WO2023138034A1 - 一种天线组件与通信系统 - Google Patents
一种天线组件与通信系统 Download PDFInfo
- Publication number
- WO2023138034A1 WO2023138034A1 PCT/CN2022/110650 CN2022110650W WO2023138034A1 WO 2023138034 A1 WO2023138034 A1 WO 2023138034A1 CN 2022110650 W CN2022110650 W CN 2022110650W WO 2023138034 A1 WO2023138034 A1 WO 2023138034A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- filter
- module
- antenna
- antenna assembly
- order
- Prior art date
Links
- 238000004891 communication Methods 0.000 title claims abstract description 30
- 239000003990 capacitor Substances 0.000 claims description 17
- 230000008878 coupling Effects 0.000 claims description 14
- 238000010168 coupling process Methods 0.000 claims description 14
- 238000005859 coupling reaction Methods 0.000 claims description 14
- 230000001939 inductive effect Effects 0.000 claims description 12
- 239000000758 substrate Substances 0.000 claims description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 6
- 229910052802 copper Inorganic materials 0.000 claims description 6
- 239000010949 copper Substances 0.000 claims description 6
- 238000000034 method Methods 0.000 claims description 6
- 238000003780 insertion Methods 0.000 abstract description 10
- 230000037431 insertion Effects 0.000 abstract description 10
- 238000001914 filtration Methods 0.000 description 13
- 230000009286 beneficial effect Effects 0.000 description 5
- 230000003071 parasitic effect Effects 0.000 description 5
- 230000001808 coupling effect Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q23/00—Antennas with active circuits or circuit elements integrated within them or attached to them
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q5/00—Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
- H01Q5/30—Arrangements for providing operation on different wavebands
- H01Q5/307—Individual or coupled radiating elements, each element being fed in an unspecified way
- H01Q5/314—Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
- H01Q5/335—Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors at the feed, e.g. for impedance matching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/50—Structural association of antennas with earthing switches, lead-in devices or lightning protectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/36—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
- H01Q1/362—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith for broadside radiating helical antennas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q15/00—Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
- H01Q15/0006—Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
Definitions
- the present application relates to the technical field of antennas, in particular, to an antenna component and a communication system.
- the filter chip and the antenna chip are two key devices for receiving/transmitting signals, and are usually designed independently of each other. In order to avoid impedance mismatch between the two when cascaded, a matching circuit needs to be added between the filter and the antenna.
- adding a matching circuit will increase the size and insertion loss of the entire system.
- the purpose of the present application is to provide an antenna assembly and a communication system to solve the problems of relatively large size and insertion loss of the communication system in the related art.
- An embodiment of the present application provides an antenna assembly, the antenna assembly includes a filter module and an antenna module, the antenna module is connected to the filter module, and the antenna module is integrated with the filter module; wherein,
- the output impedance of the filter module matches the input impedance of the antenna module.
- the filter module may include a multi-order LC filter structure, and the multi-order LC filter structures are connected in sequence, and the antenna module includes a 3D spiral inductor, and the 3D spiral inductor is connected to the LC filter structure; wherein,
- the 3D spiral inductor also forms an LC filter structure.
- the antenna assembly may further include a connecting post, the filter module includes a substrate, the 3D spiral inductor is disposed on the filter module, and the 3D spiral inductor is connected to the filter module through the connecting post; wherein,
- the distance between the 3D spiral inductor and the substrate is greater than 200 ⁇ m.
- the connecting column may be a copper column, wherein the operating frequency of the antenna module is fine-tuned by adjusting the height of the copper column.
- a support column may be provided between the 3D spiral inductor and the filter module.
- the 3D spiral inductor may be arranged in a broken line.
- the antenna assembly may further include an LC network, the LC network is connected between the antenna module and the filter module, and the filter module and the antenna module implement impedance matching through the LC network.
- the LC network may include a T-type network, a Pi-type network and an L-type network.
- the LC network may include an inductor and a capacitor, and by adjusting structural parameters of the capacitor and the inductor, the output impedance of the filter module matches the input impedance of the antenna module.
- the capacitance of the capacitor can be in pF level, the distance between the plates can be 10-30um, and the thickness of the plates can be 10um; the inductance can be in nH level, the width of the inductor can be 5-20um, and the thickness of the inductor can be 10um.
- the capacitance of the LC network may adopt a planar capacitance or a multilayer capacitance structure.
- the filter module may include a multi-order filtering structure, the multi-order filtering structures are connected in sequence, and the last-order filtering structure is connected to the antenna module; wherein,
- the output impedance of the last-order filtering structure may match the input impedance of the antenna module.
- the filter module may include a multi-order LC filter structure, and the capacitive reactance and/or inductive reactance of the last-order LC filter structure can be adjusted to match the output impedance of the last-order LC filter structure and the input impedance of the antenna module.
- the output impedance of the last-order LC filter structure and the input impedance of the antenna module can be matched by the following adjustment method: by separately adjusting the capacitive reactance value or the inductive reactance value of the last-order LC filter structure, or simultaneously adjusting the capacitive reactance value and the inductive reactance value of the last-order LC filter structure, wherein, when adjusting the capacitive reactance value, adjust the pole plate spacing and plate thickness of the capacitor; when adjusting the inductance value, adjust the width, thickness, helix radius, helix height, helix angle, and number of turns of the inductance.
- the antenna module may include a direct feeding structure or an electromagnetic coupling feeding structure, the position and size of the direct feeding structure or the electromagnetic coupling feeding structure are adjustable to match the impedance between the filter module and the antenna module.
- the antenna module may include a direct feeding structure or an electromagnetic coupling feeding structure, the position and size of the direct feeding structure or the electromagnetic coupling feeding structure are adjustable; the filter module includes a multi-order LC filtering structure, and the capacitive reactance value and/or inductive reactance value of the last-order LC filtering structure is also adjustable to match the impedance between the filter module and the antenna module.
