WO2023137960A1 - 一种光学扩展波导 - Google Patents

一种光学扩展波导 Download PDF

Info

Publication number
WO2023137960A1
WO2023137960A1 PCT/CN2022/099123 CN2022099123W WO2023137960A1 WO 2023137960 A1 WO2023137960 A1 WO 2023137960A1 CN 2022099123 W CN2022099123 W CN 2022099123W WO 2023137960 A1 WO2023137960 A1 WO 2023137960A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveguide
light
reflective
base
reflective surface
Prior art date
Application number
PCT/CN2022/099123
Other languages
English (en)
French (fr)
Inventor
李雨雪
张文君
罗豪
金建虎
刘瀛
杨铭
李伟
杜俊
Original Assignee
上海理湃光晶技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海理湃光晶技术有限公司 filed Critical 上海理湃光晶技术有限公司
Publication of WO2023137960A1 publication Critical patent/WO2023137960A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features

Definitions

  • the invention relates to the field of optical devices, in particular to an optical expansion waveguide.
  • Near-eye display is an area of technology that is attracting much attention today, and its optical system includes microdisplays and optical components. At present, the optical solutions for near-eye display on the market are even more controversial.
  • the arrayed waveguide solution uses a semi-transparent and semi-reflective optical surface to realize the expansion of the light and the exit pupil.
  • the reflection law that the incident angle is equal to the reflection angle, there is no dispersion effect on the three primary colors of the incident light that constitutes a full-color display, thereby ensuring that the formed image has no obvious color deviation, which can meet the most basic requirements of the display device, and has obvious advantages in optimizing the design of the headset and beautifying the appearance.
  • the display device using this solution is suitable for people with a vision of about 1.2, while the vision of the general population (including vision correction) is about 1.0. Therefore, when using this type of display device, the wearer cannot see a clear and good image, causing great trouble to the user.
  • the mainstream solution is to use external devices to assist adjustment, which not only increases the size and weight of the display device, but also reduces the user's comfort and visual experience.
  • the object of the present invention is to provide an optical expansion waveguide, which can change the image distance when applied to an optical display device, is suitable for users with abnormal vision, and has a light and thin structure.
  • the present invention provides the following technical solutions:
  • An optical expansion waveguide comprising a first waveguide base and a second waveguide base
  • the first waveguide base is used to expand the light beam entering the first waveguide base along the first dimension
  • the first waveguide base includes a plurality of first reflective surfaces arranged in sequence, the first reflective surfaces are used to at least partially reflect the light incident on the first reflective surface, so that at least part of the light is coupled into the second waveguide base;
  • the second waveguide base is used to expand the light beam entering the second waveguide base along the second dimension
  • the second waveguide base includes a plurality of second reflective surfaces arranged in sequence, the second reflective surfaces are used to reflect at least part of the light incident on the second reflective surface, so that at least part of the light is emitted out of the second waveguide base;
  • At least a part of at least one of the first reflective surface and the second reflective surface is a curved surface, so that the image distance of the image formed by the light emitted by the second waveguide base meets a preset requirement.
  • At least part of the first reflective surface is a curved surface, and the first reflective surface diverges the light reflected by the first reflective surface;
  • At least part of the second reflective surface is a curved surface, and the second reflective surface diverges the light reflected by the second reflective surface.
  • each of the first reflective surfaces forms an inclination angle with respect to the first-dimensional direction.
  • the first waveguide base further includes at least a first set of opposite surfaces, and the light entering the first waveguide base is reflected on each surface of the first set of opposite surfaces and propagates forward.
  • At least a part of at least one surface of the first group of opposite surfaces is a curved surface, so as to change the incident angle of the reflected light of the surface incident on the first reflective surface, so as to assist in realizing that the image distance of the image formed by the light emitted by the second waveguide substrate meets the preset requirements.
  • At least one surface of the first group of opposite surfaces makes the reflected light of the surface diverge.
  • the second waveguide base further includes at least a third set of opposite surfaces, and the light entering the second waveguide base is reflected on each surface of the third set of opposite surfaces and travels forward.
  • each of the second reflective surfaces forms an inclination angle with respect to any surface of the third group of opposite surfaces.
  • the inclination angle formed by the second reflective surface relative to a surface serving as the outcoupling surface in the third group of opposite surfaces is greater than 0° and less than or equal to 45°, wherein, when the second reflective surface rotates counterclockwise relative to a surface, the inclination angle formed by the second reflective surface relative to the surface is positive.
  • At least a part of at least one surface of the third group of opposite surfaces is a curved surface, so as to change the incident angle of the reflected light of the surface incident on the second reflective surface, so as to assist in realizing that the image distance of the image formed by the light emitted by the second waveguide substrate meets the preset requirements.
  • At least one surface of said third set of opposing surfaces causes light reflected by that surface to diverge.
  • the first waveguide base further includes a first outcoupling surface for emitting reflected light from the first reflective surface out of the first waveguide base
  • the second waveguide base further includes a second incoupling surface for allowing light emitted by the first waveguide base to enter the second waveguide base, and the first outcoupling surface and the second outcoupling surface are optically coaxial.
  • the first outcoupling surface is a plane, an inclined plane, a sawtooth surface or a curved surface
  • the second coupling surface is a plane, an inclined plane, a sawtooth surface or a curved surface.
  • the first waveguide base is placed in front of, behind or above the second waveguide base.
  • an optical expansion waveguide provided by the present invention includes a first waveguide base and a second waveguide base.
  • the first waveguide base expands the light beam entering the first waveguide base along the first dimension direction.
  • the first waveguide base includes a plurality of first reflective surfaces arranged in sequence.
  • a plurality of second reflective surfaces, the second reflective surfaces at least partially reflect the light incident on the second reflective surfaces, so that at least part of the light is emitted out of the second waveguide matrix.
  • the optical expansion waveguide of the present invention is applied to an optical display device, can change the image distance of images, can be suitable for users with abnormal vision, and has a light and thin structure.
  • Fig. 1 is a schematic diagram of light propagation on a first reflective surface in an embodiment of the present invention
  • Figure 2-1 is a left side view of the optical expansion waveguide shown in Figure 2-2;
  • Fig. 2-2 is a front view of an optical expansion waveguide provided by an embodiment of the present invention.
