WO2023138133A1 - 一种网络系统及通信设备 - Google Patents

一种网络系统及通信设备 Download PDF

Info

Publication number
WO2023138133A1
WO2023138133A1 PCT/CN2022/126699 CN2022126699W WO2023138133A1 WO 2023138133 A1 WO2023138133 A1 WO 2023138133A1 CN 2022126699 W CN2022126699 W CN 2022126699W WO 2023138133 A1 WO2023138133 A1 WO 2023138133A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
electrical signal
nodes
auxiliary device
passive auxiliary
Prior art date
Application number
PCT/CN2022/126699
Other languages
English (en)
French (fr)
Inventor
李伟光
潘稻
李亚奇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023138133A1 publication Critical patent/WO2023138133A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/16Arrangements for providing special services to substations
    • H04L12/18Arrangements for providing special services to substations for broadcast or conference, e.g. multicast
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2803Home automation networks

Definitions

  • the present application relates to the technical field of communication, and in particular to a network system and communication equipment.
  • the home network generally adopts Ethernet technology, that is, the data transmission between devices is carried out according to the Ethernet protocol (IEEE 802.3 series standard) through network cables.
  • Ethernet protocol IEEE 802.3 series standard
  • the bandwidth of the home network is increasingly difficult to balance and meet the communication needs of users.
  • the embodiment of the present application provides a network system and communication equipment, which can improve the data transmission bandwidth between nodes and the utilization efficiency of network interfaces.
  • a first aspect provides a network system, comprising: a passive auxiliary device; a plurality of nodes, wherein each node is connected to the passive auxiliary device; wherein a first node among the plurality of nodes sends a first electrical signal through a line between the first node and the passive auxiliary device, and the first electrical signal carries first data; when the first electrical signal reaches the passive auxiliary device, the first electrical signal prompts the passive auxiliary device to generate at least one second electrical signal sent to at least one node, the second electrical signal carries the first data, the at least one node and the at least one electrical signal
  • the second electrical signals are in one-to-one correspondence, and the at least one node is a node in the plurality of nodes except the first node.
  • the passive auxiliary device can integrate the lines of the sending end and multiple receiving ends into a shared medium, realize point-to-multipoint communication from the sending end to multiple receiving ends, improve the data transmission efficiency of sending data from the sending end to the receiving end, and improve the data transmission bandwidth between nodes and the utilization efficiency of network interfaces.
  • the first node is used to indicate the communication resources that the multiple nodes can use.
  • the first node can serve as the master node to indicate the communication resources that multiple nodes can use, so that the nodes can transmit data according to the communication resources indicated by the master node, realizing the reasonable allocation of communication resources among multiple nodes, and improving the efficiency and bandwidth of data transmission.
  • the first data includes scheduling and allocation information of the communication resource among the multiple nodes.
  • the first node can send the scheduling allocation information of the communication resources among the multiple nodes to the multiple nodes through the passive auxiliary device, so that the multiple nodes can obtain the scheduling allocation information in time, and send data according to the communication resources indicated by the scheduling allocation information, which improves the efficiency and bandwidth of data transmission.
  • the second node among the plurality of nodes uses the first resource among the communication resources to send a third electrical signal through the line between the second node and the passive auxiliary device, and the third electrical signal carries third data; when the third electrical signal reaches the passive auxiliary device, the third electrical signal prompts the passive auxiliary device to generate a plurality of fourth electrical signals sent to several nodes, the fourth electrical signal carries the third data, and the plurality of nodes correspond to the plurality of fourth electrical signals one by one, and the plurality of nodes are among the plurality of nodes A node other than the second node.
  • the second node can use the communication resources indicated by the first node to send data, and realize point-to-multipoint data transmission from the second node to other nodes through passive auxiliary devices, improving the efficiency and bandwidth of data transmission.
  • the first resource includes a first time slot resource or a two-dimensional time-frequency domain resource.
  • the second node can use the time slot resources or two-dimensional resources in the time-frequency domain indicated by the first node to send data, and realize point-to-multipoint data transmission from the second node to other nodes through passive auxiliary devices, improving the efficiency and bandwidth of data transmission.
  • the passive auxiliary device is integrated into the first node, or a line between the first node and the passive auxiliary device is a network cable.
  • the first electrical signal is obtained after the first node modulates the first data by using an OFDM modulation technology.
  • OFDM modulation technology is used to modulate data into electrical signals for transmission, which can approach the channel limit and improve the efficiency and bandwidth of data transmission.
  • the line between the first node and the passive auxiliary device is a network cable
  • the network cable includes multiple pairs of twisted pairs
  • the first electrical signal includes multiple sub-signals
  • the multiple pairs of twisted-pair wires correspond to the multiple sub-signals one by one; each pair of twisted-pair wires in the multiple pairs of twisted-pair wires is used to transmit a corresponding sub-signal.
  • multiple twisted pairs in the network cable can be used to transmit data at the same time, which improves data transmission efficiency and bandwidth.
  • the passive auxiliary device includes a transformer coupling circuit, and the transformer coupling includes a plurality of coils, and the plurality of coils correspond to the plurality of nodes one by one; wherein, under the action of the first electrical signal, the coil corresponding to the first node among the plurality of coils prompts other coils of the plurality of coils to generate the at least one second electrical signal.
  • a transformer coupling circuit can be used as the passive auxiliary device, and the electrical signal reaching the passive auxiliary device is converted into a second electrical signal sent to the corresponding other node, thereby realizing point-to-multipoint communication and improving data transmission efficiency and bandwidth.
  • a communication device in a second aspect, includes a passive auxiliary device and a first node, and the first node is a node among multiple nodes connected to the passive auxiliary device; wherein, the first node sends a first electrical signal through a line between the first node and the passive auxiliary device, and the first electrical signal carries first data; when the first electrical signal reaches the passive auxiliary device, the first electrical signal prompts the passive auxiliary device to generate at least one second electrical signal sent to at least one node, the second electrical signal carries the first data, and the at least one node and The at least one second electrical signal is in one-to-one correspondence, and the at least one node is a node in the plurality of nodes except the first node.
  • the first node is used to indicate the communication resources that the multiple nodes can use.
  • the first data includes scheduling and allocation information of the communication resource among the multiple nodes.
  • the communication resource includes a first resource; wherein, the first resource is used for a second node among the plurality of nodes, and a third electrical signal is sent through a line between the second node and the passive auxiliary device, and the third electrical signal carries third data; when the third electrical signal reaches the passive auxiliary device, the third electrical signal prompts the passive auxiliary device to generate a plurality of fourth electrical signals sent to several nodes, and the fourth electrical signal carries the third data.
  • the plurality of nodes correspond to the plurality of fourth electrical signals one by one, and the plurality of nodes are Nodes in the plurality of nodes other than the second node.
  • the first resource includes a first time slot resource or a two-dimensional time-frequency domain resource.
  • the passive auxiliary device is integrated into the first node, or a line between the first node and the passive auxiliary device is a network cable.
  • the first electrical signal is obtained after the first node modulates the first data by using an OFDM modulation technology.
  • the line between the first node and the passive auxiliary device is a network cable
  • the network cable includes multiple pairs of twisted pairs
  • the first electrical signal includes multiple sub-signals
  • the multiple pairs of twisted-pair wires correspond to the multiple sub-signals one by one; each pair of twisted-pair wires in the multiple pairs of twisted-pair wires is used to transmit a corresponding sub-signal.
  • the passive auxiliary device includes a transformer coupling circuit, and the transformer coupling includes a plurality of coils, and the plurality of coils correspond to the plurality of nodes one by one; wherein, under the action of the first electrical signal, the coil corresponding to the first node among the plurality of coils prompts other coils of the plurality of coils to generate the at least one second electrical signal.
  • the network system and communication equipment provided by the embodiments of the present application can realize point-to-multipoint communication between nodes, improve the data transmission efficiency of data transmission between nodes, improve the data transmission bandwidth between nodes and the utilization efficiency of network interfaces.
  • FIG. 1 is a schematic diagram of a network system provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a node provided in an embodiment of the present application.
  • FIG. 3A is a schematic structural diagram of a passive auxiliary device provided by an embodiment of the present application.
  • FIG. 3B is a schematic structural diagram of a passive auxiliary device provided by an embodiment of the present application.
  • FIG. 4A is a schematic diagram of a communication resource scheduling allocation provided by an embodiment of the present application.
  • FIG. 4B is a schematic diagram of a communication resource scheduling allocation provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of communication resource scheduling and allocation provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a frame structure of scheduling allocation information provided by an embodiment of the present application.
  • Figure 7 is a schematic diagram of crosstalk between different twisted pairs
  • FIG. 8 is a schematic diagram of a channel provided in an embodiment of the present application.
  • Figure 9 is a schematic diagram of network cable attenuation
  • Figure 10 is a diagram showing the simulation results of the scheme provided by the embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the term "and/or" is only a relationship describing the relationship between related objects, which means that there may be three kinds of relationships, for example, A and/or B can mean: A exists alone, B exists alone, and A and B exist at the same time.
  • a and/or B can mean: A exists alone, B exists alone, and A and B exist at the same time.
  • the term "plurality" means two or more. For example, multiple systems refer to two or more systems, and multiple terminals refer to two or more terminals.
  • first and second are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly specifying indicated technical features. Thus, a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features.
  • the terms “including”, “comprising”, “having” and variations thereof mean “including but not limited to”, unless specifically stated otherwise.
  • Ethernet is a local area network (LAN) networking technology.
  • IEEE 802.3 protocol specified by the Institute of Electrical and Electronics Engineers (IEEE) provides the technical standard for Ethernet.
  • the IEEE 802.3 protocol specifies the content including the physical layer connection, electrical signal and medium access layer protocol. In other words, the IEEE 802.3 protocol specifies the cable types and signal processing methods used in the LAN.
  • the IEEE 802.3 protocol stipulates that interconnected devices can transmit data at a rate of 10Mbps-10Gbps (10Mbps, 100Mbps, 1Gbps, 2.5Gbps, 5Gbps, 10Gbps).
  • the data transmission rate between interconnected devices is limited by the network cables between interconnected devices. The faster the transmission rate, the higher the specification of the network cable is required.
  • Network cables are generally made of metal (such as copper) or glass, and are used to transmit network information.
  • twisted pair can also be called a network cable, which can be divided into shielded twisted pair (STP) and unshielded twisted pair (UTP).
  • STP shielded twisted pair
  • UTP unshielded twisted pair
  • a common network cable is an unshielded twisted pair, which consists of four pairs of thin copper wires, each pair of copper wires are twisted together, each copper wire is wrapped with a colored plastic insulation layer, and then the whole is covered with a plastic jacket.
  • the connector of the unshielded twisted pair is an RJ-45 connector.
  • network cables are generally used for data transmission between interconnected devices.
  • Network cables have different specifications. Taking unshielded twisted pair as an example, at present, unshielded twisted pair has CAT-1 (Category 1), CAT-2, CAT-3, CAT-4, CAT-5, CAT-5e, CAT-6, CAT-7 and other categories. Among them, from CAT-1 to CAT-7, the specifications increase in turn. The maximum transmission rate of high-spec UTP is greater than that of low-spec UTP.
  • CAT-1 used for telephone communication, not suitable for data transmission
  • CAT-2 can be used for data transmission, the maximum speed of 4Mbps
  • CAT-3 for 10BASET Ethernet, the maximum speed of data transmission is 10Mbps
  • CAT-4 used for token ring network, the maximum speed of data transmission is 16Mbps
  • Network CAT-6: The maximum rate of data transmission is 1000Mbps
  • CAT-7 For networks with a maximum rate of 10Gbps.
  • switches switch hubs
  • home distributed routers generally support Ethernet interfaces (for example, interfaces corresponding to RJ-45 connectors)
  • users use multiple network ports on switches or routers to build home networks, support high-speed network communications in the home, and support the deployment of distributed Wi-Fi hotspots.
  • Wi-Fi bandwidth is also constantly improving, especially, the bandwidth of Wi-Fi 6 and Wi-Fi 7 has reached more than 2Gbps.
  • CAT5/CAT5e standard network cables and GE Ethernet interfaces are generally used in home networks. Therefore, using network cables as the interconnection medium and Ethernet protocol as the data transmission method has become the bandwidth bottleneck of the home network.
  • 2.5GE and above specifications have not been popularized in home networks due to high requirements on network cable specifications and cost.
  • the adaptability of the Ethernet protocol is weak, and the specific working mode can only be selected among 10Mbps, 100Mbps, 1000Mbps and other modes, and the speed gears in different working modes vary greatly.
  • the channel capacity of the network cable between the interconnected devices is 900 Mbps
  • the interconnected devices using the Ethernet protocol can only work in the 100 Mbps mode to obtain a 100 Mbps rate.
  • an embodiment of the present application provides a network system 100 , including multiple nodes such as a node 101 , a node 102 , and a node 103 , and also includes a passive auxiliary device 201 .
  • each node in the plurality of nodes is connected to the passive auxiliary device 201 .
  • Any node among the plurality of nodes can generate the electrical signal A1 and send the electrical signal A1 through the line between the node and the passive auxiliary device 201 .
  • the electrical signal A1 can prompt the passive auxiliary device 201 to generate electrical signals sent to other nodes, wherein the electrical signals sent to other nodes also carry the data carried by the electrical signal A1.
