WO2023136338A1 - Measuring system, electricity storage apparatus, and measuring apparatus - Google Patents

Measuring system, electricity storage apparatus, and measuring apparatus Download PDF

Info

Publication number
WO2023136338A1
WO2023136338A1 PCT/JP2023/000893 JP2023000893W WO2023136338A1 WO 2023136338 A1 WO2023136338 A1 WO 2023136338A1 JP 2023000893 W JP2023000893 W JP 2023000893W WO 2023136338 A1 WO2023136338 A1 WO 2023136338A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
storage device
power storage
measurement
measuring
Prior art date
Application number
PCT/JP2023/000893
Other languages
French (fr)
Japanese (ja)
Inventor
望 寺西
匠 森
Original Assignee
日置電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2023002706A external-priority patent/JP2023103976A/en
Application filed by 日置電機株式会社 filed Critical 日置電機株式会社
Publication of WO2023136338A1 publication Critical patent/WO2023136338A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables

Definitions

  • the present invention relates to a measurement system, a power storage device, and a measurement device.
  • JP2021-064459A discloses a measurement system for measuring a vehicle battery pack by a battery cell reuse determination device.
  • a control line is connected to each battery cell built into the vehicle battery pack.
  • Each control line is connected to a reuse determination device.
  • the reuse determination device measures the state of the battery cells connected to each control line.
  • the present invention has been made in view of the above problems, and an object of the present invention is to enable measurement of an electric storage device incorporated in an electric storage apparatus.
  • a measurement system is a measurement system that includes a power storage device that incorporates a power storage device, and a measurement device that measures the state of the power storage device built into the power storage device.
  • the power storage device includes a connected portion for exchanging electricity with the outside, and a receiving portion for forming the energized state by controlling the discontinuous portion when a signal for forming the energized state is transmitted to the discontinuous portion. and a transmission unit.
  • the power storage device includes a transmitted portion to which a signal for forming the energized state in the intermittent portion is transmitted.
  • the measuring device includes a measuring section connected to the connected section and measuring the state of the power storage device, and a transmitting section transmitting the signal to the transmitted section.
  • the transmission target section controls the intermittent section to form an energized state.
  • the connected portion and the power storage device are in an energized state, and the measuring portion of the measuring device is connected to the power storage device via the connected portion of the power storage device.
  • the power storage device is provided with an intermittent portion between the connected portion and the power storage device, and is built into the power storage device by being connected to the measuring device. It is possible to measure the state of the stored electricity storage device.
  • FIG. 1 is a schematic diagram showing a charging port of a vehicle to which the measuring system according to the first embodiment is applied.
  • FIG. 2 is an explanatory diagram showing the measurement system according to the first embodiment.
  • FIG. 3 is an explanatory diagram showing the measurement system according to the first modification of the first embodiment.
  • FIG. 4 is an explanatory diagram showing a measurement system according to a second modification of the first embodiment.
  • FIG. 5 is an explanatory diagram showing the measurement system according to the second embodiment.
  • FIG. 6 is an explanatory diagram showing the measurement system according to the third embodiment.
  • FIG. 7 is an explanatory diagram showing the measurement system according to the fourth embodiment.
  • FIG. 8 is an explanatory diagram showing terminals used in the measurement system according to the fifth embodiment.
  • FIG. 1 is a schematic diagram showing a charging port of a vehicle to which the measuring system according to the first embodiment is applied.
  • FIG. 2 is an explanatory diagram showing the measurement system according to the first embodiment.
  • FIG. 3 is an explanatory
  • FIG. 9 is an explanatory diagram showing terminals used in the measurement system according to the sixth embodiment.
  • FIG. 10 is an explanatory diagram showing terminals used in the measurement system according to the seventh embodiment.
  • FIG. 11 is an explanatory diagram showing terminals used in the measurement system according to the eighth embodiment.
  • FIG. 12 is an explanatory diagram showing the measurement system according to the ninth embodiment.
  • FIG. 1 is a schematic diagram showing a charging port 14 of a vehicle 12 to which the measuring system 10 according to the first embodiment is applied.
  • FIG. 2 is an explanatory diagram showing the measurement system 10 according to the first embodiment.
  • the measurement system 10 is a system that measures the state of the power storage device 22 mounted on the vehicle 12.
  • Power storage device 22 constitutes a power source for a driving device that drives vehicle 12 .
  • the measurement system 10 measures the state of the power storage device 22 mounted on the vehicle 12 as an example, but the first embodiment is not limited to this. do not have.
  • the measurement system 10 may be used, for example, to measure the power storage device 22 mounted on a motorcycle or the power storage device 22 mounted on a personal computer.
  • the measurement system 10 may also be used to measure the power storage device 22 removed from the vehicle 12, motorcycle, or personal computer.
  • the vehicle 12 is provided with a charging port 14 for externally charging the power storage device 20 of the power storage device 22 .
  • Charging port 14 is used when charging power storage device 20 rapidly.
  • the measurement system 10 uses the charging port 14 to measure the state of the power storage device 22 while the power storage device 22 is mounted on the vehicle 12 .
  • the measurement system 10 includes a power storage device 22 that incorporates the power storage device 20 and a measurement device 24 that measures the state of the power storage device 20 built into the power storage device 22 .
  • the power storage device 22 includes an insulating exterior 30 .
  • the power storage device 20 is housed inside the exterior 30 .
  • Examples of the electricity storage device 20 include a storage battery that can charge and discharge electricity or a capacitor module that includes a capacitor.
  • the power storage device 20 of the first embodiment is composed of a storage battery.
  • the power storage device 20 is composed of a plurality of battery cells 32 connected in series.
  • the power storage device 20 configured by each battery cell 32 outputs a voltage of 300 V or more and 400 V or less as an example.
  • the exterior 30 of the power storage device 22 is provided with a positive electrode connected portion 40 for exchanging electricity with the outside.
  • the positive electrode connected portion 40 is configured by a cylindrical body made of metal.
  • the positive electrode connected portion 40 protrudes from the exterior 30 .
  • the positive electrode connected portion 40 is connected to the positive electrode of the electricity storage device 20 via a positive electrode wiring 42 .
  • the exterior 30 of the power storage device 22 is provided with a negative electrode connected portion 44 for exchanging electricity with the outside.
  • the negative electrode connected portion 44 is configured by, for example, a cylindrical body made of metal.
  • the negative electrode connected portion 44 protrudes from the exterior 30 .
  • the negative electrode connected portion 44 is connected to the negative electrode of the electricity storage device 20 via a negative electrode wiring 46 .
  • a negative electrode wiring 46 that connects the negative electrode connected portion 44 and the negative electrode of the electricity storage device 20 has an intermittent portion 48 that selectively brings the negative electrode connected portion 44 and the negative electrode of the electricity storage device 20 into a non-energized state or an electrically conductive state. is provided.
  • the intermittent portion 48 can also be provided in the positive electrode wiring 42 that connects the positive electrode connected portion 40 and the positive electrode of the electric storage device 20 .
  • the intermittent section 48 is composed of, for example, a relay, an FET (Field Effect Transistor), or a transistor.
  • the intermittent part 48 of the first embodiment is composed of a relay. It should be noted that a plurality of relays can be provided.
  • the intermittent section 48 turns on the switch circuit 50 when the voltage signal is applied, and brings the negative electrode connected section 44 and the negative electrode of the electric storage device 20 into an energized state.
  • the intermittent section 48 turns off the switch circuit 50 in a normal time when no voltage signal is applied, and brings the negative electrode connected section 44 and the negative electrode of the storage device 20 into a non-energized state.
  • the power storage device 22 includes a transmission target section 60 that controls the intermittent section 48 to form an energized state when the intermittent section 48 transmits a signal for establishing an energized state.
  • the transmitted part 60 includes a receiving part 62 that receives a signal and controls the intermittent part 48 .
  • the receiving portion 62 has a first receiving male terminal 64 and a second receiving male terminal 66 .
  • Each of the receiving male terminals 64 and 66 is, for example, a cylindrical body made of metal.
  • Each receiving male terminal 64 , 66 protrudes from the housing 30 .
  • the receiving unit 62 receives voltage signals from the receiving male terminals 64 and 66 as signals.
  • the received voltage signal is the voltage signal required to operate the interrupter 48 .
  • a voltage signal of 5V or 12V is applied to the first receiving male terminal 64 of the receiving portion 62 .
  • a ground signal of 0 V is applied to the second receiving male terminal 66 of the receiving portion 62 .
  • the transmission target section 60 also includes an electricity storage side communication section 70 that communicates with a measurement side communication section 96 (described later) of the measuring device 24 to input a signal and controls the intermittent section 48 according to the signal.
  • Communication methods used for communication between the power storage device 22 and the measurement device 24 include I2C (Inter-Integrated Circuit) communication, SPI (Serial Peripheral Interface) communication, serial communication using RS-232C, etc., and parallel communication.
  • I2C Inter-Integrated Circuit
  • SPI Serial Peripheral Interface
  • serial communication using RS-232C etc.
  • parallel communication etc.
  • communication between the power storage device 22 and the measuring device 24 can be performed using a LAN (Local Area Network), a LIN (Local Interconnect Network), or a CAN (Controller Area Network).
  • Communication between the power storage device 22 and the measuring device 24 can be performed using power line communication (PLC).
  • PLC power line communication
  • communication between the power storage device 22 and the measurement device 24 can be performed using communication by Ethernet (registered trademark).
  • the power storage side communication unit 70 has a first communication male terminal 72 and a second communication male terminal 74 .
  • Each of the communication male terminals 72 and 74 is, for example, a cylindrical body made of metal.
  • Each communication male terminal 72 , 74 protrudes from the housing 30 .
  • a signal sent from the measuring device 24 via each of the communication male terminals 72 and 74 includes a command instructing the operation of the power storage device 22 .
  • this command include an energization command that controls the intermittent unit 48 to bring the negative electrode of the power storage device 20 and the negative electrode connected portion 44 into an energized state, and a power supply command that causes the negative electrode of the power storage device 20 and the negative electrode connected portion 44 to become non-conductive. It includes a de-energization command to turn on the power.
  • the power storage side communication section 70 controls the receiving section 62 to operate the switching section 48 according to the voltage signal received by the receiving section 62 to turn on the switch circuit 50 .
  • the intermittent portion 48 brings the negative electrode connected portion 44 and the negative electrode of the electric storage device 20 into an energized state.
  • the electricity storage side communication unit 70 controls the receiving unit 62 to cut off the supply of the voltage signal to the intermittent unit 48 and turn off the switch circuit 50 .
  • the intermittent portion 48 brings the negative electrode connected portion 44 and the negative electrode of the power storage device 20 into a non-energized state.
  • the connected parts 40, 44, the receiving male terminals 64, 66, and the communication male terminals 72, 74 are arranged in the charging port 14 (see Fig. 1).
  • the connected portions 40 and 44, the male supply terminals 64 and 66, and the male communication terminals 72 and 74 projecting from the exterior 30 of the power storage device 22 are connected to the charging port 14 (see FIG. 1). ), but the first embodiment is not limited to this.
  • the connected portions 40 and 44, the receiving male terminals 64 and 66, and the communication male terminals 72 and 74 provided on the charging port 14 are connected by cables. You may connect to the corresponding location of the electrical storage apparatus 22 by, for example.
  • the power storage device 22 includes connected portions 40 and 44, male power supply terminals 64 and 66, and male communication terminals 72 and 74 for connection to the vehicle 12. There is a place corresponding to Therefore, portions corresponding to the connected portions 40 and 44, the receiving male terminals 64 and 66, and the communication male terminals 72 and 74 can be used in the connection structure between the measuring device 24 and the power storage device 22. It is possible.
  • connection structure between the measurement device 24 and the power storage device 22 can be used as the connection structure between the measurement device 24 and the fuel cell stack or the connection structure between the measurement device 24 and the solar cell module. .
  • the measuring device 24 includes a measuring instrument 80 and a connection section 84 connected to the measuring instrument 80 via a cable 82 .
  • the measuring instrument 80 includes a measurement section 90 and a transmission section 92 .
  • Transmission unit 92 transmits a signal to transmission target unit 60 of power storage device 22 .
  • Transmission unit 92 includes supply unit 94 that supplies a signal for controlling switching unit 48 of power storage device 22 .
  • the supply unit 94 supplies a voltage signal as a signal to the power storage device 22 .
  • the voltage signal to be supplied is a voltage signal required to operate the intermittent portion 48 of the power storage device 22 .
  • An example of the voltage signal supplied by the supply unit 94 is a voltage signal of 5V or 12V.
  • the transmission unit 92 also includes a measurement-side communication unit 96 that outputs a signal for controlling the intermittent unit 48 to form an energized state.
  • the signal output by the measurement-side communication unit 96 includes a command for instructing the operation of the power storage device 22 .
  • this command include an energization command that controls the intermittent unit 48 to bring the negative electrode of the power storage device 20 and the negative electrode connected portion 44 into an energized state, and a power supply command that causes the negative electrode of the power storage device 20 and the negative electrode connected portion 44 to become non-conductive. It includes a de-energization command to turn on the power.
  • the measurement-side communication unit 96 When the measurement-side communication unit 96 outputs an energization command to the power storage device 22 , the output voltage of the power storage device 20 is applied to the connected portions 40 and 44 of the power storage device 22 . As a result, electricity can be exchanged between the power storage device 20 of the power storage device 22 and the outside via the connected portions 40 and 44 .
  • the measurement-side communication unit 96 When the measurement-side communication unit 96 outputs a de-energization command to the power storage device 22, the power between the connected portions 40 and 44 of the power storage device 22 and the power storage device 20 is cut off. As a result, exchange of electricity between the power storage device 20 of the power storage device 22 and the outside becomes impossible.
  • the measurement unit 90 is connected to the connected portions 40 and 44 of the power storage device 22 and measures the state of the power storage device 20 .
  • the measuring section 90 has a voltage measuring section 100 that measures the voltage of the power storage device 20 and a current measuring section 102 that measures the current flowing through the power storage device 20 .
  • Measuring section 90 calculates the impedance of power storage device 20 based on the voltage measured by voltage measuring section 100 and the current measured by current measuring section 102 to measure the state of power storage device 20 .
  • the calculated impedance includes AC impedance.
  • the current measuring section 102 includes a signal generating section 104 .
  • a signal generated by the signal generator 104 is applied to the electricity storage device 20 .
  • the current measurement unit 102 measures the current flowing through the power storage device 20 of the power storage device 22 as a measurement signal while the signal generated by the signal generation unit 104 is passed through the power storage device 20 of the power storage device 22 . Also, the current measurement unit 102 measures the current flowing from the power storage device 20 as a measurement signal.
  • the current flowing to and from the power storage device 20 is less than 5A.
  • the current flowing to and from the power storage device 20 is changed by the capacity of the power storage device 20 .
  • One example of a method for obtaining the capacity of the power storage device 20 is to obtain the capacity by communicating between the measuring device 24 and the power storage device 22 .
  • the current flowing to and from the electricity storage device 20 is less than 0.05C.
  • C indicates the capacity of the electricity storage device 20.
  • an in-vehicle monitoring device that monitors the state of the electricity storage device 20 may detect an abnormality. In this case, depending on the function of the monitoring device, the vehicle 12 may become unable to start or run.
  • the current flowing through the electricity storage device 20 can be set in the range of 1A or more and less than 5A. desirable.
  • the measurement device 24 has a function of removing noise, it is possible to measure even if the current flowing through the electricity storage device 20 is less than 1A.
  • the measurement signal includes a sine wave or a square wave.
  • the frequency of the measurement signal can be set to a band in which the frequency response of the electrolyte and wiring of the storage battery, which is the electricity storage device 20, can be measured.
  • the frequency of the measurement signal can be set to a band in which the frequency response of the electrode reaction process of the electricity storage device 20 can be measured.
  • the frequency of the measurement signal can be set to a band in which the frequency response of the diffusion process in the electricity storage device 20 can be measured.
  • the frequency of the measurement signal described above when the measurement signal is a sine wave, the frequency of the measurement signal can be 10 kHz or more and 100 Hz or less. Moreover, when the measurement signal is a sine wave, the frequency of the measurement signal can be set to 5 kHz or more and 500 Hz or less. Furthermore, if the measurement signal is a sine wave, the frequency of the measurement signal can be 1 kHz.
  • the 1 kHz measurement signal has a high correlation with the state of the electricity storage device 20 . Therefore, by setting the frequency of the measurement signal to 1 kHz, the state of the power storage device 20 can be measured with higher accuracy.
  • the measurement signal can be an M-sequence signal.
  • the M-sequence signal is a pseudo-white binary signal, which is an artificially generated random signal.
  • the square wave contains multiple frequency components. Therefore, by using a rectangular wave as the measurement signal, it is possible to simplify the measurement rather than inputting a plurality of signals of a single frequency.
  • the measurement unit 90 measures the frequency response of the electricity storage device 20 and obtains the AC resistance based on the voltage change measured by the voltage measurement unit 100 and the current change measured by the current measurement unit 102 . Further, the measurement unit 90 estimates the degree of deterioration of the electricity storage device 20 measured from the obtained AC resistance, based on the previously obtained relationship between the AC resistance of the electricity storage device 20 and the degree of deterioration of the electricity storage device 20 .
  • connection part As shown in FIG. 1 , the connecting portion 84 constitutes a connector detachably attached to the charging port 14 .
  • the connecting portion 84 is made of an insulator.
  • connection portion 84 is formed with a positive electrode insertion hole 110 into which the positive electrode connected portion 40 of the power storage device 22 is inserted, and a negative electrode insertion hole 112 into which the negative electrode connected portion 44 is inserted.
  • a positive electrode voltage detection part 114 made of metal is provided, which is in contact with the outer peripheral surface of the positive electrode connected part 40 when the positive electrode connected part 40 is inserted into the positive electrode insertion hole 110.
  • the positive electrode voltage detector 114 is formed of a circular ring plate having a circular hole in the center.
  • the positive electrode voltage detection section 114 is connected to the positive electrode of the voltage measurement section 100 via a positive electrode voltage line 116 .
  • the positive electrode of the voltage measurement unit 100 is electrically connected to the positive electrode connected portion 40 via the positive electrode voltage detection portion 114 that is in contact with the positive electrode connected portion 40 .
  • a positive electrode current detection part 120 made of metal is provided that contacts the tip of the positive electrode connected part 40 while the positive electrode connected part 40 is inserted into the positive electrode insertion hole 110 .
  • the positive electrode current detection unit 120 is formed in a cylindrical shape with a bottom.
  • the positive electrode current detection unit 120 is connected to the positive electrode of the current measurement unit 102 via a positive electrode current line 122 that is thicker than the positive electrode voltage line 116 .
  • the positive electrode of the current measuring section 102 is electrically connected to the positive electrode connected portion 40 via the positive electrode current detection portion 120 that is in contact with the positive electrode connected portion 40 .
  • connection position at which the positive electrode voltage detection portion 114 is electrically connected to the positive electrode connected portion 40 is different from the connection position at which the positive electrode current detection portion 120 is electrically connected to the positive electrode connected portion 40 . is set.
  • connection position where the positive electrode voltage detection unit 114 is electrically connected to the positive electrode connected unit 40 in the current path connecting the power storage device 20 and the measurement unit 90 is the positive electrode current detection unit 120 connected to the positive electrode connected unit 40 It is closer to the power storage device 20 than the connection position electrically connected to the connection portion 40 .
  • a metal negative electrode voltage detection part 130 is provided on the outer periphery of the negative electrode insertion hole 112 so as to be in contact with the outer peripheral surface of the negative electrode connection part 44 when the negative electrode connection part 44 is inserted into the negative electrode insertion hole 112 .
  • Negative electrode voltage detection unit 130 is formed of a circular ring plate having a circular hole in the center.
  • the negative electrode voltage detection section 130 is connected to the negative electrode of the voltage measurement section 100 via a negative electrode voltage line 132 .
  • the negative electrode of the voltage measuring section 100 is electrically connected to the negative electrode connected portion 44 via the negative electrode voltage detection portion 130 that is in contact with the negative electrode connected portion 44 .
  • Negative electrode current detection part 140 is provided that contacts the tip of the negative electrode connected part 44 while the negative electrode connected part 44 is inserted into the negative electrode insertion hole 112 .
  • Negative electrode current detector 140 is formed in a cylindrical shape with a bottom.
  • the negative electrode current detection unit 140 is connected to the negative electrode of the current measurement unit 102 via a negative electrode current line 142 that is thicker than the negative electrode voltage line 132 .
  • the negative electrode of the current measuring section 102 is electrically connected to the negative electrode connected portion 44 via the negative electrode current detection portion 140 that is in contact with the negative electrode connected portion 44 .
  • connection position where the negative electrode voltage detection section 130 is electrically connected to the negative electrode connected section 44 and the connection position where the negative electrode current detection section 140 is electrically connected to the negative electrode connection section 44 are different. is set.
  • connection position where the negative electrode voltage detection unit 130 is electrically connected to the negative electrode connected unit 44 in the current path connecting the power storage device 20 and the measurement unit 90 is the position where the negative electrode current detection unit 140 is connected to the negative electrode connected unit 44 . It is closer to the power storage device 20 than the connection position electrically connected to the connection portion 44 .
  • connection portion 84 is provided with a metal first supply female terminal 150 into which the first supply male terminal 64 of the power storage device 22 is inserted.
  • the first supply female terminal 150 has a cylindrical shape with a bottom, and is connected to one output of the supply section 94 via a harness 152 .
  • connection portion 84 is provided with a metal second supply female terminal 154 into which the second supply male terminal 66 of the power storage device 22 is inserted.
  • the second supply female terminal 154 is cylindrical with a bottom, and is connected to the other output of the supply section 94 via a harness 156 .
  • the output of the supply section 94 is supplied to the power storage device. 22 can be supplied to the receiving unit 62 .
  • the connecting portion 84 is provided with a metal first communication female terminal 160 into which the first communication male terminal 72 of the power storage device 22 is inserted.
  • the first communication female terminal 160 has a cylindrical shape with a bottom, and is connected to one terminal of the measurement side communication section 96 via a harness 162 .
  • connection portion 84 is provided with a metal second communication female terminal 164 into which the second communication male terminal 74 of the power storage device 22 is inserted.
  • the second communication female terminal 164 has a cylindrical shape with a bottom, and is connected to the other terminal of the measurement side communication section 96 via a harness 166 .
  • a communication unit 70 is communicably connected.
  • the supply unit 94 and the measurement-side communication unit 96 that constitute the transmission unit 92 in the measurement device 24 operate with power supplied from a power supply unit (not shown).
  • the voltage measuring section 100, the current measuring section 102, and the signal generating section 104 of the measuring section 90 in the measuring device 24 are operated by electric power supplied from a power supply section (not shown).
  • the power supply unit supplies power by rectifying power obtained from, for example, a commercial power outlet.
  • the measurement system 10 in the first embodiment is a measurement system 10 that includes a power storage device 22 that incorporates the power storage device 20 and a measurement device 24 that measures the state of the power storage device 20 built into the power storage device 22.
  • the power storage device 22 includes connected portions 40 and 44 that exchange electricity with the outside, and an intermittent portion 48 that puts the connected portions 40 and 44 and the power storage device 20 in a non-energized state or an energized state.
  • the power storage device 22 includes a transmission target section 60 that controls the intermittent section 48 to form the energized state when a signal for forming the energized state is transmitted to the intermittent section 48 .
  • the measuring device 24 is connected to the connected sections 40 and 44 and includes a measuring section 90 that measures the state of the power storage device 20 and a transmitting section 92 that transmits a signal to the transmitted section 60 .
  • the power storage device 22 is a device that incorporates the power storage device 20 and that can be connected to a measuring device 24 that measures the state of the power storage device 20 .
  • the power storage device 22 includes connected portions 40 and 44 that exchange electricity with the outside, and an intermittent portion 48 that puts the connected portions 40 and 44 and the power storage device 20 in a non-energized state or an energized state.
  • the power storage device 22 includes a transmission target section 60 that controls the intermittent section 48 to form an energized state when a signal for forming an energized state is transmitted from the measuring device 24 .
  • the measurement device 24 includes an electricity storage device 22 that incorporates the electricity storage device 20, and includes an intermittent section 48 that puts the electricity storage device 20 and the connected sections 40 and 44 into a non-energized state or an energized state, and an intermittent section that receives a signal from the outside. 48 to form an energized state, and is connected to the power storage device 22 to measure the state of the power storage device 20 .
  • the measuring device 24 is connected to the connected sections 40 and 44 and includes a measuring section 90 that measures the state of the power storage device 20 and a transmitting section 92 that transmits a signal to the transmitted section 60 .
  • connection portion 84 of the measuring device 24 when the connection portion 84 of the measuring device 24 is attached to the charging port 14 and the signal from the transmitting portion 92 of the measuring device 24 is transmitted to the transmitted portion 60 of the power storage device 22 , the transmitted portion 60 controls the intermittent portion 48 to form an energized state.
  • the connected portions 40 and 44 and the power storage device 20 are in an energized state, and the measuring portion 90 of the measuring device 24 is connected to the power storage device 20 via the connected portions 40 and 44. .
  • the power storage device 22 is provided with an intermittent portion 48 that forms a non-energized state between the negative electrode connected portion 44 and the power storage device 20 so that power is not inadvertently output from the connected portions 40 and 44. Even in this case, the state of the electric storage device 20 can be measured.
  • the transmission unit 92 includes a supply unit 94 that supplies a signal for controlling the intermittent unit 48, and the transmitted unit 60 receives the signal and controls the intermittent unit 48. 62 included.
  • the transmitted section 60 includes a receiving section 62 that receives the signal transmitted from the measuring device 24 and controls the intermittent section 48 .
  • the intermittent portion 48 can be operated using the signal supplied by the supply portion 94. becomes.
  • the transmission unit 92 includes a measurement-side communication unit 96 that outputs a signal for controlling the intermittent unit 48 to form an energized state
  • the transmitted unit 60 includes the measurement-side communication unit 96 and a power storage side communication unit 70 that inputs a signal and controls the intermittent unit 48 according to the signal.
  • the measuring section 90 has a voltage measuring section 100 that measures the voltage of the power storage device 20 and a current measuring section 102 that measures the current flowing through the power storage device 20 .
  • the connection position where the voltage measuring section 100 is electrically connected to the connected sections 40 and 44 and the connection position where the current measuring section 102 is electrically connected to the connected sections 40 and 44 are different. are placed.
  • the transmission section 92 includes a supply section 94 that supplies signals for controlling the intermittent section 48 .
