WO2023139671A1 - Communication apparatus, communication method, and program - Google Patents
Communication apparatus, communication method, and program Download PDFInfo
- Publication number
- WO2023139671A1 WO2023139671A1 PCT/JP2022/001704 JP2022001704W WO2023139671A1 WO 2023139671 A1 WO2023139671 A1 WO 2023139671A1 JP 2022001704 W JP2022001704 W JP 2022001704W WO 2023139671 A1 WO2023139671 A1 WO 2023139671A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- communication device
- communication
- space
- transmission rate
- obstacle
- Prior art date
Links
- 238000004891 communication Methods 0.000 title claims abstract description 202
- 238000000034 method Methods 0.000 title claims abstract description 27
- 230000005540 biological transmission Effects 0.000 claims abstract description 79
- 238000001514 detection method Methods 0.000 claims abstract description 21
- 230000003287 optical effect Effects 0.000 abstract description 33
- 230000008859 change Effects 0.000 abstract description 5
- 230000004044 response Effects 0.000 abstract description 5
- 238000010586 diagram Methods 0.000 description 5
- 239000000470 constituent Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 230000011218 segmentation Effects 0.000 description 3
- 238000013527 convolutional neural network Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 101100465000 Mus musculus Prag1 gene Proteins 0.000 description 1
- 101100412093 Schizosaccharomyces pombe (strain 972 / ATCC 24843) rec16 gene Proteins 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/07—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/11—Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
- H04B10/112—Line-of-sight transmission over an extended range
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/30—Monitoring; Testing of propagation channels
Definitions
- the present disclosure relates to a communication device used for optical wireless communication, its communication method, and its program.
- Non-Patent Document 1 Land-based transceivers using optical radio (see, for example, Non-Patent Document 1) and underwater communication modules have been developed (see, for example, Non-Patent Document 2).
- the signal strength obtained on the receiving side changes depending on the positional relationship between the transmitter and receiver and changes in the propagation environment.
- the communication modules described in Non-Patent Documents 1 and 2 radiate light LB in a conical shape from the transmitting side communication device 10, and the signal strength obtained by the receiving side communication device 20 is large near the center of the cone and decreases toward the outside.
- optical wireless communication is required to select an appropriate communication medium and modulation scheme according to the state of the propagation path.
- Non-Patent Document 3 discloses an IEEE 802.11 wireless LAN communication method using radio waves as a transmission speed adjustment method for changes in positional relationship and propagation environment.
- the communication method employs an algorithm that counts the number of successful frame transmissions and the number of unsuccessful transmissions at a given transmission rate, and increases or decreases the transmission rate by one step when either count occurs a number of times equal to or greater than a threshold.
- the IEEE802.11 wireless LAN implements rate control algorithms such as these, and can perform communication adapted to changes in the radio wave propagation environment.
- optical wireless communication When considering the use of light as a medium for wireless communication, optical wireless communication has strong directivity, so compared to sound waves and radio waves, it is more susceptible to obstructions and misalignment between the transmitter and receiver, and the signal strength obtained on the receiver side tends to be unstable. For example, even if there is an obstacle between the transmitter and receiver, the strength of the received signal will be less reduced due to diffraction in the case of radio waves, but in the case of optical wireless communication, there is a possibility that the signal can hardly be received due to the shielding of the obstacle. For this reason, in optical wireless communication, it is considered that the change in communication quality with respect to the change in the propagation environment becomes steeper.
- the rate control algorithm disclosed in Non-Patent Document 3 increases or decreases the transmission rate step by step by accumulating the communication results between the transmitter and receiver. For this reason, the rate control algorithm disclosed in Non-Patent Document 3 has the problem that when the communication quality changes sharply, the increase or decrease of the transmission speed is delayed in response to the change, and during that time, the communication unavailable time of the user terminal increases and the communication resources of the base station apparatus are consumed.
- the present invention aims to provide a communication device, a communication method, and a program that can select an appropriate transmission medium and transmission rate without delay in response to sudden changes in the communication quality of optical wireless communication, and can reduce the communication unavailable time of the user terminal and suppress the consumption of communication resources.
- the communication device is equipped with a device that recognizes the space, such as a camera, and predicts the current and future possible transmission rates from the opposing communication device and its surrounding information as seen from the device.
- the communicator includes: a spatial recognition device that observes space in a predetermined direction; a detection unit that analyzes the information of the space observed by the space recognition device, and detects the state of the counterpart communication device in the space when the counterpart communication device exists in the space; a quality prediction model that outputs a transmission rate according to the state of the opposite communication device; Prepare.
- the communication method includes: observing space in a given direction; detecting the state of the counterpart communication device in the space when the counterpart communication device exists in the space; and outputting a transmission rate according to the state of the counterpart communication device; I do.
- This communication device and this communication method capture a space with a device such as a camera, recognize the state of the communication partner existing in the space from the image, and set the transmission rate according to that state. With this function, it is possible to grasp changes in the state of the communication partner and optical axis misalignment in optical wireless communication, and to set a new transmission rate without delay.
- the "state" of the communication partner means at least one of the "position” of the communication partner, the “contour (size and shape)" of the communication partner, and the "clearness of contrast near the contour" of the communication partner.
- the present invention can provide a communication device and a communication method that can select an appropriate transmission medium and transmission rate without delay in response to sudden changes in the communication quality of optical wireless communication, and can reduce the communication unavailable time of the user terminal and suppress the consumption of communication resources.
- the detection unit of the communication device detects the state of the obstacle in the space when there is an obstacle that obstructs communication with the opposing communication device in the space, and the quality prediction model outputs the transmission rate in consideration of the relative relationship between the opposing communication device and the obstacle.
- the quality prediction model when determining that the obstacle is moving, estimates the relative relationship in the future and outputs the transmission rate according to the relationship.
- This communication device can predict that the light of the optical wireless communication will be blocked by the obstacle by grasping the position and movement of the obstacle relative to the opposing communication device and the obstacle. The communication device can then set the transmission rate in advance based on this prediction.
- the “relative relationship” between the opposing communication device and the obstacle means at least one of “relative position” between the opposing communication device and the obstacle, “relative contour relationship” between the opposing communication device and the obstacle, and “clearness of contrast near the contour” of each of the opposing communication device and the obstacle.
- the present invention is a program for causing a computer to function as the communication device.
- the communication device of the present invention can also be implemented by a computer and a program, and the program can be recorded on a recording medium or provided through a network.
- the present invention can provide a communication device, a communication method, and a program that can select an appropriate transmission medium and transmission rate without delay in response to sudden changes in the communication quality of optical wireless communication, and can reduce the communication unavailable time of the user terminal and suppress the consumption of communication resources.
- FIG. 5 is a diagram illustrating a specific example of predicting communication quality with a communication device according to the present invention. It is a figure explaining the communication apparatus which concerns on this invention.
- FIG. 2 is a diagram for explaining the basic operation of the communication device 10 of this embodiment.
- the communication device 10 is a terminal on the transmission side.
- the communication device 10 a spatial recognition device 11 that observes a space in a predetermined direction; a detection unit 12 that analyzes the information of the space observed by the space recognition device 11, and detects the state of the opposite communication device 20 (receiving side communication device) 20 in the space when the opposite communication device (receiving side communication device) 20 exists in the space; a quality prediction model 13 that outputs a transmission rate according to the state of the counterpart communication device 20; Prepare.
- the detection unit 12 and the quality prediction model 13 can perform image recognition and quality prediction from “position”, “contour (equivalent to size and shape)", or “clearness of contrast near contour”.
- the communicator 10 includes a spatial recognition device 11 such as a camera, and predicts the current and future transmittable rates from the opposing communicator 20 and its peripheral information viewed from the spatial recognition device 11 .
- the spatial recognition device 11 is directed in a direction that coincides to some extent with the optical axis of the light LB of the optical wireless communication or the direction of the opposing communication device 20, and acquires an image in that direction as shown in FIG. 2(B).
- the detection unit 12 detects the position of the obstacle 30 in the space, and the quality prediction model 13 outputs the transmission rate that takes into account the relative positions of the counterpart communication device 20 and the obstacle 30. Furthermore, when the quality prediction model 13 determines that the obstacle 30 is moving, it estimates the future position of the obstacle 30 in the space and outputs the transmission rate according to the position.
- the detection unit 12 detects the presence and position of the opposing communication device 20 and the obstacle 30 by analyzing the video. For example, when the optical axis of light LB fluctuates as indicated by symbol FA, the opposing communication device 20 fluctuates as indicated by symbol FI in the image. That is, the detection unit 12 can detect optical axis shift and fluctuation of the light LB from the position of the opposite communication device 20 .
- the light LB is conical as imaged in FIG. 2(A), and the light intensity becomes weaker as it deviates from the center of the bottom of the cone. Therefore, when the optical axis of light LB fluctuates as indicated by symbol FA, the possible transmission rate varies according to the position of the opposed communication device 20 in the image. In addition, the possible transmission rate fluctuates depending on the relative positions of the obstacle 30 and the opposite communication device 20 (especially when the obstacle 30 comes in front of the opposite communication device 20 and blocks the light LB).
- the quality prediction model 13 predicts the current or future possible transmission rate (for example, 10 Mbps after 0.5 seconds, 2 Mbps after 1.0 seconds, etc.) using, for example, the position of the opposite communication device 20 in the video, the relative positional relationship with the obstacle 30, and the contour (edge) 20a of the opposite communication device 20 as feature quantities. Then, based on the prediction result, the communication device 10 determines measures such as communicating with the counterpart communication device 20 at a maximum transmission rate that does not exceed the possible transmission rate, or allocating communication resources to the counterpart communication device 20.
- the current or future possible transmission rate for example, 10 Mbps after 0.5 seconds, 2 Mbps after 1.0 seconds, etc.
- FIG. 3 shows an example in which the communication device 10 is equipped with the spatial recognition device 11.
- the space recognition device 11 of the communication device 10 is a device capable of recognizing the opposite communication device 20, such as a camera.