  • the data carried by the electrical signal A1 can be broadcast to other nodes through the passive auxiliary device 201, thereby realizing point-to-multipoint communication.
  • this point-to-multipoint communication mode can enable a node to communicate with multiple other nodes using one network interface, which improves the utilization rate of the node network interface.
  • the node 101 can generate the electrical signal A1 and send the electrical signal A1 through the line between the node 101 and the passive auxiliary device 201 .
  • the electrical signal A1 may carry data D1.
  • the electrical signal A1 may prompt the passive auxiliary device 201 to generate at least one electrical signal A2, wherein the at least one electrical signal A2 may include the electrical signal A2 corresponding to the node 102, the electrical signal A2 corresponding to the node 103, and the like. That is, the at least one electrical signal A2 is in one-to-one correspondence with nodes other than the node 101 .
  • Each electrical signal A2 also carries data D1.
  • Each electrical signal A2 is transmitted to the corresponding node through the line between the corresponding node of the electrical signal A2 and the passive auxiliary device 201 . Therefore, the data D1 is broadcast to each node, and the point-to-multipoint communication from the node A1 to other nodes is realized. Compared with the traditional point-to-point communication mode between nodes, that is, the communication mode in which node A1 sends data D1 to other nodes one by one, the point-to-multipoint communication between node A1 and other nodes. Therefore, for each node, only one network interface is needed to realize communication with multiple other nodes, which improves the utilization efficiency of the node network interface. .
  • the passive auxiliary device 201 can integrate the lines of the sending end and multiple receiving ends into a shared medium, realize point-to-multipoint communication from one sending end to multiple receiving ends, and improve the utilization rate of the network interface of the node.
  • the line between the node and the passive auxiliary device may be a network cable.
  • the network cable can be a shielded twisted pair.
  • the network cable may be an unshielded twisted pair.
  • nodes for short.
  • a node may have a structure as shown in FIG. 2 .
  • a node may include a processor 111 , a memory 112 , and a network port 113 .
  • the node may also include a wireless communication circuit 114 .
  • Memory 112 is used to store instructions and data.
  • the processor 111 can call the instructions or data stored in the memory 112 to perform related operations, such as performing forward error correction coding on the data and modulating electrical signals, so that the data can be carried by the electrical signals.
  • the electrical signal may be demodulated and decoded to obtain the data carried by the electrical signal.
  • the network port 113 may include at least one wired network interface, which may be configured to connect to the passive auxiliary device 201 through a network cable.
  • a node in the network system 100 may also be connected to the Internet through a network cable while being connected to the passive auxiliary device 201 through a network cable. That is, the node can be connected to the passive auxiliary device 201 and the Internet at the same time, whereby other nodes connected to the passive auxiliary device 201 can be connected to the Internet through the passive auxiliary device 201 and the node.
  • the node may be connected to the Internet through a network provided by a telecommunications operator.
  • the wired network interface of the node can be connected to the network interface provided by the telecom operator through a network cable, and then connected to the Internet.
  • the Internet can be set that one of the nodes 101 is connected to the Internet through a network cable, and other nodes in the network system 100 are connected to the Internet through the node 101 . Then, when the Internet sends data to the nodes in the network system 100, the data can first reach the node 101, and then the node 101 carries the data on an electrical signal, and sends the electrical signal through the line between the node 101 and the passive auxiliary device 201, when the electrical signal reaches the passive auxiliary device 201, it can prompt the passive auxiliary device 201 to generate an electrical signal sent to other nodes, and the electrical signal sent to other nodes also carries the data, so that the Internet can send the data to multiple nodes at the same time, improving data transfer bandwidth.
  • the node may also include wireless communication circuitry 114 .
  • Wireless communication circuitry 114 may be configured to communicate via a wireless local area network standard, such as a Wi-Fi network.
  • the wireless communication circuit 114 may be one or more devices integrating at least one communication processing module.
  • the wireless communication circuit 114 can receive electromagnetic waves via the antenna 1141 , frequency-modulate and filter the electromagnetic wave signals, perform demodulation and decoding to extract data, and send the data to the processor 111 .
  • the wireless communication module 114 can also receive the data to be sent from the processor 111 , code and modulate it, frequency modulate it, amplify it, and convert it into electromagnetic waves through the antenna 1141 for radiation.
  • a node may include more or less components than shown in the figure, or some components may be combined, or some components may be separated, or different component arrangements may be made.
  • the illustrated components can be realized in hardware, software or a combination of software and hardware.
  • a node may be a router. In some other embodiments, the nodes may be switches. In some embodiments, some nodes in the network system 100 may be routers, and other nodes may be switches. etc. In this embodiment of the present application, the specific form of the node is not limited.
  • the above example introduces the structure of the node, and next, the structure of the passive auxiliary device 201 is introduced.
  • the passive auxiliary device 201 is a device that does not need a power source (ie, passive), and can convert an electrical signal into multiple electrical signals. Passive auxiliary devices may also be called combiners or splitters. Referring to FIG. 3A , the passive auxiliary device 201 may include multiple signal sensing modules such as a signal sensing module 2011 , a signal sensing module 2012 , and a signal sensing module 2013 . Wherein, the signal sensing module 2011 is connected to the node 101, the signal sensing module 2012 is connected to the node 102, the signal sensing module 103 is connected to the node 103, and so on.
  • the signal sensing module 2011 is connected to the node 101
  • the signal sensing module 2012 is connected to the node 102
  • the signal sensing module 103 is connected to the node 103, and so on.
  • the signal sensing module can prompt other signal sensing modules to generate corresponding electrical signals under the action of the electrical signal, and the generated electrical signals can be transmitted to corresponding nodes, thereby realizing point-to-multipoint communication.
  • the sensed or received electrical signal may be referred to as a primary signal, and the electrical signal induced by the primary signal may be referred to as a secondary signal.
  • the secondary signal when the primary signal carries data D1, the secondary signal may also carry data D1. That is, the secondary signal carries the data carried by the primary signal.
  • the signal sensing module 2011 when the node 101 can send an electrical signal A1 on the line between the node 101 and the passive auxiliary device 201 . When the electrical signal A1 reaches the passive auxiliary device 201, the signal sensing module 2011 can sense or receive the electrical signal A1.
  • the signal sensing module 2011 can prompt the signal sensing module 2012 and the signal sensing module 2013 to generate the electrical signal A2 respectively.
  • the electrical signal A2 generated by the signal sensing module 2012 can be transmitted to the node 102
  • the electrical signal A2 generated by the signal sensing module 2013 can be transmitted to the node 103 .
  • each electrical signal A2 carries the data carried by the electrical signal A1.
  • the signal sensing module can be implemented as a coil wound on a magnetic core, wherein multiple coils serving as multiple signal sensing modules can be wound on the same magnetic core.
  • the electrical signal is specifically a differential signal.
  • the signal sensing module that is, the coil wound on the magnetic core
  • the coil can be used as a primary coil to make the magnetic core generate AC magnetic flux.
  • the other coils wound on the magnetic core can generate induced voltage under the action of alternating magnetic flux, thereby generating electrical signals.
  • the line between the node and the signal sensing module may be a network cable.
  • a network cable can consist of one or more twisted pairs.
  • a pair of twisted wires may correspond to a coil wound on the magnetic core, one wire of the pair of twisted wires is connected to one end of the coil, and the other wire is connected to the other end of the coil.
  • the strength of the electrical signal corresponding to each node can be adjusted, and the noise that crosstalks to the current communication node can be effectively attenuated.
  • the current communication node refers to a node currently sending electrical signals.
  • the passive auxiliary device 201 may further include multiple signal amplitude adjustment modules such as a signal amplitude adjustment module 20111 , a signal amplitude adjustment module 20121 , and a signal amplitude adjustment module 20131 .
  • the multiple signal amplitude adjustment modules are in one-to-one correspondence with the multiple signal sensing modules.
  • each signal amplitude adjustment module may be connected to a corresponding signal amplitude adjustment module.
  • the signal amplitude adjusting module 20111 is connected to the signal sensing module 2011, the signal amplitude adjusting module 20121 is connected to the signal sensing module 2012, the signal amplitude adjusting module 20131 is connected to the signal sensing module 2013, and so on.
  • the node can be connected to the signal amplitude adjustment module, and then connected to the signal sensing module through the signal amplitude adjustment module.
  • the node 101 is connected to the signal amplitude adjustment module 20111 , and further connected to the signal sensing module 2011 through the signal amplitude adjustment module 20111 .
  • the node 102 is connected to the signal amplitude adjustment module 20121 , and further connected to the signal sensing module 2012 through the signal amplitude adjustment module 20121 .
  • the node 103 is connected to the signal amplitude adjustment module 20131 , and further connected to the signal sensing module 2013 through the signal amplitude adjustment module 20131 .
  • the number of turns of the coil in the signal amplitude adjustment module can be adjusted. Therefore, the number of turns of the coil corresponding to the node can be adjusted by adjusting the number of turns of the coil in the signal amplitude adjustment module corresponding to the node, so as to adjust the strength of the electrical signal of the corresponding node and effectively attenuate the noise of crosstalk to the current communication node.
  • the structure shown in FIG. 3B is used as an example to introduce an implementation form of the passive auxiliary device 201, which is not limited. In other embodiments, the passive auxiliary device 201 may be implemented in other forms, which will not be repeated here.
  • the passive auxiliary device 201 may exist in the network system 100 as an independent device.
  • the passive auxiliary device 201 may be connected to nodes in the network system 100 through a network cable.
  • the passive auxiliary device 201 may be integrated into a certain node in the network system 100 .
  • the electrical signal generating component in the node and the passive auxiliary device 201 may be connected through an internal network cable or a printed circuit board (printed circuit board, PCB) wiring.
  • the passive auxiliary device 201 can use the wired network interface of the node where it is located to connect with other nodes through network cables.
  • the node where the passive auxiliary device 201 is located may have multiple wired network interfaces, and the passive auxiliary device 201 may be connected to multiple other nodes through network cables through the multiple wired network interfaces.
  • each other node may be connected to one wired network interface of the plurality of wired network interfaces through a network cable.
  • a line driver may be provided on the line between the node and the passive auxiliary device 201 for amplifying electrical signals.
  • the line driver can amplify the electrical signal, increasing the ability of the electrical signal to prompt the passive auxiliary device 201 to generate electrical signals to other nodes.
  • the line driver can amplify the electrical signal by a factor of 8.
  • the line driver can amplify the electrical signal by a factor of 6.
  • the line driver can amplify the electrical signal by a factor of 4.
  • the line driver can amplify the electrical signal by a factor of 2.
  • the electrical signal is a signal that uses level levels to represent different information (such as different bit values).
  • the electrical signal may be a non-return-to-zero line code (NRZ) signal.
  • NRZ non-return-to-zero line code
  • the electrical signal may be a four-level amplitude modulation (4 pulse amplitude modulation, PAM4) signal.
  • the node can use orthogonal frequency division multiplexing (orthogonal frequency division multiplexing, OFDM) technology to modulate the data to be transmitted to obtain an electrical signal, and then send it out through the line between the node and the passive auxiliary device 201.
  • OFDM orthogonal frequency division multiplexing
  • At least one node in the network system 100 may serve as a master node.
  • the master node may indicate the communication resources that nodes in the network system 100 can use.
  • the communication resources here may refer to time slot resources.
  • the communication resource here may refer to a time-frequency domain two-dimensional resource.
  • the nodes in the network system 100 can use the communication resources indicated by the master node to send electrical signals on the lines between the nodes and the passive auxiliary device 201 .
  • the master node may send an electrical signal A1, and the electrical signal A1 carries data D1, and the data D1 may include scheduling and allocation information of communication resources among the multiple nodes. That is to say, the scheduling allocation information indicates the freedom of communication, and indicates the scheduling allocation of the communication resource among multiple nodes.
  • communication resources may be set to include multiple resources such as resource R1, resource R2, and resource R3, wherein the scheduling allocation information may instruct node 101 to use resource R1 to send electrical signals on the line between node 101 and passive auxiliary device 201, may also instruct node 102 to use resource R2 to send electrical signals on the line between node 102 and passive auxiliary device 201, and may also instruct node 103 to use resource R3 to send electrical signals on the line between node 103 and passive auxiliary device 201, wait.
  • resources such as resource R1, resource R2, and resource R3, wherein the scheduling allocation information may instruct node 101 to use resource R1 to send electrical signals on the line between node 101 and passive auxiliary device 201, may also instruct node 102 to use resource R2 to send electrical signals on the line between node 102 and passive auxiliary device 201, and may also instruct node 103 to use resource R3 to send electrical signals on the line between node 103 and passive auxiliary device 201, wait.
  • the master node may indicate the communication resources available to nodes in the network system 100 based on time division multiple access (TDMA) technology. That is to say, the master node can allocate communication resources for nodes in the network system 100 based on the TDMA technology. Different nodes in the network system 100 may use different time slots to send electrical signals.
  • the communication resource may include multiple time slots, and the scheduling allocation information may indicate the scheduling allocation of the multiple time slots among multiple nodes.
  • resource R1 may include time slot R11
  • resource R2 may include time slot R21
  • resource R3 may include time slot R31.
  • the scheduling assignment information instructs node 101 to use time slot R11 to send electrical signals on the line between node 101 and passive auxiliary device 201, may also instruct node 102 to use time slot R21 to send electrical signals on the line between node 102 and passive auxiliary device 201, may also instruct node 103 to use time slot R31 to send electrical signals on the line between node 103 and passive auxiliary device 201, and so on.
