WO2023136102A1 - Light measurement method, light measurement device, data processing device, and program - Google Patents

Light measurement method, light measurement device, data processing device, and program Download PDF

Info

Publication number
WO2023136102A1
WO2023136102A1 PCT/JP2022/047667 JP2022047667W WO2023136102A1 WO 2023136102 A1 WO2023136102 A1 WO 2023136102A1 JP 2022047667 W JP2022047667 W JP 2022047667W WO 2023136102 A1 WO2023136102 A1 WO 2023136102A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
display
interest
light
sampling frequency
Prior art date
Application number
PCT/JP2022/047667
Other languages
French (fr)
Japanese (ja)
Inventor
敏 増田
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2023136102A1 publication Critical patent/WO2023136102A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J11/00Measuring the characteristics of individual optical pulses or of optical pulse trains
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N17/00Diagnosis, testing or measuring for television systems or their details
    • H04N17/04Diagnosis, testing or measuring for television systems or their details for receivers

Definitions

  • the present invention relates to an optical measurement method, an optical measurement device, a data processing device, and a program used for measuring optical waveforms of displays.
  • the light emission waveform is becoming more complex as the function and performance of the display improve.
  • OLED Organic Light-Emitting Diode
  • light emission control that combines not only amplitude modulation but also pulse width modulation is adopted for gradation control. Emissions with complex waveforms are common.
  • pulse width modulation a plurality of pulse light emission controls are performed in one frame period (vertical synchronization period), and the light emission waveform is much faster than the image update period.
  • a display color analyzer for example, CA-410 manufactured by Konica Minolta, Inc.
  • CA-410 manufactured by Konica Minolta, Inc.
  • Such a display color analyzer has an internal optical sensor equivalent to spectral responsivity to acquire fluctuations in stimulus values.
  • a sequential acquisition method that acquires instantaneous values
  • an integral acquisition method that acquires integral values over a predetermined period of time.
  • the sequential acquisition method is excellent in high speed, while the integral method is excellent in low luminance measurement performance.
  • the display brightness range of displays has been expanding more and more in recent years.
  • the emergence of self-luminous devices such as OLEDs has made it possible to control light in the extremely low luminance range, so the display luminance has greatly expanded to the low luminance side.
  • Patent Document 1 discloses a technique for determining a measurement time value by high-speed scanning in an optical measurement device (spectroscope) equipped with an array detector, and enabling synchronization of temporally discontinuous illumination light sources. disclosed.
  • the light emission waveform to be measured is becoming faster as the display evolves.
  • the amount of oversampling decreases in the display light measurement. This drop means that the acquired waveform is coarser with respect to the luminescence response.
  • Patent Document 1 does not describe the optical waveform measurement or the above-mentioned problems related to the optical waveform measurement, and therefore, even if Patent Document 1 is referred to, the above problems cannot be solved.
  • An object of the present invention is to provide an optical measurement method, an optical measurement device, a data processing device, and a program capable of performing optical waveform measurement with high accuracy.
  • stimulus value acquisition means for receiving light from the display and continuously acquiring intensity corresponding to the stimulus value at regular time intervals corresponding to a predetermined sampling frequency; setting means for setting the light amount fluctuation frequency of the display as a frequency of interest; determining means for determining the sampling frequency to be a natural number multiple of the frequency of interest set by the setting means;
  • the display light measurement device according to the above item 7 or 8, wherein the frequency of interest is different from the frequency of the vertical synchronization signal of the display and is greater than the frequency of the vertical synchronization signal.
  • the display light measurement device according to any one of the items 7 to 9, wherein the sampling frequency is 5 to 100 times the frequency of interest.
  • the determining means can set at least one of an upper limit value and a lower limit value of the sampling frequency.
  • the stimulus value acquiring means acquires an intensity corresponding to the stimulus value by an integral method.
  • the display light measuring device according to any one of the above items 7 to 12, further comprising detecting means for detecting a light amount fluctuation frequency of the light of the display in order to determine the frequency of interest.
  • a data processing device for receiving light from a display and determining a sampling frequency for continuously acquiring an intensity corresponding to a stimulus value at predetermined time intervals corresponding to a predetermined sampling frequency, setting means for setting the light amount fluctuation frequency of the display as a frequency of interest; determining means for determining the sampling frequency to be a natural number multiple of the frequency of interest set by the setting means;
  • a data processing device with The data processing apparatus according to (14) above, wherein the frequency of interest is different from the frequency of the vertical synchronization signal of the display and is higher than the frequency of the vertical synchronization signal.
  • sampling frequency is 5 to 100 times the frequency of interest.
  • the determining means can set at least one of an upper limit value and a lower limit value of the sampling frequency.
  • the stimulus value acquiring means acquires an intensity corresponding to the stimulus value by an integral method.
  • the light of the display is received, and the intensity corresponding to the stimulus value is continuously obtained at regular time intervals corresponding to the predetermined sampling frequency.
  • This sampling frequency is determined to be a natural number multiple of the frequency of interest when the frequency of fluctuations in light intensity of the display is the frequency of interest.
  • the S/N of the acquired data can be improved.
  • the frequency or period of interest can be set, and the sampling frequency can be determined to be a natural number multiple of the set frequency of interest.
  • the program according to the present invention it is possible to cause a computer to execute the process of setting the frequency or period of interest and determining the sampling frequency so as to be a natural number multiple of the set frequency of interest.
  • FIG. 1 is a block diagram showing the functional configuration of an optical measurement device according to one embodiment of the present invention
  • FIG. FIG. 3 is a waveform diagram of a display control signal (ideal conditions);
  • A) is a signal holding voltage waveform diagram in a control circuit of the display, and
  • B) is an enlarged view of a part thereof.
  • A) is a waveform diagram showing an example of an optical waveform acquisition result in this embodiment, and (B) is an enlarged view of a part thereof.
  • FIG. 5 is a waveform diagram showing an example of optical waveform acquisition results in a conventional example;
  • FIG. 10 is a waveform diagram showing an example of optical waveform acquisition results when the sampling frequency is synchronized with the vertical synchronization signal; It is a block diagram showing a functional configuration of an optical measurement device according to another embodiment of the present invention. 1 is a block diagram showing the functional configuration of a data processing device according to one embodiment of the present invention; FIG.
  • FIG. 1 is a block diagram showing the functional configuration of an optical measurement device 1 according to one embodiment of the invention.
  • the optical measurement device 1 includes an optical sensor 11, a stimulus value acquisition unit 12, an analysis unit 13, a display unit 14, a target frequency setting unit 15, a sampling frequency determination unit 16, and a communication unit. 17.
  • the optical sensor 11 is a light-receiving sensor that receives light emitted from the display 100, which is the object to be measured. It has a function of continuously acquiring data at regular time intervals and converting it into continuous data of stimulus value intensity.
  • the optical sensor 21 may be of a tristimulus value direct reading type or a spectral type.
  • the converted stimulus values include, for example, luminance, chromaticity (xy), and tristimulus values represented by XYZ. Filtering may be performed to remove noise in the continuous data conversion of stimulus values. For example, moving average processing that utilizes data before and after may be applied.
  • the stimulus value acquisition unit 20 acquires data from the optical sensor 21 by an integration method. Since the integral method has excellent S/N, it is possible to improve the measurement accuracy. On the other hand, the integration method has the disadvantage that the data acquisition speed cannot be increased as in the sequential method, but this does not pose a problem in display analysis applications. Therefore, the integration method is generally more suitable than the sequential method.
  • the analysis unit 13 analyzes the optical waveform acquired by the stimulus value acquisition unit 20 .
  • Examples of analysis include determination of presence/absence of transient response, and confirmation of waveform shape/strength (presence/absence of under/overshoot, etc.) when there is transient response.
  • the display unit 14 displays the optical waveform acquired by the stimulus value acquisition unit 20, the analysis result of the analysis unit 13, and the like.
  • the frequency-of-interest setting unit 15 sets the frequency of interest, which will be described later. Since the frequency and the period are inextricably linked, the "setting of the frequency of interest” not only sets the frequency of interest itself, but also automatically sets the frequency of interest corresponding to the period of interest by setting the period of interest. Also included when set to The settings may be made based on instructions from an external personal computer (PC) 2, or may be made based on user input. Alternatively, as will be described later, an optical waveform frequency detector may be provided, and settings may be made based on the detection result of the frequency detector. The setting of the frequency of interest based on the detection result of the frequency detection unit will also be described later.
  • PC personal computer
  • the sampling frequency determination unit 16 determines the sampling frequency for the stimulus value acquisition unit 20 to acquire the output of the optical sensor 21 . Note that "determining the sampling frequency” includes not only the determination of the sampling frequency itself, but also the case where the sampling frequency is automatically determined by determining the sampling period.
  • the communication unit 17 is a communication interface for communicating with an external device such as the PC 2.
  • the processing for setting the frequency of interest by the frequency-of-interest setting unit 15 and the processing for determining the sampling frequency by the sampling frequency determination unit 16 are performed by the processor mounted on the optical measurement device 1 operating according to a program stored in a storage unit (not shown). executed.
  • ⁇ Set target frequency> optical waveform measurement of the display 100 operating under the drive condition of the vertical synchronization signal (Vsync) frequency of 24.082 Hz will be described as an example. It should be noted that the Vsync frequency has individual variations, and here is an actual measurement value of displacement 100.
  • FIG. Light emission control is hybrid control of pulse width modulation and amplitude modulation, and the pulse number of pulse width modulation is set to four. Control signals (ideal conditions) are shown in FIG.
  • the frequency-of-interest setting unit 15 sets the light amount fluctuation frequency of the display 100 to be synchronized as the frequency of interest.
  • the optical measuring device 1 and the PC 2 are connected for communication, and the user writes data via the PC 2 .
  • the setting method there is no limitation to the setting method, and for example, a method in which the user directly writes to the optical measurement device 1 to set may be used.
  • the Vsync frequency is selected in the case of conventional luminance measurement, but a different frequency is selected in this embodiment.
  • the sampling frequency is determined to be a natural number multiple of the frequency of interest, and the stimulus value acquisition unit 12 acquires an intensity corresponding to the stimulus value at regular time intervals corresponding to the determined sampling frequency.
  • the sampling frequency magnification is preferably 5-100. If the magnification is 100 times or more, the S/N ratio becomes worse due to the higher sampling frequency, which disturbs the acquired waveform and hinders the waveform analysis. In particular, when the integration method is adopted for the output of the optical sensor 11, the integration time is shortened and the amount of signal is reduced. It is likely to disappear. On the other hand, if it is 5 times or less, a sufficient S/N ratio can be secured, but the number of data may be insufficient for waveform analysis.
  • the upper limit of the usable sampling frequency may be set and derived according to the following formula (1). This makes it possible to select the fastest sampling frequency on the condition that the S/N is ensured.
  • the upper limit frequency is set to 3 kHz from the S/N characteristics.
  • the magnification (oversampling amount) was 30 times and the sampling frequency was 2989.982 Hz.
  • the determination of the sampling frequency is not limited to the above.
  • the sampling frequency may be selected by the user from among the magnifications that are equal to or lower than the upper limit frequency.
  • the user may simply specify the magnification.
  • the selection of the magnification may be changed according to the type of measurement target, driving conditions, and the like. For example, in the case of amplitude modulation driving, the speed is set to S/N priority, and in the case of PWM modulation driving, the speed is set.
  • the signal holding voltage waveform in the control circuit of the display 100 that is, the drive control signal for each pixel of the display 100 is shown in FIG. 3(A) and its enlarged view is shown in FIG. 3(B).
  • the drive control signals shown in FIGS. 3A and 3B are actual waveforms of the control signals shown in FIG.
  • the voltage waveform measurement unlike the optical waveform measurement, allows high-speed sampling, so the sampling frequency was set to 1 MHz.
  • FIG. 4A shows an example of the optical waveform acquisition result in this embodiment (sampling frequency is 2989.982 Hz), FIG. Examples are shown in FIG. 5, respectively.
  • the sampling frequency in the conventional example is set to the upper limit frequency (3 kHz) at which the S/N can be ensured.
  • Fig. 6 shows an example of the optical waveform acquisition result when the sampling frequency is synchronized with Vsync.
  • the sampling frequency is 2962.071Hz, which is 3kHz or less.
  • the emission waveform has, for example, the following features. ⁇ Overshoot occurs, but the amount is constant and stable. ⁇ The brightness value (vertical axis in FIG. 4) is attenuated in the Vsync cycle. ⁇ The characteristics of the light emission waveform are consistent with the characteristics of the signal holding voltage waveform.
  • the electrical transient state (holding voltage) in pixel control of the display 100 can be determined by utilizing the light emission waveform analysis in this embodiment. Also, there is an effect that it becomes possible to grasp the outline without contacting the circuit without requiring a probe contact or the like.
  • the frequency-of-interest setting unit 15 sets the frequency of interest based on the input of the user or the like.
  • the optical measurement device 1 according to the second embodiment includes a frequency detection unit 18 for the optical waveform, and the target frequency setting unit 15 detects the detection result of the frequency detection unit 18. The target frequency is automatically set based on the
  • the configuration other than the frequency detection unit 18 is the same as that of the optical measurement device 1 shown in FIG. 1, so the same components are given the same reference numerals and detailed descriptions thereof are omitted.
  • Detection of the frequency by the frequency detection unit 18 can be realized, for example, by preliminary (pre) waveform measurement.
  • the light amount fluctuation period can be derived by performing pre-waveform measurement in advance and applying the autocorrelation method to the acquired data.
  • the pre-waveform measurement data is converted into a frequency spectrum by performing a discrete Fourier transform (DFT), and the light amount fluctuation frequency can be derived by frequency analysis.
  • DFT discrete Fourier transform
  • the frequency detection method is not limited to this, and other methods may be used.
  • Such frequency detection processing by the frequency detection unit 18 is executed by the processor mounted on the optical measurement device 1 operating according to a program stored in a storage unit (not shown).
  • the frequency-of-interest setting unit 15 sets, as the frequency of interest, a frequency that is, for example, the minimum value of the light intensity fluctuation period, among the frequencies detected by the frequency detection unit 18, and the sampling frequency determination unit 16 sets the frequency of interest as the frequency of interest. Then, the sampling frequency is determined in the same manner as in the first embodiment.
  • the present invention is not limited to the above embodiment.
  • the case where the target frequency setting unit 15, the sampling frequency determination unit 16, or the frequency detection unit 18 is built in the optical measurement device 1 has been described.
  • the target frequency setting unit 15, the sampling frequency determining unit 16, or the frequency detecting unit 18 is provided in the PC 2 as a data processing device separate from the optical measurement device 1, good.
  • the sampling frequency determined by the PC 2 should be read into the optical measuring device 1 and operated. If the PC 2 is provided with the frequency detector 18, the PC 2 may receive the pre-waveform measurement result performed by the optical measuring device 1, and the frequency detector 18 may obtain the light amount fluctuation frequency.
  • the processing for setting the frequency of interest by the frequency-of-interest setting unit 15, the sampling frequency determination processing by the sampling frequency determination unit 16, and the frequency detection processing by the frequency detection unit 18 are performed by the processor in the PC 2 in a storage unit (not shown). It is executed by operating according to a stored program.
  • the sampling frequency obtained by the user's calculation may be directly written into the stimulus value acquisition unit 12 of the optical measurement device 1 to operate.
  • This invention can be used for measuring optical waveforms of displays.
  • optical measuring device 1 optical measuring device 2 personal computer (data processing device) REFERENCE SIGNS LIST 11 optical sensor 12 stimulus value acquisition unit 13 analysis unit 14 display unit 15 frequency of interest setting unit 16 sampling frequency determination unit 17 communication unit 100 display