  • Fig. 3 is a schematic diagram of light propagation of the first waveguide substrate in an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of light propagation on a surface of the first set of opposite surfaces and a first reflective surface in an embodiment of the present invention
  • Fig. 5 is a schematic diagram of light propagation of the second waveguide substrate in an embodiment of the present invention.
  • Fig. 6 is a schematic diagram of the formation of an effective light aperture corresponding to the propagation of light in the second waveguide substrate in an embodiment of the present invention
  • Fig. 7 is a schematic diagram of structural parameters of any waveguide substrate adopting a curved reflective surface and the surface in an embodiment of the present invention.
  • Fig. 8-1 is a schematic diagram of a curved surface adopted by any surface of any opposite surface of any waveguide substrate in the embodiment of the present invention.
  • Fig. 8-2 is a schematic diagram of another curved surface adopted by any surface of any opposite surface of any waveguide substrate in the embodiment of the present invention.
  • Figure 9-1 to Figure 9-4 are schematic diagrams of four implementations of the first outcoupling surface of the first waveguide substrate and the second coupling in surface of the second waveguide substrate according to the embodiment of the present invention.
  • Fig. 10-1 to Fig. 10-3 are respectively schematic diagrams of three implementations of the arrangement positions of the first waveguide base and the second waveguide base according to the embodiment of the present invention.
  • This embodiment provides an optical expansion waveguide, including a first waveguide base and a second waveguide base;
  • the first waveguide base is used to expand the light beam entering the first waveguide base along the first dimension
  • the first waveguide base includes a plurality of first reflective surfaces arranged in sequence, the first reflective surfaces are used to at least partially reflect the light incident on the first reflective surface, so that at least part of the light is coupled into the second waveguide base;
  • the second waveguide base is used to expand the light beam entering the second waveguide base along the second dimension
  • the second waveguide base includes a plurality of second reflective surfaces arranged in sequence, the second reflective surfaces are used to reflect at least part of the light incident on the second reflective surface, so that at least part of the light is emitted out of the second waveguide base;
  • At least a part of at least one of the first reflective surface and the second reflective surface is a curved surface, so that the image distance of the image formed by the light emitted by the second waveguide base meets a preset requirement.
  • the light beam entering the first waveguide matrix propagates through the first waveguide matrix, and each part of the light beam is incident on each first reflective surface, and the first reflective surface at least partially reflects the light incident on itself, so that at least part of the light is coupled into the second waveguide matrix, and the light beam entering the first waveguide matrix is expanded in the first dimension.
  • the light beam entering the second waveguide matrix propagates through the second waveguide matrix, and each part of the light beam is respectively incident on each second reflective surface, and the second reflective surface at least partially reflects the light incident on itself, so that at least part of the light is emitted outside the second waveguide matrix, so that the light beam entering the second waveguide matrix is expanded in the second dimension.
  • the image distance formed by the light emitted by the second waveguide substrate refers to the distance from the corresponding virtual image to the viewing position of the image formed by the light emitted by the second waveguide substrate.
  • the angle of reflection of light on the first reflective surface can be changed through the curved surface, the incident angle of light coupled into the second waveguide base can be changed, and the outgoing angle of light emitted from the second waveguide base can be changed.
  • the second reflective surface of the second waveguide base is at least partially curved, the curved surface can change the reflection angle of light on the second reflective surface, and change the outgoing angle of light emitted from the second waveguide base.
  • the optical expansion waveguide can change the exit angle of the output light, change the image distance of the output light of the optical expansion waveguide, and make the image distance of the image meet the preset requirements.
  • the optical expansion waveguide of this embodiment when the optical expansion waveguide of this embodiment is applied to an optical display device, the image distance of the image can be changed, and it can be applied to users with abnormal vision, so that users with abnormal vision can watch clear and good images, and the structure of the optical expansion waveguide of this embodiment is light and thin.
  • the shape and area of the curved surface included in the first reflective surface are not specifically limited, as long as the outgoing angle of the light emitted by the second waveguide substrate can be changed so that the image distance of the image formed by the light emitted by the second waveguide substrate meets the preset requirements.
  • the curved surface included in the first reflective surface may be a curved surface with a fixed curvature or a free curved surface.
  • the first reflective surface adopts a curved surface, which can diverge the light reflected by the first reflective surface or converge the light reflected by the first reflective surface.
  • the shape and area of the curved surface included in the second reflective surface are not specifically limited, as long as the outgoing angle of the light emitted by the second waveguide base can be changed so that the image distance of the image formed by the light emitted by the second waveguide base meets the preset requirements.
  • the curved surface included in the second reflective surface may be a curved surface with a fixed curvature or a free curved surface.
  • the second reflective surface adopts a curved surface, which can diverge the light reflected by the second reflective surface or converge the light reflected by the second reflective surface.
  • FIG. 1 is a schematic diagram of light propagation on the first reflective surface in an embodiment.
  • the light L1 and the light L2 reflected by the surface 100 of the first waveguide substrate are respectively incident on the first reflective surface 101, and the first reflective surface 101 is a curved surface.
  • Reflected light rays L1 ′ and L2 ′ are formed through the first reflective surface 101 .
  • the reflected light rays L1 ′′ and L2 ′′ formed by passing through the reference plane 102 of the first reflective surface 101 , the reflected light rays L1 ′ and L2 ′ become divergent. In this way, the image distance of the image formed by the light emitted by the second waveguide base body is reduced.
  • the images can be converged on the retina of the user with abnormal vision.
  • each first reflective surface forms an inclination angle with respect to the first dimension direction.
  • the inclination angle formed by the first reflective surface relative to the first dimensional direction means that the chord of the first reflective surface is not parallel to and not perpendicular to the first dimensional direction.
  • the inclination angle formed by the first reflective surface relative to the first dimensional direction refers to the angle between the chord of the first reflective surface and the first dimensional direction.
