WO2023138077A1 - 反应堆建模数据获取方法、装置、设备、介质和程序产品 - Google Patents

反应堆建模数据获取方法、装置、设备、介质和程序产品 Download PDF

Info

Publication number
WO2023138077A1
WO2023138077A1 PCT/CN2022/118957 CN2022118957W WO2023138077A1 WO 2023138077 A1 WO2023138077 A1 WO 2023138077A1 CN 2022118957 W CN2022118957 W CN 2022118957W WO 2023138077 A1 WO2023138077 A1 WO 2023138077A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
target
division
reactor
devices included
Prior art date
Application number
PCT/CN2022/118957
Other languages
English (en)
French (fr)
Inventor
卢冬华
李亮国
余健明
孙振邦
龙彪
孟祥飞
吴小航
严超
刘继墉
南宗宝
Original Assignee
中广核研究院有限公司
中国广核集团有限公司
中国广核电力股份有限公司
中广核工程有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中广核研究院有限公司, 中国广核集团有限公司, 中国广核电力股份有限公司, 中广核工程有限公司 filed Critical 中广核研究院有限公司
Publication of WO2023138077A1 publication Critical patent/WO2023138077A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation

Definitions

  • the present application relates to the technical field of reactor analysis, in particular to a reactor modeling data acquisition method, device, equipment, medium and program product.
  • a reactor is a device for a nuclear power plant to generate electricity according to certain physical phenomena.
  • a nuclear power plant needs to establish a reactor model to simulate and observe the physical phenomena realized by the reactor, and optimize the reactor settings. Therefore, before the reactor model is established, it is necessary to determine the physical phenomena involved in the reactor, so that the reactor model can be established according to the physical phenomena, so as to ensure that the reactor model can accurately reflect the key physical phenomena of the reactor.
  • PIRT Planar identification and ranking table, phenomenon identification and ranking table
  • PIRT Physical identification and ranking table
  • phenomenon identification and ranking table is usually obtained based on expert experience, and the identification of reactor physical phenomena is carried out according to PIRT.
  • artificial experience is limited and only supports the identification of a single physical phenomenon, but cannot establish the role and connection of a single physical phenomenon in the entire physical process, and cannot guarantee the comprehensiveness of the identification of reactor physical phenomena.
  • the present application provides a method for acquiring reactor modeling data.
  • the method includes:
  • the hierarchical division processing is performed respectively, and the corresponding hierarchical division results of each working process are obtained;
  • the initial division results include a plurality of first control bodies, wherein the first control body includes at least one device with the same structure;
  • the target division result includes a plurality of second control bodies, wherein the second control bodies include at least one device with the same structure and related to the same physical phenomenon;
  • Modeling data corresponding to the target reactor is generated according to each second control body and a physical phenomenon related to each second control body.
  • the hierarchical division processing is performed on the devices involved in each work process involved in the target reactor to be identified for physical phenomena, including: determining the time course of the target reactor, wherein the time course includes the start time and end time of the physical phenomenon of the target reactor; within the time course, determining the target state type of each work process, wherein the target state type is a transient type or a steady state type; according to the target state type of each work process, perform hierarchical division processing on the devices included in each work process.
  • the multiple devices included in each work process are respectively hierarchically divided, including: for the first work process whose target state type is a transient type, the first work process is divided into stages by using a process division tool to obtain multiple phenomenon occurrence stages, and hierarchical division processing is performed on the multiple devices included in each phenomenon occurrence stage.
  • the hierarchical division processing is performed on the plurality of devices included in each work process, including: for the second work process whose target state type is a steady state type, the hierarchical division processing is performed on the multiple devices included in the second work process.
  • the hierarchical division processing is performed on the devices included in each working process involved in the target reactor to be identified by physical phenomena, including: according to the hierarchical relationship among systems, subsystems, equipment, assemblies, and components, the hierarchical division processing is performed on the devices included in each working process, wherein the hierarchical relationship is: the devices included in the system level can be divided into multiple subsystem levels, the multiple devices included in the subsystem level can be divided into equipment levels, and the multiple devices included in the equipment level can be divided into multiple assembly levels , multiple devices included in the assembly level can be divided into multiple component levels, and multiple devices are included in the component level.
  • dividing the devices included in the lowest level in the hierarchical division result into control volumes includes: dividing the devices included in the lowest level in the hierarchical division results into control volumes according to a preset control volume division table, wherein the control volume division table contains the design and construction information of the target reactor.
  • the initial division result is corrected according to the physical phenomenon recognition table to obtain the target division result, including: performing consistency analysis on each first control body according to the physical phenomenon recognition table, wherein the consistency analysis includes: judging whether each control body realizes a single physical phenomenon; according to the consistency analysis result, splitting a control body that realizes multiple physical phenomena into multiple control bodies, or merging multiple control bodies that realize the same physical phenomenon into one control body to obtain the target division result.
  • generating modeling data corresponding to the target reactor according to each second control volume and physical phenomena related to each second control volume includes: determining the flow direction of the medium between the second control volumes; generating modeling data corresponding to the target reactor according to the flow direction of the medium, each second control volume, and the physical phenomena related to each second control volume; wherein, the modeling data is a control volume diagram or a control volume surface.
  • the present application also provides a reactor modeling data acquisition device.
  • the unit includes:
  • the first division module is used to perform hierarchical division processing on the devices included in the work processes involved in the target reactor to be identified for physical phenomena, and obtain the hierarchical division results corresponding to the respective work processes;
  • the second division module is configured to divide the device contained in the lowest level in the hierarchical division result into control bodies for the hierarchical division results corresponding to each of the work processes, and obtain an initial division result, the initial division result includes a plurality of first control bodies, wherein the first control body includes at least one device with the same structure;
  • the first correction module is configured to, for each of the initial division results, correct the initial division results according to the physical phenomenon recognition table to obtain a target division result, and the target division result includes a plurality of second control bodies, wherein the second control bodies include at least one device with the same structure and related to the same physical phenomenon;
  • the first generation module is configured to generate modeling data corresponding to the target reactor according to each of the second control volumes and physical phenomena related to each of the second control volumes.
  • the first division module is specifically used to: determine the time course of the target reactor, wherein the time course includes the start time and end time of the physical phenomenon of the target reactor; within the time course, determine the target state type of each work process, wherein the target state type is a transient type or a steady state type; according to the target state type of each work process, perform hierarchical division processing on the devices included in each work process.
  • the first division module is specifically configured to: use a process division tool to divide the first work process into stages for the first work process whose target state type is transient, obtain multiple phenomenon occurrence stages, and perform hierarchical division processing on multiple devices included in each phenomenon occurrence stage.
  • the first division module is specifically configured to: for the second work process whose target state type is the steady state type, perform hierarchical division processing on multiple devices included in the second work process.
  • the first dividing module is specifically used to: perform hierarchical division processing on the devices included in each work process according to the hierarchical relationship among systems, subsystems, equipment, assemblies, and components, wherein the hierarchical relationship is: the devices included in the system level can be divided into multiple subsystem levels, the multiple devices included in the subsystem level can be divided into equipment levels, the multiple devices included in the equipment level can be divided into multiple assembly levels, the multiple devices included in the assembly level can be divided into multiple component levels, and the component level includes multiple devices.
  • the second division module is specifically configured to divide the devices included in the lowest level in the hierarchical division result into control volumes according to the preset control volume division table, wherein the control volume division table contains the design and construction information of the target reactor.
  • the first correction module is specifically used to: perform consistency analysis on each first control body according to the physical phenomenon identification table, wherein the consistency analysis includes: judging whether each control body realizes a single physical phenomenon; according to the consistency analysis result, split the control body that realizes multiple physical phenomena into multiple control bodies, or merge multiple control bodies that realize the same physical phenomenon into one control body to obtain the target division result.
  • the first generating module is specifically configured to: determine the flow direction of the medium between the second control volumes; generate modeling data corresponding to the target reactor according to the flow direction of the medium, each second control volume, and physical phenomena related to each second control volume; wherein, the modeling data is a control volume diagram or a control volume table.
  • the present application also provides a computer device, including a memory and a processor, the memory stores a computer program, and the processor implements the steps of the method described in any one of the above first aspects when executing the computer program.
  • the present application also provides a computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, the steps of the method described in any one of the above-mentioned first aspects are implemented.
  • the present application further provides a computer program product, which includes a computer program, and when the computer program is executed by a processor, implements the steps of the method described in any one of the above first aspects.
  • the above-mentioned reactor modeling data acquisition method, device, equipment, medium and program product through the hierarchical division processing of the devices included in each working process involved in the target reactor to be identified for physical phenomena, through the hierarchical division step by step, to initially divide the multiple devices included in the complex target reactor, so that according to the hierarchical division results corresponding to each working process, the control body of the device included in the lowest level in the hierarchical division result can be divided to obtain the initial division result including multiple first control bodies, and the multiple devices included in the complex target reactor can be divided.
  • the minimum analysis unit for physical phenomenon identification is established, and the physical phenomenon identification of the target reactor is simplified.
  • each first control body in the initial division result can be further corrected according to the physical identification phenomenon table, so that multiple second control bodies have the same structure and realize the same physical phenomenon. Since the initial division results are obtained according to the division of multiple devices included in each working process of the target reactor, all devices of the target reactor are fully included.
  • the physical phenomenon of each second control body ensures the comprehensiveness and accuracy of the identification of the physical phenomenon of the target reactor, establishes the connection between each physical phenomenon and the entire work process, and provides accurate modeling data for the establishment of the physical model corresponding to the target reactor, thereby effectively reducing the gap between the established model and the original reactor.
  • Fig. 1 is an application environment diagram of the reactor modeling data acquisition method in an embodiment
  • Fig. 2 is a schematic flow chart of hierarchical division processing in an embodiment
  • FIG. 3 is a schematic flowchart of hierarchical division processing according to the target state type in an embodiment
  • FIG. 4 is a schematic diagram of hierarchical division in an embodiment
  • FIG. 5 is a schematic flow chart of a correction process in an embodiment
  • Figure 6 is an overall schematic diagram of a control volume graph in an embodiment
  • Figure 7 is a schematic diagram of part 1 in one embodiment
  • Figure 8 is a schematic diagram of part 2 in one embodiment
  • Figure 9 is a schematic diagram of part 3 in one embodiment
  • Figure 10 is a schematic diagram of part 4 in one embodiment
  • Figure 11 is a schematic diagram of part 5 in one embodiment
  • Figure 12 is a schematic diagram of part 6 in one embodiment
  • Fig. 13 is a schematic flow chart of generating a control volume graph in an embodiment
  • Fig. 14 is a structural block diagram of a reactor modeling data acquisition device in an embodiment
  • Figure 15 is a diagram of the internal structure of a computer device in one embodiment.
  • a reactor is a device for a nuclear power plant to generate electricity based on certain physical phenomena.
  • it is usually based on certain modeling analysis methods to ensure that the experimental model can reflect the key physical phenomena of the reactor prototype.
  • it is required to identify the physical phenomena in the reactor prototype to ensure that there are no omissions.
  • the corresponding software is also required to be able to simulate, calculate, and analyze the key physical phenomena of the reactor prototype, which also involves the identification of physical phenomena in the reactor prototype. Therefore, the development of a reactor physical phenomenon identification method, the full element analysis of the physical phenomena in the reactor prototype, can realize the comprehensive identification of the physical phenomena in the reactor prototype, which is very important for the thermal hydraulic experiment of the reactor and the development of reactor safety analysis software.
  • PIRT Planar identification and ranking table, phenomenon identification and ranking table
  • PIRT Physical identification and ranking table
  • phenomenon identification and ranking table is usually obtained based on expert experience, and the identification of reactor physical phenomena is carried out according to PIRT.
  • artificial experience is limited, and only supports the identification of a single physical phenomenon, but cannot establish the role and connection of a single physical phenomenon in the entire physical process, and cannot guarantee the comprehensiveness of the identification of reactor physical phenomena.
  • a method for acquiring reactor modeling data is provided. This embodiment of the present application is illustrated by applying the method to a terminal. It can be understood that the method can also be applied to a server, and can also be applied to a system including a terminal and a server, and is implemented through the interaction between the terminal and the server. In this embodiment, the method includes the following steps:
  • Step 101 Perform hierarchical division processing on the devices included in the working processes involved in the target reactor to be identified for physical phenomena, and obtain the hierarchical division results corresponding to the respective working processes.
  • the target reactor can be, for example, a three-loop pressurized water reactor, a two-loop pressurized water reactor, a lead-bismuth reactor, a sodium reactor, and an integrated natural circulation reactor.
  • the target reactor includes a plurality of devices, and each device is, for example, a pipeline, a separator, a dryer and the like.
  • the target reactor can implement multiple different work processes, and the work process of the target reactor is, for example, a small breach accident process or a large breach accident process.
  • each work process is realized through the multiple devices included.
  • a plurality of devices involved in realizing the work process that is, devices included in the work process, are determined.
  • each device included in the work process can be further divided into layers, so as to obtain a result of the layer division of each device included in the work process.
  • the terminal can obtain device data files corresponding to each working process of the target reactor, and determine the role of each device in the working process according to the parameter data of each device in the device data file.
  • Step 102 For the hierarchical division results corresponding to each work process, divide the devices included in the lowest level in the hierarchical division results into control volumes to obtain an initial division result.
  • the initial division results include a plurality of first control volumes; wherein, the first control volumes include at least one device with the same structure.
  • the hierarchical division result includes the hierarchical level to which each device belongs, and each hierarchical level has an inclusion relationship, for example, a device belonging to the first hierarchical level can be further divided into a second hierarchical level, and a device belonging to the second hierarchical level can be further divided into a third hierarchical level, wherein the third hierarchical level is the lowest level.
  • the devices with the same structural features are divided into a control body to obtain multiple first control bodies, that is, the first control body contains at least one device with the same structure.
  • the division result of each first control body is the initial division result of the devices included in each work process.
  • Step 103 for each initial division result, correct the initial division result according to the physical phenomenon identification table to obtain a target division result, and the target division result includes a plurality of second control bodies; wherein, the second control bodies include at least one device with the same structure and related to the same physical phenomenon.
  • the physical phenomenon identification table includes the corresponding relationship between each physical phenomenon realized by the target reactor and the device for realizing each physical phenomenon.
  • the terminal can identify and correct the initial division result according to the physical phenomenon identification table.
  • devices related to the same physical phenomenon are divided into the same second control body to obtain multiple second control bodies. Therefore, each second control body includes at least one device with the same structural characteristics and related to the same physical phenomenon. For example, pipelines with the same length and the same physical phenomenon can be divided into a second control volume.
  • the division result of each second control body is the target division result of the devices included in each work process.
  • Step 104 generating modeling data corresponding to the target reactor according to each second control volume and the physical phenomena related to each second control volume.
  • the modeling data corresponding to the target reactor is generated, and the modeling data includes the corresponding relationship between each control body and each physical phenomenon. Based on the modeling data, a model of the target reactor can be further established, so that various physical phenomena that can actually occur in the target reactor can be simulated in the established model.
  • the devices involved in each working process of the target reactor to be identified for physical phenomena are divided into levels respectively, and the multiple devices included in the complex target reactor are divided step by step, so that according to the level division results corresponding to each work process, the control body of the device included in the lowest level of the level division result can be divided to obtain the initial division result including multiple first control bodies, and the multiple devices included in the complex target reactor can be divided into multiple first control bodies with the same structure.
  • the minimum analysis unit for identification of physical phenomena is established, and the identification of physical phenomena of the target reactor is simplified.
  • each first control body in the initial division result can be further corrected according to the physical identification phenomenon table, so that multiple second control bodies have the same structure and realize the same physical phenomenon; because the initial division result is obtained according to the division of multiple devices included in each working process of the target reactor, all devices of the target reactor are fully included. Ensure the comprehensiveness and accuracy of the identification of physical phenomena of the target reactor, establish the connection between each physical phenomenon and the entire work process, and provide accurate modeling data for the establishment of the physical model corresponding to the target reactor, thereby effectively reducing the gap between the established model and the original reactor.
  • FIG. 2 shows a schematic flow chart of a hierarchical classification process provided by the embodiment of the present application; the hierarchical division processing is performed on the devices involved in each working process of the target reactor to be identified for physical phenomena, including:
  • Step 201 determine the time course of the target reactor; wherein, the time course includes the start time and end time of the physical phenomenon of the target reactor.
  • each working process of the target reactor occurs within a certain time period, therefore, the hierarchical division of the devices included in each working process should be carried out for the devices involved in the time period.
  • the time period is the time course of the target reactor, including start time and end time
  • the start time is the time when the physical phenomenon of the target reactor begins to occur
  • the end time is the time when the physical phenomenon of the target reactor ends.
  • the breach occurrence time of small and medium breach accidents can be used as the start time in the time course
  • the time when the waste heat removal heat exchanger is connected can be used as the end time.
  • Step 202 within the time course, determine the target state type of each work process; wherein, the target state type is a transient type or a steady state type.
  • each device by further determining the target state type of each working process, the devices involved in realizing different physical phenomena in each working process can be determined, and each device can be further divided into layers.
  • Parameters of devices included in each working process include, for example, temperature, pressure, flow, power, and the like.
  • the target state type can be a transient type or a steady state type. If each parameter changes with time within the time course, then the target state type of the work process is the transient type. If each parameter does not change with time within the time course, then the target state type of the work process is a steady state type.
  • Step 203 according to the target state type of each work process, perform hierarchical division processing on the devices included in each work process.
  • the transient type of work process can be divided into multiple stages according to the change of each parameter.
  • the process since each parameter does not change with time, the process does not need to be subdivided.
  • FIG. 3 shows a schematic flowchart of hierarchical division processing according to the target state type provided by the embodiment of the present application; according to the target state type of each work process, the multiple devices included in each work process are respectively hierarchically divided, including:
  • Step 301 for the first working process whose target state type is transient, use a process division tool to divide the first working process into stages to obtain multiple phenomenon occurrence stages.
  • step 302 hierarchical division processing is performed on multiple devices included in each phenomenon occurrence stage.
  • the working process whose target state type is the transient type is recorded as the first working process.
  • the first working process can be divided into multiple phenomenon occurrence stages, and then the devices included in each phenomenon occurrence stage can be hierarchically divided.
  • the process division tool includes physical phenomena corresponding to different time periods in the time course. According to different physical phenomena that occur in different time periods, the work process is divided into multiple phenomenon occurrence stages.
  • the small breach accident process can be divided into: discharge stage, natural circulation stage, loop water seal and removal stage, core evaporation stage, and core coolant recovery stage;
  • the large breach accident process can be divided into: blowout stage, water refill stage, and reflooding stage.
  • the terminal can obtain the process division tool, and then carry out stage division for each work process.
  • the process division tool can be obtained by further forming a process division tool file based on the transient process table judged by expert experience. Please refer to Table 1, which shows a transient process table provided by the embodiment of the present application. Each stage division has been confirmed by experts and can be adjusted according to the comments of expert experience. According to the adjusted transient process table, it can be clarified how to divide the transient type of work process, and then a process division tool can be made, so as to divide the first work process into stages and obtain multiple phenomenon occurrence stages.
  • Step 303 for the second work process whose target state type is the steady state type, perform hierarchical division processing on multiple devices included in the second work process.
  • the working process whose target state type is steady-state type is recorded as the second working process.
  • the process since each parameter does not change with time, the process does not need to be subdivided into multiple stages of phenomenon occurrence. Therefore, the devices included in the working process can be directly divided into layers.
  • different work processes are divided into different levels according to the target state type of each work process, so as to ensure that the first work process of the transient type whose parameters change with time can be divided into levels according to the phenomenon occurrence stage, realize orderly division of each device, provide a basis for the subsequent division of the first control body, and improve the efficiency of the division of the first control body, thereby ensuring the accuracy, comprehensiveness and efficiency of the modeling data for generating the target reactor.
  • the hierarchical division processing is performed on the devices involved in each working process of the target reactor to be identified, including: according to the hierarchical relationship of systems, subsystems, equipment, assemblies and components, respectively performing hierarchical division processing on the devices included in each working process; wherein, the hierarchical relationship is: the devices included in the system level can be divided into multiple subsystem levels, the multiple devices included in the subsystem level can be divided into equipment levels, and the multiple devices included in the equipment level can be divided into multiple assembly levels, A plurality of devices included in the assembly level can be divided into a plurality of component levels, and a plurality of devices are included in the component level.
  • the hierarchical relationship from high to low is different levels such as system, subsystem, equipment, assembly, and component.
  • the devices included in each work process are divided into levels.
  • the devices included in each phenomenon occurrence stage can be hierarchically divided.
  • the system can be divided into reactor pressure vessels and internal components, steam generators, main pumps and other equipment.
  • steam generator equipment it can be divided into tube bundle components, vapor-liquid separators, descending sections and other assemblies.
  • vapor-liquid separator assemblies it can be divided into primary vapor-liquid separators, gravity separators, dryers and other components.
  • each device can be directly divided into layers.
  • the hierarchical division of devices in each work process can be divided according to actual needs, and not every level needs to be reflected.
  • the lowest level of device division in a certain phenomenon stage can be equipment instead of components.
  • the lowest-level song device can be further divided into control bodies.
  • FIG. 4 it shows a schematic diagram of hierarchical division provided by the embodiment of the present application.
  • the device decomposition of the target reactor is realized by performing hierarchical division processing on the devices included in each work process, which can ensure that all the components in the target reactor are fully covered and analyzed.
  • Each device is divided from top to bottom according to system, subsystem, equipment, assembly, component, etc., to ensure the comprehensiveness of subsequent identification of reactor physical phenomena.
  • dividing the devices included in the lowest level in the hierarchical division result into control volumes includes: dividing the devices included in the lowest level in the hierarchical division results into control volumes according to a preset control volume division table, wherein the control volume division table includes the design and construction information of the target reactor.
  • the control body division table contains the relevant parameters and construction parameters of each device when the target reactor is built and involved, that is, the design and construction information of each device.
  • the terminal can determine the structure of each device according to the preset control body division table. Therefore, according to the control volume division table, each device included in the lowest level can be divided into control volumes, and devices with the same structure can be divided into the same system volume, thereby obtaining multiple first control volumes.