  • the node may use OFDM modulation technology to modulate the data to be transmitted into electrical signals.
  • the communication resource indicated by the node in the network system 100 by the master node may also include frequency domain resources, so that the node can use OFDM modulation technology to modulate the data to be transmitted into an electrical signal by using the frequency domain resource indicated by the master node.
  • resource R1 may include frequency domain resource R12
  • resource R2 may include frequency domain resource R22
  • resource R3 may include frequency domain resource R32.
  • the scheduling allocation information instructs the node 101 to use the frequency domain resource R12 and OFDM modulation technology to modulate the data to be transmitted into an electrical signal, and send the electrical signal on the line between the node 101 and the passive auxiliary device 201 .
  • the scheduling allocation instruction information may also instruct the node 102 to use the frequency domain resource R22 to modulate the data to be transmitted into an electrical signal by using OFDM modulation technology, and send the electrical signal on the line between the node 102 and the passive auxiliary device 201 .
  • the scheduling allocation instruction information may also instruct the node 103 to use the frequency domain resource R32 to modulate the data to be transmitted into an electrical signal by using OFDM modulation technology, and send the electrical signal on the line between the node 102 and the passive auxiliary device 201 .
  • the frequency domain resource may be represented by an OFDM symbol, that is, the frequency domain resource allocated to a node may specifically be one or more OFDM symbols.
  • adaptive modulation techniques can be used to approach the network channel capability and improve communication bandwidth.
  • adaptive modulation generally transmits a known sequence of signals, and the receiving side performs channel estimation and calculates the signal noise ratio (SNR) of each available carrier, and then applies Shannon’s formula and forward error correction code coding gain to calculate the number of bits (or modulation order) that the carrier can carry to obtain a bit loading table.
  • the communication link then performs data communication through the bit loading table to increase the data transmission bandwidth.
  • the ITU-T G.hn protocol mentioned above uses this method to realize adaptive modulation and improve communication bandwidth.
  • MCS modulation and coding scheme
  • LTE long term evolution
  • OFDMA orthogonal frequency division multiple access
  • the embodiment of the present application adopts the adaptive modulation OFDM modulation technology to modulate the data to be transmitted into an electrical signal.
  • the channel has strong adaptability, can approach the actual channel capacity, and improve the communication bandwidth. Compared with different rate levels in the Ethernet technology, the scheme of the embodiment of the present application can be closer to the actual channel capacity.
  • the communication resources indicated to the nodes may include both time slots and frequency domain resources.
  • time slots and frequency domain resources may be collectively referred to as time-frequency two-dimensional resources.
  • resource R1 may include time slot R11 and frequency domain resource R12
  • resource R2 may include time slot R21 and frequency domain resource R22
  • resource R3 may include time slot R31 and frequency domain resource R32.
  • the scheduling allocation information instructs the node 101 to use the frequency domain resource R12 and OFDM modulation technology to modulate the data to be transmitted into an electrical signal, and use the time slot R11 to send the electrical signal on the line between the node 101 and the passive auxiliary device 201 .
  • the scheduling allocation instruction information may also instruct the node 102 to use the frequency domain resource R22, adopt OFDM modulation technology, modulate the data to be transmitted into an electrical signal, and use the time slot R21 to send the electrical signal on the line between the node 102 and the passive auxiliary device 201.
  • the scheduling allocation instruction information may also instruct the node 103 to use the frequency domain resource R32, adopt OFDM modulation technology, modulate the data to be transmitted into an electrical signal, and use the time slot R31 to send the electrical signal on the line between the node 102 and the passive auxiliary device 201. etc.
  • time slots allocated to different nodes are independent of each other and do not overlap. In this way, nodes can occupy all available frequency bands on their time slots when sending electrical signals. Available Settings All available frequency bands consist of 4 OFDM symbols.
  • a frame 411 can be used to set the electrical signal sent by the node 101, and the electrical signal occupies four OFDM symbols of OFDM symbol 401, OFDM symbol 402, OFDM symbol 403, and OFDM symbol 404, that is, the electrical signal occupies all available frequency bands of the time slot of the node 101, so that the node 101 uses a larger output transmission bandwidth to send data.
  • OFDM symbol 401 OFDM symbol 402
  • OFDM symbol 403 OFDM symbol 404
  • the node 101 can occupy all available frequency bands of its time slot, and send electrical signals on the line between the node 101 and the passive auxiliary device 201 .
  • the node 102 can occupy the entire available frequency band of its time slot, sending electrical signals on the line between the node 102 and the passive auxiliary device 201 .
  • the node 103 can occupy the entire available frequency band of its time slot, sending electrical signals on the line between the node 103 and the passive auxiliary device 201 .
  • the time slot of a node refers to a time slot allocated by the master node and usable by the node.
  • time slots of different nodes may overlap or overlap, that is, time slots of different nodes may include the same time instant. Taking node 101 and node 102 as an example, their time slots overlap. In this way, node 101 and node 102 can send electrical signals in different frequency bands to avoid mutual interference.
  • the network system 100 can adopt the ITU-T G.hn protocol.
  • the network system 100 may specifically be a G.hn home network, where the master node may be referred to as a domain master (domain master, DM), and the domain master and other nodes in the network system 100 may form a domain, wherein data transmission is performed between nodes (including the domain master) in the same domain through a passive auxiliary device 201.
  • the domain master may indicate the communication resources available to the nodes in the domain through a medium access plan (medium access plan, MAP) frame.
  • medium access plan medium access plan
  • a frame header of a MAP frame may include a structure as shown in FIG. 6 .
  • the structure includes a contention-free transmission opportunity (CFTXOP) field, a shared transmission opportunity (STXOP) field, and a MAP field allocated to a single node.
  • CFTXOP contention-free transmission opportunity
  • STXOP shared transmission opportunity
  • the domain master needs to perform medium access planning in each MAC cycle, and divide each medium access control (medium access control, MAC) cycle into multiple transmission opportunities (transmission opportunity, TXOPs). Multiple TXOPs can be assigned to nodes in a domain. Wherein, at least one CFTXOP in each MAC cycle is used by the allocation domain master to send MAP frames.
  • medium access control medium access control
  • TXOPs transmission opportunity
  • TXOPs can be divided into CFTXOPs and STXOPs.
  • Some STXOPs may include one or more contention-free transmission slots (CFTSs) allocated to a single node, and some STXOPs may include one or more CFTSs, and may also include one or more CBTSs.
  • Some STXOPs can include one or more contention-based time slots (CBTSs).
  • CBTSs contention-based time slots
  • a CFTS can be assigned to a node and used by the node.
  • a CFTSs can be assigned to multiple nodes, which compete to use the transmission opportunity.
  • the above example introduces the communication resources of the nodes and the scheduling scheme of the communication resources. Next, the data transmission scheme of a single node is introduced.
  • the node and the passive auxiliary device 201 are connected through a network cable.
  • a network cable there are many pairs of twisted pairs in the network cable. For example, there are 4 pairs of twisted pairs in CAT5 and above network cables.
  • the Ethernet protocol is used, there will be cross talk on multiple twisted pairs.
  • NEXT Near End Cross Talk
  • FEST far-end crosstalk
  • the node may use multiple-input multiple-output (MIMO) technology to simultaneously send electrical signals on two or more pairs of twisted-pair wires among multiple pairs of twisted-pair wires, so as to increase data transmission bandwidth.
  • MIMO multiple-input multiple-output
  • the crosstalk between two or more pairs of twisted pairs is just a cross channel between the transmitting end and the receiving end.
  • the receiving end can convert the crosstalk between two or more pairs of twisted pairs into signal gain through the channel equalization algorithm.
  • the receiving side may use a minimum mean square error (minimum mean square error, MMSE) algorithm to equalize the signal, and convert crosstalk into signal gain.
  • MMSE minimum mean square error
  • the network cable includes multiple twisted pairs, where the multiple twisted pairs include twisted pair E1 and twisted pair E2.
  • the MIMO technology may be adopted to simultaneously transmit electrical signals on the twisted pair E1 and the twisted pair E2.
  • the transmitting port of the twisted pair E1 is TX1
  • the receiving port is RX1
  • the channel is H1.
  • the transmitting port of twisted pair E2 is TX2, the receiving port is RX2, and the channel is channel H2.
  • the crosstalk from the twisted pair E1 to the twisted pair E2 is relative to the cross channel H3, and the crosstalk from the twisted pair E2 to the twisted pair E1 is relative to the cross channel H4.
  • the receiving end can adopt a channel equalization algorithm, and the crosstalk between the twisted pair E1 and the twisted pair E2 can be converted into a signal gain.
  • the present application is a solution provided by an embodiment, which can realize point-to-multipoint communication of nodes, improve the utilization rate of network interfaces of nodes, improve the efficiency of data transmission between nodes, and increase the bandwidth of data transmission between nodes.
  • the passive auxiliary device 201 can integrate the lines of the sending end and multiple receiving ends into a shared medium, realize point-to-multipoint communication from one sending end to multiple receiving ends, and increase the data transmission bandwidth.
  • the bandwidth of the communication system can be set to 200MHz.
  • a 3Gbps rate can be achieved through passive auxiliary devices.
  • the rate of 6Gbps can be achieved through passive auxiliary devices.
  • the solution provided by the embodiment of the present application can also provide performance close to 3Gbps (two pairs of twisted-pair cables) or 6Gbps (four pairs of twisted-pair cables).
  • the solution provided by the present application can reduce equipment cost.
  • data transmission between nodes needs to be forwarded at the master node.
  • the master node needs multiple network interfaces (such as Ethernet interfaces), involving multiple PHY/MAC chips, and each PHY/MAC chip corresponds to a node, and is responsible for data forwarding of the corresponding node.
  • the master node since the network cable medium between multiple nodes is converted into a shared medium through a passive auxiliary device, the master node only needs one network interface and one PHY/MAC chip to communicate with other nodes in the network.
  • the embodiments of the present application use OFDM to adaptively modulate electrical signals, and the performance of the physical layer is strong in adaptability, and it is easier to approach the channel limit than the Ethernet technology.
  • the network cable between the node and the passive auxiliary device 201 is tested by using a network cable of CAT-5 specification, a network cable of CAT-5e specification, a network cable of CAT-6 specification, and a network cable of CAT-6a specification.
  • a network cable of CAT-5 specification a network cable of CAT-5e specification
  • a network cable of CAT-6 specification a network cable of CAT-6a specification
  • the standard definition network cable attenuation curves of the network cables of these four specifications are shown in FIG. 9 .
  • the node uses adaptive OFDM modulation technology to modulate the data to be transmitted into an electrical signal, and sends the electrical signal through the network cable between the node and the passive auxiliary device 201 .
  • the experimental results of the physical layer rate (phy rate) of the 50-meter-long CAT-5 specification network cable are shown in Figure 10. It can be seen that the physical layer rate of the CAT-5 specification network cable can reach 3160Mbps to 6948Mbps.
  • an embodiment of the present application further provides a communication device 1100.
  • the communication device includes a passive auxiliary device 1101 and a node 1102, wherein the node 1102 is a node among multiple nodes connected to the passive auxiliary device; wherein, the node 1102 sends a first electrical signal through a line between the node 1102 and the passive auxiliary device, and the first electrical signal carries first data; when the first electrical signal reaches the passive auxiliary device, the first electrical signal prompts the passive auxiliary device to
  • the source assisting device generates at least one second electrical signal sent to at least one node, the second electrical signal carries the first data, the at least one node corresponds to the at least one second electrical signal, and the at least one node is a node other than the node 1102 among the plurality of nodes.
  • the node 1102 is used to indicate the communication resources that the multiple nodes can use.
  • the first data includes scheduling and allocation information of the communication resources among the multiple nodes.
  • the communication resource includes a first resource; wherein, the first resource is used for a second node among the plurality of nodes, and a third electrical signal is sent through a line between the second node and the passive auxiliary device, and the third electrical signal carries third data; when the third electrical signal reaches the passive auxiliary device, the third electrical signal prompts the passive auxiliary device to generate a plurality of fourth electrical signals sent to several nodes, the fourth electrical signal carries the third data, and the plurality of nodes correspond to the plurality of fourth electrical signals one by one, the plurality of nodes is a node in the plurality of nodes except the second node.
  • the first resource includes a first time slot resource or a two-dimensional time-frequency domain resource.
  • the passive auxiliary device is integrated into the node 1102, or the line between the node 1102 and the passive auxiliary device is a network cable.
  • the first electrical signal is obtained after the node 1102 modulates the first data by using OFDM modulation technology.
  • the line between the node 1102 and the passive auxiliary device is a network cable
  • the network cable includes multiple pairs of twisted wires
  • the first electrical signal includes multiple sub-signals
  • the multiple pairs of twisted-pair wires correspond to the multiple sub-signals one by one; each pair of twisted-pair wires in the multiple pairs of twisted-pair wires is used to transmit a corresponding sub-signal.
  • the passive auxiliary device includes a transformer coupling circuit, and the transformer coupling includes a plurality of coils, and the plurality of coils correspond to the plurality of nodes one by one; wherein, the coil corresponding to the node 1102 among the plurality of coils prompts other coils in the plurality of coils to generate the at least one second electrical signal under the action of the first electrical signal.
  • the communication device provided by the embodiment of the present application can send data to multiple nodes at the same time, which improves the utilization rate of the network interface of the communication device and the data transmission bandwidth of the communication device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Automation & Control Theory (AREA)
  • Small-Scale Networks (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本申请涉及通信技术领域,具体涉及一种网络系统及通信设备。其中,该网络系统包括:无源辅助装置;多个节点,其中,每个节点和所述无源辅助装置连接;其中,多个节点中的第一节点通过第一节点和无源辅助装置之间的线路发送第一电信号,第一电信号承载有第一数据;当第一电信号达到无源辅助装置时,第一电信号促使无源辅助装置,产生发向至少一个节点的至少一个第二电信号,第二电信号承载有第一数据,至少一个节点和至少一个第二电信号一一对应,至少一个节点为多个节点中除第一节点之外的节点。本申请可以提高节点间的数据传输带宽及网络接口的利用效率。