- the type of device may be a camera or sonar for wavelength bands other than visible light, and the dimension of spatial recognition may be two-dimensional or three-dimensional.
- the detection unit 12 of the communication device 10 analyzes the spatial information acquired by the space recognition device 11 and detects the position of the opposing communication device 20 .
- the quality prediction model 13 of the communication device 10 predicts and outputs a achievable transmission rate based on the position of the counterpart communication device 20 detected by the detection unit 12 . Also, the quality prediction model 13 feeds back the actual transmission/reception result from the reception status (ack/nack) from the counterpart communication device 20 received by the reception module 17, and corrects the model.
- the transmission method determination unit 14 of the communication device 10 determines whether or not to execute data transmission to the opposite communication device 20 at the transmission rate output by the quality prediction model 13, and determines the transmission rate.
- the transmission rate control unit 15 of the communication device 10 performs transmission rate control on the transmission module 16 .
- FIG. 4 is a diagram for explaining the opposite communication device 20 of this embodiment.
- the opposite communication device 20 is a terminal on the receiving side.
- FIG. 4 shows an example in which the counterpart communication device 20 is equipped with the space recognition device 11.
- FIG. 4 shows an example in which the counterpart communication device 20 is equipped with the space recognition device 11.
- the space recognition device 11 of the communication device 20 is a device capable of recognizing the communication device 10, such as a camera.
- the type of device may be a camera or sonar for wavelength bands other than visible light, and the dimension of spatial recognition may be two-dimensional or three-dimensional.
- the detection unit 12 of the communication device 20 analyzes the spatial information acquired by the space recognition device 11 and detects the position of the communication device 10 .
- the quality prediction model 13 of the communication device 20 predicts and outputs a realizable transmission rate based on the position of the communication device 10 detected by the detection unit 12 . Also, the quality prediction model 13 feeds back the actual transmission/reception result from the amount of data that can be decoded by the reception module 27, and corrects the model.
- the requested transmission rate determination unit 24 of the communication device 20 determines the requested transmission rate requested to the transmission module 26 based on the transmission rate output by the quality prediction model 13 .
- the transmission rate control unit 25 of the communication device 20 performs transmission rate control on the transmission module 26 based on the requested transmission rate. At this time, the requested transmission rate determined by the requested transmission rate determining unit 24 may be changed.
- FIG. 5 is a diagram illustrating the communication device 10 and the opposing communication device 20. As shown in FIG. FIG. 5 shows an example in which both the communication device 10 and the opposing communication device 20 are equipped with the spatial recognition device 11.
- FIG. 5 shows an example in which both the communication device 10 and the opposing communication device 20 are equipped with the spatial recognition device 11.
- the structure of the receiver communicator 20 is as follows.
- the quality prediction model 13 predicts a realizable transmission rate (transmittable rate prediction value) based on the position of the communication device 10 detected by the detection unit 12 and transmits it to the communication device 10 via the transmission module 26 .
- the predicted value transmitted here may be used as an input variable of the quality prediction model 13 on the communication device 10 side, or may be used as a logic variable of the transmission method determination unit 14 .
- the structure of the transmitter 10 is as follows.
- the quality prediction model 13 predicts a achievable transmission rate based on the position of the communication device 20 detected by the detection section 12 and notifies it to the transmission method determination section 14 .
- the input can include not only the location information from the detection unit 12 but also the transmittable rate prediction value transferred from the communication device 20 .
- the transmission method determination unit 14 determines whether or not to execute data transmission to the communication device 20 and the transmission rate based on the transmission rate output from the quality prediction model 13 .
- the input can include the transmittable rate prediction value transferred from the communication device 20 in addition to the transmittable rate from the quality prediction model 13 .
- the communication device enables transmission rate control that predicts abrupt changes in communication quality of optical wireless communication in advance, and can realize reduction in communication unavailable time of user terminals and effective utilization of communication resources.
- optical wireless communication in which the transmitter emits light in a conical shape, or a transmission method that spreads (for example, optical wireless communication using a laser)
- phenomena such as reception intensity distribution changing depending on the position of the receiver within the field of view of the camera and partial shielding by obstacles can be considered.
- Optical wireless communication at a distance at which an object can be recognized by a camera or at a brightness at which an object can be recognized by a camera for example, ultra-long-distance communication or optical wireless communication in the deep sea
- the communication device 10 is equipped with a 1980 ⁇ 1080 pixel camera as the spatial recognition device 11, and the transmission module 16 emits light LB at a radiation angle of 15°.
- the receiving module 27 of the opposite communication device 20 has a receivable size of 0.5 m and that the camera of the communication device 10 can recognize an object of 5 ⁇ 5 pixels, the maximum detectable d is about 200 m.
- a method utilizing instance segmentation by deep learning is exemplified.
- the method can recognize objects such as opposing communicators and surrounding obstacles, and perform classification and regression on each object.
- Instance segmentation can be implemented by a library or the like using the python language, such as Reference Document 1.
- the detection and quality prediction of opposing communication devices and surrounding obstacles may be performed on spatial data at a certain moment, but may also be performed using multiple pieces of spatial data acquired over a certain time span, as shown in FIG.
- By analyzing a plurality of time-shifted spatial data it becomes possible to recognize the moving speed of each object, and the accuracy of prediction of blockage by the obstacle 30 and fluctuation of the optical axis of the light LB (fluctuation FI of the opposing communication device 20) can be improved.
- analyzing a two-dimensional continuous photograph or moving image it can be realized by using the method as described in reference 2.
- FIG. 8 shows a block diagram of system 100 .
- System 100 includes computer 105 connected to network 135 .
- the network 135 is a data communication network.
- Network 135 may be a private network or a public network and may include any or all of (a) a personal area network covering, for example, a room; (b) a local area network covering, for example, a building; (c) a campus area network covering, for example, a campus; (d) a metropolitan area network covering, for example, a city; . Communication is by electronic and optical signals through network 135 .
- Computer 105 includes a processor 110 and memory 115 coupled to processor 110 . Although computer 105 is represented herein as a stand-alone device, it is not so limited, but rather may be connected to other devices not shown in a distributed processing system.
- the processor 110 is an electronic device made up of logic circuits that respond to and execute instructions.
- the memory 115 is a tangible computer-readable storage medium in which a computer program is encoded.
- memory 115 stores data and instructions, or program code, readable and executable by processor 110 to control its operation.
- Memory 115 may be implemented in random access memory (RAM), hard drive, read only memory (ROM), or a combination thereof.
- One of the components of memory 115 is program module 120 .
- Program modules 120 contain instructions for controlling processor 110 to perform the processes described herein. Although operations are described herein as being performed by computer 105 or a method or process or its subprocesses, those operations are actually performed by processor 110 .
- module is used herein to refer to a functional operation that can be embodied either as a standalone component or as an integrated composition of multiple subcomponents. Accordingly, program module 120 may be implemented as a single module or as multiple modules working in cooperation with each other. Further, although program modules 120 are described herein as being installed in memory 115 and thus implemented in software, they can be implemented in either hardware (e.g., electronic circuitry), firmware, software, or combinations thereof.
- Storage device 140 is a tangible computer-readable storage medium that stores program modules 120 .
- Examples of storage devices 140 include compact discs, magnetic tapes, read-only memory, optical storage media, memory units consisting of a hard drive or multiple parallel hard drives, and universal serial bus (USB) flash drives.
- storage device 140 may be random access memory or other type of electronic storage device located in a remote storage system, not shown, and connected to computer 105 via network 135 .
- System 100 further includes data source 150 A and data source 150 B, collectively referred to herein as data source 150 and communicatively coupled to network 135 .
- data sources 150 may include any number of data sources, one or more.
- Data sources 150 contain unstructured data and can include social media.
- System 100 further includes user device 130 operated by user 101 and connected to computer 105 via network 135 .
- User device 130 includes input devices such as a keyboard or voice recognition subsystem for allowing user 101 to communicate information and command selections to processor 110 .
- User device 130 further includes an output device such as a display or printer or speech synthesizer.
- a cursor control such as a mouse, trackball, or touch-sensitive screen, allows user 101 to manipulate a cursor on the display to convey further information and command selections to processor 110 .
- the processor 110 outputs results 122 of execution of the program modules 120 to the user device 130 .
- processor 110 may provide output to storage 125, such as a database or memory, or via network 135 to a remote device not shown.
- the program module 120 may be a program that causes the operations described in FIG. System 100 can operate as communicator 10 or 20 .
- various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above embodiments. For example, some components may be omitted from all components shown in the embodiments. Furthermore, constituent elements across different embodiments may be combined as appropriate.
- Transmission side communication device 11 Spatial recognition device 12: Detection unit 13: Quality prediction model 14: Transmission method determination units 15, 25: Transmission rate control units 16, 26: Transmission modules 17, 27: Reception module 20: Reception side communication device 24: Requested transmission rate determination unit 25: Signal processing unit 100: System 101: User 105: Computer 110: Processor 115: Memory 120: Program module 122: Result 125: Storage Device 130: User Device 135: Network 140: Storage Device 150: Data Source
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Optical Communication System (AREA)
Abstract
The purpose of the present invention is to provide a communication apparatus, a communication method, and a program which make it possible to select, without delay, an appropriate transmission medium and an appropriate transmission rate in response to a steep change in communication quality in optical wireless communication and to reduce a communication downtime of a user terminal and to suppress consumption of communication resources. A communication apparatus 10 according to the present invention comprises: a space recognition device 11 for observing a space in a predetermined direction; a detection unit 12 for analyzing information of the space observed by the space recognition device 11 and for, when an opposite communication apparatus (reception-side communication apparatus) 20 that is a communication partner is present in the space, detecting the state of the opposite communication apparatus 20 in the space; and a quality prediction model 13 for outputting a transmission rate corresponding to the state of the opposite communication apparatus 20.
Description
本開示は、光無線通信に使用される通信器、その通信方法、及びそのプログラムに関する。
The present disclosure relates to a communication device used for optical wireless communication, its communication method, and its program.