- An embodiment of the present application also provides a communication system, and the communication system may include the above-mentioned antenna assembly.
- An embodiment of the present application provides an antenna assembly and a communication system, the antenna assembly includes a filter module and an antenna module, the antenna module is connected to the filter module, and the antenna module and the filter module are integrated; wherein the output impedance of the filter module matches the input impedance of the antenna module.
- the present application omits the impedance matching circuit, which is beneficial to the miniaturization of the communication system and reduces the insertion loss of the system.
- the antenna module is integrated with the filter module, further miniaturization has been achieved.
- the output impedance of the filter module matches the input impedance of the antenna module, which meets the requirement of impedance matching.
- FIG. 1 is a block diagram of a communication system in the related art.
- FIG. 2 is a schematic block diagram of an antenna assembly provided by an embodiment of the present application.
- FIG. 3 is a schematic structural diagram of an antenna assembly provided by an embodiment of the present application.
- 100-antenna component 110-filter module; 120-antenna module; 111-substrate; 140-connecting post.
- a matching circuit needs to be added between the filter and the antenna, and adding the matching circuit will increase the size and insertion loss of the entire system.
- the present application provides an antenna component, which realizes system miniaturization and reduces insertion loss by eliminating a matching circuit.
- the antenna assembly 100 may include a filter module 110 and an antenna module 120, the antenna module 120 is connected to the filter module 110, and the antenna module 120 and the filter module 110 are integrated; wherein, the output impedance of the filter module 110 matches the input impedance of the antenna module 120.
- the present application omits the impedance matching circuit, which is beneficial to the miniaturization of the communication system and reduces the insertion loss of the system.
- the antenna module 120 is integrated with the filter module 110, further miniaturization is achieved.
- the output impedance of the filter module 110 is matched with the input impedance of the antenna module 120, which meets the requirement of impedance matching.
- the filter and the antenna are individually designed to perform impedance matching with a commonly used reference impedance (50ohm or 75ohm).
- a commonly used reference impedance 50ohm or 75ohm.
- both structures will generate parasitic parameters, and these parasitic parameters will affect the impedance matching between the chips.
- the distance between the two is relatively close when they are cascaded, which will produce a coupling effect and reduce product performance.
- the impedance matching design between the two can be adjusted to eliminate the interference of parasitic parameters between the two and reduce the influence of the coupling effect.
- the matching mentioned in this application refers to the matching between the output impedance of the filter and the input impedance of the antenna. Impedance matching structures can be implemented in many different forms, as illustrated below:
- the antenna assembly may further include an LC network, and the LC network is connected between the antenna module 120 and the filter module 110, and the filter module 110 and the antenna module 120 implement impedance matching through the LC network.
- the LC network includes components such as inductors and capacitors.
- the output impedance of the filter module 110 is matched with the input impedance of the antenna module 120.
- the capacitance value of the capacitor can be in pF level
- the distance between the pole plates can be 10-30um
- the thickness of the pole plates can be 10um.
- the inductance value can be nH level
- the inductance width can be 5-20um
- the inductance thickness can be 10um.
- the LC network can include a T-type network, a Pi-type network, and an L-type network.
- its specific structure is not limited.
- series capacitors + parallel inductors are used, and the series structure does not require a separate ground port.
- the parallel structure requires the design of a separate ground port.
- the capacitance in the LC network may adopt a planar capacitance or a multilayer capacitance structure, which is not limited here.
- the impedance matching between the filter module 110 and the antenna module 120 can also be realized without adding an LC network.
- the impedance matching can be realized by adjusting related parameters of the filter module 110 and/or the antenna module 120 .
- impedance matching may be realized by adjusting related parameters of the filter module 110.
- the filter module 110 includes a multi-order filter structure, and the multi-order filter structures are connected in sequence, and the last-order filter structure is connected to the antenna module 120 , wherein the output impedance of the last-order filter structure matches the input impedance of the antenna module 120 .
- the filter module 110 includes a multi-stage filter structure, and the application does not limit the specific filter structure, for example, the multi-stage filter structure may be an LC filter structure, or other forms of filters such as a cavity.
- the present application takes the filter module 110 including a multi-order LC filter structure as an example for illustration, and the capacitive reactance and/or inductive reactance value of the last-order LC filter structure can be adjusted to match the output impedance of the last-order LC filter structure and the input impedance of the antenna module 120.
- the filter module 110 includes a 4-order LC filter structure
- the first-order LC filter structure is connected to the second-order LC filter structure
- the second-order LC filter structure is connected to the third-order LC filter structure
- the third-order LC filter structure is connected to the fourth-order LC filter structure, wherein the fourth-order LC filter structure is the last-order LC filter structure and is connected to the antenna module 120.
- the last-order filtering structure of the filter chip will be matched to a 50ohm output, and the antenna module 120 will also be matched to a 50ohm input to achieve matching.
- the output impedance of the filter module can be adjusted according to the input impedance of the antenna module 120 , so as to achieve matching.
- the impedance matching between the filter module 110 and the antenna module 120 in this application refers to the matching between the input impedance of the antenna module 120 and the output impedance of the last-order LC filter structure in the filter module 110 .
- the last-order LC filter structure is directly matched to the input impedance of the antenna by adjusting the LC value in the last-order filter structure.
- the capacitive reactance value of the capacitor in the last-order LC filter structure can be adjusted separately, or the inductance value of the inductor in the last-order LC filter structure can be adjusted separately. Inductive reactance with the inductor.
- the structural parameters of the capacitor and the inductor can be adjusted to achieve impedance matching.