Description

一种网络系统及通信设备
本申请要求于2022年1月19日提交中国国家知识产权局、申请号为202210061359.4、申请名称为“一种网络系统及通信设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,具体涉及一种网络系统及通信设备。
背景技术
随着智能家居、远程教育、在家办公、视频直播、虚拟现实(virtual reality,VR)等发展和普及,对家庭网络的带宽等提出了更高的要求。
目前家庭网络普通采用以太网技术,即设备之间通过网线,按照以太网协议(IEEE 802.3系列标准)进行数据传输。在以太网协议下,家庭网络的带宽越来越难以平衡和满足用户的通信需求。
发明内容
本申请实施例提供了一种网络系统及通信设备,可以提高节点之间的数据传输带宽和网络接口的利用效率。
第一方面,提供了一种网络系统,包括:无源辅助装置;多个节点,其中,每个节点和所述无源辅助装置连接;其中,所述多个节点中的第一节点通过所述第一节点和所述无源辅助装置之间的线路发送第一电信号,所述第一电信号承载有第一数据;当所述第一电信号达到所述无源辅助装置时,所述第一电信号促使所述无源辅助装置,产生发向至少一个节点的至少一个第二电信号,所述第二电信号承载有所述第一数据,所述至少一个节点和所述至少一个第二电信号一一对应,所述至少一个节点为所述多个节点中除所述第一节点之外的节点。
在本申请提供的网络系统中,无源辅助装置可以将发送端和多个接收端的线路融合为共享介质,可以实现发送端到多个接收端的点到多点的通信,提升了发送端向接收端发送数据的数据传输效率,提高了节点间的数据传输带宽和网络接口的利用效率。
在一种可能的实施方式中,所述第一节点用于指示所述多个节点能够使用的通信资源。
在该实施方式中,第一节点可以作为主节点指示多个节点能够使用的通信资源,使得节点可以按照主节点指示的通信资源进行数据发送,实现了通信资源在多个节点的合理分配,提高了数据传输的效率和带宽。
在一种可能的实施方式中,所述第一数据包括所述通信资源在所述多个节点间的调度分配信息。
在该实施方式中,第一节点可以通过无源辅助装置,将通信资源在多个节点间的调度分配信息发送到多个节点,使得多个节点可以及时得到调度分配信息,并按照调度分配信息指示的通信资源发送数据,提高了数据传输的效率和带宽。
在一种可能的实施方式中,所述多个节点中的第二节点,使用所述通信资源中的第一资源,通过所述第二节点和所述无源辅助装置之间的线路发送第三电信号,所述第三电信号承载有第三数据;当所述第三电信号到达所述无源辅助装置时,所述第三电信号促使所述无源辅助装置产生发向若干个节点的若干个第四电信号,所述第四电信号承载有所述第三数据,所述若干个节点和所述若干个第四电信号一一对应,所述若干个节点为所述多个节点中除所述第二节点之外的节点。
在该实施方式中,第二节点可以使用第一节点指示的通信资源,发送数据,并且通过无源辅助装置,实现第二节点到其他节点的点到多点的数据传输,提高了数据传输的效率和带宽。
在一种可能的实施方式中,所述第一资源包括第一时隙资源或时频域二维资源。
也就是说,在该实施方式中,第二节点可以使用第一节点指示的时隙资源或时频域二维资源,发送数据,并且通过无源辅助装置,实现第二节点到其他节点的点到多点的数据传输,提高了数据传输的效率和带宽。
在一种可能的实施方式中,所述无源辅助装置集成到所述第一节点中,或者所述第一节点和所述无源辅助装置之间的线路为网线。
在一种可能的实施方式中,所述第一电信号是所述第一节点采用OFDM调制技术,对所述第一数据进行调制后得到的。
也就是说,在该实施方式中,采用OFDM调制技术,将数据调制为电信号,并进行传输,可以逼近信道极限,提高了数据传输的效率和带宽。
在一种可能的实施方式中,所述第一节点和所述无源辅助装置之间的线路为网线,所述网线包括多对双绞线,所述第一电信号包括多个子信号,所述多对双绞线和所述多个子信号一一对应;所述多对双绞线中的每对双绞线用于传输对应的子信号。
也就是说,在该实施方式中,可以使用网线中的多个双绞线,同时传输数据,提高了数据传输效率和带宽。
在一种可能的实施方式中,所述无源辅助装置包括变压器耦合电路,所述变压器耦合包括多个线圈,所述多个线圈和所述多个节点一一对应;其中,所述多个线圈中对应于所述第一节点的线圈在所述第一电信号的作用下,促使所述多个线圈中的其他线圈产生所述至少一个第二电信号。
也就是说,在该实施方式中,可以采用变压器耦合电路作为无源辅助装置,将达到无源辅助装置的电信号,转换为发向对应其他节点的第二电信号,实现了点到多点的通信,提高了数据传输效率和带宽。
第二方面,提供了一种通信设备,所述通信设备包括无源辅助装置和第一节点,所述第一节点为所述无源辅助装置连接的多个节点中的节点;其中,所述第一节点通过所述第一节点和所述无源辅助装置之间的线路发送第一电信号,所述第一电信号承载有第一数据;当所述第一电信号达到所述无源辅助装置时,所述第一电信号促使所述无源辅助装置,产生发向至少一个节点的至少一个第二电信号,所述第二电信号承载有所述第一数据,所述至少一个节点和所述至少一个第二电信号一一对应,所述至少一个节点为所述多个节点中除所述第一节点之外的节点。
在一种可能的实施方式中,所述第一节点用于指示所述多个节点能够使用的通信资源。
在一种可能的实施方式中,所述第一数据包括所述通信资源在所述多个节点间的调度分配信息。
在一种可能的实施方式中,所述通信资源包括第一资源;其中,所述第一资源用于所述多个节点中的第二节点,通过所述第二节点和所述无源辅助装置之间的线路发送第三电信号,所述第三电信号承载有第三数据;当所述第三电信号到达所述无源辅助装置时,所述第三电信号促使所述无源辅助装置产生发向若干个节点的若干个第四电信号,所述第四电信号承载有所述第三数据,所述若干个节点和所述若干个第四电信号一一对应,所述若干个节点为所述多个节点中除所述第二节点之外的节点。
在一种可能的实施方式中,所述第一资源包括第一时隙资源或时频域二维资源。
在一种可能的实施方式中,所述无源辅助装置集成到所述第一节点中,或者所述第一节点和所述无源辅助装置之间的线路为网线。
在一种可能的实施方式中,所述第一电信号是所述第一节点采用OFDM调制技术,对所述第一数据进行调制后得到的。
在一种可能的实施方式中,所述第一节点和所述无源辅助装置之间的线路为网线,所述网线包括多对双绞线,所述第一电信号包括多个子信号,所述多对双绞线和所述多个子信号一一对应;所述多对双绞线中的每对双绞线用于传输对应的子信号。
在一种可能的实施方式中,所述无源辅助装置包括变压器耦合电路,所述变压器耦合包括多个线圈,所述多个线圈和所述多个节点一一对应;其中,所述多个线圈中对应于所述第一节点的线圈在所述第一电信号的作用下,促使所述多个线圈中的其他线圈产生所述至少一个第二电信号。
本申请实施例提供的网络系统和通信设备,可以实现节点间的点到多点的通信,提升了节点间传输数据的数据传输效率,提高了节点间的数据传输带宽及网络接口的利用效率。
附图说明
图1为本申请实施例提供的一种网络系统示意图;
图2为本申请实施例提供的一种节点的结构示意图;
图3A为本申请实施例提供的一种无源辅助装置的结构示意图;
图3B为本申请实施例提供的一种无源辅助装置的结构示意图;
图4A为本申请实施例提供的一种通信资源调度分配示意图;
图4B为本申请实施例提供的一种通信资源调度分配示意图;
图5为本申请实施例提供的一种通信资源调度分配示意图;
图6为本申请实施例提供的一种调度分配信息的帧结构示意图;
图7为不同双绞线之间串扰的示意图;
图8为本申请实施例提供的信道示意图;
图9为网线衰减示意图;
图10为本申请实施例提供的方案的仿真结果展示图;
图11为本申请实施例提供的一种通信设备结构示意图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。
在本说明书的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以适合的方式结合。
可以理解的是,在本申请实施例的描述中,“示例性的”、“例如”或者“举例来说”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”、“例如”或者“举例来说”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”、“例如”或者“举例来说”等词旨在以具体方式呈现相关概念。
在本申请实施例的描述中,术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,单独存在B,同时存在A和B这三种情况。另外,除非另有说明,术语“多个”的含义是指两个或两个以上。例如,多个系统是指两个或两个以上的系统,多个终端是指两个或两个以上的终端。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
以太网(ethernet)是一种局域网(local area network,LAN)组网技术。电气与电子工程师协会(institute of electrical and electronics engineers,IEEE)指定的IEEE 802.3协议给出了以太网的技术标准。IEEE 802.3协议规定了包括物理层的连线、电信号和介质访问层协议在内的内容。也就是说,IEEE 802.3协议规定了局域网所采用的电缆类型和信号处理方式等内侧。
IEEE 802.3协议规定了,互联设备之间可以以10Mbps-10Gbps(10Mbps、100Mbps、1Gbps、2.5Gbps、5Gbps、10Gbps)的速率传送数据。其中,在IEEE 802.3协议中,互联设备之间的数据传输速率受互联设备之间的网络电缆的限制。越快的传输速率,需要越高规格的网络电缆。
网络电缆一般由金属(例如铜)或玻璃制造而成,用来传递网络信息。常用的网络电缆有三种:双绞线、同轴电缆和光纤电缆(光纤)。其中,双绞线也可以称为网线,可以分为屏蔽双绞线(shielded twisted pair,STP)与非屏蔽双绞线(unshielded twisted pair,UTP)。常见的网线为非屏蔽双绞线,其由四对细铜线组成,每对铜线都绞合一起,每根铜线都外裹带色的塑料绝缘层,然后整体包有一层塑料外套。非屏蔽双绞线的接头为RJ-45接头。
在以太网技术中,互联设备之间普遍采用网线进行数据传输。网线具有不同的规格,以非屏蔽双绞线为例,目前,非屏蔽双绞线已具有CAT-1(Category 1)、CAT-2、CAT-3、CAT-4、CAT-5、CAT-5e、CAT-6、CAT-7等类别。其中,从CAT-1到CAT-7,规格依次升高。高规格非屏蔽双绞线的最大传输速率大于低规格非屏蔽双绞线的最大传输速率。具体而言,CAT-1:用于电话通信,不适合传输数据;CAT-2:可用于数据传输,最大速度为4Mbps;CAT-3:用于10BASET以太网,传输数据的最大速度为10Mbps;CAT-4:用于令牌环网络,传输数据的最大速度为16Mbps;CAT-5:用于快速以太网,传输数据的最大速度为100Mbps;CAT-5e:用于最大传输速度为1000Mbps的网络;CAT-6:传输数据的最大速率为1000Mbps;CAT-7:用于最大速率为10Gbps的网络。
以太网技术及网线由于其低成本、高可靠性、性能及普及性成为家庭网络中最为流行和广泛使用的技术和介质。其中,交换机(switch hub)及家庭分布式路由器普遍支持以太网接口(例如,对应于RJ-45接头的接口),用户使用交换机或者路由器上的多网口搭建家庭网络,支持家庭内的高速网络通信,支持分布式Wi-Fi热点的布放。
普通消费者对成本比较敏感,由于高规格的网线(例如CAT-5e、CAT-6、CAT-7等)成本高,尚未在家庭网络普及,尤其尚未使用在家庭分布式路由间的连接上。目前,家庭普遍部署的网线规格较低(CAT5及以下)。并且,由于网线的布线及拆除繁琐,家庭网络中的网线可能已部署了很长时间而没有更换,导致了网线中的铜线性质变化,进而导致网线的信道质量变差,使得网线难以工作在目标速率。
目前,电信运营商提供的带宽已经进行Gbps时代,家庭接入带宽已达到1Gbps甚至更高。并且,Wi-Fi带宽也在不断提升,特别是,Wi-Fi 6、Wi-Fi 7的带宽已经达到2Gbps以上。
而家庭网络中一般使用CAT5/CAT5e规格网线及GE以太接口为主,因此,以网线为互联介质,采用以太网协议为传输协议的数据传输方式,已成为家庭网络的带宽瓶颈。而2.5GE 及以上规格由于对网线规格要求高及成本等原因未在家庭网络中普及。
另外,以太网协议自适应能力弱,只能在10Mbps、100Mbps、1000Mbps等模式间选择具体工作模式,不同工作模式下的速率档位差异大。例如互联设备之间的网线的信道容量在900Mbps的情况下,采用以太网协议的互联设备只能工作在100Mbps模式下,获得100Mbps速率。