  • the inclination angles of the first reflective surfaces with respect to the first dimension direction are not limited, as long as the light propagating in the first waveguide matrix is incident on the first reflective surface, at least part of the light is reflected and coupled into the second waveguide matrix. In practical applications, it can be set according to the size of the first waveguide matrix, the size of the second waveguide matrix, and the expansion requirements of light in the first dimension. It is preferable to make the optical expansion waveguide structure light and thin while meeting the expansion requirements of light.
  • the aperture of the output light of the optical expansion waveguide in the first dimension needs to ensure that the image from the image source can be fully expanded, that is, the image formed by the output light of the optical expansion waveguide contains complete information of the image in the first dimension.
  • the first waveguide base further includes at least a first set of opposite surfaces, and the light entering the first waveguide base is reflected on each surface of the first set of opposite surfaces and travels forward. Specifically, light incident on each surface of the first group of opposite surfaces satisfies the total reflection condition.
  • the first group of opposing surfaces may be parallel to each other or not parallel to each other, as long as the light can be reflected by each surface of the first group of opposing surfaces and propagate forward.
  • the first waveguide substrate may further include a second group of opposite surfaces, the second group of opposite surfaces and the first group of opposite surfaces form a closed section, and the light entering the first waveguide substrate is reflected on each of the first group of opposite surfaces and the second group of opposite surfaces to propagate forward.
  • light incident on each surface of the second group of opposite surfaces satisfies the total reflection condition.
  • the second set of opposite surfaces may be parallel to each other or non-parallel, as long as the light can be reflected by each surface of the second set of opposite surfaces and propagate forward.
  • Figure 2-1 is a left view of the optical expansion waveguide shown in Figure 2-2
  • Figure 2-2 is a front view of the optical expansion waveguide provided by an embodiment
  • Figure 3 is a schematic diagram of light propagation of the first waveguide base in an embodiment.
  • the light entering the first waveguide base 1 will be reflected on each surface in the section formed by the four surfaces 1-A, 1-B, 1--C and 1-D of the first waveguide base 1 and propagate forward.
  • a part of the light energy is reflected with a certain energy ratio, so that the light is coupled into the second waveguide matrix 2 .
  • the first set of opposite surfaces 1-A and 1-B are parallel to each other and the second set of opposite surfaces 1-C and 1-D are parallel to each other. It can be understood that what is shown in FIG. 3 is only an example. In other embodiments, the first set of opposing surfaces may not be parallel and the second set of opposing surfaces may not be parallel.
  • At least a part of at least one surface of the first group of opposite surfaces is a curved surface, so as to change the incident angle of the reflected light of the surface incident on the first reflective surface, so as to assist in realizing that the image distance of the image formed by the light emitted by the second waveguide substrate meets the preset requirements.
  • At least a part of at least one surface of the first group of opposite surfaces is a curved surface, which can change the reflection angle of light passing through the surface, and can change the incident angle of the reflected light from the surface incident on the first reflection surface, thereby assisting in changing the image distance of the image formed by the light emitted by the optical expansion waveguide.
  • the shape of the curved surface and the area of the curved surface included in any surface of the first group of opposite surfaces are not specifically limited, as long as the outgoing angle of the light emitted by the second waveguide substrate can be changed so that the image distance of the image formed by the light emitted by the second waveguide substrate meets the preset requirements.
  • Any one of the first set of opposing surfaces may contain a curved surface of constant curvature or a free-form surface.
  • any surface of the first group of opposite surfaces includes a curved surface that can diverge the reflected light on the surface or converge the reflected light on the surface.
  • FIG. 4 is a schematic diagram of light propagation on a surface of the first set of opposite surfaces and a first reflective surface in an embodiment.
  • the surface 100 is any surface of the first set of opposite surfaces of the first waveguide substrate 1, and the surface 100 is a curved surface (the reference plane thereof is the surface 103), so that the reflected light rays of the incident light rays L3 and L4 on the surface 100 become divergent, so that the reflected light rays L3' and L4' after the light is reflected by the first reflective surface 101 become divergent, so that Finally, the image distance of the image formed by the light emitted by the second waveguide substrate 2 decreases.
  • the second waveguide base further includes at least a third set of opposite surfaces, and the light entering the second waveguide base is reflected on each surface of the third set of opposite surfaces and travels forward. Specifically, light incident on each surface of the third group of opposite surfaces satisfies the total reflection condition.
  • the third group of opposite surfaces may be parallel to each other or non-parallel, as long as the light can be reflected by each surface of the third group of opposite surfaces and propagate forward.
  • each second reflective surface forms an inclination angle with respect to any surface of the third group of opposite surfaces.
  • the fact that the second reflective surface forms an inclined angle with respect to a surface means that the chord of the second reflective surface is not parallel to and not perpendicular to the surface.
  • the inclination angle formed by the second reflective surface relative to a surface refers to the angle between the chord of the second reflective surface and the surface;
  • FIG. 5 is a schematic diagram of light propagation of the second waveguide base in an embodiment.
  • the light coupled into the second waveguide substrate 2 by the first waveguide substrate 1 can be reflected on the surfaces 2-A and 2-B of the second waveguide substrate 2 and propagate forward.
  • the second reflection surface 201 When encountering the second reflection surface 201 during the propagation process, a part of the light energy is reflected with a certain energy ratio, so that part of the light is emitted out of the second waveguide substrate 2.
  • the size of the inclination angle formed by each second reflective surface with respect to any surface of the third group of opposite surfaces as long as at least part of the light can be reflected and emitted out of the second waveguide substrate when the light propagating in the second waveguide matrix is incident on the second reflective surface.
  • it can be set according to the size of the first waveguide base body, the size of the second waveguide base body, and the expansion requirements of the light in the second dimension.
  • FIG. 6 is a schematic diagram of an effective light aperture corresponding to the propagation of light in the second waveguide substrate in an embodiment.
  • the light propagating through the second waveguide substrate 2 will be reflected when encountering each of the second reflection surfaces S1, S2, S3, S4, and S5, so that at least part of the light is emitted to the outside of the second waveguide substrate 2.
  • the total projection surface S of each of the second reflective surfaces S1, S2, S3, S4 and S5 on the surface 2-A determines the effective light aperture of the optical expansion waveguide.
  • the effective aperture of the optical expansion waveguide needs to ensure that the image from the image source can be fully expanded, that is, the image formed by the output light of the optical expansion waveguide contains complete information of the image in the first dimension and the second dimension.
