WO2023139635A1 - Urethane resin composition - Google Patents

Urethane resin composition Download PDF

Info

Publication number
WO2023139635A1
WO2023139635A1 PCT/JP2022/001566 JP2022001566W WO2023139635A1 WO 2023139635 A1 WO2023139635 A1 WO 2023139635A1 JP 2022001566 W JP2022001566 W JP 2022001566W WO 2023139635 A1 WO2023139635 A1 WO 2023139635A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
urethane resin
composition according
foam
test
Prior art date
Application number
PCT/JP2022/001566
Other languages
French (fr)
Japanese (ja)
Inventor
慎一 江川
和久 永田
文隆 中村
Original Assignee
株式会社日本アクア
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本アクア filed Critical 株式会社日本アクア
Priority to JP2023574895A priority Critical patent/JPWO2023139635A1/ja
Priority to PCT/JP2022/001566 priority patent/WO2023139635A1/en
Publication of WO2023139635A1 publication Critical patent/WO2023139635A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes

Definitions

  • the present invention relates to a urethane resin composition and the like used as a heat insulating material for buildings.
  • a test device called a cone calorimeter is used in an exothermic test conforming to ISO-5660 for evaluating the flame retardancy of a urethane resin composition.
  • the cone calorimeter is equipped with a cone heater arranged above a specimen cut into a predetermined size, and a spark rod provided between the specimen and the cone heater.
  • combustible gas is generated from the test specimen by heating with a cone heater, and the combustible gas is ignited by the spark of the spark rod to generate combustion.
  • spark contact During the exothermic test, there were some specimens that swelled when heated by the cone heater, and it was sometimes confirmed that the swollen part of the specimen came into contact with the spark plug, or that discharge occurred even though the expanded specimen did not come into contact with the plug (these phenomena are hereinafter also referred to as "spark contact"). Test specimens with spark contact do not produce valid results when conforming to ISO-5660, so it is necessary to check the presence or absence of spark contact each time.
  • a urethane resin composition when used as a heat insulating material, there is also a problem that pressure is applied to an interior material (such as a gypsum board) provided around the heat insulating material due to swelling due to heating, resulting in breakage. If the interior material is damaged, the heat in the event of a fire is likely to be conducted to the heat insulating material, increasing the possibility that the exterior material will also be thermally affected.
  • an interior material such as a gypsum board
  • one of the objects of the present invention is to provide a urethane resin composition that is less likely to swell when heated.
  • the present invention is a urethane resin composition that forms a foam that constitutes a heat insulating material for buildings, which contains at least a polyisocyanate compound, a polyol compound, a trimerization catalyst, a foaming agent and a flame retardant, and does not contain a foam stabilizer and a surface conditioner.
  • a urethane resin composition that is less likely to swell when heated. Further, in a preferred embodiment of the present invention, it is possible to obtain a urethane resin composition that does not cause spark contact even in an exothermic test conforming to ISO-5660. Furthermore, in a preferred embodiment of the present invention, when used as a heat insulating material for a building, it is possible to obtain a urethane resin composition that does not cause the heat insulating material to swell beyond the clearance from the heat insulating material to the interior material, and does not cause the interior material to be pushed up and damaged. Furthermore, in a preferred embodiment of the present invention, it is possible to contribute to cost reduction by reducing the number of raw materials required for forming the urethane resin composition.
  • the urethane resin composition according to the present invention is for forming a foam that constitutes a heat insulating material for buildings, and contains at least a polyisocyanate compound, a polyol compound, a trimerization catalyst, a blowing agent, and a flame retardant, and does not contain a foam stabilizer and a surface conditioner.
  • the urethane resin composition according to the present invention may further contain mineral-derived materials such as clay minerals.
  • a heat insulating layer can be formed on a building by dividing the above composition into a polyisocyanate compound (first liquid) and other components (second liquid), and mixing and spraying the two, or by mixing and spraying the two.
  • the urethane resin composition according to the present invention can be provided with the following performances by adjusting the composition of each material.
  • Non-combustibility The urethane resin composition according to the present invention can have non-combustibility specified in the exothermic test based on the test of ISO-5660.
  • ⁇ 2.1.1> ISO-5660 test In the exothermic test conforming to ISO-5660, a test device called a cone calorimeter is used.
  • the cone calorimeter is equipped with a cone heater placed above a test piece cut to a predetermined size and a spark rod provided between the test piece and the cone heater.
  • the test piece is heated by the cone heater to generate combustible gas, which is ignited by the spark of the spark rod to cause combustion.
  • the urethane resin composition according to the present invention can have a swelling amount that does not cause spark contact when the ISO-5660 test is carried out.
  • the maximum expansion length in the height direction of the specimen should be less than 8 mm, more preferably 2 mm or less.
  • the urethane resin composition according to the present invention can have a foam density of 30 kg/m3 or more. By setting the density of the foam to 30 kg/m 3 or more, it is possible to obtain a sufficient effect of suppressing deformation against impact from other sources when used as a heat insulating material for buildings.
  • Polyisocyanate compound A polyisocyanate compound is a material used as a main ingredient in the urethane resin composition according to the present invention.
  • polyisocyanate compounds include aromatic polyisocyanates, alicyclic polyisocyanates, aliphatic polyisocyanates, and modified polyisocyanates.
  • aromatic polyisocyanate include phenylene diisocyanate, tolylene diisocyanate, xylylene diisocyanate, diphenylmethane diisocyanate, dimethyldiphenylmethane diisocyanate, triphenylmethane triisocyanate, naphthalene diisocyanate, and polymethylene polyphenyl polyisocyanate.
  • Examples of the alicyclic polyisocyanate include cyclohexyl diisocyanate, methylcyclohexyl diisocyanate, isophorone diisocyanate, dicyclohexylmethane diisocyanate, dimethyldicyclohexylmethane diisocyanate, and the like.
  • Examples of the aliphatic polyisocyanate include methylene diisocyanate, ethylene diisocyanate, propylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate and the like.
  • the modified polyisocyanate is an isocyanate group-terminated prepolymer obtained by reacting a polyol component with a polyisocyanate compound, and includes urethane-modified products, carbodiimide-modified products, urea-modified products, burette-modified products, allophanate-modified products, and the like.
  • the polyisocyanate compound can be used alone or in combination of two or more.
  • polymethylene polyphenyl polyisocyanate polymeric MDI, crude MDI
  • polymeric MDI polymeric MDI, crude MDI
  • polymethylene polyphenyl polyisocyanate examples include Millionate MR-200, MR-100 and MR-400 manufactured by Tosoh, Sumidule 44V20L and Dismodur 44V20L manufactured by Covestro, PM-200 and PM-400 manufactured by Wanhua Chemical, and PAPI27 and PAPI135 manufactured by DOW.
  • the amount of polyisocyanate contained in the urethane resin composition is preferably such that the isocyanate index is 150-1000. When it is 150 or more, the flame retardancy is further improved, and when it is 1000 or less, the adhesion to the frame or the like is good.
  • the isocyanate index is most preferably in the range of 400-600.
  • the isocyanate index is calculated from the equivalent ratio of the isocyanate group contained in the isocyanate component to the active hydrogen contained in the polyol component and the water of the foaming agent. [Isocyanate group] / [OH group] (molar ratio) ⁇ 100
  • Polyol compound A polyol compound is a material used as a curing agent in the urethane resin composition according to the present invention.
  • the polyol compound consists of an ester-based polyol compound or an ether-based polyol compound and combinations thereof.
  • Ester Polyol compounds include, for example, polymers obtained by dehydration condensation of polybasic acids and polyhydric alcohols, polymers obtained by ring-opening polymerization of lactones such as ⁇ -caprolactone and ⁇ -methyl- ⁇ -caprolactone, and condensates of hydroxycarboxylic acids and the above polyhydric alcohols.
  • specific examples of the polybasic acid include adipic acid, azelaic acid, sebacic acid, terephthalic acid, isophthalic acid, and succinic acid. Modification with terephthalic acid is preferred in terms of flame retardancy.
  • polyol compounds examples include polylactone polyols, polycarbonate polyols, aromatic polyols, alicyclic polyols, aliphatic polyols, polymer polyols, polyether polyols, and the like.
  • polylactone polyols examples include polypropiolactone glycol, polycaprolactone glycol, and polyvalerolactone glycol.
  • polycarbonate polyols examples include polyols obtained by a dealcoholization reaction of a hydroxyl group-containing compound such as ethylene glycol, propylene glycol, butanediol, pentanediol, hexanediol, octanediol, and nonanediol with diethylene carbonate, dipropylene carbonate, and the like.
  • aromatic polyols include bisphenol A, bisphenol F, phenol novolak, cresol novolak and the like.
  • Examples of the alicyclic polyols include cyclohexanediol, methylcyclohexanediol, isophoronediol, dicyclohexylmethanediol, and dimethyldicyclohexylmethanediol.
  • Examples of the aliphatic polyols include ethylene glycol, propylene glycol, butanediol, pentanediol, and hexanediol.
  • polyhydric polyether polyols examples include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,8-octanediol, 1,9-nonanediol, 3-methyl-1,5-pentanediol, and 3,3-dimethylolheptane.
  • polyether polyols obtained by addition polymerization of alkylene oxides such as ethylene oxide, propylene oxide and butylene oxide using a compound having two or more, preferably 3 to 8, active hydrogen groups such as aliphatic polyamines as an initiator, or polyether polyols obtained by ring-opening polymerization of alkyl glycidyl ethers such as methyl glycidyl ether, aryl glycidyl ethers such as phenyl glycidyl ether, and cyclic ether monomers such as tetrahydrofuran.
  • polyether polyols containing bromine, phosphorus, or the like may be used.
  • Mineral-derived materials are intended to improve flame retardancy and density.
  • a silicate compound is preferable as the mineral-derived material.
  • mineral-derived materials that can be used include montmorillonite, saponite, hectorite, vermiculite, kaolinite, mica, and talc.
  • Kaolin is an example of a material containing kaolinite as a main component. The kaolin also includes calcined kaolin obtained by treating kaolin at a high temperature. Calcined kaolin is suitable because of its small moisture content and small particle size distribution.
  • the content of the mineral-derived material is not particularly limited, it is preferably 15 to 85 parts by weight with respect to 100 parts by weight of the polyol compound.
  • the trimerization catalyst is a material for reacting and trimerizing the isocyanate groups contained in the polyisocyanate compound to promote the formation of isocyanurate rings.
  • the trimerization catalyst include nitrogen-containing aromatic compounds such as tris(dimethylaminomethyl)phenol, 2,4-bis(dimethylaminomethyl)phenol, and 2,4,6-tris(dialkylaminoalkyl)hexahydro-S-triazine; carboxylic acid alkali metal salts such as potassium acetate, potassium 2-ethylhexanoate and potassium octylate; and quaternary ammonium salts such as tetramethylammonium salts, tetraethylammonium salts and tetraphenylammonium salts.
  • a combination of an alkyl metal carboxylate and a quaternary ammonium salt is desirable from the standpoint of adhesion at low temperatures and flame retardancy.
  • Tosoh Toyocat-TRX, Toyocat-TRV, Toyocat-TR20, Evonik DABCO TMR, DABCO TMR-2, DABCO TMR-7, DABCO K-15, UCAT 18X, Polycat46, Kao KAOLIZER NO. 410, KAOLIZER NO. 420 and the like can be exemplified as trimerization catalysts.
  • the content of the trimerization catalyst is not particularly limited, it is preferably 1 to 20 parts by weight with respect to 100 parts by weight of the polyol compound.
  • the amount is 1 part by weight or more, the flame retardancy is further improved, and when the amount is 20 parts by weight or less, problems such as clogging of the mixing section of the spray gun due to excessive reaction can be suppressed.
  • the foaming agent is a material that promotes a decrease in the density of the molded product by generating gas inside the resin when the polyisocyanate compound (first liquid) and other components (second liquid) are mixed.
  • blowing agents include water. The reaction between isocyanate and water generates carbon dioxide, which is trapped inside the foam and accelerates the density reduction of the molded product.
  • foaming agents include those called physical foaming agents as listed below. Although it is liquid at room temperature, it gasifies inside the resin due to the exothermic reaction between isocyanate and polyol, accelerating the density reduction of the molded product.
  • dichloromonofluoroethane e.g., HCFC141b (1,1-dichloro-1-fluoroethane
  • HCFC22 chlorodifluoromethane
  • HCFC142b 1-chloro-1,1-difluoroethane
  • Hydrofluorocarbon HFC-245fa (1,1,1,3,3-pentafluoropropane) manufactured by Central Glass
  • HFC-365mfc (1,1,1,3,3-pentafluorobutane) manufactured by Honeywell, and the like.
  • nitrogen gas, oxygen gas, argon gas, carbon dioxide gas, etc. that can be dispersed or dissolved in the polyol component or the isocyanate component can be used as the foaming agent.
  • the content of the foaming agent is not particularly limited, it is preferably 1 to 100 parts by weight with respect to 100 parts by weight of the polyol. As the weight part of the foaming agent increases, the density of the foam decreases, but at the same time, the dimensional stability and compressive strength also decrease.
  • one or more of the foaming agents may be used.
  • a flame retardant is a material for imparting flame retardancy to the urethane resin composition according to the present invention.
  • the flame retardant is not particularly limited, but preferably includes at least one selected from the group consisting of red phosphorus, ammonium polyphosphate and phosphate ester in order to obtain high flame retardancy.
  • a combination of two or more kinds of ammonium polyphosphate or phosphate ester in addition to red phosphorus is preferable in terms of obtaining even higher flame retardancy.
  • Red Phosphorus Red phosphorus is a material for suppressing the total calorific value during combustion.
  • the red phosphorus used in the present invention is not limited, and commercially available products can be appropriately selected and used.
  • the content of the red phosphorus is not particularly limited, it is desirable to use 15 to 35 parts by weight of the red phosphorus with respect to 100 parts by weight of the polyol compound.
  • a phosphate-containing flame retardant like red phosphorus, is a material for suppressing the total calorific value during combustion.
  • the phosphate-containing flame retardant used in the present invention contains phosphoric acid.
  • Examples of the phosphate-containing flame retardant include salts of at least one metal or compound selected from the various phosphoric acids and metals of Groups IA to IVB of the periodic table, ammonia, aliphatic amines, and aromatic amines.
  • Examples of the metals of Groups IA to IVB of the periodic table include lithium, sodium, calcium, barium, iron (II), iron (III), and aluminum.
  • Examples of the aliphatic amine include methylamine, ethylamine, diethylamine, triethylamine, ethylenediamine and piperazine.
  • Examples of aromatic amines include pyridine, triazine, melamine, and ammonium.
  • the phosphate-containing flame retardant may be subjected to known water resistance improvement treatments such as silane coupling agent treatment and coating with melamine resin, or may be added with known foaming aids such as melamine and pentaerythritol.
  • the phosphate-containing flame retardant include monophosphates, pyrophosphates, polyphosphates, and the like.
  • the monophosphate include ammonium salts such as ammonium phosphate, ammonium dihydrogen phosphate, and diammonium hydrogen phosphate; sodium salts such as monosodium phosphate, disodium phosphate, trisodium phosphate, monosodium phosphite, disodium phosphite, and sodium hypophosphite; potassium salts such as monopotassium phosphate, dipotassium phosphate, tripotassium phosphate, monopotassium phosphite, dipotassium phosphite, and potassium hypophosphite; lithium salts such as lithium, dilithium phosphite and lithium hypophosphite; barium salts such as barium dihydrogen phosphate, barium hydrogen phosphate, tribarium phosphate and barium hypophosphit
  • a polyphosphate because the self-extinguishing property of the phosphate-containing flame retardant is improved, and it is more preferable to use ammonium polyphosphate or aluminum phosphite, which forms a foam layer when heated.
  • the phosphate-containing flame retardant may be used alone or in combination of two or more.
  • the content of the phosphate-containing flame retardant is not particularly limited, it is preferably 20 to 50 parts by weight with respect to 100 parts by weight of the polyol compound.
  • Chlorine-Containing Flame Retardant is an element for suppressing the maximum heat release rate at the initial stage of combustion.
  • the following five types of flame retardants are widely used as chlorine-containing flame retardants.
  • TCEP tris(chloroethyl) phosphate
  • TCPP tris( ⁇ -chloropropyl) phosphate
  • TDCP tris(dichloropropyl) phosphate
  • V6 Tetrakis(2-chloroethyl)dichloroisopentyl diphosphate
  • V6 polyoxyalkylene bis (dichloroalkyl) phosphate
  • the content of the chlorine-containing flame retardant is not particularly limited, it is preferably 60 to 120 parts by weight with respect to 100 parts by weight of the polyol compound.
  • Foam stabilizers and surface conditioners that are not included in the formulation in the present invention are described below.
  • the foam stabilizer is an organic siloxane-polyoxyalkylene copolymer or the like used in the production of polyurethane foam.
  • foam stabilizers include L-6900 manufactured by MOMENTIVE, SH-193 manufactured by Dow Corning Toray, and the like.
  • a surface conditioning agent is an additive that functions as an antifoaming agent, a leveling agent, and an anti-popping agent by controlling surface tension to form a good coating film.
  • surface conditioners include acrylic polymers such as SEI-W01 and SEI-1501 manufactured by Kusumoto Kasei.
  • the urethane resin composition according to the present invention may contain the following materials as appropriate.
  • the catalyst used to form the urethane foam is a material that promotes the reaction between isocyanate and active hydrogen present in polyol and the reaction between isocyanate and water.
  • Examples of the catalyst having an amine group include triethylenediamine, N,N,N',N'',N'-pentamethyldiethylenetriamine, N,N,N',N'-tetramethyl-1,6-hexanediamine, N,N,N',N'-tetramethylethylenediamine and other N-alkylpolyalkylenepolyamines, N'-(2-hydroxyethyl)-N,N,N'-trimethylethylenediamine, 1-(2-dimethylaminoethyl)-4-methylpiperazine, 1,2-dimethylimidazole, 1-isobutyl-2-methylimidazole, N-methylmorpholine, N-ethylmorpholine, N,N-dimethylaminoethylmorpholine, dimethylcyclohexylaminedimethylethanolamine, dimethylaminohexanol, dimethylaminoethoxyethanol, diazabicycloundecene and the like
  • catalysts containing organic metals include bismuth octylate, lead octylate, tin(II) 2-ethylhexanoate, dibutylbis[(1-oxooctyl)oxy]stannane, dibutyltin diacetate, and dibutyltin dilaurate.
  • Examples of amine catalyst products include Tosoh's TEDA-L33, TOYOCAT-ET, TOYOCAT-MR, TOYOCAT-TE, TOYOCAT-DT, TOYOCAT-NP, RX-5, RX-10, TOYOCAT-DM70, Evonik's DABCO 33LV, DABCO BL-19, and DABCO BL-1. 1, DABCO DMEA, DABCO T, DABCO N-MM, DABCO N-EM, DABCO XDM, DABCO NC-IM, Polycat201, Polycat204, KAOLIZER NO. 1, KAOLIZER NO. 3, KAOLIZER NO. 10, KAOLIZER NO. 31, KAOLIZER NO.
  • KAOLIZER NO. 22 KAOLIZER NO. 25
  • KAOLIZER NO. 26 KAOLIZER NO. 120
  • KAOLIZER NO. 300 KAOLIZER NO. 350
  • KAOLIZER NO. 390 KAOLIZER NO. 390 and the like.
  • One or more of these catalysts can be used.
  • Foam stabilizer B Silicone foam stabilizer (manufactured by Momentive, product name: L-6900)
  • trimerization catalyst E1 quaternary ammonium salt (manufactured by Evonik, product name: TMR-7)
  • E2 Potassium acetate catalyst (manufactured by Evonik, product name: Polycat46)
  • Foaming agent H1 HFO-1233zd (manufactured by Honeywell, product name: Solstice LBA)
  • H2 HFO-1336mzz (manufactured by Chemours, product name: Opteon 1100)
  • test body preparation method According to the formulations shown in the tables of each figure, the polyol, catalyst, trimerization catalyst, flame retardant, foaming agent, surface conditioner, and foam stabilizer components were weighed into a 1000 mL polypropylene beaker and stirred. This mixture is hereinafter referred to as a polyol premix.
  • the polyol premix and isocyanate were temperature controlled at 5°C.
  • An isocyanate component was added to the temperature-controlled polyol premix component according to the formulation in the table of each figure. After stirring with a hand mixer for about 3 seconds, the mixture was quickly poured into a wooden box of 200 ⁇ 200 ⁇ 200 mm and temperature-controlled at 20° C. to obtain a foam.
  • the isocyanate component is stirred and dispersed in advance immediately before mixing.
  • the foam cured for 24 hours after foaming was cut into a size of 99 mm ⁇ 99 mm ⁇ 50 mm, and after measuring the mass (the foam density was calculated from the obtained mass and size), a corn calorie test body was created. (This specimen is cut to a height of 50 mm in the foaming direction.)
  • Experimental Examples 1 and 2 are formulations containing either a foam stabilizer or a surface conditioner.
  • Test Examples 3, 4, 20, and 21 corresponded to semi-noncombustible materials
  • test specimens according to Experimental Examples 5 to 19 corresponded to noncombustible materials
  • the test specimens according to Experimental Examples 4 to 21 had a foam density of 30 kg/m3 or more.
  • test pieces according to Experimental Examples 23 to 26 and Experimental Examples 29 to 32 were equivalent to noncombustible materials, and had foam densities of 30 kg/m3 or more.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