参阅图1,本申请实施例提供了一种网络系统100,包括节点101、节点102、节点103等多个节点,还包括无源辅助装置201。
其中,该多个节点中的每个节点均和无源辅助装置201连接。该多个节点中任意节点可以产生电信号A1,并通过该节点和无源辅助装置201之间的线路发送该电信号A1。当该电信号A1到达无源辅助装置201时,该电信号A1可以促使无源辅助装置201产生发向其他各个节点的电信号,其中,发向其他节点的电信号也承载有电信号A1所承载的数据。由此,通过无源辅助装置201可以将电信号A1所承载的数据广播到其他各个节点,实现点到多点的通信。相对于传统的节点和节点间的点到点的通信方式,该点到多点的通信方式可以使得节点利用一个网络接口,就可以实现与多个其他节点地通信,提升了节点网络接口的利用率。
示例性的,以节点101为例,其可以产生电信号A1,并通过节点101和无源辅助装置201之间的线路发送电信号A1。电信号A1可以承载数据D1。电信号A1达到无源辅助装置201时,电信号A1可以促使无源辅助装置201产生至少一个电信号A2,其中,该至少一个电信号A2可以包括对应于节点102的电信号A2、对应节点103的电信号A2等。即该至少一个电信号A2和节点101以外的节点一一对应。每个电信号A2也承载有数据D1。每个电信号A2通过该电信号A2的对应节点和无源辅助装置201之间的线路,传输到对应的节点。从而使得数据D1广播到各个节点,实现了节点A1到其他节点的点到多点的通信。相对于传统的节点和节点间的点到点的通信方式,即节点A1一一向其他节点发送数据D1的通信方式,节点A1到其他节点的点到多点的通信。由此,对于每个节点而言,只需要一个网络接口即可实现与多个其他节点间的通信,提升了节点网络接口的利用效率。。
无源辅助装置201可以将发送端和多个接收端的线路融合为共享介质,实现一个发送端到多个接收端的点到多点的通信,提升了节点的网络接口利用率。
在一些实施例中,节点和无源辅助装置之间的线路可以为网线。在一个例子中,该网线可以屏蔽双绞线。在另一个例子中,该网线可以为非屏蔽双绞线。
接下来,结合不同的实施例,对本申请的方案进行具体介绍。其中,在下文中,当对节点101、节点102、节点103等不做特别区分时,它们可以被简称为节点。
在一些实施例中,节点可以具有如图2所示的结构。具体而言,节点可以包括处理器111、存储器112、网络端口113。示例性的,节点还可以包括无线通信电路114。
存储器112用于存储指令和数据。处理器111可以调用存储器112存储的指令或数据,执行相关操作,例如对数据进行前向纠错编码和调制电信号,使得数据可以被电信号承载。再例如,可以解调电信号和译码,以获取电信号所承载的数据。
网络端口113可以包括至少一个有线网络接口,该有线网络接口可被配置为通过网线连接到无源辅助装置201。
在一些实施例中,网络系统100中的一个节点在通过网线连接无源辅助装置201的同时,还可以通过网线连接到因特网。也就是说,该节点可以同时连接无源辅助装置201和因特网,由此,连接到无源辅助装置201的其他节点可以通过无源辅助装置201和该节点连接到因特网。
示例性的,节点可以通过电信运营商提供的网络,连接到因特网。
即在该示例中,节点的有线网络接口可以通过网线连接到电信运营商提供的网络接口,进而连接到因特网。
示例性的,可以设定节点101的一个通过网线连接到因特网,网络系统100中的其他的节点通过节点101连接到因特网。那么当因特网向网络系统100中的节点发送数据时,数据可以先达到节点101,然后,节点101将该数据承载在电信号上,并通过节点101和无源辅助装置201之间的线路发送该电信号,该电信号达到无源辅助装置201时,可以促使无源辅助装置201产生发向其他节点的电信号,发向其他节点的电信号也承载该数据,从而可以使得因特网可以向多个节点同时发送该数据,提高了数据传输带宽。
在一些实施例中,节点还可以包括无线通信电路114。无线通信电路114可以被配置为经由例如Wi-Fi网络等无线局域网标准进行通信。无线通信电路114可以是集成至少一个通信处理模块的一个或多个器件。无线通信电路114可以经由天线1141接收电磁波,将电磁波信号调频以及滤波处理,进行解调译码提取到数据,并将数据发送到处理器111。无线通信模块114还可以从处理器111接收待发送的数据,对其进行编码调制,调频,放大,经天线1141转为电磁波辐射出去。
可以理解的是,本申请实施例示意的结构并不构成对节点的具体限定。在本申请另一些实施例中,节点可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
在一些实施例中,节点可以为路由器。在另一些实施例中,节点可以为交换机。在一些实施例中,网络系统100中的部分节点可以为路由器,其他节点可以为交换机。等等。本申请实施例,节点的具体形式不做限定。
上文示例介绍了节点的结构,接下来,介绍无源辅助装置201的结构。
无源辅助装置201为一种无需电源的(即无源的)、可以将电信号转换为多个电信号的装置。无源辅助装置也可以称为合路器或者分支器。参阅图3A,无源辅助装置201可以包括信号感应模块2011、信号感应模块2012、信号感应模块2013等多个信号感应模块。其中,信号感应模块2011连接节点101,信号感应模块2012连接节点102,信号感应模块103连接节点103等。
无源辅助装置201中的一个信号感应模块可以感应或者说接收到电信号时,该信号感应模块在该电信号的作用下,可以促使其他的信号感应模块也产生相应的电信号,并产生的电信号可以传输至相应的节点,从而实现点到多点的通信。
为方便描述,可以将该感应或接收到的电信号称为初级信号,将由初级信号促使产生的电信号称为次级信号。其中,当初级信号承载有数据D1时,次级信号也可以承载数据D1。即次级信号承载初级信号所承载的数据。以信号感应模块2011为例,当节点101可以在节点101和无源辅助装置201之间的线路上发送电信号A1。当电信号A1达到无源辅助装置201时,信号感应模块2011可以感应或者说接收到电信号A1。信号感应模块2011在电信号A1的作用下,可以促使信号感应模块2012、信号感应模块2013分别产生电信号A2。其中,信号感应模块2012产生的电信号A2可以传输至节点102,信号感应模块2013产生的电信号A2可以传输至节点103。其中,每个电信号A2均承载有电信号A1承载的数据。从而实现了节点101到节点102、节点103的数据发送。
在一些实施例中,参阅图3B,信号感应模块可以实现为缠绕在磁芯上的线圈,其中,作为多个信号感应模块的多个线圈可以缠绕在同一磁芯上。电信号为具体为差分信号 (differential signal),当其达到信号感应模块,即缠绕在磁芯上的线圈时,该线圈可以作为初级线圈,使得磁芯产生交流磁通。该缠绕在该磁芯上的其他线圈可以在交流磁通的作用下,产生感应电压,从而产生电信号。
其中,节点和信号感应模块之间的线路可以为网线。网线可以由一对或多对双绞线组成。其中,一对双绞线可以对应一个缠绕在磁芯上的线圈,该对双绞线中的一根线连接线圈的一端,另一根线连接线圈的另一端。
在一些实施例中,可以通过设置节点对应的线圈的匝数,以及设置不同节点对应的线圈的匝数比,可以调整对应各节点的电信号的强度,以及有效地衰减串扰到当前通信节点的噪声。其中,当前通信节点是指当前正在发送电信号的节点。
在一个示例中,参阅图3B,无源辅助装置201还可以包括信号幅度调整模块20111、信号幅度调整模块20121、信号幅度调整模块20131等多个信号幅度调整模块。多个信号幅度调整模块和多个信号感应模块一一对应。如图3B所示,每个信号幅度调整模块可以连接到对应的信号幅度调整模块。具体而言,信号幅度调整模块20111连接到信号感应模块2011,信号幅度调整模块20121连接到信号感应模块2012,信号幅度调整模块20131连接到信号感应模块2013,等等。
其中,节点可以连接到信号幅度调整模块,进而通过信号幅度调整模块连接到信号感应模块。具体而言,节点101连接到信号幅度调整模块20111,进而通过信号幅度调整模块20111连接到信号感应模块2011。节点102连接到信号幅度调整模块20121,进而通过信号幅度调整模块20121连接到信号感应模块2012。节点103连接到信号幅度调整模块20131,进而通过信号幅度调整模块20131连接到信号感应模块2013。
信号幅度调整模块中的线圈的匝数可以调整,由此,可以通过调整节点对应的信号幅度调整模块中的线圈的匝数,来调整节点对应线圈的匝数,以调整对应节点的电信号的强度,以及有效地衰减串扰到当前通信节点的噪声。
需要说明的是,上文以图3B所示结构作为示例,介绍了无源辅助装置201的一种实现形式,并不构成限定。在其他实施例中,无源辅助装置201可以实现为其他形式,在此不再一一赘述。
在一些实施例中,无源辅助装置201可以作为一个独立的器件,存在在网络系统100中。无源辅助装置201可以通过网线和网络系统100中的节点连接。
在另一些实施例中,无源辅助装置201可以集成到网络系统100中的某个节点中。其中,该节点中的电信号产生部件和无源辅助装置201可以通过内部网线或印制电路板(printed circuit board,PCB)走线连接。无源辅助装置201可以使用所在节点的有线网络接口和其他节点通过网线连接。示例性的,无源辅助装置201所在节点可以具有多个有线网络接口,无源辅助装置201可以通过该多个有线网络接口和多个其他节点通过网线连接。其中,每个其他节点可以通过网线连接该多个有线网络接口中一个有线网络接口。
在一些实施例中,节点和无源辅助装置201之间的线路上可以设置有线路驱动(line driver),用于放大电信号。具体而言,当节点通过其和无源辅助装置201之间的线路发送的电信号,经过线路驱动时,线路驱动可以放大该电信号,增大该电信号促使无源辅助装置201产生发向其他节点的电信号的能力。在一个例子中,线路驱动可以对电信号实现8倍放大。在一个例子中,线路驱动可以对电信号实现6倍放大。在一个例子中,线路驱动可以对电信号实现4倍放大。在一个例子中,线路驱动可以对电信号实现2倍放大。
另外,在本申请实施例中,电信号为一种利用电平高低来表示不同的信息(例如不同的 比特值)的信号。
在一些实施例中,电信号可以为非归零编码(non-return-to-zero line code,NRZ)信号。
在一些实施例中,电信号可以为四电平幅度调制(4 pulse amplitude modulation,PAM4)信号。在一些实施例中,节点可以采用正交频分复用(orthogonal frequency division multiplexing,OFDM)技术,对待传输数据进行调制,得到电信号,进而通过节点和无源辅助装置201之间的线路发送出去。具体将在下文进行具体介绍,此处不再赘述。
网络系统100中的至少一个节点,例如,节点101,可以作为主节点。主节点可以指示网络系统100中节点能够使用的通信资源。在一个示例中,此处的通信资源可以是指时隙资源。在另一个示例中,此处的通信资源可以是指时频域二维资源。网络系统100中的节点可以使用主节点指示的通信资源,在节点和无源辅助装置201之间的线路上发送电信号。接下来,进行示例介绍。
在一些实施例中,主节点可以发送电信号A1,电信号A1承载有数据D1,数据D1可以包括通信资源在所述多个节点间的调度分配信息。也就是说,该调度分配信息指示了该通信自由,以及指示该通信资源在多个节点间的调度分配。例如,可以设定通信资源包括资源R1、资源R2、资源R3等多个资源,其中,调度分配信息可以指示节点101使用资源R1在节点101和无源辅助装置201之间的线路上发送电信号,也可以指示节点102使用资源R2在节点102和无源辅助装置201之间的线路上发送电信号,也可以指示节点103使用资源R3在节点103和无源辅助装置201之间的线路上发送电信号,等等。
在一些实施例中,主节点可以基于时分多址(time division multiple access,TDMA)技术,指示网络系统100中节点能够使用的通信资源。也就是说,主节点可以基于TDMA技术,为网络系统100中的节点分配通信资源。网络系统100中的不同节点可以使用不同的时隙发送电信号。其中,通信资源可以包括多个时隙,调度分配信息可以指示该多个时隙在多个节点间的调度分配。举例而言,资源R1可以包括时隙R11,资源R2可以包括时隙R21,资源R3可以包括时隙R31。调度分配信息指示节点101使用时隙R11在节点101和无源辅助装置201之间的线路上发送电信号,也可以指示节点102使用时隙R21在节点102和无源辅助装置201之间的线路上发送电信号,也可以指示节点103使用时隙R31在节点103和无源辅助装置201之间的线路上发送电信号,等等。
在一些实施例中,节点可以采用OFDM调制技术,将待传输数据调制为电信号。其中,主节点可以网络系统100中的节点指示的通信资源还可以包括频域资源,使得节点可以采用OFDM调制技术,使用主节点指示的频域资源,将待传输数据调制为电信号。举例而言,资源R1可以包括频域资源R12,资源R2可以包括频域资源R22,资源R3可以包括频域资源R32。调度分配信息指示节点101使用频域资源R12,采用OFDM调制技术,将待传输的数据调制为电信号,并在节点101和无源辅助装置201之间的线路上发送该电信号。调度分配指示信息也可以指示节点102使用频域资源R22,采用OFDM调制技术,将待传输的数据调制为电信号,并在节点102和无源辅助装置201之间的线路上发送该电信号。调度分配指示信息也可以指示节点103使用频域资源R32,采用OFDM调制技术,将待传输的数据调制为电信号,并在节点102和无源辅助装置201之间的线路上发送该电信号。等等。其中,频域资源可以使用OFDM符号表示,也就是说,分配给节点的频域资源具体可以为一个或多个OFDM符号。
在使用上述调制技术时,由于网络信道稳定,可以采用自适应调制技术来逼近网络信道 能力,提升通信的带宽。如OFDM调制技术下,自适应调制一般通过发送已知序列的信号,接收侧进行信道估计并计算出每个可用载波的信噪比(signal noise ratio,SNR),再应用香农公式及前向纠错码编码增益计算出该载波可以承载的比特数量(或者说调制阶数)得到比特加载表,通信链路再通过该比特加载表进行数据通信,以提升数据传输带宽。上文所述的的ITU-T G.hn协议即使用该种方式实现自适应调制提升通信带宽。此外,可以使用无线通信技术(如长期演进(long term evolution,LTE))常用的调制编码方案(modulation and coding scheme,MCS),该方案针对正交频分多址接入(orthogonal frequency division multiple access,OFDMA)下的资源块(resource block,RB)自适应调制阶数和前向纠错码参数,进行数据通信,以提升数据传输带宽。
本申请实施例采用自适应调制的OFDM调制技术,将待传输的数据调制为电信号,信道自适应性能力强,能逼近实际信道容量,提升通信带宽,相比以太技术中不同速率等级,本申请实施例的方案更能逼近信道实际能力。
在一些实施例中,指示给节点的通信资源可以同时包括时隙和频域资源。其中,时隙和频域资源可以统称为时频二维资源。举例而言,资源R1可以包括时隙R11和频域资源R12,资源R2可以包括时隙R21和频域资源R22,资源R3可以包括时隙R31和频域资源R32。调度分配信息指示节点101使用频域资源R12,采用OFDM调制技术,将待传输的数据调制为电信号,并使用时隙R11在节点101和无源辅助装置201之间的线路上发送该电信号。调度分配指示信息也可以指示节点102使用频域资源R22,采用OFDM调制技术,将待传输的数据调制为电信号,并使用时隙R21在节点102和无源辅助装置201之间的线路上发送该电信号。调度分配指示信息也可以指示节点103使用频域资源R32,采用OFDM调制技术,将待传输的数据调制为电信号,并使用时隙R31在节点102和无源辅助装置201之间的线路上发送该电信号。等等。
在一些实施例中,参阅图4A和图4B,分配给不同节点的时隙彼此独立,不交叠。如此,可以节点可以在发送电信号时,占据其时隙上的全部可用频段。可用设定全部可用频段有4个OFDM符号组成。如图4A所示,可用设定帧411为节点101发送的电信号,该电信号占据了OFDM符号401、OFDM符号402、OFDM符号403、OFDM符号404这四个OFDM符号,也就是说,电信号占据了节点101时隙的全部可用频段,从而使得节点101使用较大的输出传输带宽发送数据。再如图4B所示,节点101可以占据其时隙的全部可用频段,在节点101和无源辅助装置201之间的线路上发送电信号。节点102可以占据其时隙的全部可用频段,在节点102和无源辅助装置201之间的线路上发送电信号。节点103可以占据其时隙的全部可用频段,在节点103和无源辅助装置201之间的线路上发送电信号。
其中,在本申请实施例中,节点的时隙是指由主节点分配的、可由该节点使用的时隙。
在一些实施例中,参阅图5,不同节点的时隙之间可以存在交叠或者重叠,也就是说,不同节点的时隙可以包括相同的时刻。以节点101和节点102为例,它们的时隙存在交叠。如此,节点101和节点102可以在不同频段发送电信号,以避免相互干扰。
在一些实施例中,网络系统100可以采用ITU-T G.hn协议。示例性的,网络系统100具体可以为G.hn家庭网络,其中,主节点可以称为域主控机(domain master,DM),域主控机和网络系统100中的其他节点可以组成一个域,其中,同一个域中的节点(包括域主控机)之间通过无源辅助装置201进行数据传输。示例性的,域主控机可以通过媒质接入规划(medium access plan,MAP)帧,指示域中的节点能够使用的通信资源。
在一个说明性示例中,MAP帧的帧头可以包括如图6所示的结构。该结构包括分配给单 一节点的免竞争机会(contention-free transmission opportunity,CFTXOP)字段、共享传输机会(shared transmission opportunity,STXOP)字段、MAP字段。
域主控机在每个MAC周期内需要进行媒质访问计划,将每个媒体接入控制(medium access control,MAC)周期分成多个传输机会(transmission opportunity,TXOPs)。多个TXOPs可以被分配给域中的节点。其中,每个MAC周期中的至少一个CFTXOP是分配域主控机用了发送MAP帧。
TXOPs可以分为CFTXOPs和STXOPs。有的STXOP可以包括一个或多个分配给单一节点的免竞争时隙(contention-free transmission slot,CFTSs),有的STXOP可以包括一个或多个CFTSs,还可以包括一个或多个CBTSs。有的STXOP可以包括一个或多个竞争时隙(contention-based time slot,CBTSs)。其中,一个CFTS可以被指定给一个节点,由该节点使用。一个CFTSs可被指定给多个节点,由该多个节点竞争使用该传输机会。
上文示例介绍了节点的通信资源,以及通信资源的调度方案。接下来,介绍单个节点的数据传输方案。
在一些实施例中,如上所述,节点和无源辅助装置201之间通过网线连接。一般而言,网线中存在多对双绞线。例如,CAT5及以上的网线中存在4对双绞线。若采用以太网协议,则对多双绞线存在串扰(cross talk)。如图7所示,在以太网协议中,多对双绞线之间存在近端串扰(Near End Cross Talk,NEXT)和远端串扰(far-end cross talk,FEST)。因此,在以太网技术中,当两对或更多对双绞线进行数据传输时,需要额外的串扰抵消算法实现多对双绞线间的串扰。
在本申请实施例中,节点可以采用多入多出(multiple-input multiple-output,MIMO)技术,在多对双绞线中的两对或更多对双绞线上同时发送电信号,以提高数据传输带宽。其中,对于MIMO技术而言,两对或更多对双绞线间的串扰只是发送端和接收端的交叉信道。由此,接收端可以通过信道均衡算法将两对或更多对双绞线间的串扰转换为信号收益。示例性的,接收侧可以采用最小均方误差(minimum mean square error,MMSE)算法对信号进行均衡,将串扰转换为信号收益。
示例性的,如图8所示,可以设定网线包括多个双绞线,其中该多个双绞线包括双绞线E1和双绞线E2。其中,可以采用MIMO技术,在双绞线E1和双绞线E2上同时电信号。其中,双绞线E1的发送端口为TX1,接收端口为RX1,信道为信道H1。双绞线E2的发送端口为TX2,接收端口为RX2,信道为信道H2。那么在MIMO技术中,双绞线E1到双绞线E2的串扰相对于交叉信道H3,双绞线E2到双绞线E1的串扰相对于交叉信道H4。由此,接收端可以采用信道均衡算法,双绞线E1和双绞线E2间的串扰转换为信号收益。
本申请是实施例提供的方案,可以实现节点的点到多点的通信,提升了节点的网络接口利用率,以及提升了节点间的数据传输效率,提高了节点间的数据传输带宽。
具体而言,无源辅助装置201可以将发送端和多个接收端的线路融合为共享介质,实现一个发送端到多个接收端的点到多点的通信,提高了数据传输带宽。以节点间的线路为网线为例。可以设定通信系统的频宽为200MHz。当采用网线中的两对双绞线进行数据传输时,通过无源辅助装置可以实现3Gbps速率。当采用网线中的四对双绞线进行数据传输时,通过无源辅助装置可以实现6Gbps速率。由此,对于CAT-5规格及更早规格的网线,以及年久导致的信道变差的网线,本申请实施例提供的方案也能提供逼近3Gbps(两对双绞线线)或6Gbps(四对双绞线)的性能。
并且,本申请提供的方案可以降低设备成本。具体而言,在现有技术中,各节点之间的 数据传输需要在主节点进行转发,为此,主节点需要多个网络接口(如以太接口),涉及多个PHY/MAC芯片,每个PHY/MAC芯片对应一个节点,用于负责对应节点的数据转发。在本申请实施例的方案中,由于多节点间的网线介质经由无源辅助装置转换为共享介质,因此,主节点只需要一个网络接口及一个PHY/MAC芯片即可和网络中其他节点进行通信。
另外,本申请实施例使用OFDM自适应调制电信号,物理层性能自适应能力强,相比以太技术更容易逼近信道极限。
接下来,在一个实例中,介绍本申请实施例提供的方案的效果。
在该实例中,节点和无源辅助装置201之间的线路采用CAT-5规格的网线、CAT-5e规格的网线、CAT-6规格的网线、CAT-6a规格的网线进行实验。其中,这四种规格的网线的标准定义网线衰减曲线如图9所示。
在该实例中,节点采用自适应的OFDM调制技术,将待传输的数据调制为电信号,并将通过节点和无源辅助装置201之间网线发送电信号。其中,50米长的CAT-5规格网线的物理层速率(phy rate)实验结果如图10所示。可知,CAT-5规格的网线的物理层速率层速率可以到达3160Mbps到6948Mbps。
参阅图11,本申请实施例还提供了一种通信设备1100,该通信设备所述通信设备包括无源辅助装置1101和节点1102,其中,节点1102为所述无源辅助装置连接的多个节点中的节点;其中,所述节点1102通过所述节点1102和所述无源辅助装置之间的线路发送第一电信号,所述第一电信号承载有第一数据;当所述第一电信号达到所述无源辅助装置时,所述第一电信号促使所述无源辅助装置,产生发向至少一个节点的至少一个第二电信号,所述第二电信号承载有所述第一数据,所述至少一个节点和所述至少一个第二电信号一一对应,所述至少一个节点为所述多个节点中除所述节点1102之外的节点。
在一些实施例中,所述节点1102用于指示所述多个节点能够使用的通信资源。
在这些实施例的一个示例中,所述第一数据包括所述通信资源在所述多个节点间的调度分配信息。
在这些实施例的另一个示例中,所述通信资源包括第一资源;其中,所述第一资源用于所述多个节点中的第二节点,通过所述第二节点和所述无源辅助装置之间的线路发送第三电信号,所述第三电信号承载有第三数据;当所述第三电信号到达所述无源辅助装置时,所述第三电信号促使所述无源辅助装置产生发向若干个节点的若干个第四电信号,所述第四电信号承载有所述第三数据,所述若干个节点和所述若干个第四电信号一一对应,所述若干个节点为所述多个节点中除所述第二节点之外的节点。
在该示例的一个例子中,所述第一资源包括第一时隙资源或时频域二维资源。
在一些实施例中,所述无源辅助装置集成到所述节点1102中,或者所述节点1102和所述无源辅助装置之间的线路为网线。
在一些实施例中,所述第一电信号是所述节点1102采用OFDM调制技术,对所述第一数据进行调制后得到的。
在一些实施例中,所述节点1102和所述无源辅助装置之间的线路为网线,所述网线包括多对双绞线,所述第一电信号包括多个子信号,所述多对双绞线和所述多个子信号一一对应;所述多对双绞线中的每对双绞线用于传输对应的子信号。
在一些实施例中,所述无源辅助装置包括变压器耦合电路,所述变压器耦合包括多个线圈,所述多个线圈和所述多个节点一一对应;其中,所述多个线圈中对应于所述节点1102的线圈在所述第一电信号的作用下,促使所述多个线圈中的其他线圈产生所述至少一个第二电 信号。
本申请实施例提供的通信设备可以将同时向多个节点发送数据,提高了通信设备的网络接口利用率以及通信设备的数据传输带宽。
可以理解的是,以上实施例仅用以说明本申请的技术方案,而对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (18)