近年、映像視聴やロボットの遠隔操縦のようなアプリケーションが普及し、大容量トラヒックを伝送可能な通信媒体及び通信方式の必要性が増している。そんな中、光を媒体とした光無線通信は、音波や電波などと比べ利用可能な周波数帯域が広いことから、大容量伝送が可能な通信媒体として期待されている。実際、光無線を用いた陸上用の送受信器(例えば、非特許文献1を参照。)や、水中用の通信モジュールが開発されている(例えば、非特許文献2を参照。)。
In recent years, applications such as video viewing and remote control of robots have become widespread, increasing the need for communication media and communication methods that can transmit large volumes of traffic. Under such circumstances, optical wireless communication using light as a medium is expected as a communication medium capable of large-capacity transmission because of its wide available frequency band compared to sound waves and radio waves. In fact, land-based transceivers using optical radio (see, for example, Non-Patent Document 1) and underwater communication modules have been developed (see, for example, Non-Patent Document 2).
一般的な光無線通信は送受信器間の位置関係や伝搬環境の変化によって受信側で得られる信号強度が変化する。例えば、図1のように、非特許文献1及び2に記載される通信モジュールは送信側の通信器10から円錐状に光LBを放射しており、受信側の通信器20で得られる信号強度は円錐の中心付近が大きく、外側になるほど小さくなっている。また、送受信器間に障害物30が存在する場合、見通しの状態と比べて光強度の一部もしくは全てが失われることとなる。このため、光無線通信は、伝搬路の状態に応じて、適切な通信媒体および変調方式を選択することが求められる。
In general optical wireless communication, the signal strength obtained on the receiving side changes depending on the positional relationship between the transmitter and receiver and changes in the propagation environment. For example, as shown in FIG. 1, the communication modules described in Non-Patent Documents 1 and 2 radiate light LB in a conical shape from the transmitting side communication device 10, and the signal strength obtained by the receiving side communication device 20 is large near the center of the cone and decreases toward the outside. Also, if there is an obstacle 30 between the transmitter and receiver, some or all of the light intensity will be lost compared to line-of-sight conditions. Therefore, optical wireless communication is required to select an appropriate communication medium and modulation scheme according to the state of the propagation path.
非特許文献3には、位置関係や伝搬環境の変化に対する伝送速度の調整方式として、電波によるIEEE802.11無線LANの通信方式が開示される。当該通信方式は、その伝送レートにおけるフレーム送信成功回数と送信失敗回数をカウントし、いずれかのカウントが閾値以上の回数発生した場合に伝送レートを1段階増減させるといったアルゴリズムを採用している。IEEE802.11無線LANでは、これらをはじめとしたレート制御アルゴリズムが実装されており、電波伝搬環境の変化に適応した通信を行うことができる。
Non-Patent Document 3 discloses an IEEE 802.11 wireless LAN communication method using radio waves as a transmission speed adjustment method for changes in positional relationship and propagation environment. The communication method employs an algorithm that counts the number of successful frame transmissions and the number of unsuccessful transmissions at a given transmission rate, and increases or decreases the transmission rate by one step when either count occurs a number of times equal to or greater than a threshold. The IEEE802.11 wireless LAN implements rate control algorithms such as these, and can perform communication adapted to changes in the radio wave propagation environment.
無線通信の媒体として光を用いる場合を考えると、光無線通信は指向性が強いことから、音波や電波と比べ、送受信器間の遮蔽物や向きずれの影響を受けやすく、受信器側で得られる信号強度が不安定になりやすい。例えば、送受信器間に障害物が存在しても、電波であれば回折によって受信信号強度低下が少なく済むが、光無線通信の場合は障害物の遮蔽によって、シグナルがほとんど受信できなくなる可能性もある。このため、光無線通信は、伝搬環境の変化に対する通信品質の変化がより急峻になると考えられる。
When considering the use of light as a medium for wireless communication, optical wireless communication has strong directivity, so compared to sound waves and radio waves, it is more susceptible to obstructions and misalignment between the transmitter and receiver, and the signal strength obtained on the receiver side tends to be unstable. For example, even if there is an obstacle between the transmitter and receiver, the strength of the received signal will be less reduced due to diffraction in the case of radio waves, but in the case of optical wireless communication, there is a possibility that the signal can hardly be received due to the shielding of the obstacle. For this reason, in optical wireless communication, it is considered that the change in communication quality with respect to the change in the propagation environment becomes steeper.
非特許文献3が開示するレート制御アルゴリズムは、送受信器間の通信結果を積算して段階的に伝送速度を増減するものである。このため、非特許文献3が開示するレート制御アルゴリズムには、通信品質の変化が急峻な場合、その変化に対する伝送速度の増減の追従が遅れ、その間利用者端末の通信不可時間の増加や、基地局装置の通信リソースが多く消費されるという課題がある。
The rate control algorithm disclosed in Non-Patent Document 3 increases or decreases the transmission rate step by step by accumulating the communication results between the transmitter and receiver. For this reason, the rate control algorithm disclosed in Non-Patent Document 3 has the problem that when the communication quality changes sharply, the increase or decrease of the transmission speed is delayed in response to the change, and during that time, the communication unavailable time of the user terminal increases and the communication resources of the base station apparatus are consumed.
そこで、本発明は、前記課題を解決するために、光無線通信の急峻な通信品質変化に対して遅滞なく適切な伝送媒体や伝送レートを選択でき、利用者端末の通信不可時間削減や通信リソース消費抑制が可能な通信器、通信方法、及びプログラムを提供することを目的とする。
Therefore, in order to solve the above problems, the present invention aims to provide a communication device, a communication method, and a program that can select an appropriate transmission medium and transmission rate without delay in response to sudden changes in the communication quality of optical wireless communication, and can reduce the communication unavailable time of the user terminal and suppress the consumption of communication resources.
上記目的を達成するために、本発明に係る通信器は、カメラなどの空間を認識するデバイスを備え、当該デバイスから見た対向通信器およびその周辺情報から、現在および未来の伝送可能レートを予測することとした。
In order to achieve the above objectives, the communication device according to the present invention is equipped with a device that recognizes the space, such as a camera, and predicts the current and future possible transmission rates from the opposing communication device and its surrounding information as seen from the device.
具体的には、本発明に係る通信器は、
所定の方向の空間を観察する空間認識デバイスと、
前記空間認識デバイスが観察した前記空間の情報を解析し、前記空間内に通信相手である対向通信器が存在した場合、前記空間内における前記対向通信器の状態を検出する検出部と、
前記対向通信器の状態に応じた伝送レートを出力する品質予測モデルと、
を備える。 Specifically, the communicator according to the present invention includes:
a spatial recognition device that observes space in a predetermined direction;
a detection unit that analyzes the information of the space observed by the space recognition device, and detects the state of the counterpart communication device in the space when the counterpart communication device exists in the space;
a quality prediction model that outputs a transmission rate according to the state of the opposite communication device;
Prepare.
所定の方向の空間を観察する空間認識デバイスと、
前記空間認識デバイスが観察した前記空間の情報を解析し、前記空間内に通信相手である対向通信器が存在した場合、前記空間内における前記対向通信器の状態を検出する検出部と、
前記対向通信器の状態に応じた伝送レートを出力する品質予測モデルと、
を備える。 Specifically, the communicator according to the present invention includes:
a spatial recognition device that observes space in a predetermined direction;
a detection unit that analyzes the information of the space observed by the space recognition device, and detects the state of the counterpart communication device in the space when the counterpart communication device exists in the space;
a quality prediction model that outputs a transmission rate according to the state of the opposite communication device;
Prepare.
また、本発明に係る通信方法は、
所定の方向の空間を観察すること、
前記空間内に通信相手である対向通信器が存在した場合、前記空間内における前記対向通信器の状態を検出すること、及び
前記対向通信器の状態に応じた伝送レートを出力すること、
を行う。 Further, the communication method according to the present invention includes:
observing space in a given direction;
detecting the state of the counterpart communication device in the space when the counterpart communication device exists in the space; and outputting a transmission rate according to the state of the counterpart communication device;
I do.
所定の方向の空間を観察すること、
前記空間内に通信相手である対向通信器が存在した場合、前記空間内における前記対向通信器の状態を検出すること、及び
前記対向通信器の状態に応じた伝送レートを出力すること、
を行う。 Further, the communication method according to the present invention includes:
observing space in a given direction;
detecting the state of the counterpart communication device in the space when the counterpart communication device exists in the space; and outputting a transmission rate according to the state of the counterpart communication device;
I do.
本通信器及び本通信方法は、カメラなどのデバイスで空間を撮影し、その画像から当該空間内に存在する通信相手の状態を認識し、その状態に応じた伝送レートを設定する。この機能により、通信相手の状態の変動や光無線通信の光軸ずれを把握し、遅滞なく新たな伝送レートを設定することができる。なお、通信相手の「状態」とは、通信相手の「位置」、通信相手の「輪郭(大きさや形状)」、及び通信相手の「輪郭付近のコントラストの鮮明さ」の少なくとも1つを意味する。
This communication device and this communication method capture a space with a device such as a camera, recognize the state of the communication partner existing in the space from the image, and set the transmission rate according to that state. With this function, it is possible to grasp changes in the state of the communication partner and optical axis misalignment in optical wireless communication, and to set a new transmission rate without delay. The "state" of the communication partner means at least one of the "position" of the communication partner, the "contour (size and shape)" of the communication partner, and the "clearness of contrast near the contour" of the communication partner.
従って、本発明は、光無線通信の急峻な通信品質変化に対して遅滞なく適切な伝送媒体や伝送レートを選択でき、利用者端末の通信不可時間削減や通信リソース消費抑制が可能な通信器及び通信方法を提供することができる。
Therefore, the present invention can provide a communication device and a communication method that can select an appropriate transmission medium and transmission rate without delay in response to sudden changes in the communication quality of optical wireless communication, and can reduce the communication unavailable time of the user terminal and suppress the consumption of communication resources.
