) on the surface.
  • the second metal is not particularly limited as long as it is different from the metal of the metal member, but is preferably at least one metal selected from the group consisting of Sn, Ag, Zn, Al, Ti, Bi, Cr, Fe, Co, Ni, Pd, Au and Pt or an alloy thereof.
  • a metal having higher heat resistance than copper such as Ni, Pd, Au and Pt, or an alloy thereof, is preferable in order to have heat resistance.
  • nickel and nickel alloys include pure nickel, Ni--Cu alloys, Ni--Cr alloys, Ni--Co alloys, Ni--Zn alloys, Ni--Mn alloys, Ni--Pb alloys, and Ni--P alloys.
  • the average thickness of the second metal layer in the vertical direction is not particularly limited, it is preferably 10 nm or more, more preferably 15 nm or more, and even more preferably 20 nm or more.
  • the thickness is preferably 100 nm or less, more preferably 70 nm or less, and even more preferably 50 nm or less.
  • the amount of metal in the second metal layer is expressed as the weight of metal per unit area, it is preferably 0.5 mg/cm 2 or more, more preferably 1.0 mg/cm 2 or more, and even more preferably 1.8 mg/cm 2 or more. Also, it is preferably 100 mg/cm 2 or less, more preferably 80 mg/cm 2 or less, even more preferably 50 mg/cm 2 or less, even more preferably 10 mg/cm 2 or less, and even more preferably 5 mg/cm 2 or less.
  • the average thickness of the second metal layer in the vertical direction can be calculated by dissolving the metal forming the second metal layer in an acidic solution, measuring the amount of metal by ICP analysis, and dividing the measured amount by the area of the second metal layer. Alternatively, it can be calculated by melting the metal member itself having the second metal layer and detecting and measuring only the amount of the metal forming the second metal layer.
  • the area percentage of the peak area of the hydroxide of the second metal is preferably 70% or less, more preferably 67.8% or less, further preferably 65.0% or less, relative to the sum of the peak areas derived from the second metal (for example, the sum of the peak areas derived from the metal hydroxide, the metal oxide, and the single metal) obtained by waveform separation of the spectrum in elemental analysis of the surface by XPS. It is more preferably 0% or less, more preferably 62.1% or less, more preferably greater than 0%, preferably 20% or more, more preferably 56.4% or more, and 57.2% or more.
  • the area percentage of the peak area of the second metal oxide is preferably 25 Area% or less, more preferably 23.7 Area% or less, and even more preferably 22.8 Area% or less with respect to the total peak area derived from the second metal.
  • the metal member As the characteristics of the metal member as described above, it is particularly preferable to have any of the following combinations.
  • the most important factor is that SiOx is bonded to the surface of the metal member in an appropriate amount with the metal hydroxide, and the less the metal hydroxide, the more preferable, and the less the alkali metal on the surface, the more preferable.
  • Elemental analysis of the surface by TOF-SIMS detects metal hydroxides and SiOx, The peak value of SiOx is larger than the peak value of metal hydroxide, Furthermore, Si and an alkali metal are detected on the surface, and the peak value of Si is greater than the peak value of the alkali metal;
  • N and SiOx are detected by surface elemental analysis by TOF-SIMS, and N and Si are detected by surface elemental analysis by XPS, and the atomic number ratio (N/Si) of N and Si is 0.04 or more and 0.8 or less or 0.05 or more and 0.8 or less;
  • SiOx is detected by elemental analysis of the surface by TOF-SIMS, In waveform separation of the spectrum of the surface by XPS, for the sum of the peak areas derived from the second metal,
  • the area percentage of the peak area of the hydroxide of the second metal is 70 Area% or less or 63 Ar ea% or less;
  • SiOx is detected by elemental analysis of the surface by TOF-SIMS, In waveform separation of the spectrum of the surface by XPS, for the sum of the peak areas derived from the second metal, The area percentage of the peak area of the hydroxide of the second metal is 70 Area% or less, The amount of alkali metal eluted from the surface is 0.2 ppm or less;
  • N and Si are detected by elemental analysis of the surface by XPS,
  • the ratio of the number of atoms of N and Si (N/Si) is 0.04 or more and 0.8 or less, or 0.05 or more and 0.8 or less, and the color difference ⁇ E * ab before and after the alkali metal elution test for the surface is 15 or less;
  • N and Si are detected by elemental analysis of the surface by XPS,
  • the ratio of the number of atoms of N and Si (N/Si) is 0.04 or more and 0.8 or less or 0.05 or more and 0.8 or less, and in waveform separation of the spectrum of the surface by XPS, for the sum of the peak areas derived from the second metal,
  • the area percentage of the peak area of the hydroxide of the second metal is 70 Area % or less or 63 Area % or less.
  • the arithmetic mean roughness (Ra) of the surface of the metal member including the SiOx layer is not particularly limited, but is preferably 0.01 ⁇ m or more, more preferably 0.03 ⁇ m or more, and 5.00 ⁇ m or less, more preferably 3 ⁇ m or less, and further preferably 0.12 ⁇ m or less.
  • the maximum height roughness (Rz) of the surface of the metal member containing the SiOx layer is not particularly limited, but is preferably 0.1 ⁇ m or more, more preferably 0.28 ⁇ m or more, and preferably 20.00 ⁇ m or less, more preferably 10.00 ⁇ m or less, and even more preferably 0.83 ⁇ m or less.
  • Ra and Rz can be calculated by the method specified in JIS B 0601:2001 (in accordance with international standards ISO4287-1997).
  • Metal material Prepare a metal material whose surface is partly or wholly covered with metal, which is the material of the metal member.
  • the metal material only needs to have metal on the surface, and the portion inside the metal surface (that is, the inside of the metal material) may be other than metal, but the inside of the metal material may also be metal, and the entire metal material may consist of metal.
  • the thickness of the metal on the surface is more than 1 nm, but may be 10 nm or more, or 100 nm or more.
  • the surface metal may be formed by plating.
  • the type of metal is not particularly limited, for example, it may be a metal such as Cu, Ni, Zn, Al, Fe, Mg, or an alloy such as a copper alloy, nickel alloy, zinc alloy, aluminum alloy, iron alloy, or magnesium alloy, or may be a binary alloy, a ternary alloy, a quaternary alloy, or the like.
  • the type of metal on the metal surface and inside the metal material may be the same or different.
  • the surface of the metal material is oxidized to form a metal oxide layer on the surface of the metal material.
  • This oxidation treatment roughens the surface of the metal material and increases the adhesiveness to the resin when the metal member is bonded to the resin.
  • a roughening treatment such as soft etching or etching may be performed before this oxidation treatment.
  • degreasing treatment acid cleaning for uniformizing the surface by removing a natural oxide film, or alkali treatment for preventing acid from being brought into the oxidation process may be performed after acid cleaning.
  • the alkali treatment method is not particularly limited, but preferably 0.1 to 10 g/L, more preferably 1 to 2 g/L alkaline aqueous solution, such as sodium hydroxide aqueous solution, at 30 to 50° C. for about 0.5 to 2 minutes.
  • the oxidation treatment method is not particularly limited, it may be formed using an oxidizing agent, or may be formed by heat treatment or anodization.
  • the oxidizing agent is not particularly limited, and for example, an aqueous solution of sodium chlorite, sodium hypochlorite, potassium chlorate, potassium perchlorate, etc. can be used.
  • Various additives eg, phosphates such as trisodium phosphate dodecahydrate
  • surface active molecules may be added to the oxidizing agent.
  • Surface active molecules include porphyrins, porphyrin macrocycles, extended porphyrins, ring contracted porphyrins, linear porphyrin polymers, porphyrin sandwich coordination complexes, porphyrin sequences, silanes, tetraorgano-silanes, aminoethyl-aminopropyltrimethoxysilane, (3-aminopropyl)trimethoxysilane, (1-[3-(trimethoxysilyl)propyl]urea) ((l-[3-(Trimethoxysilyl)propyl]u rea)), (3-aminopropyl)triethoxysilane, ((3-glycidyloxypropyl)trimethoxysilane), (3-chloropropyl)trimethoxysilane, (3-glycidyloxypropyl)trimethoxysilane, dimethyldichlorosilane, 3-(trimethoxysilyl)
  • phosphates such as trisodium phosphate dodecahydrate
  • surface active molecules include porphyrins, porphyrin macrocycles, extended porphyrins, ring-contracted porphyrins, linear porphyrin polymers, porphyrin sandwich coordination complexes, porphyrin sequences, silanes, tetraorgano-silanes, aminoethyl-aminopropyl-trimethoxysilane, 3-aminopropyl)trimethoxysilane, 1-[3-(trimethoxysilyl)propyl]urea, (3-aminopropyl)triethoxysilane, (3-glycidyloxypropyl)trimethoxysilane, (3-chlorochlorosilane).
  • Examples include propyl)trimethoxysilane, (3-glycidyloxypropyl)trimethoxysilane, dimethyldichlorosilane, 3-(trimethoxysilyl)propyl methacrylate, ethyltriacetoxysilane, triethoxy(isobutyl)silane, triethoxy(octyl)silane, tris(2-methoxyethoxy)(vinyl)silane, chlorotrimethylsilane, methyltrichlorosilane, silicon tetrachloride, tetraethoxysilane, phenyltrimethoxysilane, chlorotriethoxysilane, ethylene-trimethoxysilane, amines, sugars, and the like.
  • I can.
  • the liquid temperature of the oxidizing agent is preferably 40 to 95°C, more preferably 45 to 80°C.
  • the reaction time is preferably 0.5 to 30 minutes, more preferably 1 to 10 minutes.
  • a dissolving agent may be used to adjust the protrusions on the surface of the oxidized metal material.
  • the solubilizing agent used in this dissolving step is not particularly limited, but is preferably a chelating agent, particularly a biodegradable chelating agent, such as ethylenediaminetetraacetic acid, diethanolglycine, tetrasodium L-glutamate diacetate, ethylenediamine-N,N'-disuccinic acid, 3-hydroxy-2,2'-sodium iminodisuccinate, trisodium methylglycine diacetate, tetrasodium aspartate diacetate, disodium N-(2-hydroxyethyl)iminodiacetate, and sodium gluconate. etc. can be exemplified.
  • the pH of the dissolving agent solution is not particularly limited, it is preferably alkaline, more preferably pH 8 to 10.5, still more preferably pH 9.0 to 10.5, and even more preferably pH
  • the surface of this metal oxide layer may be reduced with a reducing agent, in which case cuprous oxide may be formed on the surface of the layer containing the metal oxide.
  • a reducing agent in which case cuprous oxide may be formed on the surface of the layer containing the metal oxide.
  • the reducing agent used in this reduction step include dimethylamine borane (DMAB), diborane, sodium borohydride, hydrazine and the like.
  • the specific resistance value of pure copper is 1.7 ⁇ 10 ⁇ 8 ( ⁇ m)
  • the specific resistance value of copper oxide is 1 to 10 ( ⁇ m)
  • cuprous oxide is 1 ⁇ 10 6 to 1 ⁇ 10 7 ( ⁇ m).
  • the second metal layer can be formed as a plating film by, for example, plating the surface of the metal material or the surface of the metal oxide layer.
  • the plating method is not particularly limited, and examples include electrolytic plating, electroless plating, chemical conversion treatment, and vacuum deposition such as sputtering.
  • an electric charge is required to partially reduce the oxide of the metal oxide layer, so in order to keep the thickness within a preferable range, it is preferable to apply an electric charge of 15 C/dm 2 or more to 90 C/dm 2 or less.
  • the current density is preferably 5 A/dm 2 or less. If the current density is too high, uniform plating becomes difficult, for example, plating concentrates on convex portions.
  • the intensity of the electric current may be changed between partly reducing the oxide of the metal oxide layer and coating the plating.
  • the bath composition is preferably nickel sulfate (100 g/L to 350 g/L), nickel sulfamate (100 g/L to 600 g/L), nickel chloride (0 g/L to 300 g/L), or a mixture thereof, but may contain sodium citrate (0 g/L to 100 g/L) and boric acid (0 g/L to 60 g/L) as additives.
  • the conditions for these plating treatments can be easily adjusted according to the metal to be coated and the desired thickness.
  • a method for manufacturing a metal member includes a step of forming SiO X on a metal material.
  • the method of forming SiO X is not particularly limited, but water glass treatment is preferred when treating with a liquid. By this treatment, the OH group of the hydroxide contained in the metal material and the water glass are bonded, and the acid resistance in the bond with the resin is enhanced.
  • degreasing treatment acid cleaning to make the surface uniform by removing the natural oxide film, or alkali treatment to prevent acid from being brought into the next step after acid cleaning, roughening treatment such as soft etching or etching, oxidation treatment, etc. may be performed.
  • Water glasses for treating metallic materials are aqueous solutions of alkali metal silicates.
  • Alkali metal silicate is represented by M 2 O.nSiO 2 (wherein M is Na, Li or K), and water glass contains M 2 O and SiO 2 in various proportions.
  • the water glass used for treating metal materials is not particularly limited, but n is preferably 2-4.
  • the specific method of water glass treatment is not particularly limited, and water glass may be applied to the metal surface with a roller or bar coater, or may be sprayed, or the metal material may be immersed in water glass.
  • concentration of M 2 O ⁇ nSiO 2 in water glass is not particularly limited, but may be 0.1% to 20%, 0.5% to 10%, or 2% to 5%.
  • the reaction conditions are not particularly limited, the treatment temperature is preferably 10°C to 95°C, more preferably 20°C to 85°C. When treating a metal surface, the treatment temperature is more preferably 50° C. or higher in order to react with hydroxide.
  • the treatment time is preferably 1 second to 10 minutes. The water glass treatment may be performed multiple times.
  • the metal material After the metal material has been treated with water glass, it is dried. Drying after the treatment may be carried out by blowing off moisture with air or by heating.
  • the temperature is preferably 30° C. to 250° C., and more preferably 50° C. or higher in order to form an SiOx layer.
  • the heating time is preferably 10 seconds to 60 minutes.
  • a coupling agent may be dissolved in water glass for processing metal materials (this solution is hereinafter referred to as a mixed agent).
  • concentration of the coupling agent is not particularly limited, it is preferably 0.5%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8% or 9% or more, and preferably 20%, 15% or 10% or less by weight.
  • Coupling agent treatment Coupling agents have two or more different functional groups, and the functional groups cause dehydration condensation with hydroxyl groups on the metal surface, chemically bond with organic materials, etc., to bond substances with different functional groups.
  • the coupling agent for treating metal materials is not particularly limited, but silane coupling agents are preferred, among which those with 2 or 3 hydrolyzable groups are preferred, and those with methoxy or ethoxy groups as hydrolyzable groups are preferred.
  • silane coupling agents are preferred, among which those with 2 or 3 hydrolyzable groups are preferred, and those with methoxy or ethoxy groups as hydrolyzable groups are preferred.
  • the specific method of coupling agent treatment is not particularly limited, and the coupling agent solution may be applied to the metal surface with a roller or bar coater, or may be sprayed, or the metal material may be immersed in the coupling agent solution.
  • the solvent used for the solution of the coupling agent may be water, an organic solvent, or a mixed solvent thereof.
  • concentration of the coupling agent is not particularly limited, it is preferably 0.5%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8% or 9% or more, and preferably 20%, 15% or 10% or less by weight.
  • a coupling agent may be dissolved in water glass for treating metal materials (this solution is hereinafter referred to as a mixed agent).
  • concentration of the coupling agent is not particularly limited, it is preferably 0.5%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8% or 9% or more, and preferably 20%, 15% or 10% or less by weight.
  • drying After treating the metal material with a silane coupling agent solution, dry it.
  • the temperature and time for drying are not particularly limited as long as the solvent is completely evaporated, but drying at 70° C. for 1 minute or more is preferable, drying at 100° C. for 1 minute or more is more preferable, and drying at 110° C. for 1 minute or more is more preferable.
  • This coupling treatment provides the metal member with an N compound detected by elemental analysis by XPS on the surface of the metal member as described above.
  • N compounds include coupling agents and silicone resins containing amino groups, mercapto groups, isocyanurate groups, ureido groups, isocyanate groups, and the like.
  • a method for manufacturing a metal member using a metal material includes a first step of treating the metal material with a coupling agent and a second step of treating the metal material with water glass.
  • the order of the first step and the second step is not particularly limited as long as both steps are performed at least once. For example, any of the following may be used.
  • each treatment may be performed multiple times in succession.
  • the effect of enhancing moisture resistance in bonding with the resin is high, and the effect of reducing transmission loss is also high.
  • the alkali metal is efficiently removed.
  • the SiOx formed in the first step has better reactivity with the reactive group of the coupling agent than the metal member, it is possible to use various coupling agents, and the effect of improving the adhesive strength by the coupling agent is likely to be exhibited.
  • the effect of enhancing the heat resistance in bonding with the resin is high.
  • the metal hydroxide reacts with the coupling agent to efficiently reduce the amount of the metal hydroxide, and that the coupling agent and water glass are strongly bonded through dehydration condensation.
  • the first step is performed before and after the second step, both moisture resistance and heat resistance are enhanced, and transmission loss is effectively reduced.
  • mixture treatment When using a mixture, it is possible to simultaneously perform coupling agent treatment and water glass treatment in one treatment (hereinafter referred to as mixture treatment). However, one or more coupling agent treatments may be performed before and/or after the admixture treatment.
  • the metal material Before the first step, the metal material may be subjected to the oxidation treatment and/or the second metal layer formation treatment described above.
  • the metal member according to the present invention can be suitably used as a member that requires high heat resistance, moisture resistance, and adhesion to resin when metal is adhered to resin.
  • metal for example, if copper is used as the metal, copper wiring, copper pillars, and lead frames of printed circuit boards including laminates in which a resin base material is laminated on the copper surface, or positive electrode current collectors and negative electrode current collectors of lithium ion batteries. Can be suitably used.
  • the degreased metal material is immersed in a 10% by weight sulfuric acid aqueous solution at a liquid temperature of 25°C for 2 minutes for acid cleaning.
  • the oxide film on the metal surface was removed. After that, the metal material was washed with water.
  • test pieces 1 to 3, 6 to 9, and 11 were immersed in an aqueous solution of sodium hydroxide 1.2 g/L (pH 10.5) at 40°C for 1 minute to prevent acid contamination in the subsequent oxidation treatment.
  • electrolytic plating solution (10 g/L zinc oxide; 115 g/L sodium hydroxide; 5 mL/L 9500A (Nippon Surface Chemical Co., Ltd.); 0.5 mL/L 9500B (Nippon Surface Chemical Co., Ltd.); 10 mL/L Hypersoft (Nippon Surface Chemical Co., Ltd.)) was used to perform electrolytic zinc plating under the conditions described in Table 1 to form a Zn layer on the surface. After that, all test pieces were washed with water at room temperature for 1 minute and then dried.
  • Coupling process I The test pieces 2 to 4, 6 and 7 were subjected to the coupling treatment after the electroplating treatment (1-4).
  • test piece 5 a commercially available aluminum foil was used as it was without surface treatment such as oxidation treatment or electroplating treatment, and coupling treatment was performed.
  • Coupling treatment was performed under the conditions shown in Table 1 by immersing the metal foils of test pieces 2 to 7 in 3 vol% KBE-903 (3-aminopropyltriethoxysilane) (Shin-Etsu Chemical Co., Ltd.). After that, all test pieces were washed with water and dried at 130° C. for 1 minute.
  • a potassium silicate aqueous solution (potassium silicate solution (Fuji Film Wako Pure Chemical Industries, Ltd.), potassium silicate 48.5 to 52.5% by weight, SiO / K O ratio 1.8 to 2.2) was used for the test piece 6, and a sodium silicate aqueous solution (sodium silicate 52 to 57% by weight, SiO / Na O ratio 2.06 to 2.31) was used. Also, in test piece 7, water glass containing 3 vol% KBE-903 was used. After that, all test pieces were washed with water and dried at 100° C. for 1 minute.
  • the surface shape of the copper foil was measured using a confocal scanning electron microscope OPTELICS H1200 (manufactured by Lasertec Co., Ltd.), and Ra and Rz were calculated by the method specified in JIS B 0601: 2001 (in accordance with international standards ISO4287-1997).
  • the scan width was 100 ⁇ m
  • the scan type was area
  • the light source was Blue
  • the cutoff value was 1/5.
  • the object lens was set to x100
  • the contact lens was set to x14
  • the digital zoom was set to x1
  • the Z pitch was set to 10 nm. Table 2 shows the results.
  • the metal member was treated with 12% nitric acid to dissolve the metal member, and the mass of Ni and Si in the eluate was measured using an ICP emission spectrometer 5100 SVDV ICP-OES (manufactured by Agilent Technologies). Then, the volume of Ni was calculated using the density of Ni, and the average thickness of the Ni layer was calculated by dividing the obtained mass and volume by the area of the metal member in which the Ni layer was dissolved. Similarly, for Si, the mass per unit area was calculated. Table 3 shows the results.
  • a metal piece was prepared by cutting a metal member into a size of 40 mm ⁇ 18 mm.
  • the untreated surface was masked with a masking tape (masking tape for plating 851A: manufactured by 3M), and the elution test was performed only on the treated surface.
  • Ten metal pieces were immersed in 20 mL of pure water and treated for 60 hours under the conditions of 121° C., 85% humidity and 2 atmospheres to obtain a metal treatment liquid.
  • one side of the metal member not subjected to the surface treatment was soaked with a metal foil with a masking tape attached, and treated with pure water under the same conditions at the same time.
  • the resulting treated liquid was subjected to ion chromatography using 940 IC Vario Two ChS/PP and 930 Compact IC Flex Oven/SeS/PP/Deg (manufactured by Metrohm) to measure the eluted amounts of sodium ions and potassium ions. From the measured masses of Na and K, the masses of Na and K detected from the eluate with masking tape applied only to one side of the metal member without surface treatment were subtracted as represented by the following formula, and the mass of Na and K eluted from the metal member and the sum thereof were calculated. Those results are shown in Table 7.
  • Amount of alkali metal eluted from test pieces 1 to 11 (mass of alkali metal from test pieces 1 to 11) - (mass of metal eluted from metal members without surface treatment)
  • the ratio of (initial peel strength - peel strength after heat treatment) to the initial peel strength (referred to as peel strength reduction rate after heat treatment in Table 9) was calculated.
  • test piece was prepared by cutting into a size of 25 mm ⁇ 25 mm after thermocompression bonding.
  • the metal member and the resin were peeled off from the test piece that had been immersed in a solder bath at a temperature of 300° C. for 5 minutes, and the peeled surface on the metal member side was observed. If the resin adhered to 50 Area% or more of the peeled surface, it was evaluated as being broken inside the resin.
  • a metal member that satisfies any one of the above, it is possible to manufacture a metal member having high heat resistance in bonding with a resin.
  • a specific manufacturing method for example, it can be manufactured by treating the surface of the metal material with water glass.
  • test pieces 2 to 7 had a peel strength reduction rate of 15% or less after heat treatment, and had high heat resistance in adhesion to the resin. in this way,
  • test pieces 1 to 7 had a peel strength reduction rate of 20% or less after wet treatment and were excellent in moisture resistance. in this way,
  • N and Si are detected in surface elemental analysis by XPS, and the atomic number ratio (N/Si) of N and Si is 0.05 or more and 0.8 or less;
  • the peak of the SIOX is detected (see Table 5 [1]), and in the elemental analysis of the surface by XPS, if the NI2p is separated, the peak area of the NI compound (including NI, NI oxide, NI hydroxide) is overtaken.
  • the percentage of the peak area of the NI hydroxide is 70AREA % or less (see Table 6), and the elutment of alkali metals from the surface is 0.2 ppm or less (see Table 7);
  • a metal member that satisfies any one of the above, it is possible to manufacture a metal member having high moisture resistance in bonding with a resin.
  • a specific manufacturing method for example, it can be manufactured by subjecting the metal surface to a coupling agent treatment independently of the water glass treatment.
  • test pieces 2 to 6 had a peel strength reduction rate of 10% or less after wet treatment, and had excellent moisture resistance in adhesion to the resin.
  • Test pieces 1 to 3, 6 to 9, and 11 and TU-933P+ with a thickness of 100 ⁇ m were laminated and thermocompressed using a vacuum high pressure press to prepare a microstrip line with a length of 100 mm.
  • the circuit width was 230 ⁇ m and the characteristic impedance was 50 ⁇ .
  • N5227B Keysight Technologies Inc.
  • WR12 VDI Inc.
  • S 21 (dB) 20 ⁇ log (Vout/Vin)
  • Test pieces 1 to 3, 6 and 7 had S 21 per 1 mm greater than -0.075, and had less transmission loss than test pieces 8, 9 and 11. In this way, by performing the coupling agent treatment on the metal surface independently of the water glass treatment and fabricating a metal member that satisfies the conditions [1] [2] [3] in Table 5, a metal member with little transmission loss can be fabricated.
  • a novel metal member can be provided by the present invention.