  • the inclination angle formed by the second reflective surface with respect to a surface serving as the outcoupling surface in the third group of opposing surfaces is greater than 0° and less than or equal to 45°, which can be expressed as 0° ⁇ 45°, wherein, when the second reflective surface rotates counterclockwise relative to a surface, the inclination angle formed by the second reflective surface relative to the surface is positive.
  • a surface in the third group of opposite surfaces as an outcoupling surface means that the light reflected by the second reflective surface is emitted out of the second waveguide matrix through this surface. In this way, the light is expanded through the second reflective surface, and at the same time, the thickness of the second waveguide matrix can be reduced, and the whole waveguide can be made light and thin.
  • At least a part of at least one surface of the third group of opposing surfaces is a curved surface, so as to change the incident angle of the reflected light of the surface incident on the second reflective surface, so as to assist in realizing that the image distance of the image formed by the light emitted by the second waveguide substrate meets the preset requirements.
  • At least a part of at least one surface of the third group of opposite surfaces is a curved surface, which can change the reflection angle of light passing through the surface, and can change the incident angle of the reflected light on the surface incident on the second reflection surface, so as to combine with the first reflection surface using the curved surface or the second reflection surface using the curved surface to realize changing the image distance of the image formed by the light emitted by the optical expansion waveguide.
  • any surface of the third group of opposite surfaces are not specifically limited, as long as the outgoing angle of the light emitted by the second waveguide substrate can be changed so that the image distance of the image formed by the light emitted by the second waveguide substrate meets the preset requirements.
  • Any surface of the third set of opposing surfaces may contain a curved surface of constant curvature or a free-form surface.
  • any surface of the third group of opposite surfaces includes a curved surface that can diverge the reflected light on the surface or converge the reflected light on the surface.
  • the optical expansion waveguide when the optical expansion waveguide is applied to an optical display device, in order to meet the requirements for the resolution, contrast or clarity of the formed image, if the first reflective surface of the first waveguide substrate adopts a curved surface and at least one surface of the first group of opposite surfaces adopts a curved surface, the curved surface parameters of the first reflective surface of the first waveguide substrate and any surface of the first group of opposite surfaces should satisfy a certain relationship. If the second reflective surface of the second waveguide substrate adopts a curved surface and at least one surface of the third group of opposite surfaces adopts a curved surface, the surface parameters of the second reflective surface of the second waveguide substrate and any surface of the third group of opposite surfaces should satisfy a certain relationship. Please refer to FIG. 7. FIG.
  • FIG. 7 is a schematic diagram of the structural parameters of the reflective surface and the surface of any waveguide substrate in an embodiment.
  • the optical design is carried out with reference to the collimated spindle beam emitted by the object point on the axis.
  • the spindle beam is vertically incident on the coupling input surface of the waveguide substrate, the corresponding relationship of each parameter is:
  • ⁇ R2 ⁇ R1 - ⁇ o ;
  • ⁇ R1 ⁇ /2- ⁇ i ;
  • ⁇ i represents the angle between the coupling input surface and the horizontal reference plane of the waveguide substrate surface
  • ⁇ o represents the angle between the plane where the chord of the curved surface reflection surface is located and the horizontal reference plane of the waveguide substrate surface
  • ⁇ R1 represents the angle between the main axis ray and the normal of the horizontal reference surface of the waveguide substrate surface
  • ⁇ R2 represents the angle between the principal axis ray and the reference surface normal of the coupling output surface.
  • h s represents the local surface sagittal height of the curved waveguide corresponding to a single reflective surface
  • H s represents the local chord length of the curved surface waveguide corresponding to a single reflective surface
  • h r represents the local curved surface sagittal height corresponding to the curved reflective surface itself
  • H r represents the local chord length corresponding to the curved reflective surface itself.
  • N is the number of apertures required for adjustment according to the image distance
  • is the reference wavelength selected during optical design. According to the adjustment requirements of the specific image distance, the corresponding sagittal height and chord length can be calculated, so that the local curvature of the required curved reflective surface and the local curvature radius of the curved surface of the waveguide substrate can be obtained.
  • Fig. 8-1 and Fig. 8-2 are schematic diagrams of any surface of any opposite surface of the waveguide substrate in this embodiment adopting a curved surface.
  • any surface of the opposite surface of the waveguide substrate can be a free-form surface, a concave surface or a convex surface.
  • the first waveguide base further includes a first outcoupling surface for emitting the reflected light of the first reflective surface out of the first waveguide base
  • the second waveguide base further includes a second incoupling surface for allowing the light emitted by the first waveguide base to enter the second waveguide base
  • the first outcoupling surface and the second outcoupling surface are optically coaxial.
  • the optical coaxiality of the first outcoupling surface and the second incoupling surface means that the optical axes of the corresponding parts of the first outcoupling surface and the second incoupling surface are parallel.
  • the shape of the first outcoupling surface of the first waveguide substrate is not limited, and the shape of the second incoupling surface of the second waveguide substrate is not limited, as long as the first outcoupling surface and the second incoupling surface are optically coaxial.
  • the first outcoupling surface may be but not limited to a plane, an inclined plane, a sawtooth surface or a curved surface
  • the second coupling surface may be but not limited to a plane, an inclined plane, a sawtooth surface or a curved surface.
  • FIG. 9-1 to FIG. 9-4 are respectively four implementations of the first outcoupling surface of the first waveguide base and the second incoupling surface of the second waveguide base in this embodiment.
  • the relative positions of the first waveguide base and the second waveguide base are not limited, as long as the light coupled out of the first waveguide base can enter the second waveguide base.
  • Exemplary reference can be made to Fig. 10-1 to Fig. 10-3.
  • Fig. 10-1 to Fig. 10-3 are respectively three implementations of the arrangement positions of the first waveguide substrate and the second waveguide substrate in this embodiment.
  • the first waveguide substrate 1 can be placed in front, behind or placed on the second waveguide substrate 2.
  • the optical expansion waveguide of this embodiment can be applied to a near-eye display device, such as a head-mounted device, which can change the image distance of the image and is suitable for users with abnormal vision, and has a thin and light structure, which improves the user's comfort and visual experience.
  • a near-eye display device such as a head-mounted device

Abstract

一种光学扩展波导,其包括第一波导基体(1)和第二波导基体(2)。第一波导基体(1)使得进入其内部的光沿第一维方向扩展,第一波导基体(1)包括依次布置的多个第一反射面(101),第二波导基体(2)使得其内部的光沿着第二维方向扩展,第二波导基体(2)包括依次布置的多个第二反射面(201)。第一反射面(101)和第二反射面(201)中至少一者的至少局部为曲面,以便改变光的出射角度,使得由第二波导基体(2)发射出的光所成像的像距满足预设要求。

Description

一种光学扩展波导
本申请要求于2022年01月20日提交中国专利局、申请号为202210065286.6、发明名称为“一种光学扩展波导”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及光学器件领域,特别是涉及一种光学扩展波导。
背景技术
近眼显示是现今广受关注的科技领域,其光学系统包括微显示器和光学元件。目前,市场上关于近眼显示的光学方案更是百家争鸣。
其中,阵列波导方案采用半透半反光学面实现对光的扩展和出瞳,依据入射角等于反射角的反射定律,对构成全彩显示的三原色入射光无色散作用,从而可以保证所成图像无明显的颜色偏差,能够满足显示装置最基本的要求,且对于优化头戴的设计和美化外观有明显的优势。
然而,由于该方案成像于无穷远处的特性,应用该方案的显示装置适用于视力在1.2左右的人群,而一般人群(包括视力矫正)的视力在1.0左右,为此在使用此类显示装置时,佩戴者无法观看到清晰、良好的图像,给用户造成很大困扰。为了解决这一问题,主流方案是采用外部器件辅助调节,这样不仅增加了显示装置的体积和重量,还会降低用户的舒适度和观感体验。
发明内容
有鉴于此,本发明的目的是提供一种光学扩展波导,应用于光学显示装置能够改变所成像的像距,能够适用于非正常视力的用户,并且结构轻薄。
为实现上述目的,本发明提供如下技术方案:
一种光学扩展波导,包括第一波导基体和第二波导基体;
所述第一波导基体用于使得进入所述第一波导基体的光束沿着第一维方向扩展,所述第一波导基体包括依次布置的多个第一反射面,所述第一反射面用于将入射到所述第一反射面的光至少部分反射,使至少部分光耦合入所述第二波导基体;
所述第二波导基体用于使得进入所述第二波导基体的光束沿着第二维方向扩展,所述第二波导基体包括依次布置的多个第二反射面,所述第二反射面用于将入射到所述第二反射面的光至少部分反射,使至少部分光向所述第二波导基体外发射出;
所述第一反射面和所述第二反射面中至少一者的至少局部为曲面,使得由所述第二波导基体发射出的光所成像的像距满足预设要求。
优选的,所述第一反射面的至少局部为曲面,所述第一反射面使得被所述第一反射面反射的光发散;
或者,所述第二反射面的至少局部为曲面,所述第二反射面使得被所述第二反射面反射的光发散。
优选的,各个所述第一反射面分别相对于所述第一维方向形成倾斜角。
优选的,所述第一波导基体至少还包括第一组相对表面,进入所述第一波导基体的光在所述第一组相对表面的每一表面发生反射而向前传播。
优选的,所述第一组相对表面的至少一表面的至少局部为曲面,以改变该表面的反射光入射到所述第一反射面的入射角度,以辅助实现由所述第二波导基体发射出的光所成像的像距满足预设要求。
优选的,所述第一组相对表面的至少一表面使得该表面的反射光发散。
优选的,所述第二波导基体至少还包括第三组相对表面,进入所述第二波导基体的光在所述第三组相对表面的每一表面发生反射而向前传播。
优选的,各个所述第二反射面分别相对于所述第三组相对表面的任一表面形成倾斜角。
优选的,所述第二反射面相对于所述第三组相对表面中的作为耦出面的一表面形成的倾斜角大于0°小于等于45°,其中,以所述第二反射面 相对于一表面沿逆时针方向转动时,所述第二反射面相对于该表面形成的倾斜角为正。
优选的,所述第三组相对表面的至少一表面的至少局部为曲面,以改变该表面的反射光入射到所述第二反射面的入射角度,以辅助实现由所述第二波导基体发射出的光所成像的像距满足预设要求。
优选的,所述第三组相对表面的至少一表面使得被该表面反射的光发散。
优选的,所述第一波导基体还包括使所述第一反射面的反射光发射到所述第一波导基体之外的第一耦出面,所述第二波导基体还包括使所述第一波导基体发射出的光进入所述第二波导基体的第二耦入面,所述第一耦出面和所述第二耦入面光学同轴。
优选的,所述第一耦出面为平面、斜平面、锯齿面或者曲面,所述第二耦入面为平面、斜平面、锯齿面或者曲面。
优选的,所述第一波导基体前置、后置或者上置于所述第二波导基体。
由上述技术方案可知,本发明所提供的一种光学扩展波导包括第一波导基体和第二波导基体,第一波导基体使得进入第一波导基体的光束沿着第一维方向扩展,第一波导基体包括依次布置的多个第一反射面,第一反射面将入射到第一反射面的光至少部分反射,使至少部分光耦合入第二波导基体;第二波导基体使得进入第二波导基体的光束沿着第二维方向扩展,第二波导基体包括依次布置的多个第二反射面,第二反射面将入射到第二反射面的光至少部分反射,使至少部分光向第二波导基体外发射出。其中,第一反射面和第二反射面中至少一者的至少局部为曲面,以通过第一反射面或/和第二反射面改变光的出射角度,使得由第二波导基体发射出的光所成像的像距满足预设要求。因此,本发明的光学扩展波导应用于光学显示装置,能够改变所成像的像距,能够适用于非正常视力的用户,并且结构轻薄。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对 实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明一实施例中在第一反射面的光线传播示意图;
图2-1为图2-2所示光学扩展波导的左视图;
图2-2为本发明一实施例提供的光学扩展波导的主视图;
图3为本发明一实施例中第一波导基体的光线传播示意图;
图4为本发明一实施例中在第一组相对表面的一表面和第一反射面的光线传播示意图;
图5为本发明一实施例中第二波导基体的光线传播示意图;
图6为本发明一实施例中在第二波导基体中光线传播对应形成有效通光口径的示意图;
图7为本发明一实施例中任一波导基体采用曲面的反射面和表面的结构参数示意图;
图8-1为本发明实施例的任一波导基体相对表面的任一表面采用的一种曲面示意图;
图8-2为本发明实施例的任一波导基体相对表面的任一表面采用的又一种曲面示意图;
图9-1至图9-4分别为本发明实施例的第一波导基体的第一耦出面和第二波导基体的第二耦入面的四种实施方式示意图;
图10-1至图10-3分别为本发明实施例的第一波导基体和第二波导基体布置位置的三种实施方式示意图。
具体实施方式
为了使本技术领域的人员更好地理解本发明中的技术方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造 性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
本实施例提供一种光学扩展波导,包括第一波导基体和第二波导基体;
所述第一波导基体用于使得进入所述第一波导基体的光束沿着第一维方向扩展,所述第一波导基体包括依次布置的多个第一反射面,所述第一反射面用于将入射到所述第一反射面的光至少部分反射,使至少部分光耦合入所述第二波导基体;
所述第二波导基体用于使得进入所述第二波导基体的光束沿着第二维方向扩展,所述第二波导基体包括依次布置的多个第二反射面,所述第二反射面用于将入射到所述第二反射面的光至少部分反射,使至少部分光向所述第二波导基体外发射出;
所述第一反射面和所述第二反射面中至少一者的至少局部为曲面,使得由所述第二波导基体发射出的光所成像的像距满足预设要求。
进入第一波导基体的光束通过第一波导基体传播,光束的各部分光分别入射到各个第一反射面,第一反射面使入射到自身的光至少部分反射,使至少部分光耦合入第二波导基体,实现了进入第一波导基体的光束在第一维方向扩展。
进入第二波导基体的光束通过第二波导基体传播,光束的各部分光分别入射到各个第二反射面,第二反射面使入射到自身的光至少部分反射,使至少部分光向第二波导基体外发射出,实现了进入第二波导基体的光束在第二维方向扩展。
由第二波导基体发射出的光所成像的像距是指由第二波导基体发射出的光形成的像,对应的虚像到观看位置的距离。
其中,若第一波导基体的第一反射面至少局部为曲面,通过曲面能够改变光在第一反射面的反射角度,改变光耦合入第二波导基体的入射角度,能够改变光从第二波导基体发射出的出射角度。若第二波导基体的第二反射面至少局部为曲面,通过曲面能够改变光在第二反射面的反射角度,改变光从第二波导基体发射出的出射角度。因此,通过第一反射面和第二反射面中至少一者采用曲面,本光学扩展波导能够改变输出光的出射角度,改变本光学扩展波导输出光所成像的像距,使所成像的像距满足预设要求。
因此,本实施例的光学扩展波导应用于光学显示装置,能够改变所成像的像距,能够适用于非正常视力的用户,使非正常视力的用户能够观看到清晰、良好的图像,并且本实施例的光学扩展波导结构轻薄。
若第一波导基体的第一反射面至少局部为曲面,本实施例中,对第一反射面包含的曲面形状、曲面面积大小不做具体限定,只要能够改变由第二波导基体发射出的光的出射角度,使由第二波导基体发射出的光所成像的像距满足预设要求即可。第一反射面包含的曲面可以是固定曲率的曲面或者自由曲面。可选的,第一反射面采用曲面,可以使被第一反射面反射的光发散或者可以使被第一反射面反射的光会聚。
若第二波导基体的第二反射面至少局部为曲面,本实施例中,对第二反射面包含的曲面形状、曲面面积大小不做具体限定,只要能够改变由第二波导基体发射出的光的出射角度,使由第二波导基体发射出的光所成像的像距满足预设要求即可。第二反射面包含的曲面可以是固定曲率的曲面或者自由曲面。可选的,第二反射面采用曲面,可以使被第二反射面反射的光发散或者可以使被第二反射面反射的光会聚。
示例性的请参考图1所示,图1为一实施例中在第一反射面的光线传播示意图,如图所示,被第一波导基体的表面100反射的光线L1和光线L2分别入射到第一反射面101,第一反射面101为曲面。经过第一反射面101形成反射光线L1′和L2′。与光线L1和L2经过第一反射面101的参考平面102反射相比,经过第一反射面101的参考平面102形成反射光线L1″和L2″,反射光线L1′和L2′变得发散。这样使得由第二波导基体发射出的光所成像的像距减小。对于非正常视力的用户,所成像能够会聚在非正常视力用户的视网膜上。
上述基于图1,以在第一波导基体的第一反射面光线传播为例,说明了第一反射面采用曲面实现改变像距的原理,同理的,对于第二波导基体,其第二反射面采用曲面实现改变像距也是依据上述原理。
在第一波导基体中,各个第一反射面分别相对于第一维方向形成倾斜 角。第一反射面相对于第一维方向形成倾斜角是指第一反射面的弦与第一维方向不平行且不垂直。相应的,第一反射面相对于第一维方向形成的倾斜角是指第一反射面的弦与第一维方向之间的夹角。通过第一波导基体传播的光入射到第一反射面时,一部分光能量透射过第一反射面继续传播,一部分光能量被反射,耦合入第二波导基体。
本实施例中,对第一反射面分别相对于第一维方向形成倾斜角的角度大小不做限定,能够实现第一波导基体内传播的光入射到第一反射面时使至少部分光反射而耦合入第二波导基体即可。在实际应用中,可以根据第一波导基体的尺寸、第二波导基体的尺寸、对光在第一维方向的扩展要求进行设置,优选在满足对光的扩展要求下使光学扩展波导结构轻薄。
第一反射面在与第一维方向平行的平面上的投影面,其中该与第一维方向平行的平面位于第一反射面反射出光的一侧,决定了光学扩展波导输出光在第一维方向的通光口径。应用于光学显示装置中,光学扩展波导输出光在第一维方向的通光口径需要保证来自图像源的图像可以完全得到扩展,即光学扩展波导输出光所成像包含图像在第一维方向的完整信息。
第一波导基体至少还包括第一组相对表面,进入第一波导基体的光在所述第一组相对表面的每一表面发生反射而向前传播。具体的,光入射到第一组相对表面的每一表面满足全反射条件。第一组相对表面可以相互平行或者可以不平行,只要能够使得光经过第一组相对表面的每一表面发生反射而向前传播即可。
优选的,第一波导基体还可包括第二组相对表面,第二组相对表面和第一组相对表面形成闭合截面,进入第一波导基体的光在第一组相对表面和第二组相对表面的每一表面发生反射而向前传播。具体的,光入射到第二组相对表面的每一表面满足全反射条件。第二组相对表面可以相互平行或者可以不平行,只要能够使得光经过第二组相对表面的每一表面发生反射而向前传播即可。
示例性的请结合参考图2-1、图2-2和图3,图2-1为图2-2所示光学扩展波导的左视图,图2-2为一实施例提供的光学扩展波导的主视图,图 3为一实施例中第一波导基体的光线传播示意图。如图所示,进入第一波导基体1的光在第一波导基体1的四个表面1-A、1-B、1--C和1-D形成的截面内,会在各个表面进行反射而向前传播。在传播过程中遇到第一反射面101时,以一定的能量比例反射一部分光能量,使光耦合入第二波导基体2内。
在图3所示的第一波导基体1中,是以第一组相对表面1-A和1-B相互平行以及第二组相对表面1--C和1-D相互平行为例进行说明的,可以理解的是,图3所示仅是举例说明。在其它实施方式中,第一组相对表面可以不平行,第二组相对表面可以不平行。
在一种优选实施方式中,第一组相对表面的至少一表面的至少局部为曲面,以改变该表面的反射光入射到所述第一反射面的入射角度,以辅助实现由所述第二波导基体发射出的光所成像的像距满足预设要求。第一组相对表面的至少一表面的至少局部为曲面,能够改变光经过该表面后的反射角度,可以改变该表面的反射光入射到第一反射面的入射角度,从而辅助实现改变本光学扩展波导发射出的光所成像的像距。
本实施例中,对第一组相对表面的任一表面包含的曲面形状、曲面面积大小不做具体限定,只要能够改变由第二波导基体发射出的光的出射角度,使由第二波导基体发射出的光所成像的像距满足预设要求即可。第一组相对表面的任一表面包含的曲面可以是固定曲率的曲面或者自由曲面。可选的,第一组相对表面的任一表面包含的曲面可以使该表面的反射光发散或者可以使该表面的反射光会聚。