[Problem] To provide a urethane resin composition that is not susceptible to swelling when heated. [Solution] A urethane resin composition for forming a foam that constitutes a heat insulating material in a building, said urethane resin composition containing at least a polyisocyanate compound, a polyol compound, a trimerization catalyst, a foaming agent, and a fire retardant, and not containing a foam stabilizer or a surface conditioner.

Description

ウレタン樹脂組成物Urethane resin composition
 本発明は、建築物の断熱材として用いるウレタン樹脂組成物等に関する。 The present invention relates to a urethane resin composition and the like used as a heat insulating material for buildings.
 RC造やS造住宅では、結露防止や断熱、省エネルギーを目的として吹付硬質ウレタンフォーム断熱材が多く用いられている。
 近年、稀に工事管理の不備等によって断熱材への引火を原因とした火災が発生している。また、一般の火災が発生した際にも、火が断熱材に燃え移って延焼を引き起こしている場合がある。
 このようなウレタンフォームの燃焼を防止する目的で、耐火コート(セメント系等無機物吹付材等)が施工される場合があるが、施工に時間がかかる、施工後にウレタンフォームとの接着が十分でなく脱落する等の問題が残されている。
In RC and S houses, spray-on rigid urethane foam insulation is often used for the purpose of dew condensation prevention, heat insulation, and energy saving.
In recent years, on rare occasions, fires have occurred due to ignition of insulation materials due to inadequate construction management. Also, when a general fire breaks out, the fire may spread to the insulating material and cause the fire to spread.
In order to prevent such burning of urethane foam, a fire-resistant coating (such as cement-based inorganic spraying material) is sometimes applied, but there are problems such as the application taking time and the adhesion to the urethane foam being insufficient after application.
 そこで、難燃性を付与したウレタン樹脂組成物として、以下の特許文献1,2で示したウレタン樹脂組成物が知られている。 Therefore, the urethane resin compositions shown in Patent Documents 1 and 2 below are known as flame retardant urethane resin compositions.
特許第6200435号公報Japanese Patent No. 6200435 特許第6725606号公報Japanese Patent No. 6725606
 ウレタン樹脂組成物の難燃性を評価するためのISO-5660に準拠した発熱性試験では、コーンカロリーメータと呼ばれる試験装置を用いる。
 コーンカロリーメータは、所定の大きさに切り出した試験体の上方に配置するコーンヒータと、試験体とコーンヒータとの間に設けたスパークロッドとを具備している。
 ISO-5660に準拠した発熱性試験では、コーンヒータでの加熱によって試験体から可燃ガスを発生させ、当該可燃ガスがスパークロッドの火花で引火することで燃焼を発生させ、当該燃焼によって得られる総発熱量等を所定の計測方法で計測し、以下の表1に示す性能要求に照らして難燃性を評価する。
 この性能要求は、建築基準法第2条第9号、建築基準法施行令第1条第5号及び第6号並びに建築基準法施行令第108条の2に規定される技術的基準に適合するための基準として一般財団法人日本建築総合試験所や一般財団法人建材試験センターが規定しているものである。
A test device called a cone calorimeter is used in an exothermic test conforming to ISO-5660 for evaluating the flame retardancy of a urethane resin composition.
The cone calorimeter is equipped with a cone heater arranged above a specimen cut into a predetermined size, and a spark rod provided between the specimen and the cone heater.
In the exothermicity test conforming to ISO-5660, combustible gas is generated from the test specimen by heating with a cone heater, and the combustible gas is ignited by the spark of the spark rod to generate combustion.
These performance requirements are specified by the General Incorporated Foundation Japan Building Research Institute and the General Incorporated Foundation Testing Center for Building Materials as standards for complying with the technical standards stipulated in Article 2-9 of the Building Standard Law, Article 1-5 and 6 of the Enforcement Order of the Building Standard Law, and Article 108-2 of the Enforcement Order of the Building Standard Law.
[表1]
[Table 1]
 発熱性試験を実施していくにあたり、試験体の中にはコーンヒータによる加熱によって膨れが発生するものが存在し、試験体の膨れ箇所がスパークプラグと接触したり、膨張した試験体とプラグが接触せずとも放電していることが確認されたりする場合(これらの現象を以下「スパーク接触」ともいう。)があった。
 スパーク接触が発生した試験体は、ISO-5660に準拠した場合に有効な結果とならないため、都度スパーク接触の有無を確認する必要がある。
During the exothermic test, there were some specimens that swelled when heated by the cone heater, and it was sometimes confirmed that the swollen part of the specimen came into contact with the spark plug, or that discharge occurred even though the expanded specimen did not come into contact with the plug (these phenomena are hereinafter also referred to as "spark contact").
Test specimens with spark contact do not produce valid results when conforming to ISO-5660, so it is necessary to check the presence or absence of spark contact each time.
 また、ウレタン樹脂組成物を断熱材として使用する場合、加熱による膨れによって断熱材の周辺に設けた内装材(石膏ボード等)に圧力が加わり、破損を生じさせる問題もあった。
 内装材が破損してしまうと、断熱材に火災時の熱が伝わりやすくなるため、外装材にまで熱影響を与える可能性が大きくなる。
Moreover, when a urethane resin composition is used as a heat insulating material, there is also a problem that pressure is applied to an interior material (such as a gypsum board) provided around the heat insulating material due to swelling due to heating, resulting in breakage.
If the interior material is damaged, the heat in the event of a fire is likely to be conducted to the heat insulating material, increasing the possibility that the exterior material will also be thermally affected.
 よって、本発明では、加熱時に膨れが生じにくいウレタン樹脂組成物の提供を目的の一つとするものである。 Accordingly, one of the objects of the present invention is to provide a urethane resin composition that is less likely to swell when heated.
 上記課題を解決すべく、本願発明は、建築物の断熱材を構成する発泡体を形成するウレタン樹脂組成物であって、ポリイソシアネート化合物、ポリオール化合物、三量化触媒、発泡剤および難燃剤を少なくとも含み、かつ整泡剤および表面調整剤を含まない構成とした。 In order to solve the above problems, the present invention is a urethane resin composition that forms a foam that constitutes a heat insulating material for buildings, which contains at least a polyisocyanate compound, a polyol compound, a trimerization catalyst, a foaming agent and a flame retardant, and does not contain a foam stabilizer and a surface conditioner.
 本発明によれば、加熱時に膨れが生じにくいウレタン樹脂組成物を得ることができる。
 また、本発明の好適な態様においては、ISO-5660に準拠した発熱性試験においてもスパーク接触が生じないウレタン樹脂組成物を得ることができる。
 さらに、本発明の好適な態様においては、建築物の断熱材として使用する際に、断熱材から内装材までのクリアランスを超えて断熱材が膨れることがなく、内装材を押し上げて破損することがないウレタン樹脂組成物を得ることができる。
 さらに、本発明の好適な態様においては、ウレタン樹脂組成物の形成に必要な原料数を減らすことで、コスト削減に寄与することができる。
According to the present invention, it is possible to obtain a urethane resin composition that is less likely to swell when heated.
Further, in a preferred embodiment of the present invention, it is possible to obtain a urethane resin composition that does not cause spark contact even in an exothermic test conforming to ISO-5660.
Furthermore, in a preferred embodiment of the present invention, when used as a heat insulating material for a building, it is possible to obtain a urethane resin composition that does not cause the heat insulating material to swell beyond the clearance from the heat insulating material to the interior material, and does not cause the interior material to be pushed up and damaged.
Furthermore, in a preferred embodiment of the present invention, it is possible to contribute to cost reduction by reducing the number of raw materials required for forming the urethane resin composition.
<1>全体構成
 本発明に係るウレタン樹脂組成物は、建築物の断熱材を構成する発泡体を形成するためのものであり、ポリイソシアネート化合物、ポリオール化合物、三量化触媒、発泡剤、および難燃剤を少なくとも含み、かつ整泡剤および表面調整剤を含まないものとする。
 また、本発明に係るウレタン樹脂組成物は、さらに粘土鉱物などの鉱物由来の材料を含めて構成することもできる。
 上記の組成物を、ポリイソシアネート化合物(第1液)とそれ以外との成分(第2液)とに分けておき、両者を噴霧しながら混合して吹き付ける方法や、両者を混合しながら吹き付ける方法等によって、建築物に断熱層を形成することができる。
<1> Overall Configuration The urethane resin composition according to the present invention is for forming a foam that constitutes a heat insulating material for buildings, and contains at least a polyisocyanate compound, a polyol compound, a trimerization catalyst, a blowing agent, and a flame retardant, and does not contain a foam stabilizer and a surface conditioner.
In addition, the urethane resin composition according to the present invention may further contain mineral-derived materials such as clay minerals.
A heat insulating layer can be formed on a building by dividing the above composition into a polyisocyanate compound (first liquid) and other components (second liquid), and mixing and spraying the two, or by mixing and spraying the two.
<2>各種性能について
 本発明に係るウレタン樹脂組成物は、各材料の配合等を調整することによって、以下の性能を備えたものとすることができる。
<2> Various performances The urethane resin composition according to the present invention can be provided with the following performances by adjusting the composition of each material.
<2.1>不燃性能について
 本発明に係るウレタン樹脂組成物は、ISO-5660の試験に準拠した発熱性試験で特定される不燃性能を備えたものとすることができる。
<2.1> Non-combustibility The urethane resin composition according to the present invention can have non-combustibility specified in the exothermic test based on the test of ISO-5660.
<2.1.1>ISO-5660試験について
 ISO-5660に準拠した発熱性試験では、コーンカロリーメータと呼ばれる試験装置を用いる。
 コーンカロリーメータは、所定の大きさに切り出した試験体の上方に配置するコーンヒータと、試験体とコーンヒータとの間に設けたスパークロッドとを具備しており、コーンヒータでの加熱によって試験体から可燃ガスを発生させ、当該可燃ガスがスパークロッドの火花で引火することで燃焼を発生させ、当該燃焼によって得られる総発熱量等を所定の計測方法で計測し、下記の表2に示す性能要求に照らして難燃性を評価する。
<2.1.1> ISO-5660 test In the exothermic test conforming to ISO-5660, a test device called a cone calorimeter is used.
The cone calorimeter is equipped with a cone heater placed above a test piece cut to a predetermined size and a spark rod provided between the test piece and the cone heater. The test piece is heated by the cone heater to generate combustible gas, which is ignited by the spark of the spark rod to cause combustion.
[表2]
[Table 2]
<2.2>加熱時の膨れ(最大膨張長)について
 本発明に係るウレタン樹脂組成物は、ISO-5660試験の実施時において、スパーク接触が発生しない膨れ量とすることができる。
 スパーク接触が発生しない目安は、試験体の高さ方向における最大膨張長を8mm未満、より好ましくは2mm以下とする。
 上記構成により、スパーク接触を回避することで、ISO-5660試験として有効な結果を得ることができる。