Abstract

The present invention provides a display light measurement method comprising: a stimulus value acquisition step for receiving light from a display (100) and continuously acquiring the intensity corresponding to a stimulus value at regular time intervals corresponding to a predetermined sampling frequency; a setting step for setting the light-amount fluctuation frequency of the display (100) as the frequency of interest; and a determination step for determining the sampling frequency to be a natural number multiple of the frequency of interest set in the setting step.

Description

光計測方法、光計測装置、データ処理装置及びプログラムOptical measurement method, optical measurement device, data processing device and program
 この発明は、ディスプレイの光波形の計測等に使用される光計測方法、光計測装置、データ処理装置及びプログラムに関する。 The present invention relates to an optical measurement method, an optical measurement device, a data processing device, and a program used for measuring optical waveforms of displays.
 ディスプレイの機能、性能向上に伴い、発光波形が複雑化している。例えばOLED(Organic Light-Emitting Diode)ディスプレイの場合だと、忠実な色再現を実現するために階調制御に振幅変調だけでなくパルス幅変調を組み合わせた発光制御が採用されるなど、高振幅で複雑な波形をした発光が一般化している。特にパルス幅変調においては、1フレーム期間(垂直同期周期)に複数のパルス発光制御を行っており、発光波形は画像更新周期に比べ大幅に高速化している。 The light emission waveform is becoming more complex as the function and performance of the display improve. For example, in the case of OLED (Organic Light-Emitting Diode) displays, in order to achieve faithful color reproduction, light emission control that combines not only amplitude modulation but also pulse width modulation is adopted for gradation control. Emissions with complex waveforms are common. Particularly in pulse width modulation, a plurality of pulse light emission controls are performed in one frame period (vertical synchronization period), and the light emission waveform is much faster than the image update period.
 ディスプレイからの発光波形を計測する光計測装置として、例えば、ディスプレイカラーアナライザー(一例としてコニカミノルタ株式会社製のCA-410)が知られている。このようなディスプレイカラーアナライザーは、内部に分光応答度と等価な光センサを備え、刺激値の変動を取得する。 For example, a display color analyzer (for example, CA-410 manufactured by Konica Minolta, Inc.) is known as an optical measurement device that measures the waveform of light emitted from a display. Such a display color analyzer has an internal optical sensor equivalent to spectral responsivity to acquire fluctuations in stimulus values.
 刺激値の取得には、大きく2種類の方式、つまり瞬時値を取得する逐次取得方式と、決められた時間の積分値を取得する積分取得方式がある。逐次取得方式は高速性に優れる一方、積分方式は低輝度計測性能に優れる、といった特徴を有する。 There are roughly two types of methods for acquiring stimulus values: a sequential acquisition method that acquires instantaneous values, and an integral acquisition method that acquires integral values over a predetermined period of time. The sequential acquisition method is excellent in high speed, while the integral method is excellent in low luminance measurement performance.
 ディスプレイの表示輝度域は、近年、ますます拡張している。特に、OLEDなどの自発光デバイスが台頭し、極低輝度域での調光が可能となった事から、表示輝度は低輝度側に大きく拡張している。 The display brightness range of displays has been expanding more and more in recent years. In particular, the emergence of self-luminous devices such as OLEDs has made it possible to control light in the extremely low luminance range, so the display luminance has greatly expanded to the low luminance side.
 本拡張に伴い、ディスプレイ光計測器においても、低輝度域の計測精度が重要となっている。低輝度計測時の精度向上のためには、S/Nの向上、つまりノイズを低く抑える必要がある。このため、サンプリング周波数を低く抑えることが必要となっている。 With this expansion, measurement accuracy in the low luminance range is also important for display light measurement instruments. In order to improve accuracy when measuring low luminance, it is necessary to improve S/N, that is, to keep noise low. Therefore, it is necessary to keep the sampling frequency low.
 なお、特許文献1には、アレイ検出器を備える光計測装置(分光器)において、高速スキャンすることにより測定時間値を決定し、時間的に不連続な照明光源の同期を可能とする技術が開示されている。 Patent Document 1 discloses a technique for determining a measurement time value by high-speed scanning in an optical measurement device (spectroscope) equipped with an array detector, and enabling synchronization of temporally discontinuous illumination light sources. disclosed.
米国特許公開第2005-0103979号公報US Patent Publication No. 2005-0103979
 一方で、計測対象となる発光波形はディスプレイの進化に伴い高速化している。このため、ディスプレイ光計測においてオーバーサンプリング量(信号速度fsigとサンプリング速度fsの比(fs/fsig))が低下することになる。この低下は、発光応答に対して、取得波形が粗くなることを意味する。 On the other hand, the light emission waveform to be measured is becoming faster as the display evolves. As a result, the amount of oversampling (the ratio of the signal speed fsig to the sampling speed fs (fs/fsig)) decreases in the display light measurement. This drop means that the acquired waveform is coarser with respect to the luminescence response.
 このオーバーサンプリング量が低いディスプレイ光計測装置を用いて周期性のある発光の波形を取得する場合、取得される光波形に、実際には存在しない偽の特徴が顕在化することがある。この現象は、データ取得点における発光周期の位相が取得データの時間経過に伴い変化する場合に生じる。オーバーサンプリング量が低いために取得データ間の輝度変化量が大きくなってしまうことから、偽の特徴が顕在化し易くなってしまい、低周波の振幅変調として現れる。 When acquiring periodic light emission waveforms using a display light measurement device with a low oversampling amount, spurious features that do not actually exist may appear in the acquired light waveforms. This phenomenon occurs when the phase of the emission cycle at the data acquisition point changes over time in the acquired data. Since the amount of oversampling is low, the amount of change in brightness between acquired data is large, so false features are likely to appear, and appear as low-frequency amplitude modulation.
 取得波形データの特徴をマクロ解析することで計測対象物(ディスプレイ)を評価・解析する場合、上記の様な偽の特徴が存在すると、視覚的な困難を伴いかつ心理的にもデータに対する信頼性に疑念を生じさせるといった問題が発生する。 When evaluating and analyzing the measurement object (display) by macro-analyzing the characteristics of the acquired waveform data, the presence of false characteristics such as those described above causes visual difficulties and psychologically reduces the reliability of the data. problems arise that raise suspicions about
 なお、特許文献1には光波形計測についての記述や、光波形計測に関する上記課題についての記述はなく、従って特許文献1を参照しても、上記問題を解決することはできない。 It should be noted that Patent Document 1 does not describe the optical waveform measurement or the above-mentioned problems related to the optical waveform measurement, and therefore, even if Patent Document 1 is referred to, the above problems cannot be solved.
 この発明は、このような技術的背景に鑑みてなされたものであって、取得データ間の輝度変化量が大きくなってしまい計測した光波形に偽の特徴が顕在化し易くなるという課題を解決し、精度の高い光波形計測を行うことができる光計測方法、光計測装置、データ処理装置及びプログラムの提供を目的とする。 The present invention has been made in view of such a technical background, and solves the problem that the amount of change in luminance between acquired data becomes large, and false features tend to appear in the measured light waveform. An object of the present invention is to provide an optical measurement method, an optical measurement device, a data processing device, and a program capable of performing optical waveform measurement with high accuracy.
 上記目的は以下の手段によって達成される。
(1)ディスプレイの光を受光し、刺激値に相当する強度を所定のサンプリング周波数に対応する一定時間間隔で連続的に取得する刺激値取得ステップと、
 前記ディスプレイの光量変動周波数を着目周波数として設定する設定ステップと、
 前記サンプリング周波数を、前記設定ステップで設定された前記着目周波数の自然数倍になるように決定する決定ステップと、
 を含むディスプレイ光計測方法。
(2)前記着目周波数は、ディスプレイの垂直同期信号の周波数と異なり、かつ垂直同期信号の周波数よりも大きい周波数である前項1に記載のディスプレイ光計測方法。
(3)前記サンプリング周波数は前記着目周波数の5~100倍である前項1または2に記載のディスプレイ光計測方法。
(4)前記決定ステップでは、前記サンプリング周波数の上限値と下限値の少なくとも何れかを設定可能である前項1~3の何れかに記載のディスプレイ光計測方法。
(5)前記刺激値取得ステップでは、積分方式により刺激値に相当する強度を取得する前項1~4の何れかに記載のディスプレイ光計測方法。
(6)着目周波数を決定するために、前記ディスプレイの光の光量変動周波数を検出する検出ステップを含んでいる前項1~5の何れかに記載のディスプレイ光計測方法。
(7)ディスプレイの光を受光し、刺激値に相当する強度を所定のサンプリング周波数に対応する一定時間間隔で連続的に取得する刺激値取得手段と、
 前記ディスプレイの光量変動周波数を着目周波数として設定する設定手段と、
 前記サンプリング周波数を、前記設定手段で設定された前記着目周波数の自然数倍になるように決定する決定手段と、
 を備えたディスプレイ光計測装置。
(8)ディスプレイの光を受光し、刺激値に相当する強度を所定のサンプリング周波数に対応する一定時間間隔で連続的に取得する刺激値取得手段を備え、
 前記ディスプレイの光量変動周波数を着目周波数としたとき、前記サンプリング周波数が着目周波数の自然数倍であるディスプレイ光計測装置。
(9)前記着目周波数は、ディスプレイの垂直同期信号の周波数と異なり、かつ垂直同期信号の周波数よりも大きい周波数である前項7または8に記載のディスプレイ光計測装置。
(10)前記サンプリング周波数は前記着目周波数の5~100倍である前項7~9の何れかに記載のディスプレイ光計測装置。
(11)前記決定手段は、前記サンプリング周波数の上限値と下限値の少なくとも何れかを設定可能である前項7~10の何れかに記載のディスプレイ光計測装置。
(12)前記刺激値取得手段は、積分方式により刺激値に相当する強度を取得する前項7~11の何れかに記載のディスプレイ光計測装置。
(13)着目周波数を決定するために、前記ディスプレイの光の光量変動周波数を検出する検出手段を備えている前項7~12の何れかに記載のディスプレイ光計測装置。
(14)ディスプレイの光を受光し、刺激値に相当する強度を所定のサンプリング周波数に対応する一定時間間隔で連続的に取得するための前記サンプリング周波数を決定するデータ処理装置であって、
 前記ディスプレイの光量変動周波数を着目周波数として設定する設定手段と、
 前記サンプリング周波数を、前記設定手段で設定された前記着目周波数の自然数倍になるように決定する決定手段と、
 を備えたデータ処理装置。
(15)前記着目周波数は、ディスプレイの垂直同期信号の周波数と異なり、かつ垂直同期信号の周波数よりも大きい周波数である前項14に記載のデータ処理装置。
(16)前記サンプリング周波数は前記着目周波数の5~100倍である前項14または15に記載のデータ処理装置。
(17)前記決定手段は、前記サンプリング周波数の上限値と下限値の少なくとも何れかを設定可能である前項14~16の何れかに記載のデータ処理装置。
(18)前記刺激値取得手段は、積分方式により刺激値に相当する強度を取得する前項14~17の何れかに記載のデータ処理装置。
(19)着目周波数を決定するために、前記ディスプレイの光の光量変動周波数を検出する検出手段を備えている前項14~18の何れかに記載のデータ処理装置。
(20)ディスプレイの光を受光し、刺激値に相当する強度を所定のサンプリング周波数に対応する一定時間間隔で連続的に取得するための前記サンプリング周波数を決定するコンピュータに、
 前記ディスプレイの光量変動周波数を着目周波数として設定する設定ステップと、
 前記サンプリング周波数を、前記設定ステップで設定された前記着目周波数の自然数倍になるように決定する決定ステップと、
 を実行させるためのプログラム。
(21)前記着目周波数は、ディスプレイの垂直同期信号の周波数と異なり、かつ垂直同期信号の周波数よりも大きい周波数である前項20に記載のプログラム。
(22)前記サンプリング周波数は前記着目周波数の5~100倍である前項20または21に記載のプログラム。
(23)前記決定ステップでは、前記サンプリング周波数の上限値と下限値の少なくとも何れかを設定可能である前項20~22の何れかに記載のプログラム。
(24)前記刺激値強度は積分方式により取得された刺激値に相当する強度である前項20~23の何れかに記載のプログラム。
(25)着目周波数を決定するために、前記ディスプレイの光の光量変動周波数を検出する検出プログラムをさらにコンピュータに実行させる前項20~24の何れかに記載のプログラム。
The above objects are achieved by the following means.
(1) a stimulus value acquisition step of receiving light from a display and continuously acquiring an intensity corresponding to a stimulus value at regular time intervals corresponding to a predetermined sampling frequency;
a setting step of setting the light amount fluctuation frequency of the display as a frequency of interest;
a determination step of determining the sampling frequency to be a natural number multiple of the frequency of interest set in the setting step;
display light measurement method including;
(2) The display light measurement method according to (1) above, wherein the frequency of interest is different from the frequency of the vertical synchronization signal of the display and is higher than the frequency of the vertical synchronization signal.
(3) The display light measurement method according to (1) or (2) above, wherein the sampling frequency is 5 to 100 times the frequency of interest.
(4) The display light measurement method according to any one of the preceding items 1 to 3, wherein at least one of an upper limit value and a lower limit value of the sampling frequency can be set in the determining step.
(5) The display light measurement method according to any one of (1) to (4) above, wherein in the stimulus value acquisition step, an intensity corresponding to the stimulus value is acquired by an integration method.
(6) The display light measurement method according to any one of the preceding items 1 to 5, which includes a detection step of detecting a light amount fluctuation frequency of the light of the display in order to determine the frequency of interest.
(7) stimulus value acquisition means for receiving light from the display and continuously acquiring intensity corresponding to the stimulus value at regular time intervals corresponding to a predetermined sampling frequency;
setting means for setting the light amount fluctuation frequency of the display as a frequency of interest;
determining means for determining the sampling frequency to be a natural number multiple of the frequency of interest set by the setting means;
A display optical measurement device with
(8) Stimulus value acquiring means for receiving light from the display and continuously acquiring intensity corresponding to the stimulus value at regular time intervals corresponding to a predetermined sampling frequency;
The display light measurement device, wherein the sampling frequency is a natural number multiple of the frequency of interest when the frequency of fluctuations in light intensity of the display is the frequency of interest.
(9) The display light measurement device according to the above item 7 or 8, wherein the frequency of interest is different from the frequency of the vertical synchronization signal of the display and is greater than the frequency of the vertical synchronization signal.
(10) The display light measurement device according to any one of the items 7 to 9, wherein the sampling frequency is 5 to 100 times the frequency of interest.
(11) The display light measuring device according to any one of the items 7 to 10, wherein the determining means can set at least one of an upper limit value and a lower limit value of the sampling frequency.
(12) The display light measuring device according to any one of the items 7 to 11 above, wherein the stimulus value acquiring means acquires an intensity corresponding to the stimulus value by an integral method.
(13) The display light measuring device according to any one of the above items 7 to 12, further comprising detecting means for detecting a light amount fluctuation frequency of the light of the display in order to determine the frequency of interest.
(14) A data processing device for receiving light from a display and determining a sampling frequency for continuously acquiring an intensity corresponding to a stimulus value at predetermined time intervals corresponding to a predetermined sampling frequency,
setting means for setting the light amount fluctuation frequency of the display as a frequency of interest;
determining means for determining the sampling frequency to be a natural number multiple of the frequency of interest set by the setting means;
A data processing device with
(15) The data processing apparatus according to (14) above, wherein the frequency of interest is different from the frequency of the vertical synchronization signal of the display and is higher than the frequency of the vertical synchronization signal.
(16) The data processing device according to (14) or (15) above, wherein the sampling frequency is 5 to 100 times the frequency of interest.
(17) The data processing apparatus according to any one of (14) to (16) above, wherein the determining means can set at least one of an upper limit value and a lower limit value of the sampling frequency.
(18) The data processing apparatus according to any one of (14) to (17) above, wherein the stimulus value acquiring means acquires an intensity corresponding to the stimulus value by an integral method.
(19) The data processing apparatus according to any one of (14) to (18) above, further comprising detecting means for detecting a light amount fluctuation frequency of the light of the display in order to determine the frequency of interest.
(20) to a computer that receives the light of the display and determines the sampling frequency for continuously acquiring the intensity corresponding to the stimulus value at regular time intervals corresponding to the predetermined sampling frequency;
a setting step of setting the light amount fluctuation frequency of the display as a frequency of interest;
a determination step of determining the sampling frequency to be a natural number multiple of the frequency of interest set in the setting step;
program to run the
(21) The program according to (20) above, wherein the frequency of interest is different from the frequency of the vertical synchronizing signal of the display and is greater than the frequency of the vertical synchronizing signal.
(22) The program according to item 20 or 21, wherein the sampling frequency is 5 to 100 times the frequency of interest.
(23) The program according to any one of (20) to (22) above, wherein at least one of an upper limit value and a lower limit value of the sampling frequency can be set in the determining step.
(24) The program according to any one of (20) to (23) above, wherein the stimulus value intensity is an intensity corresponding to a stimulus value obtained by an integral method.
(25) The program according to any one of the preceding items 20 to 24, further causing the computer to execute a detection program for detecting the light amount fluctuation frequency of the light of the display in order to determine the frequency of interest.
 この発明に係る光計測方法及び光計測装置によれば、ディスプレイの光を受光し、刺激値に相当する強度が所定のサンプリング周波数に対応する一定時間間隔で連続的に取得される。このサンプリング周波数は、前記ディスプレイの光量変動周波数を着目周波数とすると着目周波数の自然数倍になるように決定される。これによって、計測した光波形に偽の特徴が顕在化するのを防止でき、精度の高いディスプレイの光波形計測を行うことができる。 According to the optical measurement method and the optical measurement device according to the present invention, the light of the display is received, and the intensity corresponding to the stimulus value is continuously obtained at regular time intervals corresponding to the predetermined sampling frequency. This sampling frequency is determined to be a natural number multiple of the frequency of interest when the frequency of fluctuations in light intensity of the display is the frequency of interest. As a result, it is possible to prevent false characteristics from appearing in the measured optical waveform, and it is possible to measure the optical waveform of the display with high accuracy.
 また、低速サンプリングが可能になることから、取得データのS/Nを向上することができる。 In addition, since low-speed sampling is possible, the S/N of the acquired data can be improved.
 この発明に係るデータ処理装置によれば、前記着目周波数または周期を設定し、設定された着目周波数の自然数倍になるように前記サンプリング周波数を決定することができる。 According to the data processing device of the present invention, the frequency or period of interest can be set, and the sampling frequency can be determined to be a natural number multiple of the set frequency of interest.
 この発明に係るプログラムによれば、前記着目周波数または周期を設定し、設定された着目周波数の自然数倍になるように前記サンプリング周波数を決定する処理を、コンピュータに実行させることができる。 According to the program according to the present invention, it is possible to cause a computer to execute the process of setting the frequency or period of interest and determining the sampling frequency so as to be a natural number multiple of the set frequency of interest.
この発明の一実施形態に係る光計測装置の機能構成を示すブロック図である。1 is a block diagram showing the functional configuration of an optical measurement device according to one embodiment of the present invention; FIG. ディスプレイの制御信号(理想条件)の波形図である。FIG. 3 is a waveform diagram of a display control signal (ideal conditions); (A)はディスプレイの制御回路における信号保持電圧波形図、(B)はその一部の拡大図である。(A) is a signal holding voltage waveform diagram in a control circuit of the display, and (B) is an enlarged view of a part thereof. (A)は本実施形態での光波形取得結果例を示す波形図、(B)はその一部の拡大図である。(A) is a waveform diagram showing an example of an optical waveform acquisition result in this embodiment, and (B) is an enlarged view of a part thereof. 従来例での光波形取得結果例を示す波形図である。FIG. 5 is a waveform diagram showing an example of optical waveform acquisition results in a conventional example; サンプリング周波数を垂直同期信号に同期させた場合の光波形取得結果例を示す波形図である。FIG. 10 is a waveform diagram showing an example of optical waveform acquisition results when the sampling frequency is synchronized with the vertical synchronization signal; この発明の他の実施形態に係る光計測装置の機能構成を示すブロック図である。It is a block diagram showing a functional configuration of an optical measurement device according to another embodiment of the present invention. この発明の一実施形態に係るデータ処理装置の機能構成を示すブロック図である。1 is a block diagram showing the functional configuration of a data processing device according to one embodiment of the present invention; FIG.
 以下、この発明の実施形態を図面に基づいて説明する。
[第1の実施形態}
<光計測装置の構成>
 図1は、この発明の一実施形態に係る光計測装置1の機能構成を示すブロック図である。図1に示すように、光計測装置1は光センサ11と、刺激値取得部12と、解析部13と、表示部14と、着目周波数設定部15と、サンプリング周波数決定部16と、通信部17を備えている。
Embodiments of the present invention will be described below with reference to the drawings.
[First embodiment]
<Configuration of optical measurement device>
FIG. 1 is a block diagram showing the functional configuration of an optical measurement device 1 according to one embodiment of the invention. As shown in FIG. 1, the optical measurement device 1 includes an optical sensor 11, a stimulus value acquisition unit 12, an analysis unit 13, a display unit 14, a target frequency setting unit 15, a sampling frequency determination unit 16, and a communication unit. 17.
 光センサ11は、計測対象物であるディスプレイ100から発光された光を受光する受光センサであり、刺激値取得部20は、光センサ21の出力を後述する方法で決定されたサンプリング周波数に対応する一定時間間隔にて連続的に取得し、それを刺激値強度の連続データに変換する機能を有する。 The optical sensor 11 is a light-receiving sensor that receives light emitted from the display 100, which is the object to be measured. It has a function of continuously acquiring data at regular time intervals and converting it into continuous data of stimulus value intensity.
 光センサ21は、三刺激値直読型でも良いし分光型でも良い。変換される刺激値は、例えば、輝度、色度(xy)、XYZで示される三刺激値などがある。刺激値の連続データ変換において、ノイズを除去するためにフィルタ処理を実施しても良い。例えば、前後データを活用した移動平均処理を適用しても良い。 The optical sensor 21 may be of a tristimulus value direct reading type or a spectral type. The converted stimulus values include, for example, luminance, chromaticity (xy), and tristimulus values represented by XYZ. Filtering may be performed to remove noise in the continuous data conversion of stimulus values. For example, moving average processing that utilizes data before and after may be applied.
 本実施形態では、刺激値取得部20は、積分方式により光センサ21のデータを取得する。積分方式はS/Nが優れるので計測精度を向上させる事ができる。一方で積分方式は逐次方式のようにデータ取得速度を大きくできないという欠点があるが、ディスプレイ解析用途においては問題とならない。従って、総合的に逐次方式よりも積分方式の方が好適となる。 In this embodiment, the stimulus value acquisition unit 20 acquires data from the optical sensor 21 by an integration method. Since the integral method has excellent S/N, it is possible to improve the measurement accuracy. On the other hand, the integration method has the disadvantage that the data acquisition speed cannot be increased as in the sequential method, but this does not pose a problem in display analysis applications. Therefore, the integration method is generally more suitable than the sequential method.
 解析部13は、刺激値取得部20で取得された光波形を解析する。解析の例としては、過渡応答の有無判断や、過渡応答が有った場合の波形の形状・強度確認(アンダー/オーバーシュートの有無等)を挙げることができる。 The analysis unit 13 analyzes the optical waveform acquired by the stimulus value acquisition unit 20 . Examples of analysis include determination of presence/absence of transient response, and confirmation of waveform shape/strength (presence/absence of under/overshoot, etc.) when there is transient response.
 表示部14は、刺激値取得部20で取得された光波形や、解析部13の解析結果等を表示する。 The display unit 14 displays the optical waveform acquired by the stimulus value acquisition unit 20, the analysis result of the analysis unit 13, and the like.
 着目周波数設定部15は後述する着目周波数を設定する。周波数と周期は表裏一体の関係にあることから、「着目周波数の設定」には、着目周波数そのものの設定のみならず、着目周期を設定することによって、その着目周期に対応する着目周波数が自動的に設定される場合も含まれる。設定は外部のパーソナルコンピュータ(PC)2からの指示に基づいて行われても良いし、ユーザーの入力に基づいて行われても良い。あるいは、後述するように、光波形の周波数検知部を設け、周波数検知部の検知結果を基に設定しても良い。周波数検知部の検知結果を基にした着目周波数の設定についても後述する。 The frequency-of-interest setting unit 15 sets the frequency of interest, which will be described later. Since the frequency and the period are inextricably linked, the "setting of the frequency of interest" not only sets the frequency of interest itself, but also automatically sets the frequency of interest corresponding to the period of interest by setting the period of interest. Also included when set to The settings may be made based on instructions from an external personal computer (PC) 2, or may be made based on user input. Alternatively, as will be described later, an optical waveform frequency detector may be provided, and settings may be made based on the detection result of the frequency detector. The setting of the frequency of interest based on the detection result of the frequency detection unit will also be described later.
 サンプリング周波数決定部16は、刺激値取得部20が光センサ21の出力を取得するためのサンプリング周波数を決定する。なお、「サンプリング周波数の決定」には、サンプリング周波数そのものの決定のみならず、サンプリング周期の決定により、サンプリング周波数が自動的に決定される場合も含まれる。 The sampling frequency determination unit 16 determines the sampling frequency for the stimulus value acquisition unit 20 to acquire the output of the optical sensor 21 . Note that "determining the sampling frequency" includes not only the determination of the sampling frequency itself, but also the case where the sampling frequency is automatically determined by determining the sampling period.
 通信部17は、外部の装置例えばPC2等と通信するための通信インターフェースである。 The communication unit 17 is a communication interface for communicating with an external device such as the PC 2.
 着目周波数設定部15による着目周波数の設定処理、サンプリング周波数決定部16によるサンプリング周波数の決定処理は、光計測装置1に搭載されたプロセッサが、図示しない記憶部に格納されたプログラムに従って動作することにより実行される。
<着目周波数の設定>