- the capacitive reactance value of the capacitor the plate spacing and plate thickness of the capacitor can be adjusted; when the inductive reactance value of the inductor is adjusted, the width, thickness, spiral radius, spiral height, spiral angle, number of turns, etc. of the inductor can be adjusted.
- impedance matching may be implemented by adjusting related parameters of the antenna module 120 .
- the antenna module 120 includes a feed structure, which may be a direct feed structure or an electromagnetic coupling feed structure, such as a coupling hole, a coupling slot, or a coupling line, which is not limited here.
- the position and size of the feeding structure can be adjusted to match the impedance between the filter module 110 and the antenna module 120 . That is, in this application, the output impedance of the filter module 110 is maintained, and the position and size of the feed structure in the antenna module 120 are adjusted.
- the coupling coefficient between the antenna module and the filter can be changed, thereby realizing impedance matching between the antenna module 120 and the filter module 110.
- the antenna module can be used as a first-order resonant structure to further optimize the filter performance.
- the input impedance of the antenna chip is 50 ohm.
- the input impedance of the antenna is matched with the filter chip by adjusting the feed structure of the antenna module 120 .
- the output impedance of the filter module 110 may no longer be 50 ohm.
- the input impedance of the filter module 110 is no longer adjusted, but the parameters such as the relative position and physical size of the feed structure in the antenna module 120 are adjusted to achieve impedance matching.
- related parameters of the antenna module 120 and the filter module 110 may be adjusted simultaneously to implement impedance matching.
- the impedance matching of the filter module 110 and the antenna module 120 can be adjusted more flexibly.
- the input impedance of the antenna module 120 and the output impedance of the filter module 110 are both 50 ohm, or other values.
- the antenna module 120 and the filter module 110 provided in the present application may be further integrated.
- the filter module 110 includes a multi-stage LC filter structure, and the multi-stage LC filter structures are connected in sequence.
- the antenna module provided by the present application may include a planar spiral inductor or a 3D spiral inductor.
- the 3D spiral inductor is connected to the LC filter structure; and the 3D spiral inductor also forms an LC filter structure.
- the antenna module 120 can also be used as an LC filter structure, so that impedance matching and antenna radiation characteristics can be realized at the same time.
- the spiral inductor itself has inductance characteristics, and its inductance value is related to the structure. By adjusting the inductor line width, spiral pitch, etc., parasitic capacitance can be generated, and then an LC filter structure can be formed to achieve a certain filtering function.
- the adjustment of the input impedance of the antenna is realized by adjusting the structure of the spiral inductance, and the matching between the filter structure and the antenna is directly realized.
- the LC filter structure composed of 3D spiral inductors can be regarded as the last-order LC filter structure of the filter module 110 , which facilitates impedance matching.
- the LC filter structure formed by the 3D spiral inductor has a filter effect, so that the LC filter structure in the filter module 110 can be reduced.
- the LC filtering structure in the filter module 110 when the LC filtering structure in the communication system requires 4th order, then in actual production, the LC filtering structure in the filter module 110 only needs to be manufactured as 3rd order, and the 3D spiral inductor can serve as the last LC filtering structure. While reducing the LC filtering structure in the filter module 110, the antenna module 120 can be used to achieve the same filtering effect.
- the filter antenna works in the UWB frequency band
- the spiral inductor is placed on the upper surface of the filter module 110, and a certain distance is required between the antenna module 120 and the ground.
- the antenna module 120 also includes a connection post 140
- the filter module 110 includes a substrate 111
- the 3D spiral inductor is arranged on the filter module 110
- the 3D spiral inductor is electrically connected to the filter module through the connection post 140; wherein, the distance between the 3D spiral inductor and the substrate 111 is greater than 200 ⁇ m, and of course, a support post can also be provided between the 3D spiral inductor and the filter module.
- connection post 140 described in this application may be a copper post.
- the operating frequency of the antenna module 120 can be fine-tuned.
- the overall height of the spiral inductor is 300um, the number of spiral turns is 5, and the spiral angle is 12 degrees.
- the line width of the spiral inductor is 90um and the line length is 650um.
- the 3D spiral inductor is arranged in a broken line, so that when the inductance is formed, two connected coils are arranged in parallel, and the capacitance characteristic is more obvious.
- the present application further provides a communication system, where the communication system includes the above antenna assembly.
- embodiments of the present application provide an antenna assembly and a communication system
- the antenna assembly includes a filter module and an antenna module, the antenna module is connected to the filter module, and the antenna module and the filter module are integrated; wherein, the output impedance of the filter module matches the input impedance of the antenna module.
- the present application omits the impedance matching circuit, which is beneficial to the miniaturization of the communication system and reduces the insertion loss of the system.
- the antenna module is integrated with the filter module, further miniaturization is achieved.
- the output impedance of the filter module matches the input impedance of the antenna module, which meets the requirement of impedance matching.
- the present application provides an antenna assembly and a communication system, the antenna assembly includes a filter module and an antenna module, the antenna module is connected to the filter module, and the antenna module and the filter module are integrated; wherein the output impedance of the filter module matches the input impedance of the antenna module.
- the present application omits the impedance matching circuit, which is beneficial to the miniaturization of the communication system and reduces the insertion loss of the system.
- the antenna module is integrated with the filter module, further miniaturization is achieved.
- the output impedance of the filter module matches the input impedance of the antenna module, which meets the requirement of impedance matching.
- the antenna assemblies and communication systems of the present application are reproducible and can be used in a variety of industrial applications.
- the antenna assembly and communication system of the present application can be used in the technical field of antennas.
