WO2023137572A1 - Un artefacto para la mezcla de gases en agua en forma de gas disuelto y nano burbujas, útil en procesos industriales que trabajan con múltiples fases de tipo líquido-gas - Google Patents

Un artefacto para la mezcla de gases en agua en forma de gas disuelto y nano burbujas, útil en procesos industriales que trabajan con múltiples fases de tipo líquido-gas Download PDF

Info

Publication number
WO2023137572A1
WO2023137572A1 PCT/CL2022/050143 CL2022050143W WO2023137572A1 WO 2023137572 A1 WO2023137572 A1 WO 2023137572A1 CL 2022050143 W CL2022050143 W CL 2022050143W WO 2023137572 A1 WO2023137572 A1 WO 2023137572A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
gases
nano bubbles
ratio
injection
Prior art date
Application number
PCT/CL2022/050143
Other languages
English (en)
French (fr)
Inventor
José Pablo PUGA TRAVERSO
Original Assignee
Chucao Technology Consultants SpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chucao Technology Consultants SpA filed Critical Chucao Technology Consultants SpA
Publication of WO2023137572A1 publication Critical patent/WO2023137572A1/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/231Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids by bubbling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/237Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media
    • B01F23/2373Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media for obtaining fine bubbles, i.e. bubbles with a size below 100 µm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/313Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/40Mixers using gas or liquid agitation, e.g. with air supply tubes