Abstract

The purpose of the present invention is to provide a novel metal member. According to the present invention, provided is a metal member containing a first metal wherein N and Si are detected by elemental analysis of the surface of the metal member by X-ray Photoelectron Spectroscopy (XPS), the value of the ratio (N/Si) of the number of the N atoms to that of the Si atoms is 0.04-0.8, and the color difference ΔE*ab before and after an alkali metal elution test on the surface is 15 or less.

Description

金属部材metal member
 本発明は金属部材に関する。 The present invention relates to metal members.
 誘電体と導体をプレスするときは高温でプレスされるため、導体の耐熱性が不足していると、導体表面の劣化が生じ、誘電体との密着性が得られない。また、基板製造工程でのはんだ付け部分は高温になるため、はんだ付けによって導体表面が剥がれる場合がある。さらに、自動車用電子部品などは、高温下で使用される場合があり、長期間の耐熱密着性が要求される。このように、導体が耐熱性を必要とされる場合、導体に使用される金属部品には各種の表面処理が施されている。  When the dielectric and conductor are pressed, they are pressed at a high temperature, so if the heat resistance of the conductor is insufficient, the conductor surface will deteriorate and adhesion to the dielectric cannot be obtained. In addition, since the soldered portion in the substrate manufacturing process becomes hot, the soldering may peel off the surface of the conductor. Furthermore, electronic parts for automobiles and the like are sometimes used at high temperatures, and long-term heat-resistant adhesion is required. In this way, when a conductor is required to have heat resistance, various surface treatments are applied to the metal parts used for the conductor.
 例えば、特開2021-147701号公報では高温のプレス加工などによる熱負荷を与えても、ブリスターの発生が抑制できるように、耐熱処理層として、クロム、モリブデン、亜鉛、ニッケルの4元系金属酸化物とその化合物からなる被膜を導体表面に形成する技術が開示されている。WO2019/093494では銅酸化物上に金属層を形成することで、低粗度かつ高密着性で高耐熱性が得られる技術が報告されている。また、特開2004-259937号公報では、内層導体への表面処理として、貴金属イオンと銅イオンを含む酸性処理液に内層回路の金属箔面を接触させることで導体の耐熱性向上を可能にしている。WO2017/138338では導体の表面に適量のカップリング層を形成させることが、導体の耐熱性向上に効果的であることが開示されている。 For example, Japanese Patent Application Laid-Open No. 2021-147701 discloses a technique for forming a film made of quaternary metal oxides of chromium, molybdenum, zinc, and nickel and their compounds as a heat-resistant layer on the surface of a conductor so as to suppress the occurrence of blisters even when a heat load is applied by high-temperature press working. WO2019/093494 reports a technique for obtaining high heat resistance with low roughness and high adhesion by forming a metal layer on copper oxide. Further, in Japanese Unexamined Patent Application Publication No. 2004-259937, heat resistance of the conductor can be improved by bringing the metal foil surface of the inner layer circuit into contact with an acidic treatment liquid containing noble metal ions and copper ions as surface treatment of the inner layer conductor. WO2017/138338 discloses that forming an appropriate amount of coupling layer on the surface of a conductor is effective in improving the heat resistance of the conductor.
 しかし、近年では、伝送損失の低減が望まれ、電気特性に優れる誘電体が要求されている。電気特性に優れる誘電体として、熱可塑性樹脂がある。熱可塑性樹脂の場合、電気特性に優れるが高温でのプレスが必要になる。例えばPTFEと積層する場合は300℃以上の高温でプレスされる。また、省エネルギー技術としてSiCなどのデバイスの開発が加速しており、これらのデバイスは200℃以上での高温下でも動作可能であり、誘電体と導体の密着も、そうした高温に耐えられる耐熱性が要求されている。 However, in recent years, there is a desire to reduce transmission loss, and dielectrics with excellent electrical properties are required. Thermoplastic resins are known as dielectrics with excellent electrical properties. Thermoplastic resins have excellent electrical properties, but require high-temperature pressing. For example, when laminating with PTFE, it is pressed at a high temperature of 300° C. or higher. In addition, the development of devices such as SiC as energy-saving technology is accelerating, and these devices can operate even at high temperatures of 200 ° C. or higher, and the adhesion between dielectrics and conductors is also required to withstand such high temperatures.
 本発明は、新規な金属部材を提供する。 The present invention provides a novel metal member.
 本発明の一実施態様は、第1の金属を含む金属部材であって、X線光電分光法(XPS:X-ray Photoelectron Spectroscopy)による前記金属部材の表面の元素分析によってNとSiが検出され、前記NとSiの原子数の比(N/Si)の値が0.04以上0.8以下または0.05以上0.8以下であり、以下のいずれかを満たす金属部材である。 One embodiment of the present invention is a metal member containing a first metal, wherein N and Si are detected by elemental analysis of the surface of the metal member by X-ray Photoelectron Spectroscopy (XPS), the value of the atomic number ratio (N/Si) of N and Si is 0.04 or more and 0.8 or less or 0.05 or more and 0.8 or less, and the metal member satisfies any of the following:
[1]前記表面に対するアルカリ金属溶出試験前後の色差ΔEabが15以下である、
[2]表面に第2の金属層を有し、XPSによる表面のスペクトルの波形分離において、第2の金属由来のピーク面積の総和に対する、第2の金属の水酸化物のピーク面積の面積百分率が70Area%以下または63Area%以下である。ここで、前記第2の金属がニッケルであってもよい。
[1] The color difference ΔE * ab before and after the alkali metal elution test for the surface is 15 or less.
[2] It has a second metal layer on the surface, and the area percentage of the hydroxide peak area of the second metal with respect to the total peak area derived from the second metal is 70 Area% or less or 63 Area% or less in waveform separation of the spectrum of the surface by XPS. Here, the second metal may be nickel.
 本発明の他の実施態様は、第1の金属を含む金属部材であって、飛行時間型二次イオン質量分析法(TOF-SIMS:Time-of-Flight Secondary Ion Mass Spectrometry)による前記金属部材の表面の元素分析によって第1の金属の水酸化物とSiOxが検出され、前記SiOxのピーク値は前記第1の金属の水酸化物のピーク値よりも大きい、金属部材である。TOF-SIMSによる前記表面の元素分析によってSiとアルカリ金属がさらに検出され、前記Siのピーク値は前記アルカリ金属のピーク値よりも大きくてもよい。X線光電分光法(XPS:X-ray Photoelectron Spectroscopy)による前記表面の元素分析によってNとSiが検出され、前記NとSiの原子数の比(N/Si)の値が0.04以上0.8以下または0.05以上0.8以下であってもよい。 Another embodiment of the present invention is a metal member containing a first metal, wherein the hydroxide and SiOx of the first metal are detected by elemental analysis of the surface of the metal member by Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS), and the peak value of SiOx is greater than the peak value of the hydroxide of the first metal. Elemental analysis of the surface by TOF-SIMS may further detect Si and alkali metal, and the Si peak value may be greater than the alkali metal peak value. N and Si are detected by elemental analysis of the surface by X-ray photoelectron spectroscopy (XPS), and the ratio of the number of atoms of N and Si (N/Si) may be 0.04 or more and 0.8 or less, or 0.05 or more and 0.8 or less.
 本発明のさらなる実施態様は、第1の金属を含む金属部材であって、表面に第2の金属層を有し、TOF-SIMSによる前記金属部材の表面の元素分析によってSiOxが検出され、X線光電分光法(XPS:X-ray Photoelectron Spectroscopy)による前記表面のスペクトルの波形分離において、第2の金属由来のピーク面積の総和に対する、第2の金属の水酸化物のピーク面積の面積百分率が70Area%以下または63Area%以下である、金属部材である。前記第2の金属がニッケルであってもよい。前記表面からのアルカリ金属の溶出量が0.2ppm以下であってもよい。 A further embodiment of the present invention is a metal member containing a first metal, having a second metal layer on the surface, wherein SiOx is detected by elemental analysis of the surface of the metal member by TOF-SIMS, and in waveform separation of the spectrum of the surface by X-ray Photoelectron Spectroscopy (XPS), the area percentage of the hydroxide peak area of the second metal with respect to the total peak area derived from the second metal is 70 Area% or less or 6. It is a metal member having a content of 3 Area % or less. The second metal may be nickel. The amount of alkali metal eluted from the surface may be 0.2 ppm or less.
 本発明のさらなる実施態様は、金属材料を用いて金属部材を製造するための方法であって、前記金属材料をカップリング剤で処理する第1の工程と、前記金属材料を水ガラスで処理する第2の工程と、を含む方法である。第1の工程が第2の工程の前に、後に、または前後に行われてもよい。 A further embodiment of the present invention is a method for manufacturing a metal member using a metal material, the method comprising a first step of treating the metal material with a coupling agent and a second step of treating the metal material with water glass. The first step may occur before, after, or before or after the second step.
 本発明のさらなる実施態様は、金属材料を用いて金属部材を製造するための方法であって、前記金属材料をカップリング剤を含有する水ガラスで処理する第3の工程を含む、方法である。前記金属材料をカップリング剤で処理する第4の工程を含んでもよい。第3の工程が第4の工程の前に、後に、または前後に行われてもよい。前記カップリング剤が、3-グリシジルオキシプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、ビニルトリメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン、3-ウレイドプロピルトリアルコキシシラン、および3-アクリロキシプロピルトリメトキシシランからなる群から選択される1以上であってもよい。第1の工程及び第2の工程の前に、前記金属材料を酸化処理する第5の工程及び/又は前記金属材料をめっき処理する第6の工程を含んでもよい。第3の工程及び第4の工程の前に、前記金属材料を酸化処理する第5の工程及び/又は前記金属材料をめっき処理する第6の工程を含んでもよい。 A further embodiment of the present invention is a method for manufacturing a metal member using a metal material, comprising a third step of treating the metal material with water glass containing a coupling agent. A fourth step of treating the metal material with a coupling agent may be included. The third step may occur before, after, or before or after the fourth step. The coupling agent may be one or more selected from the group consisting of 3-glycidyloxypropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, vinyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-isocyanatopropyltriethoxysilane, 3-ureidopropyltrialkoxysilane, and 3-acryloxypropyltrimethoxysilane. . A fifth step of oxidizing the metal material and/or a sixth step of plating the metal material may be included before the first step and the second step. A fifth step of oxidizing the metal material and/or a sixth step of plating the metal material may be included before the third step and the fourth step.
==関連文献とのクロスリファレンス==
 本出願は、2022年1月21日付で出願した日本国特願2022-008216に基づく優先権を主張するものであり、当該基礎出願を引用することにより、本明細書に含めるものとする。
== Cross-reference with related literature ==
This application claims priority based on Japanese Patent Application No. 2022-008216 filed on January 21, 2022, and the basic application is incorporated herein by reference.
本発明の実施例における、TOF-SIMSによる各試験片の分析結果を示す図である。FIG. 4 is a diagram showing analysis results of each test piece by TOF-SIMS in an example of the present invention; 本発明の比較例における、TOF-SIMSによる各試験片の分析結果を示す図である。FIG. 4 is a diagram showing analysis results of each test piece by TOF-SIMS in a comparative example of the present invention;
 以下、本発明の好ましい実施の形態につき、添付図面を用いて詳細に説明するが、必ずしもこれに限定するわけではない。なお、本発明の目的、特徴、利点、及びそのアイデアは、本明細書の記載により、当業者には明らかであり、本明細書の記載から、当業者であれば、容易に本発明を再現できる。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings, but the present invention is not necessarily limited to these. The objects, features, advantages, and ideas of the present invention are clear to those skilled in the art from the description of the present specification, and those skilled in the art can easily reproduce the present invention from the description of the present specification.
 以下に記載された発明の実施の形態及び具体的な実施例などは、本発明の好ましい実施態様を示すものであり、例示又は説明のために示されているのであって、本発明をそれらに限定するものではない。本明細書で開示されている本発明の意図並びに範囲内で、本明細書の記載に基づき、様々な改変並びに修飾ができることは、当業者にとって明らかである。 The embodiments and specific examples of the invention described below show preferred embodiments of the invention, are shown for illustration or explanation, and are not intended to limit the invention to them. Based on the description herein, it will be apparent to those skilled in the art that various alterations and modifications can be made within the spirit and scope of the invention disclosed herein.
==金属部材==
 以下、本明細書に開示される金属部材の特性を詳細に述べる。なお、以下に記載されている特性を有する金属部材の表面は、同じ表面を指すものとする。
==metal material==
The properties of the metal member disclosed in this specification are described in detail below. In addition, the surface of the metal member having the properties described below refers to the same surface.
 本明細書に開示される金属部材は、表面の一部または全部が金属で覆われている。金属材料は、表面に金属が存在すればよく、金属表面より内側の部分は金属以外であってもよいが、内側の部分も金属であり金属材料全体が金属からなっていてもよい。金属部材の表面と内側の部分は同じ金属であっても異なる金属であってもよい。金属材料内部が表面の金属と同じ金属からなる場合、金属塊として全体に一様の金属であってもよい。金属材料内部が表面の金属と異なる物質からなる場合、表面の金属の厚さは、1nm超であるが、10nm以上であってもよく、100nm以上であってもよい。 A part or all of the surface of the metal member disclosed in this specification is covered with metal. The metal material may have metal on the surface, and the portion inside the metal surface may be other than metal, but the inner portion may also be metal and the entire metal material may be made of metal. The surface and inner portion of the metal member may be of the same metal or different metals. When the inside of the metal material is made of the same metal as the metal on the surface, the metal may be uniform throughout as a metal lump. When the inside of the metal material is made of a substance different from the metal on the surface, the thickness of the metal on the surface is more than 1 nm, but may be 10 nm or more, or 100 nm or more.
 飛行時間型二次イオン質量分析法(TOF-SIMS:Time-of-Flight Secondary Ion Mass Spectrometry)による金属部材の表面の元素分析によって、表面の金属と同種の金属の水酸化物(本明細書では、金属水酸化物と称する)とSiOxが検出されることが好ましい。SiOxが存在することで、金属を樹脂に接着させた場合の耐熱性および耐水性が向上する。これは、SiOxが熱や水に対する保護膜として機能するためであると考えられる。金属水酸化物とSiOxは、金属表面をX線光電子分光法(XPS: X-ray Photoelectron Spectroscopy)によって元素分析することによっても、検出および分析ができる。通常、TOF-SIMSでは、表面から1nm以内にある分子が分析対象となり、XPSでは、表面から数nm~数十nm以内(例えば、2nm以内または10nm以内、または20nm以内)にある分子が分析対象となる。その限りで、分析条件は特に限定されず、当業者が適宜決定できる。 Elemental analysis of the surface of the metal member by Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS) preferably detects hydroxides of metals of the same type as the metal on the surface (referred to herein as metal hydroxides) and SiOx. The presence of SiOx improves heat resistance and water resistance when metal is adhered to resin. It is believed that this is because SiOx functions as a protective film against heat and water. Metal hydroxides and SiOx can also be detected and analyzed by elemental analysis of metal surfaces by X-ray Photoelectron Spectroscopy (XPS). Generally, TOF-SIMS targets molecules within 1 nm from the surface, and XPS targets molecules within several nm to several tens of nm (for example, within 2 nm, 10 nm, or 20 nm) from the surface. As far as this is concerned, the analysis conditions are not particularly limited and can be determined appropriately by those skilled in the art.
 TOF-SIMSによる元素分析において記録されるスペクトラムにおいて、SiOxのピーク値は金属水酸化物のピーク値よりも大きいことが好ましい。それによって、SiOxが保護膜の効果を有し、金属部材を樹脂と接着させたときに耐熱性や耐水性が向上し、伝送損失が小さくなる。以下の理論に拘泥するわけではないが、金属水酸化物とSiOxは脱水縮合により強固に結合していると考えられ、金属水酸化物がSiOxに比べて多くなると、SiOxと結合していない金属水酸化物が金属表面に多く残存し、金属を樹脂に接着させた場合に接着力が弱くなったり、SiOxと金属部材表面の間に微小な空間が生じて導体として用いた場合に伝送損失が悪化したりする。 In the spectrum recorded in elemental analysis by TOF-SIMS, the peak value of SiOx is preferably larger than the peak value of metal hydroxide. As a result, SiOx has the effect of a protective film, and when the metal member is adhered to the resin, the heat resistance and water resistance are improved, and the transmission loss is reduced. Although not limited to the following theory, it is believed that the metal hydroxide and SiOx are strongly bonded by dehydration condensation, and when the metal hydroxide is greater than the SiOx, a large amount of the metal hydroxide that is not bonded to SiOx remains on the metal surface, and when the metal is adhered to the resin, the adhesive strength is weakened, or when the SiOx and the metal member surface are used as a conductor due to the formation of a minute space between the SiOx and the metal member surface, the transmission loss is deteriorated.
 TOF-SIMSによる金属部材の表面の元素解析によって、さらにSiとアルカリ金属が検出され、Siのピーク値はアルカリ金属のピーク値よりも大きいのが好ましい。これによって、金属部材を導体として用いた場合に伝送損失が小さくなる。 By elemental analysis of the surface of the metal member by TOF-SIMS, Si and alkali metals are further detected, and the peak value of Si is preferably larger than the peak value of alkali metals. This reduces the transmission loss when the metal member is used as the conductor.
 金属部材表面のSi付着量は30μg/dm2以上が好ましく、35μg/dm2以上がより好ましい。Si付着量が少ないとSiOxが形成されていないか、形成されていても量が少なく、保護膜としての効果が得られない。ここで、Si付着量を測定するためには、金属部材表面のSiが存在する部分または金属部材全体を酸性溶液で溶解し、高周波誘導結合プラズマ発光分光分析(ICP発光分析)によってケイ素の質量を測定し、密度から体積を算出する。そして、得られた体積と質量を、ケイ素が形成されている金属部材の面積で除して、平均の厚さおよび単位面積当たりの付着量が算出できる。ケイ素の総質量は、ケイ素層を有する金属そのものを溶解し、ケイ素層を形成するケイ素の量のみを検出して質量を測定してもよい。 The Si adhesion amount on the surface of the metal member is preferably 30 μg/dm 2 or more, more preferably 35 μg/dm 2 or more. If the Si adhesion amount is small, SiOx is not formed, or even if it is formed, the amount is small, and the effect as a protective film cannot be obtained. Here, in order to measure the amount of Si deposited, the portion where Si exists on the surface of the metal member or the entire metal member is dissolved in an acidic solution, the mass of silicon is measured by high frequency inductively coupled plasma emission spectrometry (ICP emission spectrometry), and the volume is calculated from the density. Then, by dividing the obtained volume and mass by the area of the metal member on which silicon is formed, the average thickness and the adhesion amount per unit area can be calculated. The total mass of silicon may be measured by dissolving the metal itself having the silicon layer and detecting only the amount of silicon forming the silicon layer.