  • the smallest analysis unit for the identification of physical phenomena of the target reactor is obtained, and the identification of complex physical phenomena is converted into the identification of phenomena of a single analysis unit, which realizes the identification of physical phenomena of the reactor prototype from complexity to simplification, and ensures the comprehensiveness and efficiency of identification of physical phenomena.
  • FIG. 5 shows a schematic flow chart of a correction process provided by the embodiment of the present application; for each initial division result, the initial division result is corrected according to the physical phenomenon recognition table, and the target division result is obtained, including:
  • Step 501 perform consistency analysis on each first control body; wherein, the consistency analysis includes: judging whether each control body realizes a single physical phenomenon.
  • Step 502 according to the result of the consistency analysis, split the control volume that realizes multiple physical phenomena into multiple control volumes, or merge multiple control volumes that realize the same physical phenomenon into one control volume to obtain the target division result.
  • correcting the initial division result according to the physical phenomenon identification table mainly includes analyzing the consistency of each first control body in the initialization division result, specifically including judging whether each device in each first control body is related to the realization of the same physical phenomenon.
  • the first control body For each first control body, if the result of the consistency analysis is that the devices included in the first control body realize multiple physical phenomena, then according to the realized physical phenomena, the devices that realize the same physical phenomenon are divided into the same second control body. Therefore, the first control body can be divided into a plurality of second control bodies having the same number of realized physical phenomena. For each first control body, if the result of the consistency analysis is that devices included in multiple first control bodies all realize the same physical phenomenon, then the multiple first control bodies are merged into the same second control body. After correction processing, a plurality of second control bodies are obtained, wherein each device included in each second control body realizes the same physical phenomenon.
  • the scope of correction covers all the devices involved in the target reactor, ensuring the accuracy of the identification range of physical phenomena of the target reactor; since it covers the physical phenomena of the comprehensive reactor, the breadth and depth of physical phenomenon identification are guaranteed.
  • generating modeling data corresponding to the target reactor according to each second control volume and physical phenomena related to each second control volume includes: determining a flow direction of a medium between each second control volume, and generating modeling data corresponding to the target reactor according to the flow direction of the medium, each second control volume, and a physical phenomenon related to each second control volume; wherein, the modeling data is a control volume diagram or a control volume surface.
  • the terminal can acquire medium flow data, and according to the medium flow data, the flow direction of the medium between the second control bodies can be determined. Therefore, modeling data can be generated according to the flow direction of each medium, the devices included in each second control body, and the physical phenomena realized by each second control body.
  • the flow direction of the medium between the second control bodies can be marked by single or double arrows in the body diagram, which can be for the flow direction of each medium in the second control body, or for the flow direction of the medium between the second control bodies.
  • FIG. 6 shows an overall schematic diagram of a control volume diagram provided by the embodiment of the present application, including the connections among Part 1 , Part 2 , Part 3 , Part 4 , Part 5 and Part 6 .
  • FIG 7 shows the schematic diagram of part 1 provided by the embodiment of the present application; as shown in Figure 8, it shows the schematic diagram of part 2 provided by the embodiment of the present application; as shown in Figure 9, it shows the schematic diagram of part 3 provided by the embodiment of the present application;
  • FIG. 13 shows a schematic flow chart of generating a control volume diagram provided by an embodiment of the present application; including:
  • Step 1301 determine the time course of the target reactor.
  • the time course includes the start time and end time of the physical phenomenon of the target reactor.
  • Step 1302 within the time course, determine the target state type of each working process of the target reactor.
  • the target state type is a transient type or a steady state type.
  • Step 1303 for the first working process whose target state type is transient, use a process division tool to divide the first working process into stages, obtain multiple phenomenon occurrence stages, and perform hierarchical division processing on multiple devices included in each phenomenon occurrence stage.
  • Step 1304 for the second work process whose target state type is the steady state type, perform hierarchical division processing on multiple devices included in the second work process.
  • the hierarchical division processing includes: according to the hierarchical relationship among systems, subsystems, equipment, assemblies, and components, respectively perform hierarchical division processing on the devices included in each work process, wherein the hierarchical relationship is: the devices included in the system level can be divided into multiple subsystem levels, the multiple devices included in the subsystem level can be divided into equipment levels, the multiple devices included in the equipment level can be divided into multiple assembly levels, and the multiple devices included in the assembly level can be divided into multiple component levels, and the component level includes multiple devices.
  • Step 1305 for the hierarchical division results corresponding to each work process, divide the devices included in the lowest level in the hierarchical division results into control volumes to obtain an initial division result.
  • the initial division result includes a plurality of first control bodies, wherein the first control bodies include at least one device with the same structure.
  • Step 1306, for each initial division result correct the initial division result according to the physical phenomenon recognition table to obtain the target division result.
  • the target division result includes a plurality of second control bodies, wherein the second control bodies include at least one device with the same structure and related to the same physical phenomenon;
  • Step 1307 Generate a control volume diagram corresponding to the target reactor according to the result of target division.
  • a control volume diagram corresponding to the target reactor is generated.
  • steps in the flow charts involved in the above embodiments are shown sequentially according to the arrows, these steps are not necessarily executed sequentially in the order indicated by the arrows. Unless otherwise specified herein, there is no strict order restriction on the execution of these steps, and these steps can be executed in other orders. Moreover, at least some of the steps in the flow charts involved in the above-mentioned embodiments may include multiple steps or multiple stages, and these steps or stages may not necessarily be executed at the same time, but may be executed at different times, and the execution order of these steps or stages may not necessarily be performed sequentially, but may be performed alternately or alternately with other steps or at least a part of steps or stages in other steps.
  • an embodiment of the present application further provides a reactor modeling data acquisition device for implementing the above-mentioned reactor modeling data acquisition method.
  • the solution to the problem provided by the device is similar to the implementation described in the above method, so the specific limitations in one or more embodiments of the reactor modeling data acquisition device provided below can refer to the above-mentioned limitation of the reactor modeling data acquisition method, and will not be repeated here.
  • a reactor modeling data acquisition device including: a first division module 1401, a second division module 1402, a first correction module 1403 and a first generation module 1404, wherein:
  • the first division module 1401 is configured to perform hierarchical division processing on the devices included in each working process involved in the target reactor to be identified for physical phenomena, and obtain the hierarchical division results corresponding to each of the working processes;
  • the second division module 1402 is configured to, for the hierarchical division results corresponding to each of the work processes, divide the devices included in the lowest level in the hierarchical division results into control volumes to obtain an initial division result, the initial division results including a plurality of first control volumes, wherein the first control volume includes at least one device with the same structure;
  • the first correction module 1403 is configured to, for each of the initial division results, perform correction processing on the initial division result according to the physical phenomenon recognition table to obtain a target division result, the target division result including a plurality of second control bodies, wherein the second control bodies include at least one device with the same structure and related to the same physical phenomenon;
  • the first generating module 1404 is configured to generate modeling data corresponding to the target reactor according to each of the second control volumes and physical phenomena related to each of the second control volumes.
  • the first division module 1401 is specifically configured to: determine the time course of the target reactor, wherein the time course includes the start time and end time of the physical phenomenon of the target reactor; within the time course, determine the target state type of each work process, wherein the target state type is a transient type or a steady state type; according to the target state type of each work process, perform hierarchical division processing on the devices included in each work process.
  • the first dividing module 1401 is specifically configured to: for the first working process whose target state type is transient, use a process dividing tool to divide the first working process into stages to obtain multiple phenomenon occurrence stages, and perform hierarchical division processing on multiple devices included in each phenomenon occurrence stage.
  • the first division module 1401 is specifically configured to: for the second work process whose target state type is a steady state type, perform hierarchical division processing on multiple devices included in the second work process.
  • the first division module 1401 is specifically configured to: perform hierarchical division processing on the devices included in each work process according to the hierarchical relationship among systems, subsystems, equipment, assemblies, and components, wherein the hierarchical relationship is: devices included in the system level can be divided into multiple subsystem levels, multiple devices included in the subsystem level can be divided into equipment levels, multiple devices included in the equipment level can be divided into multiple assembly levels, multiple devices included in the assembly level can be divided into multiple component levels, components A hierarchy includes multiple devices.
  • the second division module 1402 is specifically configured to divide the devices included in the lowest level in the hierarchical division result into control volumes according to a preset control volume division table, wherein the control volume division table contains the design and construction information of the target reactor.
  • the first correction module 1403 is specifically configured to: perform consistency analysis on each first control body according to the physical phenomenon identification table, wherein the consistency analysis includes: judging whether each control body realizes a single physical phenomenon; according to the consistency analysis result, split a control body that realizes multiple physical phenomena into multiple control bodies, or merge multiple control bodies that realize the same physical phenomenon into one control body to obtain the target division result.
  • the first generation module 1404 is specifically configured to: determine the flow direction of the medium between the second control volumes; generate modeling data corresponding to the target reactor according to the flow direction of the medium, each second control volume, and physical phenomena related to each second control volume; wherein, the modeling data is a control volume diagram or a control volume table.
  • Each module in the above-mentioned reactor modeling data acquisition device can be fully or partially realized by software, hardware and a combination thereof.
  • the above-mentioned modules can be embedded in or independent of the processor in the computer device in the form of hardware, and can also be stored in the memory of the computer device in the form of software, so that the processor can invoke and execute the corresponding operations of the above-mentioned modules.
  • a computer device is provided.
  • the computer device may be a server, and its internal structure may be as shown in FIG. 15 .
  • the computer device includes a processor, memory and a network interface connected by a system bus. Wherein, the processor of the computer device is used to provide calculation and control capabilities.
  • the memory of the computer device includes a non-volatile storage medium and an internal memory.
  • the non-volatile storage medium stores an operating system, computer programs and databases.
  • the internal memory provides an environment for the operation of the operating system and computer programs in the non-volatile storage medium.
  • the database of the computer equipment is used to store reactor modeling data acquisition data.
  • the network interface of the computer device is used to communicate with an external terminal via a network connection. When the computer program is executed by a processor, a method for acquiring reactor modeling data is realized.
  • FIG. 15 is only a block diagram of a partial structure related to the solution of the present application, and does not constitute a limitation to the computer equipment to which the solution of the application is applied.
  • the specific computer equipment may include more or less components than those shown in the figure, or combine certain components, or have different component arrangements.
  • a computer device including a memory and a processor, where a computer program is stored in the memory, and the processor implements the steps in the above method embodiments when executing the computer program.
  • a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the steps in the foregoing method embodiments are implemented.
  • a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the steps in the foregoing method embodiments are implemented.
  • any reference to storage, database or other media used in the various embodiments provided in the present application may include at least one of non-volatile and volatile storage.
  • the non-relational database may include a blockchain-based distributed database, etc., but is not limited thereto.
  • the processors involved in the various embodiments provided in the present application may be general-purpose processors, central processing units, graphics processors, digital signal processors, programmable logic devices, quantum computing-based data processing logic devices, etc., and are not limited thereto.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

本申请涉及一种反应堆建模数据获取方法、装置、设备、介质和程序产品。所述方法包括:对目标反应堆所涉及到的各工作进程所包含的装置进行层级划分处理,得到各工作进程分别对应的层级划分结果;将层级划分结果中最低层级所包含的装置进行控制体划分,得到初始划分结果,初始划分结果包括多个第一控制体;对于各初始划分结果,根据物理现象识别表对初始划分结果进行修正处理,得到目标划分结果,目标划分结果包括多个第二控制体,其中,第二控制体包括结构相同且与同一物理现象相关的至少一个装置;根据各第二控制体以及各第二控制体相关的物理现象,生成与目标反应堆对应的建模数据。采用本方法能够全面识别反应堆的物理现象。

Description

反应堆建模数据获取方法、装置、设备、介质和程序产品
相关申请
本申请要求2022年01月21日申请的,申请号为2022100717682,名称为“反应堆建模数据获取方法、装置、设备、介质和程序产品”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及反应堆分析技术领域,特别是涉及一种反应堆建模数据获取方法、装置、设备、介质和程序产品。
背景技术
反应堆是核电厂根据一定物理现象实现发电的装置,通常,核电厂需要建立反应堆模型,以模拟并观察反应堆实现的各物理现象,并对反应堆的设置进行优化。因此,在反应堆模型建立前,需要确定反应堆所涉及的各物理现象,从而可根据该物理现象进行反应堆模型的建立,以确保该反应堆模型可以准确反映反应堆的关键物理现象。
传统技术中,通常根据专家经验得到PIRT(Phenomena identification and ranking table,现象识别与排序表),根据PIRT进行反应堆物理现象的识别。然而,人工经验有限,仅支持单个物理现象的识别,而无法建立单个物理现象在整个物理进程中的作用与联系,无法保证反应堆物理现象识别的全面性。
发明内容
基于此,有必要针对上述技术问题,提供一种能够全面识别反应堆物理现象的反应堆建模数据获取方法、装置、设备、介质和程序产品。
第一方面,本申请提供了一种反应堆建模数据获取方法。该方法包括:
对于待进行物理现象识别的目标反应堆所涉及到的各工作进程所包含的装置分别进行层级划分处理,得到各工作进程分别对应的层级划分结果;
对于各工作进程对应的层级划分结果,将该层级划分结果中最低层级所包含的装置进行控制体划分,得到初始划分结果,该初始划分结果包括多个第一控制体,其中,该第一控制体包括结构相同的至少一个装置;
对于各初始划分结果,根据物理现象识别表对该初始划分结果进行修正处理,得到目标划分结果,该目标划分结果包括多个第二控制体,其中,该第二控制体包括结构相同且与同一物理现象相关的至少一个装置;
根据各第二控制体以及各第二控制体相关的物理现象,生成与该目标反应堆对应的建模数据。
在其中一个实施例中,对于待进行物理现象识别的目标反应堆所涉及到的各工作进程所包含的装置分别进行层级划分处理,包括:确定该目标反应堆的时间进程,其中,该时间进程包括针对该目标反应堆的物理现象的起始时间和结束时间;在该时间进程内,确定各工作进程的目标状态类型,其中,该目标状态类型为瞬态类型或稳态类型;根据各工作进程的目标状态类型,对各工作进程所包含的装置分别进行层级划分处理。
在其中一个实施例中,根据各工作进程的目标状态类型,对各工作进程包含的多个装置分别进行层级划分处理,包括:对于该目标状态类型为瞬态类型的第一工作进程,采用进程划分工具对该第一工作进程进行阶段划分,得到多个现象发生阶段,并对各现象发生阶段包含的多个装置分别进行层级划分处理。
在其中一个实施例中,根据各工作进程的目标状态类型,对各工作进程包含的多个装置分别进行层级划分处理,包括:对于该目标状态类型为稳态类型的第二工作进程,对该第二工作进程包含的多个装置分别进行层级划分处理。
在其中一个实施例中,对于待进行物理现象识别的目标反应堆所涉及到的各工作进程所包含的装置分别进行层级划分处理,包括:根据系统、子系统、设备、组合件以及部件的层级关系,对各工作进程所包含的装置分别进行层级划分处理,其中,该层级关系为:系统层级包括的装置可划分为多个子系统层级,子系统层级包括的多个装置可划分为设备层级,设备层级包括的多个装置可划分为多个组合件层级,组合件层级包括的多个装置可划分为多个部件层级,部件层级中包括多个装置。
在其中一个实施例中,将该层级划分结果中最低层级所包含的装置进行控制体划分,包括:根据预先 设定的控制体划分表,将该层级划分结果中最低层级所包含的装置进行控制体划分,其中,该控制体划分表中包含有该目标反应堆的设计建造信息。
在其中一个实施例中,对于各初始划分结果,根据物理现象识别表对该初始划分结果进行修正处理,得到目标划分结果,包括:根据该物理现象识别表,对各第一控制体进行一致性分析,其中,该一致性分析包括:判断各控制体是否实现单一的物理现象;根据一致性分析结果,将实现多个物理现象的控制体拆分为多个控制体,或,将实现同一物理现象的多个控制体合并为一个控制体,得到该目标划分结果。
在其中一个实施例中,根据各第二控制体以及各第二控制体相关的物理现象,生成与该目标反应堆对应的建模数据,包括:确定各第二控制体之间的介质的流动方向;根据该介质的流动方向、各第二控制体以及各第二控制体相关的物理现象,生成与该目标反应堆对应的建模数据;其中,该建模数据为控制体图或控制体表。
第二方面,本申请还提供了一种反应堆建模数据获取装置。该装置包括:
第一划分模块,用于对于待进行物理现象识别的目标反应堆所涉及到的各工作进程所包含的装置分别进行层级划分处理,得到各所述工作进程分别对应的层级划分结果;
第二划分模块,用于对于各所述工作进程对应的层级划分结果,将所述层级划分结果中最低层级所包含的装置进行控制体划分,得到初始划分结果,所述初始划分结果包括多个第一控制体,其中,所述第一控制体包括结构相同的至少一个装置;
第一修正模块,用于对于各所述初始划分结果,根据物理现象识别表对所述初始划分结果进行修正处理,得到目标划分结果,所述目标划分结果包括多个第二控制体,其中,所述第二控制体包括结构相同且与同一物理现象相关的至少一个装置;
第一生成模块,用于根据各所述第二控制体以及各所述第二控制体相关的物理现象,生成与所述目标反应堆对应的建模数据。
在其中一个实施例中,该第一划分模块,具体用于:确定该目标反应堆的时间进程,其中,该时间进程包括针对该目标反应堆的物理现象的起始时间和结束时间;在该时间进程内,确定各工作进程的目标状态类型,其中,该目标状态类型为瞬态类型或稳态类型;根据各工作进程的目标状态类型,对各工作进程所包含的装置分别进行层级划分处理。
在其中一个实施例中,该第一划分模块,具体用于:对于该目标状态类型为瞬态类型的第一工作进程,采用进程划分工具对该第一工作进程进行阶段划分,得到多个现象发生阶段,并对各现象发生阶段包含的多个装置分别进行层级划分处理。
在其中一个实施例中,该第一划分模块,具体用于:对于该目标状态类型为稳态类型的第二工作进程,对该第二工作进程包含的多个装置分别进行层级划分处理。
在其中一个实施例中,该第一划分模块,具体用于:根据系统、子系统、设备、组合件以及部件的层级关系,对各工作进程所包含的装置分别进行层级划分处理,其中,该层级关系为:系统层级包括的装置可划分为多个子系统层级,子系统层级包括的多个装置可划分为设备层级,设备层级包括的多个装置可划分为多个组合件层级,组合件层级包括的多个装置可划分为多个部件层级,部件层级中包括多个装置。
在其中一个实施例中,该第二划分模块,具体用于:根据预先设定的控制体划分表,将该层级划分结果中最低层级所包含的装置进行控制体划分,其中,该控制体划分表中包含有该目标反应堆的设计建造信息。
在其中一个实施例中,该第一修正模块,具体用于:根据该物理现象识别表,对各第一控制体进行一致性分析,其中,该一致性分析包括:判断各控制体是否实现单一的物理现象;根据一致性分析结果,将实现多个物理现象的控制体拆分为多个控制体,或,将实现同一物理现象的多个控制体合并为一个控制体,得到该目标划分结果。
在其中一个实施例中,该第一生成模块,具体用于:确定各第二控制体之间的介质的流动方向;根据该介质的流动方向、各第二控制体以及各第二控制体相关的物理现象,生成与该目标反应堆对应的建模数据;其中,该建模数据为控制体图或控制体表。
第三方面,本申请还提供了一种计算机设备,包括存储器和处理器,该存储器存储有计算机程序,该处理器执行该计算机程序时实现上述第一方面任一项所述的方法的步骤。
第四方面,本申请还提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现上述第一方面中任一项所述的方法的步骤。
第五方面,本申请还提供了一种计算机程序产品,该计算机程序产品,包括计算机程序,该计算机程序被处理器执行时实现上述第一方面中任一项所述的方法的步骤。
上述反应堆建模数据获取方法、装置、设备、介质和程序产品,通过对待进行物理现象识别的目标反应堆所涉及到的各工作进程所包含的装置分别进行层级划分处理,通过层级一步步划分,以对复杂的目标反应堆包括的多个装置进行初始划分,从而可以根据各工作进程对应的层级划分结果,对层级划分结果中最低层级所包含的装置进行控制体划分而得到包括多个第一控制体的初始划分结果,实现将复杂的目标反应堆包括的多个装置划分为结构相同的多个第一控制体,建立了物理现象识别的最小分析单元,实现了目标反应堆物理现象识别的由繁化简,因此,可进一步根据物理识别现象表对该初始划分结果中的各第一控制体进行修正处理,从而得到多个第二控制体均结构相同且实现的物理现象相同;由于初始划分结果根据目标反应堆的各工作进程所包含的多个装置划分得到,因此,全面包含了目标反应堆的所有装置,通过对初始划分结果根据物理现象划分表进行修正,得到各第二控制体以及各第二控制体的物理现象,保证对目标反应堆的物理现象识别的全面性和准确性,建立每一物理现象与整个工作进程的联系,为建立目标反应堆对应的实体模型提供准确的建模数据,从而有效降低建立模型与原始反应堆之间的差距。
附图说明
为了更清楚地说明本申请实施例或传统技术中的技术方案,下面将对实施例或传统技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据公开的附图获得其他的附图。
图1为一个实施例中反应堆建模数据获取方法的应用环境图;
图2为一个实施例中层级划分处理的流程示意图;
图3为一个实施例中根据目标状态类型进行层级划分处理的流程示意图;
图4为一个实施例中层级划分示意图;
图5为一个实施例中一种修正处理的流程示意图;
图6为一个实施例中一种控制体图的总体示意图;
图7为一个实施例中部分1的示意图;