Definitions

  • nano bubbles or ultra fine bubbles is the phenomenon resulting from injecting at least one gas phase into a liquid phase, generating cavities in the latter with sizes smaller than 1 micrometer.
  • Ultrafine bubbles have inherent properties that make them useful in many industries involving multiple gas-liquid phases.
  • Processes involving multi-phase fluids are widely used in the agricultural, pharmaceutical, environmental, chemical, and energy sectors. Within these processes, those that include gaseous and liquid phases are commonly applied in water treatment, restoration of aquatic systems, food processing industries, aquaculture, chemical or petrochemical industries, among others.
  • the efficiency of most processes that involve multiple gas-liquid phases depends on the operating parameters and design conditions of the equipment involved in these tasks, as well as the types of contact between phases and the properties of each of the fluids. According to the theory of mass transfer from a gas phase to a liquid phase, an increase in the contact area translates into an improvement in the efficiency of the process.
  • the design of the mixing elements, materials, dances, spraying methods, injection nozzles and other parameters play an important role either in the heat or mass exchanges or in the contact areas where the phases in contact react.
  • bubble size the most frequently studied factors are bubble size, the nature of its surface and its residence time (Liu, Wang, Ma, Huang Li & Kikuchi, 2010).
  • bubbles as macro bubbles, micro bubbles, and sub micro bubbles or nano bubbles, also receiving the names of conventional or large, fine and ultra fine bubbles, respectively (Edzwald, 2010; Agarwal, Ng & Liu, 2011; Xu, Nakajima, Ichikawa, Nakamura & Shiina, 2008, Pérez-Garibay, Martinez-Ramos & Rubio, 2012; Wu, Chen, Dong, Mao, Sun CHen & Hu, 2008; Terasaka, Hirabayashi, Nishino, Fujioka & Kobayashi, 2011; Ohgaki, Khanh, Joden, Tsuji & Nakagawa, 2010; Wu, Nesset, Masliyah & Xu, 2012).
  • An upper limit is established for nanobubble at 1 micron, based on the fact that in that range their behavior and the properties they exhibit are similar and different from the other classifications [10,15].
  • the techniques that represent the state of the art to generate nano bubbles are: hydrodynamic cavitation and particle cavitation (Agarwal, Ng & Liu, 201 1 ), acoustic techniques (Agarwal, Ng & Liu, 201 1 ; Xu, Nakajima, Ichikawa, Nakamura & Shiina, 2008; Kim, 2010) electrochemical cavitation (Wu, Chen, Dong, Mao, Sun CHen & Hu, 2008) and mechanical agitation (Xu, Nakajima, Ichikawa, Nakamura & Shiina, 2008).
  • cavitation occurs when the energy of acoustic waves produces periods of high negative pressure that exceed the hydrostatic environmental pressure (Besancon, 2013), for this ultrasonic waves are used (Xu, Nakajima, Ichikawa, Nakamura & Shiina, 200 8) either within the fluid or externally (L ⁇ , 2016).
  • cavitation by energy injection can be induced by photons or other elementary particles (Maoming, Honaker & Zhenfu, 2010).
  • Hydrodynamic cavitation is the most widely used in water treatment systems and can be achieved by pressurized saturation, bubble shearing, breaking and mechanical agitation (Liu, Wang, Ma, Huang Li & Kikuchi, 2010; Ushikubo, Furukawa, Nakagawa, Enah, Makino, Kawagoe & Oshita, 2010; Terasaka, Hirabayashi, Nishino, Fujioka & Kobayashi, 2011; Ohgaki, Khanh, Joden, Tsuji & Nakagawa, 2010; Ebina, 2013; Li, 2016, Kin & Han 2014, AWWA 1999; Kim & Han, 2010).
  • Electrochemical methods use an electric current on a surface which is immersed in the solution to generate bubbles by nucleation on the surface (Wu, Chen, Dong, Mao, Sun Chen & Hu, 2008).
  • Mechanical cavitation employs high agitation speeds using mechanical mixers to a volume of liquid with a limited amount of gas (Wu, Nesset, Masliyah & Xu, 2012). This technique applies the same principles of hydrodynamic cavitation.
  • Turbulence generators increase the turbulent intensity in specific areas, and have been widely studied and used in various applications, such as aerodynamics (Lu, Li, Shih, Pierce & Liu, 2011; Titchener & Babinsky, 2015) heat transfer (Chai & Tassou, 2018) capture of fine particulate matter (Sun, Zongkang, Yang, Chen & Wu, 2020), among others.
  • Venturi type generators A liquid flow accompanied by a flow of air flows through the inlet of a Venturi tube. When both phases reach the throat of the Venturi tube, the flow is accelerated, which causes a rapid change in dynamic pressure, promoting the formation of micro and nano bubbles due to reduction of the gas phase.
  • Ejector-type generators The generator considers channels that shrink and expand, producing a complex pressure profile. The gas phase is sucked from the point of lowest pressure and the gas flow is transformed into fine bubbles by the action of shear stresses.
  • Presumed Solution Type Generators A mixture of liquid and gas is presumed in a tank where the gas dissolves to saturation concentration. The micro bubbles are generated by expelling the saturated liquid in the liquid phase through a reducing valve. The size of the bubbles generated depends on the pressure of the assumed tank. d. Generation by depressumption: It is based on homogeneous/heterogeneous nucleation and cavitation by depresumptization system abrupt. It is possible to obtain a high density of bubbles with the use of a high pressure pump. and. Generation by rotational flow: The gas-liquid mixture is introduced tangentially into a container, forming a rotational flow inside.
  • the rotation induces a negative pressure in the center line of the vessel, which can suck in the gas phase.
  • the gas phase is separated into fine bubbles at one end of the vessel by the high shear stresses of the high velocity rotational flow escaping from the vessel. Its manufacturing is low cost and complexity, also obtaining a low density of bubbles.
  • F. Generation by static mixer A structure that guides the flow is designed so that it achieves a high speed and rotates.
  • a high shear stress field is formed by the interactions between the rotational fluid and the current shears.
  • a negative pressure is achieved in the central zone of the cylinder and in the regions after the current cutters. Fine bubbles are generated by a combination of nucleation, cavitation, and shock wave shear stresses.
  • a high-pressure pump is used for this.
  • Gala which uses principle i), including a static mixer, used for decades, requires low pressures, but achieves nanobubble concentrations of less than 100 million per milliliter.
  • the main limitation for nanobubble generators for industrial use is a combination of optimal energy consumption (low pressure loss), high efficiency in mass transfer and high volumetric density of nanobubble added to compatibility in use with liquids containing foreign particles.
  • Figure 1 Comparison of original and new geometric models.
  • Figure 2 Geometry of the nanobubble generator in isometric view.
  • Figure 3 Geometry of the nanobubble generator in top view and in cross section.
  • Figure 4 Comparison of results obtained through CFD modeling, specifically static pressure distribution in two planes, vertical and horizontal, of the original and optimized equipment.
  • Figure 5 Comparison of results obtained through CFD modeling, specifically magnitude distribution of fluid velocity in two planes, vertical and horizontal, of the original and optimized equipment.
  • Figure 6 Comparison of results obtained by CFD modeling, specifically static pressure distribution on different axial positions of the apparatus.
  • Figure 7 Comparison of results obtained by CFD modeling, specifically distribution of turbulence intensity on horizontal and vertical planes of the apparatus.
  • the invention corresponds to an artifact for the mixture of gases in water in the form of dissolved gas and nano bubbles, useful in industrial processes that work with multiple liquid-gas phases (see Fig. 2).
  • the device allows gas to be dissolved in water, generating nanometric bubbles by injecting gas through a porous medium in an area where there is suction induced by the hydrodynamic conditions of the equipment, that is, it does not require presuhzation of the gas phase.
  • the device has been optimized to minimize the loss of charge in the liquid phase. Additionally, the device reduces the size of the bubbles exiting the porous medium thanks to the breaking of bubbles by the turbulent shear flow field produced by an array of turbulence generators.
  • the geometric characteristics of the nanobubble generator allow it to work as a whole as a Venturi tube for the liquid phase, since the passage of the fluid through the apparatus is reduced in the central section or throat and then returns to a broader cross section.
  • the area reduction in the throat area has a ratio of 1:4 compared to the entrance area.
  • the cross section changes are progressive and smooth in order to increase the speed of the water from a value at the entrance of 2.1 [m/s] to an average speed in the throat area of 8.24 [m/s] (see fig. 5).
  • the acceleration of the flow described above has an important effect on the pressure in the central area of the apparatus, since it reduces the manometric static pressure to values between -13[kPa] to -19[kPa] (see fig.
  • the nanobubble generator includes 5 turbulence generators that interact with the multiphase flow (see fig. 7).
  • the gas phase enters by suction due to the Venturi tube type design, to then surround the porous tube by its external cylindrical face in a cavity designed so that it can be distributed evenly. From there it enters the throat area of the device by the suction effect through the pores of the tube.
  • the gas phase crosses the porous tube radially inwards, it meets the liquid phase that is circulating axially, so the liquid phase detaches the gas phase that is being discharged through the micrometric pores of the porous medium.
  • the breaking of the oxygen microjets is generated by the shear effect generated by the turbulent shear flow field.
  • the cylindrical insert In the throat area of the equipment, there is a central axial cylindrical insert that has a change in diameter of a ratio of 1:2.
  • the cylindrical insert represents a blocking ratio of 28% with respect to the total area of the throat area.
  • a total of 5 turbulence generators of 3 types are installed on this piece. In this way, the cylindrical insert and the turbulence generators, they increase the local shear stress since they increase the speed and intensity of turbulence of the flow and direct it towards the internal cylindrical wall of the porous tube.
  • the casing Downstream of the throat area, the casing recovers its initial cross section at its exit point.
  • the design of the equipment in this zone maintains a high intensity of turbulence, which promotes the breaking of micro bubbles, however, it avoids the generation of recirculations and abrupt reductions in diameter, which results in a low pressure loss compared to conventional nano bubble generators.
  • the generator is made up of an external casing (1) that includes: a water inlet (2), a gas inlet (3), a water outlet with the presence of nano bubbles (4), a cylindrical recess (5) to evenly distribute the gas around a porous tube (7), a divergent cone whose angle is 20° (6).
  • an external casing (1) that includes: a water inlet (2), a gas inlet (3), a water outlet with the presence of nano bubbles (4), a cylindrical recess (5) to evenly distribute the gas around a porous tube (7), a divergent cone whose angle is 20° (6).
  • a porous tube with porosity between 30 and 37% and a pore size of 0.45 [pm] (7) next to it, towards the water inlet area, there is a converging cone with an angle of 30° (8).
  • the external casing (1) has a ratio of 1:7 between its internal diameter and length. It has a cylindrical shape on the outside and inside it includes the following characteristics; support to locate and center the porous tube (7); space to evenly distribute the gas phase (5); 20° divergent cone (6) at the outlet of the central or throat section of the apparatus; change in diameter that houses the convergent cone (8).
  • the porous tube (7) in the shape of a hollow cylinder has a ratio of 1:4 between its outer diameter and its length. While its thickness and outer diameter are in a ratio of 1:7. It is supported and centered by the external casing (1) and is also supported by a section of the converging cone (8).
  • the converging cone (8) has an inclination angle of 30° to make the entry into the central or throat area of the equipment progressive and gradual. It is located in a change in diameter of the external casing (1) and also serves to support and center the porous tube (7).
  • the cylindrical insert (9) is arranged axially inside the appliance, covering 90% of the length of the appliance. Towards the flow inlet zone (2), it has a reduced diameter in a ratio of 1:2 to support the thinnest end on a support (10) with the minimum impact for the fluid.
  • a type A turbulence generators are located, separated at a distance equivalent to 5 diameters from the insert, then in the divergent area, a type B and one type C turbulence generator are located, towards the fluid outlet (4) another support is made with a support (10) resting on the thickest end of the cylindrical insert (9).
  • Example 1 Optimization of a nanobubble generating apparatus by computational simulation of fluid dynamics.
  • the second order turbulence model K - CJ SST was selected, which is capable of describing complex rotational flows, such as those that occur in recirculations and mixing zones in equipment that works with liquid-gas phases.
  • the SIMPLE scheme was used for the pressure-velocity coupling; the method of least squares was configured in each cell to calculate the gradient and a second order method to determine the pressure at the outlet of the reactor.
  • Table 1 Summary of results obtained for the new and original model: The results obtained made it possible to replicate the operating conditions of the models evaluated to determine the dynamics of the fluids in the generator, it was concluded that the improvements projected in the design phase did result in a significant improvement at the hydrodynamic level, since they allowed reducing the load loss of the apparatus to almost a third (see fig. 6). In addition, it was observed that through the geometric modifications a suction effect was achieved for the gas phase, which gives an additional operational advantage to the apparatus (see fig. 4).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)

Abstract

Artefacto para mezclar gases en agua en forma de gas disuelto y nano burbujas que comprende una carcasa cilíndrica externa; un cambio de diámetro tipo cono convergente; una sección central de sección reducida en razón 1:4 con respecto a las secciones de entrada y/o salida; un cilindro hueco poroso cuyo espesor está en razón 1:7 con su diámetro externo, sobre el que se inyecta una fase gaseosa por la cara cilíndrica exterior para mezclarse con una fase líquida que transita por la zona delimitada por la cara cilíndrica interior mediante poros de tamaño nanométrico; un cambio de diámetro tipo cono divergente; un inserto cilíndrico central orientado de manera axial en el artefacto que representa una restricción del área de la zona de garganta de 30%; generadores de turbulencia dispuestos en la zona de garganta para generar un campo de intensidad turbulenta aumentada para el rompimiento de burbujas de tipo turbulento.

Description

UN ARTEFACTO PARA LA MEZCLA DE GASES EN AGUA EN FORMA DE GAS DISUELTO Y NANO BURBUJAS, ÚTIL EN PROCESOS INDUSTRIALES QUE TRABAJAN CON MÚLTIPLES FASES DE TIPO LÍQUIDO-GAS
ESTADO DEL ARTE
La generación de nano burbujas o burbujas ultra finas es el fenómeno resultante de inyectar al menos una fase gaseosa en una fase líquida, generando cavidades en esta última de tamaños menores a 1 micrómetro. Las burbujas ultra finas tienen propiedades inherentes que las hacen útiles en muchos rubros industriales que involucran múltiples fases del tipo gas-líquido.
Los procesos que involucran fluidos de múltiples fases son ampliamente usados en los sectores agrícolas, farmacéuticos, medioambientales, químicos y energéticos. Dentro de estos procesos, los que incluyen fases gaseosas y líquidas se aplican comúnmente en tratamiento de aguas, restauración de sistemas acuáticos, industrias que procesan alimentos, acuicultura, industrias químicas o petroquímicas, entre otros. La eficiencia de la mayoría de los procesos que involucran fases múltiples gas-líquido depende de los parámetros de operación y condiciones de diseño de los equipos involucrados en estas tareas, así como también de los tipos de contacto entre fases y las propiedades de cada uno de los fluidos. De acuerdo a la teoría de transferencia de masa de una fase gaseosa a una líquida, un aumento en el área de contacto se traduce en una mejora en la eficiencia del proceso. Además, el diseño de los elementos de mezcla, materiales, bailes, métodos de aspersión, toberas de inyección y otros parámetros, juegan un importante rol ya sea en los intercambios de calor o masa o en las áreas de contacto en donde reaccionan las fases en contacto.
En cuanto al estudio del comportamiento de las burbujas, los factores estudiados con mayor frecuencia son el tamaño de burbujas, la naturaleza de su superficie y su tiempo de residencia ( Liu , Wang, Ma, Huang Li & Kikuchi, 2010). Los investigadores emplean el tamaño de burbujas como base para categorizarlas ya que se ha determinado que este parámetro diferencia su comportamiento y propiedades (Ushikubo, Furukawa, Nakagawa, Enañ, Makino, Kawagoe & Oshita, 2010). Basados en esto, variados estudios definieron a las burbujas como macro burbujas, micro burbujas, y sub micro burbujas o nano burbujas, recibiendo además los nombres de burbujas convencionales o grandes, finas y ultra finas, respectivamente (Edzwald, 2010; Agarwal, Ng & Liu, 201 1 ; Xu, Nakajima, Ichikawa, Nakamura & Shiina, 2008, Pérez-Garibay, Martinez-Ramos & Rubio, 2012; Wu, Chen, Dong, Mao, Sun CHen & Hu, 2008; Terasaka, Hirabayashi, Nishino, Fujioka & Kobayashi, 2011 ; Ohgaki, Khanh, Joden, Tsuji & Nakagawa, 2010; Wu, Nesset, Masliyah & Xu, 2012). Se establece un límite superior para las nano burbujas en 1 micrón, basado en que en ese rango su comportamiento y las propiedades que exhiben son similares y distintas de las otras clasificaciones [10,15].
Las técnicas que representan el estado del arte para generar nano burbujas son: cavitación hidrodinámica y cavitación por partículas (Agarwal, Ng & Liu, 201 1 ), técnicas acústicas (Agarwal, Ng & Liu, 201 1 ; Xu, Nakajima, Ichikawa, Nakamura & Shiina, 2008; Kim, 2010) cavitación electroquímica (Wu, Chen, Dong, Mao, Sun CHen & Hu, 2008) y agitación mecánica (Xu, Nakajima, Ichikawa, Nakamura & Shiina, 2008).
Existen variadas técnicas para lograr cavitación reduciendo la presión bajo un valor crítico. La más empleada es de raíz hidrodinámica, donde la variación de presión se logra mediante un cambio de velocidad en el fluido, también se puede inducir una variación de presión aplicando un campo acústico, en este caso, la cavitación ocurre cuando la energía de las ondas acústicas produce periodos de alta presión negativa que exceden la presión ambiental hidrostática (Besancon, 2013), para esto se emplean ondas ultrasónicas (Xu, Nakajima, Ichikawa, Nakamura & Shiina, 2008) ya sea dentro del fluido o de manera externa (L¡, 2016). Por otro lado, la cavitación por inyección de energía puede ser inducida por fotones u otras partículas elementales (Maoming, Honaker & Zhenfu, 2010).
La cavitación hidrodinámica es la más usada en sistemas de tratamiento de aguas y puede lograrse mediante saturación presurizada, cizallamiento de burbujas, rompimiento y agitación mecánica (Liu, Wang, Ma, Huang Li & Kikuchi, 2010; Ushikubo, Furukawa, Nakagawa, Enah, Makino, Kawagoe & Oshita, 2010; Terasaka, Hirabayashi, Nishino, Fujioka & Kobayashi, 201 1 ; Ohgaki, Khanh, Joden, Tsuji & Nakagawa, 2010; Ebina, 2013; Li, 2016, Kin & Han 2014, AWWA 1999; Kim & Han, 2010). Wu, Nesset, Masliyah & Xu 2012 discute algunos métodos de generación de burbujas finas mediante cavitación hidrodinámica (flujo rotacional, tipo Venturi, tipo eyector, tipo disolución presuhzada) los cuales usan mecanismos de cavitación hidrodinámica que logran una reducción de presión bajo la presión de vapor debido a altas velocidades. Por otro lado, un separador de burbujas hidrodinámico emplea esfuerzos de cizallamiento a las burbujas y además cavitación para reducir el tamaño de las mismas (Kim & Han, 2014).
Los métodos electroquímicos emplean una corriente eléctrica sobre una superficie la cual es inmersa en la solución para generar burbujas por nucleación en la superficie (Wu, Chen, Dong, Mao, Sun Chen & Hu, 2008). La cavitación mecánica emplea altas velocidades de agitación usando mezcladores mecánicos a un volumen de líquido con una cantidad limitada de gas (Wu, Nesset, Masliyah & Xu, 2012) esta técnica aplica los mismos principios de la cavitación hidrodinámica.
El rol de la turbulencia en el rompimiento de burbujas es clave y fue estudiado por primera vez por Heinze en 1955, quien describe que la energía cinética del movimiento turbulento de una fase continua resulta en el rompimiento de la segunda fase. El rompimiento de burbujas se relaciona con el número de Weber crítico, el que se define como la relación entre la fuerza turbulenta y la fuerza de tensión superficial. Así, un incremento en la intensidad de turbulencia aumentará la fuerza turbulenta resultando en burbujas más pequeñas (Li, Song, Yin, Wang, 2017) siendo esto deseable en un generador de nano burbujas pues con un tamaño de burbujas más reducido también aumenta la densidad volumétrica de burbujas. La distribución de tamaños de burbujas junto a la concentración de área interfacial es determinada por las características de los flujos turbulentos (Kocamustafaogullañ & Ishii, 1995). En efecto, Serizawa, 2017 estudia diferentes parámetros geométricos en un generador de burbujas tipo Venturi, como: número de inyecciones de aire, diámetro de las inyecciones de aire, y ángulo de zona divergente. Concluyendo que la distribución de tamaños de burbujas es altamente sensible al ángulo de la zona divergente y que a mayor ángulo divergente, mayor intensidad turbulenta y fuerza turbulenta lo que resulta en una ganancia de burbujas de menor tamaño.
Los generadores de turbulencia aumentan la intensidad turbulenta en zonas específicas, y han sido ampliamente estudiados y usados en diversas aplicaciones, como aerodinámicas (Lu, Li, Shih, Pierce & Liu, 2011 ; Titchener & Babinsky, 2015) de transferencia de calor (Chai & Tassou, 2018) captura de material particulado fino (Sun, Zongkang, Yang, Chen & Wu, 2020), entre otras. Estos manipulan la circulación de un fluido aumentando su turbulencia, generando vórtices y/o re- energizando el flujo en zonas de recirculación específicas, consiguiendo mejoras en eficiencia aerodinámica (Lu, Li, Shih, Pierce & Liu, 201 1 ; Titchener & Babinsky, 2015) o aumento de transferencia de calor (Chai & Tassou, 2018). Su geometría puede ser de tamaño reducido respecto al equipo, máquina o vehículo en el que se use, sin embargo, su efecto en el fluido es algo complejo y requiere de estudios experimentales o numéricos detallados (Titchener & Babinsky, 2015). Algunos tipos de generadores de turbulencia son: de tipo cuña (wedge), de tipo aleta (vane), tipo hueso de la suerte (wishbone), tipo aletas dobles (doublet type wheeler vanes), tipo Z o cruz, tipo placa, tipo delta, tipo semi-circular, tipo triangular, tipo hendidura, etc.
En la actualidad existen diversos tipos de generadores de burbujas finas y ultra finas con diferentes características y niveles de desempeño. Los principales tipos de equipos generadores de burbujas finas y ultra finas son descritos a continuación: a. Generadores tipo Venturi: Un flujo líquido acompañado de un flujo de aire fluyen por la entrada de un tubo Venturi. Cuando ambas fases llegan a la garganta del tubo Venturi, el flujo se ve acelerado lo que provoca un rápido cambio de la presión dinámica promoviendo la formación de micro y nano burbujas por reducción de la fase gaseosa. b. Generadores tipo eyector: El generador considera canales que se encogen y amplían produciendo un complejo perfil de presiones. La fase gaseosa es succionada desde el punto de menor presión y el flujo de gas se transforma en burbujas finas por la acción de esfuerzos de corte. c. Generadores de tipo disolución presuñzada: Una mezcla de líquido y gas es presuñzada en un tanque donde el gas se disuelve a la concentración de saturación. Las micro burbujas se generan al expulsar el líquido saturado en la fase líquida mediante una válvula reductora. El tamaño de las burbujas generadas depende de la presión del tanque presuñzado. d. Generación mediante despresuñzación: Se basa en nucleación homogénea/heterogénea y cavitación mediante una despresuñzación brusca del sistema. Es posible obtener una alta densidad de burbujas con el uso de una bomba de alta presión. e. Generación mediante flujo rotacional: La mezcla gas-líquido se introduce de forma tangencial en un recipiente formando un flujo rotacional en su interior. La rotación induce una presión negativa en la línea central del recipiente, que puede succionar la fase gaseosa. La fase gaseosa es separada transformándose en burbujas finas en un extremo del recipiente por los grandes esfuerzos de cizallamiento del flujo rotacional de alta velocidad que escapa del recipiente. Su fabricación es de bajo costo y complejidad, obteniéndose también una baja densidad de burbujas. f. Generación por mezclador estático: Se diseña una estructura que guía el flujo para que este logre una alta velocidad y rote. Se forma un campo de altos esfuerzos de corte por las interacciones entre el fluido rotacional y los cortadores de corriente. Se logra una presión negativa en la zona central del cilindro y en las regiones posteriores a los cortadores de corriente. Se generan burbujas finas por combinación de nucleación, cavitación y esfuerzos de corte por ondas de choque. Para esto se ocupa una bomba de alta presión. g. Generación por inyección de gases a través de un medio poroso: La fase gaseosa es inyectada a través de un material con poros ultra finos, donde un líquido en movimiento interrumpe la fase gaseosa lo que resulta en la generación de burbujas ultra finas. Se emplean materiales cerámicos o carbono-cerámicos que poseen nano poros. h. Generación por cavitación hidrodinámica: El diseño de estos equipos incluye características geométricas que provocan cambios abruptos de presión en el líquido, las caídas bruscas de presión bajo la presión de vapor del mismo generan cavidades donde el fluido cambia de fase generándose nano burbujas. i. Generación por esfuerzos de corte: se generan burbujas debido a que el líquido mezclado con la fase gaseosa se encuentra expuesto a altos gradientes de cizallamiento en sus distintas capas. Existen patentes de dispositivos para la generación de nano burbujas. Como lo son:
1. Moleaer, que utiliza una combinación del principio g) y i), por cuanto las burbujas son generadas en un medio poroso (que en sus reivindicaciones indican tienen una porosidad menor a 1 micrómetro). Es de nuestro conocimiento que esto requiere de presiones de gas por sobre de los 6bar, lo cual no es viable en muchas aplicaciones. Así mismo, en la práctica sus equipos tienen pérdidas de carga del orden de los 1 ,5 bar.
2. Gala, que utiliza el principio i), incluyendo un mezclador estático, usado durante décadas, requiere de bajas presiones, pero logra concentraciones de nano burbujas menores a los 100 millones por mililitro.
De esta manera, el principal limitante para generadores de nano burbujas de uso industrial es una combinación de consumo energético óptimo (baja pérdida de carga), alta eficiencia en la transferencia de masa y alta densidad volumétrica de nano burbujas sumado a la compatibilidad en el uso con líquidos que contienen partículas extrañas.
Es conocido que los generadores que emplean mecanismos de tipo: flujo rotacional, eyector, Venturi y disolución a presión muestran una eficiencia en la transferencia de gases cercano o superior al 65%. Por otro lado, los que emplean mecanismos de tipo flujo rotacional o eyector no son compatibles con líquidos con partículas extrañas. Además, la mayor parte de los mecanismos de generación, requieren del uso de una bomba de alta presión en sus fases líquidas y/o gaseosas.
De esta manera, persiste la necesidad de desarrollar un artefacto para la mezcla de gases en una fase líquida en forma de nano burbujas, de bajo consumo energético y alta eficiencia en la transferencia de masa, compatible con líquidos que puedan contener partículas. Donde además se conozca en detalle la interacción turbulenta de las fases y su rol e interacción con la generación de nano burbujas. BREVE DESCRIPCIÓN DE LAS FIGURAS
Figura 1 : Comparación de modelos geométricos original y nuevo.
Figura 2: Geometría del generador de nano burbujas en vista isométhca.
Figura 3: Geometría del generador de nano burbujas en vista superior y en sección transversal.
Figura 4: Comparación de resultados obtenidos mediante modelación CFD, específicamente distribución de presión estática en dos planos, vertical y horizontal del equipo original y optimizado.
Figura 5: Comparación de resultados obtenidos mediante modelación CFD, específicamente distribución de magnitud de velocidad de fluido en dos planos, vertical y horizontal del equipo original y optimizado.
Figura 6: Comparación de resultados obtenidos mediante modelación CFD, específicamente distribución de presión estática sobre distintas posiciones axiales del aparato.
Figura 7: Comparación de resultados obtenidos mediante modelación CFD, específicamente distribución de intensidad de turbulencia sobre planos horizontales y verticales del aparato.
DESCRIPCIÓN DE LA INVENCIÓN
La invención corresponde a un artefacto para la mezcla de gases en agua en forma de gas disuelto y nano burbujas, útil en procesos industriales que trabajan con múltiples fases de tipo líquido-gas (ver fig. 2). El dispositivo permite disolver gas en agua generando burbujas nanométricas inyectando gas a través de un medio poroso en una zona donde existe succión inducida por las condiciones hidrodinámicas del equipo, es decir, no requiere presuhzación de la fase gaseosa. El dispositivo ha sido optimizado para minimizar la pérdida de carga la fase líquida. Adicionalmente, el dispositivo reduce el tamaño de las burbujas que salen del medio poroso gracias a el rompimiento de burbujas por el campo de flujo de corte turbulento producido por un arreglo de generadores de turbulencia. Las características geométricas de generador de nano burbujas, permiten que en su conjunto funcionen como un tubo de Venturi para la fase líquida, debido a que el paso del fluido por el aparato se ve reducido en la sección central o garganta para luego volver a una sección transversal más amplia. La reducción de área en la zona de garganta tiene una razón de 1 :4 comparada al área de entrada. Los cambios de sección transversal son progresivos y suaves con el fin de aumentar la velocidad del agua desde un valor en la entrada de 2,1 [m/s] hasta una velocidad promedio en la zona de garganta de 8,24 [m/s] (ver en fig. 5). La aceleración del flujo anteriormente descrito, tiene un importante efecto en la presión de la zona central del aparato, pues reduce la presión estática manométrica a valores de entre -13[kPa] a -19[kPa] (ver fig. 6) en la zona de garganta, es decir, específicamente en la zona interior del tubo poroso (garganta), en todo su espesor, en el rebaje de la carcasa externa y en la zona de entrada de la fase gaseosa haciendo prescindible la presuhzación externa de la fase gaseosa (visible en fig. 4). El generador de nano burbujas incluye 5 generadores de turbulencia que interactúan con el flujo multifase (ver fig. 7).
La fase gaseosa ingresa por succión debido al diseño tipo tubo Venturi, para luego rodear al tubo poroso por su cara cilindrica externa en una cavidad diseñada para que pueda distribuirse de manera uniforme. Desde allí hace ingreso a la zona de garganta del aparato por el efecto de succión a través de los poros del tubo. Cuando la fase gaseosa cruza el tubo poroso de forma radial hacia el interior, se encuentra con la fase líquida que está circulando de forma axial, por lo que la fase líquida desprende a la fase gaseosa que está siendo descargada a través de los poros micrométricos del medio poroso. En la zona interior adyacente a la interfaz entre la cara interior del medio poroso y el flujo multifase se genera el rompimiento de los microjets de oxígeno por efecto del cizalle generado por el campo de flujo de corte turbulento.
En la zona de garganta del equipo, se encuentra un inserto cilindrico axial central que posee un cambio de diámetro de razón 1 :2, el inserto cilindrico representa una relación de bloqueo del 28% con respecto al área total de la zona de garganta. Sobre esta pieza se instala un total de 5 generadores de turbulencia de 3 tipos. De esta manera, el inserto cilindrico y los generadores de turbulencia, aumentan el esfuerzo de corte local pues aumentan la velocidad e intensidad de turbulencia del flujo y lo dirigen hacia la pared cilindrica interna del tubo poroso.
Aguas abajo de la zona de garganta, la carcasa recupera la sección transversal inicial en su punto de salida. El diseño del equipo en esta zona mantiene una alta intensidad de turbulencia lo cual promueve el rompimiento de micro burbujas, sin embargo, evita la generación de recirculaciones y reducciones abruptas de diámetro lo que resulta en una baja pérdida de carga respecto a generadores de nano burbujas convencionales.
El generador está conformado por una carcasa externa (1 ) que incluye: una entrada de agua (2), una entrada de gas (3), una salida de agua con presencia de nano burbujas (4), un rebaje cilindrico (5) para distribuir uniformemente el gas alrededor de un tubo poroso (7), un cono divergente cuyo ángulo es 20° (6). Además, al interior de la carcasa en la zona central se ubica un tubo poroso con porosidad entre 30 y 37% y un tamaño de poros de 0,45 [pm] (7), junto a él, hacia la zona de entrada de agua se encuentra un cono convergente con un ángulo de 30° (8). A lo largo de una gran porción del equipo, se ubica un inserto cilindrico axial, con cambio de diámetro (9), sujeto por dos soportes (10) ubicados cerca del ingreso de agua (2) y de la salida de agua con nano burbujas (4). Sobre el inserto cilindrico (9), se instalan tres generadores de turbulencia de tipo A (1 1 ), un generador de turbulencia de tipo B (12) y un generador de turbulencia de tipo C (13).
La carcasa externa (1 ) presenta una razón de 1 :7 entre su diámetro interior y longitud. Posee forma cilindrica en su exterior y en el interior incluye las siguientes características; soporte para ubicar y centrar el tubo poroso (7); espacio para distribuir uniformemente la fase gaseosa (5); cono divergente de 20° (6) en la salida de la sección central o de garganta del aparato; cambio de diámetro que aloja al cono convergente (8).
El tubo poroso (7) con forma de cilindro hueco presenta una razón de 1 :4 entre su diámetro exterior y longitud. Mientras que su espesor y diámetro exterior están en razón 1 :7. Es soportado y centrado por la carcasa externa (1 ) y también se apoya en una sección del cono convergente (8). El cono convergente (8) posee un ángulo de inclinación de 30° para hacer progresivo y gradual el ingreso a la zona central o de garganta del equipo. Se ubica en un cambio de diámetro de la carcasa externa (1 ) y sirve también para apoyar y centrar el tubo poroso (7).
El inserto cilindrico (9) se encuentra dispuesto al interior del aparato de manera axial cubriendo un 90% de la longitud del aparato. Hacia la zona de entrada de flujo (2), posee un diámetro reducido en razón 1 :2 para apoyar el extremo más fino sobre un soporte (10) con el mínimo de impacto para el fluido. Sobre el inserto cilindrico específicamente en la zona de garganta, se ubican 3 generadores de turbulencia de tipo A, separados a una distancia equivalente a 5 diámetros del inserto, luego en la zona divergente, se ubica un generador de turbulencia de tipo B y uno tipo C, hacia la salida de fluidos (4) se realiza otro apoyo con un soporte (10) apoyado en el extremo más grueso del inserto cilindrico (9).
EJEMPLOS DE APLICACIÓN
Ejemplo 1. Optimización de un aparato generador de nano burbujas mediante simulación computacional de dinámica de fluidos.
Es importante notar que el equipo a optimizar (Quetrox) ha sido probado como un prototipo capaz de generar una alta concentración volumétrica de nano burbujas (mayor a 200 millones por mililitro, según NanoSight de la Universidad de Chile) con una pérdida de carga relativamente baja menor a 1 [bar].
Para poder obtener ventajas operacionales con un nuevo diseño de generador de nano burbujas, se realizaron simulaciones utilizando Dinámica de Fluidos Computacional (CFD). Mediante esta metodología es posible simular la dinámica del flujo multifase, permitiendo la evaluación de múltiples configuraciones y parámetros de operación.
A través de la aplicación de esta metodología fue posible determinar el impacto sobre el desempeño de características de diseño del equipo propuesto, entre las que destacan aquellas con un impacto hidrodinámico sobre el aumento de la intensidad de turbulencia, flujo de corte y disminución de la pérdida de carga. En una primera etapa se realizó la simulación del equipo Quetrox original, el cual fue el modelo base para la optimización. Se determinó la caída de presión del equipo como también los campos de presión, velocidad, intensidad de turbulencia, esfuerzos de corte, entre otros.
En relación a los submodelos empleados para la simulación, se seleccionó el modelo de turbulencia de segundo orden K - CJ SST, el cual es capaz de describir flujos rotacionales complejos, como los que se presentan en recirculaciones y zonas de mezcla en equipos que trabajan con fases líquido-gas. Además, se utilizó el esquema SIMPLE para el acoplamiento presión-velocidad; se configuró el método de cuadrados mínimos en cada celda para calcular el gradiente y un método de segundo orden para determinar la presión en la salida del reactor.
Sobre los resultados obtenidos, junto a requerimientos de diseño y/o fabricación se generan modificaciones geométricas para mejorar el desempeño hidrodinámico del equipo. Las modificaciones geométricas se presentan en la figura 1. Éstas fueron implementadas al modelo original persiguiendo los siguientes objetivos:
Reducir aquellas pérdidas de carga que no son empleadas en la generación de nano burbujas.
Aumentar cizallamiento por el flujo de corte.
Aumentar intensidad de turbulencia.
Los principales resultados obtenidos mediante la simulación CFD se resumen en la tabla 1 :
Tabla 1 : Resumen de resultados obtenidos para el modelo nuevo y original:
Figure imgf000013_0001
Los resultados obtenidos permitieron replicar las condiciones de operación de los modelos evaluados para determinar la dinámica de los fluidos en el generador, se concluyó que las mejoras proyectadas en la fase de diseño si resultaron en una importante mejora a nivel hidrodinámico pues permitieron reducir a casi un tercio la pérdida de carga del aparato (ver fig. 6). Además, se visualizó que mediante las modificaciones geométricas se consiguió un efecto de succión para la fase gaseosa, con lo que se otorga una ventaja operacional adicional al aparato (ver fig. 4).
Desde un punto de vista de generación de nano burbujas, las modificaciones geométricas permitieron; aumentar los esfuerzos de corte en la zona de inyección de gases, mejoraron la distribución de velocidad en la zona de inyección de gases (ver fig. 5) y se aumentó la intensidad turbulenta en esa zona para ayudar en el rompimiento de burbujas (ver fig. 7). El aumento de la intensidad turbulenta es un efecto especialmente útil para obtener ganancias en burbujas de tamaño más reducido que el modelo original junto a una mayor densidad volumétrica de burbujas, la fig. 7 muestra el aumento de intensidad de turbulencia del nuevo diseño.

Claims

REIVINDICACIONES Un dispositivo para la inyección de gases en agua en forma de nano burbujas CARACTERIZADO porque comprende al menos una carcasa cilindrica externa (1 ), con una entrada de líquido (2), una entrada de gas (3), una zona cilindrica (5) para distribuir uniformemente una fase gaseosa, una salida de fluidos (4), un cambio de diámetro cónico divergente (6) de inclinación 20°; un cono convergente (8) de inclinación 30°; un tubo poroso (7); un inserto cilindrico (9) con un cambio de diámetro en razón 1 :2; dos elementos de sujeción (10) del inserto cilindrico (9); tres generadores de turbulencia tipo A
(1 1 ) ubicados en la zona de garganta; un generador de turbulencia tipo B
(12) y un generador de turbulencia tipo C ubicados en la zona divergente del aparato. Un dispositivo para la inyección de gases en agua en forma de nano burbujas CARACTERIZADO porque la distribución de tamaño de las nano burbujas resulta de la inyección de gas a través de un tubo poroso y de la interacción de un flujo de corte de alta turbulencia provocado por un inserto cilindrico central y generadores de turbulencia de tres tipos (1 1 , 12 y 13) cuyo arreglo genera altos gradientes de velocidad en la capa límite ubicada en la zona de interfaz entre la cara interior del tubo poroso y el flujo multifase. Un dispositivo para la inyección de gases en agua en forma de nano burbujas CARACTERIZADO porque la inyección de gases se realiza en una zona de succión dada por condiciones hidrodinámicas, con valores de presión manométñca de entre -13[kPa] a -19[kPa], de esta manera, el aparato no necesita presurización de fase gaseosa. Un dispositivo para la inyección de gases en agua en forma de nano burbujas, según la reivindicación 1 CARACTERIZADO porque la zona interior del tubo poroso (7) con forma de cilindro hueco delimita de forma radial la zona de garganta del aparato, mientras que los límites en los extremos son el cono convergente (8) y el cono divergente (6).
5. Un dispositivo para la inyección de gases en agua en forma de nano burbujas, según la reivindicación 1 CARACTERIZADO porque el tubo poroso (7) con forma de cilindro hueco permite la inyección de la fase gaseosa en la fase líquida a través de sus cavidades, la circulación es de tipo radial con dirección hacia el centro de la zona de garganta del aparato.
6. Un dispositivo para la inyección de gases en agua en forma de nano burbujas, según la reivindicación 1 CARACTERIZADO porque el cono convergente (8) de 30° de inclinación supone un cambio de sección en razón 5:2.
7. Un dispositivo para la inyección de gases en agua en forma de nano burbujas, según la reivindicación 1 CARACTERIZADO porque el cono divergente (6) de 20° de inclinación supone un cambio de sección en razón 1 :3.
8. Un dispositivo para la inyección de gases en agua en forma de nano burbujas, según la reivindicación 1 CARACTERIZADO porque el inserto axial cilindrico (9) posee un cambio de diámetro de razón 1 :2 y representa un bloqueo de la sección transversal de la zona de garganta del 28%.
9. Un dispositivo para la inyección de gases en agua en forma de nano burbujas, según la reivindicación 1 CARACTERIZADO porque los tres generadores de turbulencia de tipo A (1 1 ), tienen forma de romboide de revolución con lados inclinados en 45°, la relación entre altura y longitud de 1 :1 , la relación entre su altura y el diámetro del inserto cilindrico (7) donde va montado es de 1 :9. 0. Un dispositivo para la inyección de gases en agua en forma de nano burbujas, según la reivindicación 1 CARACTERIZADO porque el generador de turbulencia de tipo B (12), tiene forma de cilindro hueco con una relación entre altura y longitud de 1 :1 , la relación entre su altura y el diámetro del inserto cilindrico (7) donde va montado es de 1 :2. Un dispositivo para la inyección de gases en agua en forma de nano burbujas, según la reivindicación 1 CARACTERIZADO porque el generador de turbulencia de tipo C (12), tiene forma de romboide de revolución con lados inclinados en 45°, la relación entre altura y longitud es de 2:1 , la relación entre su altura y el diámetro del inserto cilindrico (7) donde va montado es de 1 :1 .
PCT/CL2022/050143 2022-01-12 2022-12-29 Un artefacto para la mezcla de gases en agua en forma de gas disuelto y nano burbujas, útil en procesos industriales que trabajan con múltiples fases de tipo líquido-gas WO2023137572A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CL88-2022 2022-01-12
CL2022000088A CL2022000088A1 (es) 2022-01-12 2022-01-12 Un artefacto para la mezcla de gases en agua en forma de gas disuelto y nano burbujas, útil en procesos industriales que trabajan con múltiples fases de tipo líquido-gas.

Publications (1)

Publication Number Publication Date
WO2023137572A1 true WO2023137572A1 (es) 2023-07-27

Family

ID=83103423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2022/050143 WO2023137572A1 (es) 2022-01-12 2022-12-29 Un artefacto para la mezcla de gases en agua en forma de gas disuelto y nano burbujas, útil en procesos industriales que trabajan con múltiples fases de tipo líquido-gas

Country Status (2)

Country Link
CL (1) CL2022000088A1 (es)
WO (1) WO2023137572A1 (es)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5037616A (en) * 1987-10-14 1991-08-06 Compagnie De Raffinage Et De Distribution Total France Device for injection of a hydrocarbon feedstock into a catalytic cracking reactor
US20110241230A1 (en) * 2010-04-02 2011-10-06 Kerfoot William B Nano-bubble Generator and Treatments
WO2014184585A2 (en) * 2013-05-16 2014-11-20 Nano Tech Inc Limited Creating and using controlled fine bubbles
US20190344224A1 (en) * 2016-11-03 2019-11-14 Nano Bubble Technologies Pty Ltd Nanobubble generator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5037616A (en) * 1987-10-14 1991-08-06 Compagnie De Raffinage Et De Distribution Total France Device for injection of a hydrocarbon feedstock into a catalytic cracking reactor
US20110241230A1 (en) * 2010-04-02 2011-10-06 Kerfoot William B Nano-bubble Generator and Treatments
WO2014184585A2 (en) * 2013-05-16 2014-11-20 Nano Tech Inc Limited Creating and using controlled fine bubbles
US20190344224A1 (en) * 2016-11-03 2019-11-14 Nano Bubble Technologies Pty Ltd Nanobubble generator

Also Published As

Publication number Publication date
CL2022000088A1 (es) 2022-08-12

Similar Documents

Publication Publication Date Title
US5664733A (en) Fluid mixing nozzle and method
JP4619316B2 (ja) 気液混合装置
GB2514202A (en) Micro-nanobubble generation systems
KR20170104351A (ko) 미세기포 발생장치
ES2298020B1 (es) Procedimiento y dispositivo de elevado rendimiento para la generacion de gotas y burbujas.
JP5493153B2 (ja) マイクロバブル発生ポンプ、マイクロバブル発生ポンプ用動翼およびマイクロバブル発生ポンプ用静翼
KR101869487B1 (ko) 세정 및 살균 기능을 갖는 욕조 또는 싱크대용 나노버블 발생장치
KR101947084B1 (ko) 나노-마이크로 버블 생성기와 이를 이용한 기체 혼합 나노-마이크로 버블 발생장치
KR20200048869A (ko) 기포 발생 장치
WO2023137572A1 (es) Un artefacto para la mezcla de gases en agua en forma de gas disuelto y nano burbujas, útil en procesos industriales que trabajan con múltiples fases de tipo líquido-gas
KR101406268B1 (ko) 미세기포 발생장치
US9400107B2 (en) Fluid composite, device for producing thereof and system of use
KR20190076819A (ko) 나노-마이크로 버블 생성기와 이를 이용한 기체 혼합 나노-마이크로 버블 발생장치
CN208727215U (zh) 文丘里微气泡发生器
ES2350208B1 (es) Metodo para la produccion de micro y nano-burbujas monodispersas mediante co-flujo giratorio.
JP5291312B2 (ja) 酸洗装置及び方法
KR20180026238A (ko) 나노버블 발생장치
KR102534708B1 (ko) 타공판을 이용한 미세기포수 발생장치
Alam et al. Unsteady numerical simulation of gas-liquid flow in dual chamber microbubble generator
JP2010201400A (ja) 散気装置及び気泡発生装置
RU64718U1 (ru) Струйный насос
TW202102114A (zh) 微細氣泡產生構件及使用該構件的水中曝氣攪拌裝置
RU216370U1 (ru) Газожидкостный аппарат для получения пены
RU189748U1 (ru) Устройство для насыщения жидкости газом
RU2814349C1 (ru) Устройство для создания газожидкостного потока, способ и система для растворения газа в жидкости

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22921025

Country of ref document: EP

Kind code of ref document: A1