<2.2> Swelling During Heating (Maximum Expansion Length) The urethane resin composition according to the present invention can have a swelling amount that does not cause spark contact when the ISO-5660 test is carried out.
As a guideline for not generating spark contact, the maximum expansion length in the height direction of the specimen should be less than 8 mm, more preferably 2 mm or less.
By avoiding spark contact with the above configuration, it is possible to obtain effective results as an ISO-5660 test.
<2.2.1>膨れ量の測定方法
 前記した試験体の高さ方向の膨れ量の測定方法を以下に示す。
(1)発熱性試験前に、予め試験体の上面の高さ位置を、コーンカロリーメータの前面に備えた風防ガラス枠にマーキングしておく。
(2)発熱性試験後、風防ガラス枠上において、当該枠上のマーキング位置から、膨張した試験体の上面位置のうち最も高い位置までの高さを視認によって測定する。
<2.2.1> Method for measuring the amount of swelling A method for measuring the amount of swelling in the height direction of the above-described specimen is shown below.
(1) Prior to the exothermic test, the height position of the upper surface of the specimen is marked in advance on the windshield frame provided in front of the cone calorimeter.
(2) After the exothermic test, on the windshield frame, visually measure the height from the marking position on the frame to the highest position among the upper surfaces of the expanded specimen.
<2.3>密度について
 本発明に係るウレタン樹脂組成物は、発泡体の密度を30kg/m3以上とすることができる。
 発泡体の密度を30kg/m3以上とすることで、建築物用断熱材として使用する際に、他からの衝撃に対する十分な変形抑制効果を得ることができる。
<2.3> Density The urethane resin composition according to the present invention can have a foam density of 30 kg/m3 or more.
By setting the density of the foam to 30 kg/m 3 or more, it is possible to obtain a sufficient effect of suppressing deformation against impact from other sources when used as a heat insulating material for buildings.
<3>ポリイソシアネート化合物
 ポリイソシアネート化合物は、本発明に係るウレタン樹脂組成物において主剤として用いる材料である。
 ポリイソシアネート化合物としては、例えば、芳香族ポリイソシアネート、脂環族ポリイソシアネート、脂肪族ポリイソシアネート、変性ポリイソシアネート等が挙げられる。
 前記芳香族ポリイソシアネートとしては、例えば、フェニレンジイソシアネート、トリレンジイソシアネート、キシリレンジイソシアネート、ジフェニルメタンジイソシアネート、ジメチルジフェニルメタンジイソシアネート、トリフェニルメタントリイソシアネート、ナフタレンジイソシアネート、ポリメチレンポリフェニルポリイソシアネート等が挙げられる。
 前記脂環族ポリイソシアネートとしては、例えば、シクロヘキシレンジイソシアネート、メチルシクロヘキシレンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、ジメチルジシクロヘキシルメタンジイソシアネート等が挙げられる。
 前記脂肪族ポリイソシアネートとしては、例えば、メチレンジイソシアネート、エチレンジイソシアネート、プロピレンジイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート等が挙げられる。
 前記変性ポリイソシアネートとは、ポリイソシアネート化合物に対してポリオール成分を反応させたイソシアネート基末端プレポリマー等であり、ウレタン変性物、カルボジイミド変性物、ウレア変性物、ビュレット変性物、アロファネート変性物等が挙げられる。
 前記ポリイソシアネート化合物は一種もしくは二種以上を使用することができる。
 特に、常温で液状であり、入手し易いこと等の理由から、ポリメチレンポリフェニルポリイソシアネート(ポリメリックMDI、クルードMDI)が好ましい。
 前記ポリメチレンポリフェニルポリイソシアネートの例として、東ソー製ミリオネートMR-200、MR-100、MR-400、コベストロ製スミジュール44V20L、ディスモジュール44V20L、万華化学製PM-200、PM-400、DOW製PAPI27、PAPI135などが挙げられる。
<3> Polyisocyanate compound A polyisocyanate compound is a material used as a main ingredient in the urethane resin composition according to the present invention.
Examples of polyisocyanate compounds include aromatic polyisocyanates, alicyclic polyisocyanates, aliphatic polyisocyanates, and modified polyisocyanates.
Examples of the aromatic polyisocyanate include phenylene diisocyanate, tolylene diisocyanate, xylylene diisocyanate, diphenylmethane diisocyanate, dimethyldiphenylmethane diisocyanate, triphenylmethane triisocyanate, naphthalene diisocyanate, and polymethylene polyphenyl polyisocyanate.
Examples of the alicyclic polyisocyanate include cyclohexyl diisocyanate, methylcyclohexyl diisocyanate, isophorone diisocyanate, dicyclohexylmethane diisocyanate, dimethyldicyclohexylmethane diisocyanate, and the like.
Examples of the aliphatic polyisocyanate include methylene diisocyanate, ethylene diisocyanate, propylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate and the like.
The modified polyisocyanate is an isocyanate group-terminated prepolymer obtained by reacting a polyol component with a polyisocyanate compound, and includes urethane-modified products, carbodiimide-modified products, urea-modified products, burette-modified products, allophanate-modified products, and the like.
The polyisocyanate compound can be used alone or in combination of two or more.
In particular, polymethylene polyphenyl polyisocyanate (polymeric MDI, crude MDI) is preferred because it is liquid at room temperature and is easily available.
Examples of the polymethylene polyphenyl polyisocyanate include Millionate MR-200, MR-100 and MR-400 manufactured by Tosoh, Sumidule 44V20L and Dismodur 44V20L manufactured by Covestro, PM-200 and PM-400 manufactured by Wanhua Chemical, and PAPI27 and PAPI135 manufactured by DOW.
 ウレタン樹脂組成物に含まれるポリイソシアネートの配合量としては、イソシアネートインデックスが150~1000になるようにするのが好ましい。150以上であると難燃性がさらに良好となり、1000以下であると躯体等との接着が良好である。
 特に、本発明においては、イソシアネートインデックスは400~600の範囲が最も好ましい。
 イソシアネートインデックスとは、イソシアネート成分に含まれるイソシアネート基と、ポリオール成分及び発泡剤の水等に含まれる活性水素の当量比で算出される。
 [イソシアネート基]/[OH基](モル比)×100
The amount of polyisocyanate contained in the urethane resin composition is preferably such that the isocyanate index is 150-1000. When it is 150 or more, the flame retardancy is further improved, and when it is 1000 or less, the adhesion to the frame or the like is good.
In particular, in the present invention, the isocyanate index is most preferably in the range of 400-600.
The isocyanate index is calculated from the equivalent ratio of the isocyanate group contained in the isocyanate component to the active hydrogen contained in the polyol component and the water of the foaming agent.
[Isocyanate group] / [OH group] (molar ratio) × 100
<4>ポリオール化合物
 ポリオール化合物は、本発明に係るウレタン樹脂組成物において硬化剤として用いる材料である。
 ポリオール化合物は、エステル系ポリオール化合物またはエーテル系ポリオール化合物およびこれらの組合せからなる。
<4> Polyol compound A polyol compound is a material used as a curing agent in the urethane resin composition according to the present invention.
The polyol compound consists of an ester-based polyol compound or an ether-based polyol compound and combinations thereof.
<4.1>エステル系ポリオール化合物
 エステル系ポリオール化合物としては、例えば、多塩基酸と多価アルコールとを脱水縮合して得られる重合体、ε-カプロラクトン、α-メチル-ε-カプロラクトン等のラクトンを開環重合して得られる重合体、ヒドロキシカルボン酸と上記多価アルコール等との縮合物が挙げられる。
 ここで前記多塩基酸としては、具体的には、例えば、アジピン酸、アゼライン酸、セバシン酸、テレフタル酸、イソフタル酸、コハク酸等が挙げられる。難燃性の面ではテレフタル酸変性が好ましい。
<4.1> Ester Polyol Compound Ester polyol compounds include, for example, polymers obtained by dehydration condensation of polybasic acids and polyhydric alcohols, polymers obtained by ring-opening polymerization of lactones such as ε-caprolactone and α-methyl-ε-caprolactone, and condensates of hydroxycarboxylic acids and the above polyhydric alcohols.
Here, specific examples of the polybasic acid include adipic acid, azelaic acid, sebacic acid, terephthalic acid, isophthalic acid, and succinic acid. Modification with terephthalic acid is preferred in terms of flame retardancy.
<4.2>その他のポリオール化合物
 その他のポリオール化合物としては、例えば、ポリラクトンポリオール、ポリカーボネートポリオール、芳香族ポリオール、脂環族ポリオール、脂肪族ポリオール、ポリマーポリオール、ポリエーテルポリオール等が挙げられる。
 前記ポリラクトンポリオールとしては、例えば、ポリプロピオラクトングリコール、ポリカプロラクトングリコール、ポリバレロラクトングリコールなどが挙げられる。
 前記ポリカーボネートポリオールとしては、例えば、エチレングリコール、プロピレングリコール、ブタンジオール、ペンタンジオール、ヘキサンジオール、オクタンジオール、ノナンジオールなどの水酸基含有化合物と、ジエチレンカーボネート、ジプロピレンカーボネートなどとの脱アルコール反応により得られるポリオール等が挙げられる。
 前記芳香族ポリオールとしては、例えば、ビスフェノールA、ビスフェノールF、フェノールノボラック、クレゾールノボラック等が挙げられる。
 前記脂環族ポリオールとしては、例えば、シクロヘキサンジオール、メチルシクロヘキサンジオール、イソホロンジオール、ジシクロヘキシルメタンジオール、ジメチルジシクロヘキシルメタンジオール等が挙げられる。
 前記脂肪族ポリオールとしては、例えば、エチレングリコール、プロピレングリコール、ブタンジオール、ペンタンジオール、ヘキサンジオール等が挙げられる。
 前記多価ポリエーテルポリオールとしては、例えば、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,8-オクタンジオール、1,9-ノナンジオ-ル、3-メチル-1,5-ペンタンジオ-ル、3,3-ジメチロールヘプタン、ジエチレングリコール、ジプロピレングリコール、ネオペンチルグリコール、シクロヘキサン-1,4-ジオール、シクロヘキサン-1,4-ジメタノール、ダイマ-酸ジオール、ビスフェノールA、ビス(β-ヒドロキシエチル)ベンゼン、キシリレングリコール、グリセリン、トリメチロールプロパン、ペンタエリスリトール、ショ糖等の低分子ポリオール類、またはエチレンジアミン、プロピレンジアミン、トルエンジアミン、メタフェニレンジアミン、ジフェニルメタンジアミン、キシリレンジアミン、トリエタノールアミン等の芳香族および脂肪族ポリアミン類等の活性水素基を2個以上、好ましくは3~ 8個有する化合物を開始剤として、エチレンオキサイド、プロピレンオキサイド、ブチレンオキサイド等のアルキレンオキサイド類を付加重合させることによって得られるポリエーテルポリオール、或いはメチルグリシジルエーテル等のアルキルグリシジルエーテル類、フェニルグリシジルエーテル等のアリールグリシジルエーテル類、テトラヒドロフラン等の環状エーテルモノマーを開環重合することで得られるポリエーテルポリオールを挙げることができる。
 その他、臭素やリンなどを含有したポリエーテルポリオールを使用してもよい。
<4.2> Other polyol compounds Examples of other polyol compounds include polylactone polyols, polycarbonate polyols, aromatic polyols, alicyclic polyols, aliphatic polyols, polymer polyols, polyether polyols, and the like.
Examples of the polylactone polyols include polypropiolactone glycol, polycaprolactone glycol, and polyvalerolactone glycol.
Examples of the polycarbonate polyols include polyols obtained by a dealcoholization reaction of a hydroxyl group-containing compound such as ethylene glycol, propylene glycol, butanediol, pentanediol, hexanediol, octanediol, and nonanediol with diethylene carbonate, dipropylene carbonate, and the like.
Examples of the aromatic polyols include bisphenol A, bisphenol F, phenol novolak, cresol novolak and the like.
Examples of the alicyclic polyols include cyclohexanediol, methylcyclohexanediol, isophoronediol, dicyclohexylmethanediol, and dimethyldicyclohexylmethanediol.
Examples of the aliphatic polyols include ethylene glycol, propylene glycol, butanediol, pentanediol, and hexanediol.