Landscapes
- Details Of Aerials (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
- Transceivers (AREA)
Abstract
本申请提供了一种天线组件与通信系统,涉及天线技术领域。该天线组件包括滤波器模块与天线模块,天线模块与滤波器模块连接,且天线模块与滤波器模块集成为一体;其中,滤波器模块的输出阻抗与天线模块的输入阻抗匹配。本申请提供的天线组件与通信系统具有实现了系统的小型化,同时减少了系统插损的优点。
Description
相关申请的交叉引用
本申请要求于2022年01月18日提交中国国家知识产权局的申请号为202210056152.8、名称为“一种天线组件与通信系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及天线技术领域,具体而言,涉及一种天线组件与通信系统。
相关的通讯系统中,滤波器芯片与天线芯片作为接收/发射信号的两个关键器件,通常采用相互独立的设计。为了避免级联时两者之间的阻抗失配,需要在滤波器和天线之间加入匹配电路。
然而,在加入匹配电路后,会增大整个系统的尺寸与插损。
综上,相关技术中存在通信系统的尺寸与插损较大的问题。
发明内容
本申请的目的在于提供一种天线组件与通信系统,以解决相关技术中存在的通信系统的尺寸与插损较大的问题。
为了实现上述目的,本申请实施例采用的技术方案如下:
本申请实施例提供了一种天线组件,所述天线组件包括滤波器模块与天线模块,所述天线模块与所述滤波器模块连接,且所述天线模块与所述滤波器模块集成为一体;其中,
所述滤波器模块的输出阻抗与所述天线模块的输入阻抗匹配。
可选地,所述滤波器模块可以包括多阶LC滤波结构,多阶LC滤波结构依次连接,所述天线模块包括3D螺旋电感,所述3D螺旋电感与所述LC滤波结构连接;其中,
所述3D螺旋电感也组成LC滤波结构。
可选地,所述天线组件还可以包括连接柱,所述滤波器模块包括基板,所述3D螺旋电感设置于所述滤波器模块之上,且所述3D螺旋电感通过所述连接柱与所述滤波器模块连接;其中,
所述3D螺旋电感与所述基板之间的间隔大于200μm。
可选地,所述连接柱可以采用铜柱,其中,通过调节所述铜柱的高度,微调所述天线模块的工作频率。
可选地,所述3D螺旋电感与所述滤波器模块之间可以设置有支撑柱。
可选地,所述3D螺旋电感中可以呈折线设置。
可选地,所述天线组件还可以包括LC网络,所述LC网络连接于所述天线模块与所述滤波器模块之间,所述滤波器模块与所述天线模块通过所述LC网络实现阻抗匹配。
可选地,所述LC网络可以包括T型网络、Pi型网络以及L型网络。
可选地,所述LC网络可以包括电感与电容,通过调整所述电容与所述电感的结构参数,实现所述滤波器模块的输出阻抗与所述天线模块的输入阻抗相匹配。
可选地,所述电容的容值可以为pF级,极板间距可以为10~30um,极板厚度可以为10um;所述电感的感值可以为nH级,所述电感的宽度可以为5~20um,所述电感的厚度可以为10um。
可选地,所述LC网络的所述电容可以采用平面电容或者多层电容结构。
可选地,所述滤波器模块可以包括多阶滤波结构,所述多阶滤波结构依次连接,且末阶滤波结构与天线模块相连;其中,
所述末阶滤波结构的输出阻抗可以与所述天线模块的输入阻抗匹配。
可选地,所述滤波器模块可以包括多阶LC滤波结构,且末阶LC滤波结构的容抗值和/或感抗值可调,以匹配所述末阶LC滤波结构的输出阻抗与所述天线模块的输入阻抗。
可选地,可以通过下述调节方式来匹配所述末阶LC滤波结构的输出阻抗与所述天线模块的输入阻抗:通过单独调节所述末阶LC滤波结构的所述容抗值或所述感抗值,或者同时调节所述末阶LC滤波结构的所述容抗值和所述感抗值,其中,当调节所述容抗值时,调节电容的极板间距、极板厚度;当调整所述感抗值时,调节电感的宽度、厚度、螺旋半径、螺旋高度、螺旋角度、圈数。
可选地,所述天线模块可以包括直接馈电结构或电磁耦合馈电结构,所述直接馈电结构或电磁耦合馈电结构的位置与尺寸可调,以匹配所述滤波器模块与所述天线模块之间的阻抗。
可选地,所述天线模块可以包括直接馈电结构或电磁耦合馈电结构,所述直接馈电结构或电磁耦合馈电结构的位置与尺寸可调;所述滤波器模块包括多阶LC滤波结构,且末阶LC滤波结构的容抗值和/或感抗值也可调,以匹配所述滤波器模块与所述天线模块之间的阻抗。
本申请实施例还提供了一种通信系统,所述通信系统可以包括上述的天线组件。
相对于相关技术,本申请具有以下有益效果:
本申请实施例提供了一种天线组件与通信系统,该天线组件包括滤波器模块与天线模块,天线模块与滤波器模块连接,且天线模块与滤波器模块集成为一体;其中,滤波器模块的输出阻抗与天线模块的输入阻抗匹配。一方面,与相关技术相比,本申请省略了阻抗匹配电路,有利于通信系统的小型化,且减少了系统的插损。另一方面,由于天线模块与 滤波器模块集成为一体,因此进一步实现了小型化。此外,滤波器模块的输出阻抗与天线模块的输入阻抗匹配,满足了阻抗匹配要求。
为使本申请的上述目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合所附附图,作详细说明如下。
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它相关的附图。
图1为相关技术中通信系统的模块示意图。
图2为本申请实施例提供的天线组件的模块示意图。
图3为本申请实施例提供的天线组件的结构示意图。
图中:100-天线组件;110-滤波器模块;120-天线模块;111-基板;140-连接柱。
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本申请实施例的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本申请的实施例的详细描述并非旨在限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。同时,在本申请的描述中,术语“第一”、“第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。
下面结合附图,对本申请的一些实施例作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
正如背景技术中所述,请参阅图1,相关的通讯系统中,需要在滤波器与天线之间加入匹配电路,而在加入匹配电路后,会增大整个系统的尺寸与插损。
有鉴于此,为了解决上述问题,本申请提供了一种天线组件,通过去除匹配电路的方式,实现对系统的小型化并减小插损。
