WO2023136114A1 - Determination device and determination program - Google Patents

Determination device and determination program Download PDF

Info

Publication number
WO2023136114A1
WO2023136114A1 PCT/JP2022/047899 JP2022047899W WO2023136114A1 WO 2023136114 A1 WO2023136114 A1 WO 2023136114A1 JP 2022047899 W JP2022047899 W JP 2022047899W WO 2023136114 A1 WO2023136114 A1 WO 2023136114A1
Authority
WO
WIPO (PCT)
Prior art keywords
state information
channel state
determination device
determination
antennas
Prior art date
Application number
PCT/JP2022/047899
Other languages
French (fr)
Japanese (ja)
Inventor
雄彦 飯塚
敬 芳賀
亮太 藤原
祐馬 田邊
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2023136114A1 publication Critical patent/WO2023136114A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/04Systems determining presence of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/95Radar or analogous systems specially adapted for specific applications for meteorological use
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/12Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with electromagnetic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • G01W1/14Rainfall or precipitation gauges
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • the present invention relates to a determination device and a determination program for determining weather.
  • Patent Document 1 the transmission device described in Patent Document 1 is known as an invention related to conventional determination devices.
  • This transmitter uses electromagnetic waves to sense the surroundings. Specifically, the transmitter uses electromagnetic waves to detect pedestrians and vehicles.
  • an object of the present invention is to provide a determination device and a determination program equipped with a new sensing technology for sensing a specific area such as the inside of an automobile.
  • the inventor of the present application studied a new sensing technology for sensing a specific area such as the inside of a car. Therefore, the inventor of the present application focused on channel state information.
  • the channel state information is information indicating the state of the electromagnetic wave transmission path. By using this channel state information, detailed information on the transmission path of electromagnetic waves can be obtained. Therefore, the inventors of the present application have considered that if channel state information is used to sense a specific area such as the interior of an automobile, information relating to the position of an object within the specific area can be obtained. As a result, the inventor of the present application thought that it would be possible to determine the presence or absence of a person or object within a specific area.
  • the sensing technology using the above channel state information has high sensing performance. Therefore, the inventors of the present application have found that it is possible to detect changes in the state of electromagnetic wave transmission paths caused by weather changes in specific areas. Accordingly, the inventors of the present application have come up with a new sensing technology in which determinations related to the positions of objects in the first area and determinations of the weather are performed by a single determination device.
  • a determination device includes: A determination device used in a transmitting/receiving system in which signals of first to Nth subcarriers transmitted by electromagnetic waves from first to Tth transmitting antennas are received by first to Rth receiving antennas, N, T and R are integers of 1 or more, The first to T-th transmitting antennas and the first to R-th receiving antennas are arranged in a first region, The channel state information is information indicating the state of the electromagnetic wave transmission path between the first to T-th transmitting antennas and the first to R-th receiving antennas, The determination device is an acquiring step of acquiring the channel state information calculated based on the signals of the first to Nth subcarriers received by the first to Rth receiving antennas; a determining step of determining a position of an object in the first area and determining weather around the first area based on the channel state information obtained in the obtaining step; to run.
  • a determination program is A determination program executed by a determination device of a transmission/reception system for receiving signals of first to Nth subcarriers transmitted by electromagnetic waves from first to Tth transmission antennas at first to Rth reception antennas and N, T and R are integers of 1 or more, The first to T-th transmitting antennas and the first to R-th receiving antennas are arranged in a first region, The channel state information is information indicating the state of the electromagnetic wave transmission path between the first to T-th transmitting antennas and the first to R-th receiving antennas, The determination program is an acquiring step of acquiring the channel state information calculated based on the signals of the first to Nth subcarriers received by the first to Rth receiving antennas; a determining step of determining a determination related to a position of an object in the first area and a weather around the first area based on the channel state information obtained in the obtaining step; is executed by the determination device.
  • the determination device it is possible to provide a determination device equipped with a new sensing technology for sensing a specific area such as the inside of an automobile.
  • FIG. 1 is a block diagram of a transmission/reception system 1.
  • FIG. 2 is a perspective view of the first area A1 in fine weather.
  • FIG. 3 is a perspective view of the first area A1 in rainy weather.
  • FIG. 4 is a graph showing the amplitude and phase of hmn during human motion.
  • FIG. 5 is a graph showing the amplitude and phase of hmn during human breathing.
  • FIG. 6 is a graph showing the amplitude and phase of hmn under fine weather.
  • FIG. 7 is a graph showing the amplitude and phase of hmn during rainy weather.
  • FIG. 8 is a flow chart showing operations performed by the determination device 14 .
  • FIG. 9 is a block diagram of the transmission/reception system 1a.
  • FIG. 1 is a block diagram of a transmission/reception system 1.
  • FIG. 2 is a perspective view of the first area A1 in fine weather.
  • FIG. 3 is a perspective view of the first area A1 in rainy weather.
  • the first area A1 is the cabin of the vehicle.
  • the vehicle is an automobile.
  • the vehicle has windows.
  • the transmission/reception system 1 is used for a wireless LAN (Local Area Network) of automobiles.
  • the wireless LAN system is, for example, Wi-Fi (registered trademark).
  • the transmission/reception system 1 includes a transmission device 9, first transmission antennas 10-1 to T-th transmission antennas 10-T, reception device 11, first reception antennas 12-1 to R-th reception antennas 12-R, and determination device 14. ing. T and R are integers of 1 or more.
  • the determination device 14 is used in a transmission/reception system.
  • the transmitting device 9, the first transmitting antenna 10-1 to the T-th transmitting antenna 10-T, the receiving device 11 and the first receiving antenna 12-1 to the R-th receiving antenna 12-R, and the determining device 14 are shown in FIGS. , is located in the first area A1 (vehicle cabin).
  • the transmitting device 9 and the receiving device 11 are wireless LAN access points.
  • the transmission device 9 generates the first transmission signal to the Tth transmission signal.
  • the transmitting device 9 causes the first transmitting antenna 10-1 to the T-th transmitting antenna 10-T to transmit the first to Tth transmitting signals respectively (respectively) by electromagnetic waves.
  • each of the first transmission signal to the Tth transmission signal includes the signal of the first subcarrier to the signal of the Nth subcarrier.
  • N is an integer of 1 or more.
  • the first subcarrier signal to the Nth subcarrier signal are carrier waves used for OFDM (Orthogonal Frequency Division Multiplexing).
  • the signals of the first subcarrier to the Nth subcarrier have different frequencies orthogonal to each other.
  • the first transmission signal to the Tth transmission signal are repeatedly reflected and transmitted. Then, the first reception antenna 12-1 through the Rth reception antenna 12-R receive the first reception signal through the Rth reception signal, respectively.
  • Each of the first to Rth received signals includes a signal of the first subcarrier to a signal of the Nth subcarrier.
  • Each of the first to R-th received signals includes the first to T-th transmitted signals as components.
  • the transmitting/receiving system 1 transmits signals of the first to Nth subcarriers transmitted by electromagnetic waves from the first transmitting antennas 10-1 to the Tth transmitting antennas 10-T to the first receiving antenna 12-1. or R-th receiving antenna 12-R.
  • the determination device 14 is communicably connected to the receiving device 11 .
  • the determination device 14 is a processing circuit such as a CPU (Central Processing Unit) or a GPU (Graphics Processing Unit).
  • Determining device 14 obtains channel state information (CSI: Channel State Information) is calculated.
  • the channel state information is information indicating the state of electromagnetic wave transmission paths between the first to T-th transmitting antennas 10-1 to T-th transmitting antennas 10-T and the first to R-th receiving antennas 12-1 to R-th receiving antennas 12-R. be.
  • the channel state information is described below.
  • the first to T-th transmission signals transmitted by the first to T-th transmission antennas 10-1 to T-th transmission antennas 10-T are complex numbers x1 to xT.
  • the first to R-th reception signals received by the first to R-th reception antennas 12-1 to R-th reception antenna 12-R are complex numbers y1 to yR.
  • x1 through xT and y1 through yR satisfy equations (1) through (5).
  • i is an integer of 1 or more and N or less.
  • m is an integer of 1 or more and R or less.
  • n is an integer of 1 or more and T or less.
  • is the amplitude of hmn.
  • ⁇ hmn is the phase of hmn.
  • ni is the noise vector.
  • Hi is the channel state information of the i-th subcarrier. Also, hmn, which is a component included in Hi, indicates the state of the electromagnetic wave transmission path between the m-th transmitting antenna 10-m and the n-th receiving antenna 12-n in the i-th subcarrier. Calculation of the channel state information Hi for the i-th subcarrier will now be described.
  • Transmitting device 9 receives first transmission signal x1 to T-th transmission signal xT having a predetermined waveform of the i-th subcarrier (respectively) through first transmission antenna 10-1 to T-th transmission antenna 10-T. sending.
  • the first receiving antenna 12-1 through the R-th receiving antenna 12-R receive the first received signal y1 through the R-th received signal yR of the i-th subcarrier.
  • the determination device 14 acquires the first received signal y1 to the R-th received signal yR of the i-th subcarrier.
  • the first transmission signal x1 through T-th transmission signal xT of the i-th subcarrier transmitted by the first transmission antenna 10-1 through T-th transmission antenna 10-T are signals having predetermined waveforms. be. Therefore, if the noise ni is removed from the first received signal y1 to the R-th received signal yR of the i-th subcarrier, the determination device 14 uses equation (1) to calculate the channel state information Hi of the i-th subcarrier. can do. The decision device 14 performs this calculation for the first to Nth subcarriers. By the above operation, the determination device 14 can calculate the channel state information H1 to HN.
  • FIG. 4 is a graph showing the amplitude and phase of hmn during human motion.
  • FIG. 5 is a graph showing the amplitude and phase of hmn during human breathing.
  • the vertical axis in FIGS. 4 and 5 is amplitude or phase.
  • the horizontal axis in FIGS. 4 and 5 is time. 4 and 5 show experimental results when a person is seated in the rear seat of an automobile in fine weather.
  • the state of electromagnetic wave reflection in the first area A1 changes depending on the presence or absence of a person in the first area A1 and the position of the person. Furthermore, the state of reflection of electromagnetic waves in the first area A1 changes depending on the presence or absence of motion of a person in the first area A1.
  • the channel state information Hi indicates the transmission paths of electromagnetic waves between the first to T-th transmitting antennas 10-1 to T-th transmitting antennas 10-T and the first to R-th receiving antennas 12-1 to R-th receiving antennas 12-R. This is information indicating the state. Therefore, the channel state information Hi changes depending on the presence or absence of human motion within the first area A1.
  • the channel state information Hi during human motion and the channel state information Hi during human breathing are different. Therefore, the hmn when the person is moving shown in FIG. 4 is different from the hmn when the person is breathing shown in FIG.
  • the amplitude of hmn during human movement shown in FIG. 4 differs from the amplitude of hmn during human breathing shown in FIG.
  • the phase of hmn during human motion shown in FIG. 4 differs from the phase of hmn during human breathing shown in FIG.
  • the amplitude of hmn during human movement shown in FIG. 4 is greater than the amplitude of hmn during human breathing shown in FIG.
  • the phase of hmn during human motion shown in FIG. 4 is greater than the phase of hmn during human breathing shown in FIG. Therefore, by calculating the amplitude of hmn and the phase of hmn, the determination device 14 can determine whether or not there is a human motion in the first area A1.
  • the determination device 14 can determine the position of the person within the first area A1 by calculating the amplitude of hmn and the phase of hmn.
  • the determination device 14 can perform determination related to the position of the object within the first area A1 by calculating the amplitude of hmn and the phase of hmn. Determination related to the position of an object is determination of the position of a person, presence or absence of motion of a person, and the position of an object other than a person.
  • FIG. 6 is a graph showing the amplitude and phase of hmn under fine weather.
  • FIG. 7 is a graph showing the amplitude and phase of hmn during rainy weather.
  • the vertical axis in FIGS. 6 and 7 is amplitude or phase.
  • the horizontal axis in FIGS. 6 and 7 is time. 6 and 7 show experimental results when a person is sitting on the rear seat of an automobile and breathing.
  • the state of reflection of electromagnetic waves in the first area A1 changes depending on the presence or absence of rainfall. More specifically, when it rains, the rain adheres to the window. Therefore, the state of reflection of electromagnetic waves on the window changes depending on the presence or absence of rainfall.
  • the channel state information indicates the state of electromagnetic wave transmission paths between the first to T-th transmitting antennas 10-1 to T-th transmitting antennas 10-T and the first to R-th receiving antennas 12-1 to 12-R. This is the information shown. Therefore, the channel state information Hi changes depending on whether or not rain adheres to the window. That is, the channel state information Hi for rainy weather and the channel state information Hi for fine weather are different. Therefore, hmn in fine weather shown in FIG. 6 differs from hmn in rainy weather shown in FIG. More precisely, the amplitude of hmn in fine weather shown in FIG. 6 is different from the amplitude of hmn in fine weather shown in FIG. The phase of hmn during fine weather shown in FIG.
  • the determination device 14 can determine the weather by calculating the amplitude of hmn and the phase of hmn. More precisely, the determination device 14 can determine the weather at the location of the vehicle.
  • the determining device 14 uses hmn of the channel state information Hi to determine the position of the object within the first area A1 and the weather.
  • the determining device 14 uses h11 to hRT of the channel state information H1 to HN to determine the position of the object within the first area A1 and the weather.
  • the determination device 14 can accurately determine the position of the object within the first area A1 and the weather.
  • the determination device 14 uses a machine learning model to determine and determine the position of the object within the first area A1.
  • the machine learning model uses teacher data indicating the relationship between the channel state information and the position of the object within the first area A1. Therefore, the machine learning model learns in advance the relationship between the channel state information and the position of the object within the first area A1 using teacher data indicating the relationship between the channel information and the position of the object within the first area A1. there is Then, the determination device 14 uses a machine learning model to determine the position of the object within the first area A1 corresponding to the channel state information calculated by the determination device 14 .
  • the determination device 14 uses a machine learning model to determine the weather.
  • a machine learning model uses training data that indicates the relationship between channel state information and weather. Therefore, the machine learning model learns in advance the relationship between channel state information and weather using training data that indicates the relationship between channel information and weather. Then, the determination device 14 determines the weather corresponding to the channel state information calculated by the determination device 14 using a machine learning model.
  • the determination device 14 may use one machine learning model to determine the position of the object in the first area A1 and determine the weather. , and a second machine learning model may be used to determine the weather.
  • FIG. 8 is a flow chart showing operations performed by the determination device 14 .
  • a storage device (not shown) stores the judgment program of the flow chart shown in FIG.
  • the determination device 14 then reads and executes this determination program from the storage device.
  • Determining device 14 determines channel state information H1 based on the first to R-th received signals of the first to N-th subcarriers received by first to R-th receiving antennas 12-1 to R-th receiving antennas 12-R. ⁇ HN are calculated (calculation step/step S1). Since the details of the calculation step have already been explained, further explanation will be omitted. Thereby, the determination device 14 acquires the channel state information H1 to HN calculated in the calculation step (acquisition step/step S2). Thus, in the acquisition step of step S2, the determination device 14 acquires the channel state information H1 to HN calculated based on the first to R-th received signals for each of the first to N-th subcarriers. do.
  • the determination device 14 determines the position of the object in the first area A1 and the weather based on the channel state information H1 to HN acquired in the acquisition step (determination step/step S3). .
  • the determination device 14 determines, for example, the presence or absence of rainfall in the determination step. Since the details of the determination step have already been explained, further explanation will be omitted. Thereafter, the determination device 14 displays the determination result on a display device (not shown).
  • the determination device 14 obtains the channel state information H1 to HN calculated based on the first to Rth received signals for each of the first to Nth subcarriers.
  • the channel state information H1 to HN is information between the first transmitting antenna 10-1 to T-th transmitting antenna 10-T and the first receiving antenna 12-1 to R-th receiving antenna 12-R in the first area A1. This is information indicating the state of the transmission path of electromagnetic waves. Therefore, the determining device 14 can make a determination related to the position of the object within the first area A1 based on the channel state information H1-HN.
  • the determining device 14 can determine the weather at the location of the automobile while making determinations related to the location of objects within the cabin (first area A1) of the automobile based on the channel state information H1-HN.
  • the determination device 14 it is possible to obtain a new sensing technique for sensing a specific first region A1 such as the interior of an automobile.
  • FIG. 9 is a block diagram of the transmission/reception system 1a.
  • the transmission/reception system 1a differs from the transmission/reception system 1 in that it includes a determination device 14a and an arithmetic device 16 instead of the determination device 14.
  • the determination device 14a is a processing circuit such as a CPU or GPU.
  • the arithmetic device 16 is a processing circuit such as a CPU or GPU. In this way, the determination device 14a and the arithmetic device 16 are made of separate semiconductor integrated circuits.
  • the computing device 16 calculates channel state information H1 to HN based on the first to Rth received signals of the first to Nth subcarriers.
  • the determination device 14a acquires the channel state information H1 to HN calculated by the calculation device 16.
  • FIG. Thereby, the determination device 14a acquires the channel state information H1 to HN calculated based on the first to R-th received signals for each of the first to N-th subcarriers (acquisition step).
  • the determination device 14a determines the position of the object in the first area A1 and the weather based on the channel state information H1 to HN acquired in the acquisition step (determination step).
  • Other structures of the transmitting/receiving system 1a are the same as those of the transmitting/receiving system 1, so the description thereof is omitted.
  • the determination device 14 a has the same effects as the determination device 14 .
  • the determination device according to the present invention is not limited to the determination devices 14 and 14a, and can be modified within the scope of the gist thereof.
  • determination devices 14 and 14a may determine the weather using a program other than the machine learning model in the determination step.
  • the machine learning model may be a model that does not use teacher data.
  • the determination devices 14 and 14a may determine the presence or absence of snowfall in the determination step. Further, the determination devices 14 and 14a may determine weather other than the presence or absence of snowfall and rainfall in the determination step. Weather other than snowfall and rainfall includes, for example, the presence or absence of hail, the presence or absence of volcanic ash, and the like.
  • the determination devices 14 and 14a make determinations related to the position of the object within the first region in the determination step. Therefore, the determination devices 14 and 14a may perform at least one of determination of the position of a person, determination of presence or absence of motion of a person, and determination of the position of an object other than a person as determination related to the position of an object. good.
  • channel state information may change depending on the presence or absence of snow adhering to the window.
  • the car may be an open car without a roof.
  • the first transmitting antenna 10-1 to T transmitting antenna 10-T and the first receiving antenna 12-1 to The state of the electromagnetic wave transmission path between the R-th receiving antenna 12-R changes. Therefore, the channel state information also changes depending on the presence or absence of rain in the first area A1 (cabin of the convertible) and its surrounding space.
  • part of the cabin of the vehicle may be made of a material that allows electromagnetic waves to pass through to the outside of the cabin.
  • the vehicle is equipped with a control device that controls travel.
  • the control device may perform travel control based on the determination result of the weather.
  • the control device may reduce the output of the power source such as the engine or motor in rainy weather than the output of the power source such as engine or motor in fine weather.
  • the control device may set the braking force of the brake in rainy weather to be less than the braking force of the brake in fine weather.
  • the vehicle also includes a control device that performs control other than travel control.
  • the control device may perform control other than travel control based on the determination result of the weather.
  • the control device may control the air conditioner based on the weather determination result.
  • the control device may control the wipers based on the determination result of the weather.
  • first area A1 may be the space inside the building.
  • the first area A1 is, for example, a closed space. However, the first area A1 does not have to be a closed space. In this case, the first area A1 may be connected to areas outside the first area A1.
  • the vehicle may be a vehicle other than an automobile.
  • Vehicles include, for example, motorcycles, bicycles, airplanes, rockets, helicopters, and ships.
  • the determination devices 14 and 14a may output the weather determination result by voice through a speaker instead of displaying the weather determination result on the display device.
  • the determination devices 14 and 14a may perform the determination step based on part of the channel state information H1 to HN among the channel state information H1 to HN. Also, the determination devices 14 and 14a may perform the determination step based on some components of the channel state information H1 to HN.
  • the determination devices 14 and 14a may perform determination steps based on the processed channel state information H1 to HN.
  • the processed channel state information H1 to HN is, for example, data obtained by removing high-frequency components from the channel state information H1 to HN so as to facilitate the determination step.
  • the determination devices 14 and 14a determine the weather around the first area A1. For example, if the first area A1 is the cabin of the vehicle, the determination device 14, 14a determines the weather around the cabin of the vehicle. For example, when the first area A1 is the space inside the building, the determination devices 14 and 14a determine the weather around the building.
  • transmission/reception system 9 transmission devices 10-1 to 10-T: first transmission antenna to T-th transmission antenna 11: reception devices 12-1 to 12-R: first reception antenna to R-th reception antenna 14, 14a: Determination device 16: Arithmetic device A1: First area

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • Hydrology & Water Resources (AREA)
  • Atmospheric Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental Sciences (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

In the present invention, channel state information is information indicative of the state of an electromagnetic wave transmission path between a first transmitting antenna to a T-th transmitting antenna and a first receiving antenna to an R-th receiving antenna. A determination device executes: an acquisition step for acquiring the channel state information, which is calculated on the basis of the signals from each of a first subcarrier to an N-th subcarrier, the signals being received by the first receiving antenna to the Rth receiving antenna; and a determination step for determining the position of an object in a first area and determining the weather around the first area on the basis of the channel state information acquired in the acquisition step.

Description

判定装置及び判定プログラムJudgment device and judgment program
 本発明は、天候を判定する判定装置及び判定プログラムに関する。 The present invention relates to a determination device and a determination program for determining weather.
 従来の判定装置に関する発明としては、例えば、特許文献1に記載の送信装置が知られている。この送信装置は、電磁波を用いて周囲のセンシングを行う。具体的には、送信装置は、電磁波を用いて、歩行者や車両を検知する。 For example, the transmission device described in Patent Document 1 is known as an invention related to conventional determination devices. This transmitter uses electromagnetic waves to sense the surroundings. Specifically, the transmitter uses electromagnetic waves to detect pedestrians and vehicles.
国際公開第2020/122220号公報International Publication No. 2020/122220
 ところで、特許文献1に記載の送信装置の分野では、自動車の車内等のような特定の領域をセンシングする新たなセンシング技術が望まれている。 By the way, in the field of the transmission device described in Patent Document 1, there is a demand for a new sensing technology for sensing a specific area such as the inside of a car.
 そこで、本発明の目的は、自動車の車内等のような特定の領域をセンシングする新たなセンシング技術を備える判定装置及び判定プログラムを提供することである。 Therefore, an object of the present invention is to provide a determination device and a determination program equipped with a new sensing technology for sensing a specific area such as the inside of an automobile.
 本願発明者は、自動車の車内等のような特定の領域をセンシングする新たなセンシング技術について検討を行った。そこで、本願発明者は、チャネル状態情報に着目した。チャネル状態情報は、電磁波の伝送経路の状態を示す情報である。このチャネル状態情報を用いれば、電磁波の伝送経路の詳細な情報が得られる。そのため、本願発明者は、チャネル状態情報を用いて、自動車の車内等のような特定の領域をセンシングすれば、特定の領域内の物体の位置に関連する情報を取得できると考えた。その結果、本願発明者は、特定の領域内の人や物の有無を判定できると考えた。 The inventor of the present application studied a new sensing technology for sensing a specific area such as the inside of a car. Therefore, the inventor of the present application focused on channel state information. The channel state information is information indicating the state of the electromagnetic wave transmission path. By using this channel state information, detailed information on the transmission path of electromagnetic waves can be obtained. Therefore, the inventors of the present application have considered that if channel state information is used to sense a specific area such as the interior of an automobile, information relating to the position of an object within the specific area can be obtained. As a result, the inventor of the present application thought that it would be possible to determine the presence or absence of a person or object within a specific area.
 ところで、上記チャネル状態情報を用いたセンシング技術は、高いセンシング性能を有している。そのため、本願発明者は、特定の領域における天候の変化に起因する電磁波の伝送経路の状態の変化を検知できることに気が付いた。そこで、本願発明者は、第1領域内の物体の位置に関連する判定、及び、天候の判定を一つの判定装置により行うという、新たなセンシング技術に思い至った。 By the way, the sensing technology using the above channel state information has high sensing performance. Therefore, the inventors of the present application have found that it is possible to detect changes in the state of electromagnetic wave transmission paths caused by weather changes in specific areas. Accordingly, the inventors of the present application have come up with a new sensing technology in which determinations related to the positions of objects in the first area and determinations of the weather are performed by a single determination device.
 本発明に係る判定装置は、
 第1送信アンテナないし第T送信アンテナから電磁波により送信された第1サブキャリアないし第Nサブキャリアの信号を第1受信アンテナないし第R受信アンテナにおいて受信する送受信システムにおいて用いられる判定装置であって、
 N、T及びRは、1以上の整数であり、
 前記第1送信アンテナないし前記第T送信アンテナ及び前記第1受信アンテナないし前記第R受信アンテナは、第1領域に配置されており、
 チャネル状態情報は、前記第1送信アンテナないし前記第T送信アンテナと前記第1受信アンテナないし前記第R受信アンテナとの間の前記電磁波の伝送経路の状態を示す情報であり、
 前記判定装置は、
 前記第1受信アンテナないし前記第R受信アンテナが受信した前記第1サブキャリアないし前記第Nサブキャリア毎の信号に基づいて算出された前記チャネル状態情報を取得する取得ステップと、
 前記取得ステップにおいて取得した前記チャネル状態情報に基づいて、前記第1領域内の物体の位置に関連する判定、及び、前記第1領域の周囲の天候の判定を行う判定ステップと、
 を実行する。
A determination device according to the present invention includes:
A determination device used in a transmitting/receiving system in which signals of first to Nth subcarriers transmitted by electromagnetic waves from first to Tth transmitting antennas are received by first to Rth receiving antennas,
N, T and R are integers of 1 or more,
The first to T-th transmitting antennas and the first to R-th receiving antennas are arranged in a first region,
The channel state information is information indicating the state of the electromagnetic wave transmission path between the first to T-th transmitting antennas and the first to R-th receiving antennas,
The determination device is
an acquiring step of acquiring the channel state information calculated based on the signals of the first to Nth subcarriers received by the first to Rth receiving antennas;
a determining step of determining a position of an object in the first area and determining weather around the first area based on the channel state information obtained in the obtaining step;
to run.
 本発明に係る判定プログラムは、
 第1送信アンテナないし第T送信アンテナから電磁波により送信された第1サブキャリアないし第Nサブキャリアの信号を第1受信アンテナないし第R受信アンテナにおいて受信する送受信システムの判定装置において実行される判定プログラムであって、
 N、T及びRは、1以上の整数であり、
 前記第1送信アンテナないし前記第T送信アンテナ及び前記第1受信アンテナないし前記第R受信アンテナは、第1領域に配置されており、
 チャネル状態情報は、前記第1送信アンテナないし前記第T送信アンテナと前記第1受信アンテナないし前記第R受信アンテナとの間の前記電磁波の伝送経路の状態を示す情報であり、
 前記判定プログラムは、
 前記第1受信アンテナないし前記第R受信アンテナが受信した前記第1サブキャリアないし前記第Nサブキャリア毎の信号に基づいて算出された前記チャネル状態情報を取得する取得ステップと、
 前記取得ステップにおいて取得した前記チャネル状態情報に基づいて、前記第1領域内の物体の位置に関連する判定、及び、前記第1領域の周囲の天候を判定する判定ステップと、
 を前記判定装置に実行させる。
A determination program according to the present invention is
A determination program executed by a determination device of a transmission/reception system for receiving signals of first to Nth subcarriers transmitted by electromagnetic waves from first to Tth transmission antennas at first to Rth reception antennas and
N, T and R are integers of 1 or more,
The first to T-th transmitting antennas and the first to R-th receiving antennas are arranged in a first region,
The channel state information is information indicating the state of the electromagnetic wave transmission path between the first to T-th transmitting antennas and the first to R-th receiving antennas,
The determination program is
an acquiring step of acquiring the channel state information calculated based on the signals of the first to Nth subcarriers received by the first to Rth receiving antennas;
a determining step of determining a determination related to a position of an object in the first area and a weather around the first area based on the channel state information obtained in the obtaining step;
is executed by the determination device.
 本発明に係る判定装置によれば、自動車の車内等のような特定の領域をセンシングする新たなセンシング技術を備える判定装置を提供できる。 According to the determination device according to the present invention, it is possible to provide a determination device equipped with a new sensing technology for sensing a specific area such as the inside of an automobile.
図1は、送受信システム1のブロック図である。FIG. 1 is a block diagram of a transmission/reception system 1. As shown in FIG. 図2は、晴天時における第1領域A1の斜視図である。FIG. 2 is a perspective view of the first area A1 in fine weather. 図3は、雨天時における第1領域A1の斜視図である。FIG. 3 is a perspective view of the first area A1 in rainy weather. 図4は、人の動作時のhmnの振幅及び位相を示したグラフである。FIG. 4 is a graph showing the amplitude and phase of hmn during human motion. 図5は、人の呼吸時のhmnの振幅及び位相を示したグラフである。FIG. 5 is a graph showing the amplitude and phase of hmn during human breathing. 図6は、晴天時のhmnの振幅及び位相を示したグラフである。FIG. 6 is a graph showing the amplitude and phase of hmn under fine weather. 図7は、雨天時のhmnの振幅及び位相を示したグラフである。FIG. 7 is a graph showing the amplitude and phase of hmn during rainy weather. 図8は、判定装置14が実行する動作を示したフローチャートである。FIG. 8 is a flow chart showing operations performed by the determination device 14 . 図9は、送受信システム1aのブロック図である。FIG. 9 is a block diagram of the transmission/reception system 1a.
(実施形態)
 以下に、本発明の一実施形態に係る判定装置14を備える送受信システム1の構造について図面を参照しながら説明する。図1は、送受信システム1のブロック図である。図2は、晴天時における第1領域A1の斜視図である。図3は、雨天時における第1領域A1の斜視図である。本実施形態では、第1領域A1は、ビークルのキャビンである。本実施形態では、ビークルは、自動車である。ビークルは、窓を有している。
(embodiment)
The structure of the transmission/reception system 1 including the determination device 14 according to one embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram of a transmission/reception system 1. As shown in FIG. FIG. 2 is a perspective view of the first area A1 in fine weather. FIG. 3 is a perspective view of the first area A1 in rainy weather. In this embodiment, the first area A1 is the cabin of the vehicle. In this embodiment, the vehicle is an automobile. The vehicle has windows.
 送受信システム1は、自動車の無線LAN(Local Area Network)に用いられる。無線LANの方式は、例えば、Wi-Fi(登録商標)である。送受信システム1は、送信装置9、第1送信アンテナ10-1ないし第T送信アンテナ10-T、受信装置11、第1受信アンテナ12-1ないし第R受信アンテナ12-R及び判定装置14を備えている。T及びRは、1以上の整数である。このように、判定装置14は、送受信システムにおいて用いられる。送信装置9、第1送信アンテナ10-1ないし第T送信アンテナ10-T、受信装置11及び第1受信アンテナ12-1ないし第R受信アンテナ12-R及び判定装置14は、図1ないし図3に示すように、第1領域A1(ビークルのキャビン)に配置されている。送信装置9及び受信装置11は、無線LANのアクセスポイントである。 The transmission/reception system 1 is used for a wireless LAN (Local Area Network) of automobiles. The wireless LAN system is, for example, Wi-Fi (registered trademark). The transmission/reception system 1 includes a transmission device 9, first transmission antennas 10-1 to T-th transmission antennas 10-T, reception device 11, first reception antennas 12-1 to R-th reception antennas 12-R, and determination device 14. ing. T and R are integers of 1 or more. Thus, the determination device 14 is used in a transmission/reception system. The transmitting device 9, the first transmitting antenna 10-1 to the T-th transmitting antenna 10-T, the receiving device 11 and the first receiving antenna 12-1 to the R-th receiving antenna 12-R, and the determining device 14 are shown in FIGS. , is located in the first area A1 (vehicle cabin). The transmitting device 9 and the receiving device 11 are wireless LAN access points.
 送信装置9は、第1送信信号ないし第T送信信号を生成する。送信装置9は、第1送信信号ないし第T送信信号のそれぞれ(respectively)を第1送信アンテナ10-1ないし第T送信アンテナ10-Tに電磁波により送信させる。この際、第1送信信号ないし第T送信信号のそれぞれ(each)は、第1サブキャリアの信号ないし第Nサブキャリアの信号を含んでいる。Nは、1以上の整数である。第1サブキャリアの信号ないし第Nサブキャリアの信号は、OFDM(Orthogonal Frequency Division Multiplexing)に用いられる搬送波である。第1サブキャリアの信号ないし第Nサブキャリアの信号は、互いに直交した異なる周波数を有している。 The transmission device 9 generates the first transmission signal to the Tth transmission signal. The transmitting device 9 causes the first transmitting antenna 10-1 to the T-th transmitting antenna 10-T to transmit the first to Tth transmitting signals respectively (respectively) by electromagnetic waves. At this time, each of the first transmission signal to the Tth transmission signal includes the signal of the first subcarrier to the signal of the Nth subcarrier. N is an integer of 1 or more. The first subcarrier signal to the Nth subcarrier signal are carrier waves used for OFDM (Orthogonal Frequency Division Multiplexing). The signals of the first subcarrier to the Nth subcarrier have different frequencies orthogonal to each other.
 第1送信信号ないし第T送信信号は、反射を繰り返して伝送される。そして、第1受信アンテナ12-1ないし第R受信アンテナ12-Rのそれぞれ(respectively)は、第1受信信号ないし第R受信信号を受信する。第1受信信号ないし第R受信信号のそれぞれ(each)は、第1サブキャリアの信号ないし第Nサブキャリアの信号を含んでいる。第1受信信号ないし第R受信信号のそれぞれ(each)は、第1送信信号ないし第T送信信号を成分として含んでいる。以上のように、送受信システム1は、第1送信アンテナ10-1ないし第T送信アンテナ10-Tから電磁波により送信された第1サブキャリアないし第Nサブキャリアの信号を第1受信アンテナ12-1ないし第R受信アンテナ12-Rにおいて受信するシステムである。 The first transmission signal to the Tth transmission signal are repeatedly reflected and transmitted. Then, the first reception antenna 12-1 through the Rth reception antenna 12-R receive the first reception signal through the Rth reception signal, respectively. Each of the first to Rth received signals includes a signal of the first subcarrier to a signal of the Nth subcarrier. Each of the first to R-th received signals includes the first to T-th transmitted signals as components. As described above, the transmitting/receiving system 1 transmits signals of the first to Nth subcarriers transmitted by electromagnetic waves from the first transmitting antennas 10-1 to the Tth transmitting antennas 10-T to the first receiving antenna 12-1. or R-th receiving antenna 12-R.
 判定装置14は、受信装置11に通信可能に接続されている。判定装置14は、CPU(Central Processing Unit)やGPU(Graphics Processing Unit)等の処理回路である。判定装置14は、第1受信アンテナ12-1ないし第R受信アンテナ12-Rが受信した第1サブキャリアないし第Nサブキャリアの第1受信信号ないし第R受信信号に基づいて、チャネル状態情報(CSI:Channel State Information)を算出する。チャネル状態情報は、第1送信アンテナ10-1ないし第T送信アンテナ10-Tと第1受信アンテナ12-1ないし第R受信アンテナ12-Rとの間の電磁波の伝送経路の状態を示す情報である。以下に、チャネル状態情報について説明する。 The determination device 14 is communicably connected to the receiving device 11 . The determination device 14 is a processing circuit such as a CPU (Central Processing Unit) or a GPU (Graphics Processing Unit). Determining device 14 obtains channel state information ( CSI: Channel State Information) is calculated. The channel state information is information indicating the state of electromagnetic wave transmission paths between the first to T-th transmitting antennas 10-1 to T-th transmitting antennas 10-T and the first to R-th receiving antennas 12-1 to R-th receiving antennas 12-R. be. The channel state information is described below.
 第1送信アンテナ10-1ないし第T送信アンテナ10-Tが送信する第1送信信号ないし第T送信信号のそれぞれ(respectively)は、複素数であるx1ないしxTである。第1受信アンテナ12-1ないし第R受信アンテナ12-Rが受信する第1受信信号ないし第R受信信号のそれぞれ(respectively)は、複素数であるy1ないしyRである。このとき、x1ないしxT及びy1ないしyRは、式(1)ないし式(5)を満足している。 Respectively, the first to T-th transmission signals transmitted by the first to T-th transmission antennas 10-1 to T-th transmission antennas 10-T are complex numbers x1 to xT. Respectively, the first to R-th reception signals received by the first to R-th reception antennas 12-1 to R-th reception antenna 12-R are complex numbers y1 to yR. At this time, x1 through xT and y1 through yR satisfy equations (1) through (5).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 iは、1以上N以下の整数である。 
 mは、1以上R以下の整数である。 
 nは、1以上T以下の整数である。 
 ||hmn||は、hmnの振幅である。 
∠hmnは、hmnの位相である。 
 niは、ノイズベクトルである。
i is an integer of 1 or more and N or less.
m is an integer of 1 or more and R or less.
n is an integer of 1 or more and T or less.
||hmn|| is the amplitude of hmn.
∠hmn is the phase of hmn.
ni is the noise vector.
 Hiは、第iサブキャリアのチャネル状態情報である。また、Hiに含まれる成分であるhmnは、第iサブキャリアにおける第m送信アンテナ10-mと第n受信アンテナ12-nとの間の電磁波の伝送経路の状態を示す。ここで、第iサブキャリアのチャネル状態情報Hiの算出について説明する。  Hi is the channel state information of the i-th subcarrier. Also, hmn, which is a component included in Hi, indicates the state of the electromagnetic wave transmission path between the m-th transmitting antenna 10-m and the n-th receiving antenna 12-n in the i-th subcarrier. Calculation of the channel state information Hi for the i-th subcarrier will now be described.
 送信装置9は、第iサブキャリアの予め定められた波形を有する第1送信信号x1ないし第T送信信号xTのそれぞれ(respectively)を第1送信アンテナ10-1ないし第T送信アンテナ10-Tにより送信している。第1受信アンテナ12-1ないし第R受信アンテナ12-Rは、第iサブキャリアの第1受信信号y1ないし第R受信信号yRを受信する。これにより、判定装置14は、第iサブキャリアの第1受信信号y1ないし第R受信信号yRを取得する。 Transmitting device 9 receives first transmission signal x1 to T-th transmission signal xT having a predetermined waveform of the i-th subcarrier (respectively) through first transmission antenna 10-1 to T-th transmission antenna 10-T. sending. The first receiving antenna 12-1 through the R-th receiving antenna 12-R receive the first received signal y1 through the R-th received signal yR of the i-th subcarrier. Thereby, the determination device 14 acquires the first received signal y1 to the R-th received signal yR of the i-th subcarrier.
 上記のように、第1送信アンテナ10-1ないし第T送信アンテナ10-Tが送信する第iサブキャリアの第1送信信号x1ないし第T送信信号xTは、予め定められた波形を有する信号である。従って、判定装置14は、第iサブキャリアの第1受信信号y1ないし第R受信信号yRからノイズniを除去すれば、式(1)を用いて、第iサブキャリアのチャネル状態情報Hiを算出することができる。判定装置14は、この計算を、第1サブキャリアないし第Nサブキャリアに対して行う。以上の動作により、判定装置14は、チャネル状態情報H1~HNを算出できる。 As described above, the first transmission signal x1 through T-th transmission signal xT of the i-th subcarrier transmitted by the first transmission antenna 10-1 through T-th transmission antenna 10-T are signals having predetermined waveforms. be. Therefore, if the noise ni is removed from the first received signal y1 to the R-th received signal yR of the i-th subcarrier, the determination device 14 uses equation (1) to calculate the channel state information Hi of the i-th subcarrier. can do. The decision device 14 performs this calculation for the first to Nth subcarriers. By the above operation, the determination device 14 can calculate the channel state information H1 to HN.
 ところで、人が呼吸及び動作を行っている時を人の動作時と呼ぶ。人が呼吸を行い、かつ、人が動作を行っていない時を人の呼吸時と呼ぶ。図4は、人の動作時のhmnの振幅及び位相を示したグラフである。図5は、人の呼吸時のhmnの振幅及び位相を示したグラフである。図4及び図5の縦軸は、振幅又は位相である。図4及び図5の横軸は、時刻である。図4及び図5は、晴天時に、自動車のリアシートに人が着席している時の実験結果である。 By the way, the time when a person is breathing and moving is called the time when a person is in motion. The time when the person is breathing and when the person is not moving is called the breathing time of the person. FIG. 4 is a graph showing the amplitude and phase of hmn during human motion. FIG. 5 is a graph showing the amplitude and phase of hmn during human breathing. The vertical axis in FIGS. 4 and 5 is amplitude or phase. The horizontal axis in FIGS. 4 and 5 is time. 4 and 5 show experimental results when a person is seated in the rear seat of an automobile in fine weather.
 第1領域A1内の人の有無及び人の位置により第1領域A1での電磁波の反射の状態が変化する。更に、第1領域A1内の人の動作の有無により第1領域A1での電磁波の反射の状態が変化する。前記の通り、チャネル状態情報Hiは、第1送信アンテナ10-1ないし第T送信アンテナ10-Tと第1受信アンテナ12-1ないし第R受信アンテナ12-Rとの間の電磁波の伝送経路の状態を示す情報である。従って、第1領域A1内の人の動作の有無により、チャネル状態情報Hiが変化する。人の動作時のチャネル状態情報Hiと人の呼吸時のチャネル状態情報Hiとは異なる。そのため、図4に示す人の動作時のhmnは、図5に示す人の呼吸時のhmnと異なる。 The state of electromagnetic wave reflection in the first area A1 changes depending on the presence or absence of a person in the first area A1 and the position of the person. Furthermore, the state of reflection of electromagnetic waves in the first area A1 changes depending on the presence or absence of motion of a person in the first area A1. As described above, the channel state information Hi indicates the transmission paths of electromagnetic waves between the first to T-th transmitting antennas 10-1 to T-th transmitting antennas 10-T and the first to R-th receiving antennas 12-1 to R-th receiving antennas 12-R. This is information indicating the state. Therefore, the channel state information Hi changes depending on the presence or absence of human motion within the first area A1. The channel state information Hi during human motion and the channel state information Hi during human breathing are different. Therefore, the hmn when the person is moving shown in FIG. 4 is different from the hmn when the person is breathing shown in FIG.
 より正確には、図4に示す人の動作時のhmnの振幅は、図5に示す人の呼吸時のhmnの振幅と異なる。図4に示す人の動作時のhmnの位相は、図5に示す人の呼吸時のhmnの位相と異なる。本実施形態では、図4に示す人の動作時のhmnの振幅は、図5に示す人の呼吸時のhmnの振幅より大きい。図4に示す人の動作時のhmnの位相は、図5に示す人の呼吸時のhmnの位相より大きい。そのため、判定装置14は、hmnの振幅及びhmnの位相を算出することにより、第1領域A1内の人の動作の有無を判定することができる。 More precisely, the amplitude of hmn during human movement shown in FIG. 4 differs from the amplitude of hmn during human breathing shown in FIG. The phase of hmn during human motion shown in FIG. 4 differs from the phase of hmn during human breathing shown in FIG. In this embodiment, the amplitude of hmn during human movement shown in FIG. 4 is greater than the amplitude of hmn during human breathing shown in FIG. The phase of hmn during human motion shown in FIG. 4 is greater than the phase of hmn during human breathing shown in FIG. Therefore, by calculating the amplitude of hmn and the phase of hmn, the determination device 14 can determine whether or not there is a human motion in the first area A1.
 なお、第1領域A1内の物体(人)の位置が変化すると、チャネル状態情報Hiが変化する。従って、人の位置が変化すると、チャネル状態情報Hiが変化する。そこで、判定装置14は、hmnの振幅及びhmnの位相を算出することにより、第1領域A1内の人の位置を判定することができる。 Note that when the position of the object (person) within the first area A1 changes, the channel state information Hi changes. Therefore, when the position of a person changes, the channel state information Hi changes. Therefore, the determination device 14 can determine the position of the person within the first area A1 by calculating the amplitude of hmn and the phase of hmn.
 以上より、判定装置14は、hmnの振幅及びhmnの位相を算出することにより、第1領域A1内の物体の位置に関連する判定を行うことができる。物体の位置に関連する判定とは、人の位置、人の動作の有無及び人以外の物の位置の判定である。 As described above, the determination device 14 can perform determination related to the position of the object within the first area A1 by calculating the amplitude of hmn and the phase of hmn. Determination related to the position of an object is determination of the position of a person, presence or absence of motion of a person, and the position of an object other than a person.
 また、図6は、晴天時のhmnの振幅及び位相を示したグラフである。図7は、雨天時のhmnの振幅及び位相を示したグラフである。図6及び図7の縦軸は、振幅又は位相である。図6及び図7の横軸は、時刻である。図6及び図7は、自動車のリアシートに人が着席して呼吸をしている時の実験結果である。 Also, FIG. 6 is a graph showing the amplitude and phase of hmn under fine weather. FIG. 7 is a graph showing the amplitude and phase of hmn during rainy weather. The vertical axis in FIGS. 6 and 7 is amplitude or phase. The horizontal axis in FIGS. 6 and 7 is time. 6 and 7 show experimental results when a person is sitting on the rear seat of an automobile and breathing.
 まず、図2及び図3を比較すると、降雨の有無により第1領域A1での電磁波の反射の状態が変化する。より詳細には、雨が降ると、窓に雨が付着する。そのため、降雨の有無により、窓における電磁波の反射の状態が変化する。 First, when comparing FIGS. 2 and 3, the state of reflection of electromagnetic waves in the first area A1 changes depending on the presence or absence of rainfall. More specifically, when it rains, the rain adheres to the window. Therefore, the state of reflection of electromagnetic waves on the window changes depending on the presence or absence of rainfall.
 ここで、チャネル状態情報は、第1送信アンテナ10-1ないし第T送信アンテナ10-Tと第1受信アンテナ12-1ないし第R受信アンテナ12-Rとの間の電磁波の伝送経路の状態を示す情報である。従って、窓に付着する雨の有無により、チャネル状態情報Hiが変化する。すなわち、雨天時のチャネル状態情報Hiと晴天時のチャネル状態情報Hiとは異なる。そのため、図6に示す晴天時のhmnは、図7に示す雨天時のhmnと異なる。より正確には、図6に示す晴天時のhmnの振幅は、図7に示す晴天時のhmnの振幅と異なる。図6に示す晴天時のhmnの位相は、図7に示す晴天時のhmnの位相と異なる。本実施形態では、図6に示す晴天時のhmnの振幅は、図7に示す晴天時のhmnの振幅より小さい。図6に示す晴天時のhmnの位相は、図7に示す晴天時のhmnの位相より小さい。そのため、判定装置14は、hmnの振幅及びhmnの位相を算出することにより、天候を判定することができる。より正確には、判定装置14は、ビークルの位置における天候を判定できる。 Here, the channel state information indicates the state of electromagnetic wave transmission paths between the first to T-th transmitting antennas 10-1 to T-th transmitting antennas 10-T and the first to R-th receiving antennas 12-1 to 12-R. This is the information shown. Therefore, the channel state information Hi changes depending on whether or not rain adheres to the window. That is, the channel state information Hi for rainy weather and the channel state information Hi for fine weather are different. Therefore, hmn in fine weather shown in FIG. 6 differs from hmn in rainy weather shown in FIG. More precisely, the amplitude of hmn in fine weather shown in FIG. 6 is different from the amplitude of hmn in fine weather shown in FIG. The phase of hmn during fine weather shown in FIG. 6 is different from the phase of hmn during fine weather shown in FIG. In this embodiment, the amplitude of hmn in fine weather shown in FIG. 6 is smaller than the amplitude of hmn in fine weather shown in FIG. The phase of hmn during fine weather shown in FIG. 6 is smaller than the phase of hmn during fine weather shown in FIG. Therefore, the determination device 14 can determine the weather by calculating the amplitude of hmn and the phase of hmn. More precisely, the determination device 14 can determine the weather at the location of the vehicle.
 なお、上記説明では、判定装置14は、チャネル状態情報Hiのhmnを用いて、第1領域A1内の物体の位置に関する判定、及び、天候を判定している。しかしながら、判定装置14は、チャネル状態情報H1~HNのh11~hRTを用いて、第1領域A1内の物体の位置に関する判定、及び、天候を判定する。このように、チャネル状態情報の多くの成分が用いられることにより、判定装置14は、第1領域A1内の物体の位置に関する判定及び天候を精度よく判定できる。 In the above description, the determining device 14 uses hmn of the channel state information Hi to determine the position of the object within the first area A1 and the weather. However, the determining device 14 uses h11 to hRT of the channel state information H1 to HN to determine the position of the object within the first area A1 and the weather. By using many components of the channel state information in this manner, the determination device 14 can accurately determine the position of the object within the first area A1 and the weather.
 本実施形態では、判定装置14は、機械学習モデルを用いて、第1領域A1内の物体の位置に関する判定及び判定する。具体的には、機械学習モデルは、チャネル状態情報と第1領域A1内の物体の位置との関係を示す教師データを用いる。従って、機械学習モデルは、チャネル情報と第1領域A1内の物体の位置との関係を示す教師データにより、チャネル状態情報と第1領域A1内の物体の位置との関係を事前に学習している。そして、判定装置14は、判定装置14が算出したチャネル状態情報に対応する第1領域A1内の物体の位置を、機械学習モデルを用いて判定する。 In this embodiment, the determination device 14 uses a machine learning model to determine and determine the position of the object within the first area A1. Specifically, the machine learning model uses teacher data indicating the relationship between the channel state information and the position of the object within the first area A1. Therefore, the machine learning model learns in advance the relationship between the channel state information and the position of the object within the first area A1 using teacher data indicating the relationship between the channel information and the position of the object within the first area A1. there is Then, the determination device 14 uses a machine learning model to determine the position of the object within the first area A1 corresponding to the channel state information calculated by the determination device 14 .
 更に、本実施形態では、判定装置14は、機械学習モデルを用いて、天候を判定する。機械学習モデルは、チャネル状態情報と天候との関係を示す教師データを用いる。従って、機械学習モデルは、チャネル情報と天候との関係を示す教師データにより、チャネル状態情報と天候との関係を事前に学習している。そして、判定装置14は、判定装置14が算出したチャネル状態情報に対応する天候を、機械学習モデルを用いて判定する。なお、判定装置14は、1つの機械学習モデルを用いて第1領域A1内の物体の位置の判定及び天候の判定を行ってもよいし、第1機械学習モデルを第1領域A1内の物体の位置の判定を用いて行い、第2機械学習モデルを用いて天候の判定を行ってもよい。 Furthermore, in this embodiment, the determination device 14 uses a machine learning model to determine the weather. A machine learning model uses training data that indicates the relationship between channel state information and weather. Therefore, the machine learning model learns in advance the relationship between channel state information and weather using training data that indicates the relationship between channel information and weather. Then, the determination device 14 determines the weather corresponding to the channel state information calculated by the determination device 14 using a machine learning model. Note that the determination device 14 may use one machine learning model to determine the position of the object in the first area A1 and determine the weather. , and a second machine learning model may be used to determine the weather.
 次に、判定装置14の動作について図面を参照しながら説明する。図8は、判定装置14が実行する動作を示したフローチャートである。図示しない記憶装置は、図8に示すフローチャートの判定プログラムを記憶している。そして、判定装置14は、この判定プログラムを記憶装置から読み出して実行する。 Next, the operation of the determination device 14 will be described with reference to the drawings. FIG. 8 is a flow chart showing operations performed by the determination device 14 . A storage device (not shown) stores the judgment program of the flow chart shown in FIG. The determination device 14 then reads and executes this determination program from the storage device.
 判定装置14は、第1受信アンテナ12-1ないし第R受信アンテナ12-Rが受信した第1サブキャリアないし第Nサブキャリアの第1受信信号ないし第R受信信号に基づいて、チャネル状態情報H1~HNを算出する(算出ステップ・ステップS1)。算出ステップの詳細については、既に説明を行ったのでこれ以上の説明を省略する。これにより、判定装置14は、算出ステップにおいて算出されたチャネル状態情報H1~HNを取得する(取得ステップ・ステップS2)。このように、ステップS2の取得ステップにおいて、判定装置14は、第1サブキャリアないし第Nサブキャリア毎の第1受信信号ないし第R受信信号に基づいて算出されたチャネル状態情報H1~HNを取得する。 Determining device 14 determines channel state information H1 based on the first to R-th received signals of the first to N-th subcarriers received by first to R-th receiving antennas 12-1 to R-th receiving antennas 12-R. ˜HN are calculated (calculation step/step S1). Since the details of the calculation step have already been explained, further explanation will be omitted. Thereby, the determination device 14 acquires the channel state information H1 to HN calculated in the calculation step (acquisition step/step S2). Thus, in the acquisition step of step S2, the determination device 14 acquires the channel state information H1 to HN calculated based on the first to R-th received signals for each of the first to N-th subcarriers. do.
 次に、判定装置14は、取得ステップにおいて取得したチャネル状態情報H1~HNに基づいて、第1領域A1内の物体の位置に関連する判定、及び、天候を判定する(判定ステップ・ステップS3)。判定装置14は、判定ステップにおいて、例えば、降雨の有無を判定する。判定ステップの詳細については、既に説明を行ったのでこれ以上の説明を省略する。この後、判定装置14は、図示しない表示装置に判定結果を表示する。 Next, the determination device 14 determines the position of the object in the first area A1 and the weather based on the channel state information H1 to HN acquired in the acquisition step (determination step/step S3). . The determination device 14 determines, for example, the presence or absence of rainfall in the determination step. Since the details of the determination step have already been explained, further explanation will be omitted. Thereafter, the determination device 14 displays the determination result on a display device (not shown).
(効果)
 判定装置14によれば、自動車の車内等のような特定の第1領域A1をセンシングする新たなセンシング技術を得ることができる。より詳細には、判定装置14は、第1サブキャリアないし第Nサブキャリア毎の第1受信信号ないし第R受信信号に基づいて算出されたチャネル状態情報H1~HNを取得する。このチャネル状態情報H1~HNは、第1領域A1内の第1送信アンテナ10-1ないし第T送信アンテナ10-Tと第1受信アンテナ12-1ないし第R受信アンテナ12-Rとの間の電磁波の伝送経路の状態を示す情報である。従って、判定装置14は、チャネル状態情報H1~HNに基づいて、第1領域A1内の物体の位置に関連する判定を行うことができる。
(effect)
According to the determination device 14, it is possible to obtain a new sensing technology for sensing a specific first region A1 such as the interior of an automobile. More specifically, the determination device 14 obtains the channel state information H1 to HN calculated based on the first to Rth received signals for each of the first to Nth subcarriers. The channel state information H1 to HN is information between the first transmitting antenna 10-1 to T-th transmitting antenna 10-T and the first receiving antenna 12-1 to R-th receiving antenna 12-R in the first area A1. This is information indicating the state of the transmission path of electromagnetic waves. Therefore, the determining device 14 can make a determination related to the position of the object within the first area A1 based on the channel state information H1-HN.
 更に、雨天時のチャネル状態情報H1~HNと晴天時のチャネル状態情報H1~HNとは異なる。従って、判定装置14は、チャネル状態情報H1~HNに基づいて、自動車のキャビン(第1領域A1)内の物体の位置に関連する判定を行いつつ、自動車の位置における天候を判定できる。このように、判定装置14によれば、自動車の車内等のような特定の第1領域A1をセンシングする新たなセンシング技術を得ることができる。 Furthermore, the channel state information H1 to HN during rainy weather and the channel state information H1 to HN during fine weather are different. Therefore, the determining device 14 can determine the weather at the location of the automobile while making determinations related to the location of objects within the cabin (first area A1) of the automobile based on the channel state information H1-HN. Thus, according to the determination device 14, it is possible to obtain a new sensing technique for sensing a specific first region A1 such as the interior of an automobile.
(変形例)
 以下に、変形例に係る判定装置14aを備える送受信システム1aの構造について図面を参照しながら説明する。図9は、送受信システム1aのブロック図である。
(Modification)
The structure of the transmission/reception system 1a including the determination device 14a according to the modification will be described below with reference to the drawings. FIG. 9 is a block diagram of the transmission/reception system 1a.
 送受信システム1aは、判定装置14の代わりに判定装置14a及び演算装置16を備えている点において、送受信システム1と相違する。判定装置14aは、CPUやGPU等の処理回路である。演算装置16は、CPUやGPU等の処理回路である。このように、判定装置14aと演算装置16とは、別々の半導体集積回路により作製されている。 The transmission/reception system 1a differs from the transmission/reception system 1 in that it includes a determination device 14a and an arithmetic device 16 instead of the determination device 14. The determination device 14a is a processing circuit such as a CPU or GPU. The arithmetic device 16 is a processing circuit such as a CPU or GPU. In this way, the determination device 14a and the arithmetic device 16 are made of separate semiconductor integrated circuits.
 演算装置16は、第1サブキャリアないし第Nサブキャリアの第1受信信号ないし第R受信信号に基づいて、チャネル状態情報H1~HNを算出する。判定装置14aは、演算装置16が演算したチャネル状態情報H1~HNを取得する。これにより、判定装置14aは、第1サブキャリアないし第Nサブキャリア毎の第1受信信号ないし第R受信信号に基づいて算出されたチャネル状態情報H1~HNを取得する(取得ステップ)。更に、判定装置14aは、取得ステップにおいて取得したチャネル状態情報H1~HNに基づいて、第1領域A1内の物体の位置に関連する判定、及び、天候を判定する(判定ステップ)。送受信システム1aのその他の構造は、送受信システム1と同じであるので説明を省略する。判定装置14aは、判定装置14と同じ作用効果を奏する。 The computing device 16 calculates channel state information H1 to HN based on the first to Rth received signals of the first to Nth subcarriers. The determination device 14a acquires the channel state information H1 to HN calculated by the calculation device 16. FIG. Thereby, the determination device 14a acquires the channel state information H1 to HN calculated based on the first to R-th received signals for each of the first to N-th subcarriers (acquisition step). Furthermore, the determination device 14a determines the position of the object in the first area A1 and the weather based on the channel state information H1 to HN acquired in the acquisition step (determination step). Other structures of the transmitting/receiving system 1a are the same as those of the transmitting/receiving system 1, so the description thereof is omitted. The determination device 14 a has the same effects as the determination device 14 .
(その他の実施形態)
 本発明に係る判定装置は、判定装置14,14aに限らず、その要旨の範囲内において変更可能である。
(Other embodiments)
The determination device according to the present invention is not limited to the determination devices 14 and 14a, and can be modified within the scope of the gist thereof.
 なお、判定装置14,14aは、判定ステップにおいて、機械学習モデル以外のプログラムを用いて、天候を判定してもよい。 Note that the determination devices 14 and 14a may determine the weather using a program other than the machine learning model in the determination step.
 なお、機械学習モデルは、教師データが用いられないモデルであってもよい。 Note that the machine learning model may be a model that does not use teacher data.
 なお、判定装置14,14aは、判定ステップにおいて、降雪の有無を判定してもよい。また、判定装置14,14aは、判定ステップにおいて、降雪及び降雨の有無以外の天候を判定してもよい。降雪及び降雨の有無以外の天候は、例えば、雹の有無、火山灰の有無などが挙げられる。 Note that the determination devices 14 and 14a may determine the presence or absence of snowfall in the determination step. Further, the determination devices 14 and 14a may determine weather other than the presence or absence of snowfall and rainfall in the determination step. Weather other than snowfall and rainfall includes, for example, the presence or absence of hail, the presence or absence of volcanic ash, and the like.
 なお、判定装置14,14aは、判定ステップにおいて、前記第1領域内の物体の位置に関連する判定を行う。従って、判定装置14,14aは、物体の位置に関連する判定として、人の位置の判定、人の動作の有無の判定、及び、人以外の物の位置の判定の少なくとも一つを行ってもよい。 It should be noted that the determination devices 14 and 14a make determinations related to the position of the object within the first region in the determination step. Therefore, the determination devices 14 and 14a may perform at least one of determination of the position of a person, determination of presence or absence of motion of a person, and determination of the position of an object other than a person as determination related to the position of an object. good.
 なお、チャネル状態情報は、窓に付着する雪の有無により変化してもよい。 Note that the channel state information may change depending on the presence or absence of snow adhering to the window.
 なお、自動車は、屋根を有さないオープンカーでもよい。この場合、第1領域A1(オープンカーのキャビン)及びその周囲の空間に雨が存在することにより、第1送信アンテナ10-1ないし第T送信アンテナ10-Tと第1受信アンテナ12-1ないし第R受信アンテナ12-Rとの間の電磁波の伝送経路の状態が変化する。従って、第1領域A1(オープンカーのキャビン)及びその周囲の空間における雨の有無により、チャネル状態情報も変化する。 In addition, the car may be an open car without a roof. In this case, due to the presence of rain in the first area A1 (cabin of the open car) and its surrounding space, the first transmitting antenna 10-1 to T transmitting antenna 10-T and the first receiving antenna 12-1 to The state of the electromagnetic wave transmission path between the R-th receiving antenna 12-R changes. Therefore, the channel state information also changes depending on the presence or absence of rain in the first area A1 (cabin of the convertible) and its surrounding space.
 なお、ビークルが自律走行する場合には、ビークルには窓が不要である。この場合、ビークルのキャビンの一部が電磁波をキャビン外に透過させることができる素材により作製されていればよい。 In addition, when the vehicle runs autonomously, the vehicle does not need windows. In this case, part of the cabin of the vehicle may be made of a material that allows electromagnetic waves to pass through to the outside of the cabin.
 なお、ビークルは、走行制御を行う制御装置を備えている。この場合、制御装置は、天候の判定結果に基づいて、走行制御を行ってもよい。例えば、制御装置は、雨天におけるエンジンやモーター等の動力源の出力を晴天におけるエンジンやモーター等の動力源の出力より少なくしてもよい。また、制御装置は、雨天におけるブレーキの制動力を晴天におけるブレーキの制動力より少なくしてもよい。また、ビークルは、走行制御以外の制御を行う制御装置を備えている。この場合、制御装置は、天候の判定結果に基づいて、走行制御以外の制御を行ってもよい。例えば、制御装置は、天候の判定結果に基づいて、エアコンの制御を行ってもよい。制御装置は、天候の判定結果に基づいて、ワイパーの制御を行ってもよい。 The vehicle is equipped with a control device that controls travel. In this case, the control device may perform travel control based on the determination result of the weather. For example, the control device may reduce the output of the power source such as the engine or motor in rainy weather than the output of the power source such as engine or motor in fine weather. Also, the control device may set the braking force of the brake in rainy weather to be less than the braking force of the brake in fine weather. The vehicle also includes a control device that performs control other than travel control. In this case, the control device may perform control other than travel control based on the determination result of the weather. For example, the control device may control the air conditioner based on the weather determination result. The control device may control the wipers based on the determination result of the weather.
 なお、第1領域A1は、建物内部の空間でもよい。 Note that the first area A1 may be the space inside the building.
 なお、第1領域A1は、例えば、閉空間である。ただし、第1領域A1は、閉空間でなくてもよい。この場合、第1領域A1は、第1領域A1外の領域と繋がっていてもよい。 Note that the first area A1 is, for example, a closed space. However, the first area A1 does not have to be a closed space. In this case, the first area A1 may be connected to areas outside the first area A1.
 なお、ビークルは、自動車以外の乗り物でもよい。ビークルは、例えば、自動二輪車、自転車、飛行機、ロケット、ヘリコプター、船舶等が挙げられる。 The vehicle may be a vehicle other than an automobile. Vehicles include, for example, motorcycles, bicycles, airplanes, rockets, helicopters, and ships.
 なお、判定装置14,14aは、天候の判定結果を表示装置に表示する代わりに、天候の判定結果をスピーカーにより音声で出力してもよい。 It should be noted that the determination devices 14 and 14a may output the weather determination result by voice through a speaker instead of displaying the weather determination result on the display device.
 なお、判定装置14,14aは、チャネル状態情報H1~HNの内の一部のチャネル状態情報H1~HNに基づいて、判定ステップを行ってもよい。また、判定装置14,14aは、チャネル状態情報H1~HNの一部の成分に基づいて、判定ステップを行ってもよい。 Note that the determination devices 14 and 14a may perform the determination step based on part of the channel state information H1 to HN among the channel state information H1 to HN. Also, the determination devices 14 and 14a may perform the determination step based on some components of the channel state information H1 to HN.
 なお、判定装置14,14aは、加工されたチャネル状態情報H1~HNに基づいて、判定ステップを行ってもよい。加工されたチャネル状態情報H1~HNとは、例えば、判定ステップが行いやすいように、チャネル状態情報H1~HNから高周波成分を除去したデータである。 Note that the determination devices 14 and 14a may perform determination steps based on the processed channel state information H1 to HN. The processed channel state information H1 to HN is, for example, data obtained by removing high-frequency components from the channel state information H1 to HN so as to facilitate the determination step.
 なお、判定装置14,14aは、第1領域A1の周囲の天候の判定を行う。例えば、第1領域A1がビークルのキャビンである場合、判定装置14,14aは、ビークルのキャビンの周囲の天候を判定する。例えば、第1領域A1が建物内部の空間である場合、判定装置14,14aは、建物の周囲の天候を判定する。 Note that the determination devices 14 and 14a determine the weather around the first area A1. For example, if the first area A1 is the cabin of the vehicle, the determination device 14, 14a determines the weather around the cabin of the vehicle. For example, when the first area A1 is the space inside the building, the determination devices 14 and 14a determine the weather around the building.
1,1a:送受信システム
9:送信装置
10-1~10-T:第1送信アンテナないし第T送信アンテナ
11:受信装置
12-1~12-R:第1受信アンテナないし第R受信アンテナ
14,14a:判定装置
16:演算装置
A1:第1領域
1, 1a: transmission/reception system 9: transmission devices 10-1 to 10-T: first transmission antenna to T-th transmission antenna 11: reception devices 12-1 to 12-R: first reception antenna to R- th reception antenna 14, 14a: Determination device 16: Arithmetic device A1: First area

Claims (10)

  1.  第1送信アンテナないし第T送信アンテナから電磁波により送信された第1サブキャリアないし第Nサブキャリアの信号を第1受信アンテナないし第R受信アンテナにおいて受信する送受信システムにおいて用いられる判定装置であって、
     N、T及びRは、1以上の整数であり、
     前記第1送信アンテナないし前記第T送信アンテナ及び前記第1受信アンテナないし前記第R受信アンテナは、第1領域に配置されており、
     チャネル状態情報は、前記第1送信アンテナないし前記第T送信アンテナと前記第1受信アンテナないし前記第R受信アンテナとの間の前記電磁波の伝送経路の状態を示す情報であり、
     前記判定装置は、
     前記第1受信アンテナないし前記第R受信アンテナが受信した前記第1サブキャリアないし前記第Nサブキャリア毎の信号に基づいて算出された前記チャネル状態情報を取得する取得ステップと、
     前記取得ステップにおいて取得した前記チャネル状態情報に基づいて、前記第1領域内の物体の位置に関連する判定、及び、前記第1領域の周囲の天候の判定を行う判定ステップと、
     を実行する、
     判定装置。
    A determination device used in a transmitting/receiving system in which signals of first to Nth subcarriers transmitted by electromagnetic waves from first to Tth transmitting antennas are received by first to Rth receiving antennas,
    N, T and R are integers of 1 or more,
    The first to T-th transmitting antennas and the first to R-th receiving antennas are arranged in a first region,
    The channel state information is information indicating the state of the electromagnetic wave transmission path between the first to T-th transmitting antennas and the first to R-th receiving antennas,
    The determination device is
    an acquiring step of acquiring the channel state information calculated based on the signals of the first to Nth subcarriers received by the first to Rth receiving antennas;
    a determining step of determining a position of an object in the first area and determining weather around the first area based on the channel state information obtained in the obtaining step;
    run the
    judgment device.
  2.  前記判定装置は、
     前記第1受信アンテナないし前記第R受信アンテナが受信した前記第1サブキャリアないし前記第Nサブキャリアの信号に基づいて、前記チャネル状態情報を算出する算出ステップを、
     実行し、
     前記判定装置は、前記取得ステップにおいて算出された前記チャネル状態情報を取得する、
     請求項1に記載の判定装置。
    The determination device is
    a calculating step of calculating the channel state information based on the signals of the first to Nth subcarriers received by the first to Rth receiving antennas;
    run,
    the determining device acquires the channel state information calculated in the acquiring step;
    The determination device according to claim 1.
  3.  前記第1送信アンテナないし前記第T送信アンテナが送信する信号のそれぞれは、複素数であるx1ないしxTであり、
     前記第1受信アンテナないし前記第R受信アンテナが受信する信号のそれぞれは、複素数であるy1ないしyRで表され、
     x1ないしxT及びy1ないしyRは、式(1)ないし式(5)を満足しており、
    Figure JPOXMLDOC01-appb-M000001
    Figure JPOXMLDOC01-appb-M000002
    Figure JPOXMLDOC01-appb-M000003
    Figure JPOXMLDOC01-appb-M000004
    Figure JPOXMLDOC01-appb-M000005
     iは、1以上N以下の整数であり、
     mは、1以上R以下の整数であり、
     nは、1以上T以下の整数であり、
     Hiは、第iサブキャリアの前記チャネル状態情報であり、
     ||hmn||は、hmnの振幅であり、
    ∠hmnは、hmnの位相であり、
     niは、ノイズベクトルである、
     請求項1又は請求項2に記載の判定装置。
    each of the signals transmitted by the first to T-th transmitting antennas is a complex number x1 to xT;
    Each of the signals received by the first receiving antenna to the R-th receiving antenna is represented by a complex number y1 to yR,
    x1 to xT and y1 to yR satisfy formulas (1) to (5),
    Figure JPOXMLDOC01-appb-M000001
    Figure JPOXMLDOC01-appb-M000002
    Figure JPOXMLDOC01-appb-M000003
    Figure JPOXMLDOC01-appb-M000004
    Figure JPOXMLDOC01-appb-M000005
    i is an integer of 1 or more and N or less,
    m is an integer of 1 or more and R or less,
    n is an integer of 1 or more and T or less,
    Hi is the channel state information of the i-th subcarrier;
    ||hmn|| is the amplitude of hmn,
    ∠hmn is the phase of hmn,
    ni is the noise vector,
    The determination device according to claim 1 or 2.
  4.  前記判定装置は、前記判定ステップにおいて、機械学習モデルを用いて、天候を判定する、
     請求項1ないし請求項3のいずれかに記載の判定装置。
    The determination device uses a machine learning model to determine the weather in the determination step.
    The determination device according to any one of claims 1 to 3.
  5.  前記機械学習モデルは、前記チャネル状態情報と天候との関係を示す教師データを用いる、
     請求項4に記載の判定装置。
    The machine learning model uses teacher data indicating the relationship between the channel state information and weather.
    The determination device according to claim 4.
  6.  前記判定装置は、前記判定ステップにおいて、降雨又は降雪の有無を判定する、
     請求項1ないし請求項5のいずれかに記載の判定装置。
    The determination device, in the determination step, determines the presence or absence of rain or snow.
    The determination device according to any one of claims 1 to 5.
  7.  前記第1領域内の物体の位置が変化すると、前記チャネル状態情報が変化する、
     請求項1ないし請求項6のいずれかに記載の判定装置。
    the channel state information changes when the position of an object within the first region changes;
    The determination device according to any one of claims 1 to 6.
  8.  前記第1領域は、ビークルのキャビンであり、
     前記判定装置は、前記ビークルの位置における天候を判定する、
     請求項1ないし請求項7のいずれかに記載の判定装置。
    the first area is a vehicle cabin;
    the determining device determines weather at the location of the vehicle;
    The determination device according to any one of claims 1 to 7.
  9.  前記ビークルは、窓を有しており、
     前記窓に付着する雨又は雪の有無により、前記チャネル状態情報が変化する、
     請求項8に記載の判定装置。
    The vehicle has a window,
    The channel state information changes depending on the presence or absence of rain or snow adhering to the window.
    The determination device according to claim 8.
  10.  第1送信アンテナないし第T送信アンテナから電磁波により送信された第1サブキャリアないし第Nサブキャリアの信号を第1受信アンテナないし第R受信アンテナにおいて受信する送受信システムの判定装置において実行される判定プログラムであって、
     N、T及びRは、1以上の整数であり、
     前記第1送信アンテナないし前記第T送信アンテナ及び前記第1受信アンテナないし前記第R受信アンテナは、第1領域に配置されており、
     チャネル状態情報は、前記第1送信アンテナないし前記第T送信アンテナと前記第1受信アンテナないし前記第R受信アンテナとの間の前記電磁波の伝送経路の状態を示す情報であり、
     前記判定プログラムは、
     前記第1受信アンテナないし前記第R受信アンテナが受信した前記第1サブキャリアないし前記第Nサブキャリア毎の信号に基づいて算出された前記チャネル状態情報を取得する取得ステップと、
     前記取得ステップにおいて取得した前記チャネル状態情報に基づいて、前記第1領域内の物体の位置に関連する判定、及び、前記第1領域の周囲の天候を判定する判定ステップと、
     を前記判定装置に実行させる、
     判定プログラム。
    A determination program executed by a determination device of a transmission/reception system for receiving signals of first to Nth subcarriers transmitted by electromagnetic waves from first to Tth transmission antennas at first to Rth reception antennas and
    N, T and R are integers of 1 or more,
    The first to T-th transmitting antennas and the first to R-th receiving antennas are arranged in a first region,
    The channel state information is information indicating the state of the electromagnetic wave transmission path between the first to T-th transmitting antennas and the first to R-th receiving antennas,
    The determination program is
    an acquiring step of acquiring the channel state information calculated based on the signals of the first to Nth subcarriers received by the first to Rth receiving antennas;
    a determining step of determining a determination related to a position of an object in the first area and a weather around the first area based on the channel state information obtained in the obtaining step;
    causes the determination device to perform
    judgment program.
PCT/JP2022/047899 2022-01-12 2022-12-26 Determination device and determination program WO2023136114A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-002823 2022-01-12
JP2022002823 2022-01-12

Publications (1)

Publication Number Publication Date
WO2023136114A1 true WO2023136114A1 (en) 2023-07-20

Family

ID=87279050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/047899 WO2023136114A1 (en) 2022-01-12 2022-12-26 Determination device and determination program

Country Status (1)

Country Link
WO (1) WO2023136114A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09274077A (en) * 1996-04-04 1997-10-21 Maruyasu Kogyo Kk Sensor for movement of body
JP2004354080A (en) * 2003-05-27 2004-12-16 Nippon Telegr & Teleph Corp <Ntt> Rainfall observation device
JP2011089812A (en) * 2009-10-20 2011-05-06 Panasonic Corp Mobile unit identification apparatus, access control system, and mobile unit identification method
CN104267439A (en) * 2014-08-20 2015-01-07 哈尔滨工程大学 Unsupervised human detecting and positioning method
JP2019148428A (en) * 2018-02-26 2019-09-05 三星電子株式会社Samsung Electronics Co.,Ltd. Human detection device and human detection method
JP2020034511A (en) * 2018-08-31 2020-03-05 アイシン精機株式会社 Occupant detection device
US20210135711A1 (en) * 2019-10-31 2021-05-06 Cognitive Systems Corp. Using mimo training fields for motion detection

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09274077A (en) * 1996-04-04 1997-10-21 Maruyasu Kogyo Kk Sensor for movement of body
JP2004354080A (en) * 2003-05-27 2004-12-16 Nippon Telegr & Teleph Corp <Ntt> Rainfall observation device
JP2011089812A (en) * 2009-10-20 2011-05-06 Panasonic Corp Mobile unit identification apparatus, access control system, and mobile unit identification method
CN104267439A (en) * 2014-08-20 2015-01-07 哈尔滨工程大学 Unsupervised human detecting and positioning method
JP2019148428A (en) * 2018-02-26 2019-09-05 三星電子株式会社Samsung Electronics Co.,Ltd. Human detection device and human detection method
JP2020034511A (en) * 2018-08-31 2020-03-05 アイシン精機株式会社 Occupant detection device
US20210135711A1 (en) * 2019-10-31 2021-05-06 Cognitive Systems Corp. Using mimo training fields for motion detection

Similar Documents

Publication Publication Date Title
US11747435B2 (en) Techniques for angle resolution in radar
US10754021B2 (en) System and method for controlling operation of a vehicle using a millimeter-wave radar sensor
JP5645928B2 (en) Environmental evaluation in wireless communication systems
CN112639519B (en) Apparatus and method for two-stage signal processing in radar systems
JP2016109675A (en) Object detection device, speed detection device and vehicle
JP7257348B2 (en) ELECTRONIC DEVICE, ELECTRONIC DEVICE CONTROL METHOD, AND ELECTRONIC DEVICE CONTROL PROGRAM
CN112630768A (en) Noise reduction method for improving frequency modulation continuous wave radar target detection
WO2016021722A1 (en) Precipitation determination device
CN110346794B (en) Distributed radar imaging method for resource optimization configuration
US20160124087A1 (en) Object boundary detection for automotive radar imaging
US20200166601A1 (en) Vehicular self-positioning
US20190086509A1 (en) Synchronization of multiple radars start up time for interference mitigation
WO2014092052A1 (en) Radar apparatus
WO2023136114A1 (en) Determination device and determination program
JP2024023926A (en) Electronic device, control method for electronic device, and control program for electronic device
Schmidhammer et al. 5G signal design for road surveillance
WO2023136113A1 (en) Determination device and determination program
JP7160085B2 (en) Image processing device, image processing method and program
WO2021131601A1 (en) Radar device
US11693107B2 (en) System, device and method for efficient MIMO radar
JP2018179550A (en) Distance measuring device, distance measurement method, and program
WO2023136112A1 (en) Computation device and computation program
US20170293024A1 (en) Cognitive transmission switching
CN116507939A (en) Efficient direction of arrival estimation using low rank approximation
Tan et al. In-Vehicle Occupant Detection Based on Zone Source Feature Using MM-Wave MIMO Radar

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22920631

Country of ref document: EP

Kind code of ref document: A1