Examples of polyhydric polyether polyols include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,8-octanediol, 1,9-nonanediol, 3-methyl-1,5-pentanediol, and 3,3-dimethylolheptane. , diethylene glycol, dipropylene glycol, neopentyl glycol, cyclohexane-1,4-diol, cyclohexane-1,4-dimethanol, dimer acid diol, bisphenol A, bis(β-hydroxyethyl)benzene, xylylene glycol, glycerin, trimethylolpropane, pentaerythritol, low-molecular-weight polyols such as sucrose, or aromatics such as ethylenediamine, propylenediamine, toluenediamine, metaphenylenediamine, diphenylmethanediamine, xylylenediamine, triethanolamine, etc. and polyether polyols obtained by addition polymerization of alkylene oxides such as ethylene oxide, propylene oxide and butylene oxide using a compound having two or more, preferably 3 to 8, active hydrogen groups such as aliphatic polyamines as an initiator, or polyether polyols obtained by ring-opening polymerization of alkyl glycidyl ethers such as methyl glycidyl ether, aryl glycidyl ethers such as phenyl glycidyl ether, and cyclic ether monomers such as tetrahydrofuran.
In addition, polyether polyols containing bromine, phosphorus, or the like may be used.
<5>鉱物由来の材料
 鉱物由来の材料は、難燃性の向上と密度の向上を目的とする材料である。
 鉱物由来の材料としては、珪酸塩化合物が好ましい。鉱物由来の材料としては、例えば、モンモリロナイト、サポナイト、ヘクトライト、バーミキュライト、カオリナイト、マイカ、タルク等を使用することができる。
 前記カオリナイトを主成分とするものとしてはカオリンが挙げられる。
 また、前記カオリンの中には、カオリンを高温処理してなる焼成カオリンも含まれる。焼成カオリンは、水分率や粒径分布が小さい点で好適である。
<5> Mineral-Derived Materials Mineral-derived materials are intended to improve flame retardancy and density.
A silicate compound is preferable as the mineral-derived material. Examples of mineral-derived materials that can be used include montmorillonite, saponite, hectorite, vermiculite, kaolinite, mica, and talc.
Kaolin is an example of a material containing kaolinite as a main component.
The kaolin also includes calcined kaolin obtained by treating kaolin at a high temperature. Calcined kaolin is suitable because of its small moisture content and small particle size distribution.
 前記鉱物由来の材料の含有量は特に限定しないが、ポリオール化合物100重量部に対して15~85重量部が望ましい。 Although the content of the mineral-derived material is not particularly limited, it is preferably 15 to 85 parts by weight with respect to 100 parts by weight of the polyol compound.
<6>三量化触媒
 三量化触媒は、ポリイソシアネート化合物に含まれるイソシアネート基を反応させて三量化させ、イソシアヌレート環の生成を促進するための材料である。
 三量化触媒としては、例えば、触媒として、トリス(ジメチルアミノメチル)フェノール、2,4-ビス(ジメチルアミノメチル)フェノール、2,4,6-トリス(ジアルキルアミノアルキル)ヘキサヒドロ-S-トリアジン等の窒素含有芳香族化合物、酢酸カリウム、2-エチルヘキサン酸カリウム、オクチル酸カリウム等のカルボン酸アルカリ金属塩、テトラメチルアンモニウム塩、テトラエチルアンモニウム、テトラフェニルアンモニウム塩等の4級アンモニウム塩等を使用することができる。
 低温時の接着性や難燃性の面からカルボン酸アルキル金属塩と4級アンモニウム塩の組み合わせが望ましい。
 例えば、東ソー製Toyocat-TRX、Toyocat-TRV、Toyocat-TR20、Evonik製DABCO TMR、DABCO TMR-2、DABCO TMR-7、DABCO K-15、UCAT 18X、Polycat46、花王製KAOLIZER NO.410、KAOLIZER NO.420などが三量化触媒として例示できる。
<6> Trimerization Catalyst The trimerization catalyst is a material for reacting and trimerizing the isocyanate groups contained in the polyisocyanate compound to promote the formation of isocyanurate rings.
Examples of the trimerization catalyst include nitrogen-containing aromatic compounds such as tris(dimethylaminomethyl)phenol, 2,4-bis(dimethylaminomethyl)phenol, and 2,4,6-tris(dialkylaminoalkyl)hexahydro-S-triazine; carboxylic acid alkali metal salts such as potassium acetate, potassium 2-ethylhexanoate and potassium octylate; and quaternary ammonium salts such as tetramethylammonium salts, tetraethylammonium salts and tetraphenylammonium salts.
A combination of an alkyl metal carboxylate and a quaternary ammonium salt is desirable from the standpoint of adhesion at low temperatures and flame retardancy.
For example, Tosoh Toyocat-TRX, Toyocat-TRV, Toyocat-TR20, Evonik DABCO TMR, DABCO TMR-2, DABCO TMR-7, DABCO K-15, UCAT 18X, Polycat46, Kao KAOLIZER NO. 410, KAOLIZER NO. 420 and the like can be exemplified as trimerization catalysts.
 前記三量化触媒の含有量は特に限定しないが、ポリオール化合物100重量部に対して1~20重量部が好ましい。1重量部以上の場合は難燃性がさらに良好となり、20重量部以下の場合は反応が早すぎることによるスプレーガンの混合部の詰まり等の問題が発生することを抑制できる。 Although the content of the trimerization catalyst is not particularly limited, it is preferably 1 to 20 parts by weight with respect to 100 parts by weight of the polyol compound. When the amount is 1 part by weight or more, the flame retardancy is further improved, and when the amount is 20 parts by weight or less, problems such as clogging of the mixing section of the spray gun due to excessive reaction can be suppressed.
<7>発泡剤
 発泡剤は、ポリイソシアネート化合物(第1液)とそれ以外との成分(第2液)とを混合したときに、樹脂内部でガスが発生することにより、成形物の密度低下を促進するための材料である。
 発泡剤の例としては、水が挙げられる。イソシアネートと水が反応することにより二酸化炭素が発生し、二酸化炭素が発泡体内部に補足され、成形物の密度低下を促進する。
<7> Foaming Agent The foaming agent is a material that promotes a decrease in the density of the molded product by generating gas inside the resin when the polyisocyanate compound (first liquid) and other components (second liquid) are mixed.
Examples of blowing agents include water. The reaction between isocyanate and water generates carbon dioxide, which is trapped inside the foam and accelerates the density reduction of the molded product.
 発泡剤のその他の例としては、下記に挙げられるような物理発泡剤といわれるものが挙げられる。常温では液体であるが、イソシアネートとポリオールの発熱反応により、樹脂内部でガス化し、成形物の密度低下を促進する。 Other examples of foaming agents include those called physical foaming agents as listed below. Although it is liquid at room temperature, it gasifies inside the resin due to the exothermic reaction between isocyanate and polyol, accelerating the density reduction of the molded product.
[1]炭化水素化合物
 プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、シクロプロパン、シクロブタン、シクロペンタン、シクロヘキサン、シクロヘプタン、ギ酸メチル等。
[1] Hydrocarbon compounds Propane, butane, pentane, hexane, heptane, cyclopropane, cyclobutane, cyclopentane, cyclohexane, cycloheptane, methyl formate and the like.
[2]塩素化脂肪族炭化水素化合物
 ジクロロエタン、プロピルクロリド、イソプロピルクロリド、ブチルクロリド、イソブチルクロリド、ペンチルクロリド、イソペンチルクロリド等。
[2] Chlorinated Aliphatic Hydrocarbon Compounds Dichloroethane, propyl chloride, isopropyl chloride, butyl chloride, isobutyl chloride, pentyl chloride, isopentyl chloride and the like.
[3]フッ素化合物
 CHF3、CH2F2、CH3F等。
[3] Fluorine compounds CHF3, CH2F2, CH3F and the like.
[4]ハイドロクロロフルオロカーボン化合物
 トリクロルモノフルオロメタン、トリクロルトリフルオロエタン、ジクロロモノフルオロエタン、(例えば、HCFC141b(1,1-ジクロロ-1-フルオロエタン)、HCFC22(クロロジフルオロメタン)、HCFC142b(1-クロロ-1,1-ジフルオロエタン))等。
[4] Hydrochlorofluorocarbon compounds trichloromonofluoromethane, trichlorotrifluoroethane, dichloromonofluoroethane (e.g., HCFC141b (1,1-dichloro-1-fluoroethane), HCFC22 (chlorodifluoromethane), HCFC142b (1-chloro-1,1-difluoroethane)) and the like.
[5]ハイドロフルオロカ-ボン
 セントラル硝子製HFC-245fa(1,1,1,3,3-ペンタフルオロプロパン)、ハネウエル製HFC-365mfc(1,1,1,3,3-ペンタフルオロブタン)等。
[5] Hydrofluorocarbon HFC-245fa (1,1,1,3,3-pentafluoropropane) manufactured by Central Glass, HFC-365mfc (1,1,1,3,3-pentafluorobutane) manufactured by Honeywell, and the like.
[6]ハイドロフルオロオレフィン
 ハネウエル製ソルスティスLBA(HFO-1233zd、(E)-1-クロロ-3,3,3-トリフルオロプロペン)、ケマーズ製Opteon1100(HFO-1336mzz(Z)、(Z)-1,1,1,4,4,4-ヘキサフルオロ-2-ブテン)、ケマ-ズ製Opteon1150(HFO-1336mzz(E)、(E)-1,1,1,4,4,4-ヘキサフルオロ-2-ブテン)、AGC製Amorea1224yd((Z)-1-クロロ-2,3,3,3-テトラフルオロプロペン)等。
[6] Hydrofluoroolefin Solstice LBA manufactured by Honeywell (HFO-1233zd, (E)-1-chloro-3,3,3-trifluoropropene), Opteon 1100 manufactured by Chemazu (HFO-1336mzz (Z), (Z)-1,1,1,4,4,4-hexafluoro-2-butene) manufactured by Chemazu, Opteon 1150 manufactured by Chemazu (HFO-13) 36mzz (E), (E)-1,1,1,4,4,4-hexafluoro-2-butene), Amorea 1224yd ((Z)-1-chloro-2,3,3,3-tetrafluoropropene) manufactured by AGC, and the like.
[7]有機化合物
 ギ酸メチル、ジイソプロピルエーテル等。
[7] Organic compounds Methyl formate, diisopropyl ether and the like.
 その他にも、発泡剤として、ポリオール成分中またはイソシアネート成分中に分散、溶解することができる窒素ガス、酸素ガス、アルゴンガス、二酸化炭素ガス等を用いることができる。 In addition, nitrogen gas, oxygen gas, argon gas, carbon dioxide gas, etc. that can be dispersed or dissolved in the polyol component or the isocyanate component can be used as the foaming agent.
 発泡剤の含有量は特に限定しないが、ポリオール100重量部に対して、1重量部~100重量部であることが好ましい。発泡剤の重量部が多いほど、フォーム密度は低下するが、同時に寸法安定性や圧縮強度が低下するため、密度設計に合致した発泡剤の重量部数を設定すればよい。 Although the content of the foaming agent is not particularly limited, it is preferably 1 to 100 parts by weight with respect to 100 parts by weight of the polyol. As the weight part of the foaming agent increases, the density of the foam decreases, but at the same time, the dimensional stability and compressive strength also decrease.
 また、本発明では、前記の発泡剤を一種もしくは二種以上使用してもよい。 Also, in the present invention, one or more of the foaming agents may be used.
<8>難燃剤
 難燃剤は、本発明に係るウレタン樹脂組成物に難燃性を付与するための材料である。
 本発明において、難燃剤は、特に限定されないが、赤リン、ポリリン酸アンモニウムおよびリン酸エステルからなる群から選ばれる一種以上を少なくとも含めた構成とするのが、高い難燃性を得られる点で好ましい。
 特に、赤リンの他に、ポリリン酸アンモニウムやリン酸エステルを組合せた二種以上の構成とすると、さらに高い難燃性を得られる点で好ましい。
<8> Flame Retardant A flame retardant is a material for imparting flame retardancy to the urethane resin composition according to the present invention.
In the present invention, the flame retardant is not particularly limited, but preferably includes at least one selected from the group consisting of red phosphorus, ammonium polyphosphate and phosphate ester in order to obtain high flame retardancy.
In particular, a combination of two or more kinds of ammonium polyphosphate or phosphate ester in addition to red phosphorus is preferable in terms of obtaining even higher flame retardancy.
<8.1>赤リン
 赤リンは、燃焼時の総発熱量を抑制するための材料である。
 本発明で使用する赤リンに限定はなく、市販品を適宜選択して使用することができる。
<8.1> Red Phosphorus Red phosphorus is a material for suppressing the total calorific value during combustion.