下面对本申请提供的天线组件进行示例性说明:
作为一种可选的实现方式,请参阅图2,该天线组件100可以包括滤波器模块110与天线模块120,天线模块120与滤波器模块110连接,且天线模块120与滤波器模块110集成为一体;其中,滤波器模块110的输出阻抗与天线模块120的输入阻抗匹配。
通过上述实现方式,一方面,与相关技术相比,本申请省略了阻抗匹配电路,有利于通信系统的小型化,且减少了系统的插损。另一方面,由于天线模块120与滤波器模块110集成为一体,因此进一步实现了小型化。此外,滤波器模块110的输出阻抗与天线模块120的输入阻抗匹配,满足了阻抗匹配要求。
需要说明的是,在传统的设计中,滤波器与天线分别单独设计成与常用的参考阻抗(50ohm或75ohm)进行阻抗匹配。然而,在省略匹配电路,使滤波器芯片与天线芯片直接级联时,两者的结构均会产生寄生参数,这部分寄生参数将影响到芯片之间的阻抗匹配。同时,两者级联时距离较近,会产生耦合效应,也会降低产品性能。
因此,为了实现滤波器的输出阻抗与天线的输入阻抗相匹配,可以调整两者之间的阻抗匹配设计,进而消除两者之间寄生参数的干扰,减小耦合效应的影响。其中,本申请所述的匹配,指滤波器的输出阻抗与天线的输入阻抗匹配。阻抗匹配结构可以以多种不同的形式实现,下面进行示例性说明:
作为一种可选实现方式,天线组件还可以包括LC网络,LC网络连接于天线模块120与滤波器模块110之间,滤波器模块110与天线模块120通过LC网络实现阻抗匹配。
其中,LC网络包括电感与电容等器件,通过调整电容与电感的结构参数,例如调节LC网络中电容与电感的厚度、大小等,实现滤波器模块110的输出阻抗与天线模块120的输入阻抗相匹配。可选地,电容容值可以为pF级,极板间距可以为10~30um,极板厚度可以为10um。电感感值可以为nH级,电感宽度可以为5~20um,电感厚度可以为10um。
作为可选实现方式,LC网络可以包括T型网络、Pi型网络以及L型网络,当然地,其具体结构可以不做限定,例如采用串联电容+并联电感等设计,且串联结构不需要单独的接地端口,并联结构需要设计单独接地端口。可选地,LC网络中的电容可以采用平面电容或者多层电容结构,在此也不进行限定。
当然地,也可以采用不增加LC网络的方式实现滤波器模块110与天线模块120的阻抗匹配,在此基础上,可以通过调节滤波器模块110和/或天线模块120相关参数的方式实现阻抗匹配。
作为另一种可选实现方式,可以通过调节滤波器模块110的相关参数的方式实现阻抗 匹配。其中,滤波器模块110包括多阶滤波结构,多阶滤波结构依次连接,且末阶滤波结构与天线模块120相连,其中,末阶滤波结构的输出阻抗与天线模块120的输入阻抗匹配。
其中,滤波器模块110包括多阶滤波结构,且本申请并不对具体的滤波结构进行限定,例如,该多阶滤波结构可以为LC滤波结构,也可以为腔体等其他形式的滤波器。
为方便阐述,本申请以滤波器模块110包括多阶LC滤波结构为例进行说明,且末阶LC滤波结构的容抗值和/或感抗值可调,以匹配末阶LC滤波结构的输出阻抗与天线模块120的输入阻抗。
例如,当滤波器模块110包括4阶LC滤波结构时,则第一阶LC滤波结构与第二阶LC滤波结构相连,第二阶LC滤波结构与第三阶LC滤波结构相连,第三阶LC滤波结构与第四阶LC滤波结构相连,其中,第四阶LC滤波结构即为末阶LC滤波结构,与天线模块120连接。
在相关的通信系统中,滤波器芯片的末阶滤波结构将匹配至50ohm输出,同时天线模块120也匹配至50ohm输入,实现匹配。而本申请中,可以根据天线模块120的输入阻抗调节滤波模块的输出阻抗,进而实现匹配。并且,需要强调的是,本申请所述的滤波器模块110与天线模块120之间阻抗匹配,均指天线模块120的输入阻抗与滤波器模块110中末阶LC滤波结构的输出阻抗匹配。
需要说明的是,在具体调节过程中,实际为通过调整末阶滤波结构中的LC值,将末阶LC滤波结构直接匹配到天线的输入阻抗,在此基础上,可以单独调节末阶LC滤波结构中电容的容抗值,或者单独调节末阶LC滤波结构中电感的感抗值,例如,通过调节电感结构的物理参数,如螺旋半径、螺旋高度、螺旋角度、圈数,螺旋电感可以实现与滤波结构的阻抗匹配;亦或者同时调节末阶LC滤波结构中电容的容抗值与电感的感抗值。
当在调节电容的容抗值与电感的感抗值时,可以调整电容与电感的结构参数实现阻抗匹配。例如,当调整电容的容抗值时,可以调整电容的极板间距、极板厚度等;当调整电感的感抗值时,可以调整电感的宽度、厚度、螺旋半径、螺旋高度、螺旋角度、圈数等。
作为另一种可选实现方式,可以通过调节天线模块120的相关参数的方式实现阻抗匹配。在此基础上,天线模块120包括馈电结构,该馈电结构可以为直接馈电结构,也可以为电磁耦合馈电结构,例如耦合孔、耦合缝隙、耦合线等形式,在此不做限定。馈电结构的位置与尺寸可调,以匹配滤波器模块110与天线模块120之间的阻抗。即本申请中,保持滤波器模块110的输出阻抗,并调节天线模块120中馈电结构的位置与尺寸,通过调节直接馈电结构或耦合馈电结构的物理参数,可以改变天线模块与滤波器之间的耦合系数,进而实现天线模块120与滤波器模块110的阻抗匹配。
可选地,通过调整天线模块与滤波器之间的耦合系数,天线模块可以作为一阶谐振结 构,进一步优化滤波器性能。
需要说明的是,在相关的通信系统中,天线芯片的输入阻抗为50ohm。而本申请中,通过调整天线模块120的馈电结构,将天线的输入阻抗与滤波芯片匹配。在此基础上,由于耦合效应影响,滤波器模块110的输出阻抗可能不再是50ohm,此时,不再调节滤波器模块110的输入阻抗,而是将对天线模块120中馈电结构的相对位置、物理尺寸等参数进行调节,实现阻抗匹配。
作为另一种可选实现方式,可以同时调节天线模块120与滤波器模块110的相关参数,实现阻抗匹配。为了避免调节过程中出现极值及加工工艺受限的情况,通过同时调整滤波器模块110与天线模块120的方式,能够更加灵活的实现两者阻抗匹配。例如,在阻抗匹配后,天线模块120的输入阻抗与滤波器模块110的输出阻抗均为50ohm,或者为其它数值。
不仅如此,为了进一步实现通信系统的小型化,本申请提供的天线模块120与滤波器模块110可以进一步进行集成。
作为可选实现方式,请参阅图3,滤波器模块110包括多阶LC滤波结构,多阶LC滤波结构依次连接,可选地,本申请提供的天线模块可以包括平面螺旋电感或3D螺旋电感,当天线模块120包括3D螺旋电感时,3D螺旋电感与LC滤波结构连接;并且,3D螺旋电感也组成LC滤波结构。
即本申请中,可以将天线模块120也作为一个LC滤波结构,进而可以同时实现阻抗匹配以及天线辐射的特性。其中,螺旋电感本身具有电感特性,其感抗值与结构相关。通过调整电感线宽、螺旋间距等,可以产生寄生电容,进而组成LC滤波结构,实现一定的滤波功能。