图8为一个实施例中部分2的示意图;
图9为一个实施例中部分3的示意图;
图10为一个实施例中部分4的示意图;
图11为一个实施例中部分5的示意图;
图12为一个实施例中部分6的示意图;
图13为一个实施例中一种生成控制体图的流程示意图;
图14为一个实施例中反应堆建模数据获取装置的结构框图;
图15为一个实施例中计算机设备的内部结构图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
反应堆是核电厂根据一定物理现象实现发电的装置,为获取反应堆原型特别是事故下的运行特性,通常基于一定的模化分析手段保证实验模型能够反映反应堆原型的关键物理现象,此时则要求对于反应堆原型中的物理现象进行识别,保证没有遗漏。在反应堆安全分析软件开发中同样要求相应的软件能够模拟、计算、分析反应堆原型的关键物理现象,同样涉及到反应堆原型中的物理现象识别。因此,开发一种反应堆物理现象识别方法,对反应堆原型中的物理现象进行全要素分析,可以实现对于反应堆原型中物理现象的全面识别,对于反应堆热工水力实验与反应堆安全分析软件开发等都由十分重要的意义。
相关技术中,通常根据专家经验得到PIRT(Phenomena identification and ranking table,现象识别与排序表),根据PIRT进行反应堆物理现象的识别。然而,人工经验有限,仅支持单个物理现象的识别,而无 法建立单个物理现象在整个物理进程中的作用与联系,无法保证反应堆物理现象识别的全面性。
在一个实施例中,如图1所示,提供了一种反应堆建模数据获取方法,本申请实施例以该方法应用于终端进行举例说明,可以理解的是,该方法也可以应用于服务器,还可以应用于包括终端和服务器的系统,并通过终端和服务器的交互实现。本实施例中,该方法包括以下步骤:
步骤101,对于待进行物理现象识别的目标反应堆所涉及到的各工作进程所包含的装置分别进行层级划分处理,得到各工作进程分别对应的层级划分结果。
其中,将需要建立模型的反应堆作为目标反应堆,在建立目标反应堆的模型之前,需要识别目标反应堆所进行的物理现象。目标反应堆例如可以为三环路压水堆、两环路压水堆、铅铋堆、钠堆、一体化自然循环堆等堆型。其中,目标反应堆包含多个装置,各装置例如为管道、分离器、干燥器等装置。目标反应堆可以实现不同的多个工作进程,目标反应堆的工作进程例如为小破口事故进程或大破口事故进程。
对于目标反应堆,通过所包含的多个装置实现各工作进程。对于各工作进程,确定实现该工作进程所涉及的多个装置,即,该工作进程所包含的装置。可选的,可根据各装置在该工作进程中所起的作用,对该工作进程包含的各装置进一步进行层级划分,从而得到该工作进程包含的各装置的层级划分结果。可选的,终端可获取目标反应堆的各工作进程对应的装置数据文件,根据该装置数据文件中的各装置的参数数据,确定各装置在该工作进程中的作用。
步骤102,对于各工作进程对应的层级划分结果,将该层级划分结果中最低层级所包含的装置进行控制体划分,得到初始划分结果,该初始划分结果包括多个第一控制体;其中,该第一控制体包括结构相同的至少一个装置。
其中,层级划分结果包括各装置所属的层级,各层级具有包含关系,例如,所属第一层级的装置可进一步划分为第二层级,所属第二层级的装置可进一步划分为第三层级,其中,第三层级即为最低层级。
对于最低层级的所包含的装置,根据各装置的结构特征,将结构特征相同的装置划分为一个控制体,得到多个第一控制体,即,第一控制体包含至少一个结构相同的装置。各第一控制体的划分结果即为各工作进程所包含的装置的初始划分结果。
步骤103,对于各初始划分结果,根据物理现象识别表对该初始划分结果进行修正处理,得到目标划分结果,该目标划分结果包括多个第二控制体;其中,该第二控制体包括结构相同且与同一物理现象相关的至少一个装置。
其中,物理现象识别表中包含有目标反应堆实现的各物理现象以及实现各物理现象的装置的对应关系。终端可根据该物理现象识别表,对初始划分结果进行识别修正。对于各第一控制体,将涉及同一物理现象的装置划分为同一第二控制体,得到多个第二控制体,因此,各第二控制体包括结构特征相同且与同一物理现象相关的至少一个装置。例如,对于长度相同且物理现象相同的管道可划分为一个第二控制体。各第二控制体的划分结果即为各工作进程所包含的装置的目标划分结果。
步骤104,根据各第二控制体以及各第二控制体相关的物理现象,生成与该目标反应堆对应的建模数据。
其中,对于目标划分结果,根据各第二控制体包含的装置,以及各第二控制体对应实现的物理现象,生成与目标反应堆对应的建模数据,该建模数据包含每一控制体与每一物理现象之间的对应关系。根据该建模数据,可进一步对目标反应堆进行模型建立,从而可以在建立的模型中模拟目标反应堆的可实际发生的各物理现象。
上述反应堆建模数据获取方法中,通过对待进行物理现象识别的目标反应堆所涉及到的各工作进程所包含的装置分别进行层级划分处理,通过层级一步步划分,以对复杂的目标反应堆包括的多个装置进行初始划分,从而可以根据各工作进程对应的层级划分结果,对层级划分结果中最低层级所包含的装置进行控制体划分而得到包括多个第一控制体的初始划分结果,实现将复杂的目标反应堆包括的多个装置划分为结构相同的多个第一控制体,建立了物理现象识别的最小分析单元,实现了目标反应堆物理现象识别的由繁化简,因此,可进一步根据物理识别现象表对该初始划分结果中的各第一控制体进行修正处理,从而得到多个第二控制体均结构相同且实现的物理现象相同;由于初始划分结果根据目标反应堆的各工作进程所包含的多个装置划分得到,因此,全面包含了目标反应堆的所有装置,通过对初始划分结果根据物理现象划分表进行修正,得到各第二控制体以及各第二控制体的物理现象,保证对目标反应堆的物理现象识别的全 面性和准确性,建立每一物理现象与整个工作进程的联系,为建立目标反应堆对应的实体模型提供准确的建模数据,从而有效降低建立模型与原始反应堆之间的差距。
在一个实施例中,如图2所示,其示出了本申请实施例提供的一种层级划分处理的流程示意图;对于待进行物理现象识别的目标反应堆所涉及到的各工作进程所包含的装置分别进行层级划分处理,包括:
步骤201,确定该目标反应堆的时间进程;其中,该时间进程包括针对该目标反应堆的物理现象的起始时间和结束时间。
其中,目标反应堆的各工作进程为某一时间段内发生的,因此,对于各工作进程所包含的装置的层级划分,应针对该时间段内所涉及的装置进行。其中,该时间段即为目标反应堆的时间进程,包括起始时间和结束时间,起始时间为该目标反应堆的物理现象开始发生的时间,结束时间为该目标反应堆的物理现象结束的时间。例如,可以将中小破口事故的破口发生时间作为时间进程中的起始时间,将余热排出换热器接入时的时间作为结束时间。
步骤202,在该时间进程内,确定各工作进程的目标状态类型;其中,该目标状态类型为瞬态类型或稳态类型。
其中,在该时间进程内,通过进一步确定各工作进程的目标状态类型,从而确定各工作进程实现不同物理现象所涉及的装置,并可进一步对各装置进行层级划分。
各工作进程所包含的装置的参数例如包括温度、压力、流量、功率等。目标状态类型可以为瞬态类型或稳态类型。若各参数在时间进程内,随时间的变化而变化,则,该工作进程的目标状态类型为瞬态类型。若各参数在时间进程内,不随时间变化而变化,则该工作进程的目标状态类型为稳态类型。
步骤203,根据各工作进程的目标状态类型,对各工作进程所包含的装置分别进行层级划分处理。
其中,瞬态类型的工作进程根据各参数的变化可将该工作进程划分为多个阶段,对于稳态类型的工作进程,由于各参数不随时间变化,因此,该进程无需细分。
请参考图3,其示出了本申请实施例提供的一种根据目标状态类型进行层级划分处理的流程示意图;根据各工作进程的目标状态类型,对各工作进程包含的多个装置分别进行层级划分处理,包括:
步骤301,对于该目标状态类型为瞬态类型的第一工作进程,采用进程划分工具对该第一工作进程进行阶段划分,得到多个现象发生阶段。
步骤302,对各现象发生阶段包含的多个装置分别进行层级划分处理。
其中,将目标状态类型为瞬态类型的工作进程记为第一工作进程,对于第一工作进程,根据进程划分工具,可将该第一工作进程划分为多个现象发生阶段,进而可以对各现象发生阶段所包含的装置进行层级划分。其中,进程划分工具中包含有时间进程内不同时间段对应的物理现象,根据不同时间段发生的不同物理现象,将该工作进程划分为多个现象发生阶段,例如,小破口事故进程可划分为:喷放阶段、自然循环阶段、环路水封与清除阶段、堆芯蒸发阶段、堆芯冷却剂恢复阶段;大破口事故进程可划分为:喷放阶段、再充水阶段、再淹没阶段。
终端可获取该进程划分工具,进而对各工作进程进行阶段划,其中,该进程划分工具可基于经过专家经验判断后的瞬态进程表进一步形成进程划分工具文件得到,请参考表1,其示出了本申请实施例提供的一种瞬态进程表,每一阶段划分经过专家确认且可根据专家经验的评论进行调整。根据调整后的瞬态进程表,可明确瞬态类型的工作进程如何划分,进而可以制作进程划分工具,从而对第一工作进程进行阶段划分,得到多个现象发生阶段。
Figure PCTCN2022118957-appb-000001
Figure PCTCN2022118957-appb-000002
表(1)
步骤303,对于该目标状态类型为稳态类型的第二工作进程,对该第二工作进程包含的多个装置分别进行层级划分处理。
其中,将目标状态类型为稳态类型的工作进程记为第二工作进程,对于第二工作进程,由于各参数不随时间变化,因此,该进程无需细分为多个现象发生阶段,因此,可直接对该工作进程所包含的装置进行层级划分。
本申请实施例中,根据各工作进程的目标状态类型对不同的工作进程进行不同的层级划分步骤,保证了对于参数随时间变化的瞬态类型的第一工作进程可根据现象发生阶段进行层级划分,实现有序的对各装置进行划分,为后续划分第一控制体提供基础,且提升第一控制体划分的效率,从而保证生成目标反应堆的建模数据的准确性、全面性以及高效性。
在一个实施例中,对于待进行物理现象识别的目标反应堆所涉及到的各工作进程所包含的装置分别进行层级划分处理,包括:根据系统、子系统、设备、组合件以及部件的层级关系,对各工作进程所包含的装置分别进行层级划分处理;其中,该层级关系为:系统层级包括的装置可划分为多个子系统层级,子系统层级包括的多个装置可划分为设备层级,设备层级包括的多个装置可划分为多个组合件层级,组合件层级包括的多个装置可划分为多个部件层级,部件层级中包括多个装置。
其中,层级关系从高到低为系统、子系统、设备、组合件、部件等不同层级,根据该层级关系,将各工作进程所包含的装置进行层级划分处理,具体地,对于第一工作进程,可对各现象发生阶段所包含的装置进行层级划分处理,例如,对于喷放现象发生阶段所包含的设备,总体划分为喷放系统,喷放系统所包含的各装置进一步可以划分为一回路系统、二回路系统、安全注入系统等子系统,对于一回路系统子系统可以分为反应堆压力容器及内构件、蒸汽发生器、主泵等设备,对于蒸汽发生器设备可以划分为管束组件、汽液分离器、下降段等组合件,对于汽液分离器组合件可以分为一级汽液分离器、重力分离器、干燥器等部件。对于第二工作进程,可直接将各装置进行层级划分处理。可选的,对于各工作进程的装置进行层级划分处理可根据实际需要进行划分,并非需每一层级都予以体现,例如,某一现象发生阶段的装置划分的最低层级可以为设备,而并非部件。根据层级划分结果,对最低层级的歌装置可进一步进行控制体划分。如图4所示,其示出了本申请实施例提供的一种层级划分示意图。
本申请实施例中,通过对各工作进程所包含的装置进行层级划分处理,实现目标反应堆的装置分解,可以保证目标反应堆中的所有组成装置均被全面覆盖分析。对于各装置按照系统、子系统、设备、组合件、部件等按照层级进行自上而下的划分,保证后续反应堆物理现象识别的全面性。
在一个实施例中,将该层级划分结果中最低层级所包含的装置进行控制体划分,包括:根据预先设定的控制体划分表,将该层级划分结果中最低层级所包含的装置进行控制体划分,其中,该控制体划分表中包含有该目标反应堆的设计建造信息。
其中,控制体划分表中包含有目标反应堆建造与涉及时的各装置的涉及参数和建造参数,即各装置的 设计建造信息,终端可根据预先设定的该控制体划分表,确定各装置的结构。因此,可根据该控制体划分表,对最低层级中所包含的各装置进行控制体划分,将结构相同的装置划分为同一制体,从而得到多个第一控制体。通过划分多个第一控制体,得到目标反应堆物理现象识别的最小分析单元,将复杂物理现象识别转化为单个分析单元的现象识别,实现了反应堆原型物理现象识别的由繁化简,保证物理现象识别的全面性和高效性。
在一个实施例中,如图5所示,其示出了本申请实施例提供的一种修正处理的流程示意图;对于各初始划分结果,根据物理现象识别表对该初始划分结果进行修正处理,得到目标划分结果,包括:
步骤501,根据该物理现象识别表,对各第一控制体进行一致性分析;其中,该一致性分析包括:判断各控制体是否实现单一的物理现象。
步骤502,根据一致性分析结果,将实现多个物理现象的控制体拆分为多个控制体,或,将实现同一物理现象的多个控制体合并为一个控制体,得到该目标划分结果。
其中,根据物理现象识别表对初始划分结果进行修正处理主要包括对初始化分结果中的各第一控制体进行一致性分析,具体包括,判断各第一控制体中的各装置是否与同一物理现象的实现相关。
对于各第一控制体,若一致性分析结果为判断第一控制体中包含的装置实现多个物理现象,则根据所实现的物理现象,将实现同一物理现象的装置划分为同一第二控制体,因此,该第一控制体可划分为与所实现的物理现象数量相同的多个第二控制体。对于各第一控制体,若一致性分析结果为判断有多个第一控制体所包含的装置均实现同一物理现象,则将该多个第一控制体合并为同一第二控制体。经过修正处理,得到多个第二控制体,其中,各第二控制体所包含的各装置实现同一物理现象。通过对各第一控制体进行一致性分析以及修正处理,该修正范围覆盖目标反应堆涉及到的所有装置,保证了目标反应堆物理现象识别范围的准确性;由于覆盖了全面的反应堆的物理现象,保证了物理现象识别的广度与深度。
在一个实施例中,根据各第二控制体以及各第二控制体相关的物理现象,生成与该目标反应堆对应的建模数据,包括:确定各第二控制体之间的介质的流动方向,并根据该介质的流动方向、各第二控制体以及各第二控制体相关的物理现象,生成与该目标反应堆对应的建模数据;其中,该建模数据为控制体图或控制体表。
其中,可选的,终端可获取介质流动数据,根据该介质流动数据可确定各第二控制体之间介质的流动方向,因此,可根据各介质的流动方向、各第二控制体包括的装置以及各第二控制体实现的物理现象,生成建模数据,其中,该建模数据可以为控制体图或控制体表,该控制体图或该控制体表中包含各第二控制体之间的连接关系,以及各第二控制体对应实现的物理现象,以及各第二控制体之间介质的流动方向,可选的,该控制体图中可采用单箭头或双箭头标识第二控制体之间介质的流动方向,可针对第二控制体内每种介质的流动方向,也可针对第二控制体之间的介质的流动方向。如图6所示,其示出了本申请实施例提供的一种控制体图的总体示意图,包括部分1、部分2、部分3、部分4、部分5以及部分6之间的联系。如图7所示,其示出了本申请实施例提供的部分1的示意图;如图8所示,其示出了本申请实施例提供的部分2的示意图;如图9所示,其示出了本申请实施例提供的部分3的示意图;如图10所示,其示出了本申请实施例提供的部分4的示意图;如图11所示,其示出了本申请实施例提供的部分5的示意图;如图12所示,其示出了本申请实施例提供的部分6的示意图。
在一个实施例中,如图13所示,其示出了本申请实施例提供的一种生成控制体图的流程示意图;包括:
步骤1301,确定目标反应堆的时间进程。
其中,时间进程包括针对目标反应堆的物理现象的起始时间和结束时间。
步骤1302,在时间进程内,确定目标反应堆的各工作进程的目标状态类型。
其中,目标状态类型为瞬态类型或稳态类型。
步骤1303,对于目标状态类型为瞬态类型的第一工作进程,采用进程划分工具对第一工作进程进行阶段划分,得到多个现象发生阶段,并对各现象发生阶段包含的多个装置分别进行层级划分处理。
步骤1304,对于目标状态类型为稳态类型的第二工作进程,对第二工作进程包含的多个装置分别进行层级划分处理。
其中,层级划分处理包括:根据系统、子系统、设备、组合件以及部件的层级关系,对各工作进程所 包含的装置分别进行层级划分处理,其中,层级关系为:系统层级包括的装置可划分为多个子系统层级,子系统层级包括的多个装置可划分为设备层级,设备层级包括的多个装置可划分为多个组合件层级,组合件层级包括的多个装置可划分为多个部件层级,部件层级中包括多个装置。
步骤1305,对于各工作进程对应的层级划分结果,将层级划分结果中最低层级所包含的装置进行控制体划分,得到初始划分结果。
其中,初始划分结果包括多个第一控制体,其中,第一控制体包括结构相同的至少一个装置。
步骤1306,对于各初始划分结果,根据物理现象识别表对初始划分结果进行修正处理,得到目标划分结果。
其中,目标划分结果包括多个第二控制体,其中,第二控制体包括结构相同且与同一物理现象相关的至少一个装置;
步骤1307,根据目标划分结果,生成与目标反应堆对应的控制体图。
其中,通过确定各第二控制体之间的介质的流动方向,进而根据介质的流动方向、各第二控制体以及各第二控制体相关的物理现象,生成与目标反应堆对应的控制体图。
应该理解的是,虽然如上所述的各实施例所涉及的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,如上所述的各实施例所涉及的流程图中的至少一部分步骤可以包括多个步骤或者多个阶段,这些步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤中的步骤或者阶段的至少一部分轮流或者交替地执行。
基于同样的发明构思,本申请实施例还提供了一种用于实现上述所涉及的反应堆建模数据获取方法的反应堆建模数据获取装置。该装置所提供的解决问题的实现方案与上述方法中所记载的实现方案相似,故下面所提供的一个或多个反应堆建模数据获取装置实施例中的具体限定可以参见上文中对于反应堆建模数据获取方法的限定,在此不再赘述。
在一个实施例中,如图14所示,提供了一种反应堆建模数据获取装置,包括:第一划分模块1401、第二划分模块1402、第一修正模块1403和第一生成模块1404,其中:
第一划分模块1401,用于对于待进行物理现象识别的目标反应堆所涉及到的各工作进程所包含的装置分别进行层级划分处理,得到各所述工作进程分别对应的层级划分结果;
第二划分模块1402,用于对于各所述工作进程对应的层级划分结果,将所述层级划分结果中最低层级所包含的装置进行控制体划分,得到初始划分结果,所述初始划分结果包括多个第一控制体,其中,所述第一控制体包括结构相同的至少一个装置;
第一修正模块1403,用于对于各所述初始划分结果,根据物理现象识别表对所述初始划分结果进行修正处理,得到目标划分结果,所述目标划分结果包括多个第二控制体,其中,所述第二控制体包括结构相同且与同一物理现象相关的至少一个装置;
第一生成模块1404,用于根据各所述第二控制体以及各所述第二控制体相关的物理现象,生成与所述目标反应堆对应的建模数据。
在一个实施例中,该第一划分模块1401,具体用于:确定该目标反应堆的时间进程,其中,该时间进程包括针对该目标反应堆的物理现象的起始时间和结束时间;在该时间进程内,确定各工作进程的目标状态类型,其中,该目标状态类型为瞬态类型或稳态类型;根据各工作进程的目标状态类型,对各工作进程所包含的装置分别进行层级划分处理。
在一个实施例中,该第一划分模块1401,具体用于:对于该目标状态类型为瞬态类型的第一工作进程,采用进程划分工具对该第一工作进程进行阶段划分,得到多个现象发生阶段,并对各现象发生阶段包含的多个装置分别进行层级划分处理。
在一个实施例中,该第一划分模块1401,具体用于:对于该目标状态类型为稳态类型的第二工作进程,对该第二工作进程包含的多个装置分别进行层级划分处理。
在一个实施例中,该第一划分模块1401,具体用于:根据系统、子系统、设备、组合件以及部件的层级关系,对各工作进程所包含的装置分别进行层级划分处理,其中,该层级关系为:系统层级包括的装置 可划分为多个子系统层级,子系统层级包括的多个装置可划分为设备层级,设备层级包括的多个装置可划分为多个组合件层级,组合件层级包括的多个装置可划分为多个部件层级,部件层级中包括多个装置。
在一个实施例中,该第二划分模块1402,具体用于:根据预先设定的控制体划分表,将该层级划分结果中最低层级所包含的装置进行控制体划分,其中,该控制体划分表中包含有该目标反应堆的设计建造信息。
在一个实施例中,该第一修正模块1403,具体用于:根据该物理现象识别表,对各第一控制体进行一致性分析,其中,该一致性分析包括:判断各控制体是否实现单一的物理现象;根据一致性分析结果,将实现多个物理现象的控制体拆分为多个控制体,或,将实现同一物理现象的多个控制体合并为一个控制体,得到该目标划分结果。
在一个实施例中,该第一生成模块1404,具体用于:确定各第二控制体之间的介质的流动方向;根据该介质的流动方向、各第二控制体以及各第二控制体相关的物理现象,生成与该目标反应堆对应的建模数据;其中,该建模数据为控制体图或控制体表。
上述反应堆建模数据获取装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。
在一个实施例中,提供了一种计算机设备,该计算机设备可以是服务器,其内部结构图可以如图15所示。该计算机设备包括通过系统总线连接的处理器、存储器和网络接口。其中,该计算机设备的处理器用于提供计算和控制能力。该计算机设备的存储器包括非易失性存储介质和内存储器。该非易失性存储介质存储有操作系统、计算机程序和数据库。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该计算机设备的数据库用于存储反应堆建模数据获取数据。该计算机设备的网络接口用于与外部的终端通过网络连接通信。该计算机程序被处理器执行时以实现一种反应堆建模数据获取方法。
本领域技术人员可以理解,图15中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的计算机设备的限定,具体的计算机设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
在一个实施例中,还提供了一种计算机设备,包括存储器和处理器,存储器中存储有计算机程序,该处理器执行计算机程序时实现上述各方法实施例中的步骤。
在一个实施例中,提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现上述各方法实施例中的步骤。
在一个实施例中,提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现上述各方法实施例中的步骤。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、数据库或其它介质的任何引用,均可包括非易失性和易失性存储器中的至少一种。非关系型数据库可包括基于区块链的分布式数据库等,不限于此。本申请所提供的各实施例中所涉及的处理器可为通用处理器、中央处理器、图形处理器、数字信号处理器、可编程逻辑器、基于量子计算的数据处理逻辑器等,不限于此。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种反应堆建模数据获取方法,其特征在于,所述方法包括:
    对于待进行物理现象识别的目标反应堆所涉及到的各工作进程所包含的装置分别进行层级划分处理,得到各所述工作进程分别对应的层级划分结果;
    对于各所述工作进程对应的层级划分结果,将所述层级划分结果中最低层级所包含的装置进行控制体划分,得到初始划分结果,所述初始划分结果包括多个第一控制体,其中,所述第一控制体包括结构相同的至少一个装置;
    对于各所述初始划分结果,根据物理现象识别表对所述初始划分结果进行修正处理,得到目标划分结果,所述目标划分结果包括多个第二控制体,其中,所述第二控制体包括结构相同且与同一物理现象相关的至少一个装置;
    根据各所述第二控制体以及各所述第二控制体相关的物理现象,生成与所述目标反应堆对应的建模数据。
  2. 根据权利要求1所述的方法,其特征在于,所述对于待进行物理现象识别的目标反应堆所涉及到的各工作进程所包含的装置分别进行层级划分处理,包括:
    确定所述目标反应堆的时间进程,其中,所述时间进程包括针对所述目标反应堆的物理现象的起始时间和结束时间;
    在所述时间进程内,确定各所述工作进程的目标状态类型,其中,所述目标状态类型为瞬态类型或稳态类型;
    根据各所述工作进程的目标状态类型,对各工作进程所包含的装置分别进行层级划分处理。
  3. 根据权利要求2所述的方法,其特征在于,所述根据各所述工作进程的目标状态类型,对各所述工作进程包含的多个装置分别进行层级划分处理,包括:
    对于所述目标状态类型为瞬态类型的第一工作进程,采用进程划分工具对所述第一工作进程进行阶段划分,得到多个现象发生阶段,并对各所述现象发生阶段包含的多个装置分别进行层级划分处理。
  4. 根据权利要求2所述的方法,其特征在于,所述根据各所述工作进程的目标状态类型,对各所述工作进程包含的多个装置分别进行层级划分处理,包括:
    对于所述目标状态类型为稳态类型的第二工作进程,对所述第二工作进程包含的多个装置分别进行层级划分处理。
  5. 根据权利要求1所述的方法,其特征在于,所述对于待进行物理现象识别的目标反应堆所涉及到的各工作进程所包含的装置分别进行层级划分处理,包括:
    根据系统、子系统、设备、组合件以及部件的层级关系,对各所述工作进程所包含的装置分别进行层级划分处理,其中,所述层级关系为:系统层级包括的装置可划分为多个子系统层级,子系统层级包括的多个装置可划分为设备层级,设备层级包括的多个装置可划分为多个组合件层级,组合件层级包括的多个装置可划分为多个部件层级,部件层级中包括多个装置。
  6. 根据权利要求1所述的方法,其特征在于,所述将所述层级划分结果中最低层级所包含的装置进行控制体划分,包括:
    根据预先设定的控制体划分表,将所述层级划分结果中最低层级所包含的装置进行控制体划分,其中,所述控制体划分表中包含有所述目标反应堆的设计建造信息。
  7. 根据权利要求1所述的方法,其特征在于,所述对于各所述初始划分结果,根据物理现象识别表对所述初始划分结果进行修正处理,得到目标划分结果,包括:
    根据所述物理现象识别表,对各所述第一控制体进行一致性分析,其中,所述一致性分析包括:判断各所述控制体是否实现单一的物理现象;
    根据一致性分析结果,将实现多个物理现象的控制体拆分为多个控制体,或,将实现同一物理现象的多个控制体合并为一个控制体,得到所述目标划分结果。
  8. 根据权利要求1所述的方法,其特征在于,所述根据各所述第二控制体以及各所述第二控制体相 关的物理现象,生成与所述目标反应堆对应的建模数据,包括:
    确定各所述第二控制体之间的介质的流动方向;
    根据所述介质的流动方向、各所述第二控制体以及各所述第二控制体相关的物理现象,生成与所述目标反应堆对应的建模数据;
    其中,所述建模数据为控制体图或控制体表。
  9. 根据权利要求3所述的方法,其特征在于,所述进程划分工具包含所述时间进程内多个不同时间段分别对应的物理现象;所述采用进程划分工具对所述第一工作进程进行阶段划分,得到多个现象发生阶段,包括:
    根据所述第一工作进程内多个不同时间段分别对应的物理现象,将所述第一工作进程划分为多个所述现象发生阶段。
  10. 根据权利要求7所述的方法,其特征在于,根据一致性分析结果,将实现多个物理现象的控制体拆分为多个控制体,包括:
    在所述一致性分析结果为判断所述第一控制体中包含的装置实现多个物理现象的情况下,则将所述第一控制体中实现同一物理现象的装置划分为同一个第二控制体;所述第一控制体划分得到的多个第二控制体的数量等于所述第一控制体所实现的物理现象的数量。
  11. 根据权利要求7所述的方法,其特征在于,根据一致性分析结果,将实现同一物理现象的多个控制体合并为一个控制体,包括:
    在所述一致性分析结果为判断多个所述第一控制体所包含的装置实现同一个物理现象的情况下,则将多个第一控制体合并为同一个第二控制体。
  12. 根据权利要求1所述的方法,其特征在于,所述物理现象识别表中包含有所述目标反应堆实现的多个物理现象与实现各物理现象的装置之间的对应关系。
  13. 根据权利要求8所述的方法,其特征在于,所述控制体图或所述控制体表中包含各所述第二控制体之间的连接关系、各所述第二控制体对应实现的物理现象以及各所述第二控制体之间介质的流动方向。
  14. 一种反应堆建模数据获取装置,其特征在于,所述装置包括:
    第一划分模块,用于对于待进行物理现象识别的目标反应堆所涉及到的各工作进程所包含的装置分别进行层级划分处理,得到各所述工作进程分别对应的层级划分结果;
    第二划分模块,用于对于各所述工作进程对应的层级划分结果,将所述层级划分结果中最低层级所包含的装置进行控制体划分,得到初始划分结果,所述初始划分结果包括多个第一控制体,其中,所述第一控制体包括结构相同的至少一个装置;
    第一修正模块,用于对于各所述初始划分结果,根据物理现象识别表对所述初始划分结果进行修正处理,得到目标划分结果,所述目标划分结果包括多个第二控制体,其中,所述第二控制体包括结构相同且与同一物理现象相关的至少一个装置;
    第一生成模块,用于根据各所述第二控制体以及各所述第二控制体相关的物理现象,生成与所述目标反应堆对应的建模数据。
  15. 根据权利要求14所述的装置,其特征在于,所述第一划分模块,具体用于:
    确定所述目标反应堆的时间进程,其中,所述时间进程包括针对所述目标反应堆的物理现象的起始时间和结束时间;
    在所述时间进程内,确定各所述工作进程的目标状态类型,其中,所述目标状态类型为瞬态类型或稳态类型;
    根据各所述工作进程的目标状态类型,对各工作进程所包含的装置分别进行层级划分处理。
  16. 根据权利要求15所述的装置,其特征在于,所述第一划分模块,具体用于:
    对于所述目标状态类型为瞬态类型的第一工作进程,采用进程划分工具对所述第一工作进程进行阶段划分,得到多个现象发生阶段,并对各所述现象发生阶段包含的多个装置分别进行层级划分处理。
  17. 根据权利要求15所述的装置,其特征在于,所述第一划分模块,具体用于:
    对于所述目标状态类型为稳态类型的第二工作进程,对所述第二工作进程包含的多个装置分别进行层 级划分处理。
  18. 一种计算机设备,包括存储器和处理器,所述存储器存储有计算机程序,其特征在于,所述处理器执行所述计算机程序时实现权利要求1至13中任一项所述的方法的步骤。
  19. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求1至13中任一项所述的方法的步骤。
  20. 一种计算机程序产品,包括计算机程序,其特征在于,该计算机程序被处理器执行时实现权利要求1至13中任一项所述的方法的步骤。
PCT/CN2022/118957 2022-01-21 2022-09-15 反应堆建模数据获取方法、装置、设备、介质和程序产品 WO2023138077A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210071768.2 2022-01-21
CN202210071768.2A CN114444296A (zh) 2022-01-21 2022-01-21 反应堆建模数据获取方法、装置、设备、介质和程序产品

Publications (1)

Publication Number Publication Date
WO2023138077A1 true WO2023138077A1 (zh) 2023-07-27

Family

ID=81367480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/118957 WO2023138077A1 (zh) 2022-01-21 2022-09-15 反应堆建模数据获取方法、装置、设备、介质和程序产品

Country Status (2)

Country Link
CN (1) CN114444296A (zh)
WO (1) WO2023138077A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114444296A (zh) * 2022-01-21 2022-05-06 中广核研究院有限公司 反应堆建模数据获取方法、装置、设备、介质和程序产品

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207991832U (zh) * 2017-11-10 2018-10-19 国核华清(北京)核电技术研发中心有限公司 压水堆核电站非能动堆芯冷却系统整体试验台架
CN109583104A (zh) * 2018-12-04 2019-04-05 中国核动力研究设计院 一种基于modelica规范的核反应堆热工水力仿真架构方法
CN109765067A (zh) * 2017-11-10 2019-05-17 国核华清(北京)核电技术研发中心有限公司 大型先进压水堆核电站非能动堆芯冷却系统整体性能试验平台
CN114444296A (zh) * 2022-01-21 2022-05-06 中广核研究院有限公司 反应堆建模数据获取方法、装置、设备、介质和程序产品

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207991832U (zh) * 2017-11-10 2018-10-19 国核华清(北京)核电技术研发中心有限公司 压水堆核电站非能动堆芯冷却系统整体试验台架
CN109765067A (zh) * 2017-11-10 2019-05-17 国核华清(北京)核电技术研发中心有限公司 大型先进压水堆核电站非能动堆芯冷却系统整体性能试验平台
CN109583104A (zh) * 2018-12-04 2019-04-05 中国核动力研究设计院 一种基于modelica规范的核反应堆热工水力仿真架构方法
CN114444296A (zh) * 2022-01-21 2022-05-06 中广核研究院有限公司 反应堆建模数据获取方法、装置、设备、介质和程序产品

Also Published As

Publication number Publication date
CN114444296A (zh) 2022-05-06

Similar Documents

Publication Publication Date Title
US8259104B2 (en) Domain decomposition by the advancing-partition method for parallel unstructured grid generation
Brujic et al. CAD based shape optimization for gas turbine component design
US9418476B2 (en) Mesh quality improvement in computer aided engineering
WO2023138077A1 (zh) 反应堆建模数据获取方法、装置、设备、介质和程序产品
CN112231961A (zh) 大规模有限元网格数据存储索引方法
CN114372308A (zh) 一种基于ifc的bim模型轻量化方法
Chen et al. Towards high-accuracy deep learning inference of compressible turbulent flows over aerofoils
Wang et al. A parallel approach for the generation of unstructured meshes with billions of elements on distributed-memory supercomputers
Marinić-Kragić et al. Superimposed RBF and B-spline parametric surface for reverse engineering applications
Sun et al. A variational nodal formulation for multi-dimensional unstructured neutron diffusion problems
Miao et al. Intelligent mesh refinement based on U-NET for high-fidelity CFD simulation in numerical reactor
Saini High-Fidelity Interface Capturing Simulations of the Post-LOCA Dispersed Flow Film Boiling Regime in a Pressurized Water Reactor Sub-Channel
Saxena An adaptive material mask overlay method: Modifications and investigations on binary, well connected robust compliant continua
Jain et al. PostBL: Post-mesh boundary layer mesh generation tool
CN105354298A (zh) 基于Hadoop的大规模社交网络分析方法及其分析平台
Nambiar et al. Multidisciplinary Automation in Design of Turbine Vane Cooling Channels
Wang et al. Stream surface-supported fundamental sheets insertion toward high-quality hex meshing
Mansurova et al. Distributed parallel algorithm for numerical solving of 3D problem of fluid dynamics in anisotropic elastic porous medium using MapReduce and MPI technologies
Lu et al. Visualization of reactor core based on triangular mesh method
Ding et al. Automated workflow for unstructured grid reservoir simulation
Pirzadeh et al. Domain decomposition by the advancing-partition method for parallel unstructured grid generation
Böhm et al. On the development of strategies for an efficient semi-automated hex-meshing process of complex jet engine component assemblies
Xiao et al. Hierarchical visual analysis and steering framework for astrophysical simulations
CN118094963A (zh) 基于抽水蓄能基建工程物模型的控制方法和装置
CN117892467A (zh) 一种带肋条棒束通道结构化网格构建方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22921505

Country of ref document: EP

Kind code of ref document: A1