 また、金属部材表面においてSiOx層を含む側のアルカリ金属イオンの溶出量は、0.2ppm以下であることが好ましく、0.18ppm以下であることがより好ましく、0.10ppm以下であることがさらに好ましい。ここで、アルカリ金属の溶出量は、ICP発光分析によって、溶出液中のNaおよびKイオン、Liイオンなどの質量を測定し、その総量として得られる。具体的には、金属部材が金属箔などの薄片の場合、40mm×18mmの大きさに切断した金属部材を試験片とし、処理面のみを純水20mLに浸し、121℃、湿度85%、2気圧、60時間、処理し、得られた溶液をICP発光分析してアルカリ金属の質量を測定することでアルカリ金属イオンの溶出量を得ることができる。なお、アルカリ金属イオンは、SiOx層をつくる薬剤に由来する場合、SiOx層に存在すると考えられるため、溶出量は含有量と強い相関があると考えられる。 In addition, the amount of alkali metal ions eluted from the surface of the metal member including the SiOx layer is preferably 0.2 ppm or less, more preferably 0.18 ppm or less, and further preferably 0.10 ppm or less. Here, the amount of eluted alkali metal is obtained by measuring the mass of Na, K ions, Li ions, etc. in the eluate by ICP emission spectrometry, and obtaining the total amount. Specifically, when the metal member is a thin piece such as a metal foil, the metal member cut into a size of 40 mm × 18 mm is used as a test piece, and only the treated surface is immersed in 20 mL of pure water at 121 ° C., 85% humidity, 2 atmospheres, and treated for 60 hours. When the alkali metal ion is derived from the chemical agent that forms the SiOx layer, it is considered that the alkali metal ion exists in the SiOx layer.
 以下の理論に拘泥するわけではないが、SiOが多いほど誘電正接が小さくなり、一方、アルカリ金属の誘電率は高いため、伝送損失の点ではアルカリ金属は少ない方が好ましいと考えられる。また、アルカリ金属は、金属部材を腐食する可能性があるため、含有率は小さいほうが好ましい。 Although not bound by the following theory, the more SiO2 , the smaller the dielectric loss tangent. On the other hand, since the dielectric constant of alkali metals is high, it is believed that less alkali metals are preferable from the viewpoint of transmission loss. Also, since alkali metals may corrode metal members, the smaller the content, the better.
 また、X線光電子分光法(XPS: X-ray Photoelectron Spectroscopy)では、金属の種類及び金属を含む化合物(単体、酸化物、水酸化物など)特有に波形が存在するため、波形のピークから各金属のピーク及び各化合物のピークを分離することで、各金属及び各化合物の量や組成を測定することができる。例えば、銅の場合はCu2P3の波形分離、ニッケルの場合はNi2Pの波形分離によりそれぞれの金属及び金属を含む化合物の量や組成を求めることができる。 In addition, in XPS (X-ray Photoelectron Spectroscopy), there are waveforms peculiar to the types of metals and compounds containing metals (elements, oxides, hydroxides, etc.), so by separating the peaks of each metal and compound from the peak of the waveform, the amount and composition of each metal and each compound can be measured. For example, in the case of copper, the amount and composition of each metal and the compound containing the metal can be obtained by waveform separation of Cu2P3, and in the case of nickel, by waveform separation of Ni2P.
 また、金属部材のXPSによる表面の元素分析において検出されるNとSiの組成は、NとSiの原子数の比(N/Si)の値が0.04以上であることが好ましく、0.05以上であることがより好ましく、0.24以上であることがさらに好ましく、0.33以上であることがさらに好ましく、0.39以上であることがさらに好ましく、また、0.80以下であることが好ましく、0.54以下であることがより好ましい。以下の理論に拘泥するわけではないが、NとSiの原子数の比(N/Si)の値が0.04より小さいとSiOx層に対して適した量のカップリング層が形成されていないため接着性が低下したり、アルカリ金属の除去が不足するため伝送損失が悪くなる。NとSiの原子数の比(N/Si)の値が0.80より大きいとSiOx層が形成されていないか、あるいはSiOx層が不足しており耐熱性や耐湿性が悪くなる。 In addition, in the composition of N and Si detected in elemental analysis of the surface of the metal member by XPS, the ratio of the number of atoms of N and Si (N/Si) is preferably 0.04 or more, more preferably 0.05 or more, more preferably 0.24 or more, further preferably 0.33 or more, further preferably 0.39 or more, preferably 0.80 or less, and more preferably 0.54 or less. Although not bound by the following theory, if the ratio of the number of atoms of N and Si (N/Si) is less than 0.04, the coupling layer is not formed in an amount suitable for the SiOx layer, resulting in poor adhesion, or insufficient removal of the alkali metal, resulting in poor transmission loss. If the atomic number ratio (N/Si) of N and Si is greater than 0.80, the SiOx layer is not formed, or the SiOx layer is insufficient, resulting in poor heat resistance and moisture resistance.
 さらに、金属部材を高温、高湿、長時間の条件で処理した前後において、表面の(L、a、b)を測定し、処理前後の色差ΔEabを算出したとき、ΔEabが15以下、14以下、13以下、12以下、または11以下であることが好ましい。ΔEabが複数回の試験結果の平均値である場合、その標準偏差は4以下であることが好ましく、2以下であることがより好ましく、1.95以下であることがさらに好ましい。なお、処理条件は、一例として、純水中で121℃、湿度85%、2気圧、60時間の処理である。表面にSiOxが結合していない場合、高温高湿処理で、表現が酸化され、色差が大きくなると考えられる。 Furthermore, when the surface (L * , a * , b * ) is measured before and after the metal member is treated under high-temperature, high-humidity, and long-term conditions, and the color difference ΔE * ab before and after the treatment is calculated, ΔE * ab is preferably 15 or less, 14 or less, 13 or less, 12 or less, or 11 or less. When ΔE * ab is the average value of multiple test results, the standard deviation is preferably 4 or less, more preferably 2 or less, and even more preferably 1.95 or less. The treatment conditions are, for example, 121° C. in pure water, 85% humidity, 2 atm, and 60 hours. If SiOx is not bonded to the surface, it is considered that high-temperature and high-humidity processing oxidizes the expression and increases the color difference.
ΔEab=[(ΔL+(Δa+(Δb1/2 ΔE * ab=[(ΔL * ) 2 +(Δa * ) 2 +(Δb * ) 2 ] 1/2
 本明細書に開示の金属部材は、表面に第2の金属を含むまたは第2の金属からなる層(本明細書では、第2金属層または第2の金属層と称する)を有してもよい。第2の金属は、金属部材の金属と異なるものであれば特に限定されないが、Sn、Ag、Zn、Al、Ti、Bi、Cr、Fe、Co、Ni、Pd、AuおよびPtからなる群から選ばれた少なくとも一種の金属あるいはその合金であることが好ましい。特に、金属部材が銅の場合、耐熱性を有するためには銅よりも耐熱性の高い金属、例えばNi、Pd、AuおよびPtあるいはその合金が好ましい。例えば、ニッケル及びニッケル合金の場合、純ニッケル、Ni-Cu合金、Ni-Cr合金、Ni-Co合金 、Ni-Zn合金、Ni-Mn合金、Ni-Pb合金、Ni-P合金等が例示できる。 The metal member disclosed herein may have a layer containing or consisting of a second metal (herein referred to as a second metal layer or a second metal layer) on the surface. The second metal is not particularly limited as long as it is different from the metal of the metal member, but is preferably at least one metal selected from the group consisting of Sn, Ag, Zn, Al, Ti, Bi, Cr, Fe, Co, Ni, Pd, Au and Pt or an alloy thereof. In particular, when the metal member is copper, a metal having higher heat resistance than copper, such as Ni, Pd, Au and Pt, or an alloy thereof, is preferable in order to have heat resistance. Examples of nickel and nickel alloys include pure nickel, Ni--Cu alloys, Ni--Cr alloys, Ni--Co alloys, Ni--Zn alloys, Ni--Mn alloys, Ni--Pb alloys, and Ni--P alloys.
 第2金属層の垂直方向の平均の厚さは特に限定されないが、10nm以上であることが好ましく、15nm以上であることがより好ましく、20nm以上であることがさらに好ましい。そして、100nm以下であることが好ましく、70nm以下であることがより好ましく、50nm以下であることがさらに好ましい。 Although the average thickness of the second metal layer in the vertical direction is not particularly limited, it is preferably 10 nm or more, more preferably 15 nm or more, and even more preferably 20 nm or more. The thickness is preferably 100 nm or less, more preferably 70 nm or less, and even more preferably 50 nm or less.
 あるいは、第2金属層の金属量を単位面積あたりの金属の重量として表した場合、0.5mg/cm以上であることが好ましく、1.0mg/cmであることがより好ましく、1.8mg/cm以上であることがさらに好ましい。また、100mg/cm以下であることが好ましく、80mg/cm以下であることがより好ましく、50mg/cm以下であることがさらに好ましく、10mg/cm以下であることがさらに好ましく、5mg/cm以下であることがさらに好ましい。 Alternatively, when the amount of metal in the second metal layer is expressed as the weight of metal per unit area, it is preferably 0.5 mg/cm 2 or more, more preferably 1.0 mg/cm 2 or more, and even more preferably 1.8 mg/cm 2 or more. Also, it is preferably 100 mg/cm 2 or less, more preferably 80 mg/cm 2 or less, even more preferably 50 mg/cm 2 or less, even more preferably 10 mg/cm 2 or less, and even more preferably 5 mg/cm 2 or less.
 第2金属層の垂直方向の平均の厚さは、第2金属層を形成する金属を、酸性溶液で溶解し、ICP分析によって金属量を測定し、その測定量を第2金属層の面積で除して算出できる。あるいは、第2金属層を有する金属部材そのものを溶解し、第2金属層を形成する金属の量のみを検出測定することにより、算出できる。 The average thickness of the second metal layer in the vertical direction can be calculated by dissolving the metal forming the second metal layer in an acidic solution, measuring the amount of metal by ICP analysis, and dividing the measured amount by the area of the second metal layer. Alternatively, it can be calculated by melting the metal member itself having the second metal layer and detecting and measuring only the amount of the metal forming the second metal layer.
 本明細書に開示の金属部材が第2金属層を有する場合、XPSによる表面の元素分析において、スペクトルを波形分離して得られる第2の金属由来のピーク面積の総和(例えば、金属水酸化物と金属酸化物と金属単体由来のピーク面積の総和)に対し、第2の金属の水酸化物のピーク面積の面積百分率が70Area%以下であることが好ましく、67.8%以下であることがより好ましく、65.0%以下であることがさらに好ましく、63.0%以下であることがさらに好ましく、62.1%以下であることがさらに好ましく、また0%より大きいことが好ましく、20%以上であることが好ましく、56.4%以上であることがより好ましく、57.2%以上であることがさらに好ましい。第2の金属由来のピーク面積の総和に対し、第2の金属酸化物のピーク面積の面積百分率が25Area%以下であることが好ましく、23.7Area%以下であることがより好ましく、22.8Area%以下であることがさらに好ましい。 When the metal member disclosed in the present specification has a second metal layer, the area percentage of the peak area of the hydroxide of the second metal is preferably 70% or less, more preferably 67.8% or less, further preferably 65.0% or less, relative to the sum of the peak areas derived from the second metal (for example, the sum of the peak areas derived from the metal hydroxide, the metal oxide, and the single metal) obtained by waveform separation of the spectrum in elemental analysis of the surface by XPS. It is more preferably 0% or less, more preferably 62.1% or less, more preferably greater than 0%, preferably 20% or more, more preferably 56.4% or more, and 57.2% or more. The area percentage of the peak area of the second metal oxide is preferably 25 Area% or less, more preferably 23.7 Area% or less, and even more preferably 22.8 Area% or less with respect to the total peak area derived from the second metal.
 以上のような金属部材の特性として、特に以下のいずれかの組み合わせを有することが好ましい。いずれも、金属部材表面でSiOxが金属水酸化物と適正な量で表面に結合していることが最も重要な要素となっており、金属水酸化物は少ないほうが好適で、加えて、表面にアルカリ金属が少ないとさらに好適である。 As the characteristics of the metal member as described above, it is particularly preferable to have any of the following combinations. In any case, the most important factor is that SiOx is bonded to the surface of the metal member in an appropriate amount with the metal hydroxide, and the less the metal hydroxide, the more preferable, and the less the alkali metal on the surface, the more preferable.
[1]TOF-SIMSによる表面の元素分析によって、金属の水酸化物とSiOxが検出され、かつ
   SiOxのピーク値は金属の水酸化物のピーク値よりも大きい;
[1] Elemental analysis of the surface by TOF-SIMS detects metal hydroxide and SiOx, and the peak value of SiOx is greater than the peak value of metal hydroxide;
[2]TOF-SIMSによる表面の元素分析によって、金属の水酸化物とSiOxが検出され、
   SiOxのピーク値は金属の水酸化物のピーク値よりも大きく、
   さらに表面にSiとアルカリ金属が検出され、かつ
   Siのピーク値は前記アルカリ金属のピーク値よりも大きい;
[2] Elemental analysis of the surface by TOF-SIMS detects metal hydroxides and SiOx,
The peak value of SiOx is larger than the peak value of metal hydroxide,
Furthermore, Si and an alkali metal are detected on the surface, and the peak value of Si is greater than the peak value of the alkali metal;
[3]TOF-SIMSによる表面元素分析によって、金属の水酸化物とSiOxが検出され、かつ
   XPSによる表面の元素分析によって、NとSiが検出され、NとSiの原子数の比(N/Si)の
   値が0.04以上0.8以下または0.05以上0.8以下である;
[3] Metal hydroxide and SiOx are detected by surface elemental analysis by TOF-SIMS, and N and Si are detected by surface elemental analysis by XPS, and the atomic number ratio (N/Si) of N and Si is 0.04 or more and 0.8 or less or 0.05 or more and 0.8 or less;
[4]第2金属層を有し、
   TOF-SIMSによる表面の元素分析によってSiOxが検出され、
   XPSによる表面のスペクトルの波形分離において、第2の金属由来のピーク面積の総和に対する、
   第2の金属の水酸化物のピーク面積の面積百分率が70Area%以下または63Ar
   ea%以下である;
[4] having a second metal layer;
SiOx is detected by elemental analysis of the surface by TOF-SIMS,
In waveform separation of the spectrum of the surface by XPS, for the sum of the peak areas derived from the second metal,
The area percentage of the peak area of the hydroxide of the second metal is 70 Area% or less or 63 Ar
ea% or less;
[5]第2金属層を有し、
   TOF-SIMSによる表面の元素分析によってSiOxが検出され、
   XPSによる表面のスペクトルの波形分離において、第2の金属由来のピーク面積の総和に対する、
   第2の金属の水酸化物のピーク面積の面積百分率が70Area%以下であり、
   表面からのアルカリ金属の溶出量が0.2ppm以下である;
[5] having a second metal layer;
SiOx is detected by elemental analysis of the surface by TOF-SIMS,
In waveform separation of the spectrum of the surface by XPS, for the sum of the peak areas derived from the second metal,
The area percentage of the peak area of the hydroxide of the second metal is 70 Area% or less,
The amount of alkali metal eluted from the surface is 0.2 ppm or less;
[6]XPSによる表面の元素分析によって、NとSiが検出され、
   NとSiの原子数の比(N/Si)の値が0.04以上0.8以下または0.05以上0.8以下で
   あって、かつ
   表面に対するアルカリ金属溶出試験前後の色差ΔEabが15以下である;
[6] N and Si are detected by elemental analysis of the surface by XPS,
The ratio of the number of atoms of N and Si (N/Si) is 0.04 or more and 0.8 or less, or 0.05 or more and 0.8 or less, and the color difference ΔE * ab before and after the alkali metal elution test for the surface is 15 or less;
[7]XPSによる表面の元素分析によって、NとSiが検出され、
   NとSiの原子数の比(N/Si)の値が0.04以上0.8以下または0.05以上0.8以下であって、かつ
   XPSによる表面のスペクトルの波形分離において、第2の金属由来のピーク面積の総和に対する、
   第2の金属の水酸化物のピーク面積の面積百分率が70Area%以下または63Area%以下
   である。
[7] N and Si are detected by elemental analysis of the surface by XPS,
The ratio of the number of atoms of N and Si (N/Si) is 0.04 or more and 0.8 or less or 0.05 or more and 0.8 or less, and in waveform separation of the spectrum of the surface by XPS, for the sum of the peak areas derived from the second metal,
The area percentage of the peak area of the hydroxide of the second metal is 70 Area % or less or 63 Area % or less.
 金属部材のSiOx層を含む側の表面の算術平均粗さ(Ra)は特に限定されないが、0.01μm以上が好ましく、0.03μm以上がより好ましく、また、5.00μm以下であることが好ましく、3μm以下であることがさらに好ましく、0.12μm以下であることがさらに好ましい。なお、算術平均粗さ(Ra)とは基準長さlにおいて、以下の式で表される輪郭曲線(y=Z(x))におけるZ(x)(すなわち山の高さと谷の深さ)の絶対値の平均を表す。
 [数1]
The arithmetic mean roughness (Ra) of the surface of the metal member including the SiOx layer is not particularly limited, but is preferably 0.01 μm or more, more preferably 0.03 μm or more, and 5.00 μm or less, more preferably 3 μm or less, and further preferably 0.12 μm or less. The arithmetic average roughness (Ra) is the average of the absolute values of Z (x) (that is, the height of the peak and the depth of the valley) in the contour curve (y = Z (x)) represented by the following formula at the reference length l.
[Number 1]
 金属部材のSiOx層を含む側の表面の最大高さ粗さ(Rz)は特に限定されないが、0.1μm以上が好ましく、0.28μm以上がより好ましく、また、20.00μm以下であることが好ましく、10.00μm以下であることがより好ましく、0.83μm以下であることがさらに好ましい。なお、最大高さ粗さ(Rz)とは基準長さlにおいて、輪郭曲線(y=Z(x))の凸部の高さZpの最大値と凹部の深さZvの最大値の和を表す。 The maximum height roughness (Rz) of the surface of the metal member containing the SiOx layer is not particularly limited, but is preferably 0.1 μm or more, more preferably 0.28 μm or more, and preferably 20.00 μm or less, more preferably 10.00 μm or less, and even more preferably 0.83 μm or less. The maximum height roughness (Rz) represents the sum of the maximum value of the height Zp of the convex portion and the maximum value of the depth Zv of the concave portion of the contour curve (y=Z(x)) at the reference length l.
 なお、RaおよびRzは、JIS B 0601:2001(国際基準ISO4287-1997準拠)に定められた方法により算出できる。 Note that Ra and Rz can be calculated by the method specified in JIS B 0601:2001 (in accordance with international standards ISO4287-1997).
==金属部材の製造方法==
 上述の金属部材の製造方法の実施形態を以下に述べる。
==Manufacturing method of metal member==
An embodiment of the method for manufacturing the metal member described above will be described below.
(1)金属材料
 金属部材の材料である、表面の一部または全部が金属で覆われている金属材料を準備する。金属材料は、表面に金属が存在すればよく、金属表面より内側の部分(すなわち金属材料内部)は金属以外であってもよいが、金属材料内部も金属であり金属材料全体が金属からなっていてもよい。金属材料内部が表面の金属とは異なる物質からなる場合、表面の金属の厚さは、1nm超であるが、10nm以上であってもよく、100nm以上であってもよい。表面の金属は、めっき処理することにより形成してもよい。金属の種類は特に限定されないが、例えば、Cu、Ni、Zn、Al、Fe、Mgなどの金属であってもよく、銅合金、ニッケル合金、亜鉛合金、アルミニウム合金、鉄合金、マグネシウム合金などの合金であってもよく、2元合金、3元合金、4元合金などであっても良い。金属表面と金属材料内部の金属の種類は同じであっても異なっていてもよい。
(1) Metal material Prepare a metal material whose surface is partly or wholly covered with metal, which is the material of the metal member. The metal material only needs to have metal on the surface, and the portion inside the metal surface (that is, the inside of the metal material) may be other than metal, but the inside of the metal material may also be metal, and the entire metal material may consist of metal. When the inside of the metal material is made of a substance different from the metal on the surface, the thickness of the metal on the surface is more than 1 nm, but may be 10 nm or more, or 100 nm or more. The surface metal may be formed by plating. Although the type of metal is not particularly limited, for example, it may be a metal such as Cu, Ni, Zn, Al, Fe, Mg, or an alloy such as a copper alloy, nickel alloy, zinc alloy, aluminum alloy, iron alloy, or magnesium alloy, or may be a binary alloy, a ternary alloy, a quaternary alloy, or the like. The type of metal on the metal surface and inside the metal material may be the same or different.
(2)酸化処理
 まず、金属材料表面を酸化処理することにより、金属材料表面に金属酸化物層を形成する。この酸化処理によって、金属材料表面が粗面化され、金属部材を樹脂に接着させたときの、樹脂に対する接着性が大きくなる。
(2) Oxidation Treatment First, the surface of the metal material is oxidized to form a metal oxide layer on the surface of the metal material. This oxidation treatment roughens the surface of the metal material and increases the adhesiveness to the resin when the metal member is bonded to the resin.
 この酸化処理以前に、ソフトエッチング又はエッチングなどの粗面化処理を行ってもよい。また、酸化処理以前に、脱脂処理、自然酸化膜除去によって表面を均一化するための酸洗浄、または酸洗浄後に酸化工程への酸の持ち込みを防止するためのアルカリ処理を行ってもよい。アルカリ処理の方法は特に限定されないが、好ましくは0.1~10g/L、より好ましくは1~2g/Lのアルカリ水溶液、例えば水酸化ナトリウム水溶液で、30~50℃、0.5~2分間程度処理すればよい。 A roughening treatment such as soft etching or etching may be performed before this oxidation treatment. In addition, before oxidation treatment, degreasing treatment, acid cleaning for uniformizing the surface by removing a natural oxide film, or alkali treatment for preventing acid from being brought into the oxidation process may be performed after acid cleaning. The alkali treatment method is not particularly limited, but preferably 0.1 to 10 g/L, more preferably 1 to 2 g/L alkaline aqueous solution, such as sodium hydroxide aqueous solution, at 30 to 50° C. for about 0.5 to 2 minutes.
 酸化処理方法は特に限定されないが、酸化剤を用いて形成してもよく、加熱処理や陽極酸化によって形成してもよい。 Although the oxidation treatment method is not particularly limited, it may be formed using an oxidizing agent, or may be formed by heat treatment or anodization.
 酸化剤は特に限定されず、例えば、亜塩素酸ナトリウム、次亜塩素酸ナトリウム、塩素酸カリウム、過塩素酸カリウム等の水溶液を用いることができる。酸化剤には、各種添加剤(たとえば、リン酸三ナトリウム十二水和物のようなリン酸塩)や表面活性分子を添加してもよい。表面活性分子としては、ポルフィリン、ポルフィリン大員環、拡張ポルフィリン、環縮小ポルフィリン、直鎖ポルフィリンポリマー、ポルフィリンサンドイッチ配位錯体、ポルフィリン配列、シラン、テトラオルガノ-シラン、アミノエチル-アミノプロピルトリメトキシシラン、(3-アミノプロピル)トリメトキシシラン、(1-[3-(トリメトキシシリル)プロピル]ウレア)((l-[3-(Trimethoxysilyl)propyl]urea))、(3-アミノプロピル)トリエトキシシラン、((3-グリシジルオキシプロピル)トリメトキシシラン)、(3‐クロロプロピル)トリメトキシシラン、(3-グリシジルオキシプロピル)トリメトキシシラン、ジメチルジクロロシラン、3-(トリメトキシシリル)プロピルメタクリレート、エチルトリアセトキシシラン、トリエトキシ(イソブチル)シラン、トリエトキシ(オクチル)シラン、トリス(2-メトキシエトキシ)(ビニル)シラン、クロロトリメチルシラン、メチルトリクロロシラン、四塩化ケイ素、テトラエトキシシラン、フェニルトリメトキシシラン、クロロトリエトキシシラン、エチレン-トリメトキシシラン、アミン、糖などを例示できる。 The oxidizing agent is not particularly limited, and for example, an aqueous solution of sodium chlorite, sodium hypochlorite, potassium chlorate, potassium perchlorate, etc. can be used. Various additives (eg, phosphates such as trisodium phosphate dodecahydrate) and surface active molecules may be added to the oxidizing agent. Surface active molecules include porphyrins, porphyrin macrocycles, extended porphyrins, ring contracted porphyrins, linear porphyrin polymers, porphyrin sandwich coordination complexes, porphyrin sequences, silanes, tetraorgano-silanes, aminoethyl-aminopropyltrimethoxysilane, (3-aminopropyl)trimethoxysilane, (1-[3-(trimethoxysilyl)propyl]urea) ((l-[3-(Trimethoxysilyl)propyl]u rea)), (3-aminopropyl)triethoxysilane, ((3-glycidyloxypropyl)trimethoxysilane), (3-chloropropyl)trimethoxysilane, (3-glycidyloxypropyl)trimethoxysilane, dimethyldichlorosilane, 3-(trimethoxysilyl)propyl methacrylate, ethyltriacetoxysilane, triethoxy(isobutyl)silane, triethoxy(octyl)silane, tris(2-methoxyethoxy)(vinyl)silane, chlorotrimethylsilane, methyltrichlorosilane Examples include silane, silicon tetrachloride, tetraethoxysilane, phenyltrimethoxysilane, chlorotriethoxysilane, ethylene-trimethoxysilane, amines and sugars.
 酸化剤には、各種添加剤(たとえば、リン酸三ナトリウム十二水和物のようなリン酸塩)や表面活性分子を添加して銅酸化物の析出を調整してもよい。表面活性分子としては、ポルフィリン、ポルフィリン大員環、拡張ポルフィリン、環縮小ポルフィリン、直鎖ポルフィリンポリマー、ポルフィリンサンドイッチ配位錯体、ポルフィリン配列、シラン、テトラオルガノ‐シラン、アミノエチル‐アミノプロピル‐トリメトキシシラン、3‐アミノプロピル)トリメトキシシラン、1‐[3‐(トリメトキシシリル)プロピル]ウレア、(3‐アミノプロピル)トリエトキシシラン、(3‐グリシジルオキシプロピル)トリメトキシシラン、(3‐クロロプロピル)トリメトキシシラン、(3‐グリシジルオキシプロピル)トリメトキシシラン、ジメチルジクロロシラン、3‐(トリメトキシシリル)プロピルメタクリレート、エチルトリアセトキシシラン、トリエトキシ(イソブチル)シラン、トリエトキシ(オクチル)シラン、トリス(2‐メトキシエトキシ)(ビニル)シラン、クロロトリメチルシラン、メチルトリクロロシラン、四塩化ケイ素、テトラエトキシシラン、フェニルトリメトキシシラン、クロロトリエトキシシラン、エチレン‐トリメトキシシラン、アミン、糖などを例示できる。 Various additives (for example, phosphates such as trisodium phosphate dodecahydrate) and surface active molecules may be added to the oxidizing agent to adjust the precipitation of copper oxide. Surface-active molecules include porphyrins, porphyrin macrocycles, extended porphyrins, ring-contracted porphyrins, linear porphyrin polymers, porphyrin sandwich coordination complexes, porphyrin sequences, silanes, tetraorgano-silanes, aminoethyl-aminopropyl-trimethoxysilane, 3-aminopropyl)trimethoxysilane, 1-[3-(trimethoxysilyl)propyl]urea, (3-aminopropyl)triethoxysilane, (3-glycidyloxypropyl)trimethoxysilane, (3-chlorochlorosilane). Examples include propyl)trimethoxysilane, (3-glycidyloxypropyl)trimethoxysilane, dimethyldichlorosilane, 3-(trimethoxysilyl)propyl methacrylate, ethyltriacetoxysilane, triethoxy(isobutyl)silane, triethoxy(octyl)silane, tris(2-methoxyethoxy)(vinyl)silane, chlorotrimethylsilane, methyltrichlorosilane, silicon tetrachloride, tetraethoxysilane, phenyltrimethoxysilane, chlorotriethoxysilane, ethylene-trimethoxysilane, amines, sugars, and the like. I can.
 酸化反応条件は特に限定されないが、酸化剤の液温は40~95℃であることが好ましく、45~80℃であることがより好ましい。反応時間は0.5~30分であることが好ましく、1~10分であることがより好ましい。 Although the oxidation reaction conditions are not particularly limited, the liquid temperature of the oxidizing agent is preferably 40 to 95°C, more preferably 45 to 80°C. The reaction time is preferably 0.5 to 30 minutes, more preferably 1 to 10 minutes.
 金属酸化物層に対し、溶解剤を用いて、酸化された金属材料表面の凸部を調整してもよい。この溶解工程で用いる溶解剤は特に限定されないが、キレート剤、特に生分解性キレート剤であることが好ましく、エチレンジアミン四酢酸、ジエタノールグリシン、L-グルタミン酸二酢酸・四ナトリウム、エチレンジアミン-N,N’-ジコハク酸、3-ヒドロキシ-2、2’-イミノジコハク酸ナトリウム、メチルグリシン2酢酸3ナトリウム、アスパラギン酸ジ酢酸4ナトリウム、N-(2-ヒドロキシエチル)イミノ二酢酸ジナトリウム、グルコン酸ナトリウムなどが例示できる。溶解剤溶液のpHは特に限定されないが、アルカリ性であることが好ましく、pH8~10.5であることがより好ましく、pH9.0~10.5であることがさらに好ましく、pH9.8~10.2であることがさらに好ましい。 For the metal oxide layer, a dissolving agent may be used to adjust the protrusions on the surface of the oxidized metal material. The solubilizing agent used in this dissolving step is not particularly limited, but is preferably a chelating agent, particularly a biodegradable chelating agent, such as ethylenediaminetetraacetic acid, diethanolglycine, tetrasodium L-glutamate diacetate, ethylenediamine-N,N'-disuccinic acid, 3-hydroxy-2,2'-sodium iminodisuccinate, trisodium methylglycine diacetate, tetrasodium aspartate diacetate, disodium N-(2-hydroxyethyl)iminodiacetate, and sodium gluconate. etc. can be exemplified. Although the pH of the dissolving agent solution is not particularly limited, it is preferably alkaline, more preferably pH 8 to 10.5, still more preferably pH 9.0 to 10.5, and even more preferably pH 9.8 to 10.2.
 この金属酸化物層の表面を還元剤により還元処理してもよく、その場合、金属酸化物を含む層の表面に亜酸化銅が形成されてもよい。この還元工程で用いる還元剤としては、ジメチルアミンボラン(DMAB)、ジボラン、水素化ホウ素ナトリウム、ヒドラジン等が例示できる。 The surface of this metal oxide layer may be reduced with a reducing agent, in which case cuprous oxide may be formed on the surface of the layer containing the metal oxide. Examples of the reducing agent used in this reduction step include dimethylamine borane (DMAB), diborane, sodium borohydride, hydrazine and the like.
 金属として銅を用い、プリント配線基板や半導体パッケージ基板の回路を形成する際、純銅の比抵抗値が1.7×10-8(Ωm)なのに対して、酸化銅は1~10(Ωm)、亜酸化銅は1×10~1×10(Ωm)であるため、銅酸化物を含む層は導電性が低く、例え、樹脂基材に転移した銅酸化物を含む層の量が多くても、表皮効果による伝送損失が起こりにくい。 When copper is used as a metal to form a circuit on a printed wiring board or a semiconductor package board, the specific resistance value of pure copper is 1.7×10 −8 (Ωm), whereas the specific resistance value of copper oxide is 1 to 10 (Ωm), and cuprous oxide is 1×10 6 to 1×10 7 (Ωm).
(3)第2金属層形成処理
 第2の金属層は、例えば、金属材料表面または金属酸化物層表面にめっき処理をすることで、めっき皮膜として形成することができる。めっきの方法は特に限定されず、電解めっき、無電解めっき、化成処理、スパッタリングなどの真空蒸着などが例示できるが、一様で薄いめっき皮膜を形成することが好ましいため、電解めっきが好ましい。
(3) Second Metal Layer Forming Treatment The second metal layer can be formed as a plating film by, for example, plating the surface of the metal material or the surface of the metal oxide layer. The plating method is not particularly limited, and examples include electrolytic plating, electroless plating, chemical conversion treatment, and vacuum deposition such as sputtering.
 電解めっきにおいて、金属酸化物層の酸化物を一部還元するのにも電荷が必要であるため、その厚さを好ましい範囲にするためには、15C/dm以上~90C/dm以下の電荷を与えることが好ましい。 In electroplating, an electric charge is required to partially reduce the oxide of the metal oxide layer, so in order to keep the thickness within a preferable range, it is preferable to apply an electric charge of 15 C/dm 2 or more to 90 C/dm 2 or less.
 また、電流密度は5A/dm以下が好ましい。電流密度が高すぎると、凸部にめっきが集中するなど、均一なめっきが困難になる。なお、金属酸化物層の酸化物を一部還元する間と、めっきを被覆する間とで、電流の強度を変えてもよい。 Also, the current density is preferably 5 A/dm 2 or less. If the current density is too high, uniform plating becomes difficult, for example, plating concentrates on convex portions. In addition, the intensity of the electric current may be changed between partly reducing the oxide of the metal oxide layer and coating the plating.
 例えば、ニッケルめっきにおいて、その浴組成は、硫酸ニッケル(100g/L~350g/L)、スルファミン酸ニッケル(100g/L~600g/L)、塩化ニッケル(0g/L~300g/L)またはこれらの混合物が好ましいが、添加剤としてクエン酸ナトリウム(0g/L~100g/L)やホウ酸(0g/L~60g/L)が含まれていてもよい。 For example, in nickel plating, the bath composition is preferably nickel sulfate (100 g/L to 350 g/L), nickel sulfamate (100 g/L to 600 g/L), nickel chloride (0 g/L to 300 g/L), or a mixture thereof, but may contain sodium citrate (0 g/L to 100 g/L) and boric acid (0 g/L to 60 g/L) as additives.
 なお、これらのめっき処理の条件は、被覆する金属や、所望の厚さにより、容易に調整することができる。 The conditions for these plating treatments can be easily adjusted according to the metal to be coated and the desired thickness.
(4)水ガラス処理
 金属部材の製造方法は、金属材料にSiOを形成する工程を含む。SiOを形成する方法は特に限定されないが、液体で処理する場合、水ガラス処理が好ましい。この処理によって、金属材料に含まれる水酸化物のOH基と水ガラスとが結合し、樹脂との結合における耐酸性が増強される。
(4) Water glass treatment A method for manufacturing a metal member includes a step of forming SiO X on a metal material. The method of forming SiO X is not particularly limited, but water glass treatment is preferred when treating with a liquid. By this treatment, the OH group of the hydroxide contained in the metal material and the water glass are bonded, and the acid resistance in the bond with the resin is enhanced.
 水ガラス処理の前に、任意で、脱脂処理、自然酸化膜除去によって表面を均一化するための酸洗浄、または酸洗浄後に次の工程への酸の持ち込みを防止するためのアルカリ処理、ソフトエッチング又はエッチング、酸化処理などの粗面化処理などの処理を行ってもよい。 Before the water glass treatment, optionally, degreasing treatment, acid cleaning to make the surface uniform by removing the natural oxide film, or alkali treatment to prevent acid from being brought into the next step after acid cleaning, roughening treatment such as soft etching or etching, oxidation treatment, etc. may be performed.
 金属材料を処理するための水ガラスはアルカリ金属ケイ酸塩の水溶液である。アルカリ金属ケイ酸塩は、MO・nSiO(式中、MはNa、Li、Kのいずれかである)であらわされるが、水ガラス中には、MOとSiOとが様々な割合で混在する。金属材料の処理に用いる水ガラスは特に限定されないが、nが2~4であることが好ましい。 Water glasses for treating metallic materials are aqueous solutions of alkali metal silicates. Alkali metal silicate is represented by M 2 O.nSiO 2 (wherein M is Na, Li or K), and water glass contains M 2 O and SiO 2 in various proportions. The water glass used for treating metal materials is not particularly limited, but n is preferably 2-4.
 水ガラス処理の具体的な方法は特に限定されず、水ガラスを、金属表面にローラーやバーコーターによって塗布してもよくスプレーによって吹き付けてもよく、あるいは、金属材料を水ガラスに浸漬してもよい。水ガラス中のMO・nSiOの濃度は特に限定されないが、0.1%~20%であってもよく、0.5%~10%であってもよく、2%~5%であってもよい。反応条件は特に限定されないが、処理温度は10℃~95℃が好ましく、20℃~85℃がより好ましい。金属表面を処理する場合、水酸化物と反応させるため、処理温度は50℃以上がさらに好ましい。処理時間は1秒~10分が好ましい。水ガラス処理は複数回行ってもよい。 The specific method of water glass treatment is not particularly limited, and water glass may be applied to the metal surface with a roller or bar coater, or may be sprayed, or the metal material may be immersed in water glass. The concentration of M 2 O·nSiO 2 in water glass is not particularly limited, but may be 0.1% to 20%, 0.5% to 10%, or 2% to 5%. Although the reaction conditions are not particularly limited, the treatment temperature is preferably 10°C to 95°C, more preferably 20°C to 85°C. When treating a metal surface, the treatment temperature is more preferably 50° C. or higher in order to react with hydroxide. The treatment time is preferably 1 second to 10 minutes. The water glass treatment may be performed multiple times.
 金属材料を水ガラス処理した後、乾燥させる。処理後の乾燥はエアーで水分を飛ばしてもよいし、加温してもよい。加温する場合は30℃~250℃が好ましく、SiOx層を形成するため、50℃以上がさらに好ましい。加温時間は10秒~60分が好ましい。 After the metal material has been treated with water glass, it is dried. Drying after the treatment may be carried out by blowing off moisture with air or by heating. When heating, the temperature is preferably 30° C. to 250° C., and more preferably 50° C. or higher in order to form an SiOx layer. The heating time is preferably 10 seconds to 60 minutes.
 金属材料を処理するための水ガラスに、カップリング剤を溶解させてもよい(以下、この溶液を混合剤と称する)。カップリング剤の濃度は特に限定しないが、重量%で0.5%、1%、2%、3%、4%、5%、6%、7%、8%又は9%以上が好ましく、20%、15%又は10%以下が好ましい。 A coupling agent may be dissolved in water glass for processing metal materials (this solution is hereinafter referred to as a mixed agent). Although the concentration of the coupling agent is not particularly limited, it is preferably 0.5%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8% or 9% or more, and preferably 20%, 15% or 10% or less by weight.
(5)カップリング剤処理
 カップリング剤は2個以上の異なった官能基を持っており、その官能基により金属表面の水酸基と脱水縮合したり、有機質材料と化学結合をするなど、異なる官能基を有する物質同士を結合させる。
(5) Coupling agent treatment Coupling agents have two or more different functional groups, and the functional groups cause dehydration condensation with hydroxyl groups on the metal surface, chemically bond with organic materials, etc., to bond substances with different functional groups.
 金属材料を処理するためのカップリング剤は、特に限定されないが、シランカップリング剤が好ましく、中でも加水分解性基が2又は3のものが好ましく、加水分解性基として、メトキシ基又はエトキシ基のものが好ましい。具体的には、3-グリシジルオキシプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、ビニルトリメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン、3-ウレイドプロピルトリアルコキシシラン、3-アクリロキシプロピルトリメトキシシランなどを用いることができる。 The coupling agent for treating metal materials is not particularly limited, but silane coupling agents are preferred, among which those with 2 or 3 hydrolyzable groups are preferred, and those with methoxy or ethoxy groups as hydrolyzable groups are preferred. Specifically, 3-glycidyloxypropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, vinyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-isocyanatopropyltriethoxysilane, 3-ureidopropyltrialkoxysilane, 3-acryloxypropyltrimethoxysilane, and the like can be used.
 カップリング剤処理の具体的な方法は特に限定されず、カップリング剤の溶液を、金属表面にローラーやバーコーターによって塗布してもよくスプレーによって吹き付けてもよく、あるいは、金属材料をカップリング剤の溶液に浸漬してもよい。カップリング剤の溶液に用いる溶媒は、水、有機溶媒、またその混合溶媒でもよい。カップリング剤の濃度は特に限定しないが、重量%で0.5%、1%、2%、3%、4%、5%、6%、7%、8%又は9%以上が好ましく、20%、15%又は10%以下が好ましい。 The specific method of coupling agent treatment is not particularly limited, and the coupling agent solution may be applied to the metal surface with a roller or bar coater, or may be sprayed, or the metal material may be immersed in the coupling agent solution. The solvent used for the solution of the coupling agent may be water, an organic solvent, or a mixed solvent thereof. Although the concentration of the coupling agent is not particularly limited, it is preferably 0.5%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8% or 9% or more, and preferably 20%, 15% or 10% or less by weight.
 また、金属材料を処理するための水ガラスに、カップリング剤を溶解させてもよい(以下、この溶液を混合剤と称する)。カップリング剤の濃度は特に限定しないが、重量%で0.5%、1%、2%、3%、4%、5%、6%、7%、8%又は9%以上が好ましく、20%、15%又は10%以下が好ましい。 Also, a coupling agent may be dissolved in water glass for treating metal materials (this solution is hereinafter referred to as a mixed agent). Although the concentration of the coupling agent is not particularly limited, it is preferably 0.5%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8% or 9% or more, and preferably 20%, 15% or 10% or less by weight.
 金属材料をシランカップリング剤の溶液で処理した後、乾燥させる。乾燥のための温度と時間は、溶媒が完全に蒸発すれば特に限定しないが、70℃で1分以上乾燥させるのが好ましく、100℃で1分以上乾燥させるのがさらに好ましく、110℃で1分以上乾燥させることがより好ましい。 After treating the metal material with a silane coupling agent solution, dry it. The temperature and time for drying are not particularly limited as long as the solvent is completely evaporated, but drying at 70° C. for 1 minute or more is preferable, drying at 100° C. for 1 minute or more is more preferable, and drying at 110° C. for 1 minute or more is more preferable.
 このカップリング処理は、上述したような金属部材の表面に対するXPSによる元素分析によって検出されるN化合物を金属部材に供与する。N化合物として、アミノ基、メルカプト基、イソシアヌレート基、ウレイド基、イソシアネート基などを含有するカップリング剤やシリコーン樹脂が例示できる。 This coupling treatment provides the metal member with an N compound detected by elemental analysis by XPS on the surface of the metal member as described above. Examples of N compounds include coupling agents and silicone resins containing amino groups, mercapto groups, isocyanurate groups, ureido groups, isocyanate groups, and the like.
(6)金属部材の具体的な製造方法
 金属材料を用いて金属部材を製造するための方法は、金属材料をカップリング剤で処理する第1の工程と、金属材料を水ガラスで処理する第2の工程と、を含む。両方の工程を少なくとも1回ずつ行えば第1の工程と第2の工程の順序は特に限定されず、例えば以下のいずれてあってもよい。
(6) Specific method for manufacturing a metal member A method for manufacturing a metal member using a metal material includes a first step of treating the metal material with a coupling agent and a second step of treating the metal material with water glass. The order of the first step and the second step is not particularly limited as long as both steps are performed at least once. For example, any of the following may be used.
(A)第1の工程の後、第2の工程を行う。
(B)第2の工程の後、第1の工程を行う。
(C)第1の工程の後、第2の工程を行い、さらに第1の工程を行う。
各工程中、それぞれの処理は、連続して複数回行ってもよい。
(A) After the first step, the second step is performed.
(B) After the second step, the first step is performed.
(C) After the first step, the second step is performed, and then the first step is performed.
During each step, each treatment may be performed multiple times in succession.
 なお、実施例に示すように、第1の工程を第2の工程の後に行うと、樹脂との結合における耐湿性に対する増強効果は高く、伝送損失の低減効果も高い。以下の原理に拘泥するわけではないが、これは、アルカリ金属の除去が効率よく行われるからだと考えられる。さらに、第一の工程で形成したSiOxは金属部材よりもカップリング剤の反応基との反応性が良いため、種々のカップリング剤を使用することが可能で、カップリング剤による接着力向上効果が発揮しやすい。また、第1の工程を第2の工程の前に行うと、樹脂との結合における耐熱性に対する増強効果は高い。これも、以下の原理に拘泥するわけではないが、金属水酸化物とカップリング剤が反応し金属水酸化物が効率よく低減することと、さらにカップリング剤と水ガラスとが脱水縮合して強固に結合することによると考えられる。そして、第1の工程を第2の工程の前後に行うと、耐湿性と耐熱性の両方に増強効果が生じ、さらに伝送損失の低減にも効果的である。 As shown in the examples, when the first step is performed after the second step, the effect of enhancing moisture resistance in bonding with the resin is high, and the effect of reducing transmission loss is also high. Although not bound by the following principle, it is believed that this is because the alkali metal is efficiently removed. Furthermore, since the SiOx formed in the first step has better reactivity with the reactive group of the coupling agent than the metal member, it is possible to use various coupling agents, and the effect of improving the adhesive strength by the coupling agent is likely to be exhibited. Further, when the first step is performed before the second step, the effect of enhancing the heat resistance in bonding with the resin is high. Although not limited to the following principle, it is believed that the metal hydroxide reacts with the coupling agent to efficiently reduce the amount of the metal hydroxide, and that the coupling agent and water glass are strongly bonded through dehydration condensation. When the first step is performed before and after the second step, both moisture resistance and heat resistance are enhanced, and transmission loss is effectively reduced.
 混合剤を用いる場合、一つの処理でカップリング剤処理と水ガラス処理を同時に行うこと(以下、混合剤処理と称する)ができる。ただし、混合剤処理の前および/または後に、1回以上のカップリング剤処理を行ってもよい。 When using a mixture, it is possible to simultaneously perform coupling agent treatment and water glass treatment in one treatment (hereinafter referred to as mixture treatment). However, one or more coupling agent treatments may be performed before and/or after the admixture treatment.
 第1の工程の前に、金属材料に対して、上述した酸化処理および/または第2金属層形成処理をおこなってもよい。 Before the first step, the metal material may be subjected to the oxidation treatment and/or the second metal layer formation treatment described above.
==金属部材の利用方法==
 本発明にかかる金属部材は、金属を樹脂に接着させた場合に、高い耐熱性、耐湿性、および樹脂との接着性を必要とされる部材として好適に用いることができる。例えば、金属として銅を用いれば、銅表面に樹脂基材が積層された積層体を含むプリント基板の銅配線、銅ピラー、リードフレーム、あるいはリチウムイオン電池の正極集電体や負極集電体に好適に利用できる。
==How to use metal parts==
INDUSTRIAL APPLICABILITY The metal member according to the present invention can be suitably used as a member that requires high heat resistance, moisture resistance, and adhesion to resin when metal is adhered to resin. For example, if copper is used as the metal, copper wiring, copper pillars, and lead frames of printed circuit boards including laminates in which a resin base material is laminated on the copper surface, or positive electrode current collectors and negative electrode current collectors of lithium ion batteries. Can be suitably used.
(1)金属部材の製造
 金属部材を製造するために、本実施例では試験片5以外は金属材料として銅箔を用いた。試験片5はアルミニウム箔を用いた。金属材料の処理について、表1にまとめた。以下に、各処理について詳細に説明する。
Figure JPOXMLDOC01-appb-T000002
(1) Manufacture of metal member In order to manufacture a metal member, copper foil was used as the metal material except for the test piece 5 in this example. Aluminum foil was used for the test piece 5 . Table 1 summarizes the treatment of metal materials. Each process will be described in detail below.
Figure JPOXMLDOC01-appb-T000002
(1-1)金属材料
 試験片5以外は、DR-WS(厚さ:18μm)(古河電工株式会社製)の、銅箔のシャイニー面(光沢面。反対面と比較したときに平坦である面)を用いた。試験片5は、アルミニウム箔(厚さ:11μm)(三菱アルミニウム製)の、粗度が低いほうの面を用いた。
(1-1) Metal Material Except for test piece 5, DR-WS (thickness: 18 μm) (manufactured by Furukawa Electric Co., Ltd.) copper foil shiny side (glossy side, flat side when compared with the opposite side) was used. As the test piece 5, the lower surface of an aluminum foil (thickness: 11 μm) (Mitsubishi Aluminum) was used.
(1-2)前処理
 実施例5以外は、液温50℃、40g/Lの水酸化ナトリウム水溶液に1分間浸漬することで、脱脂処理を行い、金属表面の汚れを除去した。その後、水洗した。
(1-2) Pretreatment Except for Example 5, degreasing treatment was performed by immersing in a sodium hydroxide aqueous solution of 40 g/L at a liquid temperature of 50° C. for 1 minute to remove stains on the metal surface. After that, it was washed with water.
 次に、脱脂処理を行った金属材料を、液温25℃、10重量%の硫酸水溶液に2分間浸漬することで、酸洗浄を行い。金属表面の酸化被膜を除去した。その後、金属材料を水洗した。 Next, the degreased metal material is immersed in a 10% by weight sulfuric acid aqueous solution at a liquid temperature of 25°C for 2 minutes for acid cleaning. The oxide film on the metal surface was removed. After that, the metal material was washed with water.
 さらに、試験片1~3、6~9、11については酸洗浄を行った金属材料を、水酸化ナトリウム1.2g/Lの水溶液(pH10.5)に40℃で1分間浸漬することで、次工程である酸化処理での酸混入を防止した。 Furthermore, for test pieces 1 to 3, 6 to 9, and 11, the acid-washed metal materials were immersed in an aqueous solution of sodium hydroxide 1.2 g/L (pH 10.5) at 40°C for 1 minute to prevent acid contamination in the subsequent oxidation treatment.
(1-3)酸化処理
 試験片1~3、6~9、11については、銅箔のシャイニー面に対して、それぞれ表1に記載の酸化剤(227.5g/L亜塩素酸ナトリウム;21.0g/L水酸化カリウム;0.5g/L3-グリシジルオキシプロピルトリメトキシシランの混合溶液)を用いて、50℃で60秒、酸化処理を行い、銅箔の表面に微細な凸部を形成した。その後、室温で1分間、水洗した。
(1-3) Oxidation treatment For the test pieces 1 to 3, 6 to 9, and 11, the shiny side of the copper foil was oxidized using the oxidizing agents listed in Table 1 (227.5 g/L sodium chlorite; 21.0 g/L potassium hydroxide; 0.5 g/L 3-glycidyloxypropyltrimethoxysilane mixed solution) at 50°C for 60 seconds to form fine protrusions on the surface of the copper foil. Then, it was washed with water at room temperature for 1 minute.
(1-4)電解めっき処理
 酸化処理後、試験片1、2、6~9、11については、銅箔のシャイニー面に対して、それぞれ表1に記載の電解めっき液(240g/L硫酸ニッケル;30g/Lホウ酸)を用いて、表1に記載の条件で電解ニッケルめっきを行い、表面にNi層を形成させた。試験片4,10については、酸化処理は行わずに銅箔のシャイニー面に対して、それぞれ表1に記載の電解めっき液(240g/L硫酸ニッケル;30g/Lホウ酸)を用いて、表1に記載の条件で電解ニッケルめっきを行い、表面にNi層を形成させた。試験片3については、電解めっき液(10g/L酸化亜鉛;115g/L水酸化ナトリウム;5mL/L 9500A(日本表面化学株式会社);0.5mL/L 9500B(日本表面化学株式会社);10mL/Lハイパーソフト(日本表面化学株式会社))を用いて、表1に記載の条件で電解亜鉛めっきを行い、表面にZn層を形成させた。その後、全ての試験片について、室温で1分間、水洗してから乾燥させた。
(1-4) Electroplating treatment After the oxidation treatment, the shiny surfaces of the copper foils of the test pieces 1, 2, 6 to 9, and 11 were subjected to electrolytic nickel plating under the conditions listed in Table 1 using the electrolytic plating solutions listed in Table 1 (240 g/L nickel sulfate; 30 g/L boric acid) to form a Ni layer on the surface. For test pieces 4 and 10, the shiny surface of the copper foil was subjected to electrolytic nickel plating under the conditions shown in Table 1 using the electrolytic plating solution (240 g/L nickel sulfate; 30 g/L boric acid) shown in Table 1 without oxidation treatment, to form a Ni layer on the surface. For test piece 3, electrolytic plating solution (10 g/L zinc oxide; 115 g/L sodium hydroxide; 5 mL/L 9500A (Nippon Surface Chemical Co., Ltd.); 0.5 mL/L 9500B (Nippon Surface Chemical Co., Ltd.); 10 mL/L Hypersoft (Nippon Surface Chemical Co., Ltd.)) was used to perform electrolytic zinc plating under the conditions described in Table 1 to form a Zn layer on the surface. After that, all test pieces were washed with water at room temperature for 1 minute and then dried.
(1-5)カップリング処理I
 試験片2~4、6、7については、(1-4)の電解めっき処理後にカップリング処理を行った。試験片5については酸化処理や電解めっき処理などの表面処理を行わずに市販のアルミニウム箔をそのまま使用し、カップリング処理を行った。カップリング処理は、試験片2~7の金属箔を3vol%KBE-903(3-アミノプロピルトリエトキシシラン)(信越化学工業株式会社)に浸漬し、表1に記載の条件で行った。その後、全ての試験片について、水洗してから130℃で1分間、乾燥させた。
(1-5) Coupling process I
The test pieces 2 to 4, 6 and 7 were subjected to the coupling treatment after the electroplating treatment (1-4). For test piece 5, a commercially available aluminum foil was used as it was without surface treatment such as oxidation treatment or electroplating treatment, and coupling treatment was performed. Coupling treatment was performed under the conditions shown in Table 1 by immersing the metal foils of test pieces 2 to 7 in 3 vol% KBE-903 (3-aminopropyltriethoxysilane) (Shin-Etsu Chemical Co., Ltd.). After that, all test pieces were washed with water and dried at 130° C. for 1 minute.
(1-6)水ガラス処理
 試験片2~7については、(1-5)のカップリング処理後、試験片1、8、11については(1-4)の電解めっき処理後の金属箔を41g/L水ガラスに浸漬し、表1に記載の反応条件で水ガラス処理を行った。ただし、試験片11については、水ガラス処理が25℃という不適切な条件で行われたため、金属水酸化物の残存量が多く試験片と水ガラスとの反応は生じていないか、不十分であると考えられる。水ガラスとして、試験片6はケイ酸カリウム水溶液(けい酸カリウム溶液(富士フイルム和光純薬株式会社)、ケイ酸カリウム48.5~52.5重量%、SiO/KO比1.8~2.2)、他はケイ酸ナトリウム水溶液(ケイ酸ナトリウム52-57重量%、SiO/NaO比2.06~2.31)を用いた。また、試験片7では、3vol%KBE-903を含有する水ガラスを用いた。その後、全ての試験片について、水洗してから100℃で1分間、乾燥させた。
(1-6) Water glass treatment For test pieces 2 to 7, after the coupling treatment of (1-5), for test pieces 1, 8, and 11, the metal foil after the electroplating treatment of (1-4) was immersed in 41 g/L water glass, and the water glass treatment was performed under the reaction conditions shown in Table 1. However, since the test piece 11 was treated with water glass at an inappropriate temperature of 25° C., it is considered that the reaction between the test piece and the water glass was not occurring or was insufficient due to the large amount of residual metal hydroxide. As water glass, a potassium silicate aqueous solution (potassium silicate solution (Fuji Film Wako Pure Chemical Industries, Ltd.), potassium silicate 48.5 to 52.5% by weight, SiO / K O ratio 1.8 to 2.2) was used for the test piece 6, and a sodium silicate aqueous solution (sodium silicate 52 to 57% by weight, SiO / Na O ratio 2.06 to 2.31) was used. Also, in test piece 7, water glass containing 3 vol% KBE-903 was used. After that, all test pieces were washed with water and dried at 100° C. for 1 minute.
(1-7)カップリング処理II
 試験片1~6、11については、(1-6)の水ガラス処理後の金属箔を、試験片9、10については(1-4)の電解めっき処理後の金属箔を、3vol%KBE-903(3-アミノプロピルトリエトキシシラン)(信越化学工業株式会社)に浸漬し、表1に記載の条件でカップリング処理を行った。その後、全ての試験片について、水洗してから130℃で1分間、乾燥させた。
(1-7) Coupling treatment II
For test pieces 1 to 6 and 11, the metal foil after the water glass treatment (1-6), and for test pieces 9 and 10, the metal foil after the electrolytic plating treatment (1-4) was immersed in 3 vol% KBE-903 (3-aminopropyltriethoxysilane) (Shin-Etsu Chemical Co., Ltd.), and subjected to coupling treatment under the conditions shown in Table 1. After that, all test pieces were washed with water and dried at 130° C. for 1 minute.
(2)金属部材の試験I
(2-1)表面粗さ(Ra及びRz)
(2) Metal member test I
(2-1) Surface roughness (Ra and Rz)
 金属部材の処理面に対し、共焦点走査電子顕微鏡 OPTELICS H1200(レーザーテック株式会社製)を用いて銅箔の表面形状を測定し、JIS B 0601:2001(国際基準ISO4287-1997準拠)に定められた方法によりRa及びRzを算出した。測定条件として、スキャン幅は100μm、スキャンタイプはエリアとし、Light sourceはBlue、カットオフ値は1/5とした。オブジェクトレンズはx100、コンタクトレンズはx14、デジタルズームはx1、Zピッチは10nmの設定とし、3箇所のデータを取得し、Ra、Rzは3箇所の平均値とした。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000003
On the treated surface of the metal member, the surface shape of the copper foil was measured using a confocal scanning electron microscope OPTELICS H1200 (manufactured by Lasertec Co., Ltd.), and Ra and Rz were calculated by the method specified in JIS B 0601: 2001 (in accordance with international standards ISO4287-1997). As measurement conditions, the scan width was 100 μm, the scan type was area, the light source was Blue, and the cutoff value was 1/5. The object lens was set to x100, the contact lens was set to x14, the digital zoom was set to x1, and the Z pitch was set to 10 nm. Table 2 shows the results.
Figure JPOXMLDOC01-appb-T000003
(2-2)金属層の平均の厚さ及び単位面積当たりのSi量
 電解メッキによって表面に形成された金属であるNi層の平均の厚さおよび水ガラス処理およびカップリング処理によって金属表面に結合したSiの単位面積当たりの量を測定した。
(2-2) Average thickness of metal layer and amount of Si per unit area The average thickness of the Ni layer, which is a metal formed on the surface by electrolytic plating, and the amount of Si bonded to the metal surface by water glass treatment and coupling treatment per unit area were measured.
 まず、金属部材を12%硝酸で処理して金属部材を溶解し、ICP発光分析装置5100 SVDV ICP-OES(アジレント・テクノロジー社製)を用いて、溶出液中のNiおよびSiの質量を測定した。そして、Niの密度を用いてNiの体積を算出し、得られた質量および体積を、Ni層が溶解された金属部材の面積で割ることによって、Ni層の平均の厚さを算出した。同様にして、Siは、単位面積当たりの質量を算出した。表3にその結果を示す。
Figure JPOXMLDOC01-appb-T000004
First, the metal member was treated with 12% nitric acid to dissolve the metal member, and the mass of Ni and Si in the eluate was measured using an ICP emission spectrometer 5100 SVDV ICP-OES (manufactured by Agilent Technologies). Then, the volume of Ni was calculated using the density of Ni, and the average thickness of the Ni layer was calculated by dividing the obtained mass and volume by the area of the metal member in which the Ni layer was dissolved. Similarly, for Si, the mass per unit area was calculated. Table 3 shows the results.
Figure JPOXMLDOC01-appb-T000004
(2-3)飛行時間型二次イオン質量分析(TOF-SIMS)
 作製した金属部材に対し、装置型式はTRIFT V nano-TOF(アルバック・ファイ株式会社製)を用い、表4に示した条件で金属及び金属化合物を検出した。その代表的な結果を図1に示す。
Figure JPOXMLDOC01-appb-T000005
(2-3) Time-of-flight secondary ion mass spectrometry (TOF-SIMS)
A TRIFT V nano-TOF (manufactured by ULVAC-Phi, Inc.) was used to detect metals and metal compounds on the prepared metal member under the conditions shown in Table 4. Representative results are shown in FIG.
Figure JPOXMLDOC01-appb-T000005
そして、以下の点について、表5に結果をまとめる。 Table 5 summarizes the results for the following points.
[1]SiOxのピークがあるかどうか(ある場合は〇、無い場合は×で示す。)。
[2]SiOxのピーク値は金属の水酸化物のピーク値よりも大きいかどうか(大きい場合は〇、大きくない場合は×で示す。)。
[3]Siのピーク値はアルカリ金属のピーク値よりも大きいかどうか(大きい場合は〇、大きくない場合は×で示す。)。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-I000007
[1] Whether or not there is a SiOx peak (indicated by ◯ if there is, and by × if not).
[2] Whether or not the peak value of SiOx is greater than the peak value of metal hydroxide (indicated by ◯ when greater, and by x when not greater).
[3] Whether or not the peak value of Si is greater than the peak value of alkali metal (indicated by ◯ when greater, and by x when not greater).
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-I000007
(2-4)XPS
 金属部材の処理面に対し、X線光電分光法(XPS:X-ray Photoelectron Spectroscopy)によって表面のNarrow分析を行った。装置は、Quantera SXM(ULVAC-PHI社)を用いた。
(2-4) XPS
Surface Narrow analysis was performed on the treated surface of the metal member by X-ray Photoelectron Spectroscopy (XPS). As an apparatus, Quantera SXM (ULVAC-PHI) was used.
[1]Survey spectrum
 まず、以下の条件で元素を検出した。
  X線ビーム径:   100μm(25w15kV)
  パスエネルギー: 280eV,1eVステップ
  ライン分析:     φ100μm×700μm
  積算回数:              6回
[1] Survey spectrum
First, elements were detected under the following conditions.
X-ray beam diameter: 100 μm (25w15kV)
Pass energy: 280 eV, 1 eV step Line analysis: φ100 μm×700 μm
Accumulated times: 6 times
[2]Narrow spectrum
 [1]で検出した元素について、Narrow Spectrumを以下の条件で取得し、検出した成分のうちNとSiについて、2成分の元素数の合計を100atom%としたときのそれぞれの割合(原子百分率)を測定し、(Nの原子百分率)/(Siの原子百分率)の比の値を算出することによってNの原子数とSiの原子数の比の値を求めた。それらの結果を表6に示す。
  X線ビーム径:   100μm(25w15kV)
  パスエネルギー: 112eV、0.1eVステップ
  ライン分析:     φ100μm×700μm 
[2] Narrow spectrum
For the elements detected in [1], a Narrow Spectrum was obtained under the following conditions, and among the detected components, the ratio (atomic percentage) of N and Si when the total number of elements of the two components was 100 atom% was measured, and the ratio of the number of N atoms and the number of Si atoms was calculated by calculating the ratio of (atomic percentage of N) / (atomic percentage of Si). Those results are shown in Table 6.
X-ray beam diameter: 100 μm (25w15kV)
Pass energy: 112 eV, 0.1 eV step Line analysis: φ100 μm×700 μm
[3]波形分離
 [1]で検出した元素のうちNi2pのピークについて、Ni、NiO、およびNi(OH)に波形分離を行い、それら3成分のピーク面積の合計を100Area%としたときのそれぞれのピーク面積の割合(面積百分率)を算出した。それらの結果を表6に示す。なお、CuOおよびCu(OH)のピークが含まれると考えられるCu2p3(940-945eV)に関しては波形がノイズ程度の小さい波形であったため、ピークは検出されていないと判断した。
Figure JPOXMLDOC01-appb-T000008
[3] Waveform separation For the Ni2p peak among the elements detected in [1], waveform separation was performed on Ni, NiO, and Ni(OH) 2 , and the total peak area of these three components was taken as 100Area%. The ratio of each peak area (area percentage) was calculated. Those results are shown in Table 6. Regarding Cu2p3 (940-945 eV), which is considered to include peaks of CuO and Cu(OH) 2 , it was determined that no peak was detected because the waveform was a waveform with little noise.
Figure JPOXMLDOC01-appb-T000008
(2-5)アルカリ金属溶出試験
 金属部材を40mm×18mmの大きさに切断して金属片を作製した。処理しない面はマスキングテープ(めっき用マスキングテープ 851A:3M製)でマスキングし、処理面のみで溶出試験を実施した。10枚の金属片を、純水20mLに浸し、121℃、湿度85%、2気圧の条件で60時間処理し、金属の処理液を得た。また、金属表面からのアルカリ金属のみを測定するため、表面処理をしていない金属部材の片面にマスキングテープを貼った金属箔を浸した純水を、同時に同条件で処理した。得られた処理液を、940 IC Vario Two ChS/PP及び930コンパクトIC Flex Oven/SeS/PP/Deg(メトローム製)のイオンクロマトグラフィーにかけ、ナトリウムイオン及びカリウムイオンの溶出量を測定した。測定したNa、Kの質量から表面処理をしていない金属部材の片面のみマスキングテープを行った溶出液から検出されたNa、Kの質量を以下の式で表されるように差し引き、金属部材から溶出したNa、Kの質量、及びそれらの和を算出した。それらの結果を表7に示す。
(2-5) Alkali Metal Elution Test A metal piece was prepared by cutting a metal member into a size of 40 mm×18 mm. The untreated surface was masked with a masking tape (masking tape for plating 851A: manufactured by 3M), and the elution test was performed only on the treated surface. Ten metal pieces were immersed in 20 mL of pure water and treated for 60 hours under the conditions of 121° C., 85% humidity and 2 atmospheres to obtain a metal treatment liquid. In addition, in order to measure only the alkali metal from the metal surface, one side of the metal member not subjected to the surface treatment was soaked with a metal foil with a masking tape attached, and treated with pure water under the same conditions at the same time. The resulting treated liquid was subjected to ion chromatography using 940 IC Vario Two ChS/PP and 930 Compact IC Flex Oven/SeS/PP/Deg (manufactured by Metrohm) to measure the eluted amounts of sodium ions and potassium ions. From the measured masses of Na and K, the masses of Na and K detected from the eluate with masking tape applied only to one side of the metal member without surface treatment were subtracted as represented by the following formula, and the mass of Na and K eluted from the metal member and the sum thereof were calculated. Those results are shown in Table 7.
 試験片1~11のアルカリ金属の溶出量=(試験片1~11のアルカリ金属の質量)-(表面処理をしていない金属部材から溶出した金属の質量)
Figure JPOXMLDOC01-appb-T000009
Amount of alkali metal eluted from test pieces 1 to 11 = (mass of alkali metal from test pieces 1 to 11) - (mass of metal eluted from metal members without surface treatment)
Figure JPOXMLDOC01-appb-T000009
(2-6)溶出試験前後の色変化量の測定
 (2-5)の金属片の表面の(L、a、b)から溶出試験前後の色差ΔEabを算出した。なお、溶出試験は、金属片1枚で行った以外は、(2-5)と同じ条件で処理し、(L)の測定は、日本電色工業株式会社製分光色差計NF999(照明条件:C;視野角条件:2;測定項目:L)を用い、各金属片について3ヶ所を測定し、得られた値の平均値を算出した。結果を表8に記載する。
(2-6) Measurement of amount of color change before and after elution test Color difference ΔE * ab before and after elution test was calculated from (L * , a * , b * ) of the surface of the metal piece in (2-5). The elution test was performed under the same conditions as in (2-5) except that one metal piece was used, and (L * a * b * ) was measured using a spectral color difference meter NF999 manufactured by Nippon Denshoku Industries Co., Ltd. (illumination condition: C; viewing angle condition: 2; measurement item: L * a * b *) . The results are listed in Table 8.
[数2]
ΔEab=[(ΔL+(Δa+(Δb1/2
Figure JPOXMLDOC01-appb-T000010
[Number 2]
ΔE * ab=[(ΔL * ) 2 +(Δa * ) 2 +(Δb * ) 2 ] 1/2
Figure JPOXMLDOC01-appb-T000010
(2-7)耐熱性および耐水性
 金属部材の処理面に対して絶縁材である樹脂(TU-933P+)を積層し、真空高圧プレス機を用いて熱圧着した。
(2-7) Heat resistance and water resistance An insulating resin (TU-933P+) was laminated on the treated surface of the metal member and thermocompression bonded using a vacuum high pressure press.
(2-7-1)熱処理後ピール強度減少率
 熱圧着後に金属部材が10mm幅になるように不要な部分を除去し、試験片を作製した。作製直後の試験片と、288℃の温度のはんだ槽に10秒間浸漬した後60秒間はんだ槽から引き上げるという工程を3回繰り返した試験片に対して、90°剥離試験(日本工業規格(JIS)C5016)によりピール強度(kgf/cm)を測定した。測定値を、それぞれ、初期ピール強度および熱処理後ピール強度と称する。
(2-7-1) Peel Strength Decrease Rate after Heat Treatment A test piece was prepared by removing unnecessary portions so that the metal member had a width of 10 mm after thermocompression bonding. A 90° peel test (Japanese Industrial Standards (JIS) C5016) was used to measure the peel strength (kgf/cm) of a test piece immediately after fabrication and a test piece obtained by repeating the process of immersing the test piece in a solder bath at a temperature of 288°C for 10 seconds and then pulling it out of the solder bath for 60 seconds three times. The measured values are referred to as initial peel strength and post-heat treatment peel strength, respectively.
 初期ピール強度に対する、(初期ピール強度-熱処理後ピール強度)の割合(表9では、熱処理後ピール強度減少率と記載)を計算した。 The ratio of (initial peel strength - peel strength after heat treatment) to the initial peel strength (referred to as peel strength reduction rate after heat treatment in Table 9) was calculated.
(2-7-2)接着耐熱性
 熱圧着後に25mm×25mmの大きさに切断して試験片を作製した。300℃の温度のはんだ槽に5分浸漬した試験片に対して、金属部材と樹脂をひきはがし、金属部材側のはがした面を観察した。はがした面の50Area%以上に樹脂が付着していれば樹脂内部で破壊が生じたものとして〇、樹脂の付着量が50Area%より少なければ金属部材と樹脂の界面で剥離したものとして×、と評価した。
(2-7-2) Adhesion Heat Resistance A test piece was prepared by cutting into a size of 25 mm×25 mm after thermocompression bonding. The metal member and the resin were peeled off from the test piece that had been immersed in a solder bath at a temperature of 300° C. for 5 minutes, and the peeled surface on the metal member side was observed. If the resin adhered to 50 Area% or more of the peeled surface, it was evaluated as being broken inside the resin.
(2-7-3)耐湿性
 熱圧着後に金属部材が10mm幅になるように不要な部分を除去し、試験片を作製した。121℃、湿度85%、2気圧の密閉空間に20時間静置した後、288℃の温度のはんだ槽に10秒浸漬した試験片に対し、90°剥離試験(日本工業規格(JIS)C5016)によりピール強度(kgf/cm)を測定した。測定値を湿処理後ピール強度と称する。初期ピール強度に対する、(初期ピール強度-湿処理後ピール強度)の割合(表9では、湿処理後ピール強度減少率と記載)を計算した。
(2-7-3) Moisture resistance After thermocompression bonding, unnecessary portions were removed from the metal member so that the width of the metal member was 10 mm, and a test piece was prepared. After standing in a closed space of 121 ° C., 85% humidity, 2 atm for 20 hours, the test piece was immersed in a solder bath at a temperature of 288 ° C. for 10 seconds. The peel strength (kgf / cm) was measured by a 90 ° peel test (Japanese Industrial Standards (JIS) C5016). The measured value is called the peel strength after wet processing. The ratio of (initial peel strength - peel strength after wet treatment) to the initial peel strength (referred to as peel strength reduction rate after wet treatment in Table 9) was calculated.
(2-7-4)結果
 以上の結果を表9に示す。
Figure JPOXMLDOC01-appb-T000011
(2-7-4) Results Table 9 shows the above results.
Figure JPOXMLDOC01-appb-T000011
(2-8)まとめ
 試験片1~8は、熱処理後ピール強度減少率が20%以下で、熱処理後も金属と樹脂は接着したままであり、樹脂との接着における耐熱性が優れていた(表9参照)。このように、
(2-8) Summary Test pieces 1 to 8 had a peel strength reduction rate of 20% or less after heat treatment, and the metal and resin remained adhered even after heat treatment, and had excellent heat resistance in adhesion to resin (see Table 9). in this way,
[A]TOF-SIMSによる表面の元素分析において、SiOxのピークが検出され(表5[1]参照)SiOxのピーク値は金属の水酸化物のピーク値よりも大きい(表5[2]参照); [A] In elemental analysis of the surface by TOF-SIMS, a SiOx peak is detected (see Table 5 [1]). The SiOx peak value is greater than the peak value of the metal hydroxide (see Table 5 [2]);
[B]TOF-SIMSによる表面の元素分析において、SiOxのピークが検出され(表5[1]参照)、XPSによる表面の元素分析において、Ni2pを波形分離した場合、Ni化合物(Ni、Niの酸化物、Niの水酸化物を含む)のピーク面積の総和に対するNiの水酸化物のピーク面積の面積百分率が70Area%以下である(表6参照); [B] In the elemental analysis of the surface by TOF-SIMS, a SiOx peak is detected (see Table 5 [1]), and in the elemental analysis of the surface by XPS, when Ni2p is waveform-separated, the area percentage of the peak area of Ni hydroxide with respect to the total peak area of Ni compounds (including Ni, Ni oxides, and Ni hydroxides) is 70 Area% or less (see Table 6);
[C]XPSによる表面の元素分析において、NとSiの原子数の比(N/Si)の値が0.04以上0.8以下であり(表6参照)、かつアルカリ金属溶出試験前後の最大色差ΔEabが15以下である(表7参照); [C] In elemental analysis of the surface by XPS, the ratio of the number of atoms of N and Si (N/Si) is 0.04 or more and 0.8 or less (see Table 6), and the maximum color difference ΔE * ab before and after the alkali metal elution test is 15 or less (see Table 7);
[D]XPSによる表面の元素分析において、NとSiの原子数の比(N/Si)の値が0.04以上0.8以下であり、Ni化合物(Ni、Niの酸化物、Niの水酸化物を含む)のピーク面積の総和に対する、Niの水酸化物のピーク面積の面積百分率が70Area%以下である(表6参照); [D] In elemental analysis of the surface by XPS, the ratio of the number of atoms of N and Si (N / Si) is 0.04 or more and 0.8 or less, and the area percentage of the peak area of Ni hydroxide with respect to the total peak area of Ni compounds (including Ni, Ni oxide, and Ni hydroxide) is 70 Area% or less (see Table 6);
のいずれかを満たす金属部材を製造することによって、樹脂との接着における耐熱性が大きい金属部材を製造することができる。具体的な製造方法としては、例えば、金属材料表面を水ガラスで処理することによって製造することができる。 By manufacturing a metal member that satisfies any one of the above, it is possible to manufacture a metal member having high heat resistance in bonding with a resin. As a specific manufacturing method, for example, it can be manufactured by treating the surface of the metal material with water glass.
 特に、試験片2~7は、熱処理後ピール強度減少率が15%以下であり、さらに樹脂との接着における耐熱性が大きかった。このように、 In particular, test pieces 2 to 7 had a peel strength reduction rate of 15% or less after heat treatment, and had high heat resistance in adhesion to the resin. in this way,
[E]XPSによる表面の元素分析において、NとSiの原子数の比(N/Si)の値が0.04以上0.8以下であり、Ni化合物(Ni、Niの酸化物、Niの水酸化物を含む)のピーク面積の総和に対する、Niの水酸化物のピーク面積の面積百分率が63Area%以下である(表6参照); [E] In elemental analysis of the surface by XPS, the ratio of the number of atoms of N and Si (N / Si) is 0.04 or more and 0.8 or less, and the area percentage of the peak area of Ni hydroxide with respect to the total peak area of Ni compounds (including Ni, Ni oxide, and Ni hydroxide) is 63 Area% or less (see Table 6);
[F]TOF-SIMSによる表面の元素分析において、SiOxのピークが検出され(表5[1]参照)、XPSによる表面の元素分析において、Ni2pを波形分離した場合、Ni化合物(Ni、Niの酸化物、Niの水酸化物を含む)のピーク面積の総和に対するNiの水酸化物のピーク面積の面積百分率が63Area%以下である(表6参照); [F] In elemental analysis of the surface by TOF-SIMS, a SiOx peak is detected (see Table 5 [1]), and in elemental analysis of the surface by XPS, when Ni2p is waveform-separated, the area percentage of the peak area of Ni hydroxide with respect to the total peak area of Ni compounds (including Ni, Ni oxides, and Ni hydroxides) is 63 Area% or less (see Table 6);
のいずれかを満たす金属部材を製造することによって、さらに樹脂との接着における耐熱性が大きい金属部材を製造することができる。 By manufacturing a metal member that satisfies any one of the above, it is possible to manufacture a metal member having greater heat resistance in adhesion to a resin.
 一方、試験片1~7は、湿処理後ピール強度減少率が20%以下であり、耐湿性に優れていた。このように、 On the other hand, test pieces 1 to 7 had a peel strength reduction rate of 20% or less after wet treatment and were excellent in moisture resistance. in this way,
[G]XPSによる表面の元素分析において、NとSiの原子数の比(N/Si)の値が0.05以上0.8以下であり(表6参照)、かつアルカリ金属溶出試験前後の最大色差ΔEabが15以下である(表7参照) [G] In elemental analysis of the surface by XPS, the ratio of the number of atoms of N and Si (N/Si) is 0.05 or more and 0.8 or less (see Table 6), and the maximum color difference ΔE * ab before and after the alkali metal elution test is 15 or less (see Table 7).
[H]TOF-SIMSによる表面の元素分析において、金属の水酸化物、SiOx、Si、アルカリ金属のピークが検出され、SiOxのピーク値は金属の水酸化物のピーク値よりも大きく、Siのピーク値はアルカリ金属のピーク値よりも大きい(表5[1][2][3]参照); In elemental analysis of the surface by [H]TOF-SIMS, metal hydroxide, SiOx, Si, and alkali metal peaks are detected, the peak value of SiOx is larger than the peak value of metal hydroxide, and the peak value of Si is larger than the peak value of alkali metal (see Table 5 [1] [2] [3]);
[I]TOF-SIMSによる表面の元素分析において、金属の水酸化物およびSiOxのピークが検出され、XPSによる表面の元素分析において、NとSiが検出され、NとSiの原子数の比(N/Si)の値が0.05以上0.8以下である; [I] Metal hydroxide and SiOx peaks are detected in surface elemental analysis by TOF-SIMS, N and Si are detected in surface elemental analysis by XPS, and the atomic number ratio (N/Si) of N and Si is 0.05 or more and 0.8 or less;
[J]TOF-SIMSによる表面の元素分析において、SiOxのピークが検出され(表5[1]参照)、XPSによる表面の元素分析において、Ni2pを波形分離した場合、Ni化合物(Ni、Niの酸化物、Niの水酸化物を含む)のピーク面積の総和に対するNiの水酸化物のピーク面積の面積百分率が70Area%以下であり(表6参照)、表面からのアルカリ金属の溶出量が0.2ppm以下である(表7参照); [J] In the elemental analysis of the surface with TOF -SIMS, the peak of the SIOX is detected (see Table 5 [1]), and in the elemental analysis of the surface by XPS, if the NI2p is separated, the peak area of the NI compound (including NI, NI oxide, NI hydroxide) is overtaken. The percentage of the peak area of the NI hydroxide is 70AREA % or less (see Table 6), and the elutment of alkali metals from the surface is 0.2 ppm or less (see Table 7);
のいずれかを満たす金属部材を製造することによって、樹脂との接着における耐湿性が大きい金属部材を製造することができる。具体的な製造方法としては、例えば、金属表面に水ガラス処理と独立してカップリング剤処理を行うことによって製造することができる。 By manufacturing a metal member that satisfies any one of the above, it is possible to manufacture a metal member having high moisture resistance in bonding with a resin. As a specific manufacturing method, for example, it can be manufactured by subjecting the metal surface to a coupling agent treatment independently of the water glass treatment.
 特に、試験片2~6は、湿処理後ピール強度減少率が10%以下であり、さらに樹脂との接着における耐湿性が優れていた。このように水ガラス処理の前後で、カップリング剤処理をおこなうことにより、さらに樹脂との接着における耐湿性が大きい金属部材を製造することができる。 In particular, test pieces 2 to 6 had a peel strength reduction rate of 10% or less after wet treatment, and had excellent moisture resistance in adhesion to the resin. By performing the coupling agent treatment before and after the water glass treatment in this way, it is possible to manufacture a metal member having a higher moisture resistance in adhesion to the resin.
(3)金属部材の試験II
(3-1)伝送損失の測定方法
(3) Test II of metal members
(3-1) Transmission loss measurement method
 試験片1~3、6~9、11と100μm厚のTU-933P+を積層し、真空高圧プレス機を用いて熱圧着し、長さ100mmのマイクロストリップラインを作製した。回路幅は230μm、特性インピーダンスは50Ωとした。この伝送路にネットワーク・アナライザN5227B(キーサイト・テクノロジー社)(10MHz~67GHz)及び高周波エクステンダーWR12(VDI社)(55GHz~95GHz)を用いて90GHzの信号を伝送して100mmあたりのS21(dB)(=20×log(Vout/Vin))を測定し、1mmあたりのS21を算出した。 Test pieces 1 to 3, 6 to 9, and 11 and TU-933P+ with a thickness of 100 μm were laminated and thermocompressed using a vacuum high pressure press to prepare a microstrip line with a length of 100 mm. The circuit width was 230 μm and the characteristic impedance was 50Ω. Using a network analyzer N5227B (Keysight Technologies Inc.) (10 MHz to 67 GHz) and a high frequency extender WR12 (VDI Inc.) (55 GHz to 95 GHz), a 90 GHz signal was transmitted to this transmission line, S 21 (dB) (= 20 × log (Vout/Vin)) per 100 mm was measured, and S 21 per 1 mm was calculated.
(3-2)結果
 結果を表10に示す。
Figure JPOXMLDOC01-appb-T000012
(3-2) Results Table 10 shows the results.
Figure JPOXMLDOC01-appb-T000012
 試験片1~3、6、7は、1mmあたりのS21が-0.075より大きくなっており、試験片8、9、11に比べ、伝送損失が少なかった。このように、金属表面に水ガラス処理と独立してカップリング剤処理を行い、表5の[1][2][3]の条件を満たす金属部材を作製することによって、伝送損失の少ない金属部材を作製することができる。 Test pieces 1 to 3, 6 and 7 had S 21 per 1 mm greater than -0.075, and had less transmission loss than test pieces 8, 9 and 11. In this way, by performing the coupling agent treatment on the metal surface independently of the water glass treatment and fabricating a metal member that satisfies the conditions [1] [2] [3] in Table 5, a metal member with little transmission loss can be fabricated.
 本発明によって、新規な金属部材を提供できる。 A novel metal member can be provided by the present invention.