さらに、本発明に係る通信器の前記検出部は、前記空間内に前記対向通信器との通信に障害となる障害物が存在した場合、前記空間内における前記障害物の状態を検出し、前記品質予測モデルは、前記対向通信器と前記障害物との相対的な関係も考慮した前記伝送レートを出力することを特徴とする。そして、前記品質予測モデルは、前記障害物が移動していると判断した場合、将来の前記相対的な関係を推測し、当該関係に応じた前記伝送レートを出力することを特徴とする。
Further, the detection unit of the communication device according to the present invention detects the state of the obstacle in the space when there is an obstacle that obstructs communication with the opposing communication device in the space, and the quality prediction model outputs the transmission rate in consideration of the relative relationship between the opposing communication device and the obstacle. The quality prediction model, when determining that the obstacle is moving, estimates the relative relationship in the future and outputs the transmission rate according to the relationship.
本通信器は、対向通信器と障害物との相対的な関係障害物の位置や移動も把握することで、光無線通信の光が障害物で遮蔽されることを予測できる。そして、本通信器は、この予測に基づき、事前に伝送レートを設定することができる。なお、対向通信器と障害物との「相対的な関係」とは、対向通信器と障害物との「相対位置」、対向通信器と障害物との「相対的な輪郭の関係」、及び対向通信器と障害物のそれぞれの「輪郭付近のコントラストの鮮明さ」の少なくとも1つを意味する。
This communication device can predict that the light of the optical wireless communication will be blocked by the obstacle by grasping the position and movement of the obstacle relative to the opposing communication device and the obstacle. The communication device can then set the transmission rate in advance based on this prediction. The “relative relationship” between the opposing communication device and the obstacle means at least one of “relative position” between the opposing communication device and the obstacle, “relative contour relationship” between the opposing communication device and the obstacle, and “clearness of contrast near the contour” of each of the opposing communication device and the obstacle.
本発明は、前記通信器としてコンピュータを機能させるためのプログラムである。本発明の通信器はコンピュータとプログラムによっても実現でき、プログラムを記録媒体に記録することも、ネットワークを通して提供することも可能である。
The present invention is a program for causing a computer to function as the communication device. The communication device of the present invention can also be implemented by a computer and a program, and the program can be recorded on a recording medium or provided through a network.
なお、上記各発明は、可能な限り組み合わせることができる。
The above inventions can be combined as much as possible.
本発明は、光無線通信の急峻な通信品質変化に対して遅滞なく適切な伝送媒体や伝送レートを選択でき、利用者端末の通信不可時間削減や通信リソース消費抑制が可能な通信器、通信方法、及びプログラムを提供することができる。
The present invention can provide a communication device, a communication method, and a program that can select an appropriate transmission medium and transmission rate without delay in response to sudden changes in the communication quality of optical wireless communication, and can reduce the communication unavailable time of the user terminal and suppress the consumption of communication resources.
添付の図面を参照して本発明の実施形態を説明する。以下に説明する実施形態は本発明の実施例であり、本発明は、以下の実施形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。
An embodiment of the present invention will be described with reference to the attached drawings. The embodiments described below are examples of the present invention, and the present invention is not limited to the following embodiments. In addition, in this specification and the drawings, constituent elements having the same reference numerals are the same as each other.
[実施形態1]
図2は、本実施形態の通信器10の基本動作を説明する図である。通信器10は送信側の端末である。図2(A)のように、通信器10は、
所定の方向の空間を観察する空間認識デバイス11と、
空間認識デバイス11が観察した前記空間の情報を解析し、前記空間内に通信相手である対向通信器(受信側の通信器)20が存在した場合、前記空間内における対向通信器20の状態を検出する検出部12と、
対向通信器20の状態に応じた伝送レートを出力する品質予測モデル13と、
を備える。 [Embodiment 1]
FIG. 2 is a diagram for explaining the basic operation of thecommunication device 10 of this embodiment. The communication device 10 is a terminal on the transmission side. As shown in FIG. 2(A), the communication device 10
aspatial recognition device 11 that observes a space in a predetermined direction;
adetection unit 12 that analyzes the information of the space observed by the space recognition device 11, and detects the state of the opposite communication device 20 (receiving side communication device) 20 in the space when the opposite communication device (receiving side communication device) 20 exists in the space;
aquality prediction model 13 that outputs a transmission rate according to the state of the counterpart communication device 20;
Prepare.
図2は、本実施形態の通信器10の基本動作を説明する図である。通信器10は送信側の端末である。図2(A)のように、通信器10は、
所定の方向の空間を観察する空間認識デバイス11と、
空間認識デバイス11が観察した前記空間の情報を解析し、前記空間内に通信相手である対向通信器(受信側の通信器)20が存在した場合、前記空間内における対向通信器20の状態を検出する検出部12と、
対向通信器20の状態に応じた伝送レートを出力する品質予測モデル13と、
を備える。 [Embodiment 1]
FIG. 2 is a diagram for explaining the basic operation of the
a
a
a
Prepare.
本実施形態では、対向通信器20や障害物30の「状態」が「位置」であり、両者の「相対的関係」が「相対位置」である場合を説明する。なお、対向通信器20や障害物30の「状態」が「輪郭(大きさや形状に相当)」や「輪郭付近のコントラストの鮮明さ」であってもよいし、両者の「相対的関係」が両者の「相対的な輪郭の関係」、及び両者それぞれの「輪郭付近のコントラストの鮮明さ」であってもよい。要するに、検出部12と品質予測モデル13は、「位置」、「輪郭(大きさや形状に相当)」、又は「輪郭付近のコントラストの鮮明さ」から画像認識と品質予測を行うことができる。
In this embodiment, a case will be described in which the "state" of the opposing communication device 20 and the obstacle 30 is "position" and the "relative relationship" between them is "relative position". The "state" of the opposing communication device 20 and the obstacle 30 may be "contour (corresponding to size and shape)" or "clearness of contrast near the contour", and the "relative relationship" between the two may be the "relative relation between contours" and the "clearness of contrast near the contour" of each of them. In short, the detection unit 12 and the quality prediction model 13 can perform image recognition and quality prediction from "position", "contour (equivalent to size and shape)", or "clearness of contrast near contour".
通信器10は、カメラのような空間認識デバイス11を備え、空間認識デバイス11から見た対向通信器20およびその周辺情報から、現在および未来の伝送可能レートを予測する。
空間認識デバイス11は、光無線通信の光LBの光軸もしくは対向通信器20の方向とある程度一致する方向に向けられ、図2(B)のような、その方向の映像を取得する。 Thecommunicator 10 includes a spatial recognition device 11 such as a camera, and predicts the current and future transmittable rates from the opposing communicator 20 and its peripheral information viewed from the spatial recognition device 11 .
Thespatial recognition device 11 is directed in a direction that coincides to some extent with the optical axis of the light LB of the optical wireless communication or the direction of the opposing communication device 20, and acquires an image in that direction as shown in FIG. 2(B).
空間認識デバイス11は、光無線通信の光LBの光軸もしくは対向通信器20の方向とある程度一致する方向に向けられ、図2(B)のような、その方向の映像を取得する。 The
The
検出部12は、前記空間内に対向通信器20との通信に障害となる障害物30が存在した場合、前記空間内における障害物30の位置を検出し、品質予測モデル13は、対向通信器20と障害物30との相対位置も考慮した前記伝送レートを出力する。さらに、品質予測モデル13は、障害物30が移動していると判断した場合、前記空間内における将来の障害物30の位置を推測し、当該位置に応じた前記伝送レートを出力することを特徴とする。
When an obstacle 30 that obstructs communication with the counterpart communication device 20 exists in the space, the detection unit 12 detects the position of the obstacle 30 in the space, and the quality prediction model 13 outputs the transmission rate that takes into account the relative positions of the counterpart communication device 20 and the obstacle 30. Furthermore, when the quality prediction model 13 determines that the obstacle 30 is moving, it estimates the future position of the obstacle 30 in the space and outputs the transmission rate according to the position.
検出部12は、当該映像を解析することで対向通信器20や障害物30の存在及びその位置を検出する。たとえば、光LBの光軸が符号FAのように揺らぐと、映像内で対向通信器20が符号FIのように変動する。つまり、検出部12は、対向通信器20の位置から光LBの光軸ずれや揺らぎを検知できる。光LBは図2(A)でイメージするように円錐状であり、円錐の底面の中心からずれると光強度が弱くなる。このため、光LBの光軸が符号FAのように揺らぐと、映像内での対向通信器20の位置に応じて可能な伝送レートが変動する。また、障害物30が存在し、障害物30と対向通信器20との相対位置(特に障害物30が対向通信器20の手前に入り、光LBが遮られる場合)によっても可能な伝送レートが変動する。
The detection unit 12 detects the presence and position of the opposing communication device 20 and the obstacle 30 by analyzing the video. For example, when the optical axis of light LB fluctuates as indicated by symbol FA, the opposing communication device 20 fluctuates as indicated by symbol FI in the image. That is, the detection unit 12 can detect optical axis shift and fluctuation of the light LB from the position of the opposite communication device 20 . The light LB is conical as imaged in FIG. 2(A), and the light intensity becomes weaker as it deviates from the center of the bottom of the cone. Therefore, when the optical axis of light LB fluctuates as indicated by symbol FA, the possible transmission rate varies according to the position of the opposed communication device 20 in the image. In addition, the possible transmission rate fluctuates depending on the relative positions of the obstacle 30 and the opposite communication device 20 (especially when the obstacle 30 comes in front of the opposite communication device 20 and blocks the light LB).