  1. 一种网络系统,其特征在于,包括:
    无源辅助装置;
    多个节点,其中,每个节点和所述无源辅助装置连接;其中,
    所述多个节点中的第一节点通过所述第一节点和所述无源辅助装置之间的线路发送第一电信号,所述第一电信号承载有第一数据;
    当所述第一电信号达到所述无源辅助装置时,所述第一电信号促使所述无源辅助装置,产生发向至少一个节点的至少一个第二电信号,所述第二电信号承载有所述第一数据,所述至少一个节点和所述至少一个第二电信号一一对应,所述至少一个节点为所述多个节点中除所述第一节点之外的节点。
  2. 根据权利要求1所述的系统,其特征在于,所述第一节点用于指示所述多个节点能够使用的通信资源。
  3. 根据权利要求2所述的系统,其特征在于,所述第一数据包括所述通信资源在所述多个节点间的调度分配信息。
  4. 根据权利要求2或3所述的系统,其特征在于,所述多个节点中的第二节点,使用所述通信资源中的第一资源,通过所述第二节点和所述无源辅助装置之间的线路发送第三电信号,所述第三电信号承载有第三数据;
    当所述第三电信号到达所述无源辅助装置时,所述第三电信号促使所述无源辅助装置产生发向若干个节点的若干个第四电信号,所述第四电信号承载有所述第三数据,所述若干个节点和所述若干个第四电信号一一对应,所述若干个节点为所述多个节点中除所述第二节点之外的节点。
  5. 根据权利要求4所述的系统,其特征在于,所述第一资源包括第一时隙资源或时频域二维资源。
  6. 根据权利要求1-5任一项所述的系统,其特征在于,所述无源辅助装置集成到所述第一节点中,或者所述第一节点和所述无源辅助装置之间的线路为网线。
  7. 根据权利要求1-6任一项所述的系统,其特征在于,所述第一电信号是所述第一节点采用OFDM调制技术,对所述第一数据进行调制后得到的。
  8. 根据权利要求1-7任一项所述的系统,其特征在于,所述第一节点和所述无源辅助装置之间的线路为网线,所述网线包括多对双绞线,所述第一电信号包括多个子信号,所述多对双绞线和所述多个子信号一一对应;所述多对双绞线中的每对双绞线用于传输对应的子信号。
  9. 根据权利要求1-8任一项所述的系统,其特征在于,所述无源辅助装置包括变压器耦合电路,所述变压器耦合包括多个线圈,所述多个线圈和所述多个节点一一对应;其中,所述多个线圈中对应于所述第一节点的线圈在所述第一电信号的作用下,促使所述多个线圈中的其他线圈产生所述至少一个第二电信号。
  10. 一种通信设备,其特征在于,所述通信设备包括无源辅助装置和第一节点,所述第一 节点为所述无源辅助装置连接的多个节点中的节点;其中,
    所述第一节点通过所述第一节点和所述无源辅助装置之间的线路发送第一电信号,所述第一电信号承载有第一数据;
    当所述第一电信号达到所述无源辅助装置时,所述第一电信号促使所述无源辅助装置,产生发向至少一个节点的至少一个第二电信号,所述第二电信号承载有所述第一数据,所述至少一个节点和所述至少一个第二电信号一一对应,所述至少一个节点为所述多个节点中除所述第一节点之外的节点。
  11. 根据权利要求10所述的通信设备,其特征在于,所述第一节点用于指示所述多个节点能够使用的通信资源。
  12. 根据权利要求11所述的通信设备,其特征在于,所述第一数据包括所述通信资源在所述多个节点间的调度分配信息。
  13. 根据权利要求11或12所述的通信设备,其特征在于,所述通信资源包括第一资源;其中,所述第一资源用于所述多个节点中的第二节点,通过所述第二节点和所述无源辅助装置之间的线路发送第三电信号,所述第三电信号承载有第三数据;
    当所述第三电信号到达所述无源辅助装置时,所述第三电信号促使所述无源辅助装置产生发向若干个节点的若干个第四电信号,所述第四电信号承载有所述第三数据,所述若干个节点和所述若干个第四电信号一一对应,所述若干个节点为所述多个节点中除所述第二节点之外的节点。
  14. 根据权利要求13所述的通信设备,其特征在于,所述第一资源包括第一时隙资源或时频域二维资源。
  15. 根据权利要求10-14任一项所述的通信设备,其特征在于,所述无源辅助装置集成到所述第一节点中,或者所述第一节点和所述无源辅助装置之间的线路为网线。
  16. 根据权利要求10-15任一项所述的通信设备,其特征在于,所述第一电信号是所述第一节点采用OFDM调制技术,对所述第一数据进行调制后得到的。
  17. 根据权利要求10-16任一项所述的通信设备,其特征在于,所述第一节点和所述无源辅助装置之间的线路为网线,所述网线包括多对双绞线,所述第一电信号包括多个子信号,所述多对双绞线和所述多个子信号一一对应;所述多对双绞线中的每对双绞线用于传输对应的子信号。
  18. 根据权利要求10-17任一项所述的通信设备,其特征在于,所述无源辅助装置包括变压器耦合电路,所述变压器耦合包括多个线圈,所述多个线圈和所述多个节点一一对应;其中,所述多个线圈中对应于所述第一节点的线圈在所述第一电信号的作用下,促使所述多个线圈中的其他线圈产生所述至少一个第二电信号。
PCT/CN2022/126699 2022-01-19 2022-10-21 一种网络系统及通信设备 WO2023138133A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210061359.4A CN116506240A (zh) 2022-01-19 2022-01-19 一种网络系统及通信设备
CN202210061359.4 2022-01-19