The red phosphorus used in the present invention is not limited, and commercially available products can be appropriately selected and used.
 前記赤リンの含有量は特に限定しないが、ポリオール化合物100重量部に対して、前記赤リンは15重量部~35重量部が望ましい。 Although the content of the red phosphorus is not particularly limited, it is desirable to use 15 to 35 parts by weight of the red phosphorus with respect to 100 parts by weight of the polyol compound.
<8.2>リン酸塩含有難燃剤
 リン酸塩含有難燃剤は、赤リンと同様、燃焼時の総発熱量を抑制するための材料である。
 本発明に使用するリン酸塩含有難燃剤は、リン酸を含むものである。
<8.2> Phosphate-Containing Flame Retardant A phosphate-containing flame retardant, like red phosphorus, is a material for suppressing the total calorific value during combustion.
The phosphate-containing flame retardant used in the present invention contains phosphoric acid.
 前記リン酸塩含有難燃剤としては、例えば、前記各種リン酸と周期律表IA族~IVB族の金属、アンモニア、脂肪族アミン、芳香族アミンから選ばれる少なくとも一種の金属または化合物との塩からなるリン酸塩を挙げることができる。
 前記周期律表IA族~IVB族の金属としては、例えば、リチウム、ナトリウム、カルシウム、バリウム、鉄(II)、鉄(III)、アルミニウム等が挙げられる。
 また前記脂肪族アミンとしては、例えば、メチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、エチレンジアミン、ピペラジン等が挙げられる。
 また前記芳香族アミンとしては、例えば、ピリジン、トリアジン、メラミン、アンモニウム等が挙げられる。
 なお、上記のリン酸塩含有難燃剤は、シランカップリング剤処理、メラミン樹脂で被覆する等の公知の耐水性向上処理を加えてもよく、メラミン、ペンタエリスリトール等の公知の発泡助剤を加えても良い。
Examples of the phosphate-containing flame retardant include salts of at least one metal or compound selected from the various phosphoric acids and metals of Groups IA to IVB of the periodic table, ammonia, aliphatic amines, and aromatic amines.
Examples of the metals of Groups IA to IVB of the periodic table include lithium, sodium, calcium, barium, iron (II), iron (III), and aluminum.
Examples of the aliphatic amine include methylamine, ethylamine, diethylamine, triethylamine, ethylenediamine and piperazine.
Examples of aromatic amines include pyridine, triazine, melamine, and ammonium.
The phosphate-containing flame retardant may be subjected to known water resistance improvement treatments such as silane coupling agent treatment and coating with melamine resin, or may be added with known foaming aids such as melamine and pentaerythritol.
 また、前記リン酸塩含有難燃剤の具体例としては、例えば、モノリン酸塩、ピロリン酸塩、ポリリン酸塩等が挙げられる。
 前記モノリン酸塩としては、例えば、リン酸アンモニウム、リン酸二水素アンモニウム、リン酸水素ニアンモニウム等のアンモニウム塩、リン酸一ナトリウム、リン酸二ナトリウム、リン酸三ナトリウム、亜リン酸一ナトリウム、亜リン酸二ナトリウム、次亜リン酸ナトリウム等のナトリウム塩、リン酸一カリウム、リン酸二カリウム、リン酸三カリウム、亜リン酸一カリウム、亜リン酸二カリウム、次亜リン酸カリウム等のカリウム塩、リン酸一リチウム、リン酸二リチウム、リン酸三リチウム、亜リン酸一リチウム、亜リン酸二リチウム、次亜リン酸リチウム等のリチウム塩、リン酸二水素バリウム、リン酸水素バリウム、リン酸三バリウム、次亜リン酸バリウム等のバリウム塩、リン酸一水素マグネシウム、リン酸水素マグネシウム、リン酸三マグネシウム、次亜リン酸マグネシウム等のマグネシウム塩、リン酸二水素カルシウム、リン酸水素カルシウム、リン酸三カルシウム、次亜リン酸カルシウム等のカルシウム塩、リン酸亜鉛、亜リン酸亜鉛、次亜リン酸亜鉛等の亜鉛塩等が挙げられる。
 前記ポリリン酸塩としては、例えば、ポリリン酸アンモニウム、ポリリン酸ピペラジン、ポリリン酸メラミン、ポリリン酸アンモニウムアミド、ポリリン酸アルミニウム等が挙げられる。
Specific examples of the phosphate-containing flame retardant include monophosphates, pyrophosphates, polyphosphates, and the like.
Examples of the monophosphate include ammonium salts such as ammonium phosphate, ammonium dihydrogen phosphate, and diammonium hydrogen phosphate; sodium salts such as monosodium phosphate, disodium phosphate, trisodium phosphate, monosodium phosphite, disodium phosphite, and sodium hypophosphite; potassium salts such as monopotassium phosphate, dipotassium phosphate, tripotassium phosphate, monopotassium phosphite, dipotassium phosphite, and potassium hypophosphite; lithium salts such as lithium, dilithium phosphite and lithium hypophosphite; barium salts such as barium dihydrogen phosphate, barium hydrogen phosphate, tribarium phosphate and barium hypophosphite; magnesium salts such as magnesium monohydrogen phosphate, magnesium hydrogen phosphate, trimagnesium phosphate and magnesium hypophosphite; calcium salts such as calcium dihydrogen phosphate, calcium hydrogen phosphate, tricalcium phosphate and calcium hypophosphite; .
Examples of the polyphosphate include ammonium polyphosphate, piperazine polyphosphate, melamine polyphosphate, ammonium polyphosphate, and aluminum polyphosphate.
 これらの中でも、前記リン酸塩含有難燃剤の自己消火性が向上するため、ポリリン酸塩を使用することが好ましく、ポリリン酸アンモニウムや加熱時に発泡層を形成する亜リン酸アルミニウムを使用することがより好ましい。 Among these, it is preferable to use a polyphosphate because the self-extinguishing property of the phosphate-containing flame retardant is improved, and it is more preferable to use ammonium polyphosphate or aluminum phosphite, which forms a foam layer when heated.
 前記リン酸塩含有難燃剤は一種もしくは二種以上を使用することができる。 The phosphate-containing flame retardant may be used alone or in combination of two or more.
 前記リン酸塩含有難燃剤の含有量は特に限定しないが、ポリオール化合物100重量部に対して、20重量部~50重量部が望ましい。 Although the content of the phosphate-containing flame retardant is not particularly limited, it is preferably 20 to 50 parts by weight with respect to 100 parts by weight of the polyol compound.
<8.3>塩素含有難燃剤
 塩素含有難燃剤は、燃焼初期の最大発熱速度を抑制するための要素である。
 塩素含有難燃剤として多く使用されているものは、以下の5種の難燃剤である。
(a)トリス(クロロエチル)ホスフェート (TCEP)
(b)トリス(β-クロロプロピル)ホスフェート (TCPP)
(c)トリス(ジクロロプロピル)ホスフェート (TDCP)
(d)テトラキス(2-クロロエチル)ジクロロイソペンチルジホスフェート (V6)
(e)ポリオキシアルキレンビス(ジクロロアルキル)ホスフェート (CR-504L)
<8.3> Chlorine-Containing Flame Retardant A chlorine-containing flame retardant is an element for suppressing the maximum heat release rate at the initial stage of combustion.
The following five types of flame retardants are widely used as chlorine-containing flame retardants.
(a) tris(chloroethyl) phosphate (TCEP)
(b) tris(β-chloropropyl) phosphate (TCPP)
(c) tris(dichloropropyl) phosphate (TDCP)
(d) Tetrakis(2-chloroethyl)dichloroisopentyl diphosphate (V6)
(e) polyoxyalkylene bis (dichloroalkyl) phosphate (CR-504L)
 前記塩素含有難燃剤の含有量は特に限定しないが、ポリオール化合物100重量部に対して、60重量部~120重量部が望ましい。 Although the content of the chlorine-containing flame retardant is not particularly limited, it is preferably 60 to 120 parts by weight with respect to 100 parts by weight of the polyol compound.
<9>整泡剤および表面調整剤について
 本発明において配合に含まない整泡剤および表面調整剤について以下説明する。
<9> Regarding foam stabilizers and surface conditioners Foam stabilizers and surface conditioners that are not included in the formulation in the present invention are described below.
<9.1>整泡剤
 整泡剤は、ポリウレタンフォームの製造に用いられる有機シロキサン-ポリオキシアルキレン共重合体等である。
 整泡剤の例としては、MOMENTIVE製L-6900、東レ・ダウコーニング製SH-193等が挙げられる。
<9.1> Foam Stabilizer The foam stabilizer is an organic siloxane-polyoxyalkylene copolymer or the like used in the production of polyurethane foam.
Examples of foam stabilizers include L-6900 manufactured by MOMENTIVE, SH-193 manufactured by Dow Corning Toray, and the like.
<9.2>表面調整剤
 表面調整剤とは、表面張力をコントロールすることで消泡剤、レベリング剤、ワキ防止剤として働き、良好な塗膜を形成する添加剤である。
 表面調整剤の例としては、楠本化成製SEI-W01、SEI-1501等のアクリル系重合物が挙げられる。
<9.2> Surface Conditioning Agent A surface conditioning agent is an additive that functions as an antifoaming agent, a leveling agent, and an anti-popping agent by controlling surface tension to form a good coating film.
Examples of surface conditioners include acrylic polymers such as SEI-W01 and SEI-1501 manufactured by Kusumoto Kasei.
<10>その他
 その他、本発明に係るウレタン樹脂組成物には、以下の材料を適宜含めても良い。
<10> Others In addition, the urethane resin composition according to the present invention may contain the following materials as appropriate.
<10.1>触媒
 ウレタンフォーム形成に使用する触媒は、イソシアネートとポリオール中にある活性水素との反応およびイソシアネートと水との反応を促進するための材料である。
<10.1> Catalyst The catalyst used to form the urethane foam is a material that promotes the reaction between isocyanate and active hydrogen present in polyol and the reaction between isocyanate and water.
 アミン基を有する触媒としては、トリエチレンジアミン、N,N,N’,N”,N”-ペンタメチルジエチレントリアミン、N,N,N’,N’-テトラメチル-1,6-ヘキサンジアミン、N,N,N’,N’-テトラメチルエチレンジアミン等のN-アルキルポリアルキレンポリアミン類、N’-(2-ヒドロキシエチル)-N,N,N’-トリメチルエチレンジアミン、1-(2-ジメチルアミノエチル)-4-メチルピペラジン、1,2-ジメチルイミダゾール、1-イソブチル-2-メチルイミダゾール、N-メチルモルフォリン、N-エチルモルフォリン、N,N-ジメチルアミノエチルモルフォリン、ジメチルシクロシクロヘキシルアミンジメチルエタノールアミン、ジメチルアミノヘキサノール、ジメチルアミノエトキシエタノール、ジアザビシクロウンデセン等が挙げられる。
 また、有機金属を含有する触媒として、オクチル酸ビスマス、オクチル酸鉛、2-エチルヘキサン酸スズ(II)やジブチルビス[(1-オキソオクチル)オキシ]スタンナン、ジブチルスズジアセタート、ジブチルスズジラウレート等が挙げられる。
Examples of the catalyst having an amine group include triethylenediamine, N,N,N',N'',N''-pentamethyldiethylenetriamine, N,N,N',N'-tetramethyl-1,6-hexanediamine, N,N,N',N'-tetramethylethylenediamine and other N-alkylpolyalkylenepolyamines, N'-(2-hydroxyethyl)-N,N,N'-trimethylethylenediamine, 1-(2-dimethylaminoethyl)-4-methylpiperazine, 1,2-dimethylimidazole, 1-isobutyl-2-methylimidazole, N-methylmorpholine, N-ethylmorpholine, N,N-dimethylaminoethylmorpholine, dimethylcyclohexylaminedimethylethanolamine, dimethylaminohexanol, dimethylaminoethoxyethanol, diazabicycloundecene and the like.
Examples of catalysts containing organic metals include bismuth octylate, lead octylate, tin(II) 2-ethylhexanoate, dibutylbis[(1-oxooctyl)oxy]stannane, dibutyltin diacetate, and dibutyltin dilaurate.
 アミン触媒の製品例としては、東ソー製 TEDA-L33、TOYOCAT-ET、TOYOCAT-MR、TOYOCAT-TE、TOYOCAT-DT、TOYOCAT-NP、RX-5、RX-10、TOYOCAT-DM70、Evonik製 DABCO 33LV、DABCO BL-19、DABCO BL-11、DABCO DMEA、DABCO T、DABCO N-MM、DABCO N-EM、DABCO XDM、DABCO NC-IM、Polycat201、Polycat204、花王製 KAOLIZER NO.1、KAOLIZER NO.3、KAOLIZER NO.10、KAOLIZER NO.31、KAOLIZER NO.21、KAOLIZER NO.22、KAOLIZER NO.25、KAOLIZER NO.26、KAOLIZER NO.120、KAOLIZER NO.300、KAOLIZER NO.350、KAOLIZER NO.390などが挙げられる。
 これらの触媒は、一種もしくは二種以上を使用することができる。
Examples of amine catalyst products include Tosoh's TEDA-L33, TOYOCAT-ET, TOYOCAT-MR, TOYOCAT-TE, TOYOCAT-DT, TOYOCAT-NP, RX-5, RX-10, TOYOCAT-DM70, Evonik's DABCO 33LV, DABCO BL-19, and DABCO BL-1. 1, DABCO DMEA, DABCO T, DABCO N-MM, DABCO N-EM, DABCO XDM, DABCO NC-IM, Polycat201, Polycat204, KAOLIZER NO. 1, KAOLIZER NO. 3, KAOLIZER NO. 10, KAOLIZER NO. 31, KAOLIZER NO. 21, KAOLIZER NO. 22, KAOLIZER NO. 25, KAOLIZER NO. 26, KAOLIZER NO. 120, KAOLIZER NO. 300, KAOLIZER NO. 350, KAOLIZER NO. 390 and the like.
One or more of these catalysts can be used.
<1>試験条件
 本発明に係るウレタン樹脂組成物からなる発泡体について以下の試験を行った。各材料の詳細は次の通りである。
<1> Test Conditions The following tests were performed on the foamed body made of the urethane resin composition according to the present invention. Details of each material are as follows.
(1)ポリオール化合物
 A:テレフタル酸ポリエステルポリオール(エア・ウォ-ター・マテリアル製、製品名:マキシモールRFK-505、水酸基価=250mgKOH/g)
(1) Polyol compound A: Polyester terephthalic acid polyol (manufactured by Air Water Materials, product name: Maximol RFK-505, hydroxyl value = 250 mgKOH/g)
(2)整泡剤
 B:シリコーン整泡剤(Momentive製、製品名:L-6900)
(2) Foam stabilizer B: Silicone foam stabilizer (manufactured by Momentive, product name: L-6900)
(3)表面調整剤
 C:アクリル系重合物(楠本化成製、製品名:SEI-W01)
(3) Surface conditioner C: Acrylic polymer (manufactured by Kusumoto Kasei, product name: SEI-W01)
(4)触媒
 D1:アミン系触媒(Evonik製、製品名:DABCO 2040)
 D2:アミン系触媒(Evonik製、製品名:Polycat201)
 D3:有機金属触媒(シェファード製、製品名:Bicat8210)
(4) Catalyst D1: Amine-based catalyst (manufactured by Evonik, product name: DABCO 2040)
D2: Amine-based catalyst (manufactured by Evonik, product name: Polycat201)
D3: Organometallic catalyst (manufactured by Shepherd, product name: Bicat8210)
(5)三量化触媒
 E1:四級アンモニウム塩(Evonik製、製品名:TMR-7)
 E2:酢酸カリウム触媒(Evonik製、製品名:Polycat46)
(5) trimerization catalyst E1: quaternary ammonium salt (manufactured by Evonik, product name: TMR-7)
E2: Potassium acetate catalyst (manufactured by Evonik, product name: Polycat46)
(6)鉱物由来の材料
 F:焼成カオリン(イメリス ミネラルズ製、製品名:Glomax LL)
(6) Materials derived from minerals F: calcined kaolin (manufactured by Imerys Minerals, product name: Glomax LL)
(7)難燃剤
 G1:赤リン(燐化学工業社製製、製品名:ノーバエクセル140)
 G2:ポリリン酸アンモニウム(太平化学産業(株)製、製品名:タイエンCII)
 G3:リン酸エステル(Wansheng製、製品名:TCPP)
(7) Flame retardant G1: red phosphorus (manufactured by Rin Kagaku Kogyo Co., Ltd., product name: Nova Excel 140)
G2: Ammonium polyphosphate (manufactured by Taihei Chemical Industry Co., Ltd., product name: Taien CII)
G3: Phosphate ester (manufactured by Wansheng, product name: TCPP)
(8)発泡剤
 H1:HFO-1233zd(ハネウエル製、製品名:ソルスティスLBA)
 H2:HFO-1336mzz(ケマーズ製、製品名:Opteon1100)
 H3:水(水酸基価=6234mgKOH/g)
(8) Foaming agent H1: HFO-1233zd (manufactured by Honeywell, product name: Solstice LBA)
H2: HFO-1336mzz (manufactured by Chemours, product name: Opteon 1100)
H3: water (hydroxyl value = 6234 mgKOH/g)
(9)ポリイソシアネート
 I:ポリメリックMDI(東ソー(株)製、製品名:ミリオネートMR-200 NCO含量=31%)
(9) Polyisocyanate I: Polymeric MDI (manufactured by Tosoh Corporation, product name: Millionate MR-200, NCO content = 31%)
<2>試験体作製方法
 各図の表の配合に従い、ポリオール、触媒、三量化触媒、難燃剤、発泡剤、表面調整剤、整泡剤成分を1000mLポリプロピレンビーカーに量り取り撹拌した。
 以下この攪拌物をポリオールプレミックスとする。
 ポリオールプレミックスおよびイソシアネートは5℃に調温した。
 調温したポリオールプレミックス成分に対して、各図の表の配合に従い、イソシアネート成分を加えた。ハンドミキサーで約3秒間攪拌した後、素早く200×200×200mmの20℃に調温した木箱に注入し、発泡体を得た。(ポリオールプレミックス成分に粉体があるため、イソシアネート成分を混合直前に、予め攪拌、分散させておく。)
 発泡後24時間養生した発泡体を99mm×99mm×50mmの大きさにカットし、質量を測定した後(得られた質量と大きさからフォーム密度を算出した。)、コーンカロリー試験体を作成した。(本試験体は、発泡方向に対して50mm高さにカットする。)
<2> Test body preparation method According to the formulations shown in the tables of each figure, the polyol, catalyst, trimerization catalyst, flame retardant, foaming agent, surface conditioner, and foam stabilizer components were weighed into a 1000 mL polypropylene beaker and stirred.
This mixture is hereinafter referred to as a polyol premix.
The polyol premix and isocyanate were temperature controlled at 5°C.
An isocyanate component was added to the temperature-controlled polyol premix component according to the formulation in the table of each figure. After stirring with a hand mixer for about 3 seconds, the mixture was quickly poured into a wooden box of 200×200×200 mm and temperature-controlled at 20° C. to obtain a foam. (Because the polyol premix component contains powder, the isocyanate component is stirred and dispersed in advance immediately before mixing.)
The foam cured for 24 hours after foaming was cut into a size of 99 mm × 99 mm × 50 mm, and after measuring the mass (the foam density was calculated from the obtained mass and size), a corn calorie test body was created. (This specimen is cut to a height of 50 mm in the foaming direction.)
<3>試験内容
 各試験体に対し、ISO-5660の試験方法に準拠した発熱性試験において、放射熱強度50kW/m2にて加熱時間は20分とし、総発熱量(10分加熱時および20分加熱時)、最大発熱速度、200kW/m2超過時間(最高発熱速度が連続して200kW/m2を超えた時間)、試験体の最大膨張長(高さ方向)、スパーク接触の有無等について評価を行った。
 本試験で使用した試験装置の詳細は以下の通りである。
 ・東洋精機製作所製、製品名:コーンカロリーメータ 型式:C4
 ・試験体とスパークプラグとの離隔長:12.5mm
<3> Test content For each specimen, in the exothermicity test based on the test method of ISO-5660, the heating time was 20 minutes at the radiant heat intensity of 50 kW / m2, and the total calorific value (when heating for 10 minutes and heating for 20 minutes), the maximum heat generation rate, the time over 200 kW / m2 (time when the maximum heat generation rate continuously exceeded 200 kW / m2), the maximum expansion length of the specimen (height direction), the presence or absence of spark contact, etc. were evaluated.
The details of the test equipment used in this test are as follows.
・Manufactured by Toyo Seiki Seisakusho, product name: cone calorimeter model: C4
・ Separation length between test piece and spark plug: 12.5 mm
<4>試験結果
 全ての試験結果から対比に係る実験例を抽出した各図を参照しながら説明する。
<4> Test Results Description will be made with reference to each drawing in which experimental examples for comparison are extracted from all test results.
(1)実験例1,2について(表3)
[整泡剤または表面調整剤の何れかを含んだ場合]
 実験例1,2(表3)では、整泡剤または表面調整剤の何れかを含んだ配合である。
(1) Experimental Examples 1 and 2 (Table 3)
[If either foam stabilizer or surface conditioner is included]
Experimental Examples 1 and 2 (Table 3) are formulations containing either a foam stabilizer or a surface conditioner.
[表3]
[Table 3]
 何れの試験体もスパーク接触が発生する結果となった。 All test specimens resulted in spark contact.
(2)実験例3~21について(表4~表7)
[カオリナイトの配合量を変更した場合]
 実験例3~21(表4~表7)では、整泡剤および表面調整剤を含まず、カオリナイトの配合量を0重量部~100重量部まで変更したものである。
(2) Experimental Examples 3 to 21 (Tables 4 to 7)
[When the compounding amount of kaolinite is changed]
In Experimental Examples 3 to 21 (Tables 4 to 7), no foam stabilizer and surface conditioner were included, and the blending amount of kaolinite was varied from 0 to 100 parts by weight.
[表4]
[Table 4]
[表5]
[Table 5]
[表6]
[Table 6]
[表7]
[Table 7]
 何れの試験体も最大膨張長は2mm以下であり、スパーク接触は発生しなかった。
 また、実験例3,4,20,21では、準不燃材料相当となり、実験例5~19(カオリナイトの配合量が15重量部~85重量部)に係る試験体では、不燃材料相当となった。
 また、実験例4~21(カオリナイトの配合量が10重量部~100重量部)に係る試験体では、フォーム密度が30kg/m3以上となった。
All specimens had a maximum expansion length of 2 mm or less, and no spark contact occurred.
Experimental Examples 3, 4, 20, and 21 corresponded to semi-noncombustible materials, and test specimens according to Experimental Examples 5 to 19 (containing 15 to 85 parts by weight of kaolinite) corresponded to noncombustible materials.
In addition, the test specimens according to Experimental Examples 4 to 21 (containing 10 parts by weight to 100 parts by weight of kaolinite) had a foam density of 30 kg/m3 or more.
(3)実験例22~32について(表8~表10)
[難燃剤の配合量を変更した場合]
 実験例22~32(表8~表10)では、整泡剤および表面調整剤を含まず、カオリナイトの配合量を25重量部に固定して、難燃剤の配合量を変更したものである。
(3) Experimental Examples 22 to 32 (Tables 8 to 10)
[When the blending amount of the flame retardant is changed]
In Experimental Examples 22 to 32 (Tables 8 to 10), no foam stabilizer and surface conditioner were included, the blending amount of kaolinite was fixed at 25 parts by weight, and the blending amount of the flame retardant was changed.
[表8]
[Table 8]
[表9]
[Table 9]
[表10]
[Table 10]
 何れの試験体も最大膨張長は2mm以下であり、スパーク接触は発生しなかった。
 また、実験例23~26,実験例29~32に係る試験体では不燃材料相当となり、フォーム密度が30kg/m3以上となった。
All specimens had a maximum expansion length of 2 mm or less, and no spark contact occurred.
In addition, the test pieces according to Experimental Examples 23 to 26 and Experimental Examples 29 to 32 were equivalent to noncombustible materials, and had foam densities of 30 kg/m3 or more.
(4)実験例33~40について(表11,表12)
[発泡剤の配合量を変更した場合]
 実験例33~40(表11,表12)では、整泡剤および表面調整剤を含まず、カオリナイトの配合量を0重量部、25重量部、50重量部、75重量部としつつ、各発泡剤の配合量を変更したものである。
(4) Experimental Examples 33 to 40 (Tables 11 and 12)
[When the blending amount of the blowing agent is changed]
In Experimental Examples 33 to 40 (Tables 11 and 12), no foam stabilizer and surface conditioner were included, and the blending amounts of kaolinite were set to 0, 25, 50, and 75 parts by weight, while varying the blending amount of each foaming agent.
[表11]
[Table 11]
[表12]
[Table 12]
 何れの試験体も最大膨張長は2mm以下であり、スパーク接触は発生しなかった。
 また、実験例33,40については、準不燃材料相当となり、実験例34~39では不燃材料相当となった。
 また、何れの試験体もフォーム密度は30kg/m3以上となった。
All specimens had a maximum expansion length of 2 mm or less, and no spark contact occurred.
Further, Experimental Examples 33 and 40 corresponded to quasi-noncombustible materials, and Experimental Examples 34 to 39 corresponded to noncombustible materials.
In addition, all test pieces had a foam density of 30 kg/m3 or more.

Claims (11)

  1.  建築物の断熱材を構成する発泡体を形成するウレタン樹脂組成物であって、
     ポリイソシアネート化合物、ポリオール化合物、三量化触媒、発泡剤および難燃剤を少なくとも含み、かつ整泡剤および表面調整剤を含まないことを特徴とする、
     ウレタン樹脂組成物。
    A urethane resin composition that forms a foam that constitutes a building insulation material,
    It contains at least a polyisocyanate compound, a polyol compound, a trimerization catalyst, a foaming agent and a flame retardant, and does not contain a foam stabilizer and a surface conditioner,
    Urethane resin composition.
  2.  さらに鉱物由来の材料を含むことを特徴とする、
     請求項1に記載のウレタン樹脂組成物。
    Further characterized by containing a mineral-derived material,
    The urethane resin composition according to claim 1.
  3.  前記鉱物由来の材料がカオリナイトであることを特徴とする、
     請求項2に記載のウレタン樹脂組成物。
    characterized in that the mineral-derived material is kaolinite,
    The urethane resin composition according to claim 2.
  4.  前記カオリナイトが、焼成カオリンであることを特徴とする、
     請求項3に記載のウレタン樹脂組成物。
    The kaolinite is calcined kaolin,
    The urethane resin composition according to claim 3.
  5.  前記ポリオ-ル化合物100重量部に対して、前記焼成カオリンを15重量部以上85重量部以下とし、イソシアネートインデックスが400~600であることを特徴とする、
     請求項4に記載のウレタン樹脂組成物。
    The calcined kaolin is 15 parts by weight or more and 85 parts by weight or less with respect to 100 parts by weight of the polyol compound, and the isocyanate index is 400 to 600.
    The urethane resin composition according to claim 4.
  6.  前記発泡体が、ISO-5660に準拠した発熱性試験において準不燃性を有することを特徴とする、
     請求項1乃至5のうち何れか1項に記載のウレタン樹脂組成物。
    characterized in that the foam has quasi-noncombustibility in an exothermic test in accordance with ISO-5660,
    The urethane resin composition according to any one of claims 1 to 5.
  7.  前記発泡体が、ISO-5660に準拠した発熱性試験において不燃性を有することを特徴とする、
     請求項1乃至5のうち何れか1項に記載のウレタン樹脂組成物。
    The foam is nonflammable in an exothermic test in accordance with ISO-5660,
    The urethane resin composition according to any one of claims 1 to 5.
  8.  ISO-5660に準拠した発熱性試験時における試験体の高さ方向の最大膨張長が8mm未満であることを特徴とする、
     請求項1乃至7のうち何れか1項に記載のウレタン樹脂組成物。
    The maximum expansion length in the height direction of the specimen during the exothermic test in accordance with ISO-5660 is less than 8 mm,
    The urethane resin composition according to any one of claims 1 to 7.
  9.  ISO-5660に準拠した発熱性試験時における試験体の高さ方向の最大膨張長が2mm以下であることを特徴とする、
     請求項8に記載のウレタン樹脂組成物。
    Characterized in that the maximum expansion length in the height direction of the specimen is 2 mm or less during the exothermic test in accordance with ISO-5660,
    The urethane resin composition according to claim 8.
  10.  前記難燃剤として、赤リン、ポリリン酸アンモニウムおよびリン酸エステルからなる群から選ばれる一種以上を少なくとも含むことを特徴とする、
     請求項1乃至9のうち何れか1項に記載のウレタン樹脂組成物。
    As the flame retardant, it contains at least one selected from the group consisting of red phosphorus, ammonium polyphosphate and phosphate ester,
    The urethane resin composition according to any one of claims 1 to 9.
  11.  前記発泡体の密度が30kg/m以上であることを特徴とする、
     請求項1乃至10のうち何れか1項に記載のウレタン樹脂組成物。
    characterized in that the foam has a density of 30 kg/m 3 or more,
    The urethane resin composition according to any one of claims 1 to 10.
PCT/JP2022/001566 2022-01-18 2022-01-18 Urethane resin composition WO2023139635A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023574895A JPWO2023139635A1 (en) 2022-01-18 2022-01-18
PCT/JP2022/001566 WO2023139635A1 (en) 2022-01-18 2022-01-18 Urethane resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/001566 WO2023139635A1 (en) 2022-01-18 2022-01-18 Urethane resin composition

Publications (1)

Publication Number Publication Date
WO2023139635A1 true WO2023139635A1 (en) 2023-07-27

Family

ID=87347969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/001566 WO2023139635A1 (en) 2022-01-18 2022-01-18 Urethane resin composition

Country Status (2)

Country Link
JP (1) JPWO2023139635A1 (en)
WO (1) WO2023139635A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014112394A1 (en) * 2013-01-20 2014-07-24 積水化学工業株式会社 Flame-retardant urethane resin composition
JP2014532613A (en) * 2011-10-28 2014-12-08 ダウ グローバル テクノロジーズ エルエルシー Use of polyurethane powder as an internal additive in redispersible polymer powders
WO2015129850A1 (en) * 2014-02-27 2015-09-03 積水化学工業株式会社 In-situ foaming system for forming flame-retardant polyurethane foam in situ
WO2015129844A1 (en) * 2014-02-27 2015-09-03 積水化学工業株式会社 Fire-resistant heat-insulating coating material for piping or equipment
JP2019094469A (en) * 2017-11-28 2019-06-20 三菱ケミカル株式会社 Flame-retardant urethane resin composition and flame-retardant polyurethane molding of the same
JP2020007386A (en) * 2018-07-03 2020-01-16 旭有機材株式会社 Foamable composition for flame-retardant polyurethane foam
JP2020033461A (en) * 2018-08-30 2020-03-05 株式会社日本アクア Urethane resin composition and thermal insulation method of architectural structure
JP2020526650A (en) * 2017-07-11 2020-08-31 ディディピー スペシャリティ エレクトロニック マテリアルズ ユーエス インコーポレーテッド Three-component polyurethane adhesive composition
JP2021107515A (en) * 2019-12-27 2021-07-29 積水化学工業株式会社 Polyol composition, expandable polyurethane composition and polyurethane foam
WO2021193871A1 (en) * 2020-03-25 2021-09-30 積水化学工業株式会社 Polyol composition, polyurethane composition, and polyurethane foam
KR20210145872A (en) * 2020-05-25 2021-12-03 대한폴리텍(주) A semi-nonflammable insulation material and manufacturing method for it

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014532613A (en) * 2011-10-28 2014-12-08 ダウ グローバル テクノロジーズ エルエルシー Use of polyurethane powder as an internal additive in redispersible polymer powders
WO2014112394A1 (en) * 2013-01-20 2014-07-24 積水化学工業株式会社 Flame-retardant urethane resin composition
WO2015129850A1 (en) * 2014-02-27 2015-09-03 積水化学工業株式会社 In-situ foaming system for forming flame-retardant polyurethane foam in situ
WO2015129844A1 (en) * 2014-02-27 2015-09-03 積水化学工業株式会社 Fire-resistant heat-insulating coating material for piping or equipment
JP2020526650A (en) * 2017-07-11 2020-08-31 ディディピー スペシャリティ エレクトロニック マテリアルズ ユーエス インコーポレーテッド Three-component polyurethane adhesive composition
JP2019094469A (en) * 2017-11-28 2019-06-20 三菱ケミカル株式会社 Flame-retardant urethane resin composition and flame-retardant polyurethane molding of the same
JP2020007386A (en) * 2018-07-03 2020-01-16 旭有機材株式会社 Foamable composition for flame-retardant polyurethane foam
JP2020033461A (en) * 2018-08-30 2020-03-05 株式会社日本アクア Urethane resin composition and thermal insulation method of architectural structure
JP2021107515A (en) * 2019-12-27 2021-07-29 積水化学工業株式会社 Polyol composition, expandable polyurethane composition and polyurethane foam
WO2021193871A1 (en) * 2020-03-25 2021-09-30 積水化学工業株式会社 Polyol composition, polyurethane composition, and polyurethane foam
KR20210145872A (en) * 2020-05-25 2021-12-03 대한폴리텍(주) A semi-nonflammable insulation material and manufacturing method for it

Also Published As

Publication number Publication date
JPWO2023139635A1 (en) 2023-07-27

Similar Documents

Publication Publication Date Title
US11958931B2 (en) Flame-retardant urethane resin composition
JP6626242B2 (en) Flame retardant insulation composition
JP6725606B2 (en) Urethane resin composition and method for heat insulation of building
JP6134421B2 (en) Flame retardant urethane resin composition
JP7007448B2 (en) Flame-retardant rigid polyurethane foam
JP6564160B2 (en) Fireproof urethane resin composition
JP6912174B2 (en) Urethane resin composition preparation system, method of manufacturing urethane molded product, and urethane molded product
WO2016010042A1 (en) Flame-retardant polyurethane resin composition
JP6298344B2 (en) Flame retardant urethane resin composition
JP2020007386A (en) Foamable composition for flame-retardant polyurethane foam
JP6378088B2 (en) Urethane resin composition
JP2019214651A (en) Hard polyurethane foam
JP6773486B2 (en) Foamable polyurethane composition and polyurethane foam
JP6768631B2 (en) Flame-retardant polyisocyanurate foam
JP7233400B2 (en) Raw material for urethane resin composition and method for insulating buildings
WO2016017797A1 (en) Flame-retardant polyurethane resin composition
WO2023139635A1 (en) Urethane resin composition
WO2024069787A1 (en) Urethane resin composition
JP2018131555A (en) Flame-retardant urethane resin composition
JP2018090721A (en) Flame-retardant urethane resin composition
JP2017226831A (en) Flame-retardant urethane resin composition
JP2017218586A (en) Flame-retardant urethane resin composition
JP2017043777A (en) Expandable polyurethane composition and polyurethane expanded body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22921798

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023574895

Country of ref document: JP