このため、品質予測モデル13は、例えば、映像内の対向通信器20の位置、障害物30との相対的な位置関係、及び対向通信器20の輪郭(エッジ)20aを特徴量として、現在もしくは将来において可能な伝送レート(例えば、0.5秒後は10Mbps、1.0秒後は2Mbps等)を予測する。そして、通信器10は、その予測結果を基に、可能な伝送レートを超えない最大の伝送レートで対向通信器20との通信を行うこと、あるいは、対向通信器20に対して通信リソースを割り当てるなどの方策を決定する。
For this reason, the quality prediction model 13 predicts the current or future possible transmission rate (for example, 10 Mbps after 0.5 seconds, 2 Mbps after 1.0 seconds, etc.) using, for example, the position of the opposite communication device 20 in the video, the relative positional relationship with the obstacle 30, and the contour (edge) 20a of the opposite communication device 20 as feature quantities. Then, based on the prediction result, the communication device 10 determines measures such as communicating with the counterpart communication device 20 at a maximum transmission rate that does not exceed the possible transmission rate, or allocating communication resources to the counterpart communication device 20.
(実施例1)
なお、空間認識デバイス11は、いずれか一方の通信器が搭載していればよい。図3は、通信器10が空間認識デバイス11を搭載する例である。 (Example 1)
Note that thespace recognition device 11 may be mounted on either one of the communication devices. FIG. 3 shows an example in which the communication device 10 is equipped with the spatial recognition device 11. FIG.
なお、空間認識デバイス11は、いずれか一方の通信器が搭載していればよい。図3は、通信器10が空間認識デバイス11を搭載する例である。 (Example 1)
Note that the
通信器10の空間認識デバイス11は、カメラなど、対向通信器20を認識可能なデバイスである。デバイスの種類としては、可視光以外の波長帯のカメラやソナーでもよく、空間認識の次元は2次元でも3次元でも良い。
通信器10の検出部12は、空間認識デバイス11が取得した空間情報を解析し、対向通信器20の位置を検出する。
通信器10の品質予測モデル13は、検出部12が検出した対向通信器20の位置に基づいて、実現可能な伝送レートを予測し、出力する。また、品質予測モデル13は、受信モジュール17が受信した対向通信器20からの受信状況(ack/nack)などから実際の送受信結果をフィードバックし、モデルの修正を行う。
通信器10の伝送方法決定部14は、品質予測モデル13が出力した伝送レートで対向通信器20へのデータ送信を実行するか否か、及びその伝送レートを決定する。
通信器10の伝送レート制御部15は、送信モジュール16に対して伝送レート制御を行う。 Thespace recognition device 11 of the communication device 10 is a device capable of recognizing the opposite communication device 20, such as a camera. The type of device may be a camera or sonar for wavelength bands other than visible light, and the dimension of spatial recognition may be two-dimensional or three-dimensional.
Thedetection unit 12 of the communication device 10 analyzes the spatial information acquired by the space recognition device 11 and detects the position of the opposing communication device 20 .
Thequality prediction model 13 of the communication device 10 predicts and outputs a achievable transmission rate based on the position of the counterpart communication device 20 detected by the detection unit 12 . Also, the quality prediction model 13 feeds back the actual transmission/reception result from the reception status (ack/nack) from the counterpart communication device 20 received by the reception module 17, and corrects the model.
The transmissionmethod determination unit 14 of the communication device 10 determines whether or not to execute data transmission to the opposite communication device 20 at the transmission rate output by the quality prediction model 13, and determines the transmission rate.
The transmissionrate control unit 15 of the communication device 10 performs transmission rate control on the transmission module 16 .
通信器10の検出部12は、空間認識デバイス11が取得した空間情報を解析し、対向通信器20の位置を検出する。
通信器10の品質予測モデル13は、検出部12が検出した対向通信器20の位置に基づいて、実現可能な伝送レートを予測し、出力する。また、品質予測モデル13は、受信モジュール17が受信した対向通信器20からの受信状況(ack/nack)などから実際の送受信結果をフィードバックし、モデルの修正を行う。
通信器10の伝送方法決定部14は、品質予測モデル13が出力した伝送レートで対向通信器20へのデータ送信を実行するか否か、及びその伝送レートを決定する。
通信器10の伝送レート制御部15は、送信モジュール16に対して伝送レート制御を行う。 The
The
The
The transmission
The transmission
(実施例2)
図4は、本実施形態の対向通信器20を説明する図である。対向通信器20は受信側の端末である。図4は、対向通信器20が空間認識デバイス11を搭載する例である。 (Example 2)
FIG. 4 is a diagram for explaining theopposite communication device 20 of this embodiment. The opposite communication device 20 is a terminal on the receiving side. FIG. 4 shows an example in which the counterpart communication device 20 is equipped with the space recognition device 11. FIG.
図4は、本実施形態の対向通信器20を説明する図である。対向通信器20は受信側の端末である。図4は、対向通信器20が空間認識デバイス11を搭載する例である。 (Example 2)
FIG. 4 is a diagram for explaining the
通信器20の空間認識デバイス11は、カメラなど、通信器10を認識可能なデバイスである。デバイスの種類としては、可視光以外の波長帯のカメラやソナーでもよく、空間認識の次元は2次元でも3次元でも良い。
通信器20の検出部12は、空間認識デバイス11の取得した空間情報を解析し、通信器10の位置を検出する。
通信器20の品質予測モデル13は、検出部12にて検出された通信器10の位置に基づいて、実現可能な伝送レートを予測し、出力する。また、品質予測モデル13は、受信モジュール27で復号可能なデータ量などから実際の送受信結果をフィードバックし、モデルの修正を行う。
通信器20の要求伝送レート決定部24は、品質予測モデル13が出力した伝送レートに基づいて、送信モジュール26に対して要求する要求伝送レートを決定する。
通信器20の伝送レート制御部25は、要求伝送レートに基づいて送信モジュール26に対して伝送レート制御を行う。この時、要求伝送レート決定部24が決定した要求伝送レートを変更しても良い。 Thespace recognition device 11 of the communication device 20 is a device capable of recognizing the communication device 10, such as a camera. The type of device may be a camera or sonar for wavelength bands other than visible light, and the dimension of spatial recognition may be two-dimensional or three-dimensional.
Thedetection unit 12 of the communication device 20 analyzes the spatial information acquired by the space recognition device 11 and detects the position of the communication device 10 .
Thequality prediction model 13 of the communication device 20 predicts and outputs a realizable transmission rate based on the position of the communication device 10 detected by the detection unit 12 . Also, the quality prediction model 13 feeds back the actual transmission/reception result from the amount of data that can be decoded by the reception module 27, and corrects the model.
The requested transmissionrate determination unit 24 of the communication device 20 determines the requested transmission rate requested to the transmission module 26 based on the transmission rate output by the quality prediction model 13 .
The transmissionrate control unit 25 of the communication device 20 performs transmission rate control on the transmission module 26 based on the requested transmission rate. At this time, the requested transmission rate determined by the requested transmission rate determining unit 24 may be changed.
通信器20の検出部12は、空間認識デバイス11の取得した空間情報を解析し、通信器10の位置を検出する。
通信器20の品質予測モデル13は、検出部12にて検出された通信器10の位置に基づいて、実現可能な伝送レートを予測し、出力する。また、品質予測モデル13は、受信モジュール27で復号可能なデータ量などから実際の送受信結果をフィードバックし、モデルの修正を行う。
通信器20の要求伝送レート決定部24は、品質予測モデル13が出力した伝送レートに基づいて、送信モジュール26に対して要求する要求伝送レートを決定する。
通信器20の伝送レート制御部25は、要求伝送レートに基づいて送信モジュール26に対して伝送レート制御を行う。この時、要求伝送レート決定部24が決定した要求伝送レートを変更しても良い。 The
The
The
The requested transmission
The transmission
(実施例3)
図5は、通信器10と対向通信器20を説明する図である。図5は、通信器10及び対向通信器20の双方が空間認識デバイス11を搭載する例である。 (Example 3)
FIG. 5 is a diagram illustrating thecommunication device 10 and the opposing communication device 20. As shown in FIG. FIG. 5 shows an example in which both the communication device 10 and the opposing communication device 20 are equipped with the spatial recognition device 11. FIG.
図5は、通信器10と対向通信器20を説明する図である。図5は、通信器10及び対向通信器20の双方が空間認識デバイス11を搭載する例である。 (Example 3)
FIG. 5 is a diagram illustrating the
受信側の通信器20の構造は次の通りである。
品質予測モデル13は、検出部12にて検出された通信器10の位置に基づいて、実現可能な伝送レート(伝送可能レート予測値)を予測し、送信モジュール26を介して通信器10へ伝達する。ここで伝達された予測値は、通信器10側での品質予測モデル13の入力変数として用いても良く、伝送方法決定部14のロジックの変数として用いても良い。 The structure of thereceiver communicator 20 is as follows.
Thequality prediction model 13 predicts a realizable transmission rate (transmittable rate prediction value) based on the position of the communication device 10 detected by the detection unit 12 and transmits it to the communication device 10 via the transmission module 26 . The predicted value transmitted here may be used as an input variable of the quality prediction model 13 on the communication device 10 side, or may be used as a logic variable of the transmission method determination unit 14 .
品質予測モデル13は、検出部12にて検出された通信器10の位置に基づいて、実現可能な伝送レート(伝送可能レート予測値)を予測し、送信モジュール26を介して通信器10へ伝達する。ここで伝達された予測値は、通信器10側での品質予測モデル13の入力変数として用いても良く、伝送方法決定部14のロジックの変数として用いても良い。 The structure of the
The
送信側の通信器10の構造は次の通りである。
品質予測モデル13は、検出部12にて検出された通信器20の位置に基づいて、実現可能な伝送レートを予測し、伝送方法決定部14に伝達する。このとき、入力には、検出部12からの位置情報だけでなく、通信器20から転送された伝送可能レート予測値を含めることができる。
伝送方法決定部14は、品質予測モデル13の出力した伝送レートから、通信器20へのデータ送信を実行するか否か、及びその伝送レートを決定する。このとき、入力には、品質予測モデル13からの伝送可能レート以外にも通信器20から転送された伝送可能レート予測値を含めることができる。 The structure of thetransmitter 10 is as follows.
Thequality prediction model 13 predicts a achievable transmission rate based on the position of the communication device 20 detected by the detection section 12 and notifies it to the transmission method determination section 14 . At this time, the input can include not only the location information from the detection unit 12 but also the transmittable rate prediction value transferred from the communication device 20 .
The transmissionmethod determination unit 14 determines whether or not to execute data transmission to the communication device 20 and the transmission rate based on the transmission rate output from the quality prediction model 13 . At this time, the input can include the transmittable rate prediction value transferred from the communication device 20 in addition to the transmittable rate from the quality prediction model 13 .
品質予測モデル13は、検出部12にて検出された通信器20の位置に基づいて、実現可能な伝送レートを予測し、伝送方法決定部14に伝達する。このとき、入力には、検出部12からの位置情報だけでなく、通信器20から転送された伝送可能レート予測値を含めることができる。
伝送方法決定部14は、品質予測モデル13の出力した伝送レートから、通信器20へのデータ送信を実行するか否か、及びその伝送レートを決定する。このとき、入力には、品質予測モデル13からの伝送可能レート以外にも通信器20から転送された伝送可能レート予測値を含めることができる。 The structure of the
The
The transmission
(発明の効果)
本発明に係る通信器は、光無線通信の急峻な通信品質変化を事前に予測した伝送レート制御が可能となり、利用者端末の通信不可時間削減や、通信リソース有効活用を実現することができる。 (Effect of the invention)
The communication device according to the present invention enables transmission rate control that predicts abrupt changes in communication quality of optical wireless communication in advance, and can realize reduction in communication unavailable time of user terminals and effective utilization of communication resources.
本発明に係る通信器は、光無線通信の急峻な通信品質変化を事前に予測した伝送レート制御が可能となり、利用者端末の通信不可時間削減や、通信リソース有効活用を実現することができる。 (Effect of the invention)
The communication device according to the present invention enables transmission rate control that predicts abrupt changes in communication quality of optical wireless communication in advance, and can realize reduction in communication unavailable time of user terminals and effective utilization of communication resources.
特に効果が大きいのは以下の二つの光無線通信である。
(1)送信器が円錐状に光を放射するなど拡がりのある送信方式の光無線通信(例えば、レーザーを用いた光無線通信)
このような光無線通信の場合、カメラの視野内の受信器の位置に応じて受信強度分布が変わったり、障害物による部分的な遮蔽といった現象が考えられるが、通信可能/不可能の2値でない連続的な伝送レート予測値を得ることができる。
(2)カメラによって物体が認識可能な距離やカメラによって物体が認識可能な明るさでの光無線通信(例えば、超遠距離通信や深海での光無線通信)
本光無線通信を図6で説明する。例えば、通信器10が空間認識デバイス11として1980×1080ピクセルのカメラを搭載し、送信モジュール16が放射角15°で光LBを放射するとする。この場合、送信モジュール16に垂直な方向の放射距離d[m]でのビームの拡がり幅は、
2×tan(15°)×d=0.53×d
程度となる。
対向通信器20の受信モジュール27が受信可能なサイズを0.5mとし、通信器10のカメラから5×5ピクセルの物体を認識できるとすると、検出可能な最大のdは200m程度である。
0.53×d[m]/(1080[pixel]/5[pixel/object]) =0.5[m/object]
上式より d≒2×102[m]
もちろん、カメラの解像度を増強したり、レンズの取り換えによって拡大したり焦点距離を調整することができるため、真の上限はこの限りではない。 The following two optical wireless communications are particularly effective.
(1) Optical wireless communication in which the transmitter emits light in a conical shape, or a transmission method that spreads (for example, optical wireless communication using a laser)
In the case of such optical wireless communication, phenomena such as reception intensity distribution changing depending on the position of the receiver within the field of view of the camera and partial shielding by obstacles can be considered.
(2) Optical wireless communication at a distance at which an object can be recognized by a camera or at a brightness at which an object can be recognized by a camera (for example, ultra-long-distance communication or optical wireless communication in the deep sea)
This optical wireless communication will be described with reference to FIG. For example, assume that thecommunication device 10 is equipped with a 1980×1080 pixel camera as the spatial recognition device 11, and the transmission module 16 emits light LB at a radiation angle of 15°. In this case, the divergence width of the beam at the radial distance d [m] in the direction perpendicular to the transmission module 16 is
2 x tan (15°) x d = 0.53 x d
to some extent.
Assuming that the receivingmodule 27 of the opposite communication device 20 has a receivable size of 0.5 m and that the camera of the communication device 10 can recognize an object of 5×5 pixels, the maximum detectable d is about 200 m.
0.53×d[m]/(1080[pixel]/5[pixel/object])=0.5[m/object]
From the above formula d≈2×10 2 [m]
Of course, this is not the true upper limit, as you can increase the resolution of your camera, or change lenses to increase magnification and adjust focal length.
(1)送信器が円錐状に光を放射するなど拡がりのある送信方式の光無線通信(例えば、レーザーを用いた光無線通信)
このような光無線通信の場合、カメラの視野内の受信器の位置に応じて受信強度分布が変わったり、障害物による部分的な遮蔽といった現象が考えられるが、通信可能/不可能の2値でない連続的な伝送レート予測値を得ることができる。
(2)カメラによって物体が認識可能な距離やカメラによって物体が認識可能な明るさでの光無線通信(例えば、超遠距離通信や深海での光無線通信)
本光無線通信を図6で説明する。例えば、通信器10が空間認識デバイス11として1980×1080ピクセルのカメラを搭載し、送信モジュール16が放射角15°で光LBを放射するとする。この場合、送信モジュール16に垂直な方向の放射距離d[m]でのビームの拡がり幅は、
2×tan(15°)×d=0.53×d
程度となる。
対向通信器20の受信モジュール27が受信可能なサイズを0.5mとし、通信器10のカメラから5×5ピクセルの物体を認識できるとすると、検出可能な最大のdは200m程度である。
0.53×d[m]/(1080[pixel]/5[pixel/object]) =0.5[m/object]
上式より d≒2×102[m]
もちろん、カメラの解像度を増強したり、レンズの取り換えによって拡大したり焦点距離を調整することができるため、真の上限はこの限りではない。 The following two optical wireless communications are particularly effective.
(1) Optical wireless communication in which the transmitter emits light in a conical shape, or a transmission method that spreads (for example, optical wireless communication using a laser)
In the case of such optical wireless communication, phenomena such as reception intensity distribution changing depending on the position of the receiver within the field of view of the camera and partial shielding by obstacles can be considered.
(2) Optical wireless communication at a distance at which an object can be recognized by a camera or at a brightness at which an object can be recognized by a camera (for example, ultra-long-distance communication or optical wireless communication in the deep sea)
This optical wireless communication will be described with reference to FIG. For example, assume that the
2 x tan (15°) x d = 0.53 x d
to some extent.
Assuming that the receiving
0.53×d[m]/(1080[pixel]/5[pixel/object])=0.5[m/object]
From the above formula d≈2×10 2 [m]
Of course, this is not the true upper limit, as you can increase the resolution of your camera, or change lenses to increase magnification and adjust focal length.
(補足技術)
検出部12及び品質予測モデル13の実装としては、深層学習によるインスタンスセグメンテーションを活用した方法が例示される。当該方法は、対向通信器や周辺の障害物といったオブジェクトを認識し、各オブジェクトに対する分類や、回帰を行うことができる。インスタンスセグメンテーションは、参照文献1のようなpython言語を用いたライブラリ等によって、実装可能である。 (Supplementary technology)
As an implementation of thedetection unit 12 and the quality prediction model 13, a method utilizing instance segmentation by deep learning is exemplified. The method can recognize objects such as opposing communicators and surrounding obstacles, and perform classification and regression on each object. Instance segmentation can be implemented by a library or the like using the python language, such as Reference Document 1.
検出部12及び品質予測モデル13の実装としては、深層学習によるインスタンスセグメンテーションを活用した方法が例示される。当該方法は、対向通信器や周辺の障害物といったオブジェクトを認識し、各オブジェクトに対する分類や、回帰を行うことができる。インスタンスセグメンテーションは、参照文献1のようなpython言語を用いたライブラリ等によって、実装可能である。 (Supplementary technology)
As an implementation of the
また、対向通信器や周辺の障害物の検出及び品質予測は、ある瞬間の空間データに対して実施してもよいが、図7のように、一定の時間幅で取得した複数の空間データを用いて実施しても良い。時間のずれた複数の空間データを解析することで、各オブジェクトの移動速度を認識可能となり、障害物30による遮蔽や光LBの光軸のゆらぎ(対向通信器20のゆらぎFI)の予測の精度を向上させることができる。例えば、2次元の連続写真や動画について解析を行う場合は、参考文献2のような手法を用いることで実現できる。
In addition, the detection and quality prediction of opposing communication devices and surrounding obstacles may be performed on spatial data at a certain moment, but may also be performed using multiple pieces of spatial data acquired over a certain time span, as shown in FIG. By analyzing a plurality of time-shifted spatial data, it becomes possible to recognize the moving speed of each object, and the accuracy of prediction of blockage by the obstacle 30 and fluctuation of the optical axis of the light LB (fluctuation FI of the opposing communication device 20) can be improved. For example, when analyzing a two-dimensional continuous photograph or moving image, it can be realized by using the method as described in reference 2.
参考文献1:Mask R-CNN for Object Detection and Segmentation, https://github.com/matterport/Mask_RCNN
参考文献2:S. Ji, W. Xu, M. Yang and K. Yu, “3D Convolutional Neural Networks for Human Action Recognition”, in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no. 1, pp. 221-231, Jan. 2013, doi: 10.1109/TPAMI.2012.59.,
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.442.8617&rep=rep1&type=pdf Reference 1: Mask R-CNN for Object Detection and Segmentation, https://github. com/matterport/Mask_RCNN
Reference 2: S. Ji, W.; Xu, M. Yang and K. Yu, "3D Convolutional Neural Networks for Human Action Recognition", in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no. 1, pp. 221-231, Jan. 2013, doi: 10.1109/TPAMI. 2012.59. ,
http://citeseerx. ist. psu. edu/viewdoc/download? doi=10.1.1.442.8617&rep=rep1&type=pdf
参考文献2:S. Ji, W. Xu, M. Yang and K. Yu, “3D Convolutional Neural Networks for Human Action Recognition”, in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no. 1, pp. 221-231, Jan. 2013, doi: 10.1109/TPAMI.2012.59.,
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.442.8617&rep=rep1&type=pdf Reference 1: Mask R-CNN for Object Detection and Segmentation, https://github. com/matterport/Mask_RCNN
Reference 2: S. Ji, W.; Xu, M. Yang and K. Yu, "3D Convolutional Neural Networks for Human Action Recognition", in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no. 1, pp. 221-231, Jan. 2013, doi: 10.1109/TPAMI. 2012.59. ,
http://citeseerx. ist. psu. edu/viewdoc/download? doi=10.1.1.442.8617&rep=rep1&type=pdf
(実施形態2)
通信器10及び20はコンピュータとプログラムによっても実現でき、プログラムを記録媒体に記録することも、ネットワークを通して提供することも可能である。
図8は、システム100のブロック図を示している。システム100は、ネットワーク135へと接続されたコンピュータ105を含む。 (Embodiment 2)
The communication devices 10 and 20 can also be realized by a computer and a program, and the program can be recorded on a recording medium or provided through a network.
FIG. 8 shows a block diagram ofsystem 100 . System 100 includes computer 105 connected to network 135 .
通信器10及び20はコンピュータとプログラムによっても実現でき、プログラムを記録媒体に記録することも、ネットワークを通して提供することも可能である。
図8は、システム100のブロック図を示している。システム100は、ネットワーク135へと接続されたコンピュータ105を含む。 (Embodiment 2)
The
FIG. 8 shows a block diagram of
ネットワーク135は、データ通信ネットワークである。ネットワーク135は、プライベートネットワーク又はパブリックネットワークであってよく、(a)例えば或る部屋をカバーするパーソナル・エリア・ネットワーク、(b)例えば或る建物をカバーするローカル・エリア・ネットワーク、(c)例えば或るキャンパスをカバーするキャンパス・エリア・ネットワーク、(d)例えば或る都市をカバーするメトロポリタン・エリア・ネットワーク、(e)例えば都市、地方、又は国家の境界をまたいでつながる領域をカバーするワイド・エリア・ネットワーク、又は(f)インターネット、のいずれか又はすべてを含むことができる。通信は、ネットワーク135を介して電子信号及び光信号によって行われる。
The network 135 is a data communication network. Network 135 may be a private network or a public network and may include any or all of (a) a personal area network covering, for example, a room; (b) a local area network covering, for example, a building; (c) a campus area network covering, for example, a campus; (d) a metropolitan area network covering, for example, a city; . Communication is by electronic and optical signals through network 135 .
コンピュータ105は、プロセッサ110、及びプロセッサ110に接続されたメモリ115を含む。コンピュータ105が、本明細書においてはスタンドアロンのデバイスとして表されているが、そのように限定されるわけではなく、むしろ分散処理システムにおいて図示されていない他のデバイスへと接続されてよい。
Computer 105 includes a processor 110 and memory 115 coupled to processor 110 . Although computer 105 is represented herein as a stand-alone device, it is not so limited, but rather may be connected to other devices not shown in a distributed processing system.
プロセッサ110は、命令に応答し且つ命令を実行する論理回路で構成される電子デバイスである。
The processor 110 is an electronic device made up of logic circuits that respond to and execute instructions.
メモリ115は、コンピュータプログラムがエンコードされた有形のコンピュータにとって読み取り可能な記憶媒体である。この点に関し、メモリ115は、プロセッサ110の動作を制御するためにプロセッサ110によって読み取り可能及び実行可能なデータ及び命令、すなわちプログラムコードを記憶する。メモリ115を、ランダムアクセスメモリ(RAM)、ハードドライブ、読み出し専用メモリ(ROM)、又はこれらの組み合わせにて実現することができる。メモリ115の構成要素の1つは、プログラムモジュール120である。
The memory 115 is a tangible computer-readable storage medium in which a computer program is encoded. In this regard, memory 115 stores data and instructions, or program code, readable and executable by processor 110 to control its operation. Memory 115 may be implemented in random access memory (RAM), hard drive, read only memory (ROM), or a combination thereof. One of the components of memory 115 is program module 120 .
プログラムモジュール120は、本明細書に記載のプロセスを実行するようにプロセッサ110を制御するための命令を含む。本明細書において、動作がコンピュータ105或いは方法又はプロセス若しくはその下位プロセスによって実行されると説明されるが、それらの動作は、実際にはプロセッサ110によって実行される。
Program modules 120 contain instructions for controlling processor 110 to perform the processes described herein. Although operations are described herein as being performed by computer 105 or a method or process or its subprocesses, those operations are actually performed by processor 110 .
用語「モジュール」は、本明細書において、スタンドアロンの構成要素又は複数の下位の構成要素からなる統合された構成のいずれかとして具現化され得る機能的動作を指して使用される。したがって、プログラムモジュール120は、単一のモジュールとして、或いは互いに協調して動作する複数のモジュールとして実現され得る。さらに、プログラムモジュール120は、本明細書において、メモリ115にインストールされ、したがってソフトウェアにて実現されるものとして説明されるが、ハードウェア(例えば、電子回路)、ファームウェア、ソフトウェア、又はこれらの組み合わせのいずれかにて実現することが可能である。
The term "module" is used herein to refer to a functional operation that can be embodied either as a standalone component or as an integrated composition of multiple subcomponents. Accordingly, program module 120 may be implemented as a single module or as multiple modules working in cooperation with each other. Further, although program modules 120 are described herein as being installed in memory 115 and thus implemented in software, they can be implemented in either hardware (e.g., electronic circuitry), firmware, software, or combinations thereof.
プログラムモジュール120は、すでにメモリ115へとロードされているものとして示されているが、メモリ115へと後にロードされるように記憶装置140上に位置するように構成されてもよい。記憶装置140は、プログラムモジュール120を記憶する有形のコンピュータにとって読み取り可能な記憶媒体である。記憶装置140の例として、コンパクトディスク、磁気テープ、読み出し専用メモリ、光記憶媒体、ハードドライブ又は複数の並列なハードドライブで構成されるメモリユニット、並びにユニバーサル・シリアル・バス(USB)フラッシュドライブが挙げられる。あるいは、記憶装置140は、ランダムアクセスメモリ、或いは図示されていない遠隔のストレージシステムに位置し、且つネットワーク135を介してコンピュータ105へと接続される他の種類の電子記憶デバイスであってよい。
Although program modules 120 are shown already loaded into memory 115 , program modules 120 may be configured to be located on storage device 140 for later loading into memory 115 . Storage device 140 is a tangible computer-readable storage medium that stores program modules 120 . Examples of storage devices 140 include compact discs, magnetic tapes, read-only memory, optical storage media, memory units consisting of a hard drive or multiple parallel hard drives, and universal serial bus (USB) flash drives. Alternatively, storage device 140 may be random access memory or other type of electronic storage device located in a remote storage system, not shown, and connected to computer 105 via network 135 .
システム100は、本明細書においてまとめてデータソース150と称され、且つネットワーク135へと通信可能に接続されるデータソース150A及びデータソース150Bを更に含む。実際には、データソース150は、任意の数のデータソース、すなわち1つ以上のデータソースを含むことができる。データソース150は、体系化されていないデータを含み、ソーシャルメディアを含むことができる。
System 100 further includes data source 150 A and data source 150 B, collectively referred to herein as data source 150 and communicatively coupled to network 135 . In practice, data sources 150 may include any number of data sources, one or more. Data sources 150 contain unstructured data and can include social media.
システム100は、ユーザ101によって操作され、且つネットワーク135を介してコンピュータ105へと接続されるユーザデバイス130を更に含む。ユーザデバイス130として、ユーザ101が情報及びコマンドの選択をプロセッサ110へと伝えることを可能にするためのキーボード又は音声認識サブシステムなどの入力デバイスが挙げられる。ユーザデバイス130は、表示装置又はプリンタ或いは音声合成装置などの出力デバイスを更に含む。マウス、トラックボール、又はタッチ感応式画面などのカーソル制御部が、さらなる情報及びコマンドの選択をプロセッサ110へと伝えるために表示装置上でカーソルを操作することをユーザ101にとって可能にする。
System 100 further includes user device 130 operated by user 101 and connected to computer 105 via network 135 . User device 130 includes input devices such as a keyboard or voice recognition subsystem for allowing user 101 to communicate information and command selections to processor 110 . User device 130 further includes an output device such as a display or printer or speech synthesizer. A cursor control, such as a mouse, trackball, or touch-sensitive screen, allows user 101 to manipulate a cursor on the display to convey further information and command selections to processor 110 .
プロセッサ110は、プログラムモジュール120の実行の結果122をユーザデバイス130へと出力する。あるいは、プロセッサ110は、出力を例えばデータベース又はメモリなどの記憶装置125へともたらすことができ、或いはネットワーク135を介して図示されていない遠隔のデバイスへともたらすことができる。
The processor 110 outputs results 122 of execution of the program modules 120 to the user device 130 . Alternatively, processor 110 may provide output to storage 125, such as a database or memory, or via network 135 to a remote device not shown.
例えば、図2で説明した動作をさせるプログラムをプログラムモジュール120としてもよい。システム100を通信器10又は20として動作させることができる。
For example, the program module 120 may be a program that causes the operations described in FIG. System 100 can operate as communicator 10 or 20 .
用語「・・・を備える」又は「・・・を備えている」は、そこで述べられている特徴、完全体、工程、又は構成要素が存在することを指定しているが、1つ以上の他の特徴、完全体、工程、又は構成要素、或いはそれらのグループの存在を排除してはいないと、解釈されるべきである。用語「a」及び「an」は、不定冠詞であり、したがって、それを複数有する実施形態を排除するものではない。
The terms "comprising" or "comprising" specify the presence of the features, integers, steps, or components set forth therein, but should be interpreted as not excluding the presence of one or more other features, integers, steps, or components, or groups thereof. The terms "a" and "an" are indefinite articles and thus do not exclude embodiments having a plurality thereof.