  • Measuring section 90 has a voltage measuring section 100 that measures the voltage of power storage device 20 and a current measuring section 102 that measures the current flowing through power storage device 20 .
  • a first connection position where the voltage measuring section 100 is electrically connected to the connected sections 40 and 44, and a second connection position where the current measuring section 102 is electrically connected to the connected sections 40 and 44. are located at different locations.
  • connection position where the voltage measurement section 100 is connected to the connected sections 40 and 44 and the connection position where the current measurement section 102 is connected to the connected sections 40 and 44 are separated. Therefore, the voltage drop caused by the voltage measuring section 100 and the voltage drop caused by the current measuring section 102 can be generated at separate locations.
  • connection position where the current measuring section 102 is electrically connected to the connected sections 40 and 44 is closer to the power storage device 20 than the connection position where the current measuring section 102 is electrically connected to the connected sections 40 and 44 . close.
  • the voltage measurement section 100 is electrically connected to the connected sections 40 and 44 via the voltage detection sections 114 and 130 that are in contact with the connected sections 40 and 44 .
  • the current measuring section 102 is electrically connected to the connected sections 40 and 44 via the current detecting sections 120 and 140 which are in contact with the connected sections 40 and 44, respectively.
  • connection positions of the voltage measurement unit 100 to the connection units 40 and 44 and the connection positions of the current measurement unit 102 to the connection units 40 and 44 are determined.
  • the connection position to the connection parts 40 and 44 can be adjusted.
  • the connection position of the voltage measurement unit 100 to the connected parts 40 and 44 and the connection position of the current measurement part 102 to the connected parts 40 and 44 the voltage drop suppression effect described above can be adjusted. becomes.
  • the current measuring section 102 and the voltage measuring section 100 it is possible to adjust the effect of suppressing the mutual influence.
  • FIG. 3 is an explanatory diagram showing the measurement system 1000 according to the first modified example of the first embodiment.
  • the measurement system 1000 according to the first modification of the first embodiment differs from the first embodiment in that the measurement device 1014 operates with power supplied from the power storage device 1012 .
  • the same or equivalent parts as those of the first embodiment are denoted by the same reference numerals, and the description thereof is omitted, and only the different parts are described.
  • the power storage device 1012 includes a power supply unit 1020 in addition to the configuration of the power storage device 22 (see FIG. 2).
  • Power supply unit 1020 is composed of a device different from power storage device 20 .
  • the power supply unit 1020 is composed of, for example, a 12V vehicle-mounted battery mounted on the vehicle 12 .
  • the power supply unit 1020 may be configured by a step-down circuit that steps down the output of the power storage device 20 to supply power.
  • the positive electrode supply wiring 1022 of the power supply unit 1020 connected to the positive electrode of the vehicle-mounted battery is connected to the positive electrode supply connected portion 1024 .
  • the positive electrode supply connected portion 1024 protrudes from the exterior 30 .
  • the negative electrode supply wiring 1026 of the power supply unit 1020 connected to the negative electrode of the vehicle-mounted battery is connected to the negative electrode supply connecting portion 1028 .
  • the negative electrode supply connected portion 1028 protrudes from the exterior 30 .
  • a connected terminal portion 1030 is configured by the connected portions 40 and 44 , the male terminals 64 , 66 , 72 and 74 , and the supply connected portions 1024 and 1028 .
  • the connected terminal portion 1030 is provided in the charging port 14 (see FIG. 1) provided in the vehicle 12 .
  • the connecting portion 84 has a metallic positive electrode supply female terminal 1040 into which the positive electrode supply connected portion 1024 of the power storage device 1012 is inserted, and a metallic negative electrode supply female terminal into which the negative electrode supply connected portion 1028 is inserted.
  • a terminal 1042 is provided.
  • a positive electrode supply line 1044 is connected to the positive electrode supply female terminal 1040
  • a negative electrode supply line 1046 is connected to the negative electrode supply female terminal 1042 .
  • Each supply line 1044 , 1046 is connected to the transmission section 92 and measurement section 90 of the measuring device 1014 .
  • the supply unit 94 of the transmission unit 92 and the measurement-side communication unit 96 operate with power supplied from the power supply unit 1020 of the power storage device 1012 .
  • Voltage measurement section 100 , current measurement section 102 , and signal generation section 104 of measurement section 90 operate with power supplied from power supply section 1020 of power storage device 1012 .
  • Electric power is supplied from the power storage device 1012 to the measuring device 1014 via a connected terminal portion 1030 of the power storage device 1012 provided in the charging port 14 (see FIG. 1) of the vehicle 12 .
  • the measurement device 1014 receives power from the charging port 14 provided in the vehicle 12 has been described. is not limited to The measuring device 1014 may be supplied with power from, for example, an inspection terminal for supplying power for inspection provided on the vehicle 12 .
  • the measurement device 1014 operates with power supplied from the power storage device 1012 .
  • the measuring device 1014 can perform measurement without connecting the measuring device 1014 to a commercial power supply or mounting a battery for power supply on the measuring device 1014 .
  • power is supplied from the power storage device 1012 to the measurement device 1014 via the connected terminal section 1030 provided in the power storage device 1012 .
  • the connected terminal portion 1030 is provided in the charging port 14 provided in the vehicle 12 .
  • the measurement system 1000 requires only one connection between the measurement device 1014 and the power storage device 1012, thereby improving convenience.
  • FIG. 4 is an explanatory diagram showing a measurement system 1100 according to a second modification of the first embodiment.
  • a measuring system 1100 according to the second modified example of the first embodiment differs from the first modified example of the first embodiment in the connecting section 84 that connects the measuring device 1014 and the power storage device 1012 .
  • the same or equivalent parts as those of the first modified example of the first embodiment are denoted by the same reference numerals, and the explanation thereof is omitted, and only the different parts are explained.
  • a connecting section 84 is connected to the measuring device 1014 via a cable 82 .
  • a sub-connecting portion 84-1 is connected to the measuring device 1014 via a sub-cable 82-1.
  • the sub-connecting portion 84-1 is provided with the positive electrode supply female terminal 1040 and the negative electrode supply female terminal 1042 described above.
  • the sub-cable 82-1 is composed of a positive electrode supply line 1044 connected to the positive electrode supply female terminal 1040 and a negative electrode supply line 1046 connected to the negative electrode supply female terminal 1042. As shown in FIG.
  • a sub-connection section 84-1 for receiving power supply to the measurement device 1014 is provided independently of the connection section 84. Therefore, the measurement system 1100 can supply power to the measurement device 1014 even when the connection destination of the sub-connection section 84-1 and the connection destination of the connection section 84 are separated from each other.
  • FIG. 5 is an explanatory diagram showing the measurement system 200 according to the second embodiment.
  • the measurement system 200 differs from the first embodiment in the transmitting section 92 of the measuring device 24 and the transmitted section 60 of the power storage device 22 .
  • symbol is attached
  • the transmission unit 92 of the measurement device 24 is configured only with the supply unit 94 without the measurement-side communication unit 96 of the first embodiment. Further, the power storage side communication unit 70 of the first embodiment is abolished, and the transmission receiving unit 60 of the power storage device 22 is configured only with the power receiving unit 62 .
  • the connecting portion 84 of the measuring device 24 When the connecting portion 84 of the measuring device 24 is connected to the power storage device 22 , the voltage signal output from the supply portion 94 is supplied to the power receiving portion 62 of the power storage device 22 . Then, the receiving section 62 supplies the voltage signal supplied from the measuring device 24 to the intermittent section 48 to turn on the switch circuit 50 of the intermittent section 48 . As a result, the negative electrode connected portion 44 and the negative electrode of the electricity storage device 20 are brought into an energized state.
  • the connecting portion 84 of the measuring device 24 is disconnected from the power storage device 22, the voltage signal supplied to the power receiving portion 62 of the power storage device 22 is cut off. Then, the voltage signal supplied to the intermittent section 48 is also interrupted, and the switch circuit 50 is turned off. As a result, the negative electrode connected portion 44 and the positive electrode of the electricity storage device 20 are in a non-energized state.
  • the transmitted section 60 includes a receiving section 62 that receives a signal and controls the intermittent section 48 .
  • the intermittent portion 48 can be operated using the signal supplied by the supply portion 94. becomes.
  • the intermittent portion 48 is controlled by the signal from the supply portion 94 , the intermittent portion 48 can be operated without sending a command or the like from the measuring device 24 to the power storage device 22 . Since this eliminates the need for a communication unit for sending commands, the configuration can be simplified.
  • FIG. 6 is an explanatory diagram showing the measurement system 300 according to the third embodiment.
  • the measurement system 300 differs from the first embodiment in the transmitting section 92 of the measuring device 24 and the transmitted section 60 of the power storage device 22 .
  • symbol is attached
  • the transmission unit 92 of the measurement device 24 is configured only with the measurement side communication unit 96 without the supply unit 94 of the first embodiment. Further, the receiving unit 62 of the first embodiment is abolished, and the receiving unit 60 of the power storage device 22 is configured only by the power storage side communication unit 70 .
  • an energization command which is a signal for forming an energized state by controlling the intermittent unit 48 from the measurement-side communication unit 96 of the measurement device 24 , is sent to the power storage-side communication unit 70 of the power storage device 22 , the power storage-side communication unit 70 controls the intermittent portion 48 to form an energized state.
  • the power for controlling the intermittent unit 48 is obtained from the power storage device 20 of the power storage device 22 or from the vehicle-mounted battery that operates the electrical components of the vehicle 12 .
  • a non-energization command which is a signal for controlling the intermittence unit 48 to form a non-energized state
  • the side communication unit 70 controls the intermittent unit 48 to form a non-energized state.
  • the transmission section 92 includes a measurement side communication section 96 that outputs a signal for controlling the intermittent section 48 to form an energized state.
  • the transmission target section 60 includes an electricity storage side communication section 70 that communicates with the measurement side communication section 96 to input a signal and controls the intermittent section 48 according to the signal.
  • the configuration can be simplified.
  • FIG. 7 is an explanatory diagram showing a measurement system 400 according to the fourth embodiment.
  • a measurement system 400 according to the fourth embodiment differs from the first embodiment in the connection structure between the connection portion 84 of the measurement device 24 and the connected portions 402 and 404 of the power storage device 22 .
  • symbol is attached
  • the positive electrode connected portion 402 and the negative electrode connected portion 404 of the power storage device 22 are formed in a cylindrical shape with a bottom.
  • the connection part 84 of the measuring device 24 includes a positive terminal part 410 inserted into the positive connected part 402 of the power storage device 22 and a negative terminal part 412 inserted into the negative connected part 404 of the power storage device 22 .
  • the positive electrode terminal portion 410 and the negative electrode terminal portion 412 are configured as cylindrical bodies. The positive terminal portion 410 and the negative terminal portion 412 protrude from the connecting portion 84 .
  • the positive electrode current detection unit 420 connected to the current measurement unit 102 of the measuring device 24 via the positive electrode current line 122 has a tapered pin shape.
  • the tip of the positive electrode current detection portion 420 is in contact with the end surface of the positive electrode terminal portion 410 formed in a cylindrical shape.
  • the negative electrode current detection unit 422 connected to the current measurement unit 102 of the measuring device 24 via the negative electrode current line 142 has a tapered pin shape.
  • the tip of the negative electrode current detection portion 422 is in contact with the end face of the negative electrode terminal portion 412 formed in a cylindrical shape.
  • the positive electrode voltage detection unit 424 connected to the voltage measurement unit 100 of the measuring device 24 via the positive electrode voltage line 116 has a tapered pin shape.
  • the tip of the positive electrode voltage detection portion 424 contacts the end surface of the positive electrode terminal portion 410 .
  • the negative voltage detection unit 426 connected to the voltage measurement unit 100 of the measuring device 24 via the negative voltage line 132 has a tapered pin shape.
  • the tip of the negative electrode voltage detection portion 426 contacts the end surface of the negative electrode terminal portion 412 .
  • connection position where the positive electrode voltage detection unit 424 is electrically connected to the positive electrode terminal unit 410 and the connection position where the positive electrode current detection unit 420 is electrically connected to the positive electrode terminal unit 410 are arranged at different locations.
  • connection position where the negative electrode voltage detection unit 426 is electrically connected to the negative electrode terminal unit 412 and the connection position where the negative electrode current detection unit 422 is electrically connected to the negative electrode terminal unit 412 are arranged at different locations.
  • the detection units 420, 424, 422, 426 are biased by springs and connected to the terminals 410, 412. method. Also, there is a method of connecting each detection part 420, 424, 422, 426 to each terminal part 410, 412 by soldering or welding.
  • the power supply device 22 has a first power supply female terminal 430 and a second power supply female terminal 432 made of metal.
  • Each receiving female terminal 430, 432 is formed in a cylindrical shape with a bottom.
  • the connecting portion 84 of the measuring device 24 includes a first receiving male terminal portion 440 connected to the supplying portion 94 via the harness 152, and a second receiving male terminal portion 442 connected to the supplying portion 94 via the harness 156. Prepare.
  • the first receiving male terminal portion 440 is composed of a cylindrical body projecting from the connecting portion 84 .
  • the first receiving male terminal portion 440 can be inserted into the first receiving female terminal 430 .
  • the second receiving male terminal portion 442 is composed of a cylindrical body projecting from the connecting portion 84 .
  • the second receiving male terminal portion 442 can be inserted into the second receiving female terminal 432 .
  • the power storage side communication unit 70 of the power storage device 22 has a metal first communication female terminal 450 and a metal second communication female terminal 452 .
  • Each communication female terminal 450, 452 is formed in a cylindrical shape with a bottom.
  • the connection portion 84 of the measuring device 24 includes a first communication male terminal portion 460 connected to the measurement side communication portion 96 via the harness 162 and a second communication male terminal portion 460 connected to the measurement side communication portion 96 via the harness 166. and a terminal portion 462 .
  • the first communication male terminal portion 460 is composed of a cylindrical body projecting from the connection portion 84 .
  • the first communication male terminal portion 460 is insertable into the first communication female terminal 450 .
  • the second communication male terminal portion 462 is composed of a cylindrical body projecting from the connection portion 84 .
  • the second communication male terminal portion 462 can be inserted into the second communication female terminal 452 .
  • the voltage measuring section 100 is electrically connected to the connected sections 402 and 404 via the voltage detecting sections 424 and 426 in contact with the terminal sections 410 and 412, respectively.
  • the current measuring section 102 is electrically connected to the connected sections 402 and 404 via the current detecting sections 420 and 422 which are in contact with the terminal sections 410 and 412, respectively.
  • the measuring device 24 has terminal portions 410 and 412 connected to the connected portions 402 and 404, respectively.
  • Measuring section 90 has a voltage measuring section 100 that measures the voltage of power storage device 20 and a current measuring section 102 that measures the current flowing through power storage device 20 .
  • the voltage measuring section 100 is electrically connected to the connected sections 402 and 404 through the terminal sections 410 and 412, and the current measuring section 102 is connected to the connected sections through the terminal sections 410 and 412.
  • 402 and 404 are electrically connected.
  • the connection position where the voltage measurement section 100 is electrically connected to the terminal sections 410 and 412 and the connection position where the current measurement section 102 is electrically connected to the terminal sections 410 and 412 are arranged at different locations. It is
  • the voltage measuring section 100 of the measuring device 24 is electrically connected to the connected sections 402 and 404 of the power storage device 22 via the voltage detecting sections 424 and 426 in contact with the terminal sections 410 and 412. Connected.
  • current measuring section 102 is electrically connected to connected sections 402 and 404 of power storage device 22 via current detecting sections 420 and 422 in contact with terminal sections 410 and 412 , respectively.
  • the power storage device 22 can be measured by protruding the terminal portions 410 and 412 from the connection portion 84 .
  • connection position where the voltage measuring section 100 is electrically connected to the connected sections 402 and 404 and the connection position where the current measuring section 102 is electrically connected to the connected sections 402 and 404 are each The position of contact with the terminal portions 410 and 412 can be adjusted.
  • FIG. 8 is an explanatory diagram showing a terminal 500 used in the measurement system according to the fifth embodiment.
  • FIG. 8 shows a state 510 of the terminal 500 viewed from the side, and a state 512 of the terminal 500 viewed from the tip side.
  • This terminal 500 constitutes the positive electrode terminal portion 410 and the negative electrode terminal portion 412 of the fourth embodiment.
  • the terminal 500 of the measurement system according to the fifth embodiment has a cross-sectional structure different from that of the positive electrode terminal portion 410 and the negative electrode terminal portion 412 of the fourth embodiment.
  • the same or equivalent parts as those of the fourth embodiment are denoted by the same reference numerals, the explanation thereof is omitted, and only the different parts are explained.
  • a plate-shaped member 520 extending in the length direction is provided in the central portion of the terminal 500 .
  • a voltage conducting portion 522 is provided on one side surface of the plate member 520 .
  • a current conducting portion 524 is provided on the other side surface of the plate member 520 .
  • Each of the conducting portions 522 and 524 has a curved outer surface, and the terminal 500 constituted by the plate member 520 and the conducting portions 522 and 524 is formed in a cylindrical shape.
  • the plate-like member 520 is made of an insulator, and each conducting portion 522, 524 is made of a conductor.
  • the conductive portions 522 and 524 are separated from each other on the inner peripheral surface of the positive electrode connected portion 402 or the negative electrode connected portion 404 while the terminal 500 is inserted into the positive electrode connected portion 402 or the negative electrode connected portion 404 . located respectively.
  • a positive electrode voltage detection unit 424 or a negative electrode voltage detection unit 426 is connected to the end surface of the voltage conduction unit 522 .
  • the positive electrode current detection unit 420 or the negative electrode current detection unit 422 is connected to the end surface of the current conduction unit 524 .
  • FIG. 9 is an explanatory diagram showing a terminal 600 used in the measurement system according to the sixth embodiment.
  • FIG. 9 shows terminal 600 in proximal 610, side 612, and distal 614 views.
  • This terminal 600 constitutes the positive electrode terminal portion 410 and the negative electrode terminal portion 412 of the fourth embodiment.
  • the terminal 600 of the measurement system according to the sixth embodiment differs in structure from the positive electrode terminal portion 410 and the negative electrode terminal portion 412 of the fourth embodiment.
  • the same or equivalent parts as those of the fourth embodiment are denoted by the same reference numerals and explanations thereof are omitted, and only different parts are explained.
  • a columnar conducting portion 620 for voltage detection is provided at the center of the terminal 600.
  • a voltage conduction portion 622 is formed at the tip of the voltage detection conduction portion 620 .
  • Voltage detection conducting portion 620 and voltage conducting portion 622 are electrically connected.
  • a cylindrical tubular portion 624 is provided on the outer peripheral portion of the voltage detection conductive portion 620 .
  • a cylindrical current-conducting portion 626 is provided on the outer peripheral portion of the tubular portion 624 .
  • the length of the current conduction portion 626 in the length direction of the terminal 600 is set to be approximately the same as the length of the voltage conduction portion 622 .
  • An insulating portion 628 is provided between the current conducting portion 626 and the voltage detecting conducting portion 620 and voltage conducting portion 622 .
  • the insulating portion 628 is integrally formed with the tubular portion 624 .
  • the voltage detection conducting portion 620, the voltage conducting portion 622, and the current conducting portion 626 are made of conductors.
  • the tubular portion 624 and the insulating portion 628 are made of an insulating material.
  • the voltage conducting portion 622 and the current conducting portion 626 are in contact with the inner peripheral surface of the positive electrode connected portion 402 or the negative electrode connected portion 404 when the terminal 600 is inserted into the positive electrode connected portion 402 or the negative electrode connected portion 404 . touch.
  • a positive electrode voltage detection unit 424 or a negative electrode voltage detection unit 426 is connected to the end surface of the voltage detection conduction unit 620 .
  • the positive electrode current detection unit 420 or the negative electrode current detection unit 422 is connected to the end surface of the current conduction unit 626 .
  • connection position where the voltage conducting portion 622 electrically connected to the voltage detecting conducting portion 620 is connected to the positive electrode connecting portion 402 or the negative electrode connecting portion 404 is the current conducting portion 626 is closer to the power storage device 20 than the connection position where 626 is connected to the positive electrode connected portion 402 or the negative electrode connected portion 404 .
  • FIG. 10 is an explanatory diagram showing terminals 700 used in the measurement system according to the seventh embodiment.
  • FIG. 10 shows terminal 700 in proximal view 710, side view 712, and distal view 714.
  • FIG. 10 shows terminal 700 in proximal view 710, side view 712, and distal view 714.
  • This terminal 700 constitutes the positive electrode terminal portion 410 and the negative electrode terminal portion 412 of the fourth embodiment.
  • the terminal 700 of the measurement system according to the seventh embodiment differs from the terminal 600 of the sixth embodiment in the voltage conducting portion 622 and current conducting portion 626 .
  • the same or equivalent parts as those of the sixth embodiment are denoted by the same reference numerals, the explanation thereof is omitted, and only the different parts are explained.
  • the length of the current conduction portion 626 in the longitudinal direction of the terminal 700 is longer than the length of the voltage conduction portion 622 electrically connected to the voltage detection conduction portion 620 .
  • the length of the current conductive portion 626 is longer than the length of the voltage conductive portion 622 electrically connected to the voltage detection conductive portion 620 .
  • the area where the current conductive portion 626 contacts the positive electrode connected portion 402 or the negative electrode connected portion 404 is such that the voltage conduction portion 622 of the voltage detection conductive portion 620 contacts the positive electrode connected portion 402 or the negative electrode connected portion 404. larger than the contact area.
  • FIG. 11 is an explanatory diagram showing a terminal 800 used in the measurement system according to the eighth embodiment.
  • FIG. 11 shows the terminal 800 viewed from the proximal side 810 , in cross section 812 , and distally 814 .
  • This terminal 800 constitutes the positive electrode terminal portion 410 and the negative electrode terminal portion 412 of the fourth embodiment.
  • the terminal 800 of the measurement system according to the eighth embodiment differs in structure from the positive electrode terminal portion 410 and the negative electrode terminal portion 412 of the fourth embodiment.
  • the same or equivalent parts as those of the fourth embodiment are denoted by the same reference numerals, the explanation thereof is omitted, and only the different parts are explained.
  • a columnar voltage detection conducting portion 820 is provided at the center of the terminal 800.
  • a cylindrical insulating portion 822 is provided on the outer peripheral portion of the voltage detection conductive portion 820 .
  • a cylindrical conducting portion 824 for current measurement is provided on the outer peripheral portion of the insulating portion 822 .
  • the voltage detection conductive portion 820 and the insulating portion 822 are shorter than the current measurement conductive portion 824 in the longitudinal direction of the terminal 800 . As a result, a recess 830 is formed at the tip of the terminal 800 .
  • a contact pin 832 is arranged in the recess 830 .
  • the contact pin 832 is supported at the tip of the voltage detection conducting portion 820 via a coil spring 834 . This allows the contact pin 832 to protrude from the terminal 800 toward the tip side and retract into the recess 830 .
  • the voltage detection conductive portion 820, the coil spring 834, the contact pin 832, and the current measurement conductive portion 824 are made of conductors.
  • the insulating portion 822 is made of an insulator.
  • the contact pin 832 and the current measuring conductive portion 824 contact the positive electrode connected portion 402 or the negative electrode connected portion 404 while the terminal 800 is inserted into the positive electrode connected portion 402 or the negative electrode connected portion 404 .
  • the positive electrode voltage detection unit 424 or the negative electrode voltage detection unit 426 is connected to the end surface of the voltage detection conduction unit 820 .
  • the positive electrode current detection unit 420 or the negative electrode current detection unit 422 is connected to the end surface of the current conduction unit 724 .
  • connection position where the contact pin 832 is connected to the positive electrode connected portion 402 or the negative electrode connected portion 404 is such that the current measurement conductive portion 824 is connected to the positive electrode connected portion 402 or the negative electrode connected portion 404. It is closer to the power storage device 20 than the connection position where it is connected.
  • FIG. 12 is an explanatory diagram showing a measuring system 900 according to the ninth embodiment.
  • a measurement system 900 according to the ninth embodiment differs from the fourth embodiment in the connection positions of the voltage detectors 424 and 426 and the current detectors 420 and 422 .
  • the same or equivalent parts as those of the fourth embodiment are denoted by the same reference numerals, and the explanation thereof is omitted, and only the different parts are explained.
  • the positive electrode connected portion 402 and the negative electrode connected portion 404 of the power storage device 22 are formed in a cylindrical shape with a bottom.
  • the connection part 84 of the measuring device 24 includes a positive terminal part 410 inserted into the positive connected part 402 of the power storage device 22 and a negative terminal part 412 inserted into the negative connected part 404 of the power storage device 22 .
  • the positive electrode terminal portion 410 and the negative electrode terminal portion 412 are configured as cylindrical bodies. The positive terminal portion 410 and the negative terminal portion 412 protrude from the connecting portion 84 .
  • the tip of the positive electrode current detection unit 420 connected to the current measurement unit 102 of the measuring device 24 is in contact with the end surface of the positive electrode measurement terminal unit 910 formed of a cylindrical body. Further, the tip of the negative electrode current detection portion 422 connected to the current measurement portion 102 is in contact with the end surface of the negative electrode measurement terminal portion 912 formed of a cylindrical body.
  • the tip of the positive electrode voltage detection section 424 connected to the voltage measurement section 100 of the measuring device 24 is in contact with the end surface of the positive electrode measurement terminal section 910 . Also, the tip of the negative electrode voltage detection section 426 connected to the voltage measurement section 100 contacts the end surface of the negative electrode measurement terminal section 912 .
  • connection position where the positive electrode voltage detection unit 424 is electrically connected to the positive electrode measurement terminal unit 910 and the connection position where the positive electrode current detection unit 420 is electrically connected to the positive electrode measurement terminal unit 910 are arranged at different locations. ing.
  • connection position where the negative electrode voltage detection section 426 is electrically connected to the negative electrode measurement terminal section 912 and the connection position where the negative electrode current detection section 422 is electrically connected to the negative electrode measurement terminal section 912 are arranged at different locations. ing.
  • the positive electrode measurement terminal portion 910 is connected to the positive electrode terminal portion 410 via the current line 920 of the cable 82 .
  • the negative measurement terminal portion 912 is connected to the negative electrode terminal portion 412 via the negative line 922 of the cable 82 .
  • the ninth embodiment compared to the case where the cable 82 is provided with the positive voltage line 116, the negative voltage line 132, the positive current line 122, and the negative current line 142, the number of electric wires constituting the cable 82 is reduced. can be reduced.
  • the ninth embodiment it is possible to put the measuring device 80 into the quick charger.
  • the quick charging connector and cable provided in the quick charger are used as the connecting portion 84 and the cable 82 of the ninth embodiment.
  • the detection units 114, 130, 120, and 140 used in the first to third embodiments are provided with projections protruding inward on the inner surfaces, and the detection units 114, 130, 120, and 140 are connected to the respective connected units.
  • the contact with the portions 40, 44 may be enhanced.

Abstract

This measuring system comprises an electricity storage apparatus incorporating an electricity storage device, and a measuring apparatus for measuring a state of the electricity storage device incorporated into the electricity storage apparatus, wherein: the electricity storage apparatus comprises a connected portion for exchanging electricity with the outside, a connecting/disconnecting portion for setting the connected portion and the electricity storage device to a non-conducting state or a conducting state, and a transmission-receiving portion for controlling the connecting/disconnecting portion to form the conducting state if a signal for causing the connecting/disconnecting portion to form the conducting state is transmitted thereto; and the measuring apparatus is connected to the connected portion and comprises a measuring portion for measuring the state of the electricity storage device, and a transmitting portion for transmitting the signal to the transmission-receiving portion.

Description

計測システム、蓄電装置、及び計測装置Measurement system, power storage device, and measurement device
 本発明は、計測システム、蓄電装置、及び計測装置に関する。 The present invention relates to a measurement system, a power storage device, and a measurement device.
 JP2021-064459Aは、電池セルのリユース判定装置によって車両用電池パックを測定する計測システムを開示している。 JP2021-064459A discloses a measurement system for measuring a vehicle battery pack by a battery cell reuse determination device.
 車両用電池パックに内蔵された各電池セルには、それぞれ制御ラインが接続されている。各制御ラインは、リユース判定装置に接続される。 A control line is connected to each battery cell built into the vehicle battery pack. Each control line is connected to a reuse determination device.
 リユース判定装置は、各制御ラインに接続された電池セルの状態を測定する。 The reuse determination device measures the state of the battery cells connected to each control line.
 車両用電池パックのような蓄電装置にあっては、電力の入出力を行う端子から不用意に電力が出力されないように、端子と電池セルとの間にリレーが設けられた装置が知られている。 2. Description of the Related Art Among power storage devices such as vehicle battery packs, there is known a device in which a relay is provided between a terminal and a battery cell to prevent power from being inadvertently output from a power input/output terminal. there is
 このような蓄電装置を用いた場合、計測装置を蓄電装置の端子に接続しても、内蔵された電池セルの測定を行うことができない。 When such a power storage device is used, even if a measuring device is connected to the terminals of the power storage device, the built-in battery cells cannot be measured.
 本発明は、上記の問題点に鑑みなされたものであり、蓄電装置に内蔵された蓄電デバイスの測定を可能とすることを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to enable measurement of an electric storage device incorporated in an electric storage apparatus.
 本発明のある態様の計測システムは、蓄電デバイスを内蔵した蓄電装置と、前記蓄電装置に内蔵された前記蓄電デバイスの状態を測定する計測装置とを備えた計測システムである。前記蓄電装置は、外部と電気の遣り取りを行う被接続部と、前記断続部に前記通電状態を形成させるための信号が伝送された場合に前記断続部を制御して前記通電状態を形成する被伝送部とを備える。前記蓄電装置は、前記断続部に前記通電状態を形成させるための信号が伝送される被伝送部を備える。前記計測装置は、前記被接続部に接続され、前記蓄電デバイスの状態を測定する測定部と、前記被伝送部に前記信号を伝送する伝送部と、を備える。 A measurement system according to one aspect of the present invention is a measurement system that includes a power storage device that incorporates a power storage device, and a measurement device that measures the state of the power storage device built into the power storage device. The power storage device includes a connected portion for exchanging electricity with the outside, and a receiving portion for forming the energized state by controlling the discontinuous portion when a signal for forming the energized state is transmitted to the discontinuous portion. and a transmission unit. The power storage device includes a transmitted portion to which a signal for forming the energized state in the intermittent portion is transmitted. The measuring device includes a measuring section connected to the connected section and measuring the state of the power storage device, and a transmitting section transmitting the signal to the transmitted section.
 この態様において、計測装置の伝送部からの信号が蓄電装置の被伝送部に伝送されると、被伝送部は、断続部を制御して通電状態を形成する。 In this aspect, when the signal from the transmission section of the measuring device is transmitted to the transmission target section of the power storage device, the transmission target section controls the intermittent section to form an energized state.
 すると、蓄電装置は、被接続部と蓄電デバイスとが通電状態となり、計測装置の測定部は、蓄電デバイスの被接続部を介して蓄電デバイスに接続される。 Then, in the power storage device, the connected portion and the power storage device are in an energized state, and the measuring portion of the measuring device is connected to the power storage device via the connected portion of the power storage device.
 これにより、測定部による蓄電デバイスの測定が可能となる。 This enables the measurement unit to measure the power storage device.
 したがって、被接続部から不用意に電力が出力されないように、被接続部と蓄電デバイスとの間に断続部が設けられた蓄電装置であって、計測装置に接続されることにより蓄電装置に内蔵された蓄電デバイスの状態の測定が可能となる。 Therefore, in order to prevent power from being inadvertently output from the connected portion, the power storage device is provided with an intermittent portion between the connected portion and the power storage device, and is built into the power storage device by being connected to the measuring device. It is possible to measure the state of the stored electricity storage device.
図1は、第一実施形態に係る計測システムが適用される車両の充電口を示す模式図である。FIG. 1 is a schematic diagram showing a charging port of a vehicle to which the measuring system according to the first embodiment is applied. 図2は、第一実施形態に係る計測システムを示す説明図である。FIG. 2 is an explanatory diagram showing the measurement system according to the first embodiment. 図3は、第一実施形態の第一変形例に係る計測システムを示す説明図である。FIG. 3 is an explanatory diagram showing the measurement system according to the first modification of the first embodiment. 図4は、第一実施形態の第二変形例に係る計測システムを示す説明図である。FIG. 4 is an explanatory diagram showing a measurement system according to a second modification of the first embodiment. 図5は、第二実施形態に係る計測システムを示す説明図である。FIG. 5 is an explanatory diagram showing the measurement system according to the second embodiment. 図6は、第三実施形態に係る計測システムを示す説明図である。FIG. 6 is an explanatory diagram showing the measurement system according to the third embodiment. 図7は、第四実施形態に係る計測システムを示す説明図である。FIG. 7 is an explanatory diagram showing the measurement system according to the fourth embodiment. 図8は、第五実施形態に係る計測システムで使用される端子を示す説明図である。FIG. 8 is an explanatory diagram showing terminals used in the measurement system according to the fifth embodiment. 図9は、第六実施形態に係る計測システムで使用される端子を示す説明図である。FIG. 9 is an explanatory diagram showing terminals used in the measurement system according to the sixth embodiment. 図10は、第七実施形態に係る計測システムで使用される端子を示す説明図である。FIG. 10 is an explanatory diagram showing terminals used in the measurement system according to the seventh embodiment. 図11は、第八実施形態に係る計測システムで使用される端子を示す説明図である。FIG. 11 is an explanatory diagram showing terminals used in the measurement system according to the eighth embodiment. 図12は、第九実施形態に係る計測システムを示す説明図である。FIG. 12 is an explanatory diagram showing the measurement system according to the ninth embodiment.
 以下、添付図面を参照しながら本発明の各実施形態について説明する。 Each embodiment of the present invention will be described below with reference to the accompanying drawings.
 <第一実施形態>
 図1は、第一実施形態に係る計測システム10が適用される車両12の充電口14を示す模式図である。図2は、第一実施形態に係る計測システム10を示す説明図である。
<First embodiment>
FIG. 1 is a schematic diagram showing a charging port 14 of a vehicle 12 to which the measuring system 10 according to the first embodiment is applied. FIG. 2 is an explanatory diagram showing the measurement system 10 according to the first embodiment.
 図1及び図2に示すように、計測システム10は、車両12に搭載された蓄電装置22の状態を測定するシステムである。蓄電装置22は、車両12を駆動する駆動装置の電源を構成する。 As shown in FIGS. 1 and 2, the measurement system 10 is a system that measures the state of the power storage device 22 mounted on the vehicle 12. As shown in FIG. Power storage device 22 constitutes a power source for a driving device that drives vehicle 12 .
 ここで、第一実施形態では、計測システム10が車両12に搭載された蓄電装置22の状態を測定する場合を例に挙げて説明するが、第一実施形態は、これに限定されるものではない。計測システム10は、例えば、オートバイに搭載された蓄電装置22又はパーソナルコンピュータに搭載された蓄電装置22の測定に用いてもよい。また、計測システム10は、車両12、オートバイ又はパーソナルコンピュータから取り外した蓄電装置22の測定に用いてもよい。 Here, in the first embodiment, a case where the measurement system 10 measures the state of the power storage device 22 mounted on the vehicle 12 will be described as an example, but the first embodiment is not limited to this. do not have. The measurement system 10 may be used, for example, to measure the power storage device 22 mounted on a motorcycle or the power storage device 22 mounted on a personal computer. The measurement system 10 may also be used to measure the power storage device 22 removed from the vehicle 12, motorcycle, or personal computer.
 車両12には、蓄電装置22の蓄電デバイス20を外部から充電するための充電口14が設けられている。充電口14は、蓄電デバイス20を急速充電する際に用いられる。計測システム10は、この充電口14を利用することによって、蓄電装置22を車両12に搭載した状態において蓄電装置22の状態を測定する。 The vehicle 12 is provided with a charging port 14 for externally charging the power storage device 20 of the power storage device 22 . Charging port 14 is used when charging power storage device 20 rapidly. The measurement system 10 uses the charging port 14 to measure the state of the power storage device 22 while the power storage device 22 is mounted on the vehicle 12 .
 図2に示すように、計測システム10は、蓄電デバイス20を内蔵した蓄電装置22と、蓄電装置22に内蔵された蓄電デバイス20の状態を測定する計測装置24とを備える。 As shown in FIG. 2 , the measurement system 10 includes a power storage device 22 that incorporates the power storage device 20 and a measurement device 24 that measures the state of the power storage device 20 built into the power storage device 22 .
 (蓄電装置)
 蓄電装置22は、絶縁性を有した外装30を備える。外装30の内部には、蓄電デバイス20が収容されている。
(Power storage device)
The power storage device 22 includes an insulating exterior 30 . The power storage device 20 is housed inside the exterior 30 .
 蓄電デバイス20としては、電気を充放電可能な蓄電池又はコンデンサを備えたキャパシタモジュールが挙げられる。第一実施形態の蓄電デバイス20は、蓄電池で構成される。 Examples of the electricity storage device 20 include a storage battery that can charge and discharge electricity or a capacitor module that includes a capacitor. The power storage device 20 of the first embodiment is composed of a storage battery.
 蓄電デバイス20は、直列接続された複数の電池セル32で構成される。各電池セル32で構成された蓄電デバイス20は、一例として300V以上400V以下の電圧を出力する。 The power storage device 20 is composed of a plurality of battery cells 32 connected in series. The power storage device 20 configured by each battery cell 32 outputs a voltage of 300 V or more and 400 V or less as an example.
 蓄電装置22の外装30には、外部と電気の遣り取りを行うための正極被接続部40が設けられている。正極被接続部40は、一例として、金属製の円柱体で構成される。正極被接続部40は、外装30から突出する。正極被接続部40は、正極配線42を介して蓄電デバイス20の正極に接続される。 The exterior 30 of the power storage device 22 is provided with a positive electrode connected portion 40 for exchanging electricity with the outside. As an example, the positive electrode connected portion 40 is configured by a cylindrical body made of metal. The positive electrode connected portion 40 protrudes from the exterior 30 . The positive electrode connected portion 40 is connected to the positive electrode of the electricity storage device 20 via a positive electrode wiring 42 .
 また、蓄電装置22の外装30には、外部と電気の遣り取りを行うための負極被接続部44が設けられている。負極被接続部44は、一例として、金属製の円柱体で構成される。負極被接続部44は、外装30から突出する。負極被接続部44は、負極配線46を介して蓄電デバイス20の負極に接続される。 In addition, the exterior 30 of the power storage device 22 is provided with a negative electrode connected portion 44 for exchanging electricity with the outside. The negative electrode connected portion 44 is configured by, for example, a cylindrical body made of metal. The negative electrode connected portion 44 protrudes from the exterior 30 . The negative electrode connected portion 44 is connected to the negative electrode of the electricity storage device 20 via a negative electrode wiring 46 .
 負極被接続部44と蓄電デバイス20の負極とを接続する負極配線46には、負極被接続部44と蓄電デバイス20の負極とを、選択的に非通電状態又は通電状態にする断続部48が設けられている。断続部48は、正極被接続部40と蓄電デバイス20の正極とを接続する正極配線42に設けることも可能である。 A negative electrode wiring 46 that connects the negative electrode connected portion 44 and the negative electrode of the electricity storage device 20 has an intermittent portion 48 that selectively brings the negative electrode connected portion 44 and the negative electrode of the electricity storage device 20 into a non-energized state or an electrically conductive state. is provided. The intermittent portion 48 can also be provided in the positive electrode wiring 42 that connects the positive electrode connected portion 40 and the positive electrode of the electric storage device 20 .
 断続部48は、例えば、リレー、FET(Field Effect Transistor)、又はトランジスタで構成される。第一実施形態の断続部48は、リレーで構成される。なお、リレーは複数設けることも可能である。 The intermittent section 48 is composed of, for example, a relay, an FET (Field Effect Transistor), or a transistor. The intermittent part 48 of the first embodiment is composed of a relay. It should be noted that a plurality of relays can be provided.
 断続部48は、電圧信号が加えられた際にスイッチ回路50をオンにし、負極被接続部44と蓄電デバイス20の負極とを通電状態とする。 The intermittent section 48 turns on the switch circuit 50 when the voltage signal is applied, and brings the negative electrode connected section 44 and the negative electrode of the electric storage device 20 into an energized state.
 また、断続部48は、電圧信号が加えられない通常時において、スイッチ回路50をオフにし、負極被接続部44と蓄電デバイス20の負極とを非通電状態とする。 In addition, the intermittent section 48 turns off the switch circuit 50 in a normal time when no voltage signal is applied, and brings the negative electrode connected section 44 and the negative electrode of the storage device 20 into a non-energized state.
 これにより、通常時において、蓄電デバイス20の出力電圧が、外装30の外側に露出した正極被接続部40と負極被接続部44との間に印加されないようにする。 This prevents the output voltage of the electricity storage device 20 from being applied between the positive electrode connected portion 40 and the negative electrode connected portion 44 exposed to the outside of the exterior 30 during normal operation.
 蓄電装置22は、断続部48によって通電状態を形成させるための信号が伝送された場合に断続部48を制御して通電状態を形成する被伝送部60を備える。 The power storage device 22 includes a transmission target section 60 that controls the intermittent section 48 to form an energized state when the intermittent section 48 transmits a signal for establishing an energized state.
 被伝送部60は、信号を受給して断続部48を制御する受給部62を含む。 The transmitted part 60 includes a receiving part 62 that receives a signal and controls the intermittent part 48 .
 受給部62は、第一受給雄端子64と第二受給雄端子66とを有する。各受給雄端子64、66は、一例として、金属製の円柱体で構成される。各受給雄端子64、66は、外装30から突出する。 The receiving portion 62 has a first receiving male terminal 64 and a second receiving male terminal 66 . Each of the receiving male terminals 64 and 66 is, for example, a cylindrical body made of metal. Each receiving male terminal 64 , 66 protrudes from the housing 30 .
 受給部62は、一例として、各受給雄端子64、66から電圧信号を信号として受給する。受給する電圧信号は、断続部48を作動させるために必要な電圧の信号である。 As an example, the receiving unit 62 receives voltage signals from the receiving male terminals 64 and 66 as signals. The received voltage signal is the voltage signal required to operate the interrupter 48 .
 一例として、受給部62の第一受給雄端子64には、5V又は12Vの電圧信号が印加される。また、受給部62の第二受給雄端子66には、0Vのグランド信号が印加される。 As an example, a voltage signal of 5V or 12V is applied to the first receiving male terminal 64 of the receiving portion 62 . A ground signal of 0 V is applied to the second receiving male terminal 66 of the receiving portion 62 .
 また、被伝送部60は、計測装置24の後述する計測側通信部96と通信して信号を入力し、当該信号に従って断続部48を制御する蓄電側通信部70を含む。 The transmission target section 60 also includes an electricity storage side communication section 70 that communicates with a measurement side communication section 96 (described later) of the measuring device 24 to input a signal and controls the intermittent section 48 according to the signal.
 蓄電装置22と計測装置24との通信で用いる通信方式は、I2C(Inter-Integrated Circuit)通信、SPI(Serial Peripheral Interface)通信、RS-232C等を用いたシリアル通信、及びパラレル通信が挙げられる。 Communication methods used for communication between the power storage device 22 and the measurement device 24 include I2C (Inter-Integrated Circuit) communication, SPI (Serial Peripheral Interface) communication, serial communication using RS-232C, etc., and parallel communication.
 また、蓄電装置22と計測装置24との通信は、LAN(Local Area Network)、LIN(Local Interconnect Network)、又はCAN(Controller Area Network)を用いて行うことができる。また、蓄電装置22と計測装置24との通信は、電力線通信(PLC:Power Line Communication)を用いて行うことができる。さらに、蓄電装置22と計測装置24との通信は、Ethernet(登録商標)による通信を用いて行うことができる。 Also, communication between the power storage device 22 and the measuring device 24 can be performed using a LAN (Local Area Network), a LIN (Local Interconnect Network), or a CAN (Controller Area Network). Communication between the power storage device 22 and the measuring device 24 can be performed using power line communication (PLC). Furthermore, communication between the power storage device 22 and the measurement device 24 can be performed using communication by Ethernet (registered trademark).
 蓄電側通信部70は、第一通信雄端子72と第二通信雄端子74とを有する。各通信雄端子72、74は、一例として、金属製の円柱体で構成される。各通信雄端子72、74は、外装30から突出する。 The power storage side communication unit 70 has a first communication male terminal 72 and a second communication male terminal 74 . Each of the communication male terminals 72 and 74 is, for example, a cylindrical body made of metal. Each communication male terminal 72 , 74 protrudes from the housing 30 .
 各通信雄端子72、74を介して計測装置24から送られる信号は、蓄電装置22の動作を指示するコマンドが含まれる。このコマンドには、一例として、断続部48を制御して蓄電デバイス20の負極と負極被接続部44とを通電状態とする通電コマンド、及び蓄電デバイス20の負極と負極被接続部44とを非通電状態とする非通電コマンドが含まれる。 A signal sent from the measuring device 24 via each of the communication male terminals 72 and 74 includes a command instructing the operation of the power storage device 22 . Examples of this command include an energization command that controls the intermittent unit 48 to bring the negative electrode of the power storage device 20 and the negative electrode connected portion 44 into an energized state, and a power supply command that causes the negative electrode of the power storage device 20 and the negative electrode connected portion 44 to become non-conductive. It includes a de-energization command to turn on the power.
 蓄電側通信部70は、通電コマンドを入力した場合、受給部62を制御して受給部62が受給した電圧信号によって断続部48を作動してスイッチ回路50をオンにする。これにより、断続部48は、負極被接続部44と蓄電デバイス20の負極とを通電状態とする。 When the energization command is input, the power storage side communication section 70 controls the receiving section 62 to operate the switching section 48 according to the voltage signal received by the receiving section 62 to turn on the switch circuit 50 . As a result, the intermittent portion 48 brings the negative electrode connected portion 44 and the negative electrode of the electric storage device 20 into an energized state.
 蓄電側通信部70は、非通電コマンドを入力した場合、受給部62を制御し電圧信号の断続部48への供給を遮断してスイッチ回路50をオフにする。これにより、断続部48は、負極被接続部44と蓄電デバイス20の負極とを非通電状態とする。 When the electricity storage side communication unit 70 receives the de-energization command, the electricity storage side communication unit 70 controls the receiving unit 62 to cut off the supply of the voltage signal to the intermittent unit 48 and turn off the switch circuit 50 . As a result, the intermittent portion 48 brings the negative electrode connected portion 44 and the negative electrode of the power storage device 20 into a non-energized state.
 各被接続部40、44、各受給雄端子64、66、及び各通信雄端子72、74は、充電口14(図1参照)に配置されている。 The connected parts 40, 44, the receiving male terminals 64, 66, and the communication male terminals 72, 74 are arranged in the charging port 14 (see Fig. 1).
 なお、第一実施形態においては、蓄電装置22の外装30から突出した各被接続部40、44、各受給雄端子64、66、及び各通信雄端子72、74が充電口14(図1参照)に配置された場合について説明するが、第一実施形態は、これに限定されるものでない。 In the first embodiment, the connected portions 40 and 44, the male supply terminals 64 and 66, and the male communication terminals 72 and 74 projecting from the exterior 30 of the power storage device 22 are connected to the charging port 14 (see FIG. 1). ), but the first embodiment is not limited to this.
 例えば、充電口14と蓄電装置22とが離れている場合、充電口14に設けられた各被接続部40、44、各受給雄端子64、66、及び各通信雄端子72、74を、ケーブルなどによって蓄電装置22の対応箇所に接続してもよい。 For example, when the charging port 14 and the power storage device 22 are separated from each other, the connected portions 40 and 44, the receiving male terminals 64 and 66, and the communication male terminals 72 and 74 provided on the charging port 14 are connected by cables. You may connect to the corresponding location of the electrical storage apparatus 22 by, for example.
 さらに、車両12から蓄電装置22を取り外した場合でも、蓄電装置22には車両12と接続するための各被接続部40、44、各受給雄端子64、66、及び各通信雄端子72、74に対応する箇所がある。このため、これらの各被接続部40、44、各受給雄端子64、66、及び各通信雄端子72、74に対応する箇所を計測装置24と蓄電装置22との接続構造において利用することが可能である。 Furthermore, even when the power storage device 22 is removed from the vehicle 12, the power storage device 22 includes connected portions 40 and 44, male power supply terminals 64 and 66, and male communication terminals 72 and 74 for connection to the vehicle 12. There is a place corresponding to Therefore, portions corresponding to the connected portions 40 and 44, the receiving male terminals 64 and 66, and the communication male terminals 72 and 74 can be used in the connection structure between the measuring device 24 and the power storage device 22. It is possible.
 また、計測装置24と蓄電装置22との接続部構造は、計測装置24と燃料電池スタックとの接続部構造、又は計測装置24と太陽電池モジュールの接続部構造などで利用することが可能である。 Also, the connection structure between the measurement device 24 and the power storage device 22 can be used as the connection structure between the measurement device 24 and the fuel cell stack or the connection structure between the measurement device 24 and the solar cell module. .
 (計測装置)
 計測装置24は、計測器80と、計測器80にケーブル82を介して接続された接続部84とを備える。
(Measuring device)
The measuring device 24 includes a measuring instrument 80 and a connection section 84 connected to the measuring instrument 80 via a cable 82 .
 計測器80は、測定部90と伝送部92とを備える。伝送部92は、蓄電装置22の被伝送部60に信号を伝送する。 The measuring instrument 80 includes a measurement section 90 and a transmission section 92 . Transmission unit 92 transmits a signal to transmission target unit 60 of power storage device 22 .
 (計測器の伝送部)
 伝送部92は、蓄電装置22の断続部48を制御するための信号を供給する供給部94を含む。供給部94は、一例として、電圧信号を信号として蓄電装置22に供給する。
(Transmitter of measuring instrument)
Transmission unit 92 includes supply unit 94 that supplies a signal for controlling switching unit 48 of power storage device 22 . As an example, the supply unit 94 supplies a voltage signal as a signal to the power storage device 22 .
 供給する電圧信号は、蓄電装置22の断続部48を作動させるために必要な電圧の信号である。供給部94が供給する電圧信号は、一例として、5V又は12Vの電圧信号が挙げられる。 The voltage signal to be supplied is a voltage signal required to operate the intermittent portion 48 of the power storage device 22 . An example of the voltage signal supplied by the supply unit 94 is a voltage signal of 5V or 12V.
 また、伝送部92は、断続部48を制御して通電状態を形成するための信号を出力する計測側通信部96を含む。 The transmission unit 92 also includes a measurement-side communication unit 96 that outputs a signal for controlling the intermittent unit 48 to form an energized state.
 計測側通信部96が出力する信号には、蓄電装置22の動作を指示するコマンドが含まれる。このコマンドには、一例として、断続部48を制御して蓄電デバイス20の負極と負極被接続部44とを通電状態とする通電コマンド、及び蓄電デバイス20の負極と負極被接続部44とを非通電状態とする非通電コマンドが含まれる。 The signal output by the measurement-side communication unit 96 includes a command for instructing the operation of the power storage device 22 . Examples of this command include an energization command that controls the intermittent unit 48 to bring the negative electrode of the power storage device 20 and the negative electrode connected portion 44 into an energized state, and a power supply command that causes the negative electrode of the power storage device 20 and the negative electrode connected portion 44 to become non-conductive. It includes a de-energization command to turn on the power.
 計測側通信部96が蓄電装置22へ通電コマンドを出力すると、蓄電装置22の各被接続部40、44には蓄電デバイス20の出力電圧が印加される。これにより、各被接続部40、44を介して蓄電装置22の蓄電デバイス20と外部との電気の遣り取りが可能となる。 When the measurement-side communication unit 96 outputs an energization command to the power storage device 22 , the output voltage of the power storage device 20 is applied to the connected portions 40 and 44 of the power storage device 22 . As a result, electricity can be exchanged between the power storage device 20 of the power storage device 22 and the outside via the connected portions 40 and 44 .
 計測側通信部96が蓄電装置22へ非通電コマンドを出力すると、蓄電装置22の各被接続部40、44と蓄電デバイス20との通電が遮断される。これにより、蓄電装置22の蓄電デバイス20と外部との電気の遣り取りが不能となる。 When the measurement-side communication unit 96 outputs a de-energization command to the power storage device 22, the power between the connected portions 40 and 44 of the power storage device 22 and the power storage device 20 is cut off. As a result, exchange of electricity between the power storage device 20 of the power storage device 22 and the outside becomes impossible.
 (計測器の測定部)
 測定部90は、蓄電装置22の各被接続部40、44に接続され、蓄電デバイス20の状態を測定する。
(Measuring part of measuring instrument)
The measurement unit 90 is connected to the connected portions 40 and 44 of the power storage device 22 and measures the state of the power storage device 20 .
 測定部90は、蓄電デバイス20の電圧を測定する電圧測定部100と、蓄電デバイス20に流れる電流を測定する電流測定部102とを有する。測定部90は、電圧測定部100で測定した電圧と電流測定部102で測定した電流とに基づいて蓄電デバイス20のインピーダンスを演算して蓄電デバイス20の状態を測定する。演算するインピーダンスには、交流インピーダンスが含まれる。 The measuring section 90 has a voltage measuring section 100 that measures the voltage of the power storage device 20 and a current measuring section 102 that measures the current flowing through the power storage device 20 . Measuring section 90 calculates the impedance of power storage device 20 based on the voltage measured by voltage measuring section 100 and the current measured by current measuring section 102 to measure the state of power storage device 20 . The calculated impedance includes AC impedance.
 電流測定部102は信号発生部104を備える。信号発生部104で発生した発生信号は蓄電デバイス20に印加される。 The current measuring section 102 includes a signal generating section 104 . A signal generated by the signal generator 104 is applied to the electricity storage device 20 .
 電流測定部102は、信号発生部104の発生信号を蓄電装置22の蓄電デバイス20に流した状態で蓄電デバイス20に流れる電流を測定信号として測定する。また、電流測定部102は、蓄電デバイス20から流れる電流を測定信号として測定する。 The current measurement unit 102 measures the current flowing through the power storage device 20 of the power storage device 22 as a measurement signal while the signal generated by the signal generation unit 104 is passed through the power storage device 20 of the power storage device 22 . Also, the current measurement unit 102 measures the current flowing from the power storage device 20 as a measurement signal.
 蓄電デバイス20に流す電流及び蓄電デバイス20から流れる電流は、5A未満である。蓄電デバイス20に流す電流及び蓄電デバイス20から流れる電流は、蓄電デバイス20の容量によって変更される。 The current flowing to and from the power storage device 20 is less than 5A. The current flowing to and from the power storage device 20 is changed by the capacity of the power storage device 20 .
 蓄電デバイス20の容量を得る方法としては、一例として、計測装置24と蓄電装置22との間で通信を行うことによって得る方法が挙げられる。 One example of a method for obtaining the capacity of the power storage device 20 is to obtain the capacity by communicating between the measuring device 24 and the power storage device 22 .
 具体的に説明すると、蓄電デバイス20に流す電流及び蓄電デバイス20から流れる電流は、0.05C未満である。Cは蓄電デバイス20の容量を示し、一例として、蓄電デバイス20の容量100Ahの場合、電流は、0.05×100=5Aとなる。 Specifically, the current flowing to and from the electricity storage device 20 is less than 0.05C. C indicates the capacity of the electricity storage device 20. As an example, when the capacity of the electricity storage device 20 is 100 Ah, the current is 0.05×100=5A.
 蓄電デバイス20に流れる電流は、小さいほど蓄電デバイス20に与える影響は少ない。また、蓄電デバイス20に流れる電流は、小さいほど蓄電デバイス20の状態が変化しない。このため、計測装置24は、蓄電デバイス20に流れる電流が小さいほど安定した測定結果を得ることができる。 The smaller the current flowing through the electricity storage device 20, the less the impact on the electricity storage device 20. Also, the smaller the current flowing through the electricity storage device 20, the less the state of the electricity storage device 20 changes. Therefore, the measurement device 24 can obtain more stable measurement results as the current flowing through the electricity storage device 20 is smaller.
 例えば、蓄電デバイス20に流れる電流を5A以上とすると、蓄電デバイス20の状態を監視する車載の監視装置が異常を検出し得る。この場合、監視装置が有する機能によって、車両12が起動不能になったり、走行不能になったりすることがある。 For example, if the current flowing through the electricity storage device 20 is 5 A or more, an in-vehicle monitoring device that monitors the state of the electricity storage device 20 may detect an abnormality. In this case, depending on the function of the monitoring device, the vehicle 12 may become unable to start or run.
 そこで、蓄電デバイス20に流れる電流を5A未満とすることで、監視装置における異常の検出を抑制することができる。 Therefore, by setting the current flowing through the power storage device 20 to less than 5 A, it is possible to suppress the detection of abnormality in the monitoring device.
 一方で、蓄電デバイス20に流れる電流が小さすぎると、蓄電デバイス20の内部抵抗による電圧変化が小さくなり、測定結果がノイズの影響を受けやすくなる。 On the other hand, if the current flowing through the electricity storage device 20 is too small, the voltage change due to the internal resistance of the electricity storage device 20 will be small, and the measurement results will be susceptible to noise.
 一例として、蓄電デバイス20の出力電圧が400Vで、蓄電デバイス20の内部抵抗が、0.03Ω以上0.10Ω以下の場合、蓄電デバイス20に流れる電流を1A以上5A未満の範囲で設定することが望ましい。 As an example, when the output voltage of the electricity storage device 20 is 400V and the internal resistance of the electricity storage device 20 is 0.03Ω or more and 0.10Ω or less, the current flowing through the electricity storage device 20 can be set in the range of 1A or more and less than 5A. desirable.
 なお、計測装置24にノイズを除去する機能などがあれば、蓄電デバイス20に流れる電流を1A未満としても、計測可能である。 Note that if the measurement device 24 has a function of removing noise, it is possible to measure even if the current flowing through the electricity storage device 20 is less than 1A.
 測定信号は、正弦波又は矩形波を含む。  The measurement signal includes a sine wave or a square wave.
 測定信号が正弦波の場合、測定信号の周波数を、蓄電デバイス20である蓄電池の電解液及び配線の周波数応答が測定できる帯域とすることができる。また、測定信号が正弦波の場合、測定信号の周波数を、蓄電デバイス20の電極反応過程の周波数応答が測定できる帯域とすることができる。さらに、測定信号が正弦波の場合、測定信号の周波数を、蓄電デバイス20における拡散過程の周波数応答が測定できる帯域とすることができる。 When the measurement signal is a sine wave, the frequency of the measurement signal can be set to a band in which the frequency response of the electrolyte and wiring of the storage battery, which is the electricity storage device 20, can be measured. Moreover, when the measurement signal is a sine wave, the frequency of the measurement signal can be set to a band in which the frequency response of the electrode reaction process of the electricity storage device 20 can be measured. Furthermore, when the measurement signal is a sine wave, the frequency of the measurement signal can be set to a band in which the frequency response of the diffusion process in the electricity storage device 20 can be measured.
 前述した測定信号の周波数を数値で示すと、測定信号が正弦波の場合、測定信号の周波数を10kHz以上100Hz以下とすることができる。また、測定信号が正弦波の場合、測定信号の周波数を5kHz以上500Hz以下とすることができる。さらに、測定信号が正弦波の場合、測定信号の周波数を1kHzとすることができる。 When the frequency of the measurement signal described above is shown numerically, when the measurement signal is a sine wave, the frequency of the measurement signal can be 10 kHz or more and 100 Hz or less. Moreover, when the measurement signal is a sine wave, the frequency of the measurement signal can be set to 5 kHz or more and 500 Hz or less. Furthermore, if the measurement signal is a sine wave, the frequency of the measurement signal can be 1 kHz.
 ここで、1kHzの測定信号は、蓄電デバイス20の状態と相関性が高いことが知られている。このため、測定信号の周波数を1kHzとすることで、蓄電デバイス20の状態をより高精度に測定することが可能となる。 Here, it is known that the 1 kHz measurement signal has a high correlation with the state of the electricity storage device 20 . Therefore, by setting the frequency of the measurement signal to 1 kHz, the state of the power storage device 20 can be measured with higher accuracy.
 また、測定信号の周波数を1kHzに固定することで、単一の周波数による短時間での測定が容易に可能となる。 In addition, by fixing the frequency of the measurement signal to 1 kHz, it is possible to easily perform short-time measurement using a single frequency.
 そして、測定信号をM系列信号とすることができる。M系列信号は、疑似白色二値信号であり、人為的に生成した不規則信号である。 Then, the measurement signal can be an M-sequence signal. The M-sequence signal is a pseudo-white binary signal, which is an artificially generated random signal.
 測定信号が矩形波の場合、矩形波には複数の周波数成分が含まれる。このため、測定信号を矩形波にすることによって、単一の周波数の信号を複数入力するよりも測定の簡素化を図ることが可能となる。 When the measurement signal is a square wave, the square wave contains multiple frequency components. Therefore, by using a rectangular wave as the measurement signal, it is possible to simplify the measurement rather than inputting a plurality of signals of a single frequency.
 そして、測定部90は、電圧測定部100で測定した電圧の変化及び電流測定部102で測定した電流の変化に基づいて、蓄電デバイス20の周波数応答を測定して交流抵抗を取得する。また、測定部90は、予め取得した蓄電デバイス20の交流抵抗と蓄電デバイス20の劣化度合いとの関係に基づいて、取得した交流抵抗から測定した蓄電デバイス20の劣化度合いを推定する。 Then, the measurement unit 90 measures the frequency response of the electricity storage device 20 and obtains the AC resistance based on the voltage change measured by the voltage measurement unit 100 and the current change measured by the current measurement unit 102 . Further, the measurement unit 90 estimates the degree of deterioration of the electricity storage device 20 measured from the obtained AC resistance, based on the previously obtained relationship between the AC resistance of the electricity storage device 20 and the degree of deterioration of the electricity storage device 20 .
 (接続部)
 図1に示すように、接続部84は、充電口14に脱着可能に装着されるコネクタを構成する。接続部84は、絶縁体で構成される。
(connection part)
As shown in FIG. 1 , the connecting portion 84 constitutes a connector detachably attached to the charging port 14 . The connecting portion 84 is made of an insulator.
 図2に示すように、接続部84には、蓄電装置22の正極被接続部40が挿入される正極挿入孔110と、負極被接続部44が挿入される負極挿入孔112とが形成されている。 As shown in FIG. 2, the connection portion 84 is formed with a positive electrode insertion hole 110 into which the positive electrode connected portion 40 of the power storage device 22 is inserted, and a negative electrode insertion hole 112 into which the negative electrode connected portion 44 is inserted. there is
 正極挿入孔110の外周部には、正極被接続部40を正極挿入孔110に挿入した状態で、正極被接続部40の外周面と接する金属製の正極電圧検出部114が設けられている。正極電圧検出部114は、中央に円形穴を有する円形のリング板で形成されている。 On the outer periphery of the positive electrode insertion hole 110, a positive electrode voltage detection part 114 made of metal is provided, which is in contact with the outer peripheral surface of the positive electrode connected part 40 when the positive electrode connected part 40 is inserted into the positive electrode insertion hole 110. The positive electrode voltage detector 114 is formed of a circular ring plate having a circular hole in the center.
 正極電圧検出部114は、正極電圧ライン116を介して電圧測定部100の正極に接続されている。これにより、電圧測定部100の正極は、正極被接続部40に接する正極電圧検出部114を介して正極被接続部40に電気的に接続される。 The positive electrode voltage detection section 114 is connected to the positive electrode of the voltage measurement section 100 via a positive electrode voltage line 116 . As a result, the positive electrode of the voltage measurement unit 100 is electrically connected to the positive electrode connected portion 40 via the positive electrode voltage detection portion 114 that is in contact with the positive electrode connected portion 40 .
 正極挿入孔110の奥部には、正極被接続部40を正極挿入孔110に挿入した状態で、正極被接続部40の先端部と接する金属製の正極電流検出部120が設けられている。正極電流検出部120は、有底筒状に形成されている。 At the back of the positive electrode insertion hole 110 , a positive electrode current detection part 120 made of metal is provided that contacts the tip of the positive electrode connected part 40 while the positive electrode connected part 40 is inserted into the positive electrode insertion hole 110 . The positive electrode current detection unit 120 is formed in a cylindrical shape with a bottom.
 正極電流検出部120は、正極電圧ライン116よりも太い正極電流ライン122を介して電流測定部102の正極に接続されている。これにより、電流測定部102の正極は、正極被接続部40に接する正極電流検出部120を介して正極被接続部40に電気的に接続される。 The positive electrode current detection unit 120 is connected to the positive electrode of the current measurement unit 102 via a positive electrode current line 122 that is thicker than the positive electrode voltage line 116 . As a result, the positive electrode of the current measuring section 102 is electrically connected to the positive electrode connected portion 40 via the positive electrode current detection portion 120 that is in contact with the positive electrode connected portion 40 .
 正極電圧検出部114が正極被接続部40に電気的に接続される接続位置と、正極電流検出部120が正極被接続部40に電気的に接続される接続位置とは異なる箇所となるように設定されている。 The connection position at which the positive electrode voltage detection portion 114 is electrically connected to the positive electrode connected portion 40 is different from the connection position at which the positive electrode current detection portion 120 is electrically connected to the positive electrode connected portion 40 . is set.
 具体的に説明すると、蓄電デバイス20と測定部90とを結ぶ通電経路において、正極電圧検出部114が正極被接続部40に電気的に接続される接続位置は、正極電流検出部120が正極被接続部40に電気的に接続される接続位置よりも蓄電デバイス20に近い。 Specifically, the connection position where the positive electrode voltage detection unit 114 is electrically connected to the positive electrode connected unit 40 in the current path connecting the power storage device 20 and the measurement unit 90 is the positive electrode current detection unit 120 connected to the positive electrode connected unit 40 It is closer to the power storage device 20 than the connection position electrically connected to the connection portion 40 .
 負極挿入孔112の外周部には、負極被接続部44を負極挿入孔112に挿入した状態で、負極被接続部44の外周面と接する金属製の負極電圧検出部130が設けられている。負極電圧検出部130は、中央に円形穴を有する円形のリング板で形成されている。 A metal negative electrode voltage detection part 130 is provided on the outer periphery of the negative electrode insertion hole 112 so as to be in contact with the outer peripheral surface of the negative electrode connection part 44 when the negative electrode connection part 44 is inserted into the negative electrode insertion hole 112 . Negative electrode voltage detection unit 130 is formed of a circular ring plate having a circular hole in the center.
 負極電圧検出部130は、負極電圧ライン132を介して電圧測定部100の負極に接続されている。これにより、電圧測定部100の負極は、負極被接続部44に接する負極電圧検出部130を介して負極被接続部44に電気的に接続される。 The negative electrode voltage detection section 130 is connected to the negative electrode of the voltage measurement section 100 via a negative electrode voltage line 132 . As a result, the negative electrode of the voltage measuring section 100 is electrically connected to the negative electrode connected portion 44 via the negative electrode voltage detection portion 130 that is in contact with the negative electrode connected portion 44 .
 負極挿入孔112の奥部には、負極被接続部44を負極挿入孔112に挿入した状態で、負極被接続部44の先端部と接する金属製の負極電流検出部140が設けられている。負極電流検出部140は、有底筒状に形成されている。 At the back of the negative electrode insertion hole 112 , a metal negative electrode current detection part 140 is provided that contacts the tip of the negative electrode connected part 44 while the negative electrode connected part 44 is inserted into the negative electrode insertion hole 112 . Negative electrode current detector 140 is formed in a cylindrical shape with a bottom.
 負極電流検出部140は、負極電圧ライン132をよりも太い負極電流ライン142を介して電流測定部102の負極に接続されている。これにより、電流測定部102の負極は、負極被接続部44に接する負極電流検出部140を介して負極被接続部44に電気的に接続される。 The negative electrode current detection unit 140 is connected to the negative electrode of the current measurement unit 102 via a negative electrode current line 142 that is thicker than the negative electrode voltage line 132 . As a result, the negative electrode of the current measuring section 102 is electrically connected to the negative electrode connected portion 44 via the negative electrode current detection portion 140 that is in contact with the negative electrode connected portion 44 .
 負極電圧検出部130が負極被接続部44に電気的に接続される接続位置と、負極電流検出部140が負極被接続部44に電気的に接続される接続位置とは異なる箇所となるように設定されている。 The connection position where the negative electrode voltage detection section 130 is electrically connected to the negative electrode connected section 44 and the connection position where the negative electrode current detection section 140 is electrically connected to the negative electrode connection section 44 are different. is set.
 具体的に説明すると、蓄電デバイス20と測定部90とを結ぶ通電経路において、負極電圧検出部130が負極被接続部44に電気的に接続される接続位置は、負極電流検出部140が負極被接続部44に電気的に接続される接続位置よりも蓄電デバイス20に近い。 Specifically, the connection position where the negative electrode voltage detection unit 130 is electrically connected to the negative electrode connected unit 44 in the current path connecting the power storage device 20 and the measurement unit 90 is the position where the negative electrode current detection unit 140 is connected to the negative electrode connected unit 44 . It is closer to the power storage device 20 than the connection position electrically connected to the connection portion 44 .
 接続部84には、蓄電装置22の第一受給雄端子64が挿入される金属製の第一供給雌端子150が設けられている。第一供給雌端子150は、有底筒状であり、第一供給雌端子150は、ハーネス152を介して供給部94の一方の出力に接続される。 The connection portion 84 is provided with a metal first supply female terminal 150 into which the first supply male terminal 64 of the power storage device 22 is inserted. The first supply female terminal 150 has a cylindrical shape with a bottom, and is connected to one output of the supply section 94 via a harness 152 .
 また、接続部84には、蓄電装置22の第二受給雄端子66が挿入される金属製の第二供給雌端子154が設けられている。第二供給雌端子154は、有底筒状であり、第二供給雌端子154は、ハーネス156を介して供給部94の他方の出力に接続される。 In addition, the connection portion 84 is provided with a metal second supply female terminal 154 into which the second supply male terminal 66 of the power storage device 22 is inserted. The second supply female terminal 154 is cylindrical with a bottom, and is connected to the other output of the supply section 94 via a harness 156 .
 これにより、第一供給雌端子150に第一受給雄端子64が挿入されるとともに、第二供給雌端子154に第二受給雄端子66が挿入された状態で、供給部94の出力を蓄電装置22の受給部62へ供給可能となる。 As a result, in a state in which the first supply male terminal 64 is inserted into the first supply female terminal 150 and the second supply male terminal 66 is inserted into the second supply female terminal 154, the output of the supply section 94 is supplied to the power storage device. 22 can be supplied to the receiving unit 62 .
 接続部84には、蓄電装置22の第一通信雄端子72が挿入される金属製の第一通信雌端子160が設けられている。第一通信雌端子160は、有底筒状であり、第一通信雌端子160は、ハーネス162を介して計測側通信部96の一方の端子に接続される。 The connecting portion 84 is provided with a metal first communication female terminal 160 into which the first communication male terminal 72 of the power storage device 22 is inserted. The first communication female terminal 160 has a cylindrical shape with a bottom, and is connected to one terminal of the measurement side communication section 96 via a harness 162 .
 また、接続部84には、蓄電装置22の第二通信雄端子74が挿入される金属製の第二通信雌端子164が設けられている。第二通信雌端子164は、有底筒状であり、第二通信雌端子164は、ハーネス166を介して計測側通信部96の他方の端子に接続される。 In addition, the connection portion 84 is provided with a metal second communication female terminal 164 into which the second communication male terminal 74 of the power storage device 22 is inserted. The second communication female terminal 164 has a cylindrical shape with a bottom, and is connected to the other terminal of the measurement side communication section 96 via a harness 166 .
 これにより、第一通信雌端子160に第一通信雄端子72が挿入されるとともに、第二通信雌端子164に第二通信雄端子74が挿入された状態で、計測側通信部96と蓄電側通信部70とが通信可能に接続される。 As a result, while the first communication male terminal 72 is inserted into the first communication female terminal 160 and the second communication male terminal 74 is inserted into the second communication female terminal 164, the measurement side communication unit 96 and the power storage side are connected. A communication unit 70 is communicably connected.
 なお、第一実施形態において、計測装置24における伝送部92を構成する供給部94及び計測側通信部96は、図外の電源部から供給される電力によって動作する。また、計測装置24における測定部90の電圧測定部100、電流測定部102、及び信号発生部104は、図外の電源部から供給される電力によって動作する。電源部は、例えば商用電源のコンセントから得られる電源を整流して電力を供給する。 In addition, in the first embodiment, the supply unit 94 and the measurement-side communication unit 96 that constitute the transmission unit 92 in the measurement device 24 operate with power supplied from a power supply unit (not shown). Also, the voltage measuring section 100, the current measuring section 102, and the signal generating section 104 of the measuring section 90 in the measuring device 24 are operated by electric power supplied from a power supply section (not shown). The power supply unit supplies power by rectifying power obtained from, for example, a commercial power outlet.
 (作用及び効果)
 次に、第一実施形態による作用効果について説明する。
(Action and effect)
Next, the effects of the first embodiment will be described.
 第一実施形態における計測システム10は、蓄電デバイス20を内蔵した蓄電装置22と、蓄電装置22に内蔵された蓄電デバイス20の状態を測定する計測装置24とを備えた計測システム10である。蓄電装置22は、外部と電気の遣り取りを行う各被接続部40、44と、各被接続部40、44及び蓄電デバイス20を非通電状態又は通電状態にする断続部48とを備える。蓄電装置22は、断続部48に通電状態を形成させるための信号が伝送された場合に断続部48を制御して通電状態を形成する被伝送部60を備える。計測装置24は、各被接続部40、44に接続され、蓄電デバイス20の状態を測定する測定部90と、被伝送部60に信号を伝送する伝送部92とを備える。 The measurement system 10 in the first embodiment is a measurement system 10 that includes a power storage device 22 that incorporates the power storage device 20 and a measurement device 24 that measures the state of the power storage device 20 built into the power storage device 22. The power storage device 22 includes connected portions 40 and 44 that exchange electricity with the outside, and an intermittent portion 48 that puts the connected portions 40 and 44 and the power storage device 20 in a non-energized state or an energized state. The power storage device 22 includes a transmission target section 60 that controls the intermittent section 48 to form the energized state when a signal for forming the energized state is transmitted to the intermittent section 48 . The measuring device 24 is connected to the connected sections 40 and 44 and includes a measuring section 90 that measures the state of the power storage device 20 and a transmitting section 92 that transmits a signal to the transmitted section 60 .
 蓄電装置22は、蓄電デバイス20を内蔵するとともに蓄電デバイス20の状態を測定する計測装置24を接続可能な装置である。蓄電装置22は、外部と電気の遣り取りを行う各被接続部40、44と、各被接続部40、44及び蓄電デバイス20を非通電状態又は通電状態にする断続部48とを備える。蓄電装置22は、通電状態を形成させるための信号が計測装置24から伝送された場合に断続部48を制御して通電状態を形成する被伝送部60を備える。 The power storage device 22 is a device that incorporates the power storage device 20 and that can be connected to a measuring device 24 that measures the state of the power storage device 20 . The power storage device 22 includes connected portions 40 and 44 that exchange electricity with the outside, and an intermittent portion 48 that puts the connected portions 40 and 44 and the power storage device 20 in a non-energized state or an energized state. The power storage device 22 includes a transmission target section 60 that controls the intermittent section 48 to form an energized state when a signal for forming an energized state is transmitted from the measuring device 24 .
 計測装置24は、蓄電デバイス20を内蔵する蓄電装置22であって蓄電デバイス20及び各被接続部40、44を非通電状態又は通電状態にする断続部48と、外部から信号を受けて断続部48を制御して通電状態を形成する被伝送部60とを備えた蓄電装置22に接続され、蓄電デバイス20の状態を測定する装置である。計測装置24は、各被接続部40、44に接続され、蓄電デバイス20の状態を測定する測定部90と、被伝送部60に信号を伝送する伝送部92とを備える。 The measurement device 24 includes an electricity storage device 22 that incorporates the electricity storage device 20, and includes an intermittent section 48 that puts the electricity storage device 20 and the connected sections 40 and 44 into a non-energized state or an energized state, and an intermittent section that receives a signal from the outside. 48 to form an energized state, and is connected to the power storage device 22 to measure the state of the power storage device 20 . The measuring device 24 is connected to the connected sections 40 and 44 and includes a measuring section 90 that measures the state of the power storage device 20 and a transmitting section 92 that transmits a signal to the transmitted section 60 .
 この構成において、計測装置24の接続部84を充電口14に装着した状態において、計測装置24の伝送部92からの信号が蓄電装置22の被伝送部60に伝送されると、被伝送部60は、断続部48を制御して通電状態を形成する。 In this configuration, when the connection portion 84 of the measuring device 24 is attached to the charging port 14 and the signal from the transmitting portion 92 of the measuring device 24 is transmitted to the transmitted portion 60 of the power storage device 22 , the transmitted portion 60 controls the intermittent portion 48 to form an energized state.
 すると、蓄電装置22は、各被接続部40、44と蓄電デバイス20とが通電状態となり、計測装置24の測定部90は、各被接続部40、44を介して蓄電デバイス20に接続される。 Then, in the power storage device 22, the connected portions 40 and 44 and the power storage device 20 are in an energized state, and the measuring portion 90 of the measuring device 24 is connected to the power storage device 20 via the connected portions 40 and 44. .
 これにより、測定部90による蓄電デバイス20の状態の測定が可能となる。 This enables the measurement unit 90 to measure the state of the electricity storage device 20 .
 したがって、各被接続部40、44から不用意に電力が出力されないように、負極被接続部44と蓄電デバイス20との間に、非通電状態を形成する断続部48が設けられた蓄電装置22であっても、蓄電デバイス20の状態の測定が可能となる。 Therefore, the power storage device 22 is provided with an intermittent portion 48 that forms a non-energized state between the negative electrode connected portion 44 and the power storage device 20 so that power is not inadvertently output from the connected portions 40 and 44. Even in this case, the state of the electric storage device 20 can be measured.
 また、第一実施形態において、伝送部92は、断続部48を制御するための信号を供給する供給部94を含み、被伝送部60は、信号を受給して断続部48を制御する受給部62を含む。 In the first embodiment, the transmission unit 92 includes a supply unit 94 that supplies a signal for controlling the intermittent unit 48, and the transmitted unit 60 receives the signal and controls the intermittent unit 48. 62 included.
 蓄電装置22において、被伝送部60は、計測装置24から伝送される信号を受給して断続部48を制御する受給部62を含む。 In the power storage device 22 , the transmitted section 60 includes a receiving section 62 that receives the signal transmitted from the measuring device 24 and controls the intermittent section 48 .
 この構成によれば、蓄電装置22において、断続部48を作動するための電源等を確保できない場合であっても、供給部94が供給する信号を利用して断続部48を作動することが可能となる。 According to this configuration, even if the power storage device 22 cannot secure a power source or the like for operating the intermittent portion 48, the intermittent portion 48 can be operated using the signal supplied by the supply portion 94. becomes.
 また、第一実施形態において、伝送部92は、断続部48を制御して通電状態を形成するための信号を出力する計測側通信部96を含み、被伝送部60は、計測側通信部96と通信して信号を入力し、信号に従って断続部48を制御する蓄電側通信部70を含む。 Further, in the first embodiment, the transmission unit 92 includes a measurement-side communication unit 96 that outputs a signal for controlling the intermittent unit 48 to form an energized state, and the transmitted unit 60 includes the measurement-side communication unit 96 and a power storage side communication unit 70 that inputs a signal and controls the intermittent unit 48 according to the signal.
 この構成によれば、蓄電装置22の断続部48の状態を計測装置24から制御することが可能となる。これにより、測定タイミングに応じて、計測装置24と蓄電装置22の蓄電デバイス20との通電状態を制御することができる。 With this configuration, it is possible to control the state of the intermittent portion 48 of the power storage device 22 from the measuring device 24 . Thereby, the energization state between the measuring device 24 and the power storage device 20 of the power storage device 22 can be controlled according to the measurement timing.
 また、第一実施形態において、測定部90は、蓄電デバイス20の電圧を測定する電圧測定部100と、蓄電デバイス20に流れる電流を測定する電流測定部102とを有する。電圧測定部100が各被接続部40、44に電気的に接続される接続位置と、電流測定部102が各被接続部40、44に電気的に接続される接続位置とは、異なる箇所に配置されている。 Also, in the first embodiment, the measuring section 90 has a voltage measuring section 100 that measures the voltage of the power storage device 20 and a current measuring section 102 that measures the current flowing through the power storage device 20 . The connection position where the voltage measuring section 100 is electrically connected to the connected sections 40 and 44 and the connection position where the current measuring section 102 is electrically connected to the connected sections 40 and 44 are different. are placed.
 計測装置24において、伝送部92は、断続部48を制御するための信号を供給する供給部94を含む。測定部90は、蓄電デバイス20の電圧を測定する電圧測定部100と、蓄電デバイス20に流れる電流を測定する電流測定部102とを有する。電圧測定部100が各被接続部40、44に電気的に接続される第1の接続位置と、電流測定部102が各被接続部40、44に電気的に接続される第2の接続位置とは、異なる箇所に配設されている。 In the measuring device 24 , the transmission section 92 includes a supply section 94 that supplies signals for controlling the intermittent section 48 . Measuring section 90 has a voltage measuring section 100 that measures the voltage of power storage device 20 and a current measuring section 102 that measures the current flowing through power storage device 20 . A first connection position where the voltage measuring section 100 is electrically connected to the connected sections 40 and 44, and a second connection position where the current measuring section 102 is electrically connected to the connected sections 40 and 44. are located at different locations.
 この構成によれば、電圧測定部100が各被接続部40、44に接続される接続位置と、電流測定部102が各被接続部40、44に接続される接続位置とが離れている。このため、電圧測定部100によって発生する電圧降下と電流測定部102によって発生する電圧降下とを離れた場所で生じさせることができる。 According to this configuration, the connection position where the voltage measurement section 100 is connected to the connected sections 40 and 44 and the connection position where the current measurement section 102 is connected to the connected sections 40 and 44 are separated. Therefore, the voltage drop caused by the voltage measuring section 100 and the voltage drop caused by the current measuring section 102 can be generated at separate locations.
 このため、電圧測定部100及び電流測定部102内に配設されたシャント抵抗の両端に発生する電圧降下が同位置に生ずる場合と比較して、電圧測定部100及び電流測定部102のそれぞれの測定結果に与える影響を抑制することができる。 Therefore, compared to the case where the voltage drops generated across the shunt resistors provided in the voltage measuring section 100 and the current measuring section 102 occur at the same position, the voltage drop occurring in each of the voltage measuring section 100 and the current measuring section 102 is reduced. It is possible to suppress the influence on the measurement result.
 また、電圧測定部100が各被接続部40、44に接続される接続位置と、電流測定部102が各被接続部40、44に接続される接続位置とが同じ場合と比較して、電流測定部102及び電圧測定部100間で互いに生じ得る影響を抑制することが可能となる。 In addition, compared to the case where the connection position where the voltage measurement section 100 is connected to the connected sections 40 and 44 and the connection position where the current measurement section 102 is connected to the connected sections 40 and 44 are the same, the current It is possible to suppress possible mutual influence between the measuring section 102 and the voltage measuring section 100 .
 また、第一実施形態では、蓄電デバイス20と測定部90とを結ぶ通電経路において、次に示す位置関係がある。電流測定部102が各被接続部40、44に電気的に接続される接続位置は、電流測定部102が各被接続部40、44に電気的に接続される接続位置よりも蓄電デバイス20に近い。 In addition, in the first embodiment, there is the following positional relationship in the energization path connecting the power storage device 20 and the measurement unit 90 . The connection position where the current measuring section 102 is electrically connected to the connected sections 40 and 44 is closer to the power storage device 20 than the connection position where the current measuring section 102 is electrically connected to the connected sections 40 and 44 . close.
 この構成によれば、電流測定部102に流れる電流が電圧測定部100で測定される電圧に与える影響の抑制が可能となる。 According to this configuration, it is possible to suppress the influence of the current flowing through the current measuring section 102 on the voltage measured by the voltage measuring section 100 .
 また、第一実施形態において、電圧測定部100は、各被接続部40、44に接する各電圧検出部114、130を介して、各被接続部40、44に電気的に接続される。電流測定部102は、各被接続部40、44に接する各電流検出部120、140を介して、各被接続部40、44に電気的に接続される。 In addition, in the first embodiment, the voltage measurement section 100 is electrically connected to the connected sections 40 and 44 via the voltage detection sections 114 and 130 that are in contact with the connected sections 40 and 44 . The current measuring section 102 is electrically connected to the connected sections 40 and 44 via the current detecting sections 120 and 140 which are in contact with the connected sections 40 and 44, respectively.
 この構成によれば、各電圧検出部114、130及び各電流検出部120、140の配置によって、電圧測定部100の各被接続部40、44への接続位置と、電流測定部102の各被接続部40、44への接続位置とが調整可能となる。 According to this configuration, depending on the arrangement of the voltage detection units 114 and 130 and the current detection units 120 and 140, the connection positions of the voltage measurement unit 100 to the connection units 40 and 44 and the connection positions of the current measurement unit 102 to the connection units 40 and 44 are determined. The connection position to the connection parts 40 and 44 can be adjusted.
 電圧測定部100の各被接続部40、44への接続位置と、電流測定部102の各被接続部40、44への接続位置と調整することで、前述した電圧降下の抑制効果が調整可能となる。また、電流測定部102と電圧測定部100とにおいて、互いに生じ得る影響の抑制効果が調整可能となる。 By adjusting the connection position of the voltage measurement unit 100 to the connected parts 40 and 44 and the connection position of the current measurement part 102 to the connected parts 40 and 44, the voltage drop suppression effect described above can be adjusted. becomes. In addition, in the current measuring section 102 and the voltage measuring section 100, it is possible to adjust the effect of suppressing the mutual influence.
 <第一実施形態の第一変形例>
 図3は、第一実施形態の第一変形例に係る計測システム1000を示す説明図である。
<First Modification of First Embodiment>
FIG. 3 is an explanatory diagram showing the measurement system 1000 according to the first modified example of the first embodiment.
 第一実施形態の第一変形例に係る計測システム1000は、第一実施形態と比較して、計測装置1014が蓄電装置1012から供給される電力によって動作する点が異なる。計測システム1000について、第一実施形態と同一又は同等部分については同符号を付して説明を割愛し、異なる部分についてのみ説明する。 The measurement system 1000 according to the first modification of the first embodiment differs from the first embodiment in that the measurement device 1014 operates with power supplied from the power storage device 1012 . Regarding the measurement system 1000, the same or equivalent parts as those of the first embodiment are denoted by the same reference numerals, and the description thereof is omitted, and only the different parts are described.
 蓄電装置1012は、蓄電装置22の構成(図2参照)に加えて電力供給部1020を備える。電力供給部1020は、蓄電デバイス20と異なるデバイスで構成される。電力供給部1020は、例えば車両12に搭載された12Vの車載バッテリで構成される。なお、電力供給部1020は、蓄電デバイス20の出力を降圧して電力を供給する降圧回路で構成してもよい。 The power storage device 1012 includes a power supply unit 1020 in addition to the configuration of the power storage device 22 (see FIG. 2). Power supply unit 1020 is composed of a device different from power storage device 20 . The power supply unit 1020 is composed of, for example, a 12V vehicle-mounted battery mounted on the vehicle 12 . Note that the power supply unit 1020 may be configured by a step-down circuit that steps down the output of the power storage device 20 to supply power.
 車載バッテリの正極に接続された電力供給部1020の正極用供給配線1022は、正極供給用被接続部1024に接続される。正極供給用被接続部1024は、外装30から突出する。車載バッテリの負極に接続された電力供給部1020の負極用供給配線1026は、負極供給用被接続部1028に接続される。負極供給用被接続部1028は、外装30から突出する。 The positive electrode supply wiring 1022 of the power supply unit 1020 connected to the positive electrode of the vehicle-mounted battery is connected to the positive electrode supply connected portion 1024 . The positive electrode supply connected portion 1024 protrudes from the exterior 30 . The negative electrode supply wiring 1026 of the power supply unit 1020 connected to the negative electrode of the vehicle-mounted battery is connected to the negative electrode supply connecting portion 1028 . The negative electrode supply connected portion 1028 protrudes from the exterior 30 .
 蓄電装置1012の外装30には、各被接続部40、44、各雄端子64、66、72、74、及び各供給用被接続部1024、1028によって被接続端子部1030が構成される。この被接続端子部1030は、車両12に設けられた充電口14(図1参照)に設けられている。 On the exterior 30 of the power storage device 1012 , a connected terminal portion 1030 is configured by the connected portions 40 and 44 , the male terminals 64 , 66 , 72 and 74 , and the supply connected portions 1024 and 1028 . The connected terminal portion 1030 is provided in the charging port 14 (see FIG. 1) provided in the vehicle 12 .
 接続部84には、蓄電装置1012の正極供給用被接続部1024が挿入される金属製の正極供給用雌端子1040と、負極供給用被接続部1028が挿入される金属製の負極供給用雌端子1042とが設けられている。正極供給用雌端子1040には、正極供給ライン1044が接続されており、負極供給用雌端子1042には、負極供給ライン1046が接続されている。各供給ライン1044、1046は、計測装置1014の伝送部92及び測定部90に接続されている。 The connecting portion 84 has a metallic positive electrode supply female terminal 1040 into which the positive electrode supply connected portion 1024 of the power storage device 1012 is inserted, and a metallic negative electrode supply female terminal into which the negative electrode supply connected portion 1028 is inserted. A terminal 1042 is provided. A positive electrode supply line 1044 is connected to the positive electrode supply female terminal 1040 , and a negative electrode supply line 1046 is connected to the negative electrode supply female terminal 1042 . Each supply line 1044 , 1046 is connected to the transmission section 92 and measurement section 90 of the measuring device 1014 .
 これにより、伝送部92の供給部94及び計測側通信部96は、蓄電装置1012の電力供給部1020から供給される電力によって動作する。また、測定部90の電圧測定部100、電流測定部102、及び信号発生部104は、蓄電装置1012の電力供給部1020から供給される電力によって動作する。 As a result, the supply unit 94 of the transmission unit 92 and the measurement-side communication unit 96 operate with power supplied from the power supply unit 1020 of the power storage device 1012 . Voltage measurement section 100 , current measurement section 102 , and signal generation section 104 of measurement section 90 operate with power supplied from power supply section 1020 of power storage device 1012 .
 そして、蓄電装置1012から計測装置1014への電力の供給は、車両12の充電口14(図1参照)に設けられた蓄電装置1012の被接続端子部1030を介して行われる。 Electric power is supplied from the power storage device 1012 to the measuring device 1014 via a connected terminal portion 1030 of the power storage device 1012 provided in the charging port 14 (see FIG. 1) of the vehicle 12 .
 なお、第一実施形態の第一変形例では、計測装置1014が車両12に設けられた充電口14から電力の供給を受ける場合について説明したが、第一実施形態の第一変形例は、これに限定されるものではない。計測装置1014は、例えば、車両12に設けられた検査用電源供給用の検査用端子から電力の供給を受けてもよい。 In addition, in the first modification of the first embodiment, the case where the measurement device 1014 receives power from the charging port 14 provided in the vehicle 12 has been described. is not limited to The measuring device 1014 may be supplied with power from, for example, an inspection terminal for supplying power for inspection provided on the vehicle 12 .
 (作用及び効果)
 第一実施形態の第一変形例においても、第一実施形態と同一又は同等部分に関しては、第一実施形態と同様の作用効果を奏することができる。
(Action and effect)
Also in the first modified example of the first embodiment, the same effects as those of the first embodiment can be obtained with respect to the same or equivalent portions as those of the first embodiment.
 また、第一実施形態の第一変形例における計測システム1000において、計測装置1014は、蓄電装置1012から供給される電力によって動作する。 Also, in the measurement system 1000 according to the first modified example of the first embodiment, the measurement device 1014 operates with power supplied from the power storage device 1012 .
 この構成において、計測装置1014は、当該計測装置1014を商用電源に接続したり、計測装置1014に電源供給用のバッテリを搭載したりすることなく、測定を行うことが可能となる。 With this configuration, the measuring device 1014 can perform measurement without connecting the measuring device 1014 to a commercial power supply or mounting a battery for power supply on the measuring device 1014 .
 また、第一実施形態の第一変形例における計測システム1000において、蓄電装置1012から計測装置1014への電力の供給は、蓄電装置1012に設けられた被接続端子部1030を介して行われる。 Also, in the measurement system 1000 according to the first modification of the first embodiment, power is supplied from the power storage device 1012 to the measurement device 1014 via the connected terminal section 1030 provided in the power storage device 1012 .
 この構成において、計測装置1014の電力を車両12のACC電源(アクセサリ電源)から取得する場合と比較して、車両12のイグニッションノブを操作することなく、電力の供給を受けることが可能となる。 In this configuration, power can be supplied without operating the ignition knob of the vehicle 12, compared to the case where the power of the measuring device 1014 is obtained from the ACC power supply (accessory power supply) of the vehicle 12.
 また、第一実施形態の第一変形例における計測システム1000において、被接続端子部1030は、車両12に設けられた充電口14に設けられている。 Further, in the measurement system 1000 according to the first modified example of the first embodiment, the connected terminal portion 1030 is provided in the charging port 14 provided in the vehicle 12 .
 この構成において、計測装置1014を充電口14に設けられた被接続端子部1030を介して蓄電装置1012に接続するだけで、計測装置1014への電力の供給と測定部90による測定とが可能となる。これにより、計測システム1000は、計測装置1014と蓄電装置1012との接続が一か所で済むので、利便性が向上する。 In this configuration, only by connecting the measuring device 1014 to the power storage device 1012 via the connected terminal portion 1030 provided in the charging port 14, power can be supplied to the measuring device 1014 and measurement can be performed by the measuring unit 90. Become. As a result, the measurement system 1000 requires only one connection between the measurement device 1014 and the power storage device 1012, thereby improving convenience.
 <第一実施形態の第二変形例>
 図4は、第一実施形態の第二変形例に係る計測システム1100を示す説明図である。
<Second Modification of First Embodiment>
FIG. 4 is an explanatory diagram showing a measurement system 1100 according to a second modification of the first embodiment.
 第一実施形態の第二変形例に係る計測システム1100は、第一実施形態の第一変形例と比較して、計測装置1014と蓄電装置1012とを接続する接続部84が異なる。計測システム1100について、第一実施形態の第一変形例と同一又は同等部分については同符号を付して説明を割愛し、異なる部分についてのみ説明する。 A measuring system 1100 according to the second modified example of the first embodiment differs from the first modified example of the first embodiment in the connecting section 84 that connects the measuring device 1014 and the power storage device 1012 . Regarding the measurement system 1100, the same or equivalent parts as those of the first modified example of the first embodiment are denoted by the same reference numerals, and the explanation thereof is omitted, and only the different parts are explained.
 計測装置1014には、ケーブル82を介して接続部84が接続されている。また、計測装置1014には、サブケーブル82-1を介してサブ接続部84-1が接続されている。 A connecting section 84 is connected to the measuring device 1014 via a cable 82 . A sub-connecting portion 84-1 is connected to the measuring device 1014 via a sub-cable 82-1.
 サブ接続部84-1には、前述した正極供給用雌端子1040及び負極供給用雌端子1042が設けられている。サブケーブル82-1は、正極供給用雌端子1040に接続された正極供給ライン1044と、負極供給用雌端子1042に接続された負極供給ライン1046とで構成されている。 The sub-connecting portion 84-1 is provided with the positive electrode supply female terminal 1040 and the negative electrode supply female terminal 1042 described above. The sub-cable 82-1 is composed of a positive electrode supply line 1044 connected to the positive electrode supply female terminal 1040 and a negative electrode supply line 1046 connected to the negative electrode supply female terminal 1042. As shown in FIG.
 (作用及び効果)
 第一実施形態の第二変形例においても、第一実施形態の第一変形例と同一又は同等部分に関しては、第一実施形態の第一変形例と同様の作用効果を奏することができる。
(Action and effect)
Also in the second modified example of the first embodiment, the same or equivalent parts as in the first modified example of the first embodiment can achieve the same effects as those of the first modified example of the first embodiment.
 また、第一実施形態の第二変形例における計測システム1100においては、計測装置1014が電力の供給を受ける為のサブ接続部84-1が接続部84から独立して設けられている。このため、計測システム1100は、サブ接続部84-1の接続先と接続部84の接続先とが離れている場合であっても、計測装置1014の電力の供給が可能となる。 Also, in the measurement system 1100 according to the second modification of the first embodiment, a sub-connection section 84-1 for receiving power supply to the measurement device 1014 is provided independently of the connection section 84. Therefore, the measurement system 1100 can supply power to the measurement device 1014 even when the connection destination of the sub-connection section 84-1 and the connection destination of the connection section 84 are separated from each other.
 <第二実施形態>
 図5は、第二実施形態に係る計測システム200を示す説明図である。
<Second embodiment>
FIG. 5 is an explanatory diagram showing the measurement system 200 according to the second embodiment.
 第二実施形態に係る計測システム200は、第一実施形態と比較して計測装置24の伝送部92及び蓄電装置22の被伝送部60が異なる。第二実施形態に係る計測システム200について、第一実施形態と同一又は同等部分については、同符号を付して説明を割愛し、異なる部分についてのみ説明する。 The measurement system 200 according to the second embodiment differs from the first embodiment in the transmitting section 92 of the measuring device 24 and the transmitted section 60 of the power storage device 22 . About the measuring system 200 which concerns on 2nd embodiment, the same code|symbol is attached|subjected and description is omitted about the same or equivalent part as 1st embodiment, and only a different part is demonstrated.
 すなわち、計測装置24の伝送部92は、第一実施形態の計測側通信部96が廃止され、供給部94のみで構成される。また、蓄電装置22の被伝送部60は、第一実施形態の蓄電側通信部70が廃止され、受給部62のみで構成される。 That is, the transmission unit 92 of the measurement device 24 is configured only with the supply unit 94 without the measurement-side communication unit 96 of the first embodiment. Further, the power storage side communication unit 70 of the first embodiment is abolished, and the transmission receiving unit 60 of the power storage device 22 is configured only with the power receiving unit 62 .
 計測装置24の接続部84が蓄電装置22に接続されると、供給部94から出力された電圧信号が蓄電装置22の受給部62へ供給される。すると、受給部62は、計測装置24から供給された電圧信号を断続部48に供給して断続部48のスイッチ回路50をオンにする。これにより、負極被接続部44と蓄電デバイス20の負極とが通電状態となる。 When the connecting portion 84 of the measuring device 24 is connected to the power storage device 22 , the voltage signal output from the supply portion 94 is supplied to the power receiving portion 62 of the power storage device 22 . Then, the receiving section 62 supplies the voltage signal supplied from the measuring device 24 to the intermittent section 48 to turn on the switch circuit 50 of the intermittent section 48 . As a result, the negative electrode connected portion 44 and the negative electrode of the electricity storage device 20 are brought into an energized state.
 一方、計測装置24の接続部84を蓄電装置22から離脱すると、蓄電装置22の受給部62に供給された電圧信号が遮断される。すると、断続部48に供給された電圧信号も遮断され、スイッチ回路50がオフとなる。これにより、負極被接続部44と蓄電デバイス20の正極とが非通電状態となる。 On the other hand, when the connecting portion 84 of the measuring device 24 is disconnected from the power storage device 22, the voltage signal supplied to the power receiving portion 62 of the power storage device 22 is cut off. Then, the voltage signal supplied to the intermittent section 48 is also interrupted, and the switch circuit 50 is turned off. As a result, the negative electrode connected portion 44 and the positive electrode of the electricity storage device 20 are in a non-energized state.
 (作用及び効果)
 次に、第二実施形態による作用効果について説明する。
(Action and effect)
Next, the effects of the second embodiment will be described.
 第二実施形態においても、第一実施形態と同一又は同等部分に関しては、第一実施形態と同様の作用効果を奏することができる。 Also in the second embodiment, the same effects as in the first embodiment can be obtained with respect to the same or equivalent parts as in the first embodiment.
 また、第二実施形態おける計測システム200において、被伝送部60は、信号を受給して断続部48を制御する受給部62を含む。 In addition, in the measurement system 200 according to the second embodiment, the transmitted section 60 includes a receiving section 62 that receives a signal and controls the intermittent section 48 .
 この構成によれば、蓄電装置22において、断続部48を作動するための電源等を確保できない場合であっても、供給部94が供給する信号を利用して断続部48を作動することが可能となる。 According to this configuration, even if the power storage device 22 cannot secure a power source or the like for operating the intermittent portion 48, the intermittent portion 48 can be operated using the signal supplied by the supply portion 94. becomes.
 また、供給部94からの信号で断続部48を制御するので、計測装置24からコマンド等を蓄電装置22に送ることなく、断続部48を作動することができる。これにより、コマンドを送るための通信部が不要となるので、構成の簡素化を図ることができる。 Also, since the intermittent portion 48 is controlled by the signal from the supply portion 94 , the intermittent portion 48 can be operated without sending a command or the like from the measuring device 24 to the power storage device 22 . Since this eliminates the need for a communication unit for sending commands, the configuration can be simplified.
 <第三実施形態>
 図6は、第三実施形態に係る計測システム300を示す説明図である。
<Third embodiment>
FIG. 6 is an explanatory diagram showing the measurement system 300 according to the third embodiment.
 第三実施形態に係る計測システム300は、第一実施形態と比較して計測装置24の伝送部92及び蓄電装置22の被伝送部60が異なる。第三実施形態に係る計測システム300について、第一実施形態と同一又は同等部分については、同符号を付して説明を割愛し、異なる部分についてのみ説明する。 The measurement system 300 according to the third embodiment differs from the first embodiment in the transmitting section 92 of the measuring device 24 and the transmitted section 60 of the power storage device 22 . About the measurement system 300 which concerns on 3rd embodiment, the same code|symbol is attached|subjected and description is omitted about the same or equivalent part as 1st embodiment, and only a different part is demonstrated.
 すなわち、計測装置24の伝送部92は、第一実施形態の供給部94が廃止され、計測側通信部96のみで構成される。また、蓄電装置22の被伝送部60は、第一実施形態の受給部62が廃止され、蓄電側通信部70のみで構成される。 That is, the transmission unit 92 of the measurement device 24 is configured only with the measurement side communication unit 96 without the supply unit 94 of the first embodiment. Further, the receiving unit 62 of the first embodiment is abolished, and the receiving unit 60 of the power storage device 22 is configured only by the power storage side communication unit 70 .
 計測装置24の計測側通信部96から断続部48を制御して通電状態を形成するための信号である通電コマンドが蓄電装置22の蓄電側通信部70に送られた場合、蓄電側通信部70は、断続部48を制御して通電状態を形成する。 When an energization command, which is a signal for forming an energized state by controlling the intermittent unit 48 from the measurement-side communication unit 96 of the measurement device 24 , is sent to the power storage-side communication unit 70 of the power storage device 22 , the power storage-side communication unit 70 controls the intermittent portion 48 to form an energized state.
 このとき、断続部48を制御するための電力は、蓄電装置22の蓄電デバイス20から得たり、車両12の電装品を作動する車載バッテリから得たりする。 At this time, the power for controlling the intermittent unit 48 is obtained from the power storage device 20 of the power storage device 22 or from the vehicle-mounted battery that operates the electrical components of the vehicle 12 .
 一方、計測装置24の計測側通信部96から断続部48を制御して非通電状態を形成するための信号である非通電コマンドが蓄電装置22の蓄電側通信部70に送られた場合、蓄電側通信部70は、断続部48を制御して非通電状態を形成する。 On the other hand, when a non-energization command, which is a signal for controlling the intermittence unit 48 to form a non-energized state, is sent from the measurement side communication unit 96 of the measurement device 24 to the power storage side communication unit 70 of the power storage device 22, The side communication unit 70 controls the intermittent unit 48 to form a non-energized state.
 (作用及び効果)
 次に、第三実施形態による作用効果について説明する。
(Action and effect)
Next, functions and effects of the third embodiment will be described.
 第三実施形態においても、第一実施形態と同一又は同等部分に関しては、第一実施形態と同様の作用効果を奏することができる。 Also in the third embodiment, the same or equivalent parts as in the first embodiment can achieve the same effects as in the first embodiment.
 また、第三実施形態おける計測システム300において、伝送部92は、断続部48を制御して通電状態を形成するための信号を出力する計測側通信部96を含む。被伝送部60は、計測側通信部96と通信して信号を入力し、信号に従って断続部48を制御する蓄電側通信部70を含む。 Also, in the measurement system 300 of the third embodiment, the transmission section 92 includes a measurement side communication section 96 that outputs a signal for controlling the intermittent section 48 to form an energized state. The transmission target section 60 includes an electricity storage side communication section 70 that communicates with the measurement side communication section 96 to input a signal and controls the intermittent section 48 according to the signal.
 この構成によれば、蓄電装置22の断続部48の状態を計測装置24から制御することが可能となる。これにより、測定タイミングに応じて、計測装置24と蓄電装置22の蓄電デバイス20との通電状態を制御することが可能となる。 With this configuration, it is possible to control the state of the intermittent portion 48 of the power storage device 22 from the measuring device 24 . This makes it possible to control the energization state between the measuring device 24 and the power storage device 20 of the power storage device 22 according to the measurement timing.
 また、計測装置24が供給部94を備えるとともに蓄電装置22が受給部62を備える場合と比較して、構成の簡素化を図ることができる。 In addition, compared to the case where the measuring device 24 includes the supply unit 94 and the power storage device 22 includes the receiving unit 62, the configuration can be simplified.
 <第四実施形態>
 図7は、第四実施形態に係る計測システム400を示す説明図である。
<Fourth embodiment>
FIG. 7 is an explanatory diagram showing a measurement system 400 according to the fourth embodiment.
 第四実施形態に係る計測システム400は、第一実施形態と比較して、計測装置24の接続部84と蓄電装置22の各被接続部402、404との接続構造が異なる。第四実施形態に係る計測システム400について、第一実施形態と同一又は同等部分については、同符号を付して説明を割愛し、異なる部分についてのみ説明する。 A measurement system 400 according to the fourth embodiment differs from the first embodiment in the connection structure between the connection portion 84 of the measurement device 24 and the connected portions 402 and 404 of the power storage device 22 . About the measurement system 400 which concerns on 4th embodiment, the same code|symbol is attached|subjected and description is omitted about the same or equivalent part as 1st embodiment, and only a different part is demonstrated.
 すなわち、蓄電装置22の正極被接続部402及び負極被接続部404は、有底筒状に形成されている。 That is, the positive electrode connected portion 402 and the negative electrode connected portion 404 of the power storage device 22 are formed in a cylindrical shape with a bottom.
 計測装置24の接続部84は、蓄電装置22の正極被接続部402に挿入される正極端子部410と、蓄電装置22の負極被接続部404に挿入される負極端子部412とを備える。正極端子部410及び負極端子部412は、円柱体で構成される。正極端子部410及び負極端子部412は、接続部84から突出する。 The connection part 84 of the measuring device 24 includes a positive terminal part 410 inserted into the positive connected part 402 of the power storage device 22 and a negative terminal part 412 inserted into the negative connected part 404 of the power storage device 22 . The positive electrode terminal portion 410 and the negative electrode terminal portion 412 are configured as cylindrical bodies. The positive terminal portion 410 and the negative terminal portion 412 protrude from the connecting portion 84 .
 計測装置24の電流測定部102に正極電流ライン122を介して接続された正極電流検出部420は、先細りしたピン形状である。正極電流検出部420の先端は、一例として、円柱状に形成された正極端子部410の端面に接する。 The positive electrode current detection unit 420 connected to the current measurement unit 102 of the measuring device 24 via the positive electrode current line 122 has a tapered pin shape. As an example, the tip of the positive electrode current detection portion 420 is in contact with the end surface of the positive electrode terminal portion 410 formed in a cylindrical shape.
 計測装置24の電流測定部102に負極電流ライン142を介して接続された負極電流検出部422は、先細りしたピン形状である。負極電流検出部422の先端は、一例として、円柱状に形成された負極端子部412の端面に接する。 The negative electrode current detection unit 422 connected to the current measurement unit 102 of the measuring device 24 via the negative electrode current line 142 has a tapered pin shape. As an example, the tip of the negative electrode current detection portion 422 is in contact with the end face of the negative electrode terminal portion 412 formed in a cylindrical shape.
 計測装置24の電圧測定部100に正極電圧ライン116を介して接続された正極電圧検出部424は、先細りしたピン形状である。正極電圧検出部424の先端は、正極端子部410の端面に接する。 The positive electrode voltage detection unit 424 connected to the voltage measurement unit 100 of the measuring device 24 via the positive electrode voltage line 116 has a tapered pin shape. The tip of the positive electrode voltage detection portion 424 contacts the end surface of the positive electrode terminal portion 410 .
 計測装置24の電圧測定部100に負極電圧ライン132を介して接続された負極電圧検出部426は、先細りしたピン形状である。負極電圧検出部426の先端は、負極端子部412の端面に接する。 The negative voltage detection unit 426 connected to the voltage measurement unit 100 of the measuring device 24 via the negative voltage line 132 has a tapered pin shape. The tip of the negative electrode voltage detection portion 426 contacts the end surface of the negative electrode terminal portion 412 .
 正極電圧検出部424が正極端子部410に電気的に接続される接続位置と、正極電流検出部420が正極端子部410に電気的に接続される接続位置とは、異なる箇所に配設されている。 The connection position where the positive electrode voltage detection unit 424 is electrically connected to the positive electrode terminal unit 410 and the connection position where the positive electrode current detection unit 420 is electrically connected to the positive electrode terminal unit 410 are arranged at different locations. there is
 負極電圧検出部426が負極端子部412に電気的に接続される接続位置と、負極電流検出部422が負極端子部412に電気的に接続される接続位置とは、異なる箇所に配設されている。 The connection position where the negative electrode voltage detection unit 426 is electrically connected to the negative electrode terminal unit 412 and the connection position where the negative electrode current detection unit 422 is electrically connected to the negative electrode terminal unit 412 are arranged at different locations. there is
 各検出部420、424、422、426を各端子部410、412に接続する方法としては、各検出部420、424、422、426をバネで付勢して各端子部410、412に接続する方法が挙げられる。また、各検出部420、424、422、426を、ハンダ付け又は溶接によって各端子部410、412に接続する方法が挙げられる。 As a method of connecting the detection units 420, 424, 422, 426 to the terminals 410, 412, the detection units 420, 424, 422, 426 are biased by springs and connected to the terminals 410, 412. method. Also, there is a method of connecting each detection part 420, 424, 422, 426 to each terminal part 410, 412 by soldering or welding.
 また、蓄電装置22の受給部62は、金属製の第一受給雌端子430と第二受給雌端子432とを有する。各受給雌端子430、432は、有底筒状に形成されている。 In addition, the power supply device 22 has a first power supply female terminal 430 and a second power supply female terminal 432 made of metal. Each receiving female terminal 430, 432 is formed in a cylindrical shape with a bottom.
 計測装置24の接続部84は、ハーネス152を介して供給部94に接続された第一受給雄端子部440と、ハーネス156を介して供給部94に接続された第二受給雄端子部442とを備える。 The connecting portion 84 of the measuring device 24 includes a first receiving male terminal portion 440 connected to the supplying portion 94 via the harness 152, and a second receiving male terminal portion 442 connected to the supplying portion 94 via the harness 156. Prepare.
 第一受給雄端子部440は、接続部84から突出した円柱体で構成される。第一受給雄端子部440は、第一受給雌端子430に挿入可能である。 The first receiving male terminal portion 440 is composed of a cylindrical body projecting from the connecting portion 84 . The first receiving male terminal portion 440 can be inserted into the first receiving female terminal 430 .
 第二受給雄端子部442は、接続部84から突出した円柱体で構成される。第二受給雄端子部442は、第二受給雌端子432に挿入可能である。 The second receiving male terminal portion 442 is composed of a cylindrical body projecting from the connecting portion 84 . The second receiving male terminal portion 442 can be inserted into the second receiving female terminal 432 .
 さらに、蓄電装置22の蓄電側通信部70は、金属製の第一通信雌端子450と金属製の第二通信雌端子452とを有する。各通信雌端子450、452は、有底筒状に形成されている。 Furthermore, the power storage side communication unit 70 of the power storage device 22 has a metal first communication female terminal 450 and a metal second communication female terminal 452 . Each communication female terminal 450, 452 is formed in a cylindrical shape with a bottom.
 計測装置24の接続部84は、ハーネス162を介して計測側通信部96に接続された第一通信雄端子部460と、ハーネス166を介して計測側通信部96に接続された第二通信雄端子部462とを備える。 The connection portion 84 of the measuring device 24 includes a first communication male terminal portion 460 connected to the measurement side communication portion 96 via the harness 162 and a second communication male terminal portion 460 connected to the measurement side communication portion 96 via the harness 166. and a terminal portion 462 .
 第一通信雄端子部460は、接続部84から突出した円柱体で構成される。第一通信雄端子部460は、第一通信雌端子450に挿入可能である。 The first communication male terminal portion 460 is composed of a cylindrical body projecting from the connection portion 84 . The first communication male terminal portion 460 is insertable into the first communication female terminal 450 .
 第二通信雄端子部462は、接続部84から突出した円柱体で構成される。第二通信雄端子部462は、第二通信雌端子452に挿入可能である。 The second communication male terminal portion 462 is composed of a cylindrical body projecting from the connection portion 84 . The second communication male terminal portion 462 can be inserted into the second communication female terminal 452 .
 (作用及び効果)
 次に、第四実施形態による作用効果について説明する。
(Action and effect)
Next, functions and effects of the fourth embodiment will be described.
 第四実施形態においても、第一実施形態と同一又は同等部分に関しては、第一実施形態と同様の作用効果を奏することができる。 Also in the fourth embodiment, the same or equivalent parts as in the first embodiment can achieve the same effects as in the first embodiment.
 第四実施形態において、電圧測定部100は、各端子部410、412に接する各電圧検出部424、426を介して各被接続部402、404に電気的に接続される。電流測定部102は、各端子部410、412に接する各電流検出部420、422を介して、各被接続部402、404に電気的に接続される。 In the fourth embodiment, the voltage measuring section 100 is electrically connected to the connected sections 402 and 404 via the voltage detecting sections 424 and 426 in contact with the terminal sections 410 and 412, respectively. The current measuring section 102 is electrically connected to the connected sections 402 and 404 via the current detecting sections 420 and 422 which are in contact with the terminal sections 410 and 412, respectively.
 具体的に説明すると、第四実施形態において、計測装置24は、各被接続部402、404に接続される各端子部410、412を有する。測定部90は、蓄電デバイス20の電圧を測定する電圧測定部100と、蓄電デバイス20に流れる電流を測定する電流測定部102とを有する。電圧測定部100は、各端子部410、412を介して、各被接続部402、404に電気的に接続され、電流測定部102は、各端子部410、412を介して、各被接続部402、404に電気的に接続される。電圧測定部100が各端子部410、412に電気的に接続される接続位置と、電流測定部102が各端子部410、412に電気的に接続される接続位置とは、異なる箇所に配設されている。 Specifically, in the fourth embodiment, the measuring device 24 has terminal portions 410 and 412 connected to the connected portions 402 and 404, respectively. Measuring section 90 has a voltage measuring section 100 that measures the voltage of power storage device 20 and a current measuring section 102 that measures the current flowing through power storage device 20 . The voltage measuring section 100 is electrically connected to the connected sections 402 and 404 through the terminal sections 410 and 412, and the current measuring section 102 is connected to the connected sections through the terminal sections 410 and 412. 402 and 404 are electrically connected. The connection position where the voltage measurement section 100 is electrically connected to the terminal sections 410 and 412 and the connection position where the current measurement section 102 is electrically connected to the terminal sections 410 and 412 are arranged at different locations. It is
 この構成によれば、計測装置24の電圧測定部100は、各端子部410、412に接する各電圧検出部424、426を介して、蓄電装置22の各被接続部402、404に電気的に接続される。また、電流測定部102は、各端子部410、412に接する各電流検出部420、422を介して、蓄電装置22の各被接続部402、404に電気的に接続される。 According to this configuration, the voltage measuring section 100 of the measuring device 24 is electrically connected to the connected sections 402 and 404 of the power storage device 22 via the voltage detecting sections 424 and 426 in contact with the terminal sections 410 and 412. Connected. In addition, current measuring section 102 is electrically connected to connected sections 402 and 404 of power storage device 22 via current detecting sections 420 and 422 in contact with terminal sections 410 and 412 , respectively.
 このため、蓄電装置22の各被接続部402、404が凹状である場合には、各端子部410、412を接続部84から突出させることによって、蓄電装置22の計測が可能となる。 Therefore, when the connected portions 402 and 404 of the power storage device 22 are concave, the power storage device 22 can be measured by protruding the terminal portions 410 and 412 from the connection portion 84 .
 また、電圧測定部100が各被接続部402、404に電気的に接続される接続位置と、電流測定部102が各被接続部402、404に電気的に接続される接続位置とを、各端子部410、412への接触位置で調整することができる。 Further, the connection position where the voltage measuring section 100 is electrically connected to the connected sections 402 and 404 and the connection position where the current measuring section 102 is electrically connected to the connected sections 402 and 404 are each The position of contact with the terminal portions 410 and 412 can be adjusted.
 <第五実施形態>
 図8は、第五実施形態に係る計測システムで使用される端子500を示す説明図である。図8には、端子500を側部から見た状態510と、先端側から見た状態512とが示されている。
<Fifth Embodiment>
FIG. 8 is an explanatory diagram showing a terminal 500 used in the measurement system according to the fifth embodiment. FIG. 8 shows a state 510 of the terminal 500 viewed from the side, and a state 512 of the terminal 500 viewed from the tip side.
 この端子500は、第四実施形態の正極端子部410及び負極端子部412を構成する。 This terminal 500 constitutes the positive electrode terminal portion 410 and the negative electrode terminal portion 412 of the fourth embodiment.
 第五実施形態に係る計測システムの端子500は、第四実施形態の正極端子部410及び負極端子部412と比較して、断面構造が異なる。第五実施形態に係る計測システムの端子500について、第四実施形態と同一又は同等部分については、同符号を付して説明を割愛し、異なる部分についてのみ説明する。 The terminal 500 of the measurement system according to the fifth embodiment has a cross-sectional structure different from that of the positive electrode terminal portion 410 and the negative electrode terminal portion 412 of the fourth embodiment. Regarding the terminal 500 of the measurement system according to the fifth embodiment, the same or equivalent parts as those of the fourth embodiment are denoted by the same reference numerals, the explanation thereof is omitted, and only the different parts are explained.
 この端子500の中央部には、長さ方向に延在する板状部材520が設けられている。板状部材520の一側面には、電圧用導通部522が設けられている。板状部材520の他側面には、電流用導通部524が設けられている。 A plate-shaped member 520 extending in the length direction is provided in the central portion of the terminal 500 . A voltage conducting portion 522 is provided on one side surface of the plate member 520 . A current conducting portion 524 is provided on the other side surface of the plate member 520 .
 各導通部522、524は、外面が曲面で構成され、板状部材520及び各導通部522、524で構成された端子500は、円柱状に形成されている。 Each of the conducting portions 522 and 524 has a curved outer surface, and the terminal 500 constituted by the plate member 520 and the conducting portions 522 and 524 is formed in a cylindrical shape.
 板状部材520は、絶縁体で構成され、各導通部522、524は導体で構成される。各導通部522、524は、当該端子500が正極被接続部402又は負極被接続部404に挿入された状態で、正極被接続部402又は負極被接続部404の内周面の離れた箇所にそれぞれ位置する。 The plate-like member 520 is made of an insulator, and each conducting portion 522, 524 is made of a conductor. The conductive portions 522 and 524 are separated from each other on the inner peripheral surface of the positive electrode connected portion 402 or the negative electrode connected portion 404 while the terminal 500 is inserted into the positive electrode connected portion 402 or the negative electrode connected portion 404 . located respectively.
 電圧用導通部522の端面には、正極電圧検出部424又は負極電圧検出部426が接続される。電流用導通部524の端面には、正極電流検出部420又は負極電流検出部422が接続される。 A positive electrode voltage detection unit 424 or a negative electrode voltage detection unit 426 is connected to the end surface of the voltage conduction unit 522 . The positive electrode current detection unit 420 or the negative electrode current detection unit 422 is connected to the end surface of the current conduction unit 524 .
 (作用及び効果)
 次に、第五実施形態による作用効果について説明する。
(Action and effect)
Next, the effects of the fifth embodiment will be described.
 第五実施形態においても、第四実施形態と同一又は同等部分に関しては、第四実施形態と同様の作用効果を奏することができる。 Also in the fifth embodiment, the same or equivalent parts as in the fourth embodiment can achieve the same effects as the fourth embodiment.
 <第六実施形態>
 図9は、第六実施形態に係る計測システムで使用される端子600を示す説明図である。図9には、端子600を基端側から見た状態610と、側部から見た状態612と、先端側から見た状態614とが示されている。
<Sixth embodiment>
FIG. 9 is an explanatory diagram showing a terminal 600 used in the measurement system according to the sixth embodiment. FIG. 9 shows terminal 600 in proximal 610, side 612, and distal 614 views.
 この端子600は、第四実施形態の正極端子部410及び負極端子部412を構成する。 This terminal 600 constitutes the positive electrode terminal portion 410 and the negative electrode terminal portion 412 of the fourth embodiment.
 第六実施形態に係る計測システムの端子600は、第四実施形態の正極端子部410及び負極端子部412と比較して、構造が異なる。第六実施形態に係る計測システムの端子600について、第四実施形態同一又は同等部分については、同符号を付して説明を割愛し、異なる部分についてのみ説明する。 The terminal 600 of the measurement system according to the sixth embodiment differs in structure from the positive electrode terminal portion 410 and the negative electrode terminal portion 412 of the fourth embodiment. Regarding the terminal 600 of the measurement system according to the sixth embodiment, the same or equivalent parts as those of the fourth embodiment are denoted by the same reference numerals and explanations thereof are omitted, and only different parts are explained.
 この端子600の中心部には、円柱状の電圧検出用導通部620が設けられている。電圧検出用導通部620の先端部には、電圧導通部622が形成されている。電圧検出用導通部620と電圧導通部622とは電気的に接続されている。 At the center of the terminal 600, a columnar conducting portion 620 for voltage detection is provided. A voltage conduction portion 622 is formed at the tip of the voltage detection conduction portion 620 . Voltage detection conducting portion 620 and voltage conducting portion 622 are electrically connected.
 電圧検出用導通部620の外周部には、円筒状の筒部624が設けられている。 A cylindrical tubular portion 624 is provided on the outer peripheral portion of the voltage detection conductive portion 620 .
 筒部624の外周部には、円筒状の電流用導通部626が設けられている。当該端子600の長さ方向における電流用導通部626の長さは、電圧導通部622の長さと略同寸法に設定されている。 A cylindrical current-conducting portion 626 is provided on the outer peripheral portion of the tubular portion 624 . The length of the current conduction portion 626 in the length direction of the terminal 600 is set to be approximately the same as the length of the voltage conduction portion 622 .
 電流用導通部626と電圧検出用導通部620及び電圧導通部622との間には、絶縁部628が設けられている。絶縁部628は、筒部624に一体形成されている。 An insulating portion 628 is provided between the current conducting portion 626 and the voltage detecting conducting portion 620 and voltage conducting portion 622 . The insulating portion 628 is integrally formed with the tubular portion 624 .
 電圧検出用導通部620、電圧導通部622、及び電流用導通部626は、導体で構成されている。筒部624及び絶縁部628は、絶縁体で構成されている。 The voltage detection conducting portion 620, the voltage conducting portion 622, and the current conducting portion 626 are made of conductors. The tubular portion 624 and the insulating portion 628 are made of an insulating material.
 電圧導通部622及び電流用導通部626は、当該端子600が正極被接続部402又は負極被接続部404に挿入された状態で、正極被接続部402又は負極被接続部404の内周面と接する。 The voltage conducting portion 622 and the current conducting portion 626 are in contact with the inner peripheral surface of the positive electrode connected portion 402 or the negative electrode connected portion 404 when the terminal 600 is inserted into the positive electrode connected portion 402 or the negative electrode connected portion 404 . touch.
 電圧検出用導通部620の端面には、正極電圧検出部424又は負極電圧検出部426が接続される。電流用導通部626の端面には、正極電流検出部420又は負極電流検出部422が接続される。 A positive electrode voltage detection unit 424 or a negative electrode voltage detection unit 426 is connected to the end surface of the voltage detection conduction unit 620 . The positive electrode current detection unit 420 or the negative electrode current detection unit 422 is connected to the end surface of the current conduction unit 626 .
 (作用及び効果)
 次に、第六実施形態による作用効果について説明する。
(Action and effect)
Next, functions and effects of the sixth embodiment will be described.
 第六実施形態においても、第四実施形態と同一又は同等部分に関しては、第四実施形態と同様の作用効果を奏することができる。 Also in the sixth embodiment, the same or equivalent parts as in the fourth embodiment can achieve the same effects as in the fourth embodiment.
 また、第六実施形態では、電圧検出用導通部620と電気的に接続されている電圧導通部622が正極被接続部402又は負極被接続部404に接続される接続位置は、電流用導通部626が正極被接続部402又は負極被接続部404に接続される接続位置よりも蓄電デバイス20に近い。 Further, in the sixth embodiment, the connection position where the voltage conducting portion 622 electrically connected to the voltage detecting conducting portion 620 is connected to the positive electrode connecting portion 402 or the negative electrode connecting portion 404 is the current conducting portion 626 is closer to the power storage device 20 than the connection position where 626 is connected to the positive electrode connected portion 402 or the negative electrode connected portion 404 .
 このため、電流測定部102に流れる電流が電圧測定部100で測定される電圧に与える影響の抑制が可能となる。 Therefore, it is possible to suppress the influence of the current flowing through the current measuring section 102 on the voltage measured by the voltage measuring section 100 .
 <第七実施形態>
 図10は、第七実施形態に係る計測システムで使用される端子700を示す説明図である。図10には、端子700を基端側から見た状態710と、側部から見た状態712と、先端側から見た状態714とが示されている。
<Seventh embodiment>
FIG. 10 is an explanatory diagram showing terminals 700 used in the measurement system according to the seventh embodiment. FIG. 10 shows terminal 700 in proximal view 710, side view 712, and distal view 714. FIG.
 この端子700は、第四実施形態の正極端子部410及び負極端子部412を構成する。 This terminal 700 constitutes the positive electrode terminal portion 410 and the negative electrode terminal portion 412 of the fourth embodiment.
 第七実施形態に係る計測システムの端子700は、第六実施形態の端子600と比較して、電圧導通部622及び電流用導通部626が異なる。第七実施形態に係る計測システムの端子700について、第六実施形態と同一又は同等部分については、同符号を付して説明を割愛し、異なる部分についてのみ説明する。 The terminal 700 of the measurement system according to the seventh embodiment differs from the terminal 600 of the sixth embodiment in the voltage conducting portion 622 and current conducting portion 626 . Regarding the terminal 700 of the measurement system according to the seventh embodiment, the same or equivalent parts as those of the sixth embodiment are denoted by the same reference numerals, the explanation thereof is omitted, and only the different parts are explained.
 この端子700は、当該端子700の長さ方向における電流用導通部626の長さが、電圧検出用導通部620と電気的に接続されている電圧導通部622の長さよりも長い。 In this terminal 700 , the length of the current conduction portion 626 in the longitudinal direction of the terminal 700 is longer than the length of the voltage conduction portion 622 electrically connected to the voltage detection conduction portion 620 .
 (作用及び効果)
 次に、第七実施形態による作用効果について説明する。
(Action and effect)
Next, functions and effects of the seventh embodiment will be described.
 第七実施形態においても、第六実施形態と同一又は同等部分に関しては、第六実施形態と同様の作用効果を奏することができる。 Also in the seventh embodiment, the same or equivalent parts as in the sixth embodiment can achieve the same effects as in the sixth embodiment.
 また、第七実施形態では、電流用導通部626の長さが電圧検出用導通部620と電気的に接続されている電圧導通部622の長さよりも長い。 Also, in the seventh embodiment, the length of the current conductive portion 626 is longer than the length of the voltage conductive portion 622 electrically connected to the voltage detection conductive portion 620 .
 このため、電流用導通部626が正極被接続部402又は負極被接続部404に接する面積は、電圧検出用導通部620の電圧導通部622が正極被接続部402又は負極被接続部404に接する接触面積よりも広い。 Therefore, the area where the current conductive portion 626 contacts the positive electrode connected portion 402 or the negative electrode connected portion 404 is such that the voltage conduction portion 622 of the voltage detection conductive portion 620 contacts the positive electrode connected portion 402 or the negative electrode connected portion 404. larger than the contact area.
 このため、電流用導通部626における通電電流を大きくすることができる。 Therefore, it is possible to increase the energized current in the current conducting portion 626 .
 <第八実施形態>
 図11は、第八実施形態に係る計測システムで使用される端子800を示す説明図である。図11には、端子800を基端側から見た状態810と、断面を見た状態812と、先端側から見た状態814とが示されている。
<Eighth Embodiment>
FIG. 11 is an explanatory diagram showing a terminal 800 used in the measurement system according to the eighth embodiment. FIG. 11 shows the terminal 800 viewed from the proximal side 810 , in cross section 812 , and distally 814 .
 この端子800は、第四実施形態の正極端子部410及び負極端子部412を構成する。 This terminal 800 constitutes the positive electrode terminal portion 410 and the negative electrode terminal portion 412 of the fourth embodiment.
 第八実施形態に係る計測システムの端子800は、第四実施形態の正極端子部410及び負極端子部412と比較して、構造が異なる。第八実施形態に係る計測システムの端子800について、第四実施形態と同一又は同等部分については、同符号を付して説明を割愛し、異なる部分についてのみ説明する。 The terminal 800 of the measurement system according to the eighth embodiment differs in structure from the positive electrode terminal portion 410 and the negative electrode terminal portion 412 of the fourth embodiment. Regarding the terminal 800 of the measurement system according to the eighth embodiment, the same or equivalent parts as those of the fourth embodiment are denoted by the same reference numerals, the explanation thereof is omitted, and only the different parts are explained.
 この端子800の中心部には、円柱状の電圧検出用導通部820が設けられている。電圧検出用導通部820の外周部には、円筒状の絶縁部822が設けられている。絶縁部822の外周部には、円筒状の電流測定用導通部824が設けられている。 At the center of the terminal 800, a columnar voltage detection conducting portion 820 is provided. A cylindrical insulating portion 822 is provided on the outer peripheral portion of the voltage detection conductive portion 820 . A cylindrical conducting portion 824 for current measurement is provided on the outer peripheral portion of the insulating portion 822 .
 電圧検出用導通部820及び絶縁部822は、端子800の長さ方向における長さが、電流測定用導通部824よりも短い。これにより、端子800の先端部は、凹部830が形成されている。 The voltage detection conductive portion 820 and the insulating portion 822 are shorter than the current measurement conductive portion 824 in the longitudinal direction of the terminal 800 . As a result, a recess 830 is formed at the tip of the terminal 800 .
 凹部830には、接触ピン832が配置されている。接触ピン832は、一例として、コイルスプリング834を介して、電圧検出用導通部820の先端に支持されている。これにより、接触ピン832は、端子800から先端側へ突出するとともに、凹部830内へ後退可能である。 A contact pin 832 is arranged in the recess 830 . As an example, the contact pin 832 is supported at the tip of the voltage detection conducting portion 820 via a coil spring 834 . This allows the contact pin 832 to protrude from the terminal 800 toward the tip side and retract into the recess 830 .
 電圧検出用導通部820、コイルスプリング834、接触ピン832、及び電流測定用導通部824は、導体で構成されている。絶縁部822は、絶縁体で構成されている。 The voltage detection conductive portion 820, the coil spring 834, the contact pin 832, and the current measurement conductive portion 824 are made of conductors. The insulating portion 822 is made of an insulator.
 接触ピン832及び電流測定用導通部824は、当該端子800が正極被接続部402又は負極被接続部404に挿入された状態で、正極被接続部402又は負極被接続部404と接する。 The contact pin 832 and the current measuring conductive portion 824 contact the positive electrode connected portion 402 or the negative electrode connected portion 404 while the terminal 800 is inserted into the positive electrode connected portion 402 or the negative electrode connected portion 404 .
 電圧検出用導通部820の端面には、正極電圧検出部424又は負極電圧検出部426が接続される。電流用導通部724の端面には、正極電流検出部420又は負極電流検出部422が接続される。 The positive electrode voltage detection unit 424 or the negative electrode voltage detection unit 426 is connected to the end surface of the voltage detection conduction unit 820 . The positive electrode current detection unit 420 or the negative electrode current detection unit 422 is connected to the end surface of the current conduction unit 724 .
 (作用及び効果)
 次に、第八実施形態による作用効果について説明する。
(Action and effect)
Next, the effects of the eighth embodiment will be described.
 第八実施形態においても、第四実施形態と同一又は同等部分に関しては、第四実施形態と同様の作用効果を奏することができる。 Also in the eighth embodiment, the same or equivalent parts as in the fourth embodiment can achieve the same effects as the fourth embodiment.
 また、第八実施形態において、接触ピン832が正極被接続部402又は負極被接続部404に接続される接続位置は、電流測定用導通部824が正極被接続部402又は負極被接続部404に接続される接続位置よりも蓄電デバイス20に近い。 In the eighth embodiment, the connection position where the contact pin 832 is connected to the positive electrode connected portion 402 or the negative electrode connected portion 404 is such that the current measurement conductive portion 824 is connected to the positive electrode connected portion 402 or the negative electrode connected portion 404. It is closer to the power storage device 20 than the connection position where it is connected.
 このため、電流測定部102に流れる電流が電圧測定部100で測定される電圧に与える影響の抑制が可能となる。 Therefore, it is possible to suppress the influence of the current flowing through the current measuring section 102 on the voltage measured by the voltage measuring section 100 .
 <第九実施形態>
 図12は、第九実施形態に係る計測システム900を示す説明図である。
<Ninth embodiment>
FIG. 12 is an explanatory diagram showing a measuring system 900 according to the ninth embodiment.
 第九実施形態に係る計測システム900は、第四実施形態と比較して、各電圧検出部424、426及び各電流検出部420,422の接続位置が異なる。第九実施形態に係る計測システム900について、第四実施形態と同一又は同等部分については、同符号を付して説明を割愛し、異なる部分についてのみ説明する。 A measurement system 900 according to the ninth embodiment differs from the fourth embodiment in the connection positions of the voltage detectors 424 and 426 and the current detectors 420 and 422 . Regarding the measurement system 900 according to the ninth embodiment, the same or equivalent parts as those of the fourth embodiment are denoted by the same reference numerals, and the explanation thereof is omitted, and only the different parts are explained.
 すなわち、蓄電装置22の正極被接続部402及び負極被接続部404は、有底筒状に形成されている。 That is, the positive electrode connected portion 402 and the negative electrode connected portion 404 of the power storage device 22 are formed in a cylindrical shape with a bottom.
 計測装置24の接続部84は、蓄電装置22の正極被接続部402に挿入される正極端子部410と、蓄電装置22の負極被接続部404に挿入される負極端子部412とを備える。正極端子部410及び負極端子部412は、円柱体で構成される。正極端子部410及び負極端子部412は、接続部84から突出する。 The connection part 84 of the measuring device 24 includes a positive terminal part 410 inserted into the positive connected part 402 of the power storage device 22 and a negative terminal part 412 inserted into the negative connected part 404 of the power storage device 22 . The positive electrode terminal portion 410 and the negative electrode terminal portion 412 are configured as cylindrical bodies. The positive terminal portion 410 and the negative terminal portion 412 protrude from the connecting portion 84 .
 計測装置24の電流測定部102に接続された正極電流検出部420の先端は、円柱体で構成された正極測定端子部910の端面に接する。また、電流測定部102に接続された負極電流検出部422の先端は、円柱体で構成された負極測定端子部912の端面に接する。 The tip of the positive electrode current detection unit 420 connected to the current measurement unit 102 of the measuring device 24 is in contact with the end surface of the positive electrode measurement terminal unit 910 formed of a cylindrical body. Further, the tip of the negative electrode current detection portion 422 connected to the current measurement portion 102 is in contact with the end surface of the negative electrode measurement terminal portion 912 formed of a cylindrical body.
 計測装置24の電圧測定部100に接続された正極電圧検出部424の先端は、正極測定端子部910の端面に接する。また、電圧測定部100に接続された負極電圧検出部426の先端は、負極測定端子部912の端面に接する。 The tip of the positive electrode voltage detection section 424 connected to the voltage measurement section 100 of the measuring device 24 is in contact with the end surface of the positive electrode measurement terminal section 910 . Also, the tip of the negative electrode voltage detection section 426 connected to the voltage measurement section 100 contacts the end surface of the negative electrode measurement terminal section 912 .
 正極電圧検出部424が正極測定端子部910に電気的に接続される接続位置と、正極電流検出部420が正極測定端子部910に電気的に接続される接続位置とは、異なる箇所に配置されている。 The connection position where the positive electrode voltage detection unit 424 is electrically connected to the positive electrode measurement terminal unit 910 and the connection position where the positive electrode current detection unit 420 is electrically connected to the positive electrode measurement terminal unit 910 are arranged at different locations. ing.
 負極電圧検出部426が負極測定端子部912に電気的に接続される接続位置と、負極電流検出部422が負極測定端子部912に電気的に接続される接続位置とは、異なる箇所に配置されている。 The connection position where the negative electrode voltage detection section 426 is electrically connected to the negative electrode measurement terminal section 912 and the connection position where the negative electrode current detection section 422 is electrically connected to the negative electrode measurement terminal section 912 are arranged at different locations. ing.
 正極測定端子部910は、ケーブル82の電流ライン920を介して正極端子部410に接続されている。負極測定端子部912は、ケーブル82の負極ライン922を介して負極端子部412に接続されている。 The positive electrode measurement terminal portion 910 is connected to the positive electrode terminal portion 410 via the current line 920 of the cable 82 . The negative measurement terminal portion 912 is connected to the negative electrode terminal portion 412 via the negative line 922 of the cable 82 .
 (作用及び効果)
 次に、第九実施形態による作用効果について説明する。
(Action and effect)
Next, the effects of the ninth embodiment will be described.
 第九実施形態においても、第四実施形態と同一又は同等部分に関しては、第四実施形態と同様の作用効果を奏することができる。 Also in the ninth embodiment, the same effects as in the fourth embodiment can be obtained with respect to the same or equivalent parts as in the fourth embodiment.
 また、第九実施形態では、ケーブル82に、正極電圧ライン116と負極電圧ライン132と正極電流ライン122と負極電流ライン142とが設けられる場合と比較して、ケーブル82を構成する電線の数を削減することが可能となる。 Further, in the ninth embodiment, compared to the case where the cable 82 is provided with the positive voltage line 116, the negative voltage line 132, the positive current line 122, and the negative current line 142, the number of electric wires constituting the cable 82 is reduced. can be reduced.
 さらに、第九実施形態は、計測器80を急速充電器の中に入れることが可能である。この場合、急速充電器に設けられた急速充電用のコネクタ及びケーブルは、第九実施形態の接続部84及びケーブル82として利用される。 Furthermore, in the ninth embodiment, it is possible to put the measuring device 80 into the quick charger. In this case, the quick charging connector and cable provided in the quick charger are used as the connecting portion 84 and the cable 82 of the ninth embodiment.
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。 Although the embodiments of the present invention have been described above, the above embodiments merely show a part of application examples of the present invention, and the technical scope of the present invention is not limited to the specific configurations of the above embodiments. do not have.
 また、第一実施形態から第三実施形態で用いた各検出部114、130、120、140は、内面に内側に突出する突起を設け、各検出部114、130、120、140と各被接続部40、44との接触性を高めてもよい。 In addition, the detection units 114, 130, 120, and 140 used in the first to third embodiments are provided with projections protruding inward on the inner surfaces, and the detection units 114, 130, 120, and 140 are connected to the respective connected units. The contact with the portions 40, 44 may be enhanced.
 本願は、2022年1月14日に日本国特許庁に出願された特願2022-004160、及び2023年1月11日に日本国特許庁に出願された特願2023-002706に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。 This application has priority based on Japanese Patent Application No. 2022-004160 filed with the Japan Patent Office on January 14, 2022 and Japanese Patent Application No. 2023-002706 filed with the Japan Patent Office on January 11, 2023. The entire contents of this application are incorporated herein by reference.
 10、200、300、400、900、1000、1100  計測システム
 20  蓄電デバイス
 22、1012  蓄電装置
 24、1014  計測装置
 40  正極被接続部
 44  負極被接続部
 48  断続部
 60  被伝送部
 62  受給部
 70  蓄電側通信部
 80  計測器
 90  測定部
 92  伝送部
 94  供給部
 96  計測側通信部
 100  電圧測定部
 102  電流測定部
 114、424  正極電圧検出部
 120、420  正極電流検出部
 130、426  負極電圧検出部
 140、422  負極電流検出部
 402  正極被接続部
 404  負極被接続部
 500、600、700、800  端子
 1030  被接続端子部
10, 200, 300, 400, 900, 1000, 1100 measurement system 20 power storage device 22, 1012 power storage device 24, 1014 measurement device 40 positive electrode connected portion 44 negative electrode connected portion 48 intermittent portion 60 transmitted portion 62 power supply receiving portion 70 power storage side communication unit 80 measuring instrument 90 measurement unit 92 transmission unit 94 supply unit 96 measurement side communication unit 100 voltage measurement unit 102 current measurement unit 114, 424 positive electrode voltage detection unit 120, 420 positive electrode current detection unit 130, 426 negative electrode voltage detection unit 140 , 422 negative electrode current detector 402 positive electrode connected portion 404 negative electrode connected portion 500, 600, 700, 800 terminal 1030 connected terminal portion

Claims (15)

  1.  蓄電デバイスを内蔵した蓄電装置と、前記蓄電装置に内蔵された前記蓄電デバイスの状態を測定する計測装置とを備えた計測システムであって、
     前記蓄電装置は、
     外部と電気の遣り取りを行う被接続部と、
     前記被接続部及び前記蓄電デバイスを非通電状態又は通電状態にする断続部と、
     前記断続部に前記通電状態を形成させるための信号が伝送された場合に前記断続部を制御して前記通電状態を形成する被伝送部と、
     を備え、
     前記計測装置は、
     前記被接続部に接続され、前記蓄電デバイスの状態を測定する測定部と、
     前記被伝送部に前記信号を伝送する伝送部と、
     を備える、
     計測システム。
    A measurement system comprising: a power storage device incorporating a power storage device; and a measuring device that measures the state of the power storage device built into the power storage device,
    The power storage device
    A connected part that exchanges electricity with the outside,
    an intermittent portion that brings the connected portion and the electricity storage device into a non-energized state or an energized state;
    a transmission receiving unit that controls the intermittent portion to form the energized state when a signal for forming the energized state is transmitted to the intermittent portion;
    with
    The measuring device is
    a measuring unit that is connected to the connected unit and measures the state of the power storage device;
    a transmitting unit that transmits the signal to the transmitted unit;
    comprising
    measurement system.
  2.  請求項1に記載の計測システムであって、
     前記伝送部は、前記断続部を制御するための前記信号を供給する供給部を含み、
     前記被伝送部は、前記信号を受給して前記断続部を制御する受給部を含む、
     計測システム。
    The measurement system according to claim 1,
    The transmission unit includes a supply unit that supplies the signal for controlling the intermittent unit,
    The transmitted part includes a receiving part that receives the signal and controls the intermittent part.
    measurement system.
  3.  請求項1に記載の計測システムであって、
     前記伝送部は、前記断続部を制御して前記通電状態を形成するための前記信号を出力する計測側通信部を含み、
     前記被伝送部は、前記計測側通信部と通信して前記信号を入力し、前記信号に従って前記断続部を制御する蓄電側通信部を含む、
     計測システム。
    The measurement system according to claim 1,
    The transmission unit includes a measurement-side communication unit that outputs the signal for controlling the intermittent unit and forming the energized state,
    The transmission target unit includes a power storage side communication unit that communicates with the measurement side communication unit to input the signal and controls the intermittent unit according to the signal.
    measurement system.
  4.  請求項1に記載の計測システムであって、
     前記測定部は、前記蓄電デバイスの電圧を測定する電圧測定部と、前記蓄電デバイスに流れる電流を測定する電流測定部とを有し、
     前記電圧測定部が前記被接続部に電気的に接続される接続位置と、前記電流測定部が前記被接続部に電気的に接続される接続位置とは、異なる箇所に配設されている、
     計測システム。
    The measurement system according to claim 1,
    The measurement unit includes a voltage measurement unit that measures the voltage of the power storage device and a current measurement unit that measures the current flowing through the power storage device,
    A connection position where the voltage measurement section is electrically connected to the connected section and a connection position where the current measurement section is electrically connected to the connected section are arranged at different locations,
    measurement system.
  5.  請求項1に記載の計測システムであって、
     前記計測装置は、前記被接続部に接続される端子部を有し、
     前記測定部は、前記蓄電デバイスの電圧を測定する電圧測定部と、前記蓄電デバイスに流れる電流を測定する電流測定部とを有し、
     前記電圧測定部は、前記端子部を介して前記被接続部に電気的に接続され、
     前記電流測定部は、前記端子部を介して前記被接続部に電気的に接続され、
     前記電圧測定部が前記端子部に電気的に接続される接続位置と、前記電流測定部が前記端子部に電気的に接続される接続位置とは、異なる箇所に配設されている、
     計測システム。
    The measurement system according to claim 1,
    The measuring device has a terminal portion connected to the connected portion,
    The measurement unit includes a voltage measurement unit that measures the voltage of the power storage device and a current measurement unit that measures the current flowing through the power storage device,
    The voltage measuring unit is electrically connected to the connected unit through the terminal unit,
    The current measuring unit is electrically connected to the connected unit through the terminal unit,
    A connection position where the voltage measurement unit is electrically connected to the terminal unit and a connection position where the current measurement unit is electrically connected to the terminal unit are arranged at different locations,
    measurement system.
  6.  請求項4又は請求項5に記載の計測システムであって、
     前記蓄電デバイスと前記測定部とを結ぶ通電経路において、前記電圧測定部が前記被接続部に電気的に接続される接続位置は、前記電流測定部が前記被接続部に電気的に接続される接続位置よりも前記蓄電デバイスに近い、
     計測システム。
    The measurement system according to claim 4 or claim 5,
    In the current path connecting the power storage device and the measuring unit, the connection position where the voltage measuring unit is electrically connected to the connected unit is where the current measuring unit is electrically connected to the connected unit. closer to the power storage device than the connection position;
    measurement system.
  7.  請求項4に記載の計測システムであって、
     前記電圧測定部は、前記被接続部に接する電圧検出部を介して前記被接続部に電気的に接続され、
     前記電流測定部は、前記被接続部に接する電流検出部を介して前記被接続部に電気的に接続される、
     計測システム。
    The measurement system according to claim 4,
    The voltage measurement unit is electrically connected to the connected portion via a voltage detection portion that is in contact with the connected portion,
    The current measurement unit is electrically connected to the connected portion via a current detection portion that is in contact with the connected portion.
    measurement system.
  8.  請求項5に記載の計測システムであって、
     前記電圧測定部は、前記端子部に接する電圧検出部を介して前記被接続部に電気的に接続され、
     前記電流測定部は、前記端子部に接する電流検出部を介して前記被接続部に電気的に接続される、
     計測システム。
    The measurement system according to claim 5,
    The voltage measurement unit is electrically connected to the connected unit via a voltage detection unit that is in contact with the terminal unit,
    The current measuring section is electrically connected to the connected section via a current detecting section that is in contact with the terminal section.
    measurement system.
  9.  請求項1に記載の計測システムであって、
     前記計測装置は、前記蓄電装置から供給される電力によって動作する、
     計測システム。
    The measurement system according to claim 1,
    The measuring device operates by power supplied from the power storage device,
    measurement system.
  10.  請求項9に記載の計測システムであって、
     前記蓄電装置から前記計測装置への電力の供給は、前記蓄電装置に設けられた被接続端子部を介して行われる、
     計測システム。
    The measurement system according to claim 9,
    Power is supplied from the power storage device to the measuring device via a connected terminal portion provided in the power storage device,
    measurement system.
  11.  請求項10に記載の計測システムであって、
     前記被接続端子部は、車両に設けられた充電口に設けられている、
     計測システム。
    The measurement system according to claim 10,
    The connected terminal portion is provided in a charging port provided in the vehicle,
    measurement system.
  12.  蓄電デバイスを内蔵するとともに前記蓄電デバイスの状態を測定する計測装置を接続可能な蓄電装置であって、
     外部と電気の遣り取りを行う被接続部と、
     前記被接続部及び前記蓄電デバイスを非通電状態又は通電状態にする断続部と、
     前記通電状態を形成させるための信号が前記計測装置から伝送された場合に前記断続部を制御して前記通電状態を形成する被伝送部と、
     を備える蓄電装置。
    A power storage device that incorporates a power storage device and is connectable to a measuring device that measures the state of the power storage device,
    A connected part that exchanges electricity with the outside,
    an intermittent portion that brings the connected portion and the electricity storage device into a non-energized state or an energized state;
    a transmission receiving unit that controls the interrupting unit to form the energized state when a signal for forming the energized state is transmitted from the measuring device;
    A power storage device.
  13.  請求項12に記載の蓄電装置であって、
     前記被伝送部は、前記計測装置から伝送される前記信号を受給して前記断続部を制御する受給部を含む、
     蓄電装置。
    The power storage device according to claim 12,
    The transmitted part includes a receiving part that receives the signal transmitted from the measuring device and controls the intermittent part,
    storage device.
  14.  蓄電デバイスを内蔵する蓄電装置であって前記蓄電デバイス及び被接続部を非通電状態又は通電状態にする断続部と、外部から信号を受けて前記断続部を制御して前記通電状態を形成する被伝送部とを備えた蓄電装置に接続され、前記蓄電デバイスの状態を測定する計測装置であって、
     前記被接続部に接続され、前記蓄電デバイスの状態を測定する測定部と、
     前記被伝送部に前記信号を伝送する伝送部と、
     を備える計測装置。
    An electricity storage apparatus incorporating an electricity storage device, comprising: an intermittent unit that places the electricity storage device and a connected portion in a non-energized state or an energized state; A measuring device connected to a power storage device comprising a transmission unit and measuring the state of the power storage device,
    a measuring unit that is connected to the connected unit and measures the state of the power storage device;
    a transmitting unit that transmits the signal to the transmitted unit;
    A measuring device comprising
  15.  請求項14に記載の計測装置であって、
     前記伝送部は、前記断続部を制御するための前記信号を供給する供給部を含み、
     前記測定部は、前記蓄電デバイスの電圧を測定する電圧測定部と、前記蓄電デバイスに流れる電流を測定する電流測定部とを有し、
     前記電圧測定部が前記被接続部に電気的に接続される第1の接続位置と、前記電流測定部が前記被接続部に電気的に接続される第2の接続位置とは、異なる箇所に配設されている、
     計測装置。
    The measuring device according to claim 14,
    The transmission unit includes a supply unit that supplies the signal for controlling the intermittent unit,
    The measurement unit includes a voltage measurement unit that measures the voltage of the power storage device and a current measurement unit that measures the current flowing through the power storage device,
    A first connection position where the voltage measurement section is electrically connected to the connected section and a second connection position where the current measurement section is electrically connected to the connected section are located at different locations. is arranged,
    measuring device.
PCT/JP2023/000893 2022-01-14 2023-01-13 Measuring system, electricity storage apparatus, and measuring apparatus WO2023136338A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022-004160 2022-01-14
JP2022004160 2022-01-14
JP2023-002706 2023-01-11
JP2023002706A JP2023103976A (en) 2022-01-14 2023-01-11 Measurement system, power storage apparatus, and measurement device

Publications (1)

Publication Number Publication Date
WO2023136338A1 true WO2023136338A1 (en) 2023-07-20

Family

ID=87279177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/000893 WO2023136338A1 (en) 2022-01-14 2023-01-13 Measuring system, electricity storage apparatus, and measuring apparatus

Country Status (1)

Country Link
WO (1) WO2023136338A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08179017A (en) * 1994-12-26 1996-07-12 Bridgestone Corp Monitor device for battery impedance
JP2012211860A (en) * 2011-03-31 2012-11-01 Fuji Heavy Ind Ltd Charging system
JP2014138498A (en) * 2013-01-17 2014-07-28 Hitachi Metals Ltd Vehicle charger
JP2015161631A (en) * 2014-02-28 2015-09-07 日置電機株式会社 Ac impedance measurement device and method for measuring ac impedance
WO2020026888A1 (en) * 2018-07-31 2020-02-06 日本電産リード株式会社 Battery impedance measuring device
JP2020092558A (en) * 2018-12-07 2020-06-11 トヨタ自動車株式会社 vehicle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08179017A (en) * 1994-12-26 1996-07-12 Bridgestone Corp Monitor device for battery impedance
JP2012211860A (en) * 2011-03-31 2012-11-01 Fuji Heavy Ind Ltd Charging system
JP2014138498A (en) * 2013-01-17 2014-07-28 Hitachi Metals Ltd Vehicle charger
JP2015161631A (en) * 2014-02-28 2015-09-07 日置電機株式会社 Ac impedance measurement device and method for measuring ac impedance
WO2020026888A1 (en) * 2018-07-31 2020-02-06 日本電産リード株式会社 Battery impedance measuring device
JP2020092558A (en) * 2018-12-07 2020-06-11 トヨタ自動車株式会社 vehicle

Similar Documents

Publication Publication Date Title
EP2338723B1 (en) Power feeding control apparatus
JP7119077B2 (en) Rechargeable battery jump start device with battery detection system
US7161253B2 (en) Portable power source
CN102826019B (en) Battery status notification unit, bus-bar module and cell state monitor system
US9466999B2 (en) Vehicle with an electric storage section capable of discharging (supplying) an electric power to an external electric load, discharge system including the vehicle and a power cable, method for discharging the electric storage section, and equipment external to the vehicle used in the discharge system
EP2338722B1 (en) Power feeding control apparatus
US20140141301A1 (en) Battery state notifying unit, bus bar module, battery pack, and battery state monitoring system
JP2013109983A (en) Power supply control device
CN105103396A (en) Electric power unit for vehicle
WO2023136338A1 (en) Measuring system, electricity storage apparatus, and measuring apparatus
CN113682185B (en) Charging control device
JP5796219B2 (en) Power supply control device
JP2023103976A (en) Measurement system, power storage apparatus, and measurement device
US20190372335A1 (en) Power feed control device
US4518217A (en) Electrical connector and receptacle
EP4119389A1 (en) Vehicle and charging system
EP3627977B1 (en) Plasma generator
JP2013165610A (en) Vehicle external control device applied to vehicle equipped with power storage part and charge/discharge system including vehicle external control device, vehicle, and power cable
JP2017135767A (en) Power conversion unit
US20220077638A1 (en) Charging socket with interface
JP5834186B2 (en) Power supply control device
JP5834187B2 (en) Power supply control device
JP2020150734A (en) Battery adapter, system including the same, input side interface, and electric device body
JP5707559B2 (en) Power supply control device
JP2014064463A (en) Power supply control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23740346

Country of ref document: EP

Kind code of ref document: A1