即本申请中通过调节螺旋电感的结构实现天线输入阻抗的调节,直接实现滤波结构与天线的匹配。同时,一方面,3D螺旋电感组成的LC滤波结构,可以视为滤波器模块110的末阶LC滤波结构,更加方便的实现阻抗匹配。另一方面,3D螺旋电感组成的LC滤波结构,具有滤波效果,使得滤波器模块110中的LC滤波结构得以减小。例如,当通信系统中,LC滤波结构需要4阶时,则实际制作中,滤波器模块110中的LC滤波结构只需要制作3阶,且3D螺旋电感可以充当最后一阶LC滤波结构,在减少滤波器模块110中LC滤波结构的同时,利用天线模块120实现相同的滤波效果。
此外,在本实施例中,滤波天线工作在UWB频段,螺旋电感放置于滤波器模块110的上表面,且天线模块120与地之间需要一定的间隔。在此基础上,天线模块120还包括连接柱140,滤波器模块110包括基板111,3D螺旋电感设置于滤波器模块110之上,且3D螺旋电感通过连接柱140与滤波器模块电连接;其中,3D螺旋电感与基板111之间的 间隔大于200μm,当然地,3D螺旋电感与滤波器模块之间还可设置支撑柱。
可选地,本申请所述的连接柱140可以采用铜柱。并且,通过调节铜柱高度,可以微调天线模块120的工作频率。螺旋电感的整体高度为300um,螺旋圈数为5圈,螺旋角度为12度。螺旋电感的线宽为90um,线长为650um。
并且,为了更好的使3D螺旋电感产生寄生电容,3D螺旋电感中呈折线设置,使得在组成电感的同时,相连两个线圈之间平行设置,电容特征更加明显。
基于上述实现方式,本申请还提供了一种通信系统,该通信系统包括上述的天线组件。
综上所述,本申请实施例提供了一种天线组件与通信系统,该天线组件包括滤波器模块与天线模块,天线模块与滤波器模块连接,且天线模块与滤波器模块集成为一体;其中,滤波器模块的输出阻抗与天线模块的输入阻抗匹配。一方面,与相关技术相比,本申请省略了阻抗匹配电路,有利于通信系统的小型化,且减少了系统的插损。另一方面,由于天线模块与滤波器模块集成为一体,因此进一步实现了小型化。此外,滤波器模块的输出阻抗与天线模块的输入阻抗匹配,满足了阻抗匹配要求。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
对于本领域技术人员而言,显然本申请不限于上述示范性实施例的细节,而且在不背离本申请的精神或基本特征的情况下,能够以其它的具体形式实现本申请。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本申请的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本申请内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。
本申请提供了一种天线组件与通信系统,该天线组件包括滤波器模块与天线模块,天线模块与滤波器模块连接,且天线模块与滤波器模块集成为一体;其中,滤波器模块的输出阻抗与天线模块的输入阻抗匹配。一方面,与相关技术相比,本申请省略了阻抗匹配电路,有利于通信系统的小型化,且减少了系统的插损。另一方面,由于天线模块与滤波器模块集成为一体,因此进一步实现了小型化。此外,滤波器模块的输出阻抗与天线模块的输入阻抗匹配,满足了阻抗匹配要求。
此外,可以理解的是,本申请的天线组件与通信系统是可以重现的,并且可以用在多种工业应用中。例如,本申请的天线组件与通信系统可以用于天线技术领域。
Claims (17)
- 一种天线组件,其特征在于,所述天线组件包括滤波器模块与天线模块,所述天线模块与所述滤波器模块连接,且所述天线模块与所述滤波器模块集成为一体;其中,所述滤波器模块的输出阻抗与所述天线模块的输入阻抗匹配。
- 如权利要求1所述的天线组件,其特征在于,所述滤波器模块包括多阶LC滤波结构,多阶LC滤波结构依次连接,所述天线模块包括3D螺旋电感,所述3D螺旋电感与所述LC滤波结构连接;其中,所述3D螺旋电感也组成LC滤波结构。
- 如权利要求2所述的天线组件,其特征在于,所述天线组件还包括连接柱,所述滤波器模块包括基板,所述3D螺旋电感设置于所述滤波器模块之上,且所述3D螺旋电感通过所述连接柱与所述滤波器模块连接;其中,所述3D螺旋电感与所述基板之间的间隔大于200μm。
- 如权利要求3所述的天线组件,其特征在于,所述连接柱采用铜柱,其中,通过调节所述铜柱的高度,微调所述天线模块的工作频率。
- 如权利要求2至4中任一项所述的天线组件,其特征在于,所述3D螺旋电感与所述滤波器模块之间设置有支撑柱。
- 如权利要求2至5中任一项所述的天线组件,其特征在于,所述3D螺旋电感中呈折线设置。
- 如权利要求1所述的天线组件,其特征在于,所述天线组件还包括LC网络,所述LC网络连接于所述天线模块与所述滤波器模块之间,所述滤波器模块与所述天线模块通过所述LC网络实现阻抗匹配。
- 如权利要求7所述的天线组件,其特征在于,所述LC网络包括T型网络、Pi型网络以及L型网络。
- 如权利要求7或8所述的天线组件,其特征在于,所述LC网络包括电感与电容,通过调整所述电容与所述电感的结构参数,实现所述滤波器模块的输出阻抗与所述天线模块的输入阻抗相匹配。
- 如权利要求9所述的天线组件,其特征在于,所述电容的容值为pF级,极板间距为10~30um,极板厚度为10um;所述电感的感值为nH级,所述电感的宽度为5~20um,所述电感的厚度为10um。
- 如权利要求9或10所述的天线组件,其特征在于,所述LC网络的所述电容采用平面电容或者多层电容结构。
- 如权利要求1所述的天线组件,其特征在于,所述滤波器模块包括多阶滤波结构,所述多阶滤波结构依次连接,且末阶滤波结构与天线模块相连;其中,所述末阶滤波结构的输出阻抗与所述天线模块的输入阻抗匹配。
- 如权利要求12所述的天线组件,其特征在于,所述滤波器模块包括多阶LC滤波结构,且末阶LC滤波结构的容抗值和/或感抗值可调,以匹配所述末阶LC滤波结构的输出阻抗与所述天线模块的输入阻抗。
- 如权利要求13所述的天线组件,其特征在于,通过下述调节方式来匹配所述末阶LC滤波结构的输出阻抗与所述天线模块的输入阻抗:通过单独调节所述末阶LC滤波结构的所述容抗值或所述感抗值,或者同时调节所述末阶LC滤波结构的所述容抗值和所述感抗值,其中,当调节所述容抗值时,调节电容的极板间距、极板厚度;当调整所述感抗值时,调节电感的宽度、厚度、螺旋半径、螺旋高度、螺旋角度、圈数。
- 如权利要求1所述的天线组件,其特征在于,所述天线模块包括直接馈电结构或电磁耦合馈电结构,所述直接馈电结构或所述电磁耦合馈电结构的位置与尺寸可调,以匹配所述滤波器模块与所述天线模块之间的阻抗。
- 如权利要求1所述的天线组件,其特征在于,所述天线模块包括直接馈电结构或电磁耦合馈电结构,所述直接馈电结构或所述电磁耦合馈电结构的位置与尺寸可调;所述滤波器模块包括多阶LC滤波结构,且末阶LC滤波结构的容抗值和/或感抗值也可调,以匹配所述滤波器模块与所述天线模块之间的阻抗。
- 一种通信系统,其特征在于,所述通信系统包括如权利要求1至9任一项所述的天线组件。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/027,238 US20240291141A1 (en) | 2022-01-18 | 2022-08-05 | Antenna assembly and communication system |
JP2023518258A JP2024509020A (ja) | 2022-01-18 | 2022-08-05 | アンテナアッセンブリーおよび通信システム |
KR1020237009905A KR20230113722A (ko) | 2022-01-18 | 2022-08-05 | 안테나 어셈블리 및 통신 시스템 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210056152.8 | 2022-01-18 | ||
CN202210056152.8A CN114389055B (zh) | 2022-01-18 | 2022-01-18 | 一种天线组件与通信系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023138034A1 true WO2023138034A1 (zh) | 2023-07-27 |
Family
ID=81204521
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/110650 WO2023138034A1 (zh) | 2022-01-18 | 2022-08-05 | 一种天线组件与通信系统 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20240291141A1 (zh) |
JP (1) | JP2024509020A (zh) |
KR (1) | KR20230113722A (zh) |
CN (1) | CN114389055B (zh) |
WO (1) | WO2023138034A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114389055B (zh) * | 2022-01-18 | 2024-07-05 | 安徽安努奇科技有限公司 | 一种天线组件与通信系统 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0772254A1 (en) * | 1995-11-06 | 1997-05-07 | Lk-Products Oy | A combined duplex filter and antenna |
JP2000286634A (ja) * | 1999-03-30 | 2000-10-13 | Ngk Insulators Ltd | アンテナ装置及びアンテナ装置の製造方法 |
JP2000349532A (ja) * | 1999-03-30 | 2000-12-15 | Ngk Insulators Ltd | アンテナ装置 |
CN1433105A (zh) * | 2001-12-27 | 2003-07-30 | 日本碍子株式会社 | 天线装置 |
JP2008294809A (ja) * | 2007-05-25 | 2008-12-04 | Ngk Spark Plug Co Ltd | 積層型ヘリカルアンテナ |
US20090066448A1 (en) * | 2007-09-07 | 2009-03-12 | Himax Technologies Limited | Tuner and transformer formed by printed circuit board thereof |
CN205723920U (zh) * | 2016-04-27 | 2016-11-23 | 昆明理工大学 | 一种带滤波功能的wifi天线 |
CN107785939A (zh) * | 2016-08-24 | 2018-03-09 | 东莞宝德电子有限公司 | 无线充电电路及其充电板 |
CN215266663U (zh) * | 2021-07-22 | 2021-12-21 | 深圳市得自在科技有限公司 | 一种具有滤波功能的bt天线 |
CN114389055A (zh) * | 2022-01-18 | 2022-04-22 | 安徽安努奇科技有限公司 | 一种天线组件与通信系统 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9391650B2 (en) * | 2011-02-11 | 2016-07-12 | Qualcomm Incorporated | Front-end RF filters with embedded impedance transformation |
CN109861002B (zh) * | 2019-03-26 | 2024-07-16 | 河南思维轨道交通技术研究院有限公司 | 一种双模双通带滤波天线 |
CN113394559A (zh) * | 2021-07-22 | 2021-09-14 | 深圳市得自在科技有限公司 | 一种具有滤波功能的bt天线 |
-
2022
- 2022-01-18 CN CN202210056152.8A patent/CN114389055B/zh active Active
- 2022-08-05 US US18/027,238 patent/US20240291141A1/en active Pending
- 2022-08-05 KR KR1020237009905A patent/KR20230113722A/ko not_active Application Discontinuation
- 2022-08-05 JP JP2023518258A patent/JP2024509020A/ja active Pending