 この実施形態では、垂直同期信号(Vsync)の周波数24.082Hzの駆動条件で動作しているディスプレイ100の光波形計測を例に取って説明する。なお、Vsync周波数は、個体バラツキがあり、ここではディスプレイス100の実測値である。発光制御はパルス幅変調と振幅変調のハイブリッド制御であり、パルス幅変調のパルス数は4とした。制御信号(理想条件)を図2に示す。
The processing for setting the frequency of interest by the frequency-of-interest setting unit 15 and the processing for determining the sampling frequency by the sampling frequency determination unit 16 are performed by the processor mounted on the optical measurement device 1 operating according to a program stored in a storage unit (not shown). executed.
<Set target frequency>
In this embodiment, optical waveform measurement of the display 100 operating under the drive condition of the vertical synchronization signal (Vsync) frequency of 24.082 Hz will be described as an example. It should be noted that the Vsync frequency has individual variations, and here is an actual measurement value of displacement 100. FIG. Light emission control is hybrid control of pulse width modulation and amplitude modulation, and the pulse number of pulse width modulation is set to four. Control signals (ideal conditions) are shown in FIG.
 着目周波数設定部15は、同期させたいディスプレイ100の光量変動周波数を着目周波数として設定する。この例では、光計測装置1とPC2を通信接続し、ユーザーがPC2を介して書き込む方式とした。ただし前述したように、設定方式に限定は無く、例えばユーザーが光計測装置1に直接書き込んで設定する方式でも良い。
着目周波数は、従来の輝度計測の場合だとVsync周波数を選択するが、本実施形態では異なる周波数を選択する。光波形計測においては、光量変動周期の最小値となる周波数を選択することが好ましい。具体的には、本実施形態の場合、着目周波数は従来のVsync周波数24.082Hzではなく、パルス幅変調制御を実施している周期が光量変動周期の最小値となり、その周波数は24.082×4=96.328Hzとなる。
<サンプリング周波数の決定>
 サンプリング周波数を着目周波数の自然数倍となるように決定し、決定したサンプリング周波数に対応する一定時間間隔で刺激値取得部12は刺激値に相当する強度を取得する。サンプリング周波数を着目周波数の自然数倍となるように決定することで、刺激値取得部12によるデータ取得点における発光周期の位相を揃えることが可能となり、偽の特徴の発現が解消できるようになる。
The frequency-of-interest setting unit 15 sets the light amount fluctuation frequency of the display 100 to be synchronized as the frequency of interest. In this example, the optical measuring device 1 and the PC 2 are connected for communication, and the user writes data via the PC 2 . However, as described above, there is no limitation to the setting method, and for example, a method in which the user directly writes to the optical measurement device 1 to set may be used.
For the frequency of interest, the Vsync frequency is selected in the case of conventional luminance measurement, but a different frequency is selected in this embodiment. In optical waveform measurement, it is preferable to select a frequency that is the minimum value of the light intensity fluctuation period. Specifically, in the case of this embodiment, the frequency of interest is not the conventional Vsync frequency of 24.082 Hz, but the period during which pulse width modulation control is performed is the minimum value of the light amount fluctuation period, and the frequency is 24.082×4=96.328. Hz.
<Determination of sampling frequency>
The sampling frequency is determined to be a natural number multiple of the frequency of interest, and the stimulus value acquisition unit 12 acquires an intensity corresponding to the stimulus value at regular time intervals corresponding to the determined sampling frequency. By determining the sampling frequency so as to be a natural number multiple of the frequency of interest, it becomes possible to align the phases of the light emission cycles at the data acquisition points of the stimulus value acquisition unit 12, thereby eliminating the appearance of false features. .
 サンプリング周波数の倍率(オーバーサンプリング量)は、5~100とすることが好ましい。100倍以上では、サンプリング周波数の高速化によりS/Nが悪くなってしまうことから、取得波形に乱れが生じ波形解析に支障が生じる。特に光センサ11の出力に積分方式を採用している場合においては、積分時間が短くなってしまうことから信号量が少なくなってしまい、積分方式の特徴である「高S/N」が発揮できなくなる恐れがある。一方、5倍以下の場合では、十分なS/Nを確保できるが、波形解析としてはデータ数が不十分となる恐れがある。 The sampling frequency magnification (oversampling amount) is preferably 5-100. If the magnification is 100 times or more, the S/N ratio becomes worse due to the higher sampling frequency, which disturbs the acquired waveform and hinders the waveform analysis. In particular, when the integration method is adopted for the output of the optical sensor 11, the integration time is shortened and the amount of signal is reduced. It is likely to disappear. On the other hand, if it is 5 times or less, a sufficient S/N ratio can be secured, but the number of data may be insufficient for waveform analysis.
 また、使用可能なサンプリング周波数の上限値を設け、下記式(1)に従い導出しても良い。これにより、S/Nを確保する条件において最速のサンプリング周波数を選択可能となる。 Alternatively, the upper limit of the usable sampling frequency may be set and derived according to the following formula (1). This makes it possible to select the fastest sampling frequency on the condition that the S/N is ensured.
 サンプリング周波数=着目周波数×自然数=着目周波数×Int(上限周波数/着目周波数)   ・・・式(1)
 本実施形態では、上限周波数をS/N特性から3kHzに設定した。その結果、倍率(オーバーサンプリング量)は30倍、サンプリング周波数は2989.982Hzとなった。
Sampling frequency=Frequency of interest×Natural number=Frequency of interest×Int(Upper limit frequency/Frequency of interest) Equation (1)
In this embodiment, the upper limit frequency is set to 3 kHz from the S/N characteristics. As a result, the magnification (oversampling amount) was 30 times and the sampling frequency was 2989.982 Hz.
 なお、サンプリング周波数の決定は、上記に限定されない。例えば、上限周波数以下となる倍率の中から、ユーザーが選択したものをサンプリング周波数として決定しても良い。 また、別の例としては、単純にユーザーが倍率を指定することで決定しても良い。 It should be noted that the determination of the sampling frequency is not limited to the above. For example, the sampling frequency may be selected by the user from among the magnifications that are equal to or lower than the upper limit frequency. As another example, the user may simply specify the magnification.
 倍率の選択は、測定対象種や駆動条件などに合わせて変更しても良い。例えば振幅変調駆動であれば低速にしてS/N優先とし、PWM変調駆動であれば高速にするなどである。 S/N優先モードでは、ユーザーが予め最低倍率もしくは下限周波数(最低倍率=Roundup(下限周波数/着目周波数))を設定できるようしても良い。この様に構成することで、ユーザー操作を簡略化できる。なお、サンプリング周波数の上限値と下限値の一方だけでなく、両方を設定しても良い。
<実施例の効果>
 まず、ディスプレイ100の制御回路における信号保持電圧波形、つまりディスプレイ100の各画素の駆動制御信号を図3(A)に、その拡大図を図3(B)にそれぞれ示す。図3(A)(B)に示す駆動制御信号は図2に示した制御信号の実際の波形である。なお、電圧波形計測は、光波形計測と異なり高速サンプリングが可能なため、サンプリング周波数は1MHzとした。
The selection of the magnification may be changed according to the type of measurement target, driving conditions, and the like. For example, in the case of amplitude modulation driving, the speed is set to S/N priority, and in the case of PWM modulation driving, the speed is set. In the S/N priority mode, the user may be allowed to set the minimum magnification or the lower limit frequency (minimum magnification=Roundup (lower limit frequency/frequency of interest)) in advance. By configuring in this manner, user operations can be simplified. Note that not only one of the upper limit value and the lower limit value of the sampling frequency, but both of them may be set.
<Effect of Example>
First, the signal holding voltage waveform in the control circuit of the display 100, that is, the drive control signal for each pixel of the display 100 is shown in FIG. 3(A) and its enlarged view is shown in FIG. 3(B). The drive control signals shown in FIGS. 3A and 3B are actual waveforms of the control signals shown in FIG. The voltage waveform measurement, unlike the optical waveform measurement, allows high-speed sampling, so the sampling frequency was set to 1 MHz.
 図3(A)(B)に示す電圧波形は、図2(A)(B)の理想条件での制御信号に対して以下の特徴を有する歪みが観測される。
・オーバーシュートが観測される。オーバーシュート量は概ね一定値である。
・保持電圧は、Vsync周期で減衰が生じている。
In the voltage waveforms shown in FIGS. 3A and 3B, distortion having the following characteristics is observed with respect to the control signal under the ideal conditions of FIGS. 2A and 2B.
・Overshoot is observed. The amount of overshoot is approximately a constant value.
・The holding voltage is attenuated in the Vsync cycle.
 次に、本実施形態(サンプリング周波数は2989.982Hz)での光波形取得結果例を図4(A)に、その一部の拡大図を図4(B)に、従来例での光波形取得結果例を図5に、それぞれ示す。なお、従来例におけるサンプリング周波数は、S/N確保が可能となる上限周波数(3kHz)に設定している。 Next, FIG. 4A shows an example of the optical waveform acquisition result in this embodiment (sampling frequency is 2989.982 Hz), FIG. Examples are shown in FIG. 5, respectively. Incidentally, the sampling frequency in the conventional example is set to the upper limit frequency (3 kHz) at which the S/N can be ensured.