(他の実施形態)
なお、この発明は上記実施形態に限定されるものではなく、この発明の要旨を逸脱しない範囲で種々変形して実施可能である。要するにこの発明は、上位実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。 (Other embodiments)
It should be noted that the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the present invention. In short, the present invention is not limited to the high-level embodiments as they are, and can be embodied by modifying the constituent elements without departing from the scope of the present invention at the implementation stage.
なお、この発明は上記実施形態に限定されるものではなく、この発明の要旨を逸脱しない範囲で種々変形して実施可能である。要するにこの発明は、上位実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。 (Other embodiments)
It should be noted that the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the present invention. In short, the present invention is not limited to the high-level embodiments as they are, and can be embodied by modifying the constituent elements without departing from the scope of the present invention at the implementation stage.
また、上記実施形態に開示されている複数の構成要素を適宜な組み合わせにより種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態に亘る構成要素を適宜組み合わせてもよい。
Also, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above embodiments. For example, some components may be omitted from all components shown in the embodiments. Furthermore, constituent elements across different embodiments may be combined as appropriate.
10:送信側の通信器
11:空間認識デバイス
12:検出部
13:品質予測モデル
14:伝送方法決定部
15、25:伝送レート制御部
16、26:送信モジュール
17、27:受信モジュール
20:受信側の通信器
24:要求伝送レート決定部
25:信号処理部
100:システム
101:ユーザ
105:コンピュータ
110:プロセッサ
115:メモリ
120:プログラムモジュール
122:結果
125:記憶装置
130:ユーザデバイス
135:ネットワーク
140:記憶装置
150:データソース 10: Transmission side communication device 11: Spatial recognition device 12: Detection unit 13: Quality prediction model 14: Transmissionmethod determination units 15, 25: Transmission rate control units 16, 26: Transmission modules 17, 27: Reception module 20: Reception side communication device 24: Requested transmission rate determination unit 25: Signal processing unit 100: System 101: User 105: Computer 110: Processor 115: Memory 120: Program module 122: Result 125: Storage Device 130: User Device 135: Network 140: Storage Device 150: Data Source
11:空間認識デバイス
12:検出部
13:品質予測モデル
14:伝送方法決定部
15、25:伝送レート制御部
16、26:送信モジュール
17、27:受信モジュール
20:受信側の通信器
24:要求伝送レート決定部
25:信号処理部
100:システム
101:ユーザ
105:コンピュータ
110:プロセッサ
115:メモリ
120:プログラムモジュール
122:結果
125:記憶装置
130:ユーザデバイス
135:ネットワーク
140:記憶装置
150:データソース 10: Transmission side communication device 11: Spatial recognition device 12: Detection unit 13: Quality prediction model 14: Transmission
Claims (7)
- 所定の方向の空間を観察する空間認識デバイスと、
前記空間認識デバイスが観察した前記空間の情報を解析し、前記空間内に通信相手である対向通信器が存在した場合、前記空間内における前記対向通信器の状態を検出する検出部と、
前記対向通信器の状態に応じた伝送レートを出力する品質予測モデルと、
を備える通信器。 a spatial recognition device that observes space in a predetermined direction;
a detection unit that analyzes the information of the space observed by the space recognition device, and detects the state of the counterpart communication device in the space when the counterpart communication device exists in the space;
a quality prediction model that outputs a transmission rate according to the state of the opposite communication device;
a communicator. - 前記検出部は、前記空間内に前記対向通信器との通信に障害となる障害物が存在した場合、前記空間内における前記障害物の状態を検出し、
前記品質予測モデルは、前記対向通信器と前記障害物との相対的な関係も考慮した前記伝送レートを出力することを特徴とする請求項1に記載の通信器。 The detection unit detects a state of the obstacle in the space when there is an obstacle in the space that interferes with communication with the opposing communication device,
2. The communication device according to claim 1, wherein said quality prediction model outputs said transmission rate in consideration of a relative relationship between said counterpart communication device and said obstacle. - 前記品質予測モデルは、前記障害物が移動していると判断した場合、将来の前記相対的な関係を推測し、当該関係に応じた前記伝送レートを出力することを特徴とする請求項2に記載の通信器。 The communication device according to claim 2, characterized in that, when the quality prediction model determines that the obstacle is moving, it estimates the relative relationship in the future and outputs the transmission rate according to the relationship.
- 所定の方向の空間を観察すること、
前記空間内に通信相手である対向通信器が存在した場合、前記空間内における前記対向通信器の状態を検出すること、及び
前記対向通信器の状態に応じた伝送レートを出力すること、
を行う通信方法。 observing space in a given direction;
detecting the state of the counterpart communication device in the space when the counterpart communication device exists in the space; and outputting a transmission rate according to the state of the counterpart communication device;
communication method. - 前記空間内に前記対向通信器との通信に障害となる障害物が存在した場合、
前記空間内における前記障害物の状態を検出すること、及び
前記対向通信器と前記障害物との相対的な関係も考慮した前記伝送レートを出力すること
を特徴とする請求項4に記載の通信方法。 If there is an obstacle in the space that interferes with communication with the opposing communication device,
5. The communication method according to claim 4, further comprising: detecting a state of said obstacle in said space; and outputting said transmission rate in consideration of a relative relationship between said counterpart communication device and said obstacle. - 前記障害物が移動している場合、
将来の前記相対的な関係を推測すること、及び
当該関係に応じた前記伝送レートを出力すること
を特徴とする請求項5に記載の通信方法。 if the obstacle is moving,
6. The communication method according to claim 5, further comprising: estimating the relative relationship in the future; and outputting the transmission rate according to the relationship. - 請求項1から3のいずれかに記載される通信器としてコンピュータを機能させるためのプログラム。 A program for causing a computer to function as the communication device according to any one of claims 1 to 3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/001704 WO2023139671A1 (en) | 2022-01-19 | 2022-01-19 | Communication apparatus, communication method, and program |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/001704 WO2023139671A1 (en) | 2022-01-19 | 2022-01-19 | Communication apparatus, communication method, and program |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023139671A1 true WO2023139671A1 (en) | 2023-07-27 |
Family
ID=87348163
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/001704 WO2023139671A1 (en) | 2022-01-19 | 2022-01-19 | Communication apparatus, communication method, and program |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023139671A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6656459B1 (en) * | 2019-09-20 | 2020-03-04 | ソフトバンク株式会社 | Moving object, system, program, and control method |
WO2020217457A1 (en) * | 2019-04-26 | 2020-10-29 | 日本電信電話株式会社 | Communication system and base station |
JP2020194995A (en) * | 2019-05-24 | 2020-12-03 | Necプラットフォームズ株式会社 | Wireless communication apparatus, monitoring system, and monitoring method of wireless communication apparatus |
WO2021064849A1 (en) * | 2019-10-01 | 2021-04-08 | 日本電信電話株式会社 | Communication terminal and communication quality prediction method |
-
2022
- 2022-01-19 WO PCT/JP2022/001704 patent/WO2023139671A1/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020217457A1 (en) * | 2019-04-26 | 2020-10-29 | 日本電信電話株式会社 | Communication system and base station |
JP2020194995A (en) * | 2019-05-24 | 2020-12-03 | Necプラットフォームズ株式会社 | Wireless communication apparatus, monitoring system, and monitoring method of wireless communication apparatus |
JP6656459B1 (en) * | 2019-09-20 | 2020-03-04 | ソフトバンク株式会社 | Moving object, system, program, and control method |
WO2021064849A1 (en) * | 2019-10-01 | 2021-04-08 | 日本電信電話株式会社 | Communication terminal and communication quality prediction method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7200641B2 (en) | COMMUNICATION CONTROL METHOD, COMMUNICATION CONTROL DEVICE, AND COMMUNICATION CONTROL PROGRAM | |
KR102155560B1 (en) | Method and apparatus for beam tracking via detecting obstructions in a near field | |
JP6852028B2 (en) | Electronic devices and methods | |
JP2017527777A (en) | Automatic multiple depth camera synchronization using time sharing | |
KR102257280B1 (en) | Telegram segmentation transmission method for bidirectional networks | |
US11799545B2 (en) | Free space optical communications method, and transmitter and receiver | |
US9692508B2 (en) | Directional optical communications | |
JP7461955B2 (en) | MEASUREMENT REPORTING METHOD AND DEVICE, TERMINAL DEVICE INFORMATION ACQUISITION METHOD AND DEVICE | |
KR20130025909A (en) | Exploiting buffers in cognitive multi-relay systems for delay sensitive applications | |
JP2011199846A (en) | Communication device and communication method | |
WO2023139671A1 (en) | Communication apparatus, communication method, and program | |
KR20100107528A (en) | Mechanism to avoid interference and improve channel efficiency in mmwave wpans | |
KR102355194B1 (en) | Receiving apparatus and method, transmitting apparatus and method, and program | |
US20220028090A1 (en) | Adaptation of the radio connection between a mobile device and a base station | |
JP2017005579A (en) | Millimeter wave communication system and millimeter wave communication method | |
KR102216062B1 (en) | Method and apparatus for processing data in base satation | |
EP3553966A1 (en) | Beam pattern selection for vehicular communication using machine learning | |
KR102276120B1 (en) | Clustering-based communication with unmanned vehicle | |
CN110832874A (en) | System and method for improved content presentation | |
US20220209841A1 (en) | Communication apparatus, control method, and program | |
WO2019158179A1 (en) | Channel estimation for vehicular communication systems | |
JP7077605B2 (en) | Communication equipment and communication systems | |
CN114697914A (en) | Vehicle and control method thereof | |
KR102586966B1 (en) | Interior-map generation system and interior-exploration robot | |
JP7567945B2 (en) | Control system, control device, control method, and program |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22921832 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |