WO2023135935A1 - 端末およびその無線送信制御方法 - Google Patents

端末およびその無線送信制御方法 Download PDF

Info

Publication number
WO2023135935A1
WO2023135935A1 PCT/JP2022/042844 JP2022042844W WO2023135935A1 WO 2023135935 A1 WO2023135935 A1 WO 2023135935A1 JP 2022042844 W JP2022042844 W JP 2022042844W WO 2023135935 A1 WO2023135935 A1 WO 2023135935A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
transmission
satellite
cycle
period
Prior art date
Application number
PCT/JP2022/042844
Other languages
English (en)
French (fr)
Inventor
雅典 佐藤
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Priority to JP2023573872A priority Critical patent/JPWO2023135935A1/ja
Publication of WO2023135935A1 publication Critical patent/WO2023135935A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/38Services specially adapted for particular environments, situations or purposes for collecting sensor information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This technology relates to terminals that perform wireless communication. More specifically, the present invention relates to a terminal that periodically performs wireless transmission and a wireless transmission control method thereof.
  • a terminal With the conventional technology described above, it is possible for a terminal to transmit sensor information in a cycle of, for example, 30 minutes.
  • a ground receiving station or a satellite receiving station By receiving this transmission signal by a ground receiving station or a satellite receiving station, it is possible to construct a radio system combining both.
  • the satellite receiving station since the satellite receiving station is moving at a very high speed, it may be difficult to receive the periodically transmitted transmission signals. For example, a satellite at an altitude of 400 Km is moving at a speed of 7 Km per second, and since it moves 12,600 Km in 30 minutes, the communication distance becomes long and transmission may not be performed within the receivable range.
  • This technology was created in view of this situation, and aims to improve the reception success rate of signals transmitted from terminals at satellite receiving stations.
  • the present technology has been made to solve the above-described problems, and a first aspect thereof includes a terminal positioning unit that acquires a terminal position, which is the current position of the terminal, and the current time, and a satellite positioning unit that acquires a satellite position, which is the current position of the satellite receiving station, by a satellite positioning unit, a transmission cycle determination unit that determines a transmission cycle based on the terminal position and the satellite position, the current time, the terminal identifier of the terminal, and a terminal and its radio transmission, comprising: a radio resource determination unit for determining transmission timing and transmission frequency as radio resources based on the transmission period; and a transmission control unit for controlling radio transmission according to the transmission timing and the transmission frequency. control method. This brings about the effect of determining the transmission cycle from the terminal according to the positional relationship with the satellite receiving station.
  • the transmission cycle determination unit determines a cycle that is at least not as long as the inter-satellite distance between the terminal satellites, which is the absolute value of the difference between the terminal position and the satellite position, is short as the transmission cycle. You may do so. As a result, the shorter the distance to the satellite receiving station, the shorter the transmission cycle.
  • the transmission cycle determination unit sets the transmission cycle to a shorter cycle than when the terminal inter-satellite distance is longer than the threshold when the terminal inter-satellite distance is shorter than a predetermined threshold. may be determined as This has the effect of shortening the transmission period when the distance to the satellite receiving station is shorter than the threshold.
  • the transmission cycle determination unit determines, when the terminal inter-satellite distance is shorter than a first threshold, a first is determined as the transmission period, and when the terminal inter-satellite distance is longer than the first threshold and shorter than the second threshold, which is longer than the first threshold, the terminal inter-satellite distance is the above A second period shorter than the second threshold may be determined as the transmission period.
  • a plurality of threshold values are used to shorten the transmission cycle when the distance to the satellite receiving station is shortened.
  • the transmission cycle determination unit determines a predetermined initial transmission cycle as the transmission cycle at the beginning of transmission, and when the inter-satellite distance between terminal satellites becomes shorter than a predetermined threshold, A period shorter than the initial transmission period may be determined as the transmission period, and the initial transmission period may be determined as the transmission period when the terminal-to-satellite distance is longer than a predetermined threshold. As a result, when the distance to the satellite receiving station is shortened, the transmission cycle is shortened from the initial transmission cycle.
  • the transmission cycle determination unit determines a predetermined initial transmission cycle as the transmission cycle at the beginning of transmission, and when the inter-satellite distance between terminal satellites becomes shorter than a predetermined threshold, A period shorter than the initial transmission period may be determined as the transmission period, and a period longer than the initial transmission period may be determined as the transmission period when the inter-satellite distance is longer than a predetermined threshold. good. As a result, the longer the distance to the satellite receiving station, the longer the transmission cycle than the initial transmission cycle.
  • the transmission cycle determination unit may determine an infinite cycle as the transmission cycle when the terminal-to-satellite distance is longer than a predetermined threshold. This has the effect of stopping transmission as the distance from the satellite receiving station increases.
  • the first aspect further comprises a battery capacity obtaining unit that obtains a current battery capacity of a battery for operating the terminal, wherein the transmission cycle determining unit determines the inter-satellite distance between the terminal and the battery capacity.
  • the transmission period may be determined according to In this case, when the battery capacity is less than a predetermined capacity threshold, the transmission cycle determination unit may determine a longer cycle as the transmission cycle than when the battery capacity is greater than the capacity threshold. . This brings about the effect of lengthening the transmission cycle when the remaining battery level is low.
  • FIG. 1 is a diagram illustrating an overall configuration example of a wireless system according to an embodiment of the present technology;
  • FIG. It is a figure showing an example of composition of terminal 100 in an embodiment of this art. It is a figure which shows the structural example of the satellite receiving station 600 in embodiment of this technique. It is a figure which shows the structural example of the time managed in the wireless system of embodiment of this technique. It is a flow chart showing an example of a processing procedure of terminal 100 in an embodiment of this art. It is a flow chart showing a processing procedure example of a transmission cycle determination procedure (step S916) in the first embodiment of the present technology. It is a figure which shows the specific example of the transition of the transmission period in 1st Embodiment of this technique.
  • FIG. 13 is a flow chart showing a processing procedure example of a transmission cycle determination procedure (step S916) according to the second embodiment of the present technology;
  • FIG. It is a diagram showing a specific example of the transition of the transmission cycle in the second embodiment of the present technology.
  • First embodiment an example in which the transmission cycle is made shorter than normal when the distance between terminal satellites is short
  • Second Embodiment Example of making the transmission cycle longer than normal when the distance between terminal satellites is long
  • FIG. 1 is a diagram showing an overall configuration example of a wireless system according to an embodiment of the present technology.
  • the radio system comprises a terminal 100, a ground receiving station 200, a ground control station 300, a server 400, and a satellite receiving station 600.
  • This wireless system receives sensor information transmitted from a terminal 100 at a ground receiving station 200 or a satellite receiving station 600 and collects the sensor information in a server 400 .
  • the terminal 100 is a transmitting terminal that periodically transmits sensor information.
  • a ground receiving station 200 is a receiving station having a receiving device mounted on a ground facility such as a building roof.
  • a satellite receiving station 600 is a receiving station having a receiving device mounted on a low earth orbit satellite.
  • the ground control station 300 is a control station that tracks and controls the satellite receiving station 600 on the ground.
  • the server 400 is a server that collects sensor information received by the ground receiving station 200 or the satellite receiving station 600.
  • the ground receiving station 200 communicates with the server 400 on the Internet 500 via a communication line such as a cable.
  • Satellite receiving station 600 communicates with server 400 via the line of ground control station 300 .
  • wireless device Although one wireless device is shown in this example, a plurality of wireless devices may be present.
  • FIG. 2 is a diagram showing a configuration example of the terminal 100 according to the embodiment of the present technology.
  • Terminal 100 includes sensor 110 , terminal positioning section 120 , satellite positioning section 130 , transmission cycle determination section 140 , radio resource determination section 150 , and transmission control section 190 .
  • the sensor 110 detects temperature, humidity, moisture, etc., and acquires sensor information.
  • the terminal positioning unit 120 receives signals from positioning satellites of a positioning satellite system (GNSS: Global Navigation Satellite System) such as GPS (Global Positioning System), and acquires the current time and the position information of the terminal 100. .
  • GNSS Global Navigation Satellite System
  • GPS Global Positioning System
  • the satellite positioning unit 130 acquires the position information of the satellite receiving station 600.
  • This satellite positioning unit 130 holds satellite information of the satellite receiving station 600, for example, in TLE (Two Line Element set: two-line orbital element format). and the position information of the satellite receiving station 600 is estimated.
  • TLE Two Line Element set: two-line orbital element format
  • the transmission cycle determination unit 140 determines the transmission cycle using the satellite position information acquired by the satellite positioning unit 130 and the terminal position information acquired by the terminal positioning unit 120 . As will be described later, this transmission cycle determination unit 140 shortens the transmission cycle when the satellite reception station 600 is nearby, thereby increasing the possibility of reception at the satellite reception station 600 . On the other hand, when the satellite receiving station 600 is located far away, the transmission cycle is lengthened, thereby suppressing the number of transmissions of the terminal 100 as a whole and suppressing the power consumption of the terminal 100 .
  • the radio resource determination unit 150 determines transmission timing and transmission frequency as radio resources to be used for transmission from the terminal 100 .
  • This radio resource determination section 150 determines the transmission timing and transmission frequency from the current time acquired by the terminal positioning section 120 , the terminal identifier of the terminal 100 , and the transmission cycle determined by the transmission cycle determination section 140 .
  • the transmission control unit 190 controls the transmission of sensor information as a radio signal according to the transmission timing and transmission frequency determined by the radio resource determination unit 150 .
  • FIG. 3 is a diagram showing a configuration example of a satellite receiving station 600 according to an embodiment of the present technology.
  • the satellite receiving station 600 includes a receiving station positioning unit 620, a reception cycle determination unit 640, a radio resource determination unit 650, a server communication unit 680, and a reception control unit 690.
  • the receiving station positioning unit 620 receives signals from positioning satellites of a positioning satellite system such as GPS, and acquires the current time and the position information of the satellite receiving station 600 .
  • the reception cycle determination unit 640 determines the minimum value of the transmission cycles of the terminal 100 to receive as the reception cycle.
  • the transmission period of the terminal 100 is determined when the service contract is made, and is supplied in advance from the server 400 together with the terminal identifier of the terminal 100 .
  • the radio resource determination unit 650 determines reception timing and reception frequency as radio resources used for receiving the signal transmitted from the terminal 100 . This radio resource determination unit 650 determines the reception timing and reception frequency based on the current time acquired by the reception station positioning unit 620, the terminal identifier of the terminal 100 that should receive the signal, and the reception cycle determined by the reception cycle determination unit 640. decide.
  • the server communication unit 680 sends the received sensor information to the server 400.
  • This server communication unit 680 communicates with the server 400 via the line of the ground control station 300 .
  • the reception control section 690 controls the reception of sensor information as a radio signal according to the reception timing and reception frequency determined by the radio resource determination section 650 .
  • the terrestrial receiving station 200 also has a similar configuration.
  • the server communication unit in the ground receiving station 200 is configured to communicate with the server 400 on the Internet 500 via a communication line such as a cable.
  • Radio resource determination section 150 determines transmission timing as follows from the current time acquired by terminal positioning section 120, the terminal identifier of terminal 100, and the transmission cycle determined by transmission cycle determination section 140. FIG.
  • FIG. 4 is a diagram showing a configuration example of time managed in the wireless system according to the embodiment of the present technology.
  • time is divided into superframes (SP) of a predetermined length. Also, each superframe is divided into a plurality of time slots (Time Slot: TS). Each time slot is further divided into a plurality of grids (Grid: G). Note that the serial number of the superframe is hereinafter referred to as the SP number.
  • the current SP number and the start time of the superframe of that SP number are determined.
  • the time obtained from the GPS time is based on Jan. 6, 1980, 00:00:00. In this case, it is considered in units of seconds.
  • the length of the superframe interval is SP duration .
  • the length of the superframe interval is predetermined for the wireless system.
  • the SP number which is the serial number of the superframe section, is n
  • the start time of the superframe with number n is SP(n) start-time , it is determined as follows. Note that the operator div( ) indicates the quotient of division.
  • n div(t, SP duration )
  • SP(n) start-time n x SP duration
  • the start time SP(n) of the superframe SP(n), whose serial number is the quotient obtained by dividing the current time t by the superframe period SP duration , is multiplied by n and the superframe period length. value.
  • the SP number that the terminal 100 can transmit is determined. This is determined using a pre-assigned transmission period Period and a terminal identifier ID as information unique to the terminal 100 . Since the determination is made using the terminal identifier ID, which is information specific to the terminal, a different SP number is assigned to each terminal even if the transmission period is the same.
  • an offset value m oft is calculated according to the following equation.
  • the operator mod() in the following expression indicates the remainder of division. That is, the remainder obtained by dividing the terminal identifier ID of the terminal 100 by the SP number interval m is the offset value m oft of the terminal 100 .
  • m oft mod (ID, m)
  • multiple transmission start times called grids are defined.
  • the grid on which terminal 100 transmits is determined using a pseudorandom number sequence. For example, by generating a 12-bit pseudo-random number sequence, the grid number in the time slot is determined as the transmission time.
  • the transmission timing and transmission frequency when the terminal 100 performs periodic transmission. Since terminal identifiers are used, different times and frequencies can be assigned to different terminals, and different timings and frequencies can be assigned depending on the time of transmission.
  • the terrestrial receiving station 200 and the satellite receiving station 600 similarly determine the reception time and the reception frequency based on the current time and the terminal identifier. can be determined.
  • FIG. 5 is a flow chart showing a processing procedure example of the terminal 100 according to the embodiment of the present technology.
  • terminal 100 performs transmission at initial cycle X0 (eg, 30 minutes).
  • This initial period X0 shall be determined at the time of service contract.
  • the initial period X0 is assumed to be 30 minutes, for example.
  • the terminal inter-satellite distance which is the distance between the terminal 100 and the satellite receiving station 600, holds a threshold TH for judging the distance.
  • the threshold TH is determined in advance based on the reception range determined by the reception performance of the satellite reception station 600.
  • the short period X1 which is the transmission period when the distance between terminal satellites is shortened, is determined at the time of the service contract.
  • the short period X1 is assumed to be 10 minutes, for example.
  • step S911 When the terminal 100 starts the transmission operation (step S911), it starts the operation after the power is turned on for the first time, and starts the operation at the timing of the transmission cycle after the next time.
  • the sensor 110 acquires sensor information (step S912).
  • the terminal positioning unit 120 receives signals from positioning satellites of the positioning satellite system and acquires the current time and the position information of the terminal 100 (step S913).
  • the satellite positioning unit 130 calculates the satellite orbit from the current time acquired by the terminal positioning unit 120 and the satellite information of the satellite receiving station 600, and acquires the position information of the satellite receiving station 600 (step S914).
  • the transmission cycle determining unit 140 calculates the absolute value of the difference between the satellite position information acquired by the satellite positioning unit 130 and the terminal position information acquired by the terminal positioning unit 120, A distance is calculated (step S915).
  • the transmission cycle determination unit 140 determines the transmission cycle by comparing the calculated inter-satellite distance and the threshold TH (step S916).
  • the radio resource determination unit 150 determines the transmission timing and transmission frequency used for transmission from the terminal 100 (step S917).
  • the transmission control unit 190 controls to transmit the sensor information as a radio signal according to the determined transmission timing and transmission frequency (step S918).
  • the next transmission time is set based on the determined transmission cycle (step S919).
  • FIG. 6 is a flowchart showing a processing procedure example of the transmission cycle determination procedure (step S916) according to the first embodiment of the present technology.
  • the transmission cycle determination unit 140 determines the transmission cycle by comparing the inter-satellite distance and the threshold TH. If the terminal inter-satellite distance is not smaller than the threshold TH (step S931: No), the initial period X0 is set as the transmission period P (step S934). On the other hand, when the terminal inter-satellite distance becomes smaller than the threshold TH (step S931: Yes), the short period X1 is set as the transmission period P (step S932).
  • FIG. 7 is a diagram showing a specific example of transmission cycle transition in the first embodiment of the present technology.
  • the operation is normally performed with an initial period X0 (30 minutes in this example) as the transmission period P, and when the inter-satellite distance becomes smaller than the threshold TH, the transmission period P is set to a short period X1 (in this example 10 minutes) and it will work.
  • X0 initial period in this example
  • X1 short period in this example 10 minutes
  • FIG. 8 is a flowchart showing a processing procedure example of the satellite receiving station 600 according to the embodiment of the present technology.
  • the satellite receiving station 600 has obtained in advance from the server 400 the terminal identifier ID of the terminal 100 to receive and the transmission period of the terminal 100 (initial period X0 and short period X1).
  • the satellite receiving station 600 starts operating after power is turned on (step S921). Also, the operation may be stopped or restarted from the server 400 .