- 2022-08-05 WO PCT/CN2022/110650 patent/WO2023138034A1/zh active Application Filing
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0772254A1 (en) * | 1995-11-06 | 1997-05-07 | Lk-Products Oy | A combined duplex filter and antenna |
JP2000286634A (ja) * | 1999-03-30 | 2000-10-13 | Ngk Insulators Ltd | アンテナ装置及びアンテナ装置の製造方法 |
JP2000349532A (ja) * | 1999-03-30 | 2000-12-15 | Ngk Insulators Ltd | アンテナ装置 |
CN1433105A (zh) * | 2001-12-27 | 2003-07-30 | 日本碍子株式会社 | 天线装置 |
JP2008294809A (ja) * | 2007-05-25 | 2008-12-04 | Ngk Spark Plug Co Ltd | 積層型ヘリカルアンテナ |
US20090066448A1 (en) * | 2007-09-07 | 2009-03-12 | Himax Technologies Limited | Tuner and transformer formed by printed circuit board thereof |
CN205723920U (zh) * | 2016-04-27 | 2016-11-23 | 昆明理工大学 | 一种带滤波功能的wifi天线 |
CN107785939A (zh) * | 2016-08-24 | 2018-03-09 | 东莞宝德电子有限公司 | 无线充电电路及其充电板 |
CN215266663U (zh) * | 2021-07-22 | 2021-12-21 | 深圳市得自在科技有限公司 | 一种具有滤波功能的bt天线 |
CN114389055A (zh) * | 2022-01-18 | 2022-04-22 | 安徽安努奇科技有限公司 | 一种天线组件与通信系统 |
Also Published As
Publication number | Publication date |
---|---|
CN114389055B (zh) | 2024-07-05 |
CN114389055A (zh) | 2022-04-22 |
JP2024509020A (ja) | 2024-02-29 |
US20240291141A1 (en) | 2024-08-29 |
KR20230113722A (ko) | 2023-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20120019428A1 (en) | Antenna using composite right/left-handed transmission line and method for manufacturing the same | |
TW201012059A (en) | Balun device | |
WO2023138034A1 (zh) | 一种天线组件与通信系统 | |
US20240243482A1 (en) | Dual-polarized broadband millimeter-wave filtering antenna based on meta-surface, and communication device | |
US20060066415A1 (en) | Miniaturized multi-layer balun | |
JP2014112824A (ja) | アンテナ装置 | |
US9196941B2 (en) | Cross-coupled bandpass filter | |
US20070132526A1 (en) | Balanced-to-unbalanced transformer embedded with filter | |
US20070176712A1 (en) | High frequency filter | |
CN102856620A (zh) | 一种采用叠层结构的巴伦 | |
US20220077553A1 (en) | Miniature filter design for antenna systems | |
WO2022217971A1 (zh) | 一种lc滤波器 | |
WO2013069498A1 (ja) | Lcフィルタ回路及び高周波モジュール | |
US11005443B2 (en) | Multilayer balun | |
WO2023045545A1 (zh) | 天线双讯器电路及功率放大器发射模组 | |
CN113823885B (zh) | 一种滤波器 | |
CN106159386B (zh) | 一种新型耦合lc滤波移相器 | |
WO2023231153A1 (zh) | 一种无源低通滤波器及低通滤波电路 | |
WO2022048130A1 (zh) | 一种滤波器及无线电收发设备 | |
CN107732453A (zh) | 基于槽线谐振器的滤波天线 | |
CN111262545B (zh) | 低通滤波器 | |
WO2022193380A1 (zh) | 陷波滤波器与多频陷波滤波器 | |
Tsigkas et al. | Butterworth filter design at RF and X-band using lumped and step impedance techniques | |
CN117353694B (zh) | 一种差分阻抗变换器及电子设备 | |
US11764747B2 (en) | Transformer balun for high rejection unbalanced lattice filters |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 18027238 Country of ref document: US Ref document number: 2023518258 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22921463 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |