WO2023140063A1 - Composite copper member and power module including composite copper member - Google Patents

Composite copper member and power module including composite copper member Download PDF

Info

Publication number
WO2023140063A1
WO2023140063A1 PCT/JP2022/048019 JP2022048019W WO2023140063A1 WO 2023140063 A1 WO2023140063 A1 WO 2023140063A1 JP 2022048019 W JP2022048019 W JP 2022048019W WO 2023140063 A1 WO2023140063 A1 WO 2023140063A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper member
composite copper
copper
nickel layer
nickel
Prior art date
Application number
PCT/JP2022/048019
Other languages
French (fr)
Japanese (ja)
Inventor
牧子 佐藤
賢市 登坂
慎 寺木
Original Assignee
ナミックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナミックス株式会社 filed Critical ナミックス株式会社
Publication of WO2023140063A1 publication Critical patent/WO2023140063A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/12Semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties

Definitions

  • the present invention relates to a composite copper member and a power module including the composite copper member.
  • a module substrate with excellent heat dissipation characteristics which is equipped with an insulating substrate and a heat sink, is used, and is called a power module.
  • a power module is used in a high-temperature, moisture-absorbing environment where a high voltage of several hundred to several thousand volts is applied, deterioration phenomena such as leaks and short circuits may occur and break down. This deterioration phenomenon is caused by migration in which the copper forming the heat sink is ionized, eluted, and precipitated as a copper compound at the place where it moves.
  • a migration prevention layer Japanese Patent Application Laid-Open No. 2010-287844
  • the present invention provides a novel composite copper member and a power module including the composite copper member.
  • One embodiment of the present invention is a composite copper member comprising a copper member and a nickel layer on at least a part of the surface of the copper member, wherein the surface on the side containing the nickel layer has protrusions, and in a cross-sectional image of the composite copper member taken by a scanning electron microscope, the number of protrusions having a length of 50 nm or more and 1500 nm or less when measured in a direction parallel to the surface on the side containing the nickel layer is 5 or more per 3.8 ⁇ m, and the nickel content of the nickel layer is 2 to 35 on average.
  • It is a composite copper member, which is mg/dm2.
  • the amount of nickel may be a value measured by high frequency inductively coupled plasma emission spectrometry.
  • Another embodiment of the present invention is a composite copper member comprising a copper member and a nickel layer on at least a part of the surface of the copper member, wherein the surface on the side containing the nickel layer has protrusions, and in a cross-sectional image of the composite copper member taken with a scanning electron microscope, the number of protrusions having a length of 50 nm or more and 1500 nm or less when measured in a direction parallel to the surface on the side containing the nickel layer is 5 or more per 3.8 ⁇ m, and the nickel layer of the composite copper member is Copper is detected at a depth of 0 to 350 nm on the surface on the containing side, and
  • a composite copper member that satisfies any one of the group consisting of The detection of copper and the analysis of the mass of Cu, O and Ni may be performed by X-ray photoelectron spectroscopy.
  • any one of the above composite copper members may further have a silicon layer on the surface containing the nickel layer.
  • the amount of silicon in the silicon layer may be 35 ⁇ g/cm 2 or more.
  • a SixOy peak and an N compound peak may be detected from the surface of the silicon layer by TOF-SIMS surface analysis.
  • a further embodiment of the present invention is a power module including any one of the above composite copper members, and an insulating material adhered to the composite copper member on the surface including the nickel layer.
  • a filler filling amount of the insulating material may be 50 wt % or more.
  • the insulating material may be sheet resin or mold resin.
  • a further embodiment of the present invention is any one of the above methods for manufacturing a composite copper member, comprising the steps of: forming a copper oxide layer on the surface of the copper member by oxidizing the surface of the copper member; and forming a nickel layer on the surface of the copper member by plating the surface on which the copper oxide layer is formed with nickel.
  • a further embodiment of the present invention is any one of the above power module manufacturing methods, comprising the step of adhering one of the above composite copper members to the insulating material on the surface on the side containing the nickel layer.
  • FIG. 10 is a diagram showing representative analysis results of each composite copper member by time-of-flight secondary ion mass spectrometry (TOF-SIMS) in Example 14 of the present invention.
  • FIG. 10 is a diagram showing representative analysis results of each composite copper member by time-of-flight secondary ion mass spectrometry (TOF-SIMS) in Example 15 of the present invention.
  • the composite copper member disclosed in the present specification is a composite copper member comprising a copper member and a nickel layer on at least a part of the surface of the copper member, wherein the surface of the side containing the nickel layer has convex portions, and in a cross-sectional image of the composite copper member taken by a scanning electron microscope, the number of convex portions having a length of 50 nm or more and 1500 nm or less when measured in a direction parallel to the surface of the side containing the nickel layer is 5 or more per 3.8 ⁇ m, and the nickel layer has a predetermined amount or thickness of nickel and / /. Or have a nickel alloy.
  • This composite copper member can be suitably used for a copper substrate of a power module, and by having the structure described above, it can be firmly adhered to the insulating material of the power module. A specific example of the power module will be described later.
  • Copper member used in the composite copper member disclosed herein is a material containing Cu as a main component, and includes, but is not limited to, copper foils such as electrolytic copper foil, rolled copper foil, and copper foil with a carrier, copper wires, copper plates, copper lead frames, copper powder, copper heat sinks, copper pillars, and the like. A material that can be electrolytically plated is preferable.
  • the copper member is preferably a copper member made of pure copper with a Cu purity of 95% by mass or more, 99% by mass or more, or 99.9% by mass or more, more preferably made of tough pitch copper, deoxidized copper, or oxygen-free copper, and more preferably made of oxygen-free copper having an oxygen content of 0.001% to 0.0005% by mass.
  • the copper member is preferably a copper foil or a copper plate.
  • its thickness is 0.1 ⁇ m or more and 100 ⁇ m or less.
  • the thickness is preferably 0.5 ⁇ m or more and 50 ⁇ m or less.
  • a copper plate it refers to a plate-shaped plate having a thickness of more than 100 ⁇ m.
  • the thickness of the copper plate is not particularly limited, but is preferably 0.5 mm or more, 1 mm or more, 2 mm or more, or 10 mm or more, and preferably 10 cm or less, 5 cm or less, or 2.5 cm or less.
  • the copper member may have a layer containing copper oxide or a layer made of copper oxide (generally referred to herein as a copper oxide layer) on the outermost surface.
  • a copper oxide layer a layer made of copper oxide
  • the copper oxide layer suppresses the elution of copper ions compared to copper, making it difficult for migration to occur when a voltage is applied. Therefore, the dielectric breakdown time becomes longer.
  • the copper oxide includes copper oxide (CuO) and/or cuprous oxide (Cu 2 O) or consists of copper oxide (CuO) and/or cuprous oxide (Cu 2 O).
  • the copper oxide content in the copper oxide layer is preferably 90% by weight or more, 95% by weight or more, 98% by weight or more, 99% by weight or more, or 99.9% by weight or more.
  • a copper member containing copper oxide is also referred to as a "copper member”.
  • the copper oxide layer may contain metals other than copper.
  • the contained metal is not particularly limited, but may contain at least one metal selected from the group consisting of Sn, Ag, Zn, Al, Ti, Bi, Cr, Fe, Co, Ni, Pd, Au and Pt.
  • metals having higher acid resistance and heat resistance than copper such as Ni, Pd, Au and Pt.
  • the average thickness of the copper oxide layer is preferably 500 nm or less, more preferably 447 nm or less, and even more preferably 82 nm or less. Furthermore, the average thickness of the copper oxide layer is preferably 20 nm or more, more preferably 40 nm or more, and even more preferably 55 nm or more. Although the ratio of the region where the copper oxide layer has a thickness of 500 nm or less is not particularly limited, it is preferably 50% or more and 500 nm or less, 70% or more is more preferably 500 nm or less, 90% or more is more preferably 500 nm or less, 95% or more is more preferably 500 nm or less, and 99% or more is 500 nm or less.
  • the thickness of the copper oxide layer can be calculated by, for example, Sequential Electrochemical Reduction Analysis (SERA) at 10 measurement points in an area of 10 ⁇ 10 cm.
  • SERA Sequential Electrochemical Reduction Analysis
  • Nickel layer The composite copper member disclosed herein has a layer containing nickel or a layer made of nickel (generally referred to herein as a nickel layer) on at least a portion of the surface of the copper member. Nickel may be included as an alloy.
  • the arithmetic mean roughness (Ra) of the surface of the composite copper member including the nickel layer is not particularly limited, but is preferably 0.01 ⁇ m or more, more preferably 0.03 ⁇ m or more, and 5.00 ⁇ m or less, more preferably 3 ⁇ m or less, and further preferably 0.83 ⁇ m or less.
  • the maximum height roughness (Rz) of the surface including the nickel layer of the composite copper member is not particularly limited, but is preferably 0.1 ⁇ m or more, more preferably 0.32 ⁇ m or more, and preferably 20.00 ⁇ m or less, more preferably 10.00 ⁇ m or less, and even more preferably 1.82 ⁇ m or less.
  • Ra and Rz can be calculated by the method specified in JIS B 0601:2001 (in accordance with international standards ISO4287-1997).
  • the number of protrusions having a length of 50 nm or more and 1500 nm or less when measured in a direction parallel to the surface on the side containing the nickel layer is preferably 5 or more, more preferably 7 or more, per 3.8 ⁇ m.
  • the elution amount of Cu ions on the nickel layer-containing side of the composite copper member is preferably 10.0 ppm or less, more preferably 5.0 ppm or less, and even more preferably 2.5 ppm or less when measured by the elution test described below.
  • the elution amount of Ni ions on the side including the nickel layer of the composite copper member is not particularly limited, but when measured by the elution test described below, it is preferably 100.0 ppm or less, more preferably 50.0 ppm or less, and even more preferably 32.0 ppm or less.
  • the elution test is performed by measuring the mass of Ni and Cu ions in the eluate using an ICP emission spectrometer as the amount of Cu ions and Ni ions eluted. At that time, 10 composite copper parts cut to a size of 40 mm ⁇ 18 mm were used as test pieces, and only the side containing the nickel layer was brought into contact with 20 mL of pure water, and the eluate was obtained by processing under the conditions of 121 ° C., 85% humidity, 2 atmospheres, and 60 hours.
  • the total content of nickel and nickel alloy in the nickel layer is preferably 90% by weight or more, 95% by weight or more, 98% by weight or more, 99% by weight or more, or 99.9% by weight or more.
  • the average thickness of the nickel layer is preferably 20 nm or more, more preferably 30 nm or more, and preferably 360 nm or less, more preferably 351 nm or less.
  • the average nickel adhesion amount (mg/dm 2 ) is preferably 1.5 mg/dm 2 or more, more preferably 2.0 mg/dm 2 or more, still more preferably 2.7 mg/dm 2 or more, and preferably 35 mg/dm 2 or less, more preferably 32 mg/dm 2 or less.
  • the average thickness of the nickel layer is small and/or the average amount of nickel attached is small, the function as a copper protective layer becomes insufficient, and copper migration occurs due to copper elution or the like, shortening the dielectric breakdown time, or making the function as a heat-resistant or corrosion-resistant layer insufficient, and the oxidation and corrosion of copper deteriorates adhesion, solder heat resistance, and water resistance.
  • the thicker average thickness of the nickel layer and/or the larger average amount of nickel deposited reduces the number of protrusions and makes the surface flat, resulting in poor adhesion to the insulating material and poor solder heat resistance.
  • the average thickness and amount of adhesion of the nickel layer can be calculated by dissolving the nickel contained in the nickel layer in an acidic solution, measuring the mass of nickel by high-frequency inductively coupled plasma emission spectrometry (ICP analysis), calculating the volume from the density, dividing the obtained volume and mass by the area of the composite copper member where nickel is dissolved, and calculating the average thickness and the amount of adhesion per unit area.
  • ICP analysis high-frequency inductively coupled plasma emission spectrometry
  • the total mass of nickel may be measured by dissolving the copper foil itself having the nickel layer and detecting only the amount of nickel forming the nickel layer.
  • copper is preferably detected at a depth of 0 to 350 nm, more preferably at a depth of 0 to 343 nm, on the surface of the composite copper member including the nickel layer.
  • the nickel layer is too thick, resulting in a low number of protrusions and poor adhesion to the insulating material in power modules containing this composite copper component. If none of (A) to (C) are satisfied, either the nickel layer is not formed, or the nickel layer having an appropriate thickness for Cu is not formed. As a result, in a power module including this composite copper member, the function as a copper protective layer becomes insufficient, copper dissolves and migration occurs, the dielectric breakdown time is shortened, the heat resistance and corrosion resistance are deteriorated, and the adhesive strength is reduced.
  • the distance from the depth at which Cu begins to be detected to the depth at which the ratio of Cu is 50% when the total of the three components Cu, O, and Ni among the detected components is 100% is preferably 20 nm or more, more preferably 50 nm or more, further preferably 51 nm or more, preferably 530 nm or less, more preferably 528 nm or less, and even more preferably 500 nm or less. This value is considered to be correlated with the length of the convex portion.
  • the mass content of each element can be obtained by elementally analyzing the treated surface of the composite copper member by X-ray Photoelectron Spectroscopy (XPS).
  • the surface of the composite copper member disclosed herein on the side containing the nickel layer may further have a layer containing silicon or a layer made of silicon (herein generally referred to as a silicon layer).
  • the content of silicon in the silicon layer (herein referred to as silicon content) is not particularly limited, but is preferably 20.0 ⁇ g/cm 2 or more, more preferably 21.9 ⁇ g/cm 2 or more, or even more preferably 39.9 ⁇ g/cm 2 or more.
  • the amount of silicon can be calculated by dissolving silicon contained in the silicon layer with an acidic solution, measuring the mass of silicon by high frequency inductively coupled plasma emission spectroscopy (ICP analysis), and calculating the volume from the density.
  • ICP analysis inductively coupled plasma emission spectroscopy
  • the total mass of silicon may be measured by dissolving the copper foil itself having the silicon layer and detecting only the amount of silicon forming the silicon layer.
  • N compounds include coupling agents and silicone resins containing amino groups, mercapto groups, isocyanurate groups, ureido groups, isocyanate groups, and the like.
  • the arithmetic mean roughness (Ra) of the surface of the composite copper member containing the silicon layer is not particularly limited, but is preferably 0.01 ⁇ m or more, more preferably 0.03 ⁇ m or more, and preferably 5.00 ⁇ m or less, more preferably 3 ⁇ m or less, and further preferably 0.83 ⁇ m or less.
  • the maximum height roughness (Rz) of the surface containing the silicon layer of the composite copper member is not particularly limited, but is preferably 0.1 ⁇ m or more, more preferably 0.32 ⁇ m or more, and preferably 20.00 ⁇ m or less, more preferably 10.00 ⁇ m or less, and even more preferably 1.82 ⁇ m or less.
  • the number of protrusions having a length of 50 nm or more and 1500 nm or less when measured in a direction parallel to the surface on the side containing the silicon layer is preferably 5 or more per 3.8 ⁇ m, more preferably 7 or more.
  • the elution amount of Cu ions on the silicon layer-containing side of the composite copper member is preferably 10.0 ppm or less, more preferably 5.0 ppm or less, and even more preferably 2.5 ppm or less.
  • the amount of Ni ions eluted from the silicon layer-containing side of the composite copper member is not particularly limited, but is preferably 100.0 ppm or less, more preferably 50.0 ppm or less, and even more preferably 32.0 ppm or less.
  • This power module includes, in addition to the composite copper member, an insulating material adhered to the composite copper member on the surface of the composite copper member that includes the nickel layer.
  • FIG. 1 is a schematic diagram showing a cross section of a power module of the first embodiment as a basic structure.
  • This power module includes a base substrate 1 , an organic insulating layer 2 formed on the base substrate 1 , and a copper substrate 3 formed on the organic insulating layer 2 .
  • the composite copper component disclosed herein is formed from base substrate 1 and/or copper substrate 3 .
  • semiconductor elements 4 and external electrode terminals 8 are arranged on a copper substrate 3, and the semiconductor elements 4 are connected via metal wires 6.
  • This power module is housed in a case 9 except that the external connection portions of the external electrode terminals 8 and the external heat radiation portion of the base substrate 1 are exposed to the outside.
  • the semiconductor element 4 is arranged on the copper substrate 3 and the lead frame 5 is directly connected to the Cu substrate 3, and the case where it is connected to the semiconductor element 4 via the metal wire 6 is shown.
  • This power module is housed in a case 9 except that the external connection portion of the lead frame 5 and the external heat radiation portion of the base substrate 1 are exposed to the outside.
  • the copper substrate 3 is adhered to the organic insulating layer 2 and the molding resin 7 .
  • the organic insulating layer 2 and the mold resin 7 are made of an insulating material, they may be made of the same insulating material or different insulating materials.
  • the type of resin used for the insulating material is not particularly limited, and may be a thermoplastic resin or a thermosetting resin.
  • thermoplastic resins include fluorine resins, liquid crystal polymers, synthetic resins such as polyethylene and polypropylene, and thermoplastic polyimide resins.
  • a thermally conductive filler may be dispersed in the insulating material, but it is preferable to disperse it evenly.
  • Thermally conductive fillers include fused silica (SiO 2 ), crystalline silica (SiO 2 ), aluminum oxide (Al 2 O 3 ), boron nitride (BN), aluminum nitride (AlN), silicon carbide (SiC), and the like.
  • the content of the thermally conductive filler is preferably 50 wt % or more, more preferably 55 wt % or more, relative to the insulating material. In order to improve thermal conductivity, it is preferable that the content of the thermally conductive filler is large, but if the content of the thermally conductive filler is too large, it will lead to a decrease in adhesion to the composite copper member, so the content of the thermally conductive filler should be an appropriate amount for the insulating material.
  • the organic insulating layer 2 is not particularly limited, and a known organic insulating sheet can be used. Although the thickness of the organic insulating layer 2 is not particularly limited, it is preferably 1 ⁇ m or more and 1000 ⁇ m or less.
  • the method for manufacturing a power module of the present embodiment includes a copper member, a composite copper member including a nickel layer on at least a part of the surface of the copper member, and an insulating material adhered to the composite copper member on the surface including the nickel layer, the surface including the nickel layer having protrusions, and in a cross-sectional image of the composite copper member taken by a scanning electron microscope, the number of protrusions having a length of 50 nm or more and 1500 nm or less when measured in a direction parallel to the surface including the nickel layer is about 3.8 ⁇ m.
  • a method for manufacturing five or more power modules the method including a first step of forming a nickel layer on the surface of the copper member by plating the surface of the copper member.
  • a second step of forming a copper oxide layer on the surface of the copper member by oxidizing the surface of the copper member may be included. This oxidation treatment roughens the surface of the copper member.
  • a surface roughening treatment step such as soft etching or etching may be performed, but it is not necessary.
  • degreasing treatment acid cleaning for uniformizing the surface by removing a natural oxide film, or alkali treatment for preventing acid from being brought into the oxidation process after acid cleaning may be performed, but it is not necessary.
  • the alkali treatment method is not particularly limited, but preferably 0.1 to 10 g/L, more preferably 1 to 2 g/L alkaline aqueous solution, such as sodium hydroxide aqueous solution, at 30 to 50° C. for about 0.5 to 2 minutes.
  • the oxidation treatment method is not particularly limited, it may be formed using an oxidizing agent, or may be formed by heat treatment or anodization.
  • the oxidizing agent is not particularly limited, and for example, an aqueous solution of sodium chlorite, sodium hypochlorite, potassium chlorate, potassium perchlorate, etc. can be used.
  • Various additives eg, phosphates such as trisodium phosphate dodecahydrate
  • surface active molecules may be added to the oxidizing agent.
  • Surface active molecules include porphyrins, porphyrin macrocycles, extended porphyrins, ring contracted porphyrins, linear porphyrin polymers, porphyrin sandwich coordination complexes, porphyrin sequences, silanes, tetraorgano-silanes, aminoethyl-aminopropyltrimethoxysilane, (3-aminopropyl)trimethoxysilane, (1-[3-(trimethoxysilyl)propyl]urea) ((l-[3-(Trimethoxysilyl)propyl]u rea)), (3-aminopropyl)triethoxysilane, ((3-glycidyloxypropyl)trimethoxysilane), (3-chloropropyl)trimethoxysilane, (3-glycidyloxypropyl)trimethoxysilane, dimethyldichlorosilane, 3-(trimethoxysilyl)
  • phosphates such as trisodium phosphate dodecahydrate
  • surface active molecules include porphyrins, porphyrin macrocycles, extended porphyrins, ring-contracted porphyrins, linear porphyrin polymers, porphyrin sandwich coordination complexes, porphyrin sequences, silanes, tetraorgano-silanes, aminoethyl-aminopropyl-trimethoxysilane, 3-aminopropyl)trimethoxysilane, 1-[3-(trimethoxysilyl)propyl]urea, (3-aminopropyl)triethoxysilane, (3-glycidyloxypropyl)trimethoxysilane, (3-chlorochlorosilane).
  • Examples include propyl)trimethoxysilane, (3-glycidyloxypropyl)trimethoxysilane, dimethyldichlorosilane, 3-(trimethoxysilyl)propyl methacrylate, ethyltriacetoxysilane, triethoxy(isobutyl)silane, triethoxy(octyl)silane, tris(2-methoxyethoxy)(vinyl)silane, chlorotrimethylsilane, methyltrichlorosilane, silicon tetrachloride, tetraethoxysilane, phenyltrimethoxysilane, chlorotriethoxysilane, ethylene-trimethoxysilane, amines, sugars, and the like.
  • I can.
  • the liquid temperature of the oxidizing agent is preferably 40 to 95°C, more preferably 45 to 80°C.
  • the reaction time is preferably 0.5 to 30 minutes, more preferably 1 to 10 minutes.
  • a dissolving agent may be used to adjust the protrusions on the surface of the oxidized copper member, but it is not necessary.
  • the solubilizing agent used in this dissolving step is not particularly limited, but is preferably a chelating agent, particularly a biodegradable chelating agent, such as ethylenediaminetetraacetic acid, diethanolglycine, tetrasodium L-glutamate diacetate, ethylenediamine-N,N'-disuccinic acid, 3-hydroxy-2,2'-sodium iminodisuccinate, trisodium methylglycine diacetate, tetrasodium aspartate diacetate, disodium N-(2-hydroxyethyl)iminodiacetate, and sodium gluconate. etc. can be exemplified.
  • the pH of the dissolving agent solution is not particularly limited, it is preferably alkaline, more preferably pH 8 to 10.5, still more preferably pH 9.0 to 10.5,
  • the surface of this copper oxide layer may be reduced with a reducing agent, but it is not necessary.
  • cuprous oxide may be formed on the surface of the layer containing copper oxide.
  • the reducing agent used in this reduction step include dimethylamine borane (DMAB), diborane, sodium borohydride, hydrazine and the like.
  • the resistivity of pure copper is 1.7 ⁇ 10 ⁇ 8 ( ⁇ m), whereas that of copper oxide is 1 to 10 ( ⁇ m), and that of cuprous oxide is 1 ⁇ 10 6 to 1 ⁇ 10 7 ( ⁇ m). Therefore, the layer containing copper oxide has low conductivity, and even if the amount of the layer containing copper oxide transferred to the resin substrate is large, transmission loss due to the skin effect is unlikely to occur when forming a circuit of a printed wiring board or a semiconductor package substrate using the copper member according to the present invention. .
  • the plating method is not particularly limited, and plating can be performed by electrolytic plating, electroless plating, vacuum deposition, chemical conversion treatment, or the like, but electrolytic plating is preferred because it is preferable to form a uniform plating layer.
  • nickel plating including nickel alloy plating is preferable.
  • metals formed by nickel plating include pure nickel, Ni--Cu alloys, Ni--Cr alloys, Ni--Co alloys, Ni--Zn alloys, Ni--Mn alloys, Ni--Pb alloys, and Ni--P alloys.
  • metal salts used for nickel plating include nickel sulfate, nickel sulfamate, nickel chloride, nickel bromide, zinc oxide, zinc chloride, diamminedichloropalladium, iron sulfate, iron chloride, chromic anhydride, chromium chloride, sodium chromium sulfate, copper sulfate, copper pyrophosphate, cobalt sulfate, and manganese sulfate.
  • the bath composition preferably contains, for example, nickel sulfate (100 g/L or more and 350 g/L or less), nickel sulfamate (100 g/L or more and 600 g/L or less), nickel chloride (0 g/L or more and 300 g/L or less), and a mixture thereof. Good.
  • the copper oxide on the surface is first reduced, and an electric charge is used to become cuprous oxide or pure copper, so there is a time lag before plating, and then the metal that forms the metal layer begins to precipitate.
  • the amount of charge varies depending on the type of plating solution and the amount of copper oxide. For example, when Ni plating is applied to a copper member, it is preferable to apply a charge of 10 C to 90 C or less, more preferably 20 C to 65 C, per area dm 2 of the copper member to be electrolytically plated in order to keep the thickness within a preferable range.
  • the current density is not particularly limited, but is preferably 0.2 A/dm 2 to 10 A/dm 2 . Note that the current may be changed between the time until the oxide of the copper oxide layer is partially reduced and the time during which the plating is being applied.
  • the method for manufacturing a composite copper member may or may not include a third step of forming a silicon layer on the surface of the composite copper member after the first step.
  • the method of forming the silicon layer is not particularly limited, but water glass treatment is preferred when treating with a liquid.
  • Water glass is an aqueous solution of alkali metal silicate, which is represented by M 2 O.nSiO 2 . Any of Na, Li, and K may be sufficient as an alkali metal.
  • M 2 O and SiO 2 are mixed in various ratios in the water glass, and the water glass used in the third step is not particularly limited, but n is preferably 2-4.
  • the specific method of water glass treatment is not particularly limited, and water glass may be applied to the copper surface with a roller or bar coater, or may be sprayed, or the copper material may be immersed in water glass.
  • concentration of M 2 O.nSiO 2 is not particularly limited, but may be 0.1% to 20%, 0.5% to 10%, or 2% to 5%.
  • the reaction conditions are not particularly limited, the treatment temperature is preferably 10°C to 95°C, more preferably 20°C to 85°C.
  • the treatment time is preferably 1 second to 10 minutes.
  • the water glass treatment may be performed multiple times.
  • the copper material After the copper material has been treated with water glass, it is dried. Drying after the treatment may be carried out by blowing off moisture with air or by heating. When heating, the temperature is preferably 50° C. to 250° C., and the heating time is preferably 10 seconds to 60 minutes.
  • a coupling agent may be dissolved in the water glass for treating the copper material (this solution is hereinafter referred to as the mixed agent).
  • the concentration of the coupling agent is not particularly limited, it is preferably 0.5%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8% or 9% or more, and preferably 20%, 15% or 10% or less by weight.
  • the method for manufacturing a composite copper member may include a fourth step of performing coupling agent treatment after the first step, before, after, or before and after the third step, but it does not have to be included.
  • the coupling agent is not particularly limited, but in the case of a silane coupling agent, one having 2 or 3 hydrolyzable groups is preferable, and the hydrolyzable group is preferably a methoxy group or an ethoxy group.
  • 3-mercaptopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, vinyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-isocyanatopropyltriethoxysilane, 3-ureidopropyltrialkoxysilane, 3-acryloxypropyltrimethoxysilane, and the like can be used.
  • Coupling agent treatment can be carried out by applying or spraying a solution in which the coupling agent is dispersed in water or an organic solvent to adsorb it.
  • a solution in which a coupling agent is dispersed in water or an organic solvent is not particularly limited.
  • drying completes the coupling agent treatment.
  • the drying temperature and time are not particularly limited as long as the solvent water or organic solvent is completely evaporated, but it is preferable to dry at 70 degrees for 1 minute or more, more preferably at 100 degrees for 1 minute or more, and more preferably at 110 degrees for 1 minute or more.
  • This coupling treatment provides the composite copper member with the N compound detected by the TOF-SIMS surface analysis as described above.
  • the presence of both SixOy and the N compound on the surface of the silicon layer further improves the heat resistance of the power module including the composite copper member.
  • Power module manufacturing method A power module can be manufactured using the composite copper member manufactured in (1).
  • the manufacturing method is not particularly limited, and a well-known manufacturing method may be used.
  • Ni electrolytic plating solution nickel sulfate 240 g/L; boric acid 30 g/L was used to electroplate both surfaces of the copper foil and copper plate under the conditions shown in Table 1. After electroplating, the copper foil and copper plate were washed with water and dried.
  • Cu2O -0.55V to -0.30V
  • CuS -1.00V to -0.85V
  • a Quantera SXM (ULVAC-PHI) was used as a device, and the component in the depth direction was measured under the conditions described below.
  • X-ray source monochromatic Al K ⁇ (1486.6 eV)
  • Ar sputtering conditions Accelerating voltage: 1 kV
  • Irradiation area 3x3mm
  • Sputtering speed 2.03 nm/min (in terms of SiO2)
  • Time-of-flight secondary ion mass spectrometry (2-4) Time-of-flight secondary ion mass spectrometry (TOF-SIMS) A TRIFT V nano-TOF (manufactured by ULVAC-Phi, Inc.) was used as the device type for the metal member thus produced, and the measurement was performed under the conditions shown below. Among the results, representative results of Examples 14 and 15 are shown in FIG.
  • Adhesion to resin (peel strength to resin) A sheet-like resin A with a filler content of 92 wt % or a sheet-like resin B with a filler content of 55 wt % was laminated on the treated surface of the composite copper foil and thermocompression bonded using a vacuum high pressure press. Peel strength (kgf/cm) was measured by a 90° peel test (Japanese Industrial Standards (JIS) C5016) on the test piece immediately after thermocompression bonding.
  • JIS Japanese Industrial Standards
  • Dielectric breakdown time A copper plate (thickness 0.5 mm) treated under the conditions shown in Table 1 is used as the base copper, and on the treated surface of the base copper, a sheet-like resin A with a filler content of 92 wt% or a sheet-like resin B with a filler content of 55 wt% is laminated (thickness 0.1 mm). It was etched to become a pattern of With the circuit copper side as the positive pole and the base copper side as the negative pole, 1 kV was applied under constant temperature and humidity of 85° C. and 85% humidity, and the time until dielectric breakdown occurred was measured. In this test, the dielectric breakdown time was defined as the time when a current of 1 mA or more flowed. In addition, the average value of four points was used for the dielectric breakdown time.
  • Adhesion with resin Die shear strength
  • a polyimide tape having a thickness of 0.05 mm was attached to the copper plate treated under the conditions shown in Table 1 to form a gap of 0.05 mm, and a molding resin having a filler content of 65 wt % was applied by dispensing.
  • a 5 mm square silicon chip with a polyimide passivation film and a plasma treatment was placed on a mold resin with a filler content of 65 wt % and cured in an oven.
  • the die shear strength was measured with a universal bond tester (manufactured by Nordson Advanced Technologies). The area of the resin-adhered portion was measured, and the adhesive strength was calculated from the shear strength/resin area. Measurements were taken at 10 different points, and the average value was used.
  • the number of protrusions having a length of 50 nm or more and 1500 nm or less when measured in a direction parallel to the surface of the side containing the nickel layer was 5 or more per 3.8 ⁇ m, and the average amount of nickel in the nickel layer was 2 to 35 mg / dm 2 .
  • Comparative Examples 1, 2, 5, and 7 were not plated, and the Ni adhesion amount was zero. Comparative Examples 3 and 6 also had a short plating time and a very small amount of Ni adhesion (average 1.3 mg/dm 2 or less, which is less than half the minimum value of the examples). In addition, in these comparative examples, the Ni ratio at a depth of 10 nm from the surface was 35% or less and the Cu ratio was 50% or more, the Ni mass content was larger than the Cu mass content, and the amount of eluted Cu ions was significantly greater than in the examples. Therefore, the dielectric breakdown time is very short.
  • Comparative Example 8 like Examples 6 and 17, the plating treatment time was long, and the Ni adhesion amount was 30 mg/dm 2 or more, which is larger than the other examples. However, unlike Examples 6 and 17, the number of protrusions per 3.8 ⁇ m is very small (three) because no oxidation treatment is performed. Also, since the Ni is too thick, copper is not detected at a depth of 0 to 350 nm from the surface. Therefore, the adhesiveness, heat resistance, and adhesiveness after PCT are considerably inferior to those of the examples.
  • Comparative Example 9 Although the amount of Ni is within an appropriate range, the number of protrusions is very small (four) because oxidation treatment is not performed. Therefore, the adhesiveness, solder heat resistance, and adhesiveness after PCT are considerably inferior to those of the examples.
  • the adhesiveness and solder heat resistance were good even at a high temperature of 300°C, the amount of Cu ion elution was small, and the dielectric breakdown time was long.
  • a novel composite copper member and a power module including the composite copper member can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Laminated Bodies (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

The purpose of the present invention is to provide a novel composite copper member and a power module which includes the composite copper member. The composite copper member includes a copper member and a nickel layer which is formed on at least a partial surface of the copper member. The surface including the nickel layer has convex parts, wherein in a cross-sectional image of the composite copper member photographed using a scanning electron microscope, convex parts having a length of 50 nm to 1500 nm as measured in a direction parallel to the surface including the nickel layer are present in the quantity of 5 or more per 3.8 µm, and the nickel layer has a predetermined amount or a predetermined thickness of nickel. The power module includes the composite copper member and an insulating material which is bonded to the composite copper member at the surface including the nickel layer.

Description

複合銅部材、およびその複合銅部材を含むパワーモジュールComposite copper member and power module including the composite copper member
 本発明は複合銅部材、およびその複合銅部材を含むパワーモジュールに関する。 The present invention relates to a composite copper member and a power module including the composite copper member.
 動作時に多量の発熱を伴う、IGBT(絶縁ゲート型バイポーラトランジスタ)やSIT(静電誘導トランジスタ)のような電力用半導体素子を実装する基板として、絶縁性基板と放熱板とを備えた放熱特性に優れるモジュール用基板が用いられ、パワーモジュールと呼ばれている。パワーモジュールは、高温吸湿環境下において数百~数千Vの高電圧が印加される状況で使用される場合、リークやショートという劣化現象が生じて故障することがある。この劣化現象は、放熱板を構成する銅がイオン化して溶出し、移動した場所で銅化合物として析出するマイグレーションによって生じる。こうした劣化現象を防止するため、マイグレーション防止層を設けること(特開2010-287844号公報)などが開示されている。 As a substrate for mounting power semiconductor elements such as IGBTs (insulated gate bipolar transistors) and SITs (static induction transistors) that generate a large amount of heat during operation, a module substrate with excellent heat dissipation characteristics, which is equipped with an insulating substrate and a heat sink, is used, and is called a power module. When a power module is used in a high-temperature, moisture-absorbing environment where a high voltage of several hundred to several thousand volts is applied, deterioration phenomena such as leaks and short circuits may occur and break down. This deterioration phenomenon is caused by migration in which the copper forming the heat sink is ionized, eluted, and precipitated as a copper compound at the place where it moves. In order to prevent such a deterioration phenomenon, provision of a migration prevention layer (Japanese Patent Application Laid-Open No. 2010-287844) is disclosed.
 本発明は、新規な複合銅部材、およびその複合銅部材を含むパワーモジュールを提供する。 The present invention provides a novel composite copper member and a power module including the composite copper member.
 本発明の一実施態様は、銅部材と、前記銅部材の少なくとも一部の表面にニッケル層とを含む複合銅部材であって、前記ニッケル層を含む側の前記表面が凸部を有し、走査電子顕微鏡による前記複合銅部材の断面の撮影像において、前記ニッケル層を含む側の前記表面に平行な方向で測ったときの長さ50nm以上1500nm以下の前記凸部の数が、3.8μmあたり5個以上であって、前記ニッケル層のニッケル量が平均2~35mg/dmである、複合銅部材である。前記ニッケル量が、高周波誘導結合プラズマ発光分光分析で測定された値であってもよい。 One embodiment of the present invention is a composite copper member comprising a copper member and a nickel layer on at least a part of the surface of the copper member, wherein the surface on the side containing the nickel layer has protrusions, and in a cross-sectional image of the composite copper member taken by a scanning electron microscope, the number of protrusions having a length of 50 nm or more and 1500 nm or less when measured in a direction parallel to the surface on the side containing the nickel layer is 5 or more per 3.8 μm, and the nickel content of the nickel layer is 2 to 35 on average. It is a composite copper member, which is mg/dm2. The amount of nickel may be a value measured by high frequency inductively coupled plasma emission spectrometry.
 本発明の他の実施態様は、銅部材と、前記銅部材の少なくとも一部の表面にニッケル層とを含む複合銅部材であって、前記ニッケル層を含む側の前記表面が凸部を有し、走査電子顕微鏡による前記複合銅部材の断面の撮影像において、前記ニッケル層を含む側の前記表面に平行な方向で測ったときの長さ50nm以上1500nm以下の前記凸部の数が、3.8μmあたり5個以上であって、前記複合銅部材の前記ニッケル層を含む側の前記表面において、0~350nmの深さで銅が検出され、かつ、 Another embodiment of the present invention is a composite copper member comprising a copper member and a nickel layer on at least a part of the surface of the copper member, wherein the surface on the side containing the nickel layer has protrusions, and in a cross-sectional image of the composite copper member taken with a scanning electron microscope, the number of protrusions having a length of 50 nm or more and 1500 nm or less when measured in a direction parallel to the surface on the side containing the nickel layer is 5 or more per 3.8 μm, and the nickel layer of the composite copper member is Copper is detected at a depth of 0 to 350 nm on the surface on the containing side, and
(A)前記ニッケル層を含む側の前記表面からの深さ10nmにおいて、Cuの質量含有率よりもNiの質量含有率が大きい; (A) at a depth of 10 nm from the surface on the side containing the nickel layer, the mass content of Ni is greater than the mass content of Cu;
(B)前記表面からの深さ10nmにおいて、Cu、O、Niの3成分の総質量に対する、Niの質量の割合が40~100%である;および (B) at a depth of 10 nm from the surface, the mass ratio of Ni to the total mass of the three components Cu, O, and Ni is 40 to 100%; and
(C)前記表面からの深さ10nmにおいてCu、O、Niの3成分の総質量に対する、Cuの質量の割合が0~50%である; (C) the ratio of the mass of Cu to the total mass of the three components of Cu, O, and Ni at a depth of 10 nm from the surface is 0 to 50%;
からなる群のうちのいずれか一つを満たす、複合銅部材である。前記銅の検出と、前記Cu、O、Niの質量の分析とが、X線光電子分光法によっておこなわれてもよい。 A composite copper member that satisfies any one of the group consisting of The detection of copper and the analysis of the mass of Cu, O and Ni may be performed by X-ray photoelectron spectroscopy.
 前記いずれかの複合銅部材において、前記ニッケル層を含む側の表面に、さらにケイ素層を有してもよい。前記ケイ素層におけるケイ素量が35μg/cm以上であってもよい。TOF-SIMSの表面分析により、前記ケイ素層の表面からSixOyのピークとN化合物のピークとが検出されてもよい。 Any one of the above composite copper members may further have a silicon layer on the surface containing the nickel layer. The amount of silicon in the silicon layer may be 35 μg/cm 2 or more. A SixOy peak and an N compound peak may be detected from the surface of the silicon layer by TOF-SIMS surface analysis.
 本発明のさらなる実施態様は、前記いずれかの複合銅部材と、前記ニッケル層を含む側の表面で前記複合銅部材に接着している絶縁材と、を含むパワーモジュールである。前記絶縁材のフィラー充填量が50wt%以上であってもよい。前記絶縁材がシート樹脂またはモールド樹脂であってもよい。 A further embodiment of the present invention is a power module including any one of the above composite copper members, and an insulating material adhered to the composite copper member on the surface including the nickel layer. A filler filling amount of the insulating material may be 50 wt % or more. The insulating material may be sheet resin or mold resin.
 本発明のさらなる実施態様は、前記いずれかの複合銅部材の製造方法であって、前記銅部材の表面を酸化処理することにより、前記表面に銅酸化物層を形成する工程と、前記銅酸化物層が形成された前記表面をニッケルでめっき処理することにより、銅部材表面にニッケル層を形成する工程と、を含む、製造方法である。 A further embodiment of the present invention is any one of the above methods for manufacturing a composite copper member, comprising the steps of: forming a copper oxide layer on the surface of the copper member by oxidizing the surface of the copper member; and forming a nickel layer on the surface of the copper member by plating the surface on which the copper oxide layer is formed with nickel.
 本発明のさらなる実施態様は、前記いずれかのパワーモジュールの製造方法であって、前記いずれかの複合銅部材を、前記ニッケル層を含む側の表面で前記絶縁材に接着させる工程を含む、製造方法である。 A further embodiment of the present invention is any one of the above power module manufacturing methods, comprising the step of adhering one of the above composite copper members to the insulating material on the surface on the side containing the nickel layer.
==関連文献とのクロスリファレンス==
 本出願は、2022年1月21日付で出願した日本国特願2022-008217に基づく優先権を主張するものであり、当該基礎出願を引用することにより、本明細書に含めるものとする。
== Cross-reference with related literature ==
This application claims priority based on Japanese Patent Application No. 2022-008217 filed on January 21, 2022, and the basic application is incorporated herein by reference.
本発明の第1の実施形態であるパワーモジュールの断面を示す模式図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram which shows the cross section of the power module which is the 1st Embodiment of this invention. 本発明の第2の実施形態であるパワーモジュールの断面を示す模式図である。It is a schematic diagram which shows the cross section of the power module which is the 2nd Embodiment of this invention. 本発明の第3の実施形態であるパワーモジュールの断面を示す模式図である。It is a schematic diagram which shows the cross section of the power module which is the 3rd Embodiment of this invention. 本発明の実施例において、X線光電分光法(XPS:X-ray Photoelectron Spectroscopy)によって、複合銅部材の処理面から深さ方向に元素分析を行った代表的な結果(実施例1、2、4、比較例1~4、8)を示す図である。In the examples of the present invention, by X-ray photoelectron spectroscopy (XPS), representative results of elemental analysis in the depth direction from the treated surface of the composite copper member (Examples 1, 2, 4, Comparative Examples 1 to 4, 8) are shown. 本発明の実施例14における、飛行時間型二次イオン質量分析(TOF-SIMS)による各複合銅部材の代表的な分析結果を示す図である。FIG. 10 is a diagram showing representative analysis results of each composite copper member by time-of-flight secondary ion mass spectrometry (TOF-SIMS) in Example 14 of the present invention. 本発明の実施例15における、飛行時間型二次イオン質量分析(TOF-SIMS)による各複合銅部材の代表的な分析結果を示す図である。FIG. 10 is a diagram showing representative analysis results of each composite copper member by time-of-flight secondary ion mass spectrometry (TOF-SIMS) in Example 15 of the present invention.
 以下、本発明の好ましい実施の形態につき、添付図面を用いて詳細に説明するが、必ずしもこれに限定するわけではない。なお、本発明の目的、特徴、利点、及びそのアイデアは、本明細書の記載により、当業者には明らかであり、本明細書の記載から、当業者であれば、容易に本発明を再現できる。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings, but the present invention is not necessarily limited to these. The objects, features, advantages, and ideas of the present invention are clear to those skilled in the art from the description of the present specification, and those skilled in the art can easily reproduce the present invention from the description of the present specification.
 以下に記載された発明の実施の形態及び具体的な実施例などは、本発明の好ましい実施態様を示すものであり、例示又は説明のために示されているのであって、本発明をそれらに限定するものではない。本明細書で開示されている本発明の意図並びに範囲内で、本明細書の記載に基づき、様々な改変並びに修飾ができることは、当業者にとって明らかである。 The embodiments and specific examples of the invention described below show preferred embodiments of the invention, are shown for illustration or explanation, and are not intended to limit the invention to them. Based on the description herein, it will be apparent to those skilled in the art that various alterations and modifications can be made within the spirit and scope of the invention disclosed herein.
==複合銅部材==
 本明細書に開示される複合銅部材は、銅部材と、その銅部材の少なくとも一部の表面にニッケル層とを含む複合銅部材であって、ニッケル層を含む側の表面が凸部を有し、走査電子顕微鏡による複合銅部材の断面の撮影像において、ニッケル層を含む側の表面に平行な方向で測ったときの長さ50nm以上1500nm以下の凸部の数が、3.8μmあたり5個以上であって、ニッケル層が所定量または所定の厚さのニッケルおよび/またはニッケル合金を有する。この複合銅部材は、パワーモジュールの銅基板に好適に用いることができ、上述の構造を有することにより、パワーモジュールの絶縁材と強固に接着することができる。パワーモジュールの具体例については後述する。
== Composite copper material ==
The composite copper member disclosed in the present specification is a composite copper member comprising a copper member and a nickel layer on at least a part of the surface of the copper member, wherein the surface of the side containing the nickel layer has convex portions, and in a cross-sectional image of the composite copper member taken by a scanning electron microscope, the number of convex portions having a length of 50 nm or more and 1500 nm or less when measured in a direction parallel to the surface of the side containing the nickel layer is 5 or more per 3.8 μm, and the nickel layer has a predetermined amount or thickness of nickel and / /. Or have a nickel alloy. This composite copper member can be suitably used for a copper substrate of a power module, and by having the structure described above, it can be firmly adhered to the insulating material of the power module. A specific example of the power module will be described later.
(1)銅部材
 本明細書に開示される複合銅部材で用いられる銅部材とは、Cuを主成分として含む材料のことであり、電解銅箔や圧延銅箔およびキャリア付き銅箔等の銅箔、銅線、銅板、銅製リードフレーム、銅粉、銅製ヒートシンク、銅ピラーなどが含まれるがこれらに限定されない。電解めっきできるものが好ましい。
(1) Copper member The copper member used in the composite copper member disclosed herein is a material containing Cu as a main component, and includes, but is not limited to, copper foils such as electrolytic copper foil, rolled copper foil, and copper foil with a carrier, copper wires, copper plates, copper lead frames, copper powder, copper heat sinks, copper pillars, and the like. A material that can be electrolytically plated is preferable.
 銅部材は、Cu純度が、95質量%以上、99質量%以上、又は99.9質量%以上の純銅からなる銅部材が好ましく、タフピッチ銅、脱酸銅、無酸素銅で形成されていることがより好ましく、含有酸素量が0.001質量%~0.0005質量%の無酸素銅で形成されていることがさらに好ましい。 The copper member is preferably a copper member made of pure copper with a Cu purity of 95% by mass or more, 99% by mass or more, or 99.9% by mass or more, more preferably made of tough pitch copper, deoxidized copper, or oxygen-free copper, and more preferably made of oxygen-free copper having an oxygen content of 0.001% to 0.0005% by mass.
 銅部材は、銅箔または銅板であることが好ましい。銅箔の場合、その厚さは0.1μm以上100μm以下である。特に、0.5μm以上50μm以下が好ましい。銅板の場合、その厚さが100μm超で板状のものを指す。銅板の厚さは、特に限定しないが、0.5mm以上、1mm以上、2mm以上又は10mm以上が好ましく、10cm以下、5cm以下又は2.5cm以下が好ましい。  The copper member is preferably a copper foil or a copper plate. In the case of copper foil, its thickness is 0.1 μm or more and 100 μm or less. In particular, the thickness is preferably 0.5 μm or more and 50 μm or less. In the case of a copper plate, it refers to a plate-shaped plate having a thickness of more than 100 μm. The thickness of the copper plate is not particularly limited, but is preferably 0.5 mm or more, 1 mm or more, 2 mm or more, or 10 mm or more, and preferably 10 cm or less, 5 cm or less, or 2.5 cm or less.
(2)銅酸化物層
 銅部材は、最表面に銅酸化物を含む層または銅酸化物からなる層(本明細書では、総じて銅酸化物層と称する)を有してもよい。それによって、さらに強固にパワーモジュールの絶縁材と接着することができるようになる。また、銅酸化物層が存在することで、銅と比較して銅イオンの溶出が抑えられ、電圧を負荷したときにマイグレーションが生じにくくなる。そのため、絶縁破壊時間が長くなる。ここで、銅酸化物は、酸化銅(CuO)及び/又は亜酸化銅(CuO)を含むか、酸化銅(CuO)及び/又は亜酸化銅(CuO)からなる。銅酸化物層における銅酸化物の含有率は、90重量%以上、95重量%以上、98重量%以上、99重量%以上、又は99.9重量%以上が好ましい。なお、本明細書では、銅酸化物を含む銅部材も「銅部材」と称する。
(2) Copper Oxide Layer The copper member may have a layer containing copper oxide or a layer made of copper oxide (generally referred to herein as a copper oxide layer) on the outermost surface. As a result, it becomes possible to more firmly adhere to the insulating material of the power module. In addition, the presence of the copper oxide layer suppresses the elution of copper ions compared to copper, making it difficult for migration to occur when a voltage is applied. Therefore, the dielectric breakdown time becomes longer. Here, the copper oxide includes copper oxide (CuO) and/or cuprous oxide (Cu 2 O) or consists of copper oxide (CuO) and/or cuprous oxide (Cu 2 O). The copper oxide content in the copper oxide layer is preferably 90% by weight or more, 95% by weight or more, 98% by weight or more, 99% by weight or more, or 99.9% by weight or more. In this specification, a copper member containing copper oxide is also referred to as a "copper member".
 銅酸化物層は銅以外の金属を含んでいてもよい。含まれる金属は特に限定されないが、Sn、Ag、Zn、Al、Ti、Bi、Cr、Fe、Co、Ni、Pd、AuおよびPtからなる群から選ばれた少なくとも一種の金属が含まれていてもよい。特に耐酸性及び耐熱性を有するためには、銅よりも耐酸性及び耐熱性の高い金属、例えばNi、Pd、AuおよびPtが含まれることが好ましい。 The copper oxide layer may contain metals other than copper. The contained metal is not particularly limited, but may contain at least one metal selected from the group consisting of Sn, Ag, Zn, Al, Ti, Bi, Cr, Fe, Co, Ni, Pd, Au and Pt. In particular, in order to have acid resistance and heat resistance, it is preferable to contain metals having higher acid resistance and heat resistance than copper, such as Ni, Pd, Au and Pt.
 銅酸化物層の厚さは平均500nm以下であることが好ましく、平均447nm以下であることがより好ましく、平均82nm以下であることがさらに好ましい。さらに銅酸化物層の厚さは平均20nm以上であることが好ましく、平均40nm以上であることがより好ましく、平均55nm以上であることがさらに好ましい。なお、銅酸化物層の厚さが500nm以下である領域の割合は特に限定されないが、50%以上が500nm以下であることが好ましく、70%以上が500nm以下であることがより好ましく、90%以上が500nm以下であることがさらに好ましく、95%以上が500nm以下であることがさらに好ましく、99%以上が500nm以下であることがさらに好ましい。なお、銅酸化物層の厚さは、例えば、10×10cmの面積中の10測定点における連続電気化学還元法(SERA: Sequential Electrochemical Reduction Analysis)により算出することができる。 The average thickness of the copper oxide layer is preferably 500 nm or less, more preferably 447 nm or less, and even more preferably 82 nm or less. Furthermore, the average thickness of the copper oxide layer is preferably 20 nm or more, more preferably 40 nm or more, and even more preferably 55 nm or more. Although the ratio of the region where the copper oxide layer has a thickness of 500 nm or less is not particularly limited, it is preferably 50% or more and 500 nm or less, 70% or more is more preferably 500 nm or less, 90% or more is more preferably 500 nm or less, 95% or more is more preferably 500 nm or less, and 99% or more is 500 nm or less. The thickness of the copper oxide layer can be calculated by, for example, Sequential Electrochemical Reduction Analysis (SERA) at 10 measurement points in an area of 10×10 cm.
(3)ニッケル層
 本明細書に開示される複合銅部材は、銅部材の少なくとも一部の表面にニッケルを含む層またはニッケルからなる層(本明細書では、総じてニッケル層と称する)を有する。ニッケルは合金として含まれていてもよい。
(3) Nickel layer The composite copper member disclosed herein has a layer containing nickel or a layer made of nickel (generally referred to herein as a nickel layer) on at least a portion of the surface of the copper member. Nickel may be included as an alloy.
 複合銅部材のニッケル層を含む側の表面の算術平均粗さ(Ra)は特に限定されないが、0.01μm以上が好ましく、0.03μm以上がより好ましく、また、5.00μm以下であることが好ましく、3μm以下であることがさらに好ましく、0.83μm以下であることがさらに好ましい。なお、算術平均粗さ(Ra)とは基準長さlにおいて、以下の式で表される輪郭曲線(y=Z(x))におけるZ(x)(すなわち山の高さと谷の深さ)の絶対値の平均を表す。
The arithmetic mean roughness (Ra) of the surface of the composite copper member including the nickel layer is not particularly limited, but is preferably 0.01 μm or more, more preferably 0.03 μm or more, and 5.00 μm or less, more preferably 3 μm or less, and further preferably 0.83 μm or less. The arithmetic average roughness (Ra) is the average of the absolute values of Z (x) (that is, the height of the peak and the depth of the valley) in the contour curve (y = Z (x)) represented by the following formula at the reference length l.
 複合銅部材のニッケル層を含む側の表面の最大高さ粗さ(Rz)は特に限定されないが、0.1μm以上が好ましく、0.32μm以上がより好ましく、また、20.00μm以下であることが好ましく、10.00μm以下であることがより好ましく、1.82μm以下であることがさらに好ましい。なお、最大高さ粗さ(Rz)とは基準長さlにおいて、輪郭曲線(y=Z(x))の山高さZpの最大値と谷深さZvの最大値の和を表す。 The maximum height roughness (Rz) of the surface including the nickel layer of the composite copper member is not particularly limited, but is preferably 0.1 μm or more, more preferably 0.32 μm or more, and preferably 20.00 μm or less, more preferably 10.00 μm or less, and even more preferably 1.82 μm or less. The maximum height roughness (Rz) represents the sum of the maximum value of the peak height Zp and the maximum value of the valley depth Zv of the contour curve (y=Z(x)) at the reference length l.
 RaおよびRzは、JIS B 0601:2001(国際基準ISO4287-1997準拠)に定められた方法により算出できる。 Ra and Rz can be calculated by the method specified in JIS B 0601:2001 (in accordance with international standards ISO4287-1997).
 また、走査電子顕微鏡による複合銅部材の断面の撮影像において、ニッケル層を含む側の表面に平行な方向で測ったときの長さ50nm以上1500nm以下の凸部の数は、3.8μmあたり5個以上であることが好ましく、7個以上であることがより好ましい。 In addition, in a cross-sectional image of the composite copper member taken by a scanning electron microscope, the number of protrusions having a length of 50 nm or more and 1500 nm or less when measured in a direction parallel to the surface on the side containing the nickel layer is preferably 5 or more, more preferably 7 or more, per 3.8 μm.
 複合銅部材のニッケル層を含む側のCuイオンの溶出量は、以下に記載の溶出試験で計測した場合、10.0ppm以下が好ましく、5.0ppm以下がより好ましく、2.5ppm以下がさらに好ましい。Cuイオンの溶出量が少ないほど、Cuのマイグレーションによる絶縁破壊時間が長くなる。 The elution amount of Cu ions on the nickel layer-containing side of the composite copper member is preferably 10.0 ppm or less, more preferably 5.0 ppm or less, and even more preferably 2.5 ppm or less when measured by the elution test described below. The smaller the amount of eluted Cu ions, the longer the dielectric breakdown time due to Cu migration.
 複合銅部材のニッケル層を含む側のNiイオンの溶出量は特に限定されないが、以下に記載の溶出試験で計測した場合、100.0ppm以下が好ましく、50.0ppm以下がより好ましく、32.0ppm以下がさらに好ましい。 The elution amount of Ni ions on the side including the nickel layer of the composite copper member is not particularly limited, but when measured by the elution test described below, it is preferably 100.0 ppm or less, more preferably 50.0 ppm or less, and even more preferably 32.0 ppm or less.
 溶出試験は、CuイオンとNiイオンの溶出量として、ICP発光分析装置を用いて、溶出液中のNiおよびCuイオンの質量を測定することで行う。その際、40mm×18mmの大きさに切断した複合銅部10枚を試験片とし、ニッケル層を含む側のみを純水20mLに接するようにし、121℃、湿度85%、2気圧、60時間の条件で処理することで溶出液を得る。 The elution test is performed by measuring the mass of Ni and Cu ions in the eluate using an ICP emission spectrometer as the amount of Cu ions and Ni ions eluted. At that time, 10 composite copper parts cut to a size of 40 mm × 18 mm were used as test pieces, and only the side containing the nickel layer was brought into contact with 20 mL of pure water, and the eluate was obtained by processing under the conditions of 121 ° C., 85% humidity, 2 atmospheres, and 60 hours.
 ニッケル層におけるニッケルの含有率およびニッケル合金の含有率の合計は、90重量%以上、95重量%以上、98重量%以上、99重量%以上、又は99.9重量%以上が好ましい。 The total content of nickel and nickel alloy in the nickel layer is preferably 90% by weight or more, 95% by weight or more, 98% by weight or more, 99% by weight or more, or 99.9% by weight or more.
 ニッケル層の平均の厚さは、20nm以上が好ましく、30nm以上であることがより好ましく、また360nm以下であることが好ましく、351nm以下であることがより好ましい。ニッケルの平均の付着量(mg/dm)は、1.5mg/dm以上であることが好ましく、2.0mg/dm以上であることがより好ましく、2.7mg/dm以上であることがさらに好ましく、また、35mg/dm以下であることが好ましく、32mg/dm以下であることがより好ましい。以下の原理に拘泥するわけではないが、ニッケル層の平均の厚さが薄いこと及び/又はニッケルの平均の付着量が少ないことによって、銅の保護層としての機能が不十分になり、銅の溶出などによって銅のマイグレーションが生じて絶縁破壊時間が短くなったり、耐熱や耐食層としての機能が不十分になり、銅の酸化や腐食によって接着性が悪くなったり、はんだ耐熱性や耐水性が悪化したりすると考えられる。また、ニッケル層の平均の厚さが厚いこと及び/又はニッケルの平均の付着量が多いことによって、凸部の数が少なくなり平坦になるため、絶縁材との接着性が悪くなり、はんだ耐熱性も悪化すると考えられる。 The average thickness of the nickel layer is preferably 20 nm or more, more preferably 30 nm or more, and preferably 360 nm or less, more preferably 351 nm or less. The average nickel adhesion amount (mg/dm 2 ) is preferably 1.5 mg/dm 2 or more, more preferably 2.0 mg/dm 2 or more, still more preferably 2.7 mg/dm 2 or more, and preferably 35 mg/dm 2 or less, more preferably 32 mg/dm 2 or less. Although it is not limited to the following principle, it is thought that when the average thickness of the nickel layer is small and/or the average amount of nickel attached is small, the function as a copper protective layer becomes insufficient, and copper migration occurs due to copper elution or the like, shortening the dielectric breakdown time, or making the function as a heat-resistant or corrosion-resistant layer insufficient, and the oxidation and corrosion of copper deteriorates adhesion, solder heat resistance, and water resistance. In addition, it is believed that the thicker average thickness of the nickel layer and/or the larger average amount of nickel deposited reduces the number of protrusions and makes the surface flat, resulting in poor adhesion to the insulating material and poor solder heat resistance.
 ニッケル層の平均の厚さおよび付着量は、ニッケル層に含まれるニッケルを、酸性溶液で溶解し、高周波誘導結合プラズマ発光分光分析(ICP分析)によってニッケルの質量を測定し、密度から体積を算出し、得られた体積と質量を、ニッケルを溶解した部分の複合銅部材の面積で除して、平均の厚さおよび単位面積当たりの付着量を算出できる。ニッケルの総質量は、銅箔の場合、ニッケル層を有する銅箔そのものを溶解し、ニッケル層を形成するニッケルの量のみを検出して質量を測定してもよい。 The average thickness and amount of adhesion of the nickel layer can be calculated by dissolving the nickel contained in the nickel layer in an acidic solution, measuring the mass of nickel by high-frequency inductively coupled plasma emission spectrometry (ICP analysis), calculating the volume from the density, dividing the obtained volume and mass by the area of the composite copper member where nickel is dissolved, and calculating the average thickness and the amount of adhesion per unit area. In the case of a copper foil, the total mass of nickel may be measured by dissolving the copper foil itself having the nickel layer and detecting only the amount of nickel forming the nickel layer.
 また、複合銅部材のニッケル層を含む側の表面において、0~350nmの深さで銅が検出されることが好ましく、0~343nmの深さで銅が検出されることがより好ましい。なおかつ(A)~(C)からなる群から選択される要件のうちのいずれか一つを満たすことが好ましい:(A)ニッケル層を含む側の表面からの深さ10nmにおいて、Cuの質量含有率よりもNiの質量含有率が大きい;(B)表面からの深さ10nmにおいて、Cu、O、Niの3成分の総質量に対する、Niの質量の割合が40~100%(より好ましくは50~100%、さらに好ましくは53~99%)である;および(C)表面からの深さ10nmにおいてCu、O、Niの3成分の総質量に対する、Cuの質量の割合が0~50%(より好ましくは0~40%、さらに好ましくは0~33%)である。0~350nmの深さで銅が検出されなければ、ニッケル層が厚すぎて、その結果凸部の数が少なくなり、この複合銅部材を含むパワーモジュールにおいて、絶縁材との接着性が悪くなる。そして、(A)~(C)のいずれも満たさなければ、ニッケル層が形成されていないか、またはCuに対して適切な厚さのニッケル層が形成されていない。その結果、この複合銅部材を含むパワーモジュールにおいて銅の保護層としての機能が不十分になり、銅が溶解してマイグレーションが生じ、絶縁破壊時間が早くなったり、耐熱性や耐食性が悪くなり接着力が低下する。また、Cuが検出され始めた深さから、検出された成分のうちCu、O、Niの3成分の合計を100%としたときにCuの割合が50%となる深さまでの距離は、20nm以上であることが好ましく、50nm以上であることがより好ましく、51nm以上であることがさらに好ましく、530nm以下であることが好ましく、528nm以下であることがより好ましく、500nm以下であることがさらに好ましい。この値は、凸部の長さと相関していると考えられる。なお、各元素の質量含有率は、複合銅部材の処理面に対し、X線光電分光法(XPS:X-ray Photoelectron Spectroscopy)によって元素分析を行うことによって得られる。 In addition, copper is preferably detected at a depth of 0 to 350 nm, more preferably at a depth of 0 to 343 nm, on the surface of the composite copper member including the nickel layer. In addition, it is preferable to satisfy any one of the requirements selected from the group consisting of (A) to (C): (A) at a depth of 10 nm from the surface containing the nickel layer, the mass content of Ni is greater than the mass content of Cu; and (C) the ratio of the mass of Cu to the total mass of the three components Cu, O, and Ni at a depth of 10 nm from the surface is 0 to 50% (more preferably 0 to 40%, more preferably 0 to 33%). If no copper is detected at a depth of 0-350 nm, the nickel layer is too thick, resulting in a low number of protrusions and poor adhesion to the insulating material in power modules containing this composite copper component. If none of (A) to (C) are satisfied, either the nickel layer is not formed, or the nickel layer having an appropriate thickness for Cu is not formed. As a result, in a power module including this composite copper member, the function as a copper protective layer becomes insufficient, copper dissolves and migration occurs, the dielectric breakdown time is shortened, the heat resistance and corrosion resistance are deteriorated, and the adhesive strength is reduced. In addition, the distance from the depth at which Cu begins to be detected to the depth at which the ratio of Cu is 50% when the total of the three components Cu, O, and Ni among the detected components is 100% is preferably 20 nm or more, more preferably 50 nm or more, further preferably 51 nm or more, preferably 530 nm or less, more preferably 528 nm or less, and even more preferably 500 nm or less. This value is considered to be correlated with the length of the convex portion. The mass content of each element can be obtained by elementally analyzing the treated surface of the composite copper member by X-ray Photoelectron Spectroscopy (XPS).
 このように、ニッケル層に付着したニッケルの量には適切な範囲があり、ニッケルの量をその範囲に収めることにより、この複合銅部材を含むパワーモジュールにおいて、絶縁材との接着性、はんだ耐熱性、絶縁破壊時間が良好な複合銅部材が得られる。 In this way, there is an appropriate range for the amount of nickel adhering to the nickel layer, and by keeping the amount of nickel within that range, in a power module including this composite copper member, a composite copper member with good adhesion to insulating materials, solder heat resistance, and good dielectric breakdown time can be obtained.
(4)ケイ素層の構成
 本明細書に開示される複合銅部材の、ニッケル層を含む側の表面には、さらにケイ素を含む層またはケイ素からなる層(本明細書では、総じてケイ素層と称する)を有してもよい。
(4) Structure of silicon layer The surface of the composite copper member disclosed herein on the side containing the nickel layer may further have a layer containing silicon or a layer made of silicon (herein generally referred to as a silicon layer).
 ケイ素層におけるケイ素の含有量(本明細書では、ケイ素量と称する)は特に限定されないが、20.0μg/cm以上であることが好ましく、21.9μg/cm以上であることがより好ましく、または39.9μg/cm以上であることがさらに好ましい。ケイ素量がこれらの値をとることによって、この複合銅部材を含むパワーモジュールの耐熱性が著しく向上する。なお、ケイ素量は、ケイ素層に含まれるケイ素を、酸性溶液で溶解し、高周波誘導結合プラズマ発光分光分析(ICP分析)によってケイ素の質量を測定し、密度から体積を算出することができる。ケイ素の総質量は、銅箔の場合、ケイ素層を有する銅箔そのものを溶解し、ケイ素層を形成するケイ素の量のみを検出して質量を測定してもよい。 The content of silicon in the silicon layer (herein referred to as silicon content) is not particularly limited, but is preferably 20.0 μg/cm 2 or more, more preferably 21.9 μg/cm 2 or more, or even more preferably 39.9 μg/cm 2 or more. By setting the amount of silicon to these values, the heat resistance of the power module including this composite copper member is significantly improved. The amount of silicon can be calculated by dissolving silicon contained in the silicon layer with an acidic solution, measuring the mass of silicon by high frequency inductively coupled plasma emission spectroscopy (ICP analysis), and calculating the volume from the density. In the case of copper foil, the total mass of silicon may be measured by dissolving the copper foil itself having the silicon layer and detecting only the amount of silicon forming the silicon layer.
 ケイ素量がこれらの値をとることに加えて、TOF-SIMSの表面分析により、ケイ素層の表面からSixOyのピークとN化合物のピークの両方が検出されることが好ましい。それによって、この複合銅部材を含むパワーモジュールの耐熱性がさらに向上する。N化合物として、アミノ基、メルカプト基、イソシアヌレート基、ウレイド基、イソシアネート基などを含有するカップリング剤やシリコーン樹脂が例示できる。 In addition to these values for the amount of silicon, it is preferable that both the SixOy peak and the N compound peak are detected from the surface of the silicon layer by TOF-SIMS surface analysis. Thereby, the heat resistance of the power module including this composite copper member is further improved. Examples of N compounds include coupling agents and silicone resins containing amino groups, mercapto groups, isocyanurate groups, ureido groups, isocyanate groups, and the like.
 複合銅部材のケイ素層を含む側の表面の算術平均粗さ(Ra)は特に限定されないが、0.01μm以上が好ましく、0.03μm以上がより好ましく、また、5.00μm以下であることが好ましく、3μm以下であることがさらに好ましく、0.83μm以下であることがさらに好ましい。 The arithmetic mean roughness (Ra) of the surface of the composite copper member containing the silicon layer is not particularly limited, but is preferably 0.01 μm or more, more preferably 0.03 μm or more, and preferably 5.00 μm or less, more preferably 3 μm or less, and further preferably 0.83 μm or less.
 複合銅部材のケイ素層を含む側の表面の最大高さ粗さ(Rz)は特に限定されないが、0.1μm以上が好ましく、0.32μm以上がより好ましく、また、20.00μm以下であることが好ましく、10.00μm以下であることがより好ましく、1.82μm以下であることがさらに好ましい。 The maximum height roughness (Rz) of the surface containing the silicon layer of the composite copper member is not particularly limited, but is preferably 0.1 μm or more, more preferably 0.32 μm or more, and preferably 20.00 μm or less, more preferably 10.00 μm or less, and even more preferably 1.82 μm or less.
 また、走査電子顕微鏡による複合銅部材の断面の撮影像において、ケイ素層を含む側の表面に平行な方向で測ったときの長さ50nm以上1500nm以下の凸部の数は、3.8μmあたり5個以上であることが好ましく、7個以上であることがより好ましい。 In addition, in a cross-sectional image of the composite copper member taken by a scanning electron microscope, the number of protrusions having a length of 50 nm or more and 1500 nm or less when measured in a direction parallel to the surface on the side containing the silicon layer is preferably 5 or more per 3.8 μm, more preferably 7 or more.
 複合銅部材のケイ素層を含む側のCuイオンの溶出量は10.0ppm以下が好ましく、5.0ppm以下がより好ましく、2.5ppm以下がさらに好ましい。Cuイオンの溶出量が少ないほど、Cuのマイグレーションによる絶縁破壊時間が長くなる。 The elution amount of Cu ions on the silicon layer-containing side of the composite copper member is preferably 10.0 ppm or less, more preferably 5.0 ppm or less, and even more preferably 2.5 ppm or less. The smaller the amount of eluted Cu ions, the longer the dielectric breakdown time due to Cu migration.
 複合銅部材のケイ素層を含む側のNiイオンの溶出量は特に限定されないが、100.0ppm以下が好ましく、50.0ppm以下がより好ましく、32.0ppm以下がさらに好ましい。 The amount of Ni ions eluted from the silicon layer-containing side of the composite copper member is not particularly limited, but is preferably 100.0 ppm or less, more preferably 50.0 ppm or less, and even more preferably 32.0 ppm or less.
 なお、これらの測定は、「(3)ニッケル層」で記載した方法を用いることができる。 For these measurements, the method described in "(3) Nickel layer" can be used.
==パワーモジュールの構造==
 上述のように、本明細書に開示される複合銅部材は、パワーモジュールに好適に用いることができる。
== Power module structure ==
As described above, the composite copper member disclosed in this specification can be suitably used for power modules.
 このパワーモジュールは、複合銅部材以外に、複合銅部材のニッケル層を含む側の表面で複合銅部材に接着している絶縁材を含む。 This power module includes, in addition to the composite copper member, an insulating material adhered to the composite copper member on the surface of the composite copper member that includes the nickel layer.
(1)基本構造
 パワーモジュールの構造は複合銅部材と有機絶縁層が接していれば特に限定されない。一例として、図1は、基本構造としての第1の実施形態のパワーモジュールの断面を示す模式図である。このパワーモジュールは、ベース基板1と、ベース基板1上に形成された有機絶縁層2と、有機絶縁層2上に形成された、銅基板3とを含む。本明細書に開示される複合銅部材はベース基板1および/または銅基板3から形成される。
(1) Basic Structure The structure of the power module is not particularly limited as long as the composite copper member and the organic insulating layer are in contact with each other. As an example, FIG. 1 is a schematic diagram showing a cross section of a power module of the first embodiment as a basic structure. This power module includes a base substrate 1 , an organic insulating layer 2 formed on the base substrate 1 , and a copper substrate 3 formed on the organic insulating layer 2 . The composite copper component disclosed herein is formed from base substrate 1 and/or copper substrate 3 .
 パワーモジュールの第2の実施形態は、図2に示すように、図1の基本構造に加えて、半導体素子4及び外部電極端子8が銅基板3上に配置され、半導体素子4の間は金属ワイヤ6を介して接続されている。このパワーモジュールは、外部電極端子8の外部接続部分及びベース基板1の外部放熱部分が外部に露出していることを除いてケース9に収容され、ケース9内はモールド樹脂7で充填されている。 In the second embodiment of the power module, as shown in FIG. 2, in addition to the basic structure of FIG. 1, semiconductor elements 4 and external electrode terminals 8 are arranged on a copper substrate 3, and the semiconductor elements 4 are connected via metal wires 6. This power module is housed in a case 9 except that the external connection portions of the external electrode terminals 8 and the external heat radiation portion of the base substrate 1 are exposed to the outside.
 パワーモジュールの第3の実施形態は、図3に示すように、図1の基本構造に加えて、半導体素子4が銅基板3上に配置され、リードフレーム5はCu基板3に直接接続されている場合と、金属ワイヤ6を介して半導体素子4に接続されている場合とが示されている。このパワーモジュールは、リードフレーム5の外部接続部分及びベース基板1の外部放熱部分が外部に露出していることを除いてケース9に収容され、ケース9内はモールド樹脂7で充填されている。 In the third embodiment of the power module, as shown in FIG. 3, in addition to the basic structure of FIG. 1, the semiconductor element 4 is arranged on the copper substrate 3 and the lead frame 5 is directly connected to the Cu substrate 3, and the case where it is connected to the semiconductor element 4 via the metal wire 6 is shown. This power module is housed in a case 9 except that the external connection portion of the lead frame 5 and the external heat radiation portion of the base substrate 1 are exposed to the outside.
(2)絶縁材
 パワーモジュールにおいて、銅基板3は、有機絶縁層2およびモールド樹脂7と接着している。有機絶縁層2およびモールド樹脂7は絶縁材から形成されているが、同じ絶縁材から形成されていても、異なる絶縁材から形成されていてもよい。
(2) Insulating Material In the power module, the copper substrate 3 is adhered to the organic insulating layer 2 and the molding resin 7 . Although the organic insulating layer 2 and the mold resin 7 are made of an insulating material, they may be made of the same insulating material or different insulating materials.
 絶縁材に用いられる樹脂の種類は特に限定されず、熱可塑性樹脂であっても、熱硬化性樹脂であってもよく、熱可塑性樹脂としては、フッ素樹脂、液晶ポリマー、ポリエチレン、ポリプロピレンなどの合成樹脂、熱可塑性ポリイミド樹脂等が挙げられ、熱硬化性樹脂としては、エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、メラミン樹脂、シリコーン樹脂、熱硬化性ポリイミド樹脂、ポリフェニレンエーテル(PPE)、ビスマレイミド樹脂等を例示することができる。絶縁材には、熱伝導性フィラーを分散させてもよいが、均等に分散させることが好ましい。熱伝導性フィラーとしては、溶融シリカ(SiO)、結晶シリカ(SiO)、酸化アルミニウム(Al)、窒化ホウ素(BN)、窒化アルミニウム(AlN)、炭化ケイ素(SiC)等が挙げられる。熱伝導性フィラーの含有量は、絶縁材に対して、50wt%以上であることが好ましく、55wt%以上であることがより好ましい。熱伝導性を向上するためには熱伝導フィラーの含有量が多い方が好ましいが、熱伝導フィラーの含有量が多すぎると複合銅部材との接着性低下に繋がるため、熱伝導フィラーの含有量は絶縁材に対して適切な量である必要がある。 The type of resin used for the insulating material is not particularly limited, and may be a thermoplastic resin or a thermosetting resin. Examples of thermoplastic resins include fluorine resins, liquid crystal polymers, synthetic resins such as polyethylene and polypropylene, and thermoplastic polyimide resins. A thermally conductive filler may be dispersed in the insulating material, but it is preferable to disperse it evenly. Thermally conductive fillers include fused silica (SiO 2 ), crystalline silica (SiO 2 ), aluminum oxide (Al 2 O 3 ), boron nitride (BN), aluminum nitride (AlN), silicon carbide (SiC), and the like. The content of the thermally conductive filler is preferably 50 wt % or more, more preferably 55 wt % or more, relative to the insulating material. In order to improve thermal conductivity, it is preferable that the content of the thermally conductive filler is large, but if the content of the thermally conductive filler is too large, it will lead to a decrease in adhesion to the composite copper member, so the content of the thermally conductive filler should be an appropriate amount for the insulating material.
 有機絶縁層2としては、特に限定されず、公知の有機絶縁シートを用いることができる。有機絶縁層2の厚さは、特に限定されないが、1μm以上1000μm以下であることが好ましい。 The organic insulating layer 2 is not particularly limited, and a known organic insulating sheet can be used. Although the thickness of the organic insulating layer 2 is not particularly limited, it is preferably 1 μm or more and 1000 μm or less.
==パワーモジュールの製造方法==
 本実施形態のパワーモジュールの製造方法は、銅部材と、この銅部材の少なくとも一部の表面にニッケル層を含む複合銅部材と、ニッケル層を含む側の表面で複合銅部材に接着している絶縁材と、を含み、ニッケル層を含む側の表面が凸部を有し、走査電子顕微鏡による複合銅部材の断面の撮影像において、ニッケル層を含む側の表面に平行な方向で測ったときの長さ50nm以上1500nm以下の凸部の数が、3.8μmあたり5個以上存在するパワーモジュールの製造方法であって、銅部材表面をめっき処理することにより、銅部材表面にニッケル層を形成する第1の工程を含む、方法である。
== Power module manufacturing method ==
The method for manufacturing a power module of the present embodiment includes a copper member, a composite copper member including a nickel layer on at least a part of the surface of the copper member, and an insulating material adhered to the composite copper member on the surface including the nickel layer, the surface including the nickel layer having protrusions, and in a cross-sectional image of the composite copper member taken by a scanning electron microscope, the number of protrusions having a length of 50 nm or more and 1500 nm or less when measured in a direction parallel to the surface including the nickel layer is about 3.8 μm. A method for manufacturing five or more power modules, the method including a first step of forming a nickel layer on the surface of the copper member by plating the surface of the copper member.
(1)複合銅部材の製造方法
(1-1)銅酸化物層の形成
(1) Manufacturing method of composite copper member (1-1) Formation of copper oxide layer
 第1の工程の前に、銅部材表面を酸化処理することにより、銅部材表面に銅酸化物層を形成する第2の工程を含んでもよい。この酸化処理によって、銅部材表面が粗面化される。 Before the first step, a second step of forming a copper oxide layer on the surface of the copper member by oxidizing the surface of the copper member may be included. This oxidation treatment roughens the surface of the copper member.
 この酸化工程以前に、ソフトエッチング又はエッチングなどの粗面化処理工程を行ってもよいが、行わなくてもよい。また、酸化処理以前に、脱脂処理、自然酸化膜除去によって表面を均一化するための酸洗浄、または酸洗浄後に酸化工程への酸の持ち込みを防止するためのアルカリ処理を行ってもよいが、行わなくてもよい。アルカリ処理の方法は特に限定されないが、好ましくは0.1~10g/L、より好ましくは1~2g/Lのアルカリ水溶液、例えば水酸化ナトリウム水溶液で、30~50℃、0.5~2分間程度処理すればよい。 Before this oxidation step, a surface roughening treatment step such as soft etching or etching may be performed, but it is not necessary. In addition, before the oxidation treatment, degreasing treatment, acid cleaning for uniformizing the surface by removing a natural oxide film, or alkali treatment for preventing acid from being brought into the oxidation process after acid cleaning may be performed, but it is not necessary. The alkali treatment method is not particularly limited, but preferably 0.1 to 10 g/L, more preferably 1 to 2 g/L alkaline aqueous solution, such as sodium hydroxide aqueous solution, at 30 to 50° C. for about 0.5 to 2 minutes.
 酸化処理方法は特に限定されないが、酸化剤を用いて形成してもよく、加熱処理や陽極酸化によって形成してもよい。 Although the oxidation treatment method is not particularly limited, it may be formed using an oxidizing agent, or may be formed by heat treatment or anodization.
 酸化剤は特に限定されず、例えば、亜塩素酸ナトリウム、次亜塩素酸ナトリウム、塩素酸カリウム、過塩素酸カリウム等の水溶液を用いることができる。酸化剤には、各種添加剤(たとえば、リン酸三ナトリウム十二水和物のようなリン酸塩)や表面活性分子を添加してもよい。表面活性分子としては、ポルフィリン、ポルフィリン大員環、拡張ポルフィリン、環縮小ポルフィリン、直鎖ポルフィリンポリマー、ポルフィリンサンドイッチ配位錯体、ポルフィリン配列、シラン、テトラオルガノ-シラン、アミノエチル-アミノプロピルトリメトキシシラン、(3-アミノプロピル)トリメトキシシラン、(1-[3-(トリメトキシシリル)プロピル]ウレア)((l-[3-(Trimethoxysilyl)propyl]urea))、(3-アミノプロピル)トリエトキシシラン、((3-グリシジルオキシプロピル)トリメトキシシラン)、(3‐クロロプロピル)トリメトキシシラン、(3-グリシジルオキシプロピル)トリメトキシシラン、ジメチルジクロロシラン、3-(トリメトキシシリル)プロピルメタクリレート、エチルトリアセトキシシラン、トリエトキシ(イソブチル)シラン、トリエトキシ(オクチル)シラン、トリス(2-メトキシエトキシ)(ビニル)シラン、クロロトリメチルシラン、メチルトリクロロシラン、四塩化ケイ素、テトラエトキシシラン、フェニルトリメトキシシラン、クロロトリエトキシシラン、エチレン-トリメトキシシラン、アミン、糖などを例示できる。 The oxidizing agent is not particularly limited, and for example, an aqueous solution of sodium chlorite, sodium hypochlorite, potassium chlorate, potassium perchlorate, etc. can be used. Various additives (eg, phosphates such as trisodium phosphate dodecahydrate) and surface active molecules may be added to the oxidizing agent. Surface active molecules include porphyrins, porphyrin macrocycles, extended porphyrins, ring contracted porphyrins, linear porphyrin polymers, porphyrin sandwich coordination complexes, porphyrin sequences, silanes, tetraorgano-silanes, aminoethyl-aminopropyltrimethoxysilane, (3-aminopropyl)trimethoxysilane, (1-[3-(trimethoxysilyl)propyl]urea) ((l-[3-(Trimethoxysilyl)propyl]u rea)), (3-aminopropyl)triethoxysilane, ((3-glycidyloxypropyl)trimethoxysilane), (3-chloropropyl)trimethoxysilane, (3-glycidyloxypropyl)trimethoxysilane, dimethyldichlorosilane, 3-(trimethoxysilyl)propyl methacrylate, ethyltriacetoxysilane, triethoxy(isobutyl)silane, triethoxy(octyl)silane, tris(2-methoxyethoxy)(vinyl)silane, chlorotrimethylsilane, methyltrichlorosilane Examples include silane, silicon tetrachloride, tetraethoxysilane, phenyltrimethoxysilane, chlorotriethoxysilane, ethylene-trimethoxysilane, amines and sugars.
 酸化剤には、各種添加剤(たとえば、リン酸三ナトリウム十二水和物のようなリン酸塩)や表面活性分子を添加して銅酸化物の析出を調整してもよい。表面活性分子としては、ポルフィリン、ポルフィリン大員環、拡張ポルフィリン、環縮小ポルフィリン、直鎖ポルフィリンポリマー、ポルフィリンサンドイッチ配位錯体、ポルフィリン配列、シラン、テトラオルガノ‐シラン、アミノエチル‐アミノプロピル‐トリメトキシシラン、3‐アミノプロピル)トリメトキシシラン、1‐[3‐(トリメトキシシリル)プロピル]ウレア、(3‐アミノプロピル)トリエトキシシラン、(3‐グリシジルオキシプロピル)トリメトキシシラン、(3‐クロロプロピル)トリメトキシシラン、(3‐グリシジルオキシプロピル)トリメトキシシラン、ジメチルジクロロシラン、3‐(トリメトキシシリル)プロピルメタクリレート、エチルトリアセトキシシラン、トリエトキシ(イソブチル)シラン、トリエトキシ(オクチル)シラン、トリス(2‐メトキシエトキシ)(ビニル)シラン、クロロトリメチルシラン、メチルトリクロロシラン、四塩化ケイ素、テトラエトキシシラン、フェニルトリメトキシシラン、クロロトリエトキシシラン、エチレン‐トリメトキシシラン、アミン、糖などを例示できる。 Various additives (for example, phosphates such as trisodium phosphate dodecahydrate) and surface active molecules may be added to the oxidizing agent to adjust the precipitation of copper oxide. Surface-active molecules include porphyrins, porphyrin macrocycles, extended porphyrins, ring-contracted porphyrins, linear porphyrin polymers, porphyrin sandwich coordination complexes, porphyrin sequences, silanes, tetraorgano-silanes, aminoethyl-aminopropyl-trimethoxysilane, 3-aminopropyl)trimethoxysilane, 1-[3-(trimethoxysilyl)propyl]urea, (3-aminopropyl)triethoxysilane, (3-glycidyloxypropyl)trimethoxysilane, (3-chlorochlorosilane). Examples include propyl)trimethoxysilane, (3-glycidyloxypropyl)trimethoxysilane, dimethyldichlorosilane, 3-(trimethoxysilyl)propyl methacrylate, ethyltriacetoxysilane, triethoxy(isobutyl)silane, triethoxy(octyl)silane, tris(2-methoxyethoxy)(vinyl)silane, chlorotrimethylsilane, methyltrichlorosilane, silicon tetrachloride, tetraethoxysilane, phenyltrimethoxysilane, chlorotriethoxysilane, ethylene-trimethoxysilane, amines, sugars, and the like. I can.
 酸化反応条件は特に限定されないが、酸化剤の液温は40~95℃であることが好ましく、45~80℃であることがより好ましい。反応時間は0.5~30分であることが好ましく、1~10分であることがより好ましい。 Although the oxidation reaction conditions are not particularly limited, the liquid temperature of the oxidizing agent is preferably 40 to 95°C, more preferably 45 to 80°C. The reaction time is preferably 0.5 to 30 minutes, more preferably 1 to 10 minutes.
 銅酸化物層に対し、溶解剤を用いて、酸化された銅部材表面の凸部の調整を行ってもよいが、行わなくてもよい。この溶解工程で用いる溶解剤は特に限定されないが、キレート剤、特に生分解性キレート剤であることが好ましく、エチレンジアミン四酢酸、ジエタノールグリシン、L-グルタミン酸二酢酸・四ナトリウム、エチレンジアミン-N,N’-ジコハク酸、3-ヒドロキシ-2、2’-イミノジコハク酸ナトリウム、メチルグリシン2酢酸3ナトリウム、アスパラギン酸ジ酢酸4ナトリウム、N-(2-ヒドロキシエチル)イミノ二酢酸ジナトリウム、グルコン酸ナトリウムなどが例示できる。溶解剤溶液のpHは特に限定されないが、アルカリ性であることが好ましく、pH8~10.5であることがより好ましく、pH9.0~10.5であることがさらに好ましく、pH9.8~10.2であることがさらに好ましい。 For the copper oxide layer, a dissolving agent may be used to adjust the protrusions on the surface of the oxidized copper member, but it is not necessary. The solubilizing agent used in this dissolving step is not particularly limited, but is preferably a chelating agent, particularly a biodegradable chelating agent, such as ethylenediaminetetraacetic acid, diethanolglycine, tetrasodium L-glutamate diacetate, ethylenediamine-N,N'-disuccinic acid, 3-hydroxy-2,2'-sodium iminodisuccinate, trisodium methylglycine diacetate, tetrasodium aspartate diacetate, disodium N-(2-hydroxyethyl)iminodiacetate, and sodium gluconate. etc. can be exemplified. Although the pH of the dissolving agent solution is not particularly limited, it is preferably alkaline, more preferably pH 8 to 10.5, still more preferably pH 9.0 to 10.5, and even more preferably pH 9.8 to 10.2.
 この銅酸化物層の表面を還元剤により還元処理してもよいが、行わなくてもよい。還元処理を行った場合、銅酸化物を含む層の表面に亜酸化銅が形成されてもよい。この還元工程で用いる還元剤としては、ジメチルアミンボラン(DMAB)、ジボラン、水素化ホウ素ナトリウム、ヒドラジン等が例示できる。 The surface of this copper oxide layer may be reduced with a reducing agent, but it is not necessary. When the reduction treatment is performed, cuprous oxide may be formed on the surface of the layer containing copper oxide. Examples of the reducing agent used in this reduction step include dimethylamine borane (DMAB), diborane, sodium borohydride, hydrazine and the like.
 純銅の比抵抗値が1.7×10-8(Ωm)なのに対して、酸化銅は1~10(Ωm)、亜酸化銅は1×10~1×10(Ωm)であるため、銅酸化物を含む層は導電性が低く、例え、樹脂基材に転移した銅酸化物を含む層の量が多くても、本発明に係る銅部材を用いてプリント配線基板や半導体パッケージ基板の回路を形成する際、表皮効果による伝送損失が起こりにくい。 The resistivity of pure copper is 1.7×10 −8 (Ωm), whereas that of copper oxide is 1 to 10 (Ωm), and that of cuprous oxide is 1×10 6 to 1×10 7 (Ωm). Therefore, the layer containing copper oxide has low conductivity, and even if the amount of the layer containing copper oxide transferred to the resin substrate is large, transmission loss due to the skin effect is unlikely to occur when forming a circuit of a printed wiring board or a semiconductor package substrate using the copper member according to the present invention. .
(1-2)ニッケル層の形成
 第1の工程において、銅部材表面をめっき処理することにより、銅部材表面にニッケル層を形成する。
(1-2) Formation of Nickel Layer In the first step, the surface of the copper member is plated to form a nickel layer on the surface of the copper member.
 めっきの方法は特に限定されず、電解めっき、無電解めっき、真空蒸着、化成処理などでめっきすることができるが、一様なめっき層を形成することが好ましいため、電解めっきが好ましい。 The plating method is not particularly limited, and plating can be performed by electrolytic plating, electroless plating, vacuum deposition, chemical conversion treatment, or the like, but electrolytic plating is preferred because it is preferable to form a uniform plating layer.
 電解めっきの場合は、ニッケル合金めっきを含むニッケルめっきが好ましい。ニッケルめっきで形成される金属は、例えば、純ニッケル、Ni-Cu合金、Ni-Cr合金、Ni-Co合金 、Ni-Zn合金、Ni-Mn合金、Ni-Pb合金、Ni-P合金等が挙げられる。 In the case of electrolytic plating, nickel plating including nickel alloy plating is preferable. Examples of metals formed by nickel plating include pure nickel, Ni--Cu alloys, Ni--Cr alloys, Ni--Co alloys, Ni--Zn alloys, Ni--Mn alloys, Ni--Pb alloys, and Ni--P alloys.
 ニッケルめっきに用いる金属塩として、例えば、硫酸ニッケル、スルファミン酸ニッケル、塩化ニッケル、臭化ニッケル、酸化亜鉛、塩化亜鉛、ジアンミンジクロロパラジウム、硫酸鉄、塩化鉄、無水クロム酸、塩化クロム、硫酸クロムナトリウム、硫酸銅、ピロリン酸銅、硫酸コバルト、硫酸マンガンなどが挙げられる。 Examples of metal salts used for nickel plating include nickel sulfate, nickel sulfamate, nickel chloride, nickel bromide, zinc oxide, zinc chloride, diamminedichloropalladium, iron sulfate, iron chloride, chromic anhydride, chromium chloride, sodium chromium sulfate, copper sulfate, copper pyrophosphate, cobalt sulfate, and manganese sulfate.
 ニッケルめっきにおいて、その浴組成は、例えば、硫酸ニッケル(100g/L以上350g/L以下)、スルファミン酸ニッケル(100g/L以上600g/L以下)、塩化ニッケル(0g/L以上300g/L以下)及びこれらの混合物を含むものが好ましいが、添加剤としてクエン酸ナトリウム(0g/L以上100g/L以下)やホウ酸(0g/L以上60g/L以下)が含まれていてもよい。 In nickel plating, the bath composition preferably contains, for example, nickel sulfate (100 g/L or more and 350 g/L or less), nickel sulfamate (100 g/L or more and 600 g/L or less), nickel chloride (0 g/L or more and 300 g/L or less), and a mixture thereof. Good.
 酸化処理をされた銅箔表面に電解めっきを施す場合、まず表面の酸化銅が還元され、亜酸化銅又は純銅になるのに電荷が使われるため、めっきされるまでに時間のラグが生じ、その後、金属層を形成する金属が析出し始める。その電荷量はめっき液種や銅酸化物量によって異なるが、例えば、Niめっきを銅部材に施す場合、その厚さを好ましい範囲に収めるためには電解めっき処理する銅部材の面積dmあたり、10C以上90C以下の電荷を与えることが好ましく、20C以上65C以下の電荷を与えることがより好ましい。 When electrolytic plating is applied to an oxidized copper foil surface, the copper oxide on the surface is first reduced, and an electric charge is used to become cuprous oxide or pure copper, so there is a time lag before plating, and then the metal that forms the metal layer begins to precipitate. The amount of charge varies depending on the type of plating solution and the amount of copper oxide. For example, when Ni plating is applied to a copper member, it is preferable to apply a charge of 10 C to 90 C or less, more preferably 20 C to 65 C, per area dm 2 of the copper member to be electrolytically plated in order to keep the thickness within a preferable range.
 また、電流密度は特に限定されないが、0.2A/dm~10A/dmが好ましい。なお、銅酸化物層の酸化物を一部還元するまでの時間と、めっきを被覆中の時間とで、電流を変えてもよい。 Also, the current density is not particularly limited, but is preferably 0.2 A/dm 2 to 10 A/dm 2 . Note that the current may be changed between the time until the oxide of the copper oxide layer is partially reduced and the time during which the plating is being applied.
(1-3)ケイ素層の形成
 複合銅部材の製造方法は、第1の工程の後に、複合銅部材表面にケイ素層を形成する第3の工程を含んでもよいが、含まなくてもよい。ケイ素層を形成する方法は特に限定されないが、液体で処理する場合、水ガラス処理が好ましい。
(1-3) Formation of silicon layer The method for manufacturing a composite copper member may or may not include a third step of forming a silicon layer on the surface of the composite copper member after the first step. The method of forming the silicon layer is not particularly limited, but water glass treatment is preferred when treating with a liquid.
 水ガラスはアルカリ金属ケイ酸塩の水溶液であり、アルカリ金属ケイ酸塩はMO・nSiOであらわされる。アルカリ金属はNa、Li、およびKのいずれであってもよい。水ガラス中には、MOとSiOとが様々な割合で混在し、第3の工程で用いられる水ガラスは特に限定されないが、nが2~4であることが好ましい。 Water glass is an aqueous solution of alkali metal silicate, which is represented by M 2 O.nSiO 2 . Any of Na, Li, and K may be sufficient as an alkali metal. M 2 O and SiO 2 are mixed in various ratios in the water glass, and the water glass used in the third step is not particularly limited, but n is preferably 2-4.
 水ガラス処理の具体的な方法は特に限定されず、水ガラスを、銅表面にローラーやバーコーターによって塗布してもよくスプレーによって吹き付けてもよく、あるいは、銅材料を水ガラスに浸漬してもよい。MO・nSiOの濃度は特に限定されないが、0.1%~20%であってもよく、0.5%~10%であってもよく、2%~5%であってもよい。反応条件は特に限定されないが、処理温度は10℃~95℃が好ましく、20℃~85℃がより好ましい。処理時間は1秒~10分が好ましい。水ガラス処理は複数回行ってもよい。 The specific method of water glass treatment is not particularly limited, and water glass may be applied to the copper surface with a roller or bar coater, or may be sprayed, or the copper material may be immersed in water glass. The concentration of M 2 O.nSiO 2 is not particularly limited, but may be 0.1% to 20%, 0.5% to 10%, or 2% to 5%. Although the reaction conditions are not particularly limited, the treatment temperature is preferably 10°C to 95°C, more preferably 20°C to 85°C. The treatment time is preferably 1 second to 10 minutes. The water glass treatment may be performed multiple times.
 銅材料を水ガラス処理した後、乾燥させる。処理後の乾燥はエアーで水分を飛ばしてもよいし、加温してもよい。加温する場合は50℃~250℃が好ましく、加温時間は10秒~60分が好ましい。 After the copper material has been treated with water glass, it is dried. Drying after the treatment may be carried out by blowing off moisture with air or by heating. When heating, the temperature is preferably 50° C. to 250° C., and the heating time is preferably 10 seconds to 60 minutes.
 銅材料を処理するための水ガラスに、カップリング剤を溶解させてもよい(以下、この溶液を混合剤と称する)。カップリング剤の濃度は特に限定しないが、重量%で0.5%、1%、2%、3%、4%、5%、6%、7%、8%又は9%以上が好ましく、20%、15%又は10%以下が好ましい。 A coupling agent may be dissolved in the water glass for treating the copper material (this solution is hereinafter referred to as the mixed agent). Although the concentration of the coupling agent is not particularly limited, it is preferably 0.5%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8% or 9% or more, and preferably 20%, 15% or 10% or less by weight.
(1-4)カップリング剤処理
 複合銅部材の製造方法は、第1の工程の後で、第3の工程の前に、後に、または前後に、カップリング剤処理を行う第4の工程を含んでもよいが、含まなくてもよい。
(1-4) Coupling agent treatment The method for manufacturing a composite copper member may include a fourth step of performing coupling agent treatment after the first step, before, after, or before and after the third step, but it does not have to be included.
 カップリング剤は特に限定されないが、シランカップリング剤の場合、加水分解性基が2又は3のものが好ましく、加水分解性基として、メトキシ基又はエトキシ基のものが好ましい。 The coupling agent is not particularly limited, but in the case of a silane coupling agent, one having 2 or 3 hydrolyzable groups is preferable, and the hydrolyzable group is preferably a methoxy group or an ethoxy group.
 特に限定しないが、3-メルカプトプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、ビニルトリメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン、3-ウレイドプロピルトリアルコキシシラン、3-アクリロキシプロピルトリメトキシシランなどを用いることが出来る。 Although not particularly limited, 3-mercaptopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, vinyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-isocyanatopropyltriethoxysilane, 3-ureidopropyltrialkoxysilane, 3-acryloxypropyltrimethoxysilane, and the like can be used.
 カップリング剤処理はカップリング剤を水又は有機溶媒に分散させた溶液を、塗布又は吹き付け、吸着させることにより行うことができる。カップリング剤を水又は有機溶媒に分散させた溶液は特に限定しないが、重量%で0.5%、1%、2%、3%、4%、5%、6%、7%、8%又は9%以上が好ましく、20%、15%又は10%以下が好ましい。 Coupling agent treatment can be carried out by applying or spraying a solution in which the coupling agent is dispersed in water or an organic solvent to adsorb it. A solution in which a coupling agent is dispersed in water or an organic solvent is not particularly limited.
 吸着後、乾燥させることによりカップリング剤処理は完了する。乾燥させる温度と時間は、溶媒である水又は有機溶媒が完全に蒸発すれば特に限定しないが、70度で1分以上乾燥させるのが好ましく、100度で1分以上乾燥させるのがさらに好ましく、110度で1分以上乾燥させることがより好ましい。 After adsorption, drying completes the coupling agent treatment. The drying temperature and time are not particularly limited as long as the solvent water or organic solvent is completely evaporated, but it is preferable to dry at 70 degrees for 1 minute or more, more preferably at 100 degrees for 1 minute or more, and more preferably at 110 degrees for 1 minute or more.
 このカップリング処理は、上述したようなTOF-SIMSの表面分析により検出されるN化合物を複合銅部材に供与する。ケイ素層の表面にSixOyとN化合物の両方が存在することによって、複合銅部材を含むパワーモジュールの耐熱性がさらに向上する。 This coupling treatment provides the composite copper member with the N compound detected by the TOF-SIMS surface analysis as described above. The presence of both SixOy and the N compound on the surface of the silicon layer further improves the heat resistance of the power module including the composite copper member.
(2)パワーモジュールの製造方法
 (1)で製造した複合銅部材を用いて、パワーモジュールを製造することができる。製造方法は特に限定されず、周知の製造方法を用いればよい。
(2) Power module manufacturing method A power module can be manufactured using the composite copper member manufactured in (1). The manufacturing method is not particularly limited, and a well-known manufacturing method may be used.
(1)複合銅部材の製造
 複合銅部材を製造するための銅箔として、実施例18では、FV-WS(厚さ:18μm)(古河電工株式会社製)を用い、それ以外の実施例1~17及び比較例1~9では、DR-WS(厚さ:18μm)(古河電工株式会社製)を用いた。また銅板は市販の銅板(厚さ:500μm)を用いた。
(1) Production of composite copper member As a copper foil for producing a composite copper member, FV-WS (thickness: 18 μm) (manufactured by Furukawa Electric Co., Ltd.) was used in Example 18, and DR-WS (thickness: 18 μm) (manufactured by Furukawa Electric Co., Ltd.) was used in Examples 1 to 17 and Comparative Examples 1 to 9. A commercially available copper plate (thickness: 500 μm) was used as the copper plate.
 これらの銅箔および銅板について、表1に記載の条件で複数の試験片を作製し、試験を行った。なお、実施例13~18は水ガラス処理有り、比較例1、2、5、7はめっき処理無し、比較例7~9は酸化処理無し、比較例は水ガラス処理無しという条件である。 For these copper foils and copper plates, multiple test pieces were prepared under the conditions listed in Table 1 and tested. Examples 13 to 18 were subjected to water glass treatment, Comparative Examples 1, 2, 5 and 7 were not plated, Comparative Examples 7 to 9 were not oxidized, and Comparative Example was not subjected to water glass treatment.
(1-1)エッチング処理

 実施例11及び比較例7については、酸化処理前の銅箔のシャイニー面(光沢面。反対面と比較したときに平坦である面)および銅板に対し、表1に記載の溶液を塗布し、表1に記載の条件でエッチング処理を行った。銅箔および銅板は、エッチング処理後、水洗してから乾燥させた。 
(1-1) Etching treatment

For Example 11 and Comparative Example 7, the solution described in Table 1 was applied to the shiny side of the copper foil (glossy side; the side that is flat when compared with the opposite side) of the copper foil before the oxidation treatment and the copper plate, and the etching treatment was performed under the conditions described in Table 1. After etching, the copper foil and copper plate were washed with water and dried.
(1-2)酸化処理

 実施例1~17及び比較例1~6については、銅箔のシャイニー面、実施例18については銅箔のマット面および銅板の一方の面に対し、それぞれ表1に記載の酸化剤(亜塩素酸ナトリウム;水酸化ナトリウム;KBM-403(3-グリシドキシプロピルトリメトキシシラン;信越化学工業株式会社製)の混合溶液)と条件を用いて、酸化処理を行った。銅箔および銅板は酸化処理後、水洗してから乾燥させた。 
(1-2) Oxidation treatment

For Examples 1 to 17 and Comparative Examples 1 to 6, the shiny surface of the copper foil, and for Example 18, the matte surface of the copper foil and one surface of the copper plate were oxidized using the oxidizing agent (sodium chlorite; sodium hydroxide; KBM-403 (3-glycidoxypropyltrimethoxysilane; manufactured by Shin-Etsu Chemical Co., Ltd.) mixed solution) and conditions described in Table 1. After the copper foil and copper plate were oxidized, they were washed with water and then dried.
(1-3)還元処理
 比較例2については、(2)の酸化処理後、表1に記載の還元剤と反応条件で還元処理を行った。
(1-3) Reduction Treatment For Comparative Example 2, after the oxidation treatment in (2), reduction treatment was performed with the reducing agent described in Table 1 under the reaction conditions.
(1-4)電解めっき処理
 酸化処理後、実施例1~18、比較例3、4、6、8、9については、銅箔および銅板の酸化処理面に対し、Ni電解めっき液(硫酸ニッケル240g/L;ホウ酸30g/L)を用いて、表1に記載の条件で銅箔および銅板の両面の電解めっきを行った。銅箔および銅板は電解めっき処理後、水洗してから乾燥させた。
(1-4) Electroplating Treatment After oxidation treatment, in Examples 1 to 18 and Comparative Examples 3, 4, 6, 8, and 9, Ni electrolytic plating solution (nickel sulfate 240 g/L; boric acid 30 g/L) was used to electroplate both surfaces of the copper foil and copper plate under the conditions shown in Table 1. After electroplating, the copper foil and copper plate were washed with water and dried.
(1-5)水ガラス処理
 実施例13~18については、(4)の電解めっき処理後、41g/Lのケイ酸ナトリウム水溶液(ケイ酸ナトリウム52-57重量%、SiO/NaO比(2.06~2.31)を用い、表1に記載の反応条件で水ガラス処理を行った。41g/Lのケイ酸ナトリウム溶液に50℃もしくは80℃で1分間浸漬し、水洗後、表1に記載の乾燥条件で乾燥した。
(1-5) Water glass treatment For Examples 13 to 18, after the electroplating treatment in (4), water glass treatment was performed using a 41 g/L sodium silicate aqueous solution (sodium silicate 52-57% by weight, SiO 2 /Na 2 O ratio (2.06 to 2.31) under the reaction conditions listed in Table 1. After immersion in a 41 g/L sodium silicate solution at 50°C or 80°C for 1 minute and washing with water, the water glass treatment was performed as shown in Table 1. was dried under the drying conditions of
(1-6)カップリング処理
 実施例5および12については(4)の電解めっき処理後、実施例14~18については(5)の水ガラス処理後にKBE-903(3-アミノプロピルトリエトキシシラン;信越化学工業株式会社製)を用いて、表1に記載の条件でカップリング処理を行った。具体的には、銅箔および銅板を3vol%のKBE-903溶液に23℃で1分間浸漬し、水洗後、130℃で1分間乾燥を行った。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-I000003
Figure JPOXMLDOC01-appb-I000004
(1-6) Coupling treatment Examples 5 and 12 were subjected to the electrolytic plating treatment of (4), and examples 14 to 18 were subjected to the coupling treatment after the water glass treatment of (5) using KBE-903 (3-aminopropyltriethoxysilane; manufactured by Shin-Etsu Chemical Co., Ltd.) under the conditions shown in Table 1. Specifically, the copper foil and copper plate were immersed in a 3 vol % KBE-903 solution at 23° C. for 1 minute, washed with water, and dried at 130° C. for 1 minute.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-I000003
Figure JPOXMLDOC01-appb-I000004
(2)複合銅部材の試験方法
(2-1)銅酸化物層の厚さ
(2) Test method for composite copper members (2-1) Thickness of copper oxide layer
 処理した銅箔のシャイニー面の銅酸化物層の厚さを、QC-100(ECI製)を用い、以下の電解液を用いて連続電気化学還元法(SERA)法により銅酸化物及び硫化銅の厚さを測定した。具体的には、ガスケット径:0.32cmを用いて電解液(pH=8.4;ほう酸6.18g/L;四ほう酸ナトリウム9.55g/L)を用いて定電流(90μA/cm)で還元反応を起こし、以下の電位を酸化銅(CuO、CuO)および硫化銅(CuS)のピークと判断した。それぞれの厚さの合計を銅酸化物層の厚さとした。
  CuO:-0.85V~-0.55V
  CuO:-0.55V~-0.30V
  CuS:-1.00V~-0.85V
The thickness of the copper oxide layer on the shiny side of the treated copper foil was measured using QC-100 (manufactured by ECI) and the thickness of copper oxide and copper sulfide by the continuous electrochemical reduction method (SERA) method using the following electrolytic solution. Specifically, using a gasket diameter of 0.32 cm, a reduction reaction was caused at a constant current (90 μA/cm 2 ) using an electrolytic solution (pH = 8.4; boric acid 6.18 g/L; sodium tetraborate 9.55 g/L), and the following potentials were determined as the peaks of copper oxide (CuO, Cu 2 O) and copper sulfide (CuS). The sum of the respective thicknesses was taken as the thickness of the copper oxide layer.
CuO: -0.85V to -0.55V
Cu2O : -0.55V to -0.30V
CuS: -1.00V to -0.85V
得られた還元時間と上記電流密度を以下の式に代入し、膜厚に換算した。
  CuOの膜厚(nm)=0.00639×電流密度(μA/cm)×還元時間(sec)×0.1
  CuOの膜厚(nm)=0.0124×電流密度(μA/cm)×還元時間(sec)×0.1
  CuSの膜厚(nm)=0.0147×電流密度(μA/cm)×還元時間(sec)×0.1
The obtained reduction time and the current density were substituted into the following formula to convert to the film thickness.
CuO film thickness (nm)=0.00639×current density (μA/cm 2 )×reduction time (sec)×0.1
Film thickness of Cu 2 O (nm)=0.0124×current density (μA/cm 2 )×reduction time (sec)×0.1
Cu 2 S film thickness (nm)=0.0147×current density (μA/cm 2 )×reduction time (sec)×0.1
(2-2)Ni層における平均の厚さ及び単位面積当たりのNi量、並びに単位面積当たりのSi量
 複合銅部材を12%硝酸で処理してNiおよびSiを含む処理面を溶解させ、ICP発光分析装置5100 SVDV ICP-OES(アジレント・テクノロジー社製)を用いて、溶出液中のNiおよびSiの質量を測定した。そして、Niの密度を用いてNiの体積を算出し、得られた質量および体積を、Ni層が形成された複合銅箔の面積で割ることによって、Ni層の平均の厚さ及び単位面積当たりの質量を算出した。同様にして、Siは、単位面積当たりの質量を算出した。
(2-2) Average thickness and amount of Ni per unit area in the Ni layer, and amount of Si per unit area The composite copper member was treated with 12% nitric acid to dissolve the treated surface containing Ni and Si, and the mass of Ni and Si in the eluate was measured using an ICP emission spectrometer 5100 SVDV ICP-OES (manufactured by Agilent Technologies). Then, the volume of Ni is calculated using the density of Ni, and the average thickness of the Ni layer and the mass per unit area are calculated by dividing the obtained mass and volume by the area of the composite copper foil on which the Ni layer is formed. Similarly, for Si, the mass per unit area was calculated.
(2-3)XPS
 複合銅部材の処理面に対し、X線光電分光法(XPS:X-ray Photoelectron Spectroscopy)によって表面の元素分析を行った。
(2-3) XPS
Elemental analysis of the surface of the treated surface of the composite copper member was performed by X-ray Photoelectron Spectroscopy (XPS).
 装置は、Quantera SXM(ULVAC-PHI社)を用い、以下に記載の条件で深さ方向の成分を測定した。
X線源: 単色化 Al Kα(1486.6eV)
Arスパッタ条件:
    加速電圧:1kV
    照射面積:3x3mm
    スパッタ速度:2.03nm/min(SiO2換算)
A Quantera SXM (ULVAC-PHI) was used as a device, and the component in the depth direction was measured under the conditions described below.
X-ray source: monochromatic Al Kα (1486.6 eV)
Ar sputtering conditions:
Accelerating voltage: 1 kV
Irradiation area: 3x3mm
Sputtering speed: 2.03 nm/min (in terms of SiO2)
 元素分析の代表的な結果(実施例1、2、4、比較例1~4、8)を図4に示した。そして、
[1]Cuが検出され始める深さ
[2]Cuが検出され始めた深さから、検出された成分のうちCu、O、Niの3成分の合計を100%としたときにCuの割合が50%となる深さまでの距離
[3]深さ10nmにおいて、検出された成分のうちCu、O、Niの3成分の合計を100%としたときの各成分の割合を算出した。
Representative results of elemental analysis (Examples 1, 2, 4, Comparative Examples 1 to 4, 8) are shown in FIG. and,
[1] Depth at which Cu begins to be detected [2] From the depth at which Cu begins to be detected, the ratio of Cu is 50% when the sum of the three components Cu, O, and Ni among the detected components is 100%.
(2-4)飛行時間型二次イオン質量分析(TOF-SIMS)
作製した金属部材に対し、装置型式はTRIFT V nano-TOF(アルバック・ファイ株式会社製)を用い、以下に示した条件で測定した。その結果のうち、代表的な実施例14、15の結果を図5に示す。
(2-4) Time-of-flight secondary ion mass spectrometry (TOF-SIMS)
A TRIFT V nano-TOF (manufactured by ULVAC-Phi, Inc.) was used as the device type for the metal member thus produced, and the measurement was performed under the conditions shown below. Among the results, representative results of Examples 14 and 15 are shown in FIG.
装置型式: 
 一次イオン:30kV, Bi3++
 測定モード:バンチング
 ラスターサイズ:100μm×100μm
 測定時間:30フレーム/1視野
 帯電中和:無し
 ピクセル数:512×512 pixel
 GCIB: 
 N化合物:POSIスペクトル
 SiOx:NEGAスペクトル
Device model:
Primary ion: 30 kV, Bi3++
Measurement mode: bunching Raster size: 100 μm × 100 μm
Measurement time: 30 frames/1 field of view Charge neutralization: None Number of pixels: 512 x 512 pixels
GCIB:
N compound: POSI spectrum SiOx: NEGA spectrum
(2-5)溶出試験
 複合銅箔を40mmx18mmの大きさに切断して銅箔片を作製した。非処理面はマスキングテープ(めっき用マスキングテープ 851A:3M製)でマスキングし、処理面のみで溶出試験を実施した。10枚の銅箔片を、純水20mLに浸し、HAST試験(121℃、湿度85%、2気圧、60時間)を行い、金属の溶出液を得た。ICP発光分析装置5100 SVDV ICP-OES(アジレント・テクノロジー社製)を用いて、溶出液中のNiおよびCuの質量を測定した。
(2-5) Elution Test A piece of copper foil was prepared by cutting the composite copper foil into a size of 40 mm×18 mm. The untreated surface was masked with a masking tape (masking tape for plating 851A: manufactured by 3M), and the elution test was performed only on the treated surface. Ten copper foil pieces were immersed in 20 mL of pure water and subjected to a HAST test (121° C., 85% humidity, 2 atm, 60 hours) to obtain a metal eluate. Using an ICP emission spectrometer 5100 SVDV ICP-OES (manufactured by Agilent Technologies), the masses of Ni and Cu in the eluate were measured.
(2-6)凸部の数
 ニッケル層を含む側の表面に平行な方向で測ったときの凸部の数は、集束イオンビーム(FIB)によって複合銅箔の断面を観察した走査型電子顕微鏡(SEM)像(倍率は×50,000)において、3.8μmあたり長さ50nm以上1500nm以下の凸部の数を計測した。
(2-6) Number of protrusions The number of protrusions measured in a direction parallel to the surface on the side containing the nickel layer was obtained by observing the cross section of the composite copper foil with a focused ion beam (FIB).
(2-7)表面粗さ(Ra及びRz)
 複合銅箔及び複合銅板の処理面に対し、共焦点走査電子顕微鏡 OPTELICS H1200(レーザーテック株式会社製)を用いて銅箔の表面形状を測定し、JIS B 0601:2001(国際基準ISO4287-1997準拠)に定められた方法によりRa及びRzを算出した。測定条件として、スキャン幅は100μm、スキャンタイプはエリアとし、Light sourceはBlue、カットオフ値は1/5とした。オブジェクトレンズは×100、コンタクトレンズは×14、デジタルズームは×1、Zピッチは10nmの設定とし、3箇所のデータを取得し、Ra、Rzは3箇所の平均値とした。
(2-7) Surface roughness (Ra and Rz)
For the treated surface of the composite copper foil and composite copper plate, the surface shape of the copper foil was measured using a confocal scanning electron microscope OPTELICS H1200 (manufactured by Lasertec Co., Ltd.), and Ra and Rz were calculated by the method specified in JIS B 0601: 2001 (in accordance with international standards ISO4287-1997). As measurement conditions, the scan width was 100 μm, the scan type was area, the light source was Blue, and the cutoff value was 1/5. The object lens was set to ×100, the contact lens was set to ×14, the digital zoom was set to ×1, and the Z pitch was set to 10 nm.
(2-8)樹脂との接着性(樹脂に対するピール強度)
 複合銅箔の処理面に対してフィラー充填量92wt%のシート状の樹脂Aまたはフィラー充填量55wt%のシート状樹脂Bを積層し、真空高圧プレス機を用いて熱圧着した。熱圧着後すぐの試験片に対して、90°剥離試験(日本工業規格(JIS)C5016)によりピール強度(kgf/cm)を測定した。
(2-8) Adhesion to resin (peel strength to resin)
A sheet-like resin A with a filler content of 92 wt % or a sheet-like resin B with a filler content of 55 wt % was laminated on the treated surface of the composite copper foil and thermocompression bonded using a vacuum high pressure press. Peel strength (kgf/cm) was measured by a 90° peel test (Japanese Industrial Standards (JIS) C5016) on the test piece immediately after thermocompression bonding.
(2-9)はんだ耐熱性
 ピール強度試験片と同様に、複合銅箔の処理面に対してフィラー充填量92wt%のシート状の樹脂Aまたはフィラー充填量55wt%のシート状樹脂Bを積層したサンプルを25mm×25mmの大きさに切断して試験片を作製した。260℃もしくは300℃の温度のはんだ槽にサンプルを浸し、目視で銅箔片が膨れ始める時間を計測し、はんだ耐熱性の指標とした。
(2-9) Soldering heat resistance As with the peel strength test piece, a sheet-shaped resin A with a filler loading of 92 wt% or a sheet-shaped resin B with a filler loading of 55 wt% was laminated on the treated surface of the composite copper foil. A sample was immersed in a solder bath at a temperature of 260° C. or 300° C., and the time at which the copper foil piece began to swell was visually measured and used as an index of solder heat resistance.
(2-10)絶縁破壊時間
 表1に記載の条件で処理した銅板(厚さ0.5mm)をベース銅とし、ベース銅の処理面に、フィラー充填量92wt%のシート状樹脂Aまたはフィラー充填量55wt%のシート状樹脂Bを積層(厚さ0.1mm)し、さらに比較例4の条件で処理を行った回路銅(厚さ0.5mm)を、処理面で接触するように積層した後、回路銅をΦ20mmの円形のパターンになるようにエッチングした。回路銅側がプラス極、ベース銅側がマイナス極として、温度85℃、湿度85%の恒温恒湿下で1kVを印加し、絶縁破壊するまでの時間を計測した。なお、本試験では、1mA以上の電流が流れたときの時間を絶縁破壊時間とした。なお、絶縁破壊時間は4点の平均値を用いた。
(2-10) Dielectric breakdown time A copper plate (thickness 0.5 mm) treated under the conditions shown in Table 1 is used as the base copper, and on the treated surface of the base copper, a sheet-like resin A with a filler content of 92 wt% or a sheet-like resin B with a filler content of 55 wt% is laminated (thickness 0.1 mm). It was etched to become a pattern of With the circuit copper side as the positive pole and the base copper side as the negative pole, 1 kV was applied under constant temperature and humidity of 85° C. and 85% humidity, and the time until dielectric breakdown occurred was measured. In this test, the dielectric breakdown time was defined as the time when a current of 1 mA or more flowed. In addition, the average value of four points was used for the dielectric breakdown time.
(2-11)樹脂との接着性(ダイシェア強度)
 表1に記載の条件で処理した銅板に0.05mmのギャップを形成するため0.05mm厚のポリイミドテープを貼り付け、フィラー充填量65wt%のモールド樹脂をディスペンスにて塗布した。その後、ポリイミドパッシベーション膜およびプラズマ処理が施してある5mm角のシリコンチップをフィラー充填量65wt%のモールド樹脂に載せ、オーブンで硬化させた。その後、万能型ボンドテスター(ノードソン・アドバンスト・テクノロジー製)でダイシェア強度を測定した。樹脂付着部の面積を測定し、シェア強度/樹脂面積により、接着強度を算出した。なお、10点の異なる場所を測定し、その平均値を用いた。
(2-11) Adhesion with resin (die shear strength)
A polyimide tape having a thickness of 0.05 mm was attached to the copper plate treated under the conditions shown in Table 1 to form a gap of 0.05 mm, and a molding resin having a filler content of 65 wt % was applied by dispensing. After that, a 5 mm square silicon chip with a polyimide passivation film and a plasma treatment was placed on a mold resin with a filler content of 65 wt % and cured in an oven. After that, the die shear strength was measured with a universal bond tester (manufactured by Nordson Advanced Technologies). The area of the resin-adhered portion was measured, and the adhesive strength was calculated from the shear strength/resin area. Measurements were taken at 10 different points, and the average value was used.
(3)結果
 以上の分析結果を表2に示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-I000006
Figure JPOXMLDOC01-appb-I000007
Figure JPOXMLDOC01-appb-I000008
(3) Results Table 2 shows the above analysis results.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-I000006
Figure JPOXMLDOC01-appb-I000007
Figure JPOXMLDOC01-appb-I000008
 実施例の複合銅箔は、全て、走査電子顕微鏡による前記複合銅部材の断面の撮影像において、ニッケル層を含む側の表面に平行な方向で測ったときの長さ50nm以上1500nm以下の凸部の数が、3.8μmあたり5個以上であって、ニッケル層におけるニッケル量が平均2~35mg/dmであった。 In all of the composite copper foils of Examples, the number of protrusions having a length of 50 nm or more and 1500 nm or less when measured in a direction parallel to the surface of the side containing the nickel layer was 5 or more per 3.8 μm, and the average amount of nickel in the nickel layer was 2 to 35 mg / dm 2 .
 また、実施例の複合銅箔は、全て、複合銅部材の表面において、0~350nmの深さで銅が検出され、かつ、表面からの深さ10nmにおいて、Cuの質量含有率よりもNiの質量含有率が大きく、表面からの深さ10nmにおいて、Cu、O、Niの3成分の総質量に対する、Niの質量の割合が40~100%であり、表面からの深さ10nmにおいてCu、O、Niの3成分の総質量に対する、Cuの質量の割合が0~50%であった。 In addition, in all the composite copper foils of the examples, copper was detected at a depth of 0 to 350 nm on the surface of the composite copper member, and at a depth of 10 nm from the surface, the mass content of Ni was larger than that of Cu. The mass ratio of Cu was 0 to 50%.
 比較例1、2、5、7はめっき処理がされておらず、Niの付着量が0である。比較例3、6もめっき処理の時間が短く、Niの付着量が非常に少ない(平均1.3mg/dm以下:これは実施例の最低値の2分の1以下に当たる)。また、これらの比較例においては、表面からの深さ10nmでのNi割合が35%以下でCu割合が50%以上となり、Cuの質量含有率よりもNi質量含有率が大きく、実施例と比べてCuイオンの溶出量が顕著に多かった。そのため、絶縁破壊時間が非常に短い。 Comparative Examples 1, 2, 5, and 7 were not plated, and the Ni adhesion amount was zero. Comparative Examples 3 and 6 also had a short plating time and a very small amount of Ni adhesion (average 1.3 mg/dm 2 or less, which is less than half the minimum value of the examples). In addition, in these comparative examples, the Ni ratio at a depth of 10 nm from the surface was 35% or less and the Cu ratio was 50% or more, the Ni mass content was larger than the Cu mass content, and the amount of eluted Cu ions was significantly greater than in the examples. Therefore, the dielectric breakdown time is very short.
 比較例4はNi付着量が多すぎるため、レベリングにより凹凸が平滑化され、十分な凸部が形成されなかった(3個)。また、Niの厚さに比べて、凸部が短すぎるため表面から0~350nmの深さで銅が検出されない。そのため、接着性や耐熱性、PCT後の接着性が実施例と比べてかなり劣る。これは、酸化処理によって形成される凸部の長さに対してめっき処理によるNi付着量が多すぎるためと考えられる。 In Comparative Example 4, since the Ni adhesion amount was too large, the unevenness was smoothed by leveling, and sufficient convex portions were not formed (3 pieces). In addition, copper is not detected at a depth of 0 to 350 nm from the surface because the protrusions are too short compared to the thickness of Ni. Therefore, the adhesiveness, heat resistance, and adhesiveness after PCT are considerably inferior to those of the examples. It is considered that this is because the amount of Ni adhered by the plating process is too large for the length of the projections formed by the oxidation process.
 比較例8は、実施例6、17と同様にめっき処理の時間が長く、Niの付着量が30mg/dm以上と、他の例に比べてNiの付着量が多い。しかし、実施例6、17と異なり、酸化処理を行っていないので、3.8μmあたりの凸部の数が非常に少ない(3個)。また、Niが厚すぎるため表面から0~350nmの深さで銅が検出されない。そのため、接着性や耐熱性、PCT後の接着性が実施例と比べてかなり劣る。 In Comparative Example 8, like Examples 6 and 17, the plating treatment time was long, and the Ni adhesion amount was 30 mg/dm 2 or more, which is larger than the other examples. However, unlike Examples 6 and 17, the number of protrusions per 3.8 μm is very small (three) because no oxidation treatment is performed. Also, since the Ni is too thick, copper is not detected at a depth of 0 to 350 nm from the surface. Therefore, the adhesiveness, heat resistance, and adhesiveness after PCT are considerably inferior to those of the examples.
 比較例9は、Ni量は適正な範囲にあるが酸化処理を行っていないため、凸部の数が非常に少ない(4個)。そのため、接着性やはんだ耐熱性、PCT後の接着性が実施例と比べてかなり劣る。 In Comparative Example 9, although the amount of Ni is within an appropriate range, the number of protrusions is very small (four) because oxidation treatment is not performed. Therefore, the adhesiveness, solder heat resistance, and adhesiveness after PCT are considerably inferior to those of the examples.
 一方、実施例では接着性および300℃の高い温度においてもはんだ耐熱性が良好で、かつCuイオンの溶出量が少なく、絶縁破壊時間が長かった。 On the other hand, in the example, the adhesiveness and solder heat resistance were good even at a high temperature of 300°C, the amount of Cu ion elution was small, and the dielectric breakdown time was long.
 以下の理論に拘泥するわけではないが、接着性やはんだ耐熱性、PCT後の接着性が良好になるためには、酸化処理によって形成される凸部の長さとめっき処理によるNi付着量のバランスが適正である必要があると考えられる。 Although it is not bound by the theory below, it is believed that in order to improve the adhesiveness, solder heat resistance, and adhesiveness after PCT, it is necessary to have an appropriate balance between the length of the protrusions formed by the oxidation treatment and the amount of Ni adhered by the plating treatment.
 本発明によって、新規な複合銅部材、およびその複合銅部材を含むパワーモジュールを提供できる。 According to the present invention, a novel composite copper member and a power module including the composite copper member can be provided.

Claims (12)

  1.  銅部材と、前記銅部材の少なくとも一部の表面にニッケル層とを含む複合銅部材であって、
     前記ニッケル層を含む側の前記表面が凸部を有し、
     走査電子顕微鏡による前記複合銅部材の断面の撮影像において、前記ニッケル層を含む側の前記表面に平行な方向で測ったときの長さ50nm以上1500nm以下の前記凸部の数が、3.8μmあたり5個以上であって、
     前記ニッケル層のニッケル量が平均2~35mg/dmである、複合銅部材。
    A composite copper member comprising a copper member and a nickel layer on at least a part of the surface of the copper member,
    The surface on the side containing the nickel layer has a convex portion,
    In a cross-sectional image of the composite copper member taken by a scanning electron microscope, the number of protrusions having a length of 50 nm or more and 1500 nm or less when measured in a direction parallel to the surface on the side containing the nickel layer is 5 or more per 3.8 μm,
    A composite copper member, wherein the nickel layer has an average amount of nickel of 2 to 35 mg/dm 2 .
  2.  前記ニッケル量が、高周波誘導結合プラズマ発光分光分析で測定された値である、請求項1に記載の複合銅部材。 The composite copper member according to claim 1, wherein the amount of nickel is a value measured by high frequency inductively coupled plasma emission spectrometry.
  3.  銅部材と、前記銅部材の少なくとも一部の表面にニッケル層とを含む複合銅部材であって、
     前記ニッケル層を含む側の前記表面が凸部を有し、
     走査電子顕微鏡による前記複合銅部材の断面の撮影像において、前記ニッケル層を含む側の前記表面に平行な方向で測ったときの長さ50nm以上1500nm以下の前記凸部の数が、3.8μmあたり5個以上であって、
     前記複合銅部材の前記ニッケル層を含む側の前記表面において、0~350nmの深さで銅が検出され、かつ、
    (A)前記ニッケル層を含む側の前記表面からの深さ10nmにおいて、Cuの質量含有率よりもNiの質量含有率が大きい;
    (B)前記表面からの深さ10nmにおいて、Cu、O、Niの3成分の総質量に対する、Niの質量の割合が40~100%である;および
    (C)前記表面からの深さ10nmにおいてCu、O、Niの3成分の総質量に対する、Cuの質量の割合が0~50%である;
    からなる群のうちのいずれか一つを満たす、複合銅部材。
    A composite copper member comprising a copper member and a nickel layer on at least a part of the surface of the copper member,
    The surface on the side containing the nickel layer has a convex portion,
    In a cross-sectional image of the composite copper member taken by a scanning electron microscope, the number of protrusions having a length of 50 nm or more and 1500 nm or less when measured in a direction parallel to the surface on the side containing the nickel layer is 5 or more per 3.8 μm,
    Copper is detected at a depth of 0 to 350 nm on the surface of the composite copper member that includes the nickel layer, and
    (A) at a depth of 10 nm from the surface on the side containing the nickel layer, the mass content of Ni is greater than the mass content of Cu;
    (B) at a depth of 10 nm from the surface, the ratio of the mass of Ni to the total mass of the three components Cu, O, and Ni is 40 to 100%; and (C) at a depth of 10 nm from the surface, the ratio of the mass of Cu to the total mass of the three components of Cu, O, and Ni is 0 to 50%;
    A composite copper member that satisfies any one of the group consisting of:
  4.  前記銅の検出と、前記Cu、O、Niの質量分析がX線光電子分光法によって行われる、請求項3に記載の複合銅部材。 The composite copper member according to claim 3, wherein the detection of copper and the mass spectrometry of Cu, O, and Ni are performed by X-ray photoelectron spectroscopy.
  5.  前記ニッケル層を含む側の表面に、さらにケイ素層を有する、請求項1~4のいずれか1項に記載の複合銅部材。 The composite copper member according to any one of claims 1 to 4, further comprising a silicon layer on the surface containing the nickel layer.
  6.  前記ケイ素層におけるケイ素量が35μg/cm以上である、請求項5に記載の複合銅部材。 The composite copper member according to claim 5, wherein the amount of silicon in said silicon layer is 35 µg/cm 2 or more.
  7.  TOF-SIMSの表面分析により、前記ケイ素層の表面からSixOyのピークとN化合物のピークとが検出される、請求項5又は6に記載の複合銅部材。 The composite copper member according to claim 5 or 6, wherein a SixOy peak and an N compound peak are detected from the surface of the silicon layer by TOF-SIMS surface analysis.
  8.  請求項1~7のいずれか1項に記載の複合銅部材と、前記ニッケル層を含む側の表面で前記複合銅部材に接着している絶縁材と、を含むパワーモジュール。 A power module comprising the composite copper member according to any one of claims 1 to 7, and an insulating material adhered to the composite copper member on the surface including the nickel layer.
  9.  前記絶縁材のフィラー充填量が50wt%以上である、請求項8に記載のパワーモジュール。 The power module according to claim 8, wherein the filler filling amount of the insulating material is 50 wt% or more.
  10.  前記絶縁材がシート樹脂またはモールド樹脂である、請求項8または9に記載のパワーモジュール。 The power module according to claim 8 or 9, wherein the insulating material is sheet resin or mold resin.
  11.  請求項1に記載の複合銅部材の製造方法であって、
     前記銅部材の表面を酸化処理することにより、前記表面に銅酸化物層を形成する工程と、
     前記銅酸化物層が形成された前記表面をニッケルでめっき処理することにより、銅部材表面にニッケル層を形成する工程と、
    を含む、製造方法。
    A method for manufacturing a composite copper member according to claim 1,
    forming a copper oxide layer on the surface of the copper member by oxidizing the surface;
    forming a nickel layer on the surface of the copper member by plating the surface on which the copper oxide layer is formed with nickel;
    A manufacturing method, including:
  12.  請求項8に記載のパワーモジュールの製造方法であって、
     請求項1~7のいずれか1項に記載の複合銅部材を、前記ニッケル層を含む側の表面で前記絶縁材に接着させる工程を含む、製造方法。
    A method for manufacturing a power module according to claim 8,
    A manufacturing method comprising the step of bonding the composite copper member according to any one of claims 1 to 7 to the insulating material on the surface of the side including the nickel layer.
PCT/JP2022/048019 2022-01-21 2022-12-26 Composite copper member and power module including composite copper member WO2023140063A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022008217 2022-01-21
JP2022-008217 2022-01-21

Publications (1)

Publication Number Publication Date
WO2023140063A1 true WO2023140063A1 (en) 2023-07-27

Family

ID=87348603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/048019 WO2023140063A1 (en) 2022-01-21 2022-12-26 Composite copper member and power module including composite copper member

Country Status (2)

Country Link
TW (1) TW202401680A (en)
WO (1) WO2023140063A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016191085A (en) * 2015-03-30 2016-11-10 Jx金属株式会社 Copper fine particle paste and manufacturing method therefor
WO2019093494A1 (en) * 2017-11-10 2019-05-16 ナミックス株式会社 Composite copper foil

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016191085A (en) * 2015-03-30 2016-11-10 Jx金属株式会社 Copper fine particle paste and manufacturing method therefor
WO2019093494A1 (en) * 2017-11-10 2019-05-16 ナミックス株式会社 Composite copper foil

Also Published As

Publication number Publication date
TW202401680A (en) 2024-01-01

Similar Documents

Publication Publication Date Title
EP1469514B1 (en) Conductor substrate for semiconductor device and production method thereof
KR102636971B1 (en) composite copper foil
WO2021132191A1 (en) Composite copper member treated with silane coupling agent
KR102542984B1 (en) Objects with a roughened copper surface
WO2023140063A1 (en) Composite copper member and power module including composite copper member
WO2021172096A1 (en) Composite copper member having voids
CN1144670C (en) Copper film for TAB band carrier and TAB carried band and TAB band carrier
WO2020226158A1 (en) Apparatus for processing copper surface
JP2023107101A (en) Copper member
TW202311563A (en) Copper member
EP4050123A1 (en) Composite copper member
WO2020226159A1 (en) Method for manufacturing metal member having metal layer
WO2020226160A1 (en) Composite copper member
WO2021193470A1 (en) Composite copper wiring line ahd multilayer body having resist layer
JP7352939B2 (en) composite copper parts
JP7409602B2 (en) composite copper parts
WO2022050001A1 (en) Copper foil and laminate, and manufacturing methods therefor
JP2023051784A (en) Copper member
KR20230160789A (en) Laminate for wiring board
JPH0951054A (en) Board for electronic component and its manufacture

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22922213

Country of ref document: EP

Kind code of ref document: A1