Claims (20)

  1.  第1の金属を含む金属部材であって、X線光電分光法(XPS:X-ray Photoelectron Spectroscopy)による前記金属部材の表面の元素分析によってNとSiが検出され、
     前記NとSiの原子数の比(N/Si)の値が0.04以上0.8以下であり、
     前記表面に対するアルカリ金属溶出試験前後の色差ΔEabが15以下である、金属部材。
    A metal member containing a first metal, wherein N and Si are detected by elemental analysis of the surface of the metal member by X-ray Photoelectron Spectroscopy (XPS),
    the ratio of the number of atoms of N and Si (N/Si) is 0.04 or more and 0.8 or less;
    A metal member having a color difference ΔE * ab of 15 or less before and after an alkali metal elution test on the surface.
  2.  第1の金属を含む金属部材であって、
     表面に第2の金属層を有し、
     X線光電分光法(XPS:X-ray Photoelectron Spectroscopy)による前記金属部材の表面の元素分析によってNとSiが検出され、
     前記NとSiの原子数の比(N/Si)の値が0.04以上0.8以下であり、
     XPSによる表面のスペクトルの波形分離において、第2の金属由来のピーク面積の総和に対する、第2の金属の水酸化物のピーク面積の面積百分率が70Area%以下である、金属部材。
    A metal member containing a first metal,
    having a second metal layer on the surface,
    N and Si are detected by elemental analysis of the surface of the metal member by X-ray Photoelectron Spectroscopy (XPS),
    the ratio of the number of atoms of N and Si (N/Si) is 0.04 or more and 0.8 or less;
    A metal member, wherein the area percentage of the hydroxide peak area of the second metal is 70 Area % or less with respect to the total peak area derived from the second metal in waveform separation of the spectrum of the surface by XPS.
  3.  第2の金属の水酸化物のピーク面積の前記面積百分率が63Area%以下である、請求項2に記載の金属部材。 The metal member according to claim 2, wherein the area percentage of the peak area of the hydroxide of the second metal is 63 Area% or less.
  4.  前記第2の金属がニッケルである、請求項2または3に記載の金属部材。 The metal member according to claim 2 or 3, wherein the second metal is nickel.
  5.  前記NとSiの原子数の比(N/Si)の値が0.05以上0.8以下である、請求項1~4のいずれか1項に記載の金属部材。 The metal member according to any one of claims 1 to 4, wherein the ratio of the number of atoms of N and Si (N/Si) is 0.05 or more and 0.8 or less.
  6.  第1の金属を含む金属部材であって、
     飛行時間型二次イオン質量分析法(TOF-SIMS:Time-of-Flight Secondary Ion Mass Spectrometry)による前記金属部材の表面の元素分析によって第1の金属の水酸化物とSiOxが検出され、
     前記SiOxのピーク値は前記第1の金属の水酸化物のピーク値よりも大きい、金属部材。
    A metal member containing a first metal,
    Elemental analysis of the surface of the metal member by time-of-flight secondary ion mass spectrometry (TOF-SIMS) detects the first metal hydroxide and SiOx,
    The metal member, wherein the peak value of the SiOx is higher than the peak value of the hydroxide of the first metal.
  7.  TOF-SIMSによる前記表面の元素分析によってSiとアルカリ金属がさらに検出され、
     前記Siのピーク値は前記アルカリ金属のピーク値よりも大きい、請求項6に記載の金属部材。
    Elemental analysis of the surface by TOF-SIMS further detects Si and alkali metals,
    7. The metal member according to claim 6, wherein the Si peak value is greater than the alkali metal peak value.
  8.  X線光電分光法(XPS:X-ray Photoelectron Spectroscopy)による前記表面の元素分析によってNとSiが検出され、
     前記NとSiの原子数の比(N/Si)の値が0.05以上0.8以下である、請求項6に記載の金属部材。
    N and Si are detected by elemental analysis of the surface by X-ray Photoelectron Spectroscopy (XPS),
    7. The metal member according to claim 6, wherein the atomic number ratio (N/Si) of said N and Si is 0.05 or more and 0.8 or less.
  9.  第1の金属を含む金属部材であって、
     表面に第2の金属層を有し、
     TOF-SIMSによる前記金属部材の表面の元素分析によってSiOxが検出され、
     X線光電分光法(XPS:X-ray Photoelectron Spectroscopy)による前記表面のスペクトルの波形分離において、第2の金属由来のピーク面積の総和に対する、第2の金属の水酸化物のピーク面積の面積百分率が70Area%以下である、金属部材。
    A metal member containing a first metal,
    having a second metal layer on the surface,
    SiOx is detected by elemental analysis of the surface of the metal member by TOF-SIMS,
    A metal member having an area percentage of 70 Area% or less of the peak area of the hydroxide of the second metal with respect to the sum of the peak areas derived from the second metal in waveform separation of the spectrum of the surface by X-ray Photoelectron Spectroscopy (XPS).
  10.  第2の金属の水酸化物のピーク面積の前記面積百分率が63Area%以下である、請求項9に記載の金属部材。 The metal member according to claim 9, wherein the area percentage of the peak area of the hydroxide of the second metal is 63 Area% or less.
  11.  前記第2の金属がニッケルである、請求項9または10に記載の金属部材。 The metal member according to claim 9 or 10, wherein the second metal is nickel.
  12.  前記表面からのアルカリ金属の溶出量が0.2ppm以下である、請求項9~11のいずれか1項に記載の金属部材。 The metal member according to any one of claims 9 to 11, wherein the amount of alkali metal eluted from the surface is 0.2 ppm or less.
  13.  金属材料を用いて金属部材を製造するための方法であって、
      前記金属材料をカップリング剤で処理する第1の工程と、
      前記金属材料を水ガラスで処理する第2の工程と、
    を含む、方法。
    A method for manufacturing a metal member using a metal material,
    a first step of treating the metal material with a coupling agent;
    a second step of treating the metal material with water glass;
    A method, including
  14.  第1の工程が第2の工程の前に、後に、または前後に行われる、請求項13に記載の方法。 14. The method of claim 13, wherein the first step is performed before, after, or before and after the second step.
  15.  金属材料を用いて金属部材を製造するための方法であって、
     前記金属材料をカップリング剤を含有する水ガラスで処理する第3の工程を含む、方法。
    A method for manufacturing a metal member using a metal material,
    A method comprising a third step of treating said metal material with water glass containing a coupling agent.
  16.  前記金属材料をカップリング剤で処理する第4の工程を含む、請求項15に記載の方法。 The method according to claim 15, comprising a fourth step of treating said metal material with a coupling agent.
  17.  第3の工程が第4の工程の前に、後に、または前後に行われる、請求項16に記載の方法。 17. The method of claim 16, wherein the third step is performed before, after, or before and after the fourth step.
  18.  前記カップリング剤が、3-グリシジルオキシプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、ビニルトリメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン、3-ウレイドプロピルトリアルコキシシラン、および3-アクリロキシプロピルトリメトキシシランからなる群から選択される1以上である、請求項13~17のいずれか1項に記載の方法。 the coupling agent is one or more selected from the group consisting of 3-glycidyloxypropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, vinyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-isocyanatopropyltriethoxysilane, 3-ureidopropyltrialkoxysilane, and 3-acryloxypropyltrimethoxysilane; A method according to any one of claims 13 to 17, wherein
  19.  第1の工程及び第2の工程の前に、前記金属材料を酸化処理する第5の工程及び/又は前記金属材料をめっき処理する第6の工程を含む、請求項13または14に記載の方法。 15. The method according to claim 13 or 14, comprising a fifth step of oxidizing the metal material and/or a sixth step of plating the metal material before the first step and the second step.
  20.  第3の工程及び第4の工程の前に、前記金属材料を酸化処理する第5の工程及び/又は前記金属材料をめっき処理する第6の工程を含む、請求項15~17のいずれか1項に記載の方法。 The method according to any one of claims 15 to 17, comprising a fifth step of oxidizing the metal material and/or a sixth step of plating the metal material before the third step and the fourth step.
PCT/JP2022/048018 2022-01-21 2022-12-26 Metal member WO2023140062A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-008216 2022-01-21
JP2022008216 2022-01-21

Publications (1)

Publication Number Publication Date
WO2023140062A1 true WO2023140062A1 (en) 2023-07-27

Family

ID=87348602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/048018 WO2023140062A1 (en) 2022-01-21 2022-12-26 Metal member

Country Status (2)

Country Link
TW (1) TW202330256A (en)
WO (1) WO2023140062A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5250940A (en) * 1975-10-22 1977-04-23 Nippon Steel Corp Surface treatment of steel
JPH04293789A (en) * 1990-12-24 1992-10-19 Armco Steel Co Lp Method of coating steel with innoxious, inorganic and corrosion-resistant coating
JPH09503013A (en) * 1993-09-20 1997-03-25 アメロン インコーポレイティド Aqueous polysiloxane / polysilicate binder
JP2009138132A (en) * 2007-12-07 2009-06-25 Dipsol Chem Co Ltd Surface-treating aqueous solution and treatment method for forming corrosion-resistant coating film over zinc or zinc alloy deposit
JP2013522067A (en) * 2010-03-12 2013-06-13 イーピージー (エンジニアード ナノプロダクツ ジャーマニー) アーゲー Metal surface with thin glassy or ceramic protective layer with high chemical resistance and improved non-stickiness
JP2014502287A (en) * 2010-10-27 2014-01-30 ヒェメタル ゲゼルシャフト ミット ベシュレンクテル ハフツング Aqueous composition for pretreatment of a metal surface before further coating or for treating said surface
JP2015066730A (en) * 2013-09-27 2015-04-13 日新製鋼株式会社 Coated stainless steel foil and method for manufacturing the same
WO2017195803A1 (en) * 2016-05-10 2017-11-16 株式会社神戸製鋼所 Aqueous solution for metal surface treatment, treatment method for metal surface, and joined body

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5250940A (en) * 1975-10-22 1977-04-23 Nippon Steel Corp Surface treatment of steel
JPH04293789A (en) * 1990-12-24 1992-10-19 Armco Steel Co Lp Method of coating steel with innoxious, inorganic and corrosion-resistant coating
JPH09503013A (en) * 1993-09-20 1997-03-25 アメロン インコーポレイティド Aqueous polysiloxane / polysilicate binder
JP2009138132A (en) * 2007-12-07 2009-06-25 Dipsol Chem Co Ltd Surface-treating aqueous solution and treatment method for forming corrosion-resistant coating film over zinc or zinc alloy deposit
JP2013522067A (en) * 2010-03-12 2013-06-13 イーピージー (エンジニアード ナノプロダクツ ジャーマニー) アーゲー Metal surface with thin glassy or ceramic protective layer with high chemical resistance and improved non-stickiness
JP2014502287A (en) * 2010-10-27 2014-01-30 ヒェメタル ゲゼルシャフト ミット ベシュレンクテル ハフツング Aqueous composition for pretreatment of a metal surface before further coating or for treating said surface
JP2015066730A (en) * 2013-09-27 2015-04-13 日新製鋼株式会社 Coated stainless steel foil and method for manufacturing the same
WO2017195803A1 (en) * 2016-05-10 2017-11-16 株式会社神戸製鋼所 Aqueous solution for metal surface treatment, treatment method for metal surface, and joined body

Also Published As

Publication number Publication date
TW202330256A (en) 2023-08-01

Similar Documents

Publication Publication Date Title
WO2019093494A1 (en) Composite copper foil
WO2019093077A1 (en) Object having roughening-treated copper surface
WO2021132191A1 (en) Composite copper member treated with silane coupling agent
JP6806405B1 (en) Composite copper member
WO2023140062A1 (en) Metal member
WO2021172096A1 (en) Composite copper member having voids
WO2020226158A1 (en) Apparatus for processing copper surface
WO2023140063A1 (en) Composite copper member and power module including composite copper member
JP2023107101A (en) Copper member
WO2021193470A1 (en) Composite copper wiring line ahd multilayer body having resist layer
WO2020226160A1 (en) Composite copper member
WO2010004885A1 (en) Surface treated copper foil
JP7352939B2 (en) composite copper parts
WO2020226159A1 (en) Method for manufacturing metal member having metal layer
JP7217999B2 (en) Composite copper member
WO2022050001A1 (en) Copper foil and laminate, and manufacturing methods therefor
JP2023051784A (en) Copper member
TW202311569A (en) Surface-treated copper foil, copper-clad laminate plate, and printed wiring board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22922212

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023575163

Country of ref document: JP