示例性的请参考图4所示,图4为一实施例中在第一组相对表面的一表面和第一反射面的光线传播示意图,如图所示,表面100为第一波导基体1的第一组相对表面的任一表面,表面100为曲面(其参考平面为表面103),使得入射光线L3和L4在表面100的反射光线变得发散,使得光线经过第一反射面101反射后的反射光线L3′和L4′变得发散,使得最终由第二波导基体2发射出的光所成像的像距减小。
第二波导基体至少还包括第三组相对表面,进入第二波导基体的光在所述第三组相对表面的每一表面发生反射而向前传播。具体的,光入射到第三组相对表面的每一表面满足全反射条件。第三组相对表面可以相互平行或者可以不平行,只要能够使得光经过第三组相对表面的每一表面发生反射而向前传播即可。
可选的,各个第二反射面分别相对于第三组相对表面的任一表面形成倾斜角。第二反射面相对于一表面形成倾斜角是指第二反射面的弦与该表面不平行且不垂直。相应的,第二反射面相对于一表面形成的倾斜角是指第二反射面的弦与该表面之间的夹角;若一表面为曲面,则第二反射面相对于该表面形成的倾斜角是指第二反射面的弦与该表面的炫之间的夹角。通过第二波导基体传播的光入射到第二反射面时,一部分光能量透射过第二反射面继续传播,一部分光能量被反射,向第二波导基体外发射出。
示例性的请结合参考图2-1、图2-2和图5,图5为一实施例中第二波导基体的光线传播示意图。如图所示,由第一波导基体1耦合进入第二波导基体2的光可以在第二波导基体2的表面2-A和2-B进行反射而向前传播,在传播过程中遇到第二反射面201时,以一定的能量比例反射一部分光能量,使一部分光向第二波导基体2外发射出。
本实施例中,对各个第二反射面分别相对于第三组相对表面的任一表面形成倾斜角的角度大小不做限定,能够实现第二波导基体内传播的光入射到第二反射面时使至少部分光反射向第二波导基体外发射出即可。在实际应用中,可以根据第一波导基体的尺寸、第二波导基体的尺寸、对光在第二维方向的扩展要求进行设置。
示例性的参考图6所示,图6为一实施例中在第二波导基体中光线传播对应形成有效通光口径的示意图,通过第二波导基体2传播的光分别遇到各个第二反射面S1、S2、S3、S4和S5会发生反射,使至少部分光向第二波导基体2外发射出。各个第二反射面S1、S2、S3、S4和S5在表面2-A的总投影面S,决定了本光学扩展波导的有效通光口径。应用于光学显示装置中,光学扩展波导的有效通光口径需要保证来自图像源的图像可以完全得到扩展,即光学扩展波导输出光所成像包含图像在第一维方向以及第 二维方向的完整信息。
优选的,第二反射面相对于第三组相对表面中的作为耦出面的一表面形成的倾斜角大于0°小于等于45°,可表示为0°<β≤45°,其中,以所述第二反射面相对于一表面沿逆时针方向转动时,所述第二反射面相对于该表面形成的倾斜角为正。第三组相对表面中的作为耦出面的一表面是指被第二反射面反射的光通过该表面向第二波导基体外发射出。这样通过第二反射面使光得到扩展,同时可以减小第二波导基体的厚度,可以使整个波导轻薄。
在一种优选实施方式中,第三组相对表面的至少一表面的至少局部为曲面,以改变该表面的反射光入射到所述第二反射面的入射角度,以辅助实现由所述第二波导基体发射出的光所成像的像距满足预设要求。第三组相对表面的至少一表面的至少局部为曲面,能够改变光经过该表面后的反射角度,可以改变该表面的反射光入射到第二反射面的入射角度,从而与采用曲面的第一反射面或者采用曲面的第二反射面相结合,实现改变本光学扩展波导发射出的光所成像的像距。
本实施例中,对第三组相对表面的任一表面包含的曲面形状、曲面面积大小不做具体限定,只要能够改变由第二波导基体发射出的光的出射角度,使由第二波导基体发射出的光所成像的像距满足预设要求即可。第三组相对表面的任一表面包含的曲面可以是固定曲率的曲面或者自由曲面。可选的,第三组相对表面的任一表面包含的曲面可以使该表面的反射光发散或者可以使该表面的反射光会聚。
在进行光学设计时,本光学扩展波导应用于光学显示装置中时,为了使所成图像的分辨率、对比度或者清晰度等满足要求,若第一波导基体的第一反射面采用曲面以及第一组相对表面的至少一表面采用曲面,第一波导基体的第一反射面和第一组相对表面的任一表面的曲面参数应满足一定关系。若第二波导基体的第二反射面采用曲面以及第三组相对表面的至少一表面采用曲面,第二波导基体的第二反射面和第三组相对表面的任一表面的曲面参数应满足一定关系。请结合参考图7,图7为一实施例中任一 波导基体的采用曲面的反射面和表面的结构参数示意图,以轴上物点发出的经过准直的主轴光束为参考进行光学设计,当主轴光束垂直入射到波导基体的耦合输入面时,各参数的相应关系为:
α R2=α R1o
α R1=π/2-β i
其中,β i表示耦合输入面和波导基体表面的水平参考面的夹角,β o表示曲面反射面的弦所在平面和波导基体表面的水平参考面的夹角,α R1表示主轴光线和波导基体表面的水平参考面法线的夹角,α R2表示主轴光线和耦合输出面的参考面法线的夹角。
h s=h r=N*(λ/2);
H r=H/(sin(β o));
H s=H/(tan(β o));
其中,h s表示单个反射面对应的曲面波导的局部曲面矢高,H s表示单个反射面对应的曲面波导的局部弦长,h r表示曲面反射面本身对应的局部曲面矢高,H r表示曲面反射面本身对应的局部弦长。N是按照像距调节需要的光圈数,λ是光学设计时选取的参考波长。根据具体像距的调节需求,可以通过对应的矢高以及弦长进行计算,从而可以求得所需得曲面反射面的局部曲率以及波导基体曲面表面的局部曲率半径。
示例性的可参考图8-1和图8-2,图8-1和图8-2分别为本实施例的任一波导基体相对表面的任一表面采用曲面的示意图,如图所示波导基体相对表面的任一表面可以是自由曲面、凹面或者凸面。
进一步的,第一波导基体还包括使所述第一反射面的反射光发射到所述第一波导基体之外的第一耦出面,所述第二波导基体还包括使所述第一波导基体发射出的光进入所述第二波导基体的第二耦入面,所述第一耦出面和所述第二耦入面光学同轴。第一耦出面和第二耦入面光学同轴是指第一耦出面与第二耦入面对应局部的光轴平行。
本实施例中,对第一波导基体的第一耦出面的形状不做限定,对第二波导基体的第二耦入面的形状不做限定,只要满足第一耦出面和第二耦入 面光学同轴即可。第一耦出面可以是但不限于平面、斜平面、锯齿面或者曲面,第二耦入面可以是但不限于平面、斜平面、锯齿面或者曲面。示例性的可参考图9-1至图9-4,图9-1至图9-4分别为本实施例的第一波导基体的第一耦出面和第二波导基体的第二耦入面的四种实施方式。
本实施例中,对第一波导基体与第二波导基体的相对位置不做限定,只要能够使得第一波导基体耦合出的光进入第二波导基体即可。示例性的可参考图10-1至图10-3,图10-1至图10-3分别为本实施例的第一波导基体和第二波导基体的布置位置的三种实施方式,如图所示,第一波导基体1可以是前置、后置或者上置于第二波导基体2。
本实施例的光学扩展波导可以应用于近眼显示装置,比如头戴式设备,能够改变所成像的像距,能够适用于非正常视力的用户,并且结构轻薄,提升了用户使用的舒适度和观感体验。
以上对本发明所提供的一种光学扩展波导进行了详细介绍。本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

Claims (14)

  1. 一种光学扩展波导,其特征在于,包括第一波导基体和第二波导基体;
    所述第一波导基体用于使得进入所述第一波导基体的光束沿着第一维方向扩展,所述第一波导基体包括依次布置的多个第一反射面,所述第一反射面用于将入射到所述第一反射面的光至少部分反射,使至少部分光耦合入所述第二波导基体;
    所述第二波导基体用于使得进入所述第二波导基体的光束沿着第二维方向扩展,所述第二波导基体包括依次布置的多个第二反射面,所述第二反射面用于将入射到所述第二反射面的光至少部分反射,使至少部分光向所述第二波导基体外发射出;
    所述第一反射面和所述第二反射面中至少一者的至少局部为曲面,使得由所述第二波导基体发射出的光所成像的像距满足预设要求。
  2. 根据权利要求1所述的光学扩展波导,其特征在于,所述第一反射面的至少局部为曲面,所述第一反射面使得被所述第一反射面反射的光发散;
    或者,所述第二反射面的至少局部为曲面,所述第二反射面使得被所述第二反射面反射的光发散。
  3. 根据权利要求1所述的光学扩展波导,其特征在于,各个所述第一反射面分别相对于所述第一维方向形成倾斜角。
  4. 根据权利要求1所述的光学扩展波导,其特征在于,所述第一波导基体至少还包括第一组相对表面,进入所述第一波导基体的光在所述第一组相对表面的每一表面发生反射而向前传播。
  5. 根据权利要求4所述的光学扩展波导,其特征在于,所述第一组相对表面的至少一表面的至少局部为曲面,以改变该表面的反射光入射到所述第一反射面的入射角度,以辅助实现由所述第二波导基体发射出的光所成像的像距满足预设要求。
  6. 根据权利要求5所述的光学扩展波导,其特征在于,所述第一组相对表面的至少一表面使得该表面的反射光发散。
  7. 根据权利要求1所述的光学扩展波导,其特征在于,所述第二波导基体至少还包括第三组相对表面,进入所述第二波导基体的光在所述第三组相对表面的每一表面发生反射而向前传播。
  8. 根据权利要求7所述的光学扩展波导,其特征在于,各个所述第二反射面分别相对于所述第三组相对表面的任一表面形成倾斜角。
  9. 根据权利要求8所述的光学扩展波导,其特征在于,所述第二反射面相对于所述第三组相对表面中的作为耦出面的一表面形成的倾斜角大于0°小于等于45°,其中,以所述第二反射面相对于一表面沿逆时针方向转动时,所述第二反射面相对于该表面形成的倾斜角为正。
  10. 根据权利要求7所述的光学扩展波导,其特征在于,所述第三组相对表面的至少一表面的至少局部为曲面,以改变该表面的反射光入射到所述第二反射面的入射角度,以辅助实现由所述第二波导基体发射出的光所成像的像距满足预设要求。
  11. 根据权利要求10所述的光学扩展波导,其特征在于,所述第三组相对表面的至少一表面使得被该表面反射的光发散。
  12. 根据权利要求1-11任一项所述的光学扩展波导,其特征在于,所述第一波导基体还包括使所述第一反射面的反射光发射到所述第一波导基体之外的第一耦出面,所述第二波导基体还包括使所述第一波导基体发射出的光进入所述第二波导基体的第二耦入面,所述第一耦出面和所述第二耦入面光学同轴。
  13. 根据权利要求12所述的光学扩展波导,其特征在于,所述第一耦出面为平面、斜平面、锯齿面或者曲面,所述第二耦入面为平面、斜平面、锯齿面或者曲面。
  14. 根据权利要求1-11任一项所述的光学扩展波导,其特征在于,所述第一波导基体前置、后置或者上置于所述第二波导基体。
PCT/CN2022/099123 2022-01-20 2022-06-16 一种光学扩展波导 WO2023137960A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210065286.6A CN114236682B (zh) 2022-01-20 2022-01-20 一种光学扩展波导
CN202210065286.6 2022-01-20

Publications (1)

Publication Number Publication Date
WO2023137960A1 true WO2023137960A1 (zh) 2023-07-27

Family

ID=80747079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/099123 WO2023137960A1 (zh) 2022-01-20 2022-06-16 一种光学扩展波导

Country Status (2)

Country Link
CN (1) CN114236682B (zh)
WO (1) WO2023137960A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114236682B (zh) * 2022-01-20 2022-12-09 上海理湃光晶技术有限公司 一种光学扩展波导

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090322653A1 (en) * 2008-06-25 2009-12-31 Samsung Electronics Co., Ltd. Compact virtual display
CN104656258A (zh) * 2015-02-05 2015-05-27 上海理湃光晶技术有限公司 屈光度可调的曲面波导近眼光学显示器件
CN108235739A (zh) * 2016-10-09 2018-06-29 鲁姆斯有限公司 使用矩形波导的孔径倍增器
CN111175971A (zh) * 2019-10-30 2020-05-19 北京理工大学 一种近眼光学显示系统、增强现实眼镜
CN112764217A (zh) * 2019-11-01 2021-05-07 重庆爱奇艺智能科技有限公司 一种近眼显示系统
CN114236852A (zh) * 2022-01-20 2022-03-25 上海理湃光晶技术有限公司 一种光学显示装置
CN114236682A (zh) * 2022-01-20 2022-03-25 上海理湃光晶技术有限公司 一种光学扩展波导

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8643948B2 (en) * 2007-04-22 2014-02-04 Lumus Ltd. Collimating optical device and system
CN104678555B (zh) * 2015-01-24 2017-12-08 上海理湃光晶技术有限公司 屈光度矫正的齿形镶嵌平面波导光学器件
CN105929545B (zh) * 2016-06-20 2019-03-26 东莞市长资实业有限公司 波导式的头戴显示器的光学装置
MX2020005226A (es) * 2017-11-21 2020-08-24 Lumus Ltd Dispositivo de expansion de apertura optica para pantallas de vision directa.

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090322653A1 (en) * 2008-06-25 2009-12-31 Samsung Electronics Co., Ltd. Compact virtual display
CN104656258A (zh) * 2015-02-05 2015-05-27 上海理湃光晶技术有限公司 屈光度可调的曲面波导近眼光学显示器件
CN108235739A (zh) * 2016-10-09 2018-06-29 鲁姆斯有限公司 使用矩形波导的孔径倍增器
CN111175971A (zh) * 2019-10-30 2020-05-19 北京理工大学 一种近眼光学显示系统、增强现实眼镜
CN112764217A (zh) * 2019-11-01 2021-05-07 重庆爱奇艺智能科技有限公司 一种近眼显示系统
CN114236852A (zh) * 2022-01-20 2022-03-25 上海理湃光晶技术有限公司 一种光学显示装置
CN114236682A (zh) * 2022-01-20 2022-03-25 上海理湃光晶技术有限公司 一种光学扩展波导

Also Published As

Publication number Publication date
CN114236682B (zh) 2022-12-09
CN114236682A (zh) 2022-03-25

Similar Documents

Publication Publication Date Title
TWI751262B (zh) 交疊的反射面構造
US7839575B2 (en) Optical device for use with scanned beam light sources
JP7131145B2 (ja) ヘッドマウントディスプレイ
TWI490543B (zh) 用於偏移頭戴式顯示器之光束傾斜
CN104678555B (zh) 屈光度矫正的齿形镶嵌平面波导光学器件
US20070109658A1 (en) Image Display Apparatus and Image Display System
WO2023137959A1 (zh) 一种光学显示装置
CN104656258A (zh) 屈光度可调的曲面波导近眼光学显示器件
KR100429206B1 (ko) 씨어라운드 헤드 마운티드 디스플레이 장치
WO2021179786A1 (zh) Ar光学系统和ar显示设备
WO2021042891A1 (zh) 近眼显示光学系统和近眼显示设备
JP2002323672A (ja) 光路分割素子及びそれを用いた画像表示装置
US11754838B2 (en) Near-eye optical system
CN215117019U (zh) 一种光学镜组及近眼显示装置
WO2023137960A1 (zh) 一种光学扩展波导
CN113253465A (zh) 波导片组件及光机前置的折叠ar目镜
CN113568178A (zh) 一种波导片模型及ar眼镜
TWI790700B (zh) 光學裝置
US11644673B2 (en) Near-eye optical system
CN113238382A (zh) 一种单目增强现实系统、双目增强现实系统及头戴显示器
CN114326123A (zh) 一种近眼显示装置
CN208314329U (zh) 一种单眼大视场近眼显示光学系统及头戴式显示设备
CN215494352U (zh) 一种单目增强现实系统、双目增强现实系统及头戴显示器
CN111474719A (zh) 波导装置和增强现实设备
CN219936206U (zh) 一种阵列波导系统及近眼显示设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22921391

Country of ref document: EP

Kind code of ref document: A1