 参考までに、サンプリング周波数をVsyncに同期させた場合の光波形取得結果例を図6に示す。サンプリング周波数は、3kHz以下の2962.071Hzとしている。 For reference, Fig. 6 shows an example of the optical waveform acquisition result when the sampling frequency is synchronized with Vsync. The sampling frequency is 2962.071Hz, which is 3kHz or less.
 図4(A)(B)から理解されるように、本実施形態では、偽の特徴(振幅変調)が解消されており、発光波形に例えば以下の特徴があることを容易に把握できる。
・オーバーシュートを生じているが、その量は一定で安定している。
・輝度値(図4の縦軸)についてはVsync周期の減衰が生じている。
・発光波形の特徴は、信号保持電圧波形の特徴と一致している。
As can be understood from FIGS. 4A and 4B, in this embodiment, false features (amplitude modulation) are eliminated, and it can be easily understood that the emission waveform has, for example, the following features.
・Overshoot occurs, but the amount is constant and stable.
・The brightness value (vertical axis in FIG. 4) is attenuated in the Vsync cycle.
・The characteristics of the light emission waveform are consistent with the characteristics of the signal holding voltage waveform.
 なお、発光波形の特徴が信号保持電圧波形の特徴と一致していることから、本実施形態における発光波形解析を活用することにより、ディスプレイ100の画素制御における電気的な過渡状態(保持電圧)を、回路へのプローブ接触等を必要とすることなく非接触で概略把握出来るようになる効果もある。 Since the characteristics of the light emission waveform match the characteristics of the signal holding voltage waveform, the electrical transient state (holding voltage) in pixel control of the display 100 can be determined by utilizing the light emission waveform analysis in this embodiment. Also, there is an effect that it becomes possible to grasp the outline without contacting the circuit without requiring a probe contact or the like.
 これに対し、従来のサンプリング周波数で取得した図5の光波形では、輝度値がVsync周期の減衰とは異なる変動を生じており、従って信号保持電圧波形の特徴と異なる偽の特徴(振幅変調)が存在している。またサンプリング周波数をVsyncに同期させた図6の場合においても、不十分であることがわかる。
[第2の実施形態}
 第1の実施形態に係る光計測装置1では、着目周波数設定部15はユーザー等の入力を基に着目周波数を設定した。これに対し、第2の実施形態に係る光計測装置1は、図7に示すように、光波形に対する周波数検知部18を備えており、着目周波数設定部15は周波数検知部18の検知結果を基に自動で着目周波数を設定する。
On the other hand, in the optical waveform in FIG. 5 acquired at the conventional sampling frequency, the luminance value changes differently from the decay of the Vsync period, and thus a false feature (amplitude modulation) different from the feature of the signal holding voltage waveform. exists. Also in the case of FIG. 6 in which the sampling frequency is synchronized with Vsync, it is found to be insufficient.
[Second embodiment]
In the optical measuring device 1 according to the first embodiment, the frequency-of-interest setting unit 15 sets the frequency of interest based on the input of the user or the like. On the other hand, as shown in FIG. 7, the optical measurement device 1 according to the second embodiment includes a frequency detection unit 18 for the optical waveform, and the target frequency setting unit 15 detects the detection result of the frequency detection unit 18. The target frequency is automatically set based on the
 なお、図7において、周波数検知部18以外の構成は図1に示した光計測装置1と同じであるため、同一構成部分については同一の符号を付し詳細な説明は省略する。 7, the configuration other than the frequency detection unit 18 is the same as that of the optical measurement device 1 shown in FIG. 1, so the same components are given the same reference numerals and detailed descriptions thereof are omitted.
 周波数検知部18による周波数の検知は、例えば、予備(プレ)波形計測により実現可能である。例えば波形解析的手法であれば、プレ波形計測を予め行い、その取得データに対して自己相関法を適用することで光量変動周期を導出できる。また、周波数解析的手法であれば、プレ波形計測データを離散フーリエ変換(DFT)することで周波数スペクトルに変換し、それを周波数解析することで光量変動周波数を導出できる。周波数の検知方法はこれに限定されず、他の方法でも良い。 Detection of the frequency by the frequency detection unit 18 can be realized, for example, by preliminary (pre) waveform measurement. For example, in the case of a waveform analysis method, the light amount fluctuation period can be derived by performing pre-waveform measurement in advance and applying the autocorrelation method to the acquired data. In addition, if it is a frequency analysis method, the pre-waveform measurement data is converted into a frequency spectrum by performing a discrete Fourier transform (DFT), and the light amount fluctuation frequency can be derived by frequency analysis. The frequency detection method is not limited to this, and other methods may be used.
 このような周波数検知部18による周波数検知処理は、光計測装置1に搭載されたプロセッサが図示しない記憶部に格納されたプログラムに従って動作することにより実行される。 Such frequency detection processing by the frequency detection unit 18 is executed by the processor mounted on the optical measurement device 1 operating according to a program stored in a storage unit (not shown).
 着目周波数設定部15は周波数検知部18により検知された周波数の中から、例えば光量変動周期の最小値となる周波数を着目周波数として設定し、サンプリング周波数決定部16は、設定された着目周波数を基に、第1の実施形態と同様にしてサンプリング周波数を決定する。 The frequency-of-interest setting unit 15 sets, as the frequency of interest, a frequency that is, for example, the minimum value of the light intensity fluctuation period, among the frequencies detected by the frequency detection unit 18, and the sampling frequency determination unit 16 sets the frequency of interest as the frequency of interest. Then, the sampling frequency is determined in the same manner as in the first embodiment.
 このように、周波数検知部18を設けることにより、発光周期の固体バラツキにより生じてしまう偽の特徴を解消できるようになるとか、周波数の設定の手間を省くことが可能になるといった効果がある。 By providing the frequency detection unit 18 in this way, it is possible to eliminate false characteristics caused by individual variations in the light emission period, and to save the trouble of setting the frequency.
 以上、本発明の一実施形態を説明したが、本発明は上記実施形態に限定されることはない。例えば、着目周波数設定部15やサンプリング周波数決定部16、あるいはさらに周波数検知部18が、光計測装置1に内蔵されている場合について説明した。しかし、図8に示すように、着目周波数設定部15やサンプリング周波数決定部16、あるいはさらに周波数検知部18が、光計測装置1とは別のデータ処理装置としてのPC2内に備えられていても良い。この場合は、PC2で決定されたサンプリング周波数を光計測装置1に読み込ませて動作させれば良い。また、PC2に周波数検知部18が備えられている場合は、光計測装置1が行ったプレ波形計測結果をPC2が受信して、周波数検知部18が光量変動周波数を求めれば良い。 Although one embodiment of the present invention has been described above, the present invention is not limited to the above embodiment. For example, the case where the target frequency setting unit 15, the sampling frequency determination unit 16, or the frequency detection unit 18 is built in the optical measurement device 1 has been described. However, as shown in FIG. 8, even if the target frequency setting unit 15, the sampling frequency determining unit 16, or the frequency detecting unit 18 is provided in the PC 2 as a data processing device separate from the optical measurement device 1, good. In this case, the sampling frequency determined by the PC 2 should be read into the optical measuring device 1 and operated. If the PC 2 is provided with the frequency detector 18, the PC 2 may receive the pre-waveform measurement result performed by the optical measuring device 1, and the frequency detector 18 may obtain the light amount fluctuation frequency.
 この場合、着目周波数設定部15による着目周波数の設定処理、サンプリング周波数決定部16によるサンプリング周波数の決定処理、あるいはさらに周波数検知部18による周波数検知処理等は、PC2内のプロセッサが図示しない記憶部に格納されたプログラムに従って動作することにより実行される。 In this case, the processing for setting the frequency of interest by the frequency-of-interest setting unit 15, the sampling frequency determination processing by the sampling frequency determination unit 16, and the frequency detection processing by the frequency detection unit 18 are performed by the processor in the PC 2 in a storage unit (not shown). It is executed by operating according to a stored program.
 また、ユーザーが演算により求めたサンプリング周波数を、光計測装置1の刺激値取得部12に直接に書き込んで動作させても良い。 Alternatively, the sampling frequency obtained by the user's calculation may be directly written into the stimulus value acquisition unit 12 of the optical measurement device 1 to operate.
 本願は、2022年1月11日付で出願された日本国特許出願の特願2022-002147号の優先権主張を伴うものであり、その開示内容は、そのまま本願の一部を構成するものである。 This application claims the priority of Japanese Patent Application No. 2022-002147 filed on January 11, 2022, the disclosure of which constitutes a part of this application as it is. .
 この発明は、ディスプレイの光波形の計測等に利用可能である。 This invention can be used for measuring optical waveforms of displays.
 1  光計測装置
 2  パーソナルコンピュータ(データ処理装置)
 11 光センサ
 12 刺激値取得部
 13 解析部
 14 表示部
 15 着目周波数設定部
 16 サンプリング周波数決定部
 17 通信部
 100 ディスプレイ
1 optical measuring device 2 personal computer (data processing device)
REFERENCE SIGNS LIST 11 optical sensor 12 stimulus value acquisition unit 13 analysis unit 14 display unit 15 frequency of interest setting unit 16 sampling frequency determination unit 17 communication unit 100 display

Claims (25)

  1.  ディスプレイの光を受光し、刺激値に相当する強度を所定のサンプリング周波数に対応する一定時間間隔で連続的に取得する刺激値取得ステップと、
     前記ディスプレイの光量変動周波数を着目周波数として設定する設定ステップと、
     前記サンプリング周波数を、前記設定ステップで設定された前記着目周波数の自然数倍になるように決定する決定ステップと、
     を含むディスプレイ光計測方法。
    a stimulus value acquisition step of receiving light from the display and continuously acquiring an intensity corresponding to the stimulus value at regular time intervals corresponding to a predetermined sampling frequency;
    a setting step of setting the light amount fluctuation frequency of the display as a frequency of interest;
    a determination step of determining the sampling frequency to be a natural number multiple of the frequency of interest set in the setting step;
    display light measurement method including;
  2.  前記着目周波数は、ディスプレイの垂直同期信号の周波数と異なり、かつ垂直同期信号の周波数よりも大きい周波数である請求項1に記載のディスプレイ光計測方法。 The display light measurement method according to claim 1, wherein the frequency of interest is a frequency different from the frequency of the vertical synchronization signal of the display and higher than the frequency of the vertical synchronization signal.
  3.  前記サンプリング周波数は前記着目周波数の5~100倍である請求項1または2に記載のディスプレイ光計測方法。 The display light measurement method according to claim 1 or 2, wherein the sampling frequency is 5 to 100 times the frequency of interest.
  4.  前記決定ステップでは、前記サンプリング周波数の上限値と下限値の少なくとも何れかを設定可能である請求項1~3の何れかに記載のディスプレイ光計測方法。 The display light measurement method according to any one of claims 1 to 3, wherein at least one of an upper limit value and a lower limit value of the sampling frequency can be set in the determining step.
  5.  前記刺激値取得ステップでは、積分方式により刺激値に相当する強度を取得する請求項1~4の何れかに記載のディスプレイ光計測方法。 The display light measurement method according to any one of claims 1 to 4, wherein in the stimulus value acquisition step, an intensity corresponding to the stimulus value is acquired by an integration method.
  6.  着目周波数を決定するために、前記ディスプレイの光の光量変動周波数を検出する検出ステップを含んでいる請求項1~5の何れかに記載のディスプレイ光計測方法。 The display light measurement method according to any one of claims 1 to 5, further comprising a detection step of detecting a light amount fluctuation frequency of the light of the display in order to determine the frequency of interest.
  7.  ディスプレイの光を受光し、刺激値に相当する強度を所定のサンプリング周波数に対応する一定時間間隔で連続的に取得する刺激値取得手段と、
     前記ディスプレイの光量変動周波数を着目周波数として設定する設定手段と、
     前記サンプリング周波数を、前記設定手段で設定された前記着目周波数の自然数倍になるように決定する決定手段と、
     を備えたディスプレイ光計測装置。
    stimulus value acquisition means for receiving light from the display and continuously acquiring intensity corresponding to the stimulus value at regular time intervals corresponding to a predetermined sampling frequency;
    setting means for setting the light amount fluctuation frequency of the display as a frequency of interest;
    determining means for determining the sampling frequency to be a natural number multiple of the frequency of interest set by the setting means;
    A display optical measurement device with
  8.  ディスプレイの光を受光し、刺激値に相当する強度を所定のサンプリング周波数に対応する一定時間間隔で連続的に取得する刺激値取得手段を備え、
     前記ディスプレイの光量変動周波数を着目周波数としたとき、前記サンプリング周波数が着目周波数の自然数倍であるディスプレイ光計測装置。
    Stimulus value acquisition means for receiving light from the display and continuously acquiring intensity corresponding to the stimulus value at regular time intervals corresponding to a predetermined sampling frequency,
    The display light measurement device, wherein the sampling frequency is a natural number multiple of the frequency of interest when the frequency of fluctuations in light intensity of the display is the frequency of interest.
  9.  前記着目周波数は、ディスプレイの垂直同期信号の周波数と異なり、かつ垂直同期信号の周波数よりも大きい周波数である請求項7または8に記載のディスプレイ光計測装置。 The display optical measurement device according to claim 7 or 8, wherein the frequency of interest is a frequency different from the frequency of the vertical synchronization signal of the display and higher than the frequency of the vertical synchronization signal.
  10.  前記サンプリング周波数は前記着目周波数の5~100倍である請求項7~9の何れかに記載のディスプレイ光計測装置。 The display light measurement device according to any one of claims 7 to 9, wherein the sampling frequency is 5 to 100 times the frequency of interest.
  11.  前記決定手段は、前記サンプリング周波数の上限値と下限値の少なくとも何れかを設定可能である請求項7~10の何れかに記載のディスプレイ光計測装置。 The display light measuring device according to any one of claims 7 to 10, wherein said determining means can set at least one of an upper limit value and a lower limit value of said sampling frequency.
  12.  前記刺激値取得手段は、積分方式により刺激値に相当する強度を取得する請求項7~11の何れかに記載のディスプレイ光計測装置。 The display optical measurement device according to any one of claims 7 to 11, wherein the stimulus value acquiring means acquires an intensity corresponding to the stimulus value by an integral method.
  13.  着目周波数を決定するために、前記ディスプレイの光の光量変動周波数を検出する検出手段を備えている請求項7~12の何れかに記載のディスプレイ光計測装置。 The display light measuring device according to any one of claims 7 to 12, further comprising detecting means for detecting the light amount fluctuation frequency of the light of the display in order to determine the frequency of interest.
  14.  ディスプレイの光を受光し、刺激値に相当する強度を所定のサンプリング周波数に対応する一定時間間隔で連続的に取得するための前記サンプリング周波数を決定するデータ処理装置であって、
     前記ディスプレイの光量変動周波数を着目周波数として設定する設定手段と、
     前記サンプリング周波数を、前記設定手段で設定された前記着目周波数の自然数倍になるように決定する決定手段と、
     を備えたデータ処理装置。
    A data processing device for receiving light from a display and determining a sampling frequency for continuously acquiring an intensity corresponding to a stimulus value at regular time intervals corresponding to a predetermined sampling frequency,
    setting means for setting the light amount fluctuation frequency of the display as a frequency of interest;
    determining means for determining the sampling frequency to be a natural number multiple of the frequency of interest set by the setting means;
    A data processing device with
  15.  前記着目周波数は、ディスプレイの垂直同期信号の周波数と異なり、かつ垂直同期信号の周波数よりも大きい周波数である請求項14に記載のデータ処理装置。 15. The data processing apparatus according to claim 14, wherein the frequency of interest is a frequency different from the frequency of the vertical synchronization signal of the display and higher than the frequency of the vertical synchronization signal.
  16.  前記サンプリング周波数は前記着目周波数の5~100倍である請求項14または15に記載のデータ処理装置。 The data processing device according to claim 14 or 15, wherein the sampling frequency is 5 to 100 times the frequency of interest.
  17.  前記決定手段は、前記サンプリング周波数の上限値と下限値の少なくとも何れかを設定可能である請求項14~16の何れかに記載のデータ処理装置。 The data processing apparatus according to any one of claims 14 to 16, wherein said determining means can set at least one of an upper limit value and a lower limit value of said sampling frequency.
  18.  前記刺激値取得手段は、積分方式により刺激値に相当する強度を取得する請求項14~17の何れかに記載のデータ処理装置。 The data processing apparatus according to any one of claims 14 to 17, wherein the stimulus value acquiring means acquires an intensity corresponding to the stimulus value by an integral method.
  19.  着目周波数を決定するために、前記ディスプレイの光の光量変動周波数を検出する検出手段を備えている請求項14~18の何れかに記載のデータ処理装置。 The data processing apparatus according to any one of claims 14 to 18, further comprising detecting means for detecting a light amount fluctuation frequency of the light of said display in order to determine a frequency of interest.
  20.  ディスプレイの光を受光し、刺激値に相当する強度を所定のサンプリング周波数に対応する一定時間間隔で連続的に取得するための前記サンプリング周波数を決定するコンピュータに、
     前記ディスプレイの光量変動周波数を着目周波数として設定する設定ステップと、
     前記サンプリング周波数を、前記設定ステップで設定された前記着目周波数の自然数倍になるように決定する決定ステップと、
     を実行させるためのプログラム。
    A computer for determining the sampling frequency for receiving the light of the display and continuously acquiring the intensity corresponding to the stimulus value at regular time intervals corresponding to the predetermined sampling frequency,
    a setting step of setting the light amount fluctuation frequency of the display as a frequency of interest;
    a determination step of determining the sampling frequency to be a natural number multiple of the frequency of interest set in the setting step;
    program to run the
  21.  前記着目周波数は、ディスプレイの垂直同期信号の周波数と異なり、かつ垂直同期信号の周波数よりも大きい周波数である請求項20に記載のプログラム。 21. The program according to claim 20, wherein the frequency of interest is a frequency different from the frequency of the vertical synchronization signal of the display and greater than the frequency of the vertical synchronization signal.
  22.  前記サンプリング周波数は前記着目周波数の5~100倍である請求項20または21に記載のプログラム。 The program according to claim 20 or 21, wherein said sampling frequency is 5 to 100 times said frequency of interest.
  23.  前記決定ステップでは、前記サンプリング周波数の上限値と下限値の少なくとも何れかを設定可能である請求項20~22の何れかに記載のプログラム。 The program according to any one of claims 20 to 22, wherein at least one of an upper limit value and a lower limit value of said sampling frequency can be set in said determining step.
  24.  前記刺激値強度は積分方式により取得された刺激値に相当する強度である請求項20~23の何れかに記載のプログラム。 The program according to any one of claims 20 to 23, wherein the stimulus value intensity is an intensity corresponding to a stimulus value obtained by an integration method.
  25.  着目周波数を決定するために、前記ディスプレイの光の光量変動周波数を検出する検出プログラムをさらにコンピュータに実行させる請求項20~24の何れかに記載のプログラム。
     
     
    25. The program according to any one of claims 20 to 24, further causing a computer to execute a detection program for detecting a light amount variation frequency of the light of said display in order to determine a frequency of interest.

PCT/JP2022/047667 2022-01-11 2022-12-23 Light measurement method, light measurement device, data processing device, and program WO2023136102A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-002147 2022-01-11
JP2022002147 2022-01-11

Publications (1)

Publication Number Publication Date
WO2023136102A1 true WO2023136102A1 (en) 2023-07-20

Family

ID=87279027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/047667 WO2023136102A1 (en) 2022-01-11 2022-12-23 Light measurement method, light measurement device, data processing device, and program

Country Status (1)

Country Link
WO (1) WO2023136102A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011163947A (en) * 2010-02-10 2011-08-25 Seiko Epson Corp Method and device for measuring optical characteristic
JP2014185881A (en) * 2013-03-22 2014-10-02 Seiko Epson Corp Measurement instrument and measurement method
WO2019069634A1 (en) * 2017-10-05 2019-04-11 コニカミノルタ株式会社 Two-dimensional flicker measurement device, two-dimensional flicker measurement system, two-dimensional flicker measurement method, and two-dimensional flicker measurement program
WO2021090689A1 (en) * 2019-11-07 2021-05-14 コニカミノルタ株式会社 Flicker measurement device and measurement method
WO2021246125A1 (en) * 2020-06-01 2021-12-09 コニカミノルタ株式会社 Optical waveform measurement device and optical waveform measurement method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011163947A (en) * 2010-02-10 2011-08-25 Seiko Epson Corp Method and device for measuring optical characteristic
JP2014185881A (en) * 2013-03-22 2014-10-02 Seiko Epson Corp Measurement instrument and measurement method
WO2019069634A1 (en) * 2017-10-05 2019-04-11 コニカミノルタ株式会社 Two-dimensional flicker measurement device, two-dimensional flicker measurement system, two-dimensional flicker measurement method, and two-dimensional flicker measurement program
WO2021090689A1 (en) * 2019-11-07 2021-05-14 コニカミノルタ株式会社 Flicker measurement device and measurement method
WO2021246125A1 (en) * 2020-06-01 2021-12-09 コニカミノルタ株式会社 Optical waveform measurement device and optical waveform measurement method

Similar Documents

Publication Publication Date Title
US6829496B2 (en) Blood component measurement apparatus
JP4067973B2 (en) Chromaticity coordinate measuring device
KR20230017144A (en) Light measurement apparatus, light measurement method, data processing apparatus and program
US9990874B2 (en) Method, apparatus and computer program product for testing video playback quality
US9529017B2 (en) Test and measurement instrument and method of switching waveform display styles
KR20040105243A (en) Method and device to identify a periodic light source
WO2009095853A2 (en) System and method for estimating the junction temperature of a light emitting diode
US20200022239A1 (en) Electronic Device With Ambient Light Flicker Sensor
WO2021246125A1 (en) Optical waveform measurement device and optical waveform measurement method
JPH05215795A (en) Method for displaying signal characteristics
WO2023136102A1 (en) Light measurement method, light measurement device, data processing device, and program
JP2005242308A (en) Lcd overdrive auto-calibration apparatus and method
US11651747B2 (en) Flicker measurement device and measurement method
CN114047841A (en) Screen refreshing positioning method and device, display equipment and storage medium
CN105877726A (en) Pulsimeter, frequency analysis device, and pulse measurement method
JP2001042845A (en) Data obtaining device for dynamic characteristic measurement of display, and dynamic characteristic measuring device
US8195416B2 (en) Fundamental wave beat component detecting method and measuring target signal sampling apparatus and waveform observation system using the same
WO2023149337A1 (en) Display light measuring device and light measuring method, data processing device, and program
WO2023189479A1 (en) Display light measurement device and light measurement method, data processing device, and program
KR20190108409A (en) Display driving device having test function and display device including the same
CN113887281A (en) Biological characteristic image acquisition method, chip, terminal and storage medium
KR20070079233A (en) System and method for measuring dcc
JP2000295298A (en) Automatic eye numerical aperture measuring method and its instrument
US7676343B2 (en) Transfer measurement circuit
JP2003227756A (en) Photodetecting device, photodetecting method, program and recording medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22920619

Country of ref document: EP

Kind code of ref document: A1