  • the receiving station positioning unit 620 receives the signal from the positioning satellite of the positioning satellite system and acquires the current time and the position information of the satellite receiving station 600 (step S923).
  • the reception cycle determination unit 640 determines the minimum value of the transmission cycles of the terminal 100 to receive as the reception cycle. For example, if the initial period X0 is 30 minutes and the short period X1 is 10 minutes, the minimum value of 10 minutes is determined as the reception period (step S926). Although the operation of the satellite receiving station 600 is described here, in the case of the terrestrial receiving station 200, the initial cycle X0 is determined as the receiving cycle.
  • the radio resource determination unit 650 determines the reception timing and reception frequency used for reception from the terminal 100 (step S927).
  • the reception control unit 690 controls to receive the sensor information as a radio signal according to the determined reception timing and reception frequency (step S928).
  • the next reception time is set based on the determined reception cycle (step S929).
  • the transmission cycle from the terminal 100 is set to the shorter cycle X1 than the normal (initial cycle X0).
  • the reception success rate in the satellite receiving station 600 can be improved.
  • the satellite receiving station 600 is far away, it is possible to secure the possibility of reception at the terrestrial receiving station 200 by transmitting at a normal transmission cycle.
  • the transmission cycle is set to the normal initial cycle X0 except when the distance to the satellite receiving station 600 becomes short. A longer period may be used.
  • the power consumption of the terminal 100 is reduced by setting the transmission period to a long period when the terminal-to-satellite distance is greater than the threshold. Note that the configuration itself as a wireless system is the same as that of the above-described first embodiment, so a detailed description will be omitted.
  • the initial period X0 and the short period X1 are assumed as the transmission period, but in the second embodiment, the long period X2 is assumed.
  • the long period X2 is assumed to be 60 minutes.
  • FIG. 9 is a flowchart showing a processing procedure example of the transmission cycle determination procedure (step S916) according to the second embodiment of the present technology.
  • the transmission cycle determination unit 140 determines the transmission cycle by comparing the inter-satellite distance and the threshold TH. If the terminal inter-satellite distance is not smaller than the threshold TH (step S931: No), the long period X2 is set as the transmission period P (step S933). On the other hand, when the terminal inter-satellite distance becomes smaller than the threshold TH (step S931: Yes), the short period X1 is set as the transmission period P (step S932).
  • FIG. 10 is a diagram showing a specific example of transmission cycle transition in the second embodiment of the present technology.
  • the transmission period P is set to a long period X2 (60 minutes in this example), and when the inter-satellite distance becomes smaller than the threshold TH, the transmission period P is set to a short period X1 (in this example 10 minutes) and it will work.
  • the transmission period P is set to a long period X2 (60 minutes in this example), and when the inter-satellite distance becomes smaller than the threshold TH, the transmission period P is set to a short period X1 (in this example 10 minutes) and it will work.
  • the transmission period P is set to a long period X2 (60 minutes in this example), and when the inter-satellite distance becomes smaller than the threshold TH, the transmission period P is set to a short period X1 (in this example 10 minutes) and it will work.
  • the satellite receiving station 600 is located far away, the power consumption of the terminal 100 can be suppressed by lengthening the transmission cycle.
  • the satellite receiving station 600 exists nearby, the possibility of reception at the satellite receiving station 600 can be improved
  • the transmission cycle from the terminal 100 is set to the longer cycle X2 than the normal (initial cycle X0). Power consumption of the terminal 100 can be suppressed.
  • the transmission cycle may be set in consideration of the battery capacity of terminal 100 .
  • this first modification an example of setting the transmission cycle based on the battery capacity of terminal 100 will be described.
  • FIG. 11 is a diagram showing a configuration example of the terminal 100 in the first modified example of the embodiment of the present technology.
  • the terminal 100 of this first modified example further includes a battery capacity acquisition unit 170 in addition to the above-described embodiments.
  • the battery capacity acquisition unit 170 acquires the battery capacity of the battery (not shown) of the terminal 100 and supplies it to the transmission cycle determination unit 140 .
  • the transmission cycle determination unit 140 refers to the battery capacity supplied from the battery capacity acquisition unit 170 and determines the transmission cycle according to the battery capacity and the terminal-to-satellite distance. Therefore, for example, when the battery capacity is less than a predetermined capacity threshold, a longer cycle than when the battery capacity is greater than the capacity threshold is determined as the transmission cycle. As a result, it is possible to refrain from the transmission operation when the remaining amount of the battery is low.
  • the transmission cycle When setting the transmission cycle, if the transmission cycle is set to an infinite value, the transmission operation will not be performed. Therefore, when the remaining amount of the battery is extremely low, the transmission cycle may be set to an infinite value to stop the transmission operation. Also, when the terminal-to-satellite distance is longer than a predetermined threshold value, the transmission cycle may be set to an infinite value to stop the transmission operation.
  • one threshold is used to switch the transmission cycle, but a plurality of thresholds may be used. By using a plurality of threshold values, the transmission cycle can be switched in stages as shown in the second modification.
  • FIG. 12 is a flowchart showing a processing procedure example of the transmission cycle determination procedure (step S916) in the second modification of the embodiment of the present technology.
  • the transmission cycle determination unit 140 determines the transmission cycle by comparing the terminal-to-satellite distance with a plurality of threshold values THa and THb. If the terminal inter-satellite distance is smaller than the threshold THa (step S935: Yes), the period Xa is set as the transmission period P (step S937). If the terminal inter-satellite distance is not smaller than the threshold THa (step S935: No), the following determination is made using the threshold THb (step S936).
  • step S936 When the terminal inter-satellite distance is smaller than the threshold THb (step S936: Yes), the period Xb is set as the transmission period P (step S938). On the other hand, if the terminal inter-satellite distance is not smaller than the threshold THb (step S936: No), the period Xc is set as the transmission period P (step S939).
  • FIG. 13 is a diagram showing an example of the relationship between the terminal-to-satellite distance and the transmission cycle in the second modification of the embodiment of the present technology.
  • the transmission cycle is switched in stages according to the distance between terminal satellites. This makes it possible to flexibly set the transmission cycle.
  • the processing procedure described in the above embodiment may be regarded as a method having a series of procedures, and a program for causing a computer to execute the series of procedures or a recording medium for storing the program You can catch it.
  • this recording medium for example, CD (Compact Disc), MD (MiniDisc), DVD (Digital Versatile Disc), memory card, Blu-ray disc (Blu-ray (registered trademark) Disc), etc. can be used.
  • the present technology can also have the following configuration. (1) a terminal positioning unit that acquires the terminal position, which is the current position of the terminal, and the current time; a satellite positioning unit that acquires a satellite position, which is the current position of the satellite receiving station, based on the current time; a transmission cycle determination unit that determines a transmission cycle based on the terminal position and the satellite position; a radio resource determination unit that determines transmission timing and transmission frequency as radio resources based on the current time, the terminal identifier of the terminal, and the transmission period; a transmission control unit that controls radio transmission according to the transmission timing and the transmission frequency.
  • the transmission cycle determination unit determines a period shorter than when the inter-satellite distance is longer than the threshold as the transmission period. ).
  • the transmission period determination unit sets the transmission period to a first period shorter than when the terminal-to-satellite distance is longer than the first threshold.
  • the transmission cycle determination unit determines a predetermined initial transmission cycle as the transmission cycle at the beginning of transmission, and sets it to be shorter than the initial transmission cycle when the inter-satellite distance becomes shorter than a predetermined threshold. A period is determined as the transmission period, and the initial transmission period is determined as the transmission period when the inter-satellite distance of the terminal becomes longer than a predetermined threshold. terminal.
  • the transmission cycle determination unit determines a predetermined initial transmission cycle as the transmission cycle at the beginning of transmission, and sets it to be shorter than the initial transmission cycle when the inter-satellite distance becomes shorter than a predetermined threshold.
  • a cycle is determined as the transmission cycle, and a cycle longer than the initial transmission cycle is determined as the transmission cycle when the inter-satellite distance is longer than a predetermined threshold.
  • the terminal described in (7) The terminal according to any one of (2) to (6), wherein the transmission cycle determining unit determines an infinite cycle as the transmission cycle when the inter-satellite distance of the terminal is longer than a predetermined threshold.
  • (8) further comprising a battery capacity obtaining unit that obtains a current battery capacity of a battery for operating the terminal;
  • the terminal according to any one of (2) to (7), wherein the transmission cycle determination unit determines the transmission cycle according to the terminal inter-satellite distance and the battery capacity.
  • a wireless transmission control method for a terminal comprising: a transmission control unit controlling wireless transmission according to the transmission timing and the transmission frequency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

端末から送信された信号の衛星受信局における受信成功率を向上させる。 端末測位部は、端末の現在位置である端末位置および現在時刻を取得する。衛星測位部は、現在時刻に基づいて衛星受信局の現在位置である衛星位置を取得する。送信周期決定部は、端末位置および衛星位置に基づいて送信周期を決定する。無線資源決定部は、現在時刻、端末の端末識別子、および、決定された送信周期に基づいて、送信タイミングおよび送信周波数を無線資源として決定する。送信制御部は、決定された送信タイミングおよび送信周波数に従って、無線送信を制御する。

Description

端末およびその無線送信制御方法
 本技術は、無線通信を行う端末に関する。詳しくは、周期的に無線送信を行う端末およびその無線送信制御方法に関する。
 IoT(Internet of Things)関連技術においては、従来では取得し難かった山間地や海上の情報を取得できることが期待されている。これらの観測を行うことによって、環境変化の把握や災害の防止が可能になると期待されている。一方で、受信局の設置が課題となる。山間地などでは都市部に比べて端末数が少なくなることが予想されるため、少ない端末のために受信局を設置および運用するコストが大きくなるからである。また、海上などでは受信局の設置自体が困難である。そこで、主に低軌道衛星に受信局を搭載した衛星受信局を使った無線システムが検討されている。長距離通信が可能なIoT向け無線技術が登場したことや、小型衛星の打ち上げ費用が低価格化したこと等から現実性が増している。地上受信局と衛星受信局を組み合わせた無線システムを構築することによって、低コストで地球上のあらゆる場所から情報を取得可能な無線システムを構築することが可能となる。そのため、例えば、地上の端末が周期的にセンサ情報を送信する手法が提案されている(例えば、特許文献1参照。)。
国際公開第2020-246158号
 上述の従来技術では、端末がセンサ情報を例えば30分周期で送信することが可能である。この送信信号を地上受信局または衛星受信局によって受信することで、両者を組み合わせた無線システムを構築することができる。しかしながら、衛星受信局は非常に高速で移動しているため、周期的に送信された送信信号を受信することが困難な場合が生じる。例えば、高度400Kmの衛星は秒速7Kmで移動しており、30分間で12,600Km移動するため、通信距離が長くなって受信可能範囲において送信が行われないということが発生し得る。
 本技術はこのような状況に鑑みて生み出されたものであり、端末から送信された信号の衛星受信局における受信成功率を向上させることを目的とする。
 本技術は、上述の問題点を解消するためになされたものであり、その第1の側面は、端末の現在位置である端末位置および現在時刻を取得する端末測位部と、上記現在時刻に基づいて衛星受信局の現在位置である衛星位置を取得する衛星測位部と、上記端末位置および上記衛星位置に基づいて送信周期を決定する送信周期決定部と、上記現在時刻、上記端末の端末識別子、および、上記送信周期に基づいて送信タイミングおよび送信周波数を無線資源として決定する無線資源決定部と、上記送信タイミングおよび上記送信周波数に従って無線送信を制御する送信制御部とを具備する端末およびその無線送信制御方法である。これにより、衛星受信局との位置関係に応じて端末からの送信周期を決定するという作用をもたらす。
 また、この第1の側面において、上記送信周期決定部は、上記端末位置と上記衛星位置との差の絶対値である端末衛星間距離が短いほど、少なくとも長くない周期を上記送信周期として決定するようにしてもよい。これにより、衛星受信局との距離が短くなると送信周期を短くするという作用をもたらす。
 また、この第1の側面において、上記送信周期決定部は、上記端末衛星間距離が所定の閾値より短い場合には、上記端末衛星間距離が上記閾値より長い場合よりも短い周期を上記送信周期として決定するようにしてもよい。これにより、衛星受信局との距離が閾値より短くなると送信周期を短くするという作用をもたらす。
 また、この第1の側面において、上記送信周期決定部は、上記端末衛星間距離が第1の閾値より短い場合には上記端末衛星間距離が上記第1の閾値より長い場合よりも短い第1の周期を上記送信周期として決定し、上記端末衛星間距離が第1の閾値より長い場合であって上記第1の閾値より長い第2の閾値よりも短い場合には上記端末衛星間距離が上記第2の閾値より長い場合よりも短い第2の周期を上記送信周期として決定するようにしてもよい。これにより、複数の閾値を用いて衛星受信局との距離が短くなると送信周期を短くするという作用をもたらす。
 また、この第1の側面において、上記送信周期決定部は、送信開始当初は所定の初期送信周期を上記送信周期として決定し、上記端末衛星間距離が所定の閾値より短くなった場合には上記初期送信周期よりも短い周期を上記送信周期として決定し、上記端末衛星間距離が所定の閾値より長くなった場合には上記初期送信周期を上記送信周期として決定するようにしてもよい。これにより、衛星受信局との距離が短くなると送信周期を初期送信周期より短くするという作用をもたらす。
 また、この第1の側面において、上記送信周期決定部は、送信開始当初は所定の初期送信周期を上記送信周期として決定し、上記端末衛星間距離が所定の閾値より短くなった場合には上記初期送信周期よりも短い周期を上記送信周期として決定し、上記端末衛星間距離が所定の閾値より長くなった場合には上記初期送信周期よりも長い周期を上記送信周期として決定するようにしてもよい。これにより、衛星受信局との距離が長くなると送信周期を初期送信周期よりも長くするという作用をもたらす。
 また、この第1の側面において、上記送信周期決定部は、上記端末衛星間距離が所定の閾値より長い場合には無限大の周期を上記送信周期として決定するようにしてもよい。これにより、衛星受信局との距離が長くなると送信を停止させるという作用をもたらす。
 また、この第1の側面において、上記端末を動作させるためのバッテリの現在のバッテリ容量を取得するバッテリ容量取得部をさらに具備し、上記送信周期決定部は、上記端末衛星間距離および上記バッテリ容量に応じて上記送信周期を決定するようにしてもよい。この場合において、上記送信周期決定部は、上記バッテリ容量が所定の容量閾値より少ない場合には上記バッテリ容量が上記容量閾値より多い場合よりも長い周期を上記送信周期として決定するようにしてもよい。これにより、バッテリ残量が少なくなると送信周期を長くするという作用をもたらす。
本技術の実施の形態における無線システムの全体構成例を示す図である。 本技術の実施の形態における端末100の構成例を示す図である。 本技術の実施の形態における衛星受信局600の構成例を示す図である。 本技術の実施の形態の無線システムにおいて管理される時間の構成例を示す図である。 本技術の実施の形態における端末100の処理手順例を示す流れ図である。 本技術の第1の実施の形態における送信周期決定手順(ステップS916)の処理手順例を示す流れ図である。 本技術の第1の実施の形態における送信周期の遷移の具体例を示す図である。 本技術の実施の形態における衛星受信局600の処理手順例を示す流れ図である。 本技術の第2の実施の形態における送信周期決定手順(ステップS916)の処理手順例を示す流れ図である。 本技術の第2の実施の形態における送信周期の遷移の具体例を示す図である。 本技術の実施の形態の第1の変形例における端末100の構成例を示す図である。 本技術の実施の形態の第2の変形例における送信周期決定手順(ステップS916)の処理手順例を示す流れ図である。 本技術の実施の形態の第2の変形例における端末衛星間距離と送信周期との関係例を示す図である。
 以下、本技術を実施するための形態(以下、実施の形態と称する)について説明する。説明は以下の順序により行う。
 1.第1の実施の形態(端末衛星間距離が近くなると送信周期を通常よりも短くする例)
 2.第2の実施の形態(端末衛星間距離が遠くなると送信周期を通常よりも長くする例)
 3.変形例
 <1.第1の実施の形態>
 [無線システム]
 図1は、本技術の実施の形態における無線システムの全体構成例を示す図である。
 無線システムは、端末100と、地上受信局200と、地上制御局300と、サーバ400と、衛星受信局600とを備える。この無線システムは、端末100から送信されたセンサ情報を地上受信局200または衛星受信局600において受信し、そのセンサ情報をサーバ400に集約するものである。
 端末100は、センサ情報を周期的に送信する送信端末である。地上受信局200は、ビル屋上などの地上施設に受信装置を搭載した受信局である。衛星受信局600は、低軌道衛星に受信装置を搭載した受信局である。地上制御局300は、地上において衛星受信局600の追跡や管制を行う制御局である。
 サーバ400は、地上受信局200または衛星受信局600において受信されたセンサ情報を収集するサーバである。地上受信局200は、有線などの通信回線を経由してインターネット500上のサーバ400と通信を行う。衛星受信局600は、地上制御局300の回線を介してサーバ400と通信を行う。
 なお、この例では、それぞれの無線装置を1台ずつ示しているが、それぞれ複数台存在していてもよい。
 [端末]
 図2は、本技術の実施の形態における端末100の構成例を示す図である。
 端末100は、センサ110と、端末測位部120と、衛星測位部130と、送信周期決定部140と、無線資源決定部150と、送信制御部190とを備える。
 センサ110は、温度、湿度、水分などを検知して、センサ情報を取得するものである。
 端末測位部120は、GPS(Global Positioning System)などの測位衛星システム(GNSS:Global Navigation Satellite System)の測位衛星からの信号を受信して、現在時刻と端末100の位置情報を取得するものである。
 衛星測位部130は、衛星受信局600の位置情報を取得するものである。この衛星測位部130は、衛星受信局600の衛星情報を、例えばTLE(Two Line Element set:2行軌道要素形式)により保持しており、この衛星情報と端末測位部120において取得された現在時刻とから衛星受信局600の位置情報を推定する。
 送信周期決定部140は、衛星測位部130により取得された衛星の位置情報と、端末測位部120により取得された端末の位置情報とを用いて、送信周期を決定するものである。この送信周期決定部140は、後述するように、衛星受信局600が近くに存在する場合には送信周期を短くすることにより、衛星受信局600において受信が行われる可能性を高める。一方、衛星受信局600が遠くに存在する場合には送信周期を長くすることにより、全体として端末100の送信回数を抑制して端末100の消費電力を抑制する。
 無線資源決定部150は、端末100からの送信に使用する無線資源として、送信タイミングおよび送信周波数を決定するものである。この無線資源決定部150は、端末測位部120によって取得された現在時刻と、端末100の端末識別子と、送信周期決定部140によって決定された送信周期とから送信タイミングおよび送信周波数を決定する。
 送信制御部190は、無線資源決定部150によって決定された送信タイミングおよび送信周波数によって、センサ情報を無線信号として送信するよう制御するものである。
 [衛星受信局]
 図3は、本技術の実施の形態における衛星受信局600の構成例を示す図である。
 衛星受信局600は、受信局測位部620と、受信周期決定部640と、無線資源決定部650と、サーバ通信部680と、受信制御部690とを備える。
 受信局測位部620は、GPSなどの測位衛星システムの測位衛星からの信号を受信して、現在時刻と衛星受信局600の位置情報を取得するものである。
 受信周期決定部640は、受信すべき端末100の送信周期のうち最小値を受信周期として決定するものである。端末100の送信周期はサービス契約時に決定されており、端末100の端末識別子とともに、事前にサーバ400から供給される。
 無線資源決定部650は、端末100から送信された信号の受信に使用する無線資源として、受信タイミングおよび受信周波数を決定するものである。この無線資源決定部650は、受信局測位部620によって取得された現在時刻と、受信すべき端末100の端末識別子と、受信周期決定部640によって決定された受信周期とから受信タイミングおよび受信周波数を決定する。
 サーバ通信部680は、受信したセンサ情報をサーバ400に送出するものである。このサーバ通信部680は、地上制御局300の回線を介してサーバ400と通信を行う。
 受信制御部690は、無線資源決定部650によって決定された受信タイミングおよび受信周波数によって、センサ情報を無線信号として受信するよう制御するものである。
 なお、ここでは衛星受信局600の構成例について説明したが、地上受信局200についても同様の構成を備える。ただし、地上受信局200におけるサーバ通信部は、有線などの通信回線を経由してインターネット500上のサーバ400と通信を行うよう構成される。
 [送信タイミングの決定]
 無線資源決定部150は、端末測位部120によって取得された現在時刻と、端末100の端末識別子と、送信周期決定部140によって決定された送信周期とから、以下のように送信タイミングを決定する。
 図4は、本技術の実施の形態の無線システムにおいて管理される時間の構成例を示す図である。
 この無線システム内では、時間は所定長のスーパーフレーム(Superframe:SP)に分割される。また、スーパーフレームの各々は、複数のタイムスロット(Time Slot:TS)に分割される。そして、タイムスロットの各々はさらに複数のグリッド(Grid:G)に分割される。なお、以下ではスーパーフレームの通し番号をSP番号と称する。
 まず、端末測位部120において取得された現在時刻tから現在のSP番号と、そのSP番号のスーパーフレームの開始時刻を決定する。例えばGPSの場合、GPS時刻から得られる時刻は、1980年1月6日0時0分0秒を基準としたものである。ここでは秒単位として考える。
 スーパーフレーム区間の長さはSPdurationとする。スーパーフレーム区間の長さは無線システムとして事前に決定される。このとき、スーパーフレーム区間の通し番号であるSP番号をnとし、番号nのスーパーフレームの開始時刻をSP(n)start-timeとすると、次式のように決定される。なお、演算子div()は割り算の商を示す。
  n=div(t,SPduration
  SP(n)start-time=n×SPduration
 上式によれば、現在時刻tをスーパーフレーム区間SPdurationで割り算した商を通し番号とするスーパーフレームSP(n)の開始時刻SP(n)start-timeは、nとスーパーフレーム区間長とを乗算した値になる。
 次に、端末100が送信することができるSP番号を決定する。これには、事前に割り当てられる送信周期Periodと、端末100に固有の情報として端末識別子IDを用いて決定する。端末固有の情報である端末識別子IDを用いて決定するため、同一送信周期であっても、端末毎に異なるSP番号が割り当てられる。ここで、秒単位で表される送信周期Periodを、スーパーフレームの数、すなわちSP番号の間隔mに変換する。具体的には、次式に従って、事前に割り当てられた送信周期Periodをスーパーフレーム区間長SPdurationで割り算した商を、SP番号の間隔mとする。
  m=div(Period,SPduration
 次に、端末毎にSP番号を変えるために、次式に従ってオフセット値moftを計算する。但し、次式の演算子mod()は割り算の余りを示している。すなわち、端末100の端末識別子IDをSP番号の間隔mで割り算した余りが、端末100のオフセット値moftとなる。
  moft=mod(ID,m)
 そして、このようにして得られたオフセット値moftを用いて、端末100が送信することができるSP番号(n)を決定する。具体的には、次式を満たすSP番号(n)のときに、端末100は送信を行うことができる。すなわち、オフセット値moftを加算した値が送信周期に相当するSP番号の間隔(m)で割り切れるSP番号(n)のスーパーフレームで、端末100は送信を行うことができる。
  mod(n+moft,m)=0
 次に、このようにして得られたSP番号のスーパーフレーム内での送信時間を決定する。端末100は、タイムスロットの各々において、繰り返し送信を行うものとする。繰り返し送信は、端末100が同一のデータを複数回送ることであり、これによって通信の成功率を高めることができ、長距離通信を実現することが可能となる。繰り返し送信は、スーパーフレーム内のタイムスロットの数だけ実施される。スーパーフレーム内のタイムスロットは1つでもよいが、その場合には繰り返し送信は行われない。
 各タイムスロットにおける送信開始時刻は、該当するスーパーフレームの開始時刻と、スーパーフレーム内のタイムスロット数とによって決定することができる。n番目のスーパーフレームSP(n)におけるタイムスロットの分割数をnTSとして、スーパーフレーム内のk番目のタイムスロットTS(k)の開始時刻TS(k)start-time in SP(n)は、次式に従って決定される。但し、kは0乃至(nTS-1)の整数である。
  TS(k)start-time in SP(n)=SP(n)start-time
              k×SPduration/nTS
 タイムスロット内にはグリッドと呼ばれる送信開始時刻が複数規定されている。ここでは、タイムスロット毎にG(0)乃至G(7)の8か所の開始時刻が規定されていることを想定する。端末100が送信を行うグリッドは、擬似乱数系列を用いて決定される。例えば、12ビットの疑似乱数系列を生成することにより、タイムスロット内のグリッド番号を送信時刻として決定する。
 [送信周波数の決定]
 無線システムとして利用可能な周波数チャネルの数をnFとする。ここではnF=4として説明する。無線資源決定部150は、送信時刻を決定するために生成した12ビットの疑似乱数系列の後に、さらに8ビットの疑似乱数系列を生成する。nF=4であるため、8ビットを2ビットずつ、4つに分割して、各2ビットを10進数に変換した値を送信周波数番号とする。周波数番号は、実際に送信する場合の搬送波周波数の中心周波数に対応している。
 このように、現在時刻および端末識別子に基づいて、端末100が周期的に送信を行う場合の送信タイミングと送信周波数を決定することができる。端末識別子を利用していることから、端末毎に異なる時刻および周波数を割り当てることが可能であり、また送信する時刻によって異なるタイミングおよび周波数を割り当てることができる。
 なお、ここでは端末100の無線資源決定部150における無線資源の決定手法について説明したが、地上受信局200や衛星受信局600においても同様に現在時刻および端末識別子に基づいて、受信時刻と受信周波数を決定することができる。
 [動作]
 図5は、本技術の実施の形態における端末100の処理手順例を示す流れ図である。
 ここでは、端末100は初期周期X0(例えば30分)で送信を行うものとする。この初期周期X0はサービス契約時に決定するものとする。この例では、初期周期X0は、例えば30分を想定する。
 また、端末100と衛星受信局600との間の距離である端末衛星間距離について、遠近の判断を行うための閾値THを保持しているものとする。閾値THは、衛星受信局600の受信性能によって決まる受信範囲に基づいて、事前に決定される。
 また、端末衛星間距離が近くなった際の送信周期である短周期X1が、サービス契約時に決定されているものとする。この例では、短周期X1は、例えば10分を想定する。
 端末100が送信動作を開始する際(ステップS911)、初回は電源投入後に動作を開始し、次回以降は送信周期のタイミングで動作を開始する。
 センサ110は、センサ情報を取得する(ステップS912)。
 端末測位部120は、測位衛星システムの測位衛星からの信号を受信して、現在時刻と端末100の位置情報を取得する(ステップS913)。
 衛星測位部130は、端末測位部120において取得された現在時刻と衛星受信局600の衛星情報とから衛星軌道を計算して、衛星受信局600の位置情報を取得する(ステップS914)。
 送信周期決定部140は、衛星測位部130により取得された衛星の位置情報と、端末測位部120により取得された端末の位置情報とから、両者の差の絶対値を計算して、端末衛星間距離を算出する(ステップS915)。
 また、送信周期決定部140は、算出した端末衛星間距離と閾値THを比較することにより、送信周期を決定する(ステップS916)。
 無線資源決定部150は、決定された送信周期に基づいて、端末100からの送信に使用する送信タイミングおよび送信周波数を決定する(ステップS917)。
 そして、送信制御部190は、決定された送信タイミングおよび送信周波数によって、センサ情報を無線信号として送信するよう制御する(ステップS918)。次回の送信時刻は、決定された送信周期に基づいて設定される(ステップS919)。
 図6は、本技術の第1の実施の形態における送信周期決定手順(ステップS916)の処理手順例を示す流れ図である。
 送信周期決定部140は、端末衛星間距離と閾値THとを比較して送信周期を決定する。端末衛星間距離が閾値THより小さくない場合(ステップS931:No)、送信周期Pとして初期周期X0を設定する(ステップS934)。一方、端末衛星間距離が閾値THより小さくなると(ステップS931:Yes)、送信周期Pとして短周期X1を設定する(ステップS932)。
 図7は、本技術の第1の実施の形態における送信周期の遷移の具体例を示す図である。
 同図に示すように、通常は送信周期Pとして初期周期X0(この例では30分)で動作しており、端末衛星間距離が閾値THより小さくなると送信周期Pとして短周期X1(この例では10分)で動作するようになる。これにより、衛星受信局600が近くに存在する場合には送信周期を短くすることにより、衛星受信局600において受信が行われる可能性を向上させることができる。
 図8は、本技術の実施の形態における衛星受信局600の処理手順例を示す流れ図である。
 衛星受信局600は、受信すべき端末100の端末識別子IDと、端末100の送信周期(初期周期X0および短周期X1)を事前にサーバ400から取得しているものとする。
 衛星受信局600は、電源投入後に動作を開始する(ステップS921)。また、サーバ400から動作を停止または再開するようにしてもよい。
 受信局測位部620は、測位衛星システムの測位衛星からの信号を受信して、現在時刻と衛星受信局600の位置情報を取得する(ステップS923)。
 受信周期決定部640は、受信すべき端末100の送信周期のうち最小値を受信周期として決定する。例えば、初期周期X0が30分、短周期X1が10分であれば、最小値の10分を受信周期として決定する(ステップS926)。なお、ここでは衛星受信局600の場合の動作について説明しているが、地上受信局200の場合は初期周期X0を受信周期として決定する。
 無線資源決定部650は、決定された受信周期に基づいて、端末100からの受信に使用する受信タイミングおよび受信周波数を決定する(ステップS927)。
 受信制御部690は、決定された受信タイミングおよび受信周波数によって、センサ情報を無線信号として受信するよう制御する(ステップS928)。次回の受信時刻は、決定された受信周期に基づいて設定される(ステップS929)。
 このように、本技術の第1の実施の形態によれば、衛星受信局600との距離が近くなると端末100からの送信周期を通常(初期周期X0)よりも短周期X1にすることにより、衛星受信局600における受信成功率を向上させることができる。一方、衛星受信局600との距離が離れた場合であっても、通常の送信周期で送信することにより、地上受信局200での受信可能性を担保することができる。
 <2.第2の実施の形態>
 上述の第1の実施の形態では衛星受信局600との距離が近くなった場合以外は送信周期を通常の初期周期X0にしていたが、端末衛星間距離が遠くなった場合には送信周期をさらに長い周期にしてもよい。この第2の実施の形態では、端末衛星間距離が閾値よりも遠くなった場合に送信周期を長周期に設定することにより、端末100の消費電力の抑制を図る。なお、無線システムとしての構成自体は上述の第1の実施の形態と同様であるため、詳細な説明を省略する。
 [動作]
 上述の第1の実施の形態では送信周期として初期周期X0および短周期X1を想定したが、この第2の実施の形態ではさらに長周期X2を想定する。例えば、初期周期X0を30分、短周期X1を10分とした場合、長周期X2としては60分を想定する。これらの送信周期は、サービス契約時に決定されており、端末100の端末識別子とともに、事前にサーバ400から供給される。
 図9は、本技術の第2の実施の形態における送信周期決定手順(ステップS916)の処理手順例を示す流れ図である。
 送信周期決定部140は、端末衛星間距離と閾値THとを比較して送信周期を決定する。端末衛星間距離が閾値THより小さくない場合(ステップS931:No)、送信周期Pとして長周期X2を設定する(ステップS933)。一方、端末衛星間距離が閾値THより小さくなると(ステップS931:Yes)、送信周期Pとして短周期X1を設定する(ステップS932)。
 図10は、本技術の第2の実施の形態における送信周期の遷移の具体例を示す図である。
 同図に示すように、通常は送信周期Pとして長周期X2(この例では60分)で動作しており、端末衛星間距離が閾値THより小さくなると送信周期Pとして短周期X1(この例では10分)で動作するようになる。これにより、衛星受信局600が遠くに存在する場合には、送信周期を長くすることにより、端末100の消費電力を抑制することができる。一方、衛星受信局600が近くに存在する場合には、上述の第1の実施の形態と同様に送信周期を短くすることにより、衛星受信局600において受信が行われる可能性を向上させることができる。
 このように、本技術の第2の実施の形態によれば、衛星受信局600との距離が遠くなると端末100からの送信周期を通常(初期周期X0)よりも長周期X2にすることにより、端末100の消費電力を抑制することができる。
 <3.変形例>
 [第1の変形例]
 本技術の第1および第2の実施の形態においては、端末100のバッテリ容量を考慮して送信周期を設定してもよい。この第1の変形例では、端末100のバッテリ容量に基づいて送信周期を設定する例について説明する。
 図11は、本技術の実施の形態の第1の変形例における端末100の構成例を示す図である。
 この第1の変形例の端末100は、上述の実施の形態に加えて、さらにバッテリ容量取得部170を備える。このバッテリ容量取得部170は、端末100の図示しないバッテリのバッテリ容量を取得して送信周期決定部140に供給するものである。
 送信周期決定部140は、バッテリ容量取得部170から供給されたバッテリ容量を参照して、そのバッテリ容量と端末衛星間距離に応じて送信周期を決定する。したがって、例えばバッテリ容量が所定の容量閾値より少ない場合には、バッテリ容量が容量閾値より多い場合よりも長い周期を送信周期として決定する。これによって、バッテリの残量が低下している場合には送信動作を控えるようにすることができる。
 なお、送信周期を設定する際、送信周期を無限大の値にすれば、送信動作が行われない状態になる。そのため、バッテリの残量が極度に低下している場合には送信周期を無限大の値に設定して送信動作を停止させるようにしてもよい。また、端末衛星間距離が所定の閾値より長い場合には、同様に、送信周期を無限大の値に設定して送信動作を停止させるようにしてもよい。
 [第2の変形例]
 本技術の第1および第2の実施の形態においては、1つの閾値を用いて送信周期を切り替えていたが、閾値は複数であってもよい。この第2の変形例として示すように、複数の閾値を用いることにより、送信周期を段階的に切り替えることができる。
 図12は、本技術の実施の形態の第2の変形例における送信周期決定手順(ステップS916)の処理手順例を示す流れ図である。
 送信周期決定部140は、端末衛星間距離と複数の閾値THaおよびTHbとを比較して送信周期を決定する。端末衛星間距離が閾値THaより小さい場合(ステップS935:Yes)、送信周期Pとして周期Xaを設定する(ステップS937)。端末衛星間距離が閾値THaより小さくない場合には(ステップS935:No)、次のように閾値THbを用いて判断する(ステップS936)。
 端末衛星間距離が閾値THbより小さい場合(ステップS936:Yes)、送信周期Pとして周期Xbを設定する(ステップS938)。一方、端末衛星間距離が閾値THbより小さくない場合(ステップS936:No)、送信周期Pとして周期Xcを設定する(ステップS939)。
 図13は、本技術の実施の形態の第2の変形例における端末衛星間距離と送信周期との関係例を示す図である。
 同図に示すように、この第2の変形例では、端末衛星間距離に応じて段階的に送信周期が切り替わる。これにより、柔軟に送信周期を設定することができる。
 なお、上述の実施の形態は本技術を具現化するための一例を示したものであり、実施の形態における事項と、特許請求の範囲における発明特定事項とはそれぞれ対応関係を有する。同様に、特許請求の範囲における発明特定事項と、これと同一名称を付した本技術の実施の形態における事項とはそれぞれ対応関係を有する。ただし、本技術は実施の形態に限定されるものではなく、その要旨を逸脱しない範囲において実施の形態に種々の変形を施すことにより具現化することができる。
 また、上述の実施の形態において説明した処理手順は、これら一連の手順を有する方法として捉えてもよく、また、これら一連の手順をコンピュータに実行させるためのプログラム乃至そのプログラムを記憶する記録媒体として捉えてもよい。この記録媒体として、例えば、CD(Compact Disc)、MD(MiniDisc)、DVD(Digital Versatile Disc)、メモリカード、ブルーレイディスク(Blu-ray(登録商標)Disc)等を用いることができる。
 なお、本明細書に記載された効果はあくまで例示であって、限定されるものではなく、また、他の効果があってもよい。
 なお、本技術は以下のような構成もとることができる。
(1)端末の現在位置である端末位置および現在時刻を取得する端末測位部と、
 前記現在時刻に基づいて衛星受信局の現在位置である衛星位置を取得する衛星測位部と、
 前記端末位置および前記衛星位置に基づいて送信周期を決定する送信周期決定部と、
 前記現在時刻、前記端末の端末識別子、および、前記送信周期に基づいて送信タイミングおよび送信周波数を無線資源として決定する無線資源決定部と、
 前記送信タイミングおよび前記送信周波数に従って無線送信を制御する送信制御部と
を具備する端末。
(2)前記送信周期決定部は、前記端末位置と前記衛星位置との差の絶対値である端末衛星間距離が短いほど、少なくとも長くない周期を前記送信周期として決定する
前記(1)に記載の端末。
(3)前記送信周期決定部は、前記端末衛星間距離が所定の閾値より短い場合には、前記端末衛星間距離が前記閾値より長い場合よりも短い周期を前記送信周期として決定する
前記(2)に記載の端末。
(4)前記送信周期決定部は、前記端末衛星間距離が第1の閾値より短い場合には前記端末衛星間距離が前記第1の閾値より長い場合よりも短い第1の周期を前記送信周期として決定し、前記端末衛星間距離が第1の閾値より長い場合であって前記第1の閾値より長い第2の閾値よりも短い場合には前記端末衛星間距離が前記第2の閾値より長い場合よりも短い第2の周期を前記送信周期として決定する
前記(2)または(3)に記載の端末。
(5)前記送信周期決定部は、送信開始当初は所定の初期送信周期を前記送信周期として決定し、前記端末衛星間距離が所定の閾値より短くなった場合には前記初期送信周期よりも短い周期を前記送信周期として決定し、前記端末衛星間距離が所定の閾値より長くなった場合には前記初期送信周期を前記送信周期として決定する
前記(2)から(4)のいずれかに記載の端末。
(6)前記送信周期決定部は、送信開始当初は所定の初期送信周期を前記送信周期として決定し、前記端末衛星間距離が所定の閾値より短くなった場合には前記初期送信周期よりも短い周期を前記送信周期として決定し、前記端末衛星間距離が所定の閾値より長くなった場合には前記初期送信周期よりも長い周期を前記送信周期として決定する
前記(2)から(5)のいずれかに記載の端末。
(7)前記送信周期決定部は、前記端末衛星間距離が所定の閾値より長い場合には無限大の周期を前記送信周期として決定する
前記(2)から(6)のいずれかに記載の端末。
(8)前記端末を動作させるためのバッテリの現在のバッテリ容量を取得するバッテリ容量取得部をさらに具備し、
 前記送信周期決定部は、前記端末衛星間距離および前記バッテリ容量に応じて前記送信周期を決定する
前記(2)から(7)のいずれかに記載の端末。
(9)前記送信周期決定部は、前記バッテリ容量が所定の容量閾値より少ない場合には前記バッテリ容量が前記容量閾値より多い場合よりも長い周期を前記送信周期として決定する
前記(8)に記載の端末。
(10)端末測位部が、端末の現在位置である端末位置および現在時刻を取得する手順と、
 衛星測位部が、前記現在時刻に基づいて衛星受信局の現在位置である衛星位置を取得する手順と、
 送信周期決定部が、前記端末位置および前記衛星位置に基づいて送信周期を決定する手順と、
 無線資源決定部が、前記現在時刻、前記端末の端末識別子、および、前記送信周期に基づいて送信タイミングおよび送信周波数を無線資源として決定する手順と、
 送信制御部が、前記送信タイミングおよび前記送信周波数に従って無線送信を制御する手順と
を具備する端末の無線送信制御方法。
 100 端末
 110 センサ
 120 端末測位部
 130 衛星測位部
 140 送信周期決定部
 150 無線資源決定部
 170 バッテリ容量取得部
 190 送信制御部
 200 地上受信局
 300 地上制御局
 400 サーバ
 500 インターネット
 600 衛星受信局
 620 受信局測位部
 640 受信周期決定部
 650 無線資源決定部
 680 サーバ通信部
 690 受信制御部

Claims (10)

  1.  端末の現在位置である端末位置および現在時刻を取得する端末測位部と、
     前記現在時刻に基づいて衛星受信局の現在位置である衛星位置を取得する衛星測位部と、
     前記端末位置および前記衛星位置に基づいて送信周期を決定する送信周期決定部と、
     前記現在時刻、前記端末の端末識別子、および、前記送信周期に基づいて送信タイミングおよび送信周波数を無線資源として決定する無線資源決定部と、
     前記送信タイミングおよび前記送信周波数に従って無線送信を制御する送信制御部と
    を具備する端末。
  2.  前記送信周期決定部は、前記端末位置と前記衛星位置との差の絶対値である端末衛星間距離が短いほど、少なくとも長くない周期を前記送信周期として決定する
    請求項1記載の端末。
  3.  前記送信周期決定部は、前記端末衛星間距離が所定の閾値より短い場合には、前記端末衛星間距離が前記閾値より長い場合よりも短い周期を前記送信周期として決定する
    請求項2記載の端末。
  4.  前記送信周期決定部は、前記端末衛星間距離が第1の閾値より短い場合には前記端末衛星間距離が前記第1の閾値より長い場合よりも短い第1の周期を前記送信周期として決定し、前記端末衛星間距離が第1の閾値より長い場合であって前記第1の閾値より長い第2の閾値よりも短い場合には前記端末衛星間距離が前記第2の閾値より長い場合よりも短い第2の周期を前記送信周期として決定する
    請求項2記載の端末。
  5.  前記送信周期決定部は、送信開始当初は所定の初期送信周期を前記送信周期として決定し、前記端末衛星間距離が所定の閾値より短くなった場合には前記初期送信周期よりも短い周期を前記送信周期として決定し、前記端末衛星間距離が所定の閾値より長くなった場合には前記初期送信周期を前記送信周期として決定する
    請求項2記載の端末。
  6.  前記送信周期決定部は、送信開始当初は所定の初期送信周期を前記送信周期として決定し、前記端末衛星間距離が所定の閾値より短くなった場合には前記初期送信周期よりも短い周期を前記送信周期として決定し、前記端末衛星間距離が所定の閾値より長くなった場合には前記初期送信周期よりも長い周期を前記送信周期として決定する
    請求項2記載の端末。
  7.  前記送信周期決定部は、前記端末衛星間距離が所定の閾値より長い場合には無限大の周期を前記送信周期として決定する
    請求項2記載の端末。
  8.  前記端末を動作させるためのバッテリの現在のバッテリ容量を取得するバッテリ容量取得部をさらに具備し、
     前記送信周期決定部は、前記端末衛星間距離および前記バッテリ容量に応じて前記送信周期を決定する
    請求項2記載の端末。
  9.  前記送信周期決定部は、前記バッテリ容量が所定の容量閾値より少ない場合には前記バッテリ容量が前記容量閾値より多い場合よりも長い周期を前記送信周期として決定する
    請求項8記載の端末。
  10.  端末測位部が、端末の現在位置である端末位置および現在時刻を取得する手順と、
     衛星測位部が、前記現在時刻に基づいて衛星受信局の現在位置である衛星位置を取得する手順と、
     送信周期決定部が、前記端末位置および前記衛星位置に基づいて送信周期を決定する手順と、
     無線資源決定部が、前記現在時刻、前記端末の端末識別子、および、前記送信周期に基づいて送信タイミングおよび送信周波数を無線資源として決定する手順と、
     送信制御部が、前記送信タイミングおよび前記送信周波数に従って無線送信を制御する手順と
    を具備する端末の無線送信制御方法。
PCT/JP2022/042844 2022-01-14 2022-11-18 端末およびその無線送信制御方法 WO2023135935A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023573872A JPWO2023135935A1 (ja) 2022-01-14 2022-11-18

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-004325 2022-01-14
JP2022004325 2022-01-14

Publications (1)

Publication Number Publication Date
WO2023135935A1 true WO2023135935A1 (ja) 2023-07-20

Family

ID=87278914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/042844 WO2023135935A1 (ja) 2022-01-14 2022-11-18 端末およびその無線送信制御方法

Country Status (2)

Country Link
JP (1) JPWO2023135935A1 (ja)
WO (1) WO2023135935A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116760457A (zh) * 2023-08-17 2023-09-15 成都本原星通科技有限公司 一种基于卫星电池寿命的资源分配方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007053589A (ja) * 2005-08-18 2007-03-01 Nippon Telegr & Teleph Corp <Ntt> 無線通信装置、無線通信システムおよび無線通信方法
JP2012008761A (ja) * 2010-06-24 2012-01-12 Honda Motor Co Ltd 車車間通信装置
WO2013161798A1 (ja) * 2012-04-27 2013-10-31 三菱電機株式会社 通信システム
WO2020174683A1 (ja) * 2019-02-28 2020-09-03 株式会社ベイビッグ 制御システム及び制御方法
WO2020246158A1 (ja) * 2019-06-03 2020-12-10 ソニー株式会社 通信装置及び通信方法
JP2021516486A (ja) * 2018-03-09 2021-07-01 アイピーコム ゲーエムベーハー ウント コー. カーゲー 地球外通信のための予測測定

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007053589A (ja) * 2005-08-18 2007-03-01 Nippon Telegr & Teleph Corp <Ntt> 無線通信装置、無線通信システムおよび無線通信方法
JP2012008761A (ja) * 2010-06-24 2012-01-12 Honda Motor Co Ltd 車車間通信装置
WO2013161798A1 (ja) * 2012-04-27 2013-10-31 三菱電機株式会社 通信システム
JP2021516486A (ja) * 2018-03-09 2021-07-01 アイピーコム ゲーエムベーハー ウント コー. カーゲー 地球外通信のための予測測定
WO2020174683A1 (ja) * 2019-02-28 2020-09-03 株式会社ベイビッグ 制御システム及び制御方法
WO2020246158A1 (ja) * 2019-06-03 2020-12-10 ソニー株式会社 通信装置及び通信方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116760457A (zh) * 2023-08-17 2023-09-15 成都本原星通科技有限公司 一种基于卫星电池寿命的资源分配方法
CN116760457B (zh) * 2023-08-17 2023-10-31 成都本原星通科技有限公司 一种基于卫星电池寿命的资源分配方法

Also Published As

Publication number Publication date
JPWO2023135935A1 (ja) 2023-07-20

Similar Documents

Publication Publication Date Title
RU2376706C2 (ru) Способ и устройство для увеличения отношения сигнал-шум измерений определения местоположения
CN110089158B (zh) 用于在低功耗网络中进行电报拆分的可变子分组长度
WO2023135935A1 (ja) 端末およびその無線送信制御方法
KR100625723B1 (ko) 효율적인 발동 주기 사용을 위한 페이징 채널 구성
US5727034A (en) Apparatus and method for synchronizing base sites individually in a communication system
KR20190082797A (ko) 텔레그램 분할 송신 방법에 기초한 상이한 센서 노드들 및 가변 데이터 길이들에 대한 최적화된 홉핑 패턴들
CN101448314B (zh) 实现基站间时间同步的方法和系统及通信终端
CN101420269A (zh) 时间同步的方法、装置和系统
KR20070015152A (ko) 신호 수신을 위한 방법과 장치
RU2008132421A (ru) Мобильная станция, базовая станция, система и способ связи
CN114175552A (zh) 用于物理共享信道的重复次数的指示
WO1999004591A1 (fr) Station mobile amcr et procede de transmission amcr
CN108886834B (zh) 无线通信系统以及通信方法
US11252661B2 (en) Packet synchronization information peeking
CN110945942B (zh) Nr-u中drs窗口确定方法、装置及终端
CN113260053B (zh) 一种传输时隙结构指示方法和设备
CN111867050B (zh) 一种信息传输的方法、装置、节点和服务器
CN113785631A (zh) 用于协调传感器网络中的参与者的方法
JP2007165998A (ja) 移動無線システム及び移動無線制御方法
CN1726404B (zh) 用于预定进度以搜索并截获全球定位卫星的方法和装置
Killough et al. Gold code-phase-shift keying: a power and bandwidth efficient communication scheme for smart buildings
JP2006262413A (ja) 無線中継装置及びその送信装置
US20230247634A1 (en) Communication apparatus and communication method
CN111800248B (zh) 基于虚拟载波数据方式实现的通信方法和装置
CN101562881A (zh) 发送导频信道、确定导频信道发送端的方法、系统及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22920455

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023573872

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE