WO2023137776A1 - 滑雪场环境要素云端实时链接的元宇宙滑雪系统 - Google Patents

滑雪场环境要素云端实时链接的元宇宙滑雪系统 Download PDF

Info

Publication number
WO2023137776A1
WO2023137776A1 PCT/CN2022/073765 CN2022073765W WO2023137776A1 WO 2023137776 A1 WO2023137776 A1 WO 2023137776A1 CN 2022073765 W CN2022073765 W CN 2022073765W WO 2023137776 A1 WO2023137776 A1 WO 2023137776A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
cloud
real
skiing
ski
Prior art date
Application number
PCT/CN2022/073765
Other languages
English (en)
French (fr)
Inventor
王宏
岳再拓
李坦
兰钦
李子阳
张波
Original Assignee
东北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东北大学 filed Critical 东北大学
Publication of WO2023137776A1 publication Critical patent/WO2023137776A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0481Interaction techniques based on graphical user interfaces [GUI] based on specific properties of the displayed interaction object or a metaphor-based environment, e.g. interaction with desktop elements like windows or icons, or assisted by a cursor's changing behaviour or appearance
    • G06F3/04815Interaction with a metaphor-based environment or interaction object displayed as three-dimensional, e.g. changing the user viewpoint with respect to the environment or object
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/30Authentication, i.e. establishing the identity or authorisation of security principals
    • G06F21/31User authentication
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/60Protecting data
    • G06F21/602Providing cryptographic facilities or services
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/60Protecting data
    • G06F21/62Protecting access to data via a platform, e.g. using keys or access control rules
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16YINFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR THE INTERNET OF THINGS [IoT]
    • G16Y10/00Economic sectors
    • G16Y10/65Entertainment or amusement; Sports
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16YINFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR THE INTERNET OF THINGS [IoT]
    • G16Y20/00Information sensed or collected by the things
    • G16Y20/10Information sensed or collected by the things relating to the environment, e.g. temperature; relating to location

Definitions

  • the invention relates to the cross technical field of mechatronic engineering and sports, in particular to a metaverse skiing system for cloud real-time linking of environmental elements of ski resorts.
  • the technical problem to be solved by the present invention is to address the deficiencies of the above-mentioned existing technologies, and provide a metaverse skiing system with cloud-based real-time linking of environmental elements of ski resorts, which integrates "robot technology + virtual reality technology + Internet of Things technology + artificial intelligence technology" and applies it to mass sports to establish a digital skiing sports system.
  • Real-time links between real ski resorts and virtual ski resorts are realized through multi-modal sensors, so that experiencers can feel the wind direction, wind speed and skiing resistance of a linked real ski resort in real time.
  • the system can break through the limitations of seasons and venues, allowing people to experience the geographical features of the ski resort indoors, and experience alpine skiing, freestyle skiing and other events.
  • a metaverse skiing system with cloud real-time linking of ski resort environmental elements including a ski resort environmental element perception module, a VR ski module and a cloud real-time link module;
  • the ski resort environmental element perception module is responsible for sensing changes in environmental elements in a real ski resort, receiving cloud instructions, and uploading collected data to the cloud;
  • the VR ski module is responsible for uploading instructions to start and stop collecting data to the cloud, receiving real-time data forwarded by the cloud, and real-time display and scene rendering of skiing scene data;
  • the cloud real-time link module is responsible for connection and data transmission between modules;
  • the ski resort environmental element perception module includes a data collection terminal, a data receiving terminal and a 5G wireless network card; the data collecting terminal collects each sensor data of the ski resort, and the data receiving terminal receives the collected data and judges the data. If the data changes, the 5G wireless network card is used to upload the processed data to the cloud;
  • Described VR skiing module builds VR skiing scene based on Unity3D engine, uses C# script programming to establish connection with the cloud, thereby carries out real-time link with the ski resort environmental element perception module, the real-time information obtained is associated with the 3D model and the object model in the scene, realizes the dynamicization of the VR scene by changing the topography, sound and sliding resistance of the scene;
  • the cloud real-time link module deploys the server on the cloud, so that the remote ski resort environmental element perception module and the VR ski module are interconnected and data shared through the Internet;
  • the cloud real-time link module adopts C/S architecture to design, and uses SSL certificates to realize identity authentication and encrypted communication at the same time, ensuring the confidentiality and reliability of data transmission;
  • the data transmission adopts SSL certificate for identification and encryption.
  • the SSL certificate protocol is divided into two layers, including the handshake protocol and the recording protocol;
  • the handshake protocol is used for the first interaction between the client and the server before the data transmission of the actual dynamic environment elements begins and the identity verification is performed through a digital certificate.
  • the encryption method is negotiated; two encryption algorithms RSA and AES are used, and the original data is encrypted with the AES algorithm, and then the AES algorithm is used to encrypt the AES; the record protocol is to encrypt the text content and transmit it after the handshake protocol and the establishment of secure communication.
  • Step 1 Both the server and the client generate a pair of RSA secret keys, each keep the private key, and give the public key to the other party;
  • Step 2 The server uses a random function to generate the key used for AES encryption
  • Step 3 The server uses the key generated in the previous step to encrypt the data to be transmitted with AES;
  • Step 4 The server uses the public key given by the client to encrypt the generated random Key
  • Step 5 The server sends the data encrypted with AES and the random key encrypted with the public key given by the client to the client;
  • Step 6 After the client gets the data sent by the server, first use the client's private key to decrypt the encrypted random key, and then use the decrypted random key to AES decrypt the AES-encrypted data to obtain the final data.
  • the sensor data of the ski resort includes temperature, humidity, wind speed, wind direction and altitude.
  • the temperature, humidity, wind speed and wind direction are directly measured by the corresponding sensors of the ski resort, and the altitude is indirectly obtained by the barometer.
  • the data acquisition terminal includes the iOS main board and the sensor module.
  • the sensor module includes the wind speed sensor module, the wind direction sensor module, the temperature and humidity sensor module and the barometer.
  • the sensor module connects the collected analog voltages to the analog input port of the chicken main board. Judging the data, if the data changes, use the 5G wireless network card to upload the processed data to the cloud;
  • the VR ski module is used to receive real-time environmental elements in the real ski resort and provide dynamic feedback.
  • the whole design stage includes three parts: the establishment of the VR ski scene, the link with the cloud, and the dynamic feedback of the virtual ski system;
  • the terrain data and the dynamic environment elements of the real site are restored according to the actual skiing site modeling, and the VR virtual scene demonstration is carried out;
  • the virtual skiing scene is based on the Unity3D engine, and the required model materials are dragged into the scene, the model is placed according to the proportion and pattern of the real freestyle skiing area, and the necessary ground environment, light source, sky box and sound are added to set off the atmosphere of the scene.
  • the script is developed by the C# language, and the virtual reality software environment is set up using Oculus software and Steam VR in Steam, VRTK, and then used Oculus Rift realizes 3D imaging of virtual ski system screen;
  • the linking with the cloud refers to Unity 3D, that is, the client realizes data transmission with the cloud, that is, the server, through a written C# script;
  • the obtained environmental element related data is associated with the static 3D model and the object model, and the real-time dynamic model is obtained by changing the terrain, sound and sliding resistance of the VR skiing scene, and the actual parameters corresponding to the object model are displayed in real time; the user experiences the change of the dynamic environmental elements through the virtual skiing scene, and observes through the VR device and the display screen.
  • the metaverse skiing system provided by the present invention with cloud-based real-time link of environmental elements of the ski resort is integrated with "robot technology + virtual reality technology + Internet of Things technology + artificial intelligence technology".
  • Wind direction, wind speed and ski resistance in ski resorts can help athletes adapt to environmental changes in advance and adjust tactics according to the environmental factors at that time. It can also be used for ski training for spring, summer and autumn athletes and for non-athletes to have a realistic skiing experience.
  • the system of the present invention can break through the restrictions of seasons, venues and other conditions, allowing people to experience the geographical features of skiing venues indoors, and experience alpine skiing, freestyle skiing and other events.
  • Fig. 1 is a block diagram of the overall system structure provided by the embodiment of the present invention.
  • Fig. 2 is the flow chart of the ski resort environmental element perception module provided by the embodiment of the present invention.
  • FIG. 3 is a flowchart of an SSL certificate provided by an embodiment of the present invention.
  • Fig. 4 is a flow chart of the metaverse ski resort provided by the embodiment of the present invention.
  • Fig. 5 is a schematic diagram of a system field test provided by an embodiment of the present invention.
  • Fig. 6 is a schematic diagram of the metaverse skiing experience provided by the embodiment of the present invention.
  • a metaverse skiing system with cloud real-time linking of ski resort environmental elements includes a ski resort environmental element perception module, a VR skiing module and a cloud real-time link module.
  • the ski resort environmental element perception module is responsible for sensing the changes of environmental elements in the real ski resort, receiving cloud instructions and uploading the collected data to the cloud.
  • the VR skiing module is responsible for uploading instructions to start and stop data collection to the cloud, receiving data forwarded by the cloud in real time, and real-time display and scene rendering of skiing scene data.
  • the cloud real-time link module is responsible for the connection and data transmission between modules.
  • the ski resort environmental element perception module includes a data collection terminal, a data receiving terminal and a 5G wireless network card.
  • the data collection terminal collects the sensor data of the ski resort, and the data receiving terminal receives the collected data and judges the data. If the data changes, the 5G wireless network card is used to upload the processed data to the cloud.
  • the sensor data of the ski resort includes temperature, humidity, wind speed, wind direction and altitude.
  • the temperature, humidity, wind speed and wind direction are directly measured by the corresponding sensors of the ski resort, and the altitude is indirectly obtained by the barometer.
  • the data acquisition terminal includes the PC main board and the sensor module, and the sensor module includes a wind speed sensor module, a wind direction sensor module, a temperature and humidity sensor module and a barometer.
  • the sensing part of the wind speed sensor is composed of three hemispherical hollow wind cups.
  • the wind cups are fixed on three-pointed star-shaped brackets at 120° to each other.
  • the concave surfaces of the cups are arranged in one direction, and the entire cross-arm frame is fixed on a vertical rotation axis.
  • the wind cup starts to rotate, because the concave windward wind cup rotates along the direction of the wind, the pressure of the wind is relatively reduced, while the convex windward windward wind cup rotates at the same speed against the wind, the wind pressure is relatively increased, and the wind pressure difference decreases.
  • the partial pressure difference acting on the three wind cups is zero, the wind cups rotate at a uniform speed.
  • the wind cup rotates, it drives the coaxial multi-tooth disc to rotate, and the pulse signal proportional to the speed of the wind cup is obtained through the circuit.
  • the pulse signal is counted by the counter, and the actual wind speed value can be obtained after conversion.
  • the wind direction sensor adopts the mechanical structure of the wind vane.
  • the arrow of the wind vane will point to the direction of the wind blowing.
  • an absolute gray code disc is adopted, and the corresponding wind direction information can be accurately output based on the principle of photoelectric signal conversion.
  • the HMP60 temperature and humidity acquisition module is used to obtain temperature and humidity information.
  • This module uses a temperature and humidity integrated probe as a temperature measuring element to collect temperature and humidity signals. After voltage stabilization filtering, operational amplification, nonlinear correction, V/I conversion, constant current and reverse protection, etc., the module converts it into a current signal or voltage signal output that is linearly related to temperature and humidity.
  • the air pressure value P is measured by a barometer, and then the altitude H is calculated according to the altimeter formula.
  • the formula for high pressure is:
  • P0 is the standard atmospheric pressure (101.325kPa)
  • H0 is the altitude compensation value. Since the air pressure is greatly affected by the environment such as temperature and wind, it is necessary to calibrate the compensation value before starting the test, measure at a location with known altitude, and compensate for the difference between the measured value and the actual value.
  • the sensor module connects each analog voltage collected by it to the analog input port of the chicken main board, and the chicken main board obtains the corresponding data value after voltage conversion.
  • the data receiving end uses the Raspberry Pi to communicate with the chicken mainboard through the serial port.
  • the USB-to-TTL data cable is used to obtain the barometer data.
  • the start and stop of the data collection is realized by controlling the opening and closing of the serial port.
  • the Raspberry Pi receives the data and judges the data, if the data changes, the processed data is uploaded to the cloud using the 5G wireless network card.
  • the specific collection process is shown in Figure 2.
  • Start the Raspberry Pi initialize the sensor data (temperature, humidity, wind speed, wind direction, and altitude), establish a connection between the Raspberry Pi and the cloud, and wait for the cloud to issue the designation.
  • the data acquisition terminal After receiving the "Start" command from the cloud, the data acquisition terminal starts to collect data, and sends the data to the Raspberry Pi through the serial port. If the transmitted data changes, the recorded data is updated and the encrypted data is uploaded to the cloud.
  • the Raspberry Pi closes the serial port, and the data collection end stops collecting.
  • the VR skiing module is based on the Unity3D engine to build a VR skiing scene, and uses C# script programming to establish a connection with the cloud, so as to link with the environmental element perception module of the ski resort in real time, associate the acquired real-time information with the 3D model and object model in the scene, and realize the dynamization of the VR scene by changing the terrain, sound and sliding resistance of the scene.
  • the VR ski module receives the environmental elements in the real ski resort in real time and provides dynamic feedback.
  • the whole design stage includes three parts: the establishment of the VR ski scene, the link with the cloud, and the dynamic feedback of the virtual ski system.
  • the terrain data and dynamic environment elements of the real site are restored according to the modeling of the actual skiing site, and the VR virtual scene demonstration is performed.
  • the virtual skiing scene is based on the Unity3D engine, and the required model materials are dragged into the scene, and the model is placed according to the proportion and pattern of the real freestyle ski resort, and the necessary ground environment, light source, sky box and sound are added to enhance the atmosphere of the scene.
  • the script is developed through the C# language, and the virtual reality software environment is established by using Oculus software and Steam VR and VRTK in Steam, and then Oculus Rift is used to realize the 3D imaging of the virtual skiing system screen.
  • the VR skiing scene realizes the virtual reality freestyle skiing experience, giving users an immersive skiing experience.
  • a physics engine is added to the virtual reality scene, and the user enters the scene in the first person to slide on the ski slope.
  • the experiencer can hear the sound of the wind, which enhances the immersion of skiing.
  • the skiing situation in different environments can be simulated by modifying the natural environment parameters in the scene.
  • the frictional resistance and wind resistance encountered during the sliding process will change accordingly, thereby affecting the skiing speed of the ski, which greatly improves the authenticity and scope of application of the system.
  • the linking with the cloud refers to Unity 3D, that is, the client realizes data transmission with the cloud, that is, the server, through a well-written C# script.
  • the obtained environmental element related data is associated with the static 3D model and the object model, and the real-time dynamic model is obtained by changing the terrain, sound and sliding resistance of the VR skiing scene, and the actual parameters corresponding to the object model are displayed in real time. Users experience the changes of dynamic environmental elements through the virtual ski scene, and observe through VR equipment and display screens.
  • the cloud real-time link module deploys the server on the cloud, so that the remote ski resort environmental element perception module and the VR ski module can be interconnected and share data through the Internet;
  • the cloud real-time link module is designed with a C/S architecture, and uses SSL certificates to realize identity authentication and encrypted communication, ensuring the confidentiality and reliability of data transmission.
  • Data transmission uses SSL certificates for authentication and encryption.
  • the virtual ski system in this embodiment makes a self-made SSL certificate according to requirements.
  • the SSL certificate protocol is divided into two layers, including the handshake protocol and the recording protocol. The overall process is shown in Figure 3.
  • the handshake protocol is used for the first interaction between the client and the server before the data transmission of the actual dynamic environment elements starts, and the identity verification is carried out through the digital certificate. After the identity is confirmed, the encryption method is negotiated.
  • the system of this embodiment adopts two popular encryption algorithms RSA and AES at present.
  • RSA is an asymmetric algorithm that needs public key and private key to be paired for encryption and decryption.
  • AES is a symmetric algorithm that only needs one key. Encryption security, but also to ensure the speed of encryption and decryption.
  • the recording protocol is to encrypt and transmit the text content after the handshake protocol and the establishment of secure communication.
  • the specific process is as follows:
  • Step 1 Both the client and the server generate a pair of RSA secret keys, each keep the private key, and give the public key to the other party;
  • Step 2 The server uses a random function to generate the key used for AES encryption
  • Step 3 The server uses the key generated in the previous step to encrypt the data to be transmitted with AES;
  • Step 4 The server uses the public key given by the client to encrypt the generated random Key
  • Step 5 The server sends the data encrypted with AES and the random key encrypted with the public key given by the client to the client;
  • Step 6 After the client gets the data sent by the server, first use the client's private key to decrypt the encrypted random key, and then use the decrypted random key to AES decrypt the AES-encrypted data to obtain the final data.
  • the specific workflow of the metaverse skiing system in this embodiment is shown in Figure 4.
  • the Unity client When entering the scene, the Unity client first establishes a connection with the cloud server through a C# script, and then sends an instruction to start collecting data.
  • the cloud server forwards the instruction to the Raspberry Pi, and the Raspberry Pi starts collecting the environmental element data in the actual ski resort and uploading it to the cloud.
  • the Unity client receives the environmental elements in real time and associates them with the virtual scene, and the experiencer experiences the metaverse skiing system through the VR device.
  • the Unity client sends an instruction to stop collecting data
  • the Raspberry Pi receives the instruction through the forwarding of the cloud server and stops the collection of environmental elements.
  • Figure 5 shows the test results of the metaverse skiing system in which the cloud real-time links the environmental elements of the ski resort in this embodiment.
  • A is the geographical location of the metaverse ski resort
  • B is the location of a certain ski resort.
  • A is the metaverse ski resort and real-time display of the real ski resort environmental elements
  • B is the perceived environmental elements of a certain ski resort.
  • the skiing experience using the metaverse skiing system of this embodiment is shown in FIG. 6 .
  • the left picture is the scene that skiers of this system can experience
  • 1 in the right picture is the VR display view
  • 2 is the VR head-mounted display device
  • 3 is the snowboard.
  • the present invention belongs to the intersection field of mechatronic engineering and sports.
  • Robot technology, virtual reality technology, Internet of Things technology and artificial intelligence technology are applied to mass sports to establish a digital skiing sports system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Hardware Design (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Software Systems (AREA)
  • Computing Systems (AREA)
  • Bioethics (AREA)
  • General Business, Economics & Management (AREA)
  • Economics (AREA)
  • Development Economics (AREA)
  • Accounting & Taxation (AREA)
  • Business, Economics & Management (AREA)
  • Toxicology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Processing Or Creating Images (AREA)

Abstract

本发明提供一种滑雪场环境要素云端实时链接的元宇宙滑雪系统,涉及机械电子工程与体育的交叉技术领域。该系统包括:滑雪场环境要素感知模块负责感知真实滑雪场中的环境要素变化、接收云端指令以及将所采集的数据上传至云端;VR滑雪模块负责向云端上传开始和停止采集数据的指令、实时接收云端转发的数据以及滑雪场景的数据实时显示与场景渲染;云端实时链接模块负责各模块之间的连接与数据传输,数据传输采用SSL证书进行鉴别与加密。本发明融合"机器人技术+虚拟现实技术+物联网技术+人工智能技术",应用在大众体育中,建立元宇宙滑雪系统,突破季节、场地等条件限制,让人们在室内就能体验滑雪场地的地理风貌,感受高山滑雪、自由式滑雪等。

Description

滑雪场环境要素云端实时链接的元宇宙滑雪系统 技术领域
本发明涉及机械电子工程与体育的交叉技术领域,尤其涉及一种滑雪场环境要素云端实时链接的元宇宙滑雪系统。
背景技术
冰雪运动受制于天气条件,就是在中国北方雪季也是比较短的。因此虚拟现实(VR)滑雪系统开始走向了人们的视野,但现有的VR滑雪系统不能与真实的滑雪场环境要素进行实时链接,极大地减弱了滑雪体验的真实感。
为了增加体验者的滑雪真实感,需要建立一种元宇宙滑雪系统,实现虚拟与现实的无缝链接,将有利于对大众进行滑雪运动科普,同时可以突破季节、场地等条件限制,让人们在室内就能体验滑雪场地的地理风貌,感受高山滑雪、自由式滑雪等项目,给冰雪运动带来新的生机。
发明内容
本发明要解决的技术问题是针对上述现有技术的不足,提供一种滑雪场环境要素云端实时链接的元宇宙滑雪系统,融合“机器人技术+虚拟现实技术+物联网技术+人工智能技术”,并应用在大众体育中,建立滑雪数字体育系统,通过多模态传感器实现真实滑雪场与虚拟滑雪场的实时链接,使体验者实时感受所链接的某真实滑雪场的风向、风速和滑雪阻力。该系统可以突破季节、场地等条件限制,让人们在室内就能体验滑雪场地的地理风貌,感受高山滑雪、自由式滑雪等项目。
为解决上述技术问题,本发明所采取的技术方案是:
一种滑雪场环境要素云端实时链接的元宇宙滑雪系统,包括滑雪场环境要素感知模块、VR滑雪模块和云端实时链接模块;滑雪场环境要素感知模块负责感知真实滑雪场中的环境要素变化、接收云端指令以及将所采集的数据上传至云端;VR滑雪模块负责向云端上传开始和停止采集数据的指令、实时接收云端转发的数据以及滑雪场景的数据实时显示与场景渲染;云端实时链接模块负责各模块之间的连接与数据传输;
所述滑雪场环境要素感知模块包括数据采集端、数据接收端和5G无线网卡;数据采集端采集滑雪场各传感器数据,数据接收端接收采集到的数据并对数据进行判断,若数据发生改变,则使用5G无线网卡将处理后的数据上传至云端;
所述VR滑雪模块基于Unity3D引擎搭建VR滑雪场景,使用C#脚本编程与云端建立连接,从而与滑雪场环境要素感知模块进行实时链接,将获取到的实时信息与场景中的3D模 型和对象模型进行关联,通过改变场景的地形、声音和滑行阻力实现VR场景的动态化;
所述云端实时链接模块将服务器部署在云端,使相距较远的滑雪场环境要素感知模块和VR滑雪模块通过互联网进行互联和数据共享;云端实时链接模块采用C/S架构进行设计,同时使用SSL证书实现身份认证与加密通讯,确保数据传输的机密性与可靠性;
数据传输采用SSL证书进行鉴别与加密,SSL证书协议分为两层,包括握手协议和记录协议;
握手协议用于在实际的动态环境要素数据传输开始前,客户端与服务器第一次交互并通过数字证书进行身份验证,身份确认无误后,再协商加密方法;采用两种加密算法RSA和AES,用AES算法对原始数据加密,再用RSA算法对AES加密;记录协议是继握手协议、确立安全通信之后才开始对文本内容加密并进行传输,具体过程为:
步骤1:服务器与客户端双方均生成一对RSA秘钥,各自保管好私钥,将公钥给对方;
步骤2:服务器使用随机函数生成AES加密要用的key;
步骤3:服务器使用上一步生成的key对要传输的数据用AES进行加密;
步骤4:服务器使用客户端给的公钥对生成的随机Key进行加密;
步骤5:服务器将使用AES加密的数据以及使用客户端给的公钥加密的随机key一起发送给客户端;
步骤6:客户端拿到服务器发送的数据后,先使用客户端的私钥对加密的随机key进行解密,然后使用解密成功的随机key对使用AES加密的数据进行AES解密,获得最终的数据。
滑雪场各传感器数据包括温度、湿度、风速、风向和海拔高度,其中温度、湿度、风速和风向使用滑雪场相对应的传感器直接测得,海拔高度通过气压计间接获取。
数据采集端包括Arduino主板和传感器模块,传感器模块包括风速传感器模块、风向传感器模块、温湿度传感器模块和气压计,传感器模块将其采集到的各模拟电压连接至Arduino主板模拟输入口,Arduino主板经过电压换算后得到对应数据值;数据接收端使用树莓派,与Arduino主板进行串口通讯,同时使用USB转TTL数据线获得气压计数据,通过控制串口的开启与关闭实现数据采集的开始和停止,树莓派接收数据后并对数据进行判断,若数据发生改变,则使用5G无线网卡将处理后的数据上传至云端;
VR滑雪模块用于实时接收真实滑雪场中的环境要素,并进行动态反馈,整个设计阶段包括VR滑雪场景的建立、与云端进行链接和虚拟滑雪系统动态反馈三部分;
所述VR滑雪场景的建立中,按照实际滑雪场地建模还原真实场地的地形数据以及动态环境要素,并进行VR虚拟场景演示;虚拟滑雪场景基于Unity3D引擎,并将所需模型素材 拖入场景中,按照现实自由式滑雪场的比例、格局来摆放模型,并添加必要的地面环境、光源、天空盒和声音来烘托场景的氛围,通过C#语言进行脚本的开发,使用Oculus软件和Steam中的Steam VR、VRTK组建虚拟现实软件环境,再使用Oculus Rift实现虚拟滑雪系统画面的3D成像;
所述与云端进行链接是指Unity 3D即客户端通过编写好的C#脚本实现和云端即服务器之间数据的传输;
所述虚拟滑雪系统动态反馈中,真实滑雪场环境要素数据通过云端传输至VR滑雪场景之后,将获取的环境要素相关数据与静态3D模型和对象模型进行关联,通过改变VR滑雪场景的地形、声音和滑行阻力,得到实时动态模型,并实时显示对象模型所对应的实际参数;用户通过虚拟滑雪场景体验到动态环境要素的改变,通过VR设备和显示屏进行观察。
采用上述技术方案所产生的有益效果在于:本发明提供的滑雪场环境要素云端实时链接的元宇宙滑雪系统,融合“机器人技术+虚拟现实技术+物联网技术+人工智能技术”,滑雪场环境要素感知模块可以感知并采集真实滑雪场风向、风速、温湿度、海拔高度的环境要素,VR滑雪模块通过云端实时链接模块与滑雪场的环境变化进行实时同步,通过多模态传感器实现真实滑雪场与虚拟滑雪场的实时链接,使用本系统的体验者可以实时感受所链接的某真实滑雪场的风向、风速和滑雪阻力。该系统可帮助运动员提前适应环境变化及根据当时环境要素调整战术,同时也可用于春夏秋季运动员的滑雪训练以及非运动员进行逼真的滑雪体验。本发明的系统可以突破季节、场地等条件限制,让人们在室内就能体验滑雪场地的地理风貌,感受高山滑雪、自由式滑雪等项目。
附图说明
图1为本发明实施例提供的系统总体结构框图;
图2为本发明实施例提供的滑雪场环境要素感知模块流程图;
图3为本发明实施例提供的SSL证书流程图;
图4为本发明实施例提供的元宇宙滑雪场流程图;
图5为本发明实施例提供的系统现场测试示意图;
图6为本发明实施例提供的元宇宙滑雪体验示意图.
图中:1、VR显示视图;2、VR头戴式显示设备;3、滑雪板。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
一种滑雪场环境要素云端实时链接的元宇宙滑雪系统,如图1所示,包括滑雪场环境要 素感知模块、VR滑雪模块和云端实时链接模块。滑雪场环境要素感知模块负责感知真实滑雪场中的环境要素变化、接收云端指令以及将所采集的数据上传至云端。VR滑雪模块负责向云端上传开始和停止采集数据的指令、实时接收云端转发的数据以及滑雪场景的数据实时显示与场景渲染。云端实时链接模块负责各模块之间的连接与数据传输。
所述滑雪场环境要素感知模块包括数据采集端、数据接收端和5G无线网卡。数据采集端采集滑雪场各传感器数据,数据接收端接收采集到的数据并对数据进行判断,若数据发生改变,则使用5G无线网卡将处理后的数据上传至云端。
滑雪场各传感器数据包括温度、湿度、风速、风向和海拔高度,其中温度、湿度、风速和风向使用滑雪场相对应的传感器直接测得,海拔高度通过气压计间接获取。数据采集端包括Arduino主板和传感器模块,传感器模块包括风速传感器模块、风向传感器模块、温湿度传感器模块和气压计。
风速传感器感应部分由三个半球形的空心风杯组成。风杯固定在互成120°的三叉星形支架上,杯的凹面顺着一个方向排列,整个横臂架则固定在一根垂直的旋转轴上。当有风吹来时,凹面迎风的风杯受的风压最大,凸面迎风的风杯由于风的绕流作用使其所受风压比凹面迎风的风杯小,由于风杯之间在垂直于风杯轴方向上的压力差,而使风杯开始旋转,风速越大,起始的压力差越大,产生的加速度越大,风杯转动越快。风杯开始转动后,由于凹面迎风的风杯顺着风的方向转动,受风的压力相对减小,而凸面迎风的风杯迎着风以同样的速度转动,所受风压相对增大,风压差不断减小,经过一段时间后(风速不变时),作用在三个风杯上的分压差为零时,风杯就变作匀速转动。当风杯转动时,带动同轴的多齿截光盘转动,通过电路得到与风杯转速成正比的脉冲信号,该脉冲信号由计数器计数,经换算后就能得出实际风速值。
风向传感器采用风向标的机械结构,当风吹向风向标尾翼的时候,风向标的箭头就会指风吹过来的方向。为了保持对于方向的敏感性,采用绝对式的格雷码盘,以光电信号转换原理,可以准确地输出相对应的风向信息。
采用HMP60温湿度采集模块获取温湿度信息,该模块以温湿度一体式的探头作为测温元件,将温度和湿度信号采集出来,经过稳压滤波、运算放大、非线性校正、V/I转换、恒流及反向保护等电路处理后,转换成与温度和湿度成线性关系的电流信号或电压信号输出。
采用气压计测得气压值P,然后根据压高公式计算海拔高度H。压高公式为:
Figure PCTCN2022073765-appb-000001
其中,P0为标准大气压(101.325kPa),H0为高度补偿值。由于气压受温度,风力等环 境影响较大,再开始测试前需要标定补偿值,在已知海拔高度的位置进行测量,测量值与实际值的差值做补偿。
传感器模块将其采集到的各模拟电压连接至Arduino主板模拟输入口,Arduino主板经过电压换算后得到对应数据值。数据接收端使用树莓派,与Arduino主板进行串口通讯,同时使用USB转TTL数据线获得气压计数据,通过控制串口的开启与关闭实现数据采集的开始和停止,树莓派接收数据后并对数据进行判断,若数据发生改变,则使用5G无线网卡将处理后的数据上传至云端。具体的采集过程如图2所示,启动树莓派,初始化各传感器数据(温度、湿度、风速、风向和海拔高度),将树莓派与云端建立连接,等待云端下发指定。当接到云端下发“开始”指令后,数据采集端开始采集数据,将数据通过串口送到树莓派中,若传送的数据发生变化,将记录的数据进行更新且加密数据上传至云端。当接收到云端下发“停止”指令后,树莓派关闭串口,数据采集端停止采集。
VR滑雪模块基于Unity3D引擎搭建VR滑雪场景,使用C#脚本编程与云端建立连接,从而与滑雪场环境要素感知模块进行实时链接,将获取到的实时信息与场景中的3D模型和对象模型进行关联,通过改变场景的地形、声音和滑行阻力实现VR场景的动态化。
VR滑雪模块实时接收真实滑雪场中的环境要素,并进行动态反馈,整个设计阶段包括VR滑雪场景的建立、与云端进行链接和虚拟滑雪系统动态反馈三部分。
所述VR滑雪场景的建立中,按照实际滑雪场地建模还原真实场地的地形数据以及动态环境要素,并进行VR虚拟场景演示。虚拟滑雪场景基于Unity3D引擎,并将所需模型素材拖入场景中,按照现实自由式滑雪场的比例、格局来摆放模型,并添加必要的地面环境、光源、天空盒和声音来烘托场景的氛围,通过C#语言进行脚本的开发,使用Oculus软件和Steam中的Steam VR、VRTK组建虚拟现实软件环境,再使用Oculus Rift实现虚拟滑雪系统画面的3D成像。
该VR滑雪场景实现了虚拟现实自由式滑雪体验,给用户身临其境般的滑雪体验,虚拟现实场景中添加了物理引擎,用户以第一人称进入场景中可在滑雪道中滑行。滑行过程中体验者可以听到风声,增强了滑雪的沉浸感,同时可以通过修改场景中的自然环境参数来模拟在不同环境下的滑雪情形,在下滑过程受到的摩擦阻力、风阻力会相应变化,从而影响滑雪的滑行速度,大大提升了本系统的真实性和适用范围。
所述与云端进行链接是指Unity 3D即客户端通过编写好的C#脚本实现和云端即服务器之间数据的传输。当进入VR滑雪场景后,通过脚本与云端建立连接,向云端上传“开始”指令,真实滑雪场中环境要素要素感知模块开始采集数据,与此同时场景从云端接收采集到的数据。当退出虚拟场景后,向云端上传“停止”指令,环境要素感知模块停止工作,场景断开 与服务器的连接。
所述虚拟滑雪系统动态反馈中,真实滑雪场环境要素数据通过云端传输至VR滑雪场景之后,将获取的环境要素相关数据与静态3D模型和对象模型进行关联,通过改变VR滑雪场景的地形、声音和滑行阻力,得到实时动态模型,并实时显示对象模型所对应的实际参数。用户通过虚拟滑雪场景体验到动态环境要素的改变,通过VR设备和显示屏进行观察。
所述云端实时链接模块将服务器部署在云端,使相距较远的滑雪场环境要素感知模块和VR滑雪模块通过互联网进行互联和数据共享;云端实时链接模块采用C/S架构进行设计,同时使用SSL证书实现身份认证与加密通讯,确保数据传输的机密性与可靠性。
数据传输采用SSL证书进行鉴别与加密,本实施例虚拟滑雪系统根据需求,自制一个SSL证书,SSL证书协议分为两层,包括握手协议和记录协议,整体过程如图3所示。
握手协议用于在实际的动态环境要素数据传输开始前,客户端与服务器第一次交互并通过数字证书进行身份验证,身份确认无误后,再协商加密方法。本实施例的系统采用目前两种比较流行的加密算法RSA和AES,RSA是一种非对称算法,需要公钥与私钥配对进行加解密,AES是一种对称算法,只需要一种key,RSA算法安全性高,AES算法加解密速度较快,由于RSA其复杂性,所以加解密速度较慢,因此用AES算法对原始数据加密;如果单纯采用AES对称算法加解密,安全性不够高,所以再用RSA算法对AES的加密,这样就可以在保证加密的安全性,同时还能保证加解密速度。
记录协议是继握手协议、确立安全通信之后才开始对文本内容加密并进行传输,具体过程为:
步骤1:客户端与服务器双方均生成一对RSA秘钥,各自保管好私钥,将公钥给对方;
步骤2:服务器使用随机函数生成AES加密要用的key;
步骤3:服务器使用上一步中生成的key对要传输的数据用AES进行加密;
步骤4:服务器使用客户端给的公钥对生成的随机Key进行加密;
步骤5:服务器将使用AES加密的数据以及使用客户端给的公钥加密的随机key一起发送给客户端;
步骤6:客户端拿到服务器发送的数据后,先使用客户端的私钥对加密的随机key进行解密,然后使用解密成功的随机key对使用AES加密的数据进行AES解密,获得最终的数据。
本实施例的元宇宙滑雪系统具体工作流程如图4所示。首先将环境要素感知模块放置在实际滑雪场地中,启动树莓派与云服务器建立连接。通过Unity客户端打开虚拟滑雪场景,当进入场景后,Unity客户端通过C#脚本首先与云服务器建立连接,然后发送开始采集数据 的指令,云服务器将指令转发给树莓派,树莓派开始采集实际滑雪场中的环境要素数据并上传至云端。Unity客户端实时接收环境要素并与虚拟场景进行关联,体验者通过VR设备体验元宇宙滑雪系统。当退出场景时,Unity客户端发送停止采集数据的指令,树莓派通过云服务器的转发进行指令接收并停止环境要素的采集工作。
本实施例的云端实时链接滑雪场环境要素的元宇宙滑雪系统测试效果如图5所示。其中,在左图中,A为元宇宙滑雪场地理位置,B为某滑雪场位置。在右图中,A为元宇宙滑雪场及实时显示真实滑雪场环境要素,B为感知某滑雪场环境要素。
采用本实施例的元宇宙滑雪系统进行滑雪体验如图6所示。其中,左图为本系统滑雪者可体验的场景,右图中的1为VR显示视图,2为VR头戴式显示设备,3为滑雪板。
本发明属于机械电子工程与体育的交叉领域,将机器人技术、虚拟现实技术、物联网技术和人工智能技术应用在大众体育中,建立滑雪数字体育系统,该系统有利于对大众进行滑雪运动科普,为他们“上冰雪”奠定一定基础。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明权利要求所限定的范围。

Claims (7)

  1. 一种滑雪场环境要素云端实时链接的元宇宙滑雪系统,其特征在于:该系统包括滑雪场环境要素感知模块、VR滑雪模块和云端实时链接模块;滑雪场环境要素感知模块负责感知真实滑雪场中的环境要素变化、接收云端指令以及将所采集的数据上传至云端;VR滑雪模块负责向云端上传开始和停止采集数据的指令、实时接收云端转发的环境要素数据并进行动态反馈,以及负责滑雪场景的数据实时显示与场景渲染;云端实时链接模块将服务器部署在云端,负责各模块之间的连接与数据传输,采用C/S架构进行设计,同时使用SSL证书实现身份认证与加密通讯,确保数据传输的机密性与可靠性。
  2. 根据权利要求1所述的滑雪场环境要素云端实时链接的元宇宙滑雪系统,其特征在于:所述云端实时链接模块使相距较远的滑雪场环境要素感知模块和VR滑雪模块通过互联网进行互联和数据共享;云端实时链接模块数据传输采用SSL证书进行鉴别与加密,SSL证书协议分为两层,包括握手协议和记录协议;
    握手协议用于在实际的动态环境要素数据传输开始前,客户端与服务器第一次交互并通过数字证书进行身份验证,身份确认无误后,再协商加密方法;采用两种加密算法RSA和AES,用AES算法对原始数据加密,再用RSA算法对AES加密;记录协议是继握手协议、确立安全通信之后才开始对文本内容加密并进行传输。
  3. 根据权利要求2所述的滑雪场环境要素云端实时链接的元宇宙滑雪系统,其特征在于:所述记录协议的具体过程为:
    步骤1:服务器与客户端双方均生成一对RSA秘钥,各自保管好私钥,将公钥给对方;
    步骤2:服务器使用随机函数生成AES加密要用的key;
    步骤3:服务器使用上一步生成的key对要传输的数据用AES进行加密;
    步骤4:服务器使用客户端给的公钥对生成的随机Key进行加密;
    步骤5:服务器将使用AES加密的数据以及使用客户端给的公钥加密的随机key一起发送给客户端;
    步骤6:客户端拿到服务器发送的数据后,先使用客户端的私钥对加密的随机key进行解密,然后使用解密成功的随机key对使用AES加密的数据进行AES解密,获得最终的数据。
  4. 根据权利要求3所述的滑雪场环境要素云端实时链接的元宇宙滑雪系统,其特征在于:所述滑雪场环境要素感知模块包括数据采集端、数据接收端和5G无线网卡;数据采集端采集滑雪场各传感器数据,数据接收端接收采集到的数据并对数据进行判断,若数据发生改变,则使用5G无线网卡将处理后的数据上传至云端。
  5. 根据权利要求4所述的滑雪场环境要素云端实时链接的元宇宙滑雪系统,其特征在 于:滑雪场各传感器数据包括温度、湿度、风速、风向和海拔高度,其中温度、湿度、风速和风向使用滑雪场相对应的传感器直接测得,海拔高度通过气压计间接获取;
    数据采集端包括Arduino主板和传感器模块,传感器模块包括风速传感器模块、风向传感器模块、温湿度传感器模块和气压计,传感器模块将其采集到的各模拟电压连接至Arduino主板模拟输入口,Arduino主板经过电压换算后得到对应数据值;
    数据接收端使用树莓派,与Arduino主板进行串口通讯,同时使用USB转TTL数据线获得气压计数据,通过控制串口的开启与关闭实现数据采集的开始和停止,树莓派接收数据后并对数据进行判断,若数据发生改变,则使用5G无线网卡将处理后的数据上传至云端。
  6. 根据权利要求5所述的滑雪场环境要素云端实时链接的元宇宙滑雪系统,其特征在于:所述VR滑雪模块基于Unity3D引擎搭建VR滑雪场景,使用C#脚本编程与云端建立连接,从而与滑雪场环境要素感知模块进行实时链接,将获取到的实时信息与场景中的3D模型和对象模型进行关联,通过改变场景的地形、声音和滑行阻力实现VR场景的动态化。
  7. 根据权利要求6所述的滑雪场环境要素云端实时链接的元宇宙滑雪系统,其特征在于:所述VR滑雪模块的整个设计阶段包括VR滑雪场景的建立、与云端进行链接和虚拟滑雪系统动态反馈三部分;
    所述VR滑雪场景的建立中,按照实际滑雪场地建模还原真实场地的地形数据以及动态环境要素,并进行VR虚拟场景演示;虚拟滑雪场景基于Unity3D引擎,并将所需模型素材拖入场景中,按照现实自由式滑雪场的比例、格局来摆放模型,并添加必要的地面环境、光源、天空盒和声音来烘托场景的氛围,通过C#语言进行脚本的开发,使用Oculus软件和Steam中的Steam VR、VRTK组建虚拟现实软件环境,再使用Oculus Rift实现虚拟滑雪系统画面的3D成像;
    所述与云端进行链接是指Unity 3D即客户端通过编写好的C#脚本实现和云端即服务器之间数据的传输;
    所述虚拟滑雪系统动态反馈中,真实滑雪场环境要素数据通过云端传输至VR滑雪场景之后,将获取的环境要素相关数据与静态3D模型和对象模型进行关联,通过改变VR滑雪场景的地形、声音和滑行阻力,得到实时动态模型,并实时显示对象模型所对应的实际参数;用户通过虚拟滑雪场景体验到动态环境要素的改变,通过VR设备和显示屏进行观察。
PCT/CN2022/073765 2022-01-24 2022-01-25 滑雪场环境要素云端实时链接的元宇宙滑雪系统 WO2023137776A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210077636.0A CN114415881B (zh) 2022-01-24 2022-01-24 滑雪场环境要素云端实时链接的元宇宙滑雪系统
CN202210077636.0 2022-01-24

Publications (1)

Publication Number Publication Date
WO2023137776A1 true WO2023137776A1 (zh) 2023-07-27

Family

ID=81275253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/073765 WO2023137776A1 (zh) 2022-01-24 2022-01-25 滑雪场环境要素云端实时链接的元宇宙滑雪系统

Country Status (2)

Country Link
CN (1) CN114415881B (zh)
WO (1) WO2023137776A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116958447A (zh) * 2023-08-09 2023-10-27 深圳市固有色数码技术有限公司 一种基于物联网的元宇宙角色自动生成系统及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130040714A1 (en) * 2011-08-09 2013-02-14 G-Tracking, Llc Virtual activities that incorporate a physical activity
CN206167845U (zh) * 2016-10-10 2017-05-17 曹惠 一种用于滑雪运动的智能系统
CN107340720A (zh) * 2017-07-19 2017-11-10 宋彦震 虚拟与现实世界环境模拟系统
CN107886566A (zh) * 2017-11-30 2018-04-06 北京恒华伟业科技股份有限公司 一种桥梁周围环境信息展现方法及系统
CN111544896A (zh) * 2020-03-30 2020-08-18 苏州渚头杉科技有限公司 一种基于虚拟现实的模拟真实滑雪系统
CN113318414A (zh) * 2021-06-03 2021-08-31 北京理工大学 一种多自由度模拟滑雪训练系统及训练方法
CN113703583A (zh) * 2021-09-08 2021-11-26 厦门元馨智能科技有限公司 一种多模态交叉融合的虚拟影像融合系统、方法、装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8964298B2 (en) * 2010-02-28 2015-02-24 Microsoft Corporation Video display modification based on sensor input for a see-through near-to-eye display
US20120269494A1 (en) * 2011-04-22 2012-10-25 Qualcomm Incorporated Augmented reality for live events
CN102710605A (zh) * 2012-05-08 2012-10-03 重庆大学 一种云制造环境下的信息安全管控方法
CN104852949A (zh) * 2014-02-14 2015-08-19 航天信息股份有限公司 基于混合加密机制的云存储数据管理方法和系统
CN105307165B (zh) * 2015-10-10 2019-02-01 中国民生银行股份有限公司 基于移动应用的通信方法、服务端和客户端
KR20170085869A (ko) * 2016-01-15 2017-07-25 주식회사 다림비젼 수직 중력 방향으로 가속력을 스키선수의 산에서의 낙하, 회전, 감속의 주력 하중을 발생하는 엘리베이터형 모션 시뮬레이터 장치와 정밀 스키 제어 하중 및 움직임을 만들어내는 스키 반력 다이나모 장치에 의한 가상 스키 시뮬레이터 기술과 가상스키의 네트웍 경주 스포츠를 위한 가상 스튜디오 vr 스키 인터넷 방송, 인터넷 관중의 경기 관람 서비스의 vr 가상현실 스포츠 플랫폼 기술
CN111758017A (zh) * 2018-02-28 2020-10-09 索尼公司 信息处理装置、信息处理方法、程序及移动体
EP3873285A1 (en) * 2018-10-29 2021-09-08 Robotarmy Corp. Racing helmet with visual and audible information exchange
CN109905239A (zh) * 2019-03-07 2019-06-18 亚数信息科技(上海)有限公司 一种证书管理方法及装置
CN211357662U (zh) * 2019-08-02 2020-08-28 北京市体科健体育科技有限公司 一种滑雪仿真健身机
CN111325850A (zh) * 2020-01-20 2020-06-23 北京驭胜晏然体育文化有限公司 一种智能仿真室内滑雪虚拟现实系统及方法
CN111538252B (zh) * 2020-05-25 2021-09-21 厦门大学 一种应用vr技术的智能家居演示系统
CN111580401B (zh) * 2020-05-25 2021-06-22 厦门大学 一种基于vr技术的半实物兼容性智能家居控制系统
CN112138358A (zh) * 2020-09-23 2020-12-29 北京幻威科技有限公司 Vr冬奥雪上项目科普体验系统
CN113904767A (zh) * 2021-09-29 2022-01-07 深圳市惠尔顿信息技术有限公司 一种基于ssl建立通信的系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130040714A1 (en) * 2011-08-09 2013-02-14 G-Tracking, Llc Virtual activities that incorporate a physical activity
CN206167845U (zh) * 2016-10-10 2017-05-17 曹惠 一种用于滑雪运动的智能系统
CN107340720A (zh) * 2017-07-19 2017-11-10 宋彦震 虚拟与现实世界环境模拟系统
CN107886566A (zh) * 2017-11-30 2018-04-06 北京恒华伟业科技股份有限公司 一种桥梁周围环境信息展现方法及系统
CN111544896A (zh) * 2020-03-30 2020-08-18 苏州渚头杉科技有限公司 一种基于虚拟现实的模拟真实滑雪系统
CN113318414A (zh) * 2021-06-03 2021-08-31 北京理工大学 一种多自由度模拟滑雪训练系统及训练方法
CN113703583A (zh) * 2021-09-08 2021-11-26 厦门元馨智能科技有限公司 一种多模态交叉融合的虚拟影像融合系统、方法、装置

Also Published As

Publication number Publication date
CN114415881A (zh) 2022-04-29
CN114415881B (zh) 2024-02-09

Similar Documents

Publication Publication Date Title
US11356619B2 (en) Video synthesis method, model training method, device, and storage medium
US11210963B2 (en) Method and apparatus for providing personalised audio-visual instruction
WO2023137776A1 (zh) 滑雪场环境要素云端实时链接的元宇宙滑雪系统
US8963956B2 (en) Location based skins for mixed reality displays
US10382680B2 (en) Methods and systems for generating stitched video content from multiple overlapping and concurrently-generated video instances
EP1058915B1 (fr) Systeme de visualisation d'images tridimensionnelles realistes virtuelles en temps reel
CN106775528A (zh) 一种虚拟现实的旅游系统
CN105306862A (zh) 一种基于3d虚拟合成技术的情景视频录制系统、方法及情景实训学习方法
CN109118854A (zh) 一种全景沉浸式直播互动教学系统
CN102195939B (zh) 高速无线网络遥控竞技系统及其实现方法
WO2018112695A1 (zh) 一种画面显示的方法及移动终端
CN101945258A (zh) 一种视频监控采集设备和监控系统
CN103795892A (zh) 一种采集图像数据的处理方法及装置
CN105739703A (zh) 面向无线头戴显示设备的虚拟现实体感交互系统及方法
CN104021585A (zh) 基于真实场景的三维展示方法
CN107547850A (zh) 大数据处理方法及大数据处理装置
WO2023155675A1 (zh) 一种虚拟数字世界的体验系统
CN108536281B (zh) 虚拟场景中的天气再现方法和装置、存储介质及电子装置
CN106199066A (zh) 智能终端的方向校准方法、装置
CN107632704A (zh) 一种基于光学定位的混合现实音频控制方法及服务设备
WO2020159697A1 (en) Compensating for effects of headset on head related transfer functions
CN107243148B (zh) 一种基于增强现实的高尔夫推杆辅助训练方法及系统
EP1207448A1 (fr) Procédé et système de commande d'un élément à retour d'effort
EP1370188A1 (fr) Procede et systeme de reconstruction a distance d'une surface
CN106899596B (zh) 一种远程云讲师服务装置和控制管理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22921212

Country of ref document: EP

Kind code of ref document: A1