Publications (1)

Publication Number Publication Date
WO2023138133A1 true WO2023138133A1 (zh) 2023-07-27

Family

ID=87325425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/126699 WO2023138133A1 (zh) 2022-01-19 2022-10-21 一种网络系统及通信设备

Country Status (2)

Country Link
CN (1) CN116506240A (zh)
WO (1) WO2023138133A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2063546A2 (de) * 2007-11-23 2009-05-27 HYTEC Gerätebau GmbH Mehrträger-Übertragungsverfahren zur Datenkommunikation in Stromversogungsnetzen
WO2014098702A1 (en) * 2012-12-19 2014-06-26 Telefonaktiebolaget L M Ericsson (Publ) Wireless devices, network node and methods for handling relay assistance in a wireless communications network
CN108270469A (zh) * 2016-12-30 2018-07-10 丰郅(上海)新能源科技有限公司 可实现近场无线通讯的电子装置及其振荡电路的自检方法
US20190306057A1 (en) * 2018-03-30 2019-10-03 At&T Intellectual Property I, L.P. Method and apparatus for switching of data channels provided in electromagnetic waves

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2063546A2 (de) * 2007-11-23 2009-05-27 HYTEC Gerätebau GmbH Mehrträger-Übertragungsverfahren zur Datenkommunikation in Stromversogungsnetzen
WO2014098702A1 (en) * 2012-12-19 2014-06-26 Telefonaktiebolaget L M Ericsson (Publ) Wireless devices, network node and methods for handling relay assistance in a wireless communications network
CN108270469A (zh) * 2016-12-30 2018-07-10 丰郅(上海)新能源科技有限公司 可实现近场无线通讯的电子装置及其振荡电路的自检方法
US20190306057A1 (en) * 2018-03-30 2019-10-03 At&T Intellectual Property I, L.P. Method and apparatus for switching of data channels provided in electromagnetic waves

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NTT DOCOMO INC.: "Workplan for Study on NR Access Technology", 3GPP TSG RAN WG1 MEETING #87 R1-1612706, 13 November 2016 (2016-11-13), XP051176649 *

Also Published As

Publication number Publication date
CN116506240A (zh) 2023-07-28

Similar Documents

Publication Publication Date Title
US9461809B2 (en) Method and system for an extended range ethernet link discovery signaling
Yonge et al. An overview of the HomePlug AV2 technology
CN102215149B (zh) 一种通信方法和通信系统
US7254116B2 (en) Method and apparatus for transceiver noise reduction in a frame-based communications network
US9369231B2 (en) Dynamic adjustment of transfer characteristics as a function of channel characteristics
AU712963B2 (en) Network for multimedia asynchronous transfer mode digital signal transmission and components thereof
US9531491B2 (en) Communication method, apparatus and system
US7548549B2 (en) Method and apparatus for transmission of digital signals over a coaxial cable
US20110007664A1 (en) Method and system for link adaptive ethernet communications
US20060025079A1 (en) Channel estimation for a wireless communication system
US20080075111A1 (en) Data stream bonding device and method for bonding data streams
US5799041A (en) Network for multimedia asynchronous transfer mode digital signal transmission and components thereof
CN110036624B (zh) 用于发送数据的系统
TW200828925A (en) Method and system for an asymmetric PHY in extended range ethernet lans
US20120314744A1 (en) Phy payload over multiple tone masks using single tone mask phy header information
KR101403590B1 (ko) G.hn 기술을 엑세스 네트워크에 적용하기 위한 방법
Chowdhury High speed LAN technology handbook
US20110206063A1 (en) Method And System For Ethernet Converter And/Or Adapter That Enables Conversion Between A Plurality Of Different Ethernet Interfaces
WO2023138133A1 (zh) 一种网络系统及通信设备
Vlachou et al. A Practical Guide to Power-line Communication
Lawrence et al. Broadband access to the home on copper
CN106961291A (zh) 基于高性能载波控制技术的单相表宽带载波通信模块
WO2024066985A1 (zh) 通信方法及设备
EP3720166A1 (en) Method and apparatus for processing initialization signal
CN114257888B (zh) 用于pon系统的自适应编码及均衡方法和pon系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22921557

Country of ref document: EP

Kind code of ref document: A1