WO2023137939A1 - Procédé de commande de trajectoire de mouvement d'un dispositif mobile sur un tube circulaire - Google Patents

Procédé de commande de trajectoire de mouvement d'un dispositif mobile sur un tube circulaire Download PDF

Info

Publication number
WO2023137939A1
WO2023137939A1 PCT/CN2022/095282 CN2022095282W WO2023137939A1 WO 2023137939 A1 WO2023137939 A1 WO 2023137939A1 CN 2022095282 W CN2022095282 W CN 2022095282W WO 2023137939 A1 WO2023137939 A1 WO 2023137939A1
Authority
WO
WIPO (PCT)
Prior art keywords
mobile device
arc length
theoretical
axis
points
Prior art date
Application number
PCT/CN2022/095282
Other languages
English (en)
Chinese (zh)
Inventor
张泽清
徐振峰
李桐
朱东明
梁辉
高波
余蓓蓓
占美杰
赵刚
梅建峰
Original Assignee
中铁九桥工程有限公司
中铁高新工业股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中铁九桥工程有限公司, 中铁高新工业股份有限公司 filed Critical 中铁九桥工程有限公司
Publication of WO2023137939A1 publication Critical patent/WO2023137939A1/fr

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/404Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for compensation, e.g. for backlash, overshoot, tool offset, tool wear, temperature, machine construction errors, load, inertia
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/04Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by terrestrial means
    • G01C21/06Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by terrestrial means involving measuring of drift angle; involving correction for drift
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback

Definitions

  • the invention relates to the technical field of motion trajectory control, in particular to a method for controlling the motion trajectory of a mobile device on a circular pipe.
  • the mobile device moves around the circular pipe at a fixed angle to the pipe axis, and its theoretical trajectory is an ellipse.
  • its theoretical trajectory is an ellipse.
  • due to the limitations of on-site installation conditions and mechanical movement wear it is impossible to ensure that the running direction of the mobile device and the axis of the circular pipe are always maintained at a preset angle, so that the actual trajectory of the walking deviates greatly from the theoretical ellipse, and it is impossible to accurately control the movement trajectory of the mobile device on the circular pipe.
  • the present invention aims to propose a method for controlling the movement trajectory of a mobile device on a circular pipe, so as to solve the technical problem that the movement trajectory of the mobile device on the circular pipe cannot be accurately controlled and the deviation is large.
  • a method for controlling the movement trajectory of a mobile device on a circular pipe comprising the following steps:
  • the mobile device travels at a preset deflection angle relative to the axis of the circular pipe, and establishes a theoretical elliptic equation of the movement track of the mobile device on the circular pipe, wherein the major axis of the ellipse is on the X axis, and the minor axis of the ellipse is on the Y axis;
  • the mobile device since the mobile device walks on the circular pipe at a preset deflection angle relative to the circular pipe axis, its theoretical trajectory is an ellipse.
  • the instantaneous movement direction of the mobile device is the same, and the arc length of two points on the theoretical trajectory is calculated to be the theoretical arc length of any two points in the real-time walking process of the mobile device; then the actual arc length of the mobile device is measured; the deviation between the theoretical arc length and the actual arc length is continuously corrected until they are consistent.
  • the real-time correction of the trajectory of the mobile device on the circular tube can be realized, and the trajectory control accuracy can be improved.
  • the actual arc length of the mobile device is measured using a first encoder, and the first encoder is arranged on the traveling wheel of the mobile device; the deflection angle of the traveling direction of the mobile device relative to the axis of the circular tube is measured using a second encoder, and the second encoder is arranged on the direction motor of the traveling wheel.
  • the theoretical elliptic equation is:
  • the semi-minor axis of the ellipse b the radius R of the circular tube, the semi-major axis of the ellipse ⁇ is the deflection angle value measured by the second encoder.
  • the angle between the motion direction of the mobile device at the two selected points and the X-axis is measured by an inclination sensor.
  • said calculating the theoretical arc length between the selected two points includes the following steps:
  • said step of calculating the theoretical arc length between the selected two points according to the coordinates of the selected two points includes:
  • the theoretical movement track of the mobile device on the circular pipe is a perfect circle.
  • the theoretical arc length between the two points selected for said calculation is: Wherein ⁇ 1 and ⁇ 2 are angles between the moving directions of the mobile device at the two selected points with respect to the X axis respectively.
  • adjusting the deflection angle of the mobile device relative to the axis of the circular tube includes the following steps:
  • a magnet is arranged inside the traveling wheel, and the round pipe is a steel pipe or an iron pipe.
  • FIG. 1 is a flow chart of a method for controlling a movement track of a mobile device on a circular pipe according to an embodiment of the present invention
  • FIG. 2 is a front view of the mobile device moving on the circular pipe according to the embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a mobile device according to an embodiment of the present invention.
  • FIG. 4 is a top view of a mobile device moving on a circular pipe according to an embodiment of the present invention.
  • Fig. 5 is a schematic diagram of a movement trajectory of a mobile device according to an embodiment of the present invention.
  • first and second mentioned in the embodiments of the present invention are only used for description purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Thus, a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features.
  • a coordinate system XY is set, wherein the X axis is the direction shown by the short axis of the ellipse, that is, the diameter of the circular tube, and the Y axis is the direction shown by the long axis of the ellipse.
  • the length of the motion track 3 of the mobile device 1 on the circular pipe 2 can generally be calculated by counting the pulses of the encoder.
  • the first method can be to set a rack on the circular tube and a running gear on the mobile device.
  • the purpose of controlling the mobile device to move according to the predetermined trajectory is achieved through the mutual meshing of the gear and rack.
  • the direction is specified, but with the passage of time, the progress of the walking process, the wear and tear between the equipment and the actual installation conditions make the walking direction of the mobile equipment gradually deviate from the specified direction, and the movement trajectory has a large deviation.
  • the method for controlling the movement trajectory of a mobile device on a circular pipe includes the following steps:
  • the mobile device 1 travels at a preset deflection angle relative to the axis of the circular tube 2, and establishes a theoretical ellipse equation of the motion track 3 of the mobile device 1 on the circular tube 2, wherein the major axis of the ellipse is on the X axis and the minor axis of the ellipse is on the Y axis.
  • the mobile device 1 includes a traveling wheel 11, a direction motor 12, a control box 13 and a power supply 14, the direction motor 12 drives and connects the traveling wheel 11 to control the walking direction of the traveling wheel 11, the control box 13 controls the direction motor 12 to start and stop, and the power supply 14 supplies power to the control box 13.
  • the mobile device 1 is placed on the circumferential side wall of the round pipe 2 , and the running wheels 11 of the mobile device 1 can move along the circumferential side wall of the round pipe 2 .
  • the traveling wheel 11 of the mobile device 1 is in vertical contact with the circumferential side wall of the round tube 2 at the beginning, and the moving direction of the traveling wheel 11 is at a preset deflection angle with the axis of the round tube 2, where the deflection angle is ⁇ 90°.
  • the mobile device 1 keeps walking at a preset deflection angle with the axis of the round tube 2, and its trajectory is an ellipse.
  • the short axis of the ellipse is the radius of the round tube. related.
  • the motion trajectory of the mobile device 1 is shown in Figures 4-5.
  • the X-axis is established by the straight line where the major axis of the ellipse is located, and the Y-axis is established by the straight line where the minor axis of the ellipse is located.
  • the point where the major axis and the minor axis of the ellipse intersect is the coordinate origin.
  • the established coordinate system is shown in Figure 5.
  • the deflection angle is 90°
  • the major axis and the minor axis of the ellipse are equal to the radius of the circular tube 2
  • the theoretical motion trajectory 3 is a special ellipse, that is, a perfect circle; when 0° ⁇ deflection angle ⁇ 90°, the theoretical motion trajectory of the mobile device 1 is an ellipse. , the flatter the ellipse is.
  • S2 Select any two points in the actual walking process of the mobile device 1, measure the angle between the motion direction of the mobile device 1 at the two selected points relative to the X axis, and calculate the theoretical arc length between the selected two points in combination with the theoretical elliptic equation.
  • any two points F 1 and F 2 during the walking process of the mobile device 1.
  • the instantaneous motion direction of the mobile device 1 at points F 1 and F 2 is the direction shown by the line tangent to the ellipse in FIG . Regardless of whether the two points F 1 and F 2 are on the theoretical trajectory or not, two points can always be found on the theoretical trajectory whose tangent direction to the theoretical trajectory is the same as the instantaneous motion direction of points F 1 and F 2 .
  • the calculation of the theoretical arc length between the selected two points includes the following steps:
  • the formula with the formula Simultaneously form a system of equations, in which a and b are related to the deflection angle ⁇ and the radius R of the circular tube can be calculated, and the angles ⁇ 1 and ⁇ 2 between the instantaneous direction of motion of the mobile device 1 at points F 1 and F 2 and the X-axis are substituted into the above equations, and the coordinates (X1, Y1) and (X2, Y2) of points F 1 and F 2 can be solved by the simultaneous equations.
  • the interval between the angles ⁇ 1 and ⁇ 2 between the motion directions of the selected two points relative to the X-axis is divided into multiple sub-sections, and the step S22 is repeated to calculate the coordinates of the two ends of each sub-section in turn, and then calculate the straight-line distance between the two coordinates, and add them up segment by segment to obtain the theoretical arc length between the selected two points.
  • the interval between ⁇ 1 and ⁇ 2 is equally divided into 10,000 small intervals, and the angle values corresponding to the two ends of the first small interval are ⁇ 1 , Repeat step S22 to set ⁇ 1 , These two angle values are substituted into the equation system, and the ⁇ 1 , The coordinates corresponding to these two points, and then calculate the straight-line distance between the two points according to the straight-line distance formula between the two points; the angle corresponding to the two ends of the angle between the second cell is and Use the same method to calculate the coordinates corresponding to these two points, and then calculate the second straight - line distance ; repeat the above operation, calculate the distance between the two ends of different intervals in turn, and sum the 10,000 straight-line distances, which is approximately equal to the theoretical arc length corresponding to the two points F 1 and F 2 .
  • the actual arc length of the mobile device 1 is the measured distance between the two selected points.
  • the arc length between points A 1 and A 2 is greater than the arc length between points A 1 ' and A 2 ' , that is , when the moving car turns at the same angle relative to the horizontal direction, the smaller ⁇ is, the longer the theoretical arc length of the mobile device will be.
  • the mobile device 1 moves under the condition that the included angle ⁇ is 30°, it is measured that the included angle relative to the horizontal direction is 5° at the A 1 point, and 50° relative to the horizontal direction at the A 2 point, and the theoretical arc length between points A 1 and A 2 is calculated as L 1 ; At point 2 ', the angle relative to the horizontal direction is 50°, and the theoretical arc length between points A 1 ' and A 2 ' is calculated to be L 2 , then L 1 >L 2 .
  • the deflection angle of the actual travel direction of the mobile device 1 relative to the axis of the circular tube is smaller than the preset deflection angle.
  • the deflection angle of the mobile device 1 needs to be increased.
  • the method of observing while debugging can be adopted until the actual arc length is consistent with the theoretical arc length, thus realizing the control of the movement track of the mobile device 1 on the circular tube 2 .
  • the actual arc length of the mobile device 1 is measured by the first encoder 4, and the first encoder 4 is arranged on the traveling wheel 11 of the mobile device 1; the deflection angle of the traveling direction of the mobile device 1 relative to the axis of the circular tube 2 is measured by the second encoder 5, and the second encoder 5 is arranged on the direction motor 12 of the traveling wheel 11.
  • the first encoder 4 is a high-precision encoder, which is used to measure the actual arc length of the mobile device, which is convenient for comparison with the calculated theoretical arc length for trajectory correction;
  • the second encoder 5 is an absolute value encoder, which measures the deflection angle of the running direction of the running wheel 11 relative to the axis of the circular tube 2, and when there is a deviation between the actual trajectory and the theoretical trajectory, start the direction motor 12 to adjust the deflection angle of the running wheel 11.
  • the angle between the motion direction of the mobile device 1 at the two selected points and the X-axis is measured by the inclination sensor 6 .
  • the inclination sensor 6 can realize fast angle measurement.
  • magnets are arranged inside the traveling wheel 11, and the round pipe 2 is a steel pipe or an iron pipe.
  • the running wheel 11 with a magnet is used to move on the steel pipe or iron pipe, and the magnetic attraction between the magnet and the steel pipe can be used to make the running wheel 11 adsorb on the round pipe 2, so as to avoid the problem that the actual arc length measured by the first encoder 4 has an error due to slipping and idling during the running process of the mobile device 1.
  • the moving track of the mobile device on the round tube can be controlled by the above-mentioned control method of the moving track of the mobile device on the round tube, and it can be applied to the cutting and positioning of the round tube, for example, an ellipse section needs to be cut on the round tube; or it can be used to measure the arc of the round tube.
  • the mobile device moves on the arc surface of the round tube to be measured in a direction of 90° to the axis of the round tube, and compares the actual running length measured by the moving track encoder with the theoretical arc length calculated by using the angle change (the method shown in S21-S23 above).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

La présente invention se rapporte au domaine technique de la commande de trajectoire de mouvement. L'invention concerne un procédé pour commander une trajectoire de mouvement d'un dispositif mobile sur un tube circulaire. Le procédé de commande d'une trajectoire de mouvement d'un dispositif mobile sur un tube circulaire comprend les étapes suivantes : S1, amener un dispositif mobile à se déplacer selon un angle de déflexion prédéfini par rapport à l'axe d'un tube circulaire, et établir une équation elliptique théorique d'une trajectoire de mouvement du dispositif mobile sur le tube circulaire, l'axe majeur de l'ellipse étant sur un axe X, et son axe mineur étant sur un axe Y ; S2, sélectionner deux points quelconques dans un processus de déplacement réel du dispositif mobile, mesurer un angle inclus entre l'axe X et la direction dans laquelle le dispositif mobile se déplace entre les deux points sélectionnés, et calculer une longueur d'arc théorique entre les deux points sélectionnés en combinaison avec l'équation elliptique théorique ; et S3, comparer la longueur d'arc théorique calculée avec une longueur d'arc réelle sur laquelle le dispositif mobile se déplace, et s'il existe un écart entre la longueur d'arc réelle et la longueur d'arc théorique, ajuster l'angle de déflexion du dispositif mobile par rapport à l'axe du tube circulaire. Le procédé pour commander une trajectoire de mouvement d'un dispositif mobile sur un tube circulaire peut commander efficacement une trajectoire de déplacement d'un dispositif mobile.
PCT/CN2022/095282 2022-01-24 2022-05-26 Procédé de commande de trajectoire de mouvement d'un dispositif mobile sur un tube circulaire WO2023137939A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210119996.2 2022-01-24
CN202210119996.2A CN114563982B (zh) 2022-01-24 2022-01-24 一种移动设备在圆管上运动轨迹的控制方法

Publications (1)

Publication Number Publication Date
WO2023137939A1 true WO2023137939A1 (fr) 2023-07-27

Family

ID=81714280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/095282 WO2023137939A1 (fr) 2022-01-24 2022-05-26 Procédé de commande de trajectoire de mouvement d'un dispositif mobile sur un tube circulaire

Country Status (2)

Country Link
CN (1) CN114563982B (fr)
WO (1) WO2023137939A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116695235B (zh) * 2023-08-08 2023-10-24 苏州晨晖智能设备有限公司 一种抑制晶体划弧的控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59116011A (ja) * 1982-12-22 1984-07-04 Nippon Steel Corp ロボツトによる寸法形状測定方法
CN101149623A (zh) * 2007-11-02 2008-03-26 华中科技大学 一种管道外爬行器控制装置
EP2882544A1 (fr) * 2012-08-10 2015-06-17 SMS Meer GmbH Dispositif et procédé pour la mesure intérieure optique d'un tube
CN110609553A (zh) * 2019-09-16 2019-12-24 哈尔滨工程大学 一种用于铺管船舶圆弧路径的los导引控制方法
CN113253745A (zh) * 2021-03-23 2021-08-13 华南理工大学 一种四足管道机器人周向运动位姿规划方法
CN113334389A (zh) * 2021-08-02 2021-09-03 宝信软件(南京)有限公司 一种钢管管端机器人轨迹自适应及纠偏系统及方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1199114A (fr) * 1982-09-20 1986-01-07 Bruce W. Bradshaw Methode et dispositif d'alignement des voies ferrees courbes
FR2656435B1 (fr) * 1989-12-22 1996-07-05 Commissariat Energie Atomique Procede de recalage sur une trajectoire theorique pour un vehicule en modifiant la courbure de la trajectoire reelle.
JP5113747B2 (ja) * 2006-06-28 2013-01-09 Thk株式会社 加工装置及び加工装置の制御方法
FR2960302B1 (fr) * 2010-05-21 2013-03-22 Jerome Evrard Procede et dispositif de releve dynamique d'equations de plans moyens sur support statique a appui mural
CN106541419B (zh) * 2016-10-13 2019-01-25 同济大学 一种机器人轨迹误差的测量方法
CN108146424B (zh) * 2016-12-02 2020-06-19 比亚迪股份有限公司 自动泊车路径控制方法和控制系统以及车辆
CN109059879B (zh) * 2018-08-03 2020-01-21 华中科技大学 一种定曲率小口径曲线顶管的导向方法
CN108942408A (zh) * 2018-09-27 2018-12-07 上海气焊机厂有限公司 零件切割偏差分析装置
CN110534215B (zh) * 2019-08-05 2021-05-11 中国核工业华兴建设有限公司 一种管道安装平行度检查方法
CN112549019B (zh) * 2020-11-06 2022-04-22 北京工业大学 一种基于连续动态时间规整的工业机器人轨迹准确度分析方法
CN113788283B (zh) * 2021-08-20 2022-11-22 海南核电有限公司 一种装卸料机大车跑偏调整方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59116011A (ja) * 1982-12-22 1984-07-04 Nippon Steel Corp ロボツトによる寸法形状測定方法
CN101149623A (zh) * 2007-11-02 2008-03-26 华中科技大学 一种管道外爬行器控制装置
EP2882544A1 (fr) * 2012-08-10 2015-06-17 SMS Meer GmbH Dispositif et procédé pour la mesure intérieure optique d'un tube
CN110609553A (zh) * 2019-09-16 2019-12-24 哈尔滨工程大学 一种用于铺管船舶圆弧路径的los导引控制方法
CN113253745A (zh) * 2021-03-23 2021-08-13 华南理工大学 一种四足管道机器人周向运动位姿规划方法
CN113334389A (zh) * 2021-08-02 2021-09-03 宝信软件(南京)有限公司 一种钢管管端机器人轨迹自适应及纠偏系统及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XU, GAOQI: "Research on Non-Contact Measurement Key Technology of Geometric Quantity of Large Diameter Pipeline", ENGINEERING SCIENCE AND TECHNOLOGY I, CHINA MASTER’S THESES FULL-TEXT DATABASE (ELECTRONIC JOURNALS), no. 4, 16 June 2020 (2020-06-16), CN, pages 1 - 84, XP009547479, DOI: 10.27763/d.cnki.gahgc.2020.000218 *

Also Published As

Publication number Publication date
CN114563982A (zh) 2022-05-31
CN114563982B (zh) 2023-05-09

Similar Documents

Publication Publication Date Title
WO2023137939A1 (fr) Procédé de commande de trajectoire de mouvement d'un dispositif mobile sur un tube circulaire
CN108180911B (zh) 一种agv自动生成修正路径方法
CN111472217A (zh) 一种crtsⅲ型轨道板快速智能精调系统及精调方法
CN106123776B (zh) 一种顶管智能顶进测量系统以及测量方法
CN108120434A (zh) 一种agv轨迹纠偏方法、系统及双导航系统
CN108549324B (zh) 用于高速分拣系统的工件跟随抓取轨迹规划方法及系统
CN102345390A (zh) 一种混凝土泵车臂架变形量的补偿方法
CN109388140A (zh) 一种改进的用于地面车辆路径跟踪的纯追踪控制方法
CN109552417A (zh) 一种驱动轮角度零偏的校准方法及系统
CN105618951A (zh) 焊缝智能跟踪系统
CN104762973B (zh) 一种深水抛石高程控制系统
CN109019337B (zh) 桥、门式起重机大车行走纠偏和防啃轨装置及方法
US11782450B2 (en) Automatic deviation correction control method for hoisting system
CN102354213A (zh) 用于控制臂架设备的臂架末端位置的方法、装置以及系统
CN110221609B (zh) 基于二维码的轨迹纠偏方法
CN108612075A (zh) 一种监测深基坑水平位移的方法
CN102910533A (zh) 一种基于吊机的空间角度测量方法
CN112077836B (zh) 一种基于四柔索牵引并联执行器的高架吊杆误差校正方法
CN104132644B (zh) 隧道断面测量点放样装置及隧道断面测量点放样方法
CN210031418U (zh) 一种摊铺机行走控制装置及摊铺机
JP5060382B2 (ja) 管路埋設位置計測システム、管路埋設位置計測方法
CN203448839U (zh) 一种切割索导管椭圆坡口的定位装置
CN103541545B (zh) 大型弧形结构模板安装控制的方法及其垂直对中装置
CN107942668A (zh) 一种基于反距离加权的吊篮平台位置误差估计方法
KR20140032237A (ko) 가공송전선로 이도 측정 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22921370

Country of ref document: EP

Kind code of ref document: A1