WO2023134623A1 - 信息获取、配置方法、装置及通信设备 - Google Patents

信息获取、配置方法、装置及通信设备 Download PDF

Info

Publication number
WO2023134623A1
WO2023134623A1 PCT/CN2023/071301 CN2023071301W WO2023134623A1 WO 2023134623 A1 WO2023134623 A1 WO 2023134623A1 CN 2023071301 W CN2023071301 W CN 2023071301W WO 2023134623 A1 WO2023134623 A1 WO 2023134623A1
Authority
WO
WIPO (PCT)
Prior art keywords
offset
pei
density
frame
paging
Prior art date
Application number
PCT/CN2023/071301
Other languages
English (en)
French (fr)
Inventor
李东儒
沈晓冬
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2023134623A1 publication Critical patent/WO2023134623A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application belongs to the technical field of communication, and in particular relates to an information acquisition and configuration method, device and communication equipment.
  • the offset parameters related to the paging early indication (Paging Early Indication, PEI) opportunity (PEI-O) include: frame-level offset parameters (Frame-level offset) and symbol-level offset parameters (Symbol -level offset), but the value range of the above-mentioned offset parameter is not yet clear in related technologies, so that the location information of the PEI-O cannot be accurately determined according to the above-mentioned offset parameter, thereby affecting the detection performance of the terminal on the PEI-O.
  • Embodiments of the present application provide an information acquisition and configuration method, device, and communication device, which can solve the problem of how to improve the detection performance of a terminal for PEI-O.
  • a method for obtaining information including:
  • the terminal acquires the first offset, and the first offset is used to indicate the difference between the radio frame associated with the paging advance indication opportunity PEI-O and the first paging advance indication monitoring opportunity PEI-MO of the PEI-O offset between
  • the terminal monitors the PEI-O according to the first offset
  • the value range of the first offset is related to at least one of the following:
  • the first density is the density of PEI-0 or paging advance indication frame PEI-frame in the first time span;
  • the value of the second offset, the second offset is used to indicate the offset between the radio frame associated with the PEI-O and the target paging frame PF, the target paging frame is the The earliest or latest PF among at least one PF where the paging occasion PO associated with the PEI-O is located.
  • an information configuration method including:
  • the network side device configures a first offset, the first offset is used to indicate that the radio frame associated with the paging advance indication opportunity PEI-O and the first paging advance indication monitoring opportunity PEI-O of the PEI-O offset between MOs;
  • the value range of the first offset is related to at least one of the following:
  • a first density where the first density is the density of PEI-0 or paging advance indication frame PEI-frame within the first time span;
  • the value of the second offset, the second offset is used to indicate the offset between the radio frame associated with the PEI-O and the target paging frame PF, the target paging frame is the The earliest or latest PF among at least one PF where the paging occasion PO associated with the PEI-O is located.
  • an information acquisition device including:
  • the first obtaining module is configured to obtain a first offset, and the first offset is used to indicate the first paging advance indication of the PEI-O between the radio frame associated with the paging advance indication timing PEI-O The offset between the PEI-MO of the listening opportunity;
  • a monitoring module configured to monitor the PEI-O according to the first offset; wherein, the value range of the first offset is related to at least one of the following:
  • a first density where the first density is the density of PEI-0 or paging advance indication frame PEI-frame within the first time span;
  • the value of the second offset, the second offset is used to indicate the offset between the radio frame associated with the PEI-O and the target paging frame PF, the target paging frame is the The earliest or latest PF among at least one PF where the paging occasion PO associated with the PEI-O is located.
  • an information configuration device including:
  • a configuration module configured to configure a first offset, where the first offset is used to indicate the radio frame associated with the paging advance indication opportunity PEI-O and the first paging advance indication monitoring opportunity of the PEI-O Offset between PEI-MO;
  • the value range of the first offset is related to at least one of the following:
  • a first density where the first density is the density of PEI-0 or paging advance indication frame PEI-frame within the first time span;
  • the value of the second offset, the second offset is used to indicate the offset between the radio frame associated with the PEI-O and the target paging frame PF, the target paging frame is the The earliest or latest PF among at least one PF where the paging occasion PO associated with the PEI-O is located.
  • a terminal in a fifth aspect, includes a processor and a memory, the memory stores programs or instructions that can run on the processor, and when the programs or instructions are executed by the processor, the following The steps of the method in one aspect.
  • a terminal including a processor and a communication interface, wherein the communication interface is used to obtain a first offset, and the first offset is used to indicate a paging advance indication opportunity PEI-O The offset between the associated radio frame and the first paging advance indication monitoring opportunity PEI-MO of the PEI-O; the processor is configured to perform the PEI-O according to the first offset monitoring;
  • the value range of the first offset is related to at least one of the following:
  • a first density where the first density is the density of PEI-0 or paging advance indication frame PEI-frame within the first time span;
  • the value of the second offset, the second offset is used to indicate the offset between the radio frame associated with the PEI-O and the target paging frame PF, the target paging frame is the The earliest or latest PF among at least one PF where the paging occasion PO associated with the PEI-O is located.
  • a network-side device in a seventh aspect, includes a processor and a memory, the memory stores programs or instructions that can run on the processor, and the programs or instructions are executed by the processor When realizing the steps of the method as described in the second aspect.
  • a network side device including a processor and a communication interface, wherein the processor is used to configure a first offset, and the first offset is used to indicate a paging advance indication timing PEI- The offset between the radio frame associated with O and the first paging advance indication monitoring opportunity PEI-MO of the PEI-O;
  • the value range of the first offset is related to at least one of the following:
  • a first density where the first density is the density of PEI-0 or paging advance indication frame PEI-frame within the first time span;
  • the value of the second offset, the second offset is used to indicate the offset between the radio frame associated with the PEI-O and the target paging frame PF, the target paging frame is the The earliest or latest PF among at least one PF where the paging occasion PO associated with the PEI-O is located.
  • a ninth aspect provides an information processing system, including: a terminal and a network-side device, the terminal can be used to perform the steps of the information acquisition method described in the first aspect, and the network-side device can be used to perform the steps of the second The steps of the information configuration method described in the aspect.
  • a readable storage medium is provided, and a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, the steps of the method described in the first aspect are implemented, or the steps of the method as described in the first aspect are implemented, or the The steps of the method described in the second aspect.
  • a chip in an eleventh aspect, includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run a program or an instruction to implement the method described in the first aspect. method, or implement the method as described in the second aspect.
  • a computer program/program product is provided, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the The steps of the method or the steps of implementing the method as described in the second aspect.
  • the terminal obtains the first offset, which is used to indicate the offset between the radio frame associated with the PEI-O of the paging advance indication opportunity and the first PEI-MO of the PEI-O. Shift; wherein, the value range of the first offset is related to at least one of the following: the subcarrier spacing SCS; the length of the radio frame; the first density, the first density is PEI-O or PEI in the first time span -frame density; the value of the second offset, the second offset is used to indicate the offset between the radio frame associated with the PEI-O and the target paging frame PF, the target paging frame It is the earliest or latest PF among at least one PF where the paging occasion PO associated with the PEI-O is located.
  • the value of the first offset is determined based on the first density, second offset and/or SCS
  • the range makes the value of the first offset more adaptable and flexible, thereby improving the detection performance of the terminal on the PEI-O.
  • FIG. 1 shows a structural diagram of a communication system applicable to an embodiment of the present application
  • Figure 2 shows a schematic diagram of the starting position of the PEI-frame and the position of the first PDCCH MO of the PEI-O;
  • FIG. 3 shows a schematic flow diagram of an information acquisition method in an embodiment of the present application
  • FIG. 4 shows a schematic flow diagram of an information configuration method in an embodiment of the present application
  • FIG. 5 shows a schematic diagram of modules of an information acquisition device according to an embodiment of the present application
  • FIG. 6 shows a structural block diagram of a communication device according to an embodiment of the present application.
  • FIG. 7 shows a structural block diagram of a terminal in an embodiment of the present application.
  • FIG. 8 shows a schematic diagram of modules of an information configuration device according to an embodiment of the present application.
  • FIG. 9 shows a structural block diagram of a network side device according to an embodiment of the present application.
  • first, second and the like in the specification and claims of the present application are used to distinguish similar objects, and are not used to describe a specific sequence or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances such that the embodiments of the application are capable of operation in sequences other than those illustrated or described herein and that "first" and “second” distinguish objects. It is usually one category, and the number of objects is not limited. For example, there may be one or more first objects.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the related objects before and after are an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technologies can be used for the above-mentioned systems and radio technologies as well as other systems and radio technologies.
  • NR New Radio
  • the following description describes the New Radio (NR) system for illustrative purposes, and uses NR terminology in most of the following descriptions, but these techniques can also be applied to applications other than NR system applications, such as the 6th generation (6 th Generation, 6G) communication system.
  • 6G 6th Generation
  • Fig. 1 shows a block diagram of a wireless communication system to which the embodiment of the present application is applicable.
  • the wireless communication system includes a terminal 11 and a network side device 12 .
  • the terminal 11 can be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a palmtop computer, a netbook, a super mobile personal computer (Ultra-mobile personal computer, UMPC), mobile Internet device (Mobile Internet Device, MID), augmented reality (augmented reality, AR) / virtual reality (virtual reality, VR) equipment, robot, wearable device (Wearable Device) , Vehicle User Equipment (VUE), Pedestrian User Equipment (PUE), smart home (home equipment with wireless communication functions, such as refrigerators, TVs, washing machines or furniture, etc.), game consoles, personal computers (personal computer, PC), teller machine or self-service machine and other terminal side devices, wearable devices include: smart watches, smart
  • the network side device 12 may include an access network device or a core network device, wherein the access network device 12 may also be called a radio access network device, a radio access network (Radio Access Network, RAN), a radio access network function or Wireless access network unit.
  • RAN Radio Access Network
  • the access network device 12 may include a base station, a wireless local area network (Wireless Local Area Network, WLAN) access point or a WiFi node, etc., and the base station may be called a node B, an evolved node B (Evolved Node B, eNB), an access point, Base Transceiver Station (BTS), Radio Base Station, Radio Transceiver, Basic Service Set (BSS), Extended Service Set (ESS), Home Node B, Home Evolved Node B , Transmitting Receiving Point (Transmitting Receiving Point, TRP) or some other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to a specific technical vocabulary. It should be noted that in the embodiment of this application The base station in the NR system is only used as an example for introduction, and the specific type of the base station is not limited.
  • the paging PDCCH is a PDCCH scrambled with a cyclic redundancy check (Cyclic Redundancy Check, CRC) using a paging-radio network temporary identifier (Paging RNTI, P-RNTI). Since the probability of a paged UE in a paging occasion (PO) is not high, if the UE performs paging PDCCH detection every paging cycle, unnecessary power consumption will be caused.
  • RRM Radio Resource management
  • paging physical downlink control channel
  • PDCCH Physical downlink control channel
  • CRC Cyclic Redundancy Check
  • the UE receives PEI before receiving paging PDCCH.
  • the PEI is downlink control information (Downlink Control Information, DCI).
  • DCI Downlink Control Information
  • the UE judges whether to monitor the subsequent paging PDCCH according to the content indicated in the Paging Advance Indication PEI DCI. In this way, the UE can judge in advance whether it needs to receive the paging PDCCH according to the PEI. If the PEI indicates that the UE does not receive the paging PDCCH, the UE does not need to detect one or more synchronization signal blocks (Synchronization Signal Block, SSB), thereby saving power. consume.
  • SSB Synchrononization Signal Block
  • PEI occasion PEI-O
  • relevant location of the PEI-O is determined according to the following two offsets.
  • Parameter 1 Frame-level offset (PEI-F_offset), as shown in Figure 2, is between the starting position of the PEI-frame and the starting position of the first paging frame (Paging Frame, PF) indicated The frame level offset between them.
  • Parameter 2 Symbol-level offset (first PDCCH-Monitoring Occasion Of PEI-O), as shown in Figure 2, is the distance from the first PDCCH monitoring occasion (Monitoring Occasion, MO) of PEI-O to its associated seeker The symbol-level offset between the start positions of the call advance indication frame (PEI-frame).
  • a PEI-O may include one or more PEI PDCCH MOs (referred to as PEI-MOs).
  • the embodiment of the present application provides an information acquisition method, including:
  • Step 301 The terminal acquires a first offset, which is used to indicate that the radio frame associated with the paging advance indication opportunity PEI-O is related to the first paging advance indication monitoring opportunity of the PEI-O (The offset between Paging Early Indication Monitoring Occasion, PEI-MO);
  • the above-mentioned first offset is used to indicate the distance between the start time of the radio frame associated with the PEI-O and the start time of the first paging advance indication monitoring opportunity PEI-MO of the PEI-O Offset.
  • the value range of the first offset (first PDCCH-Monitoring Occasion Of PEI-O) is related to at least one of the following:
  • SCS Subcarrier Spacing
  • a first density where the first density is the density of PEI-0 or paging advance indication frame PEI-frame within the first time span;
  • the value of the second offset is used to indicate the offset between the radio frame associated with the PEI-O and the target paging frame (Paging frame, PF), the target paging
  • the paging frame is the earliest or latest PF among at least one PF where the paging occasion PO associated with the PEI-O is located.
  • the second offset is used to indicate an offset between the start time of the radio frame associated with the PEI-O and the start time of the target paging frame PF.
  • the foregoing first time span may be a paging cycle (for example, a default paging cycle configured by the network side device), or may be other preset time lengths.
  • Step 302 The terminal monitors the PEI-O according to the first offset.
  • the first offset is obtained, and the first offset is used to indicate the offset between the radio frame associated with the PEI-O at the paging advance indication opportunity and the first PEI-MO of the PEI-O ;
  • the value range of the first offset is related to at least one of the following: the subcarrier spacing SCS; the length of the radio frame; the first density, the first density is PEI-0 or PEI-frame in the first time span density; the value of the second offset, the second offset is used to indicate the offset between the radio frame associated with the PEI-O and the target paging frame PF, and the target paging frame is the The earliest or latest PF among at least one PF where the paging occasion (Paging Occasion, PO) associated with the PEI-O is located.
  • Paging Occasion, PO paging occasion
  • the value of the first offset is determined based on the first density, second offset and/or SCS
  • the range makes the value of the first offset more adaptable and flexible, thereby improving the detection performance of the terminal on the PEI-O.
  • the first offset satisfies:
  • offset represents a value of the first offset
  • the first number of symbols is calculated according to the first density and the SCS.
  • the specific calculation process for obtaining the first symbol number includes:
  • the interval between two adjacent PEI-frames is obtained
  • the first number of symbols is obtained according to the interval between the two adjacent PEI-frames and the SCS.
  • the first density is related to at least one of the following:
  • the second density is the density of PF within the second time span.
  • the foregoing first density may be specifically configured by the network-side device, or may be obtained by the terminal according to the foregoing related item information.
  • the first time span may be equal to the second time span.
  • the first time span and the second time span are both paging cycle lengths.
  • the first density is related to the second density and the number of PFs occupied by POs associated with the PEI-O, the first density satisfies:
  • First density second density ⁇ number of PFs occupied by POs associated with the PEI-O.
  • the first density is equal to the second density.
  • the network side device and the terminal may understand that the first density and the second density are equal by default.
  • the network-side device may not explicitly configure the first density, but the first density may be obtained implicitly through the above-mentioned second density.
  • the value of the first density can be 1, 1/2, 1/4, 1/8, 1/16, 1/32, etc.
  • the terminal can determine the value of the first time span according to the first density The number of internal PEI-O or PEI-frame.
  • the value range of the above-mentioned first offset may be Wherein, x represents the first density, and ⁇ represents the value of SCS.
  • the value unit of the first offset is a symbol (symbol). It is understandable that in the above value range Refers to the first symbol number.
  • the unit of the first offset is symbol.
  • the calculation process of obtaining the first symbol number according to the above-mentioned first density and SCS is as follows:
  • the inverse of the first density is used to obtain the interval between two adjacent PEI-frames (the interval is referred to as: PEI-frame interval). For example, if the first density is 1/2, the number of wireless frames occupied by the PEI-frame interval is 2, that is, the PEI-frame interval is equal to 20ms;
  • the first number of symbols is equal to the number of symbols occupied by the above-mentioned PEI-frame interval minus 1, wherein the first number of symbols varies according to the value of the SCS.
  • the first density * the number of wireless frames occupied by the first time span the total number of PEI-frames or PEI-Os in the first time span;
  • the value range of the first offset can be (0, the number of symbols occupied by the PEI-frame interval -1), and the network side device can flexibly configure the size of the PEI-frame interval, and the PEI- The size of the frame interval is greater than or equal to the length of a wireless frame, so the value range of the first offset is relatively large, and the network side device can configure the first offset more flexibly to adapt to different application scenarios.
  • the value range of the first offset is limited within the PEI-frame interval, it is also possible to avoid overlapping of PEI-Os included in different PEI-frames. Therefore, adopting this implementation mode not only ensures the detection performance of the PEI-O but also ensures the flexibility of network configuration.
  • the first offset satisfies:
  • offset represents the value of the first offset
  • the second number of symbols is calculated according to the value of the second offset and the SCS.
  • the value range of the first offset may be specifically (0, f*10* 2 ⁇ *14-1), where f represents the value of the second offset, and the value of f The unit is frame, and ⁇ represents the value of SCS. It can be understood that here f*10* 2 ⁇ *14-1 is the second number of symbols, that is, the number of symbols occupied by the above-mentioned second offset is reduced by 1.
  • the first offset can also be configured flexibly by using this method.
  • the first offset satisfies:
  • offset represents a value of the first offset
  • the third number of symbols is calculated according to the length of the radio frame and the SCS.
  • the number of symbols occupied by one radio frame is different.
  • the type of the wireless frame may be a specific type of wireless frame, such as PEI-frame.
  • the value range of the first offset can be specifically (0, 10*2 ⁇ *14-1); ⁇ represents the value of the SCS, and 10*2 ⁇ *14-1 is the above-mentioned third number of symbols.
  • the unit of the first offset is symbol. For example, if the SCS is 15KHz, then in this implementation manner, the value range of the first offset is (0, 139).
  • the terminal obtains the above-mentioned first offset, and then determines the location information of PEI-O based on this, and then monitors PEI-O; if the terminal detects the first offset on PEI-O Downlink Control Information (Downlink Control Information, DCI) (the first DCI is the DCI carrying PEI information), then determine whether to monitor the PO associated with itself according to the indication information of whether the PO needs to be monitored in the first DCI.
  • DCI Downlink Control Information
  • the terminal monitors its associated PO, wherein the location information of the PO is determined according to the second parameter, and the value range of the second parameter is the same as that of the first DCI.
  • the second density is related to the SCS, wherein the second density refers to the density of paging frames in a second time span (eg, paging cycle). That is to say, in this embodiment, the terminal monitors the PEI-O and/or PO according to the first density and the second density.
  • the method of the embodiment of the present application improves the flexibility of the network to configure the above-mentioned first offset, and avoids collisions between PEI-O and other channel signals or signals from different PEI-frames.
  • the collision between multiple PEI-Os is used to improve the detection performance of the terminal on the PEI-Os.
  • the embodiment of the present application also provides an information configuration method, including:
  • Step 401 The network side device configures a first offset, the first offset is used to indicate that the radio frame associated with the PEI-O at the time of paging advance indication and the first paging advance indication monitoring of the PEI-O Offset between timing PEI-MO;
  • the first offset is used to indicate an offset between the start time of the radio frame associated with the PEI-O and the start time of the first PEI-MO of the PEI-O.
  • the value range of the first offset is related to at least one of the following:
  • a first density where the first density is the density of PEI-0 or paging advance indication frame PEI-frame within the first time span;
  • the value of the second offset, the second offset is used to indicate the offset between the radio frame associated with the PEI-O and the target paging frame PF, the target paging frame is the The earliest or latest PF among at least one PF where the paging occasion PO associated with the PEI-O is located.
  • the foregoing first time span may be a paging cycle (for example, a default paging cycle configured by the network side device), or may be other preset time lengths.
  • the network side device configures the above-mentioned first offset, and sends the above-mentioned first offset to the terminal, and the value range of the first offset is related to at least one of the following: subcarrier spacing SCS; The length of the wireless frame; the first density, the first density is the density of PEI-O or PEI-frame in the first time span; the value of the second offset, the second offset is used to indicate the PEI-O O
  • the offset between the start time of the associated radio frame and the start time of the target paging frame PF, where the target paging frame is at least one PF where the paging occasion PO associated with the PEI-O is located The PF with the earliest or latest time.
  • the value of the first offset is determined based on the first density, second offset and/or SCS
  • the range makes the value of the first offset more adaptable and flexible, thereby improving the detection performance of the terminal on the PEI-O.
  • the first offset satisfies:
  • offset represents a value of the first offset
  • the first number of symbols is calculated according to the first density and the SCS.
  • the method of the embodiment of the present application further includes:
  • the interval between two adjacent PEI-frames is obtained
  • the first density is related to at least one of the following:
  • the second density is the density of PF within the second time span.
  • the first time span may be equal to the second time span.
  • the first time span and the second time span are both paging cycle lengths.
  • the first density when the first density is related to the second density and the number of PFs occupied by POs associated with the PEI-O, the first density satisfies:
  • First density second density ⁇ the number of PFs occupied by POs associated with the PEI-O;
  • the first density is equal to the second density.
  • the network side device and the terminal may understand that the first density and the second density are equal by default.
  • the network-side device may not explicitly configure the first density, but the first density may be obtained implicitly through the above-mentioned second density.
  • the value of the first density can be 1, 1/2, 1/4, 1/8, 1/16, 1/32, etc.
  • the terminal can determine the value of the first time span according to the first density The number of internal PEI-O or PEI-frame.
  • the value range of the above-mentioned first offset may be Wherein, x represents the first density, and ⁇ represents the value of SCS.
  • the value unit of the first offset is a symbol (symbol). It is understandable that in the above value range Refers to the first symbol number.
  • the unit of the first offset is symbol.
  • the calculation process of obtaining the first symbol number according to the above-mentioned first density and SCS is as follows:
  • the inverse of the first density is used to obtain the interval between two adjacent PEI-frames (the interval is referred to as: PEI-frame interval). For example, if the first density is 1/2, the number of wireless frames occupied by the PEI-frame interval is 2, that is, the PEI-frame interval is equal to 20ms;
  • the first number of symbols is equal to the number of symbols occupied by the above PEI-frame interval minus 1, wherein the first number of symbols varies according to the value of the SCS.
  • the first density * the number of wireless frames occupied by the first time span the total number of PEI-frames or PEI-Os in the first time span;
  • the value range of the first offset can be (0, the number of symbols occupied by the PEI-frame interval -1), and the network side device can flexibly configure the size of the PEI-frame interval, and the PEI- The size of the frame interval is greater than or equal to the length of a wireless frame, so the value range of the first offset is relatively large, and the network side device can configure the first offset more flexibly to adapt to different application scenarios.
  • the value range of the first offset is limited within the PEI-frame interval, it is also possible to avoid overlapping of PEI-Os included in different PEI-frames. Therefore, adopting this implementation mode not only ensures the detection performance of the PEI-O but also ensures the flexibility of network configuration.
  • the first offset satisfies:
  • offset represents the value of the first offset
  • the second number of symbols is calculated according to the value of the second offset and the SCS.
  • the value range of the first offset can be specifically (0, f*10* 2 ⁇ *14-1); f represents the value of the second offset, and the unit of f is frame, ⁇ represents the value of SCS. f*10* 2 ⁇ *14-1 is the second number of symbols, that is, the number of symbols occupied by the above-mentioned second offset is reduced by 1. The unit of the first offset is symbol.
  • the first offset satisfies:
  • offset represents a value of the first offset
  • the third number of symbols is calculated according to the length of the one radio frame and the SCS.
  • the number of symbols occupied by a frame is different.
  • the type of the wireless frame may be a specific type of wireless frame, such as PEI-frame.
  • the value range of the first offset can be specifically (0, 10*2 ⁇ *14-1); ⁇ represents the value of the SCS, and 10*2 ⁇ *14-1 is the above-mentioned third number of symbols.
  • the unit of the first offset is symbol.
  • the configuration of the first offset by the network side device in this embodiment of the present application includes:
  • the network side device configures a first offset list, the first offset list includes at least one first offset, and the first offset contained in the first offset list
  • the number of is determined according to the maximum number of PEI-Os included in the paging cycle or PEI-frame.
  • the number of the first offsets contained in the first offset list may be determined according to the maximum number of PEI-Os included in the paging cycle or PEI-frame, and the minimum number may specifically be 1.
  • each first offset in the first offset list corresponds to one PEI-O.
  • the radio resource control (Radio Resource Control, RRC) parameters configured by the network side device include the following:
  • the first density that is, the density of the PEI-frame in the paging cycle, see the parameter nAndPEI-FrameOffset in the following RRC parameter information;
  • the first offset list the size range of the first offset list is (1, max PEI-O-perPEI-frame or perT), wherein, max PEI-O-perPEI-frame or perT refers to a The maximum number of PEI-Os contained in a PEI-frame or a paging cycle.
  • max PEI-O-perPEI-frame or perT refers to a The maximum number of PEI-Os contained in a PEI-frame or a paging cycle.
  • the configuration flexibility of the network for the above-mentioned first offset is improved, and by avoiding collisions between PEI-O and other channel signals or signals from multiple PEI-Os associated with different PEI-frames To improve the detection performance of the PEI-O by the terminal.
  • the information acquisition method provided in the embodiment of the present application may be executed by an information acquisition device.
  • the information obtaining device executed by the information obtaining device is taken as an example to describe the information obtaining device provided in the embodiment of the present application.
  • an information acquisition device 500 including:
  • the first acquiring module 501 is configured to acquire a first offset, the first offset is used to indicate that the radio frame associated with the paging advance indication opportunity PEI-O is the first paging advance of the PEI-O Indicates the offset between the PEI-MO of the listening opportunity;
  • the value range of the first offset is related to at least one of the following:
  • a first density where the first density is the density of PEI-0 or paging advance indication frame PEI-frame within the first time span;
  • the value of the second offset, the second offset is used to indicate the offset between the radio frame associated with the PEI-O and the target paging frame PF, the target paging frame is the The earliest or latest PF among at least one PF where the paging occasion PO associated with the PEI-O is located.
  • the first offset satisfies:
  • offset represents a value of the first offset
  • the first number of symbols is calculated according to the first density and the SCS.
  • the first density is related to at least one of the following:
  • the second density is the density of PF within the second time span.
  • the first density when the first density is related to the second density and the number of PFs occupied by POs associated with the PEI-O, the first density satisfies:
  • First density second density ⁇ number of PFs occupied by POs associated with the PEI-O.
  • the first density is equal to the second density.
  • the first offset satisfies:
  • offset represents the value of the first offset
  • the second number of symbols is calculated according to the value of the second offset and the SCS.
  • the first offset satisfies:
  • offset represents a value of the first offset
  • the third number of symbols is calculated according to the length of the radio frame and the SCS.
  • the device in this embodiment of the present application acquires a first offset, and the first offset is used to indicate the offset between the radio frame associated with the PEI-O of the paging advance indication opportunity and the first PEI-MO of the PEI-O amount; wherein, the value range of the first offset is related to at least one of the following: the subcarrier spacing SCS; the length of the radio frame; the first density, the first density is PEI-O or PEI- The density of the frame; the value of the second offset, the second offset is used to indicate the offset between the radio frame associated with the PEI-O and the target paging frame PF, and the target paging frame is The earliest or latest PF among at least one PF where the paging occasion PO associated with the PEI-O is located.
  • the value of the first offset is determined based on the first density, second offset and/or SCS
  • the range makes the value of the first offset more adaptable and flexible, thereby improving the detection performance of the terminal on the PEI-O.
  • the information acquisition apparatus in this embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or a component in the electronic device, such as an integrated circuit or a chip.
  • the electronic device may be a terminal, or other devices other than the terminal.
  • the terminal may include, but not limited to, the types of terminal 11 listed above, and other devices may be servers, Network Attached Storage (NAS), etc., which are not specifically limited in this embodiment of the present application.
  • NAS Network Attached Storage
  • the information acquisition device provided by the embodiment of the present application can realize each process realized by the method embodiment in FIG. 3 and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • the embodiment of the present application also provides a communication device 600, including a processor 601 and a memory 602, and the memory 602 stores programs or instructions that can run on the processor 601, such as
  • the communication device 600 is a terminal
  • the program or instruction is executed by the processor 601
  • each step of the above information acquisition method embodiment can be implemented, and the same technical effect can be achieved.
  • the communication device 600 is a network-side device
  • the program or instruction is executed by the processor 601
  • the steps of the above-mentioned information configuration method embodiment can be achieved, and the same technical effect can be achieved. To avoid repetition, details are not repeated here.
  • the embodiment of the present application also provides a terminal, including a processor and a communication interface, and the communication interface is used to obtain a first offset, and the first offset is used to indicate the radio frame associated with the paging advance indication opportunity PEI-O an offset from the first paging advance indication monitoring opportunity PEI-MO of the PEI-O; the processor is configured to monitor the PEI-O according to the first offset;
  • the value range of the first offset (first PDCCH-Monitoring Occasion Of PEI-O) is related to at least one of the following:
  • a first density where the first density is the density of PEI-0 or paging advance indication frame PEI-frame within the first time span;
  • the value of the second offset, the second offset is used to indicate the offset between the radio frame associated with the PEI-O and the target paging frame PF, the target paging frame is the The earliest or latest PF among at least one PF where the paging occasion PO associated with the PEI-O is located.
  • This terminal embodiment corresponds to the above-mentioned terminal-side method embodiment, and each implementation process and implementation mode of the above-mentioned method embodiment can be applied to this terminal embodiment, and can achieve the same technical effect.
  • FIG. 7 is a schematic diagram of a hardware structure of a terminal implementing an embodiment of the present application.
  • the terminal 700 includes, but is not limited to: a radio frequency unit 701, a network module 702, an audio output unit 703, an input unit 704, a sensor 705, a display unit 706, a user input unit 707, an interface unit 708, a memory 709, and a processor 710. At least some parts.
  • the terminal 700 may also include a power supply (such as a battery) for supplying power to various components, and the power supply may be logically connected to the processor 710 through the power management system, so as to manage charging, discharging, and power consumption through the power management system. Management and other functions.
  • a power supply such as a battery
  • the terminal structure shown in FIG. 7 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than shown in the figure, or combine some components, or arrange different components, which will not be repeated here.
  • the input unit 704 may include a graphics processing unit (Graphics Processing Unit, GPU) 7041 and a microphone 7042, and the graphics processor 7041 is used by the image capture device (such as the image data of the still picture or video obtained by the camera) for processing.
  • the display unit 706 may include a display panel 7061, and the display panel 7061 may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 707 includes at least one of a touch panel 7071 and other input devices 7072 .
  • the touch panel 7071 is also called a touch screen.
  • the touch panel 7071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 7072 may include, but are not limited to, physical keyboards, function keys (such as volume control buttons, switch buttons, etc.), trackballs, mice, and joysticks, which will not be described in detail here.
  • the radio frequency unit 701 may transmit the downlink data from the network side device to the processor 710 for processing after receiving the downlink data; in addition, the radio frequency unit 701 may send uplink data to the network side device.
  • the radio frequency unit 701 includes, but is not limited to, an antenna, an amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the memory 709 can be used to store software programs or instructions as well as various data.
  • the memory 709 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instructions required by at least one function (such as a sound playing function, image playback function, etc.), etc.
  • memory 709 may include volatile memory or nonvolatile memory, or, memory 709 may include both volatile and nonvolatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically programmable Erase Programmable Read-Only Memory (Electrically EPROM, EEPROM) or Flash.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • Erasable PROM Erasable PROM
  • EPROM erasable programmable read-only memory
  • Electrical EPROM Electrical EPROM
  • EEPROM electronically programmable Erase Programmable Read-Only Memory
  • Volatile memory can be random access memory (Random Access Memory, RAM), static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), synchronous dynamic random access memory (Synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (Double Data Rate SDRAM, DDRSDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous connection dynamic random access memory (Synch link DRAM , SLDRAM) and Direct Memory Bus Random Access Memory (Direct Rambus RAM, DRRAM).
  • RAM Random Access Memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM Double Data Rate SDRAM
  • DDRSDRAM double data rate synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM enhanced synchronous dynamic random access memory
  • Synch link DRAM , SLDRAM
  • Direct Memory Bus Random Access Memory Direct Rambus
  • the processor 710 may include one or more processing units; optionally, the processor 710 integrates an application processor and a modem processor, wherein the application processor mainly handles operations related to the operating system, user interface, and application programs, etc., Modem processors mainly process wireless communication signals, such as baseband processors. It can be understood that the foregoing modem processor may not be integrated into the processor 710 .
  • the radio frequency unit 701 is configured to obtain a first offset, and the first offset is used to indicate that the radio frame associated with the paging advance indication opportunity PEI-O is related to the first paging advance of the PEI-O. Indicates the offset between the PEI-MO of the listening opportunity;
  • a processor 710 configured to monitor the PEI-O according to the first offset
  • the value range of the first offset is related to at least one of the following:
  • a first density where the first density is the density of PEI-0 or paging advance indication frame PEI-frame within the first time span;
  • the value of the second offset, the second offset is used to indicate the offset between the radio frame associated with the PEI-O and the target paging frame PF, the target paging frame is the The earliest or latest PF among at least one PF where the paging occasion PO associated with the PEI-O is located.
  • the first offset is obtained, and the first offset is used to indicate the offset between the radio frame associated with the PEI-O at the paging advance indication opportunity and the first PEI-MO of the PEI-O ;
  • the value range of the first offset is related to at least one of the following: the subcarrier spacing SCS; the length of the radio frame; the first density, the first density is PEI-0 or PEI-frame in the first time span density; the value of the second offset, the second offset is used to indicate the offset between the radio frame associated with the PEI-O and the target paging frame PF, and the target paging frame is the The earliest or latest PF among at least one PF where the paging occasion PO associated with the PEI-O is located.
  • the value of the first offset is determined based on the first density, second offset and/or SCS
  • the range makes the value of the first offset more adaptable and flexible, thereby improving the detection performance of the terminal on the PEI-O.
  • the first offset satisfies:
  • offset represents a value of the first offset
  • the first number of symbols is calculated according to the first density and the SCS.
  • the first density is related to at least one of the following:
  • the second density is the density of PF within the second time span.
  • the first density when the first density is related to the second density and the number of PFs occupied by POs associated with the PEI-O, the first density satisfies:
  • First density second density ⁇ number of PFs occupied by POs associated with the PEI-O.
  • the first density is equal to the second density.
  • the first offset satisfies:
  • offset represents the value of the first offset
  • the second number of symbols is calculated according to the value of the second offset and the SCS.
  • the first offset satisfies:
  • offset represents a value of the first offset
  • the third number of symbols is calculated according to the length of the radio frame and the SCS.
  • the first offset is obtained, and the first offset is used to indicate the offset between the radio frame associated with the PEI-O at the paging advance indication opportunity and the first PEI-MO of the PEI-O ;
  • the value range of the first offset is related to at least one of the following: the subcarrier spacing SCS; the length of the radio frame; the first density, the first density is PEI-0 or PEI-frame in the first time span density; the value of the second offset, the second offset is used to indicate the offset between the radio frame associated with the PEI-O and the target paging frame PF, and the target paging frame is the The earliest or latest PF among at least one PF where the paging occasion PO associated with the PEI-O is located.
  • the value of the first offset is determined based on the first density, second offset and/or SCS
  • the range makes the value of the first offset more adaptable and flexible, thereby improving the detection performance of the terminal on the PEI-O.
  • the execution subject may be an information configuration device.
  • the information configuration device provided in the embodiment of the present application is described by taking the information configuration device executing the information configuration method as an example.
  • an information configuration device 800 including:
  • the configuration module 801 is configured to configure a first offset, and the first offset is used to indicate that the radio frame associated with the PEI-O of the paging advance indication timing is the first paging advance indication monitoring of the PEI-O Offset between timing PEI-MO;
  • the value range of the first offset is related to at least one of the following:
  • a first density where the first density is the density of PEI-0 or paging advance indication frame PEI-frame within the first time span;
  • the value of the second offset, the second offset is used to indicate the offset between the radio frame associated with the PEI-O and the target paging frame PF, the target paging frame is the The earliest or latest PF among at least one PF where the paging occasion PO associated with the PEI-O is located.
  • the device of the embodiment of the present application further includes:
  • a sending module configured to send the first offset.
  • the first offset satisfies:
  • offset represents a value of the first offset
  • the first number of symbols is calculated according to the first density and the SCS.
  • the first number of symbols is obtained according to the interval between two adjacent PEI-frames and the SCS, wherein the interval between two adjacent PEI-frames is obtained from the first density.
  • the first density is related to at least one of the following:
  • the second density is the density of PF within the second time span.
  • the first density when the first density is related to the second density and the number of PFs occupied by POs associated with the PEI-O, the first density satisfies:
  • First density second density ⁇ the number of PFs occupied by POs associated with the PEI-O;
  • the first density is equal to the second density.
  • the first offset satisfies:
  • offset represents the value of the first offset
  • the second number of symbols is calculated according to the value of the second offset and the SCS.
  • the first offset satisfies:
  • offset represents a value of the first offset
  • the third number of symbols is calculated according to the length of the one radio frame and the SCS.
  • the configuration module is configured to configure a first offset list, the first offset list includes at least one first offset, and the first offset list contains the The quantity of the first offset is determined according to the maximum quantity of PEI-O included in the paging cycle or PEI-frame.
  • each first offset in the first offset list corresponds to one PEI-O.
  • the network side device configures the above-mentioned first offset, and sends the above-mentioned first offset to the terminal, and the value range of the first offset is related to at least one of the following: subcarrier spacing SCS; The length of the wireless frame; the first density, the first density is the density of PEI-O or PEI-frame in the first time span; the value of the second offset, the second offset is used to indicate the PEI-O O
  • the offset between the start time of the associated radio frame and the start time of the target paging frame PF, where the target paging frame is at least one PF where the paging occasion PO associated with the PEI-O is located The PF with the earliest or latest time.
  • the value of the first offset is determined based on the first density, second offset and/or SCS
  • the range makes the value of the first offset more adaptable and flexible, thereby improving the detection performance of the terminal on the PEI-O.
  • the embodiment of the present application also provides a network side device, including a processor and a communication interface, the processor is used to configure a first offset, and the first offset is used to indicate the paging advance indication timing PEI-O associated wireless The offset between the frame and the first paging advance indication monitoring opportunity PEI-MO of the PEI-O;
  • the value range of the first offset is related to at least one of the following:
  • a first density where the first density is the density of PEI-0 or paging advance indication frame PEI-frame within the first time span;
  • the value of the second offset, the second offset is used to indicate the offset between the radio frame associated with the PEI-O and the target paging frame PF, the target paging frame is the The earliest or latest PF among at least one PF where the paging occasion PO associated with the PEI-O is located.
  • the network-side device embodiment corresponds to the above-mentioned network-side device method embodiment, and each implementation process and implementation mode of the above-mentioned method embodiment can be applied to this network-side device embodiment, and can achieve the same technical effect.
  • the embodiment of the present application also provides a network side device.
  • the network side device 900 includes: an antenna 91 , a radio frequency device 92 , a baseband device 93 , a processor 94 and a memory 95 .
  • the antenna 91 is connected to a radio frequency device 92 .
  • the radio frequency device 92 receives information through the antenna 91, and sends the received information to the baseband device 93 for processing.
  • the baseband device 93 processes the information to be sent and sends it to the radio frequency device 92
  • the radio frequency device 92 processes the received information and sends it out through the antenna 91 .
  • the method performed by the network side device in the above embodiments may be implemented in the baseband device 93, where the baseband device 93 includes a baseband processor.
  • the baseband device 93 can include at least one baseband board, for example, a plurality of chips are arranged on the baseband board, as shown in FIG.
  • the program executes the network device operations shown in the above method embodiments.
  • the network side device may also include a network interface 96, such as a common public radio interface (common public radio interface, CPRI).
  • a network interface 96 such as a common public radio interface (common public radio interface, CPRI).
  • the network-side device 900 in the embodiment of the present application further includes: instructions or programs stored in the memory 95 and executable on the processor 94, and the processor 94 calls the instructions or programs in the memory 95 to execute the various programs shown in FIG.
  • the method of module execution achieves the same technical effect, so in order to avoid repetition, it is not repeated here.
  • the embodiment of the present application also provides a readable storage medium, the readable storage medium stores a program or an instruction, and when the program or instruction is executed by a processor, each process of the above information acquisition method or information configuration method embodiment is implemented, And can achieve the same technical effect, in order to avoid repetition, no more details here.
  • the processor is the processor in the terminal described in the foregoing embodiments.
  • the readable storage medium includes a computer-readable storage medium, such as a computer read-only memory ROM, a random access memory RAM, a magnetic disk or an optical disk, and the like.
  • the embodiment of the present application further provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the above information acquisition method or information configuration
  • the chip includes a processor and a communication interface
  • the communication interface is coupled to the processor
  • the processor is used to run programs or instructions to implement the above information acquisition method or information configuration
  • the chip mentioned in the embodiment of the present application may also be called a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip.
  • the embodiment of the present application further provides a computer program/program product, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the above information acquisition method or information
  • a computer program/program product is stored in a storage medium
  • the computer program/program product is executed by at least one processor to implement the above information acquisition method or information
  • the embodiment of the present application also provides an information processing system, including: a terminal and a network-side device, the terminal can be used to perform the steps of the information acquisition method as described above, and the network-side device can be used to perform the above-mentioned information Steps to configure the method.
  • the term “comprising”, “comprising” or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article or apparatus comprising a set of elements includes not only those elements, It also includes other elements not expressly listed, or elements inherent in the process, method, article, or device. Without further limitations, an element defined by the phrase “comprising a " does not preclude the presence of additional identical elements in the process, method, article, or apparatus comprising that element.
  • the scope of the methods and devices in the embodiments of the present application is not limited to performing functions in the order shown or discussed, and may also include performing functions in a substantially simultaneous manner or in reverse order according to the functions involved. Functions are performed, for example, the described methods may be performed in an order different from that described, and various steps may also be added, omitted, or combined. Additionally, features described with reference to certain examples may be combined in other examples.
  • the methods of the above embodiments can be implemented by means of software plus a necessary general-purpose hardware platform, and of course also by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of computer software products, which are stored in a storage medium (such as ROM/RAM, magnetic disk, etc.) , CD-ROM), including several instructions to make a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the methods described in the various embodiments of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种信息获取、配置方法、装置及通信设备,本申请实施例的方法包括:终端获取第一偏移量,第一偏移量用于指示寻呼提前指示时机PEI-O关联的无线帧与PEI-O的第一个PEI-MO之间的偏移量;根据第一偏移量,进行PEI-O的监听;第一偏移量的取值范围与以下至少一项相关:子载波间隔SCS;无线帧的长度;第一密度,第一密度为在第一时间跨度内PEI-O或PEI-frame的密度;第二偏移量的取值,第二偏移量用于指示PEI-O关联的无线帧与目标寻呼帧PF之间的偏移量,目标寻呼帧为所述PEI-O关联的寻呼时机PO所在的至少一个PF中时间最早或最晚的PF。

Description

信息获取、配置方法、装置及通信设备
相关申请的交叉引用
本申请主张在2022年01月11日在中国提交的中国专利申请No.202210028318.5的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种信息获取、配置方法、装置及通信设备。
背景技术
相关技术中,与寻呼提前指示(Paging Early Indication,PEI)时机(PEI-O)相关的偏移参数包括:帧级别的偏移参数(Frame-level offset)和符号级别的偏移参数(Symbol-level offset),但相关技术中上述偏移参数的取值范围尚未明确,从而无法根据上述偏移参数准确地确定PEI-O的位置信息,进而影响终端对PEI-O的检测性能。
发明内容
本申请实施例提供一种信息获取、配置方法、装置及通信设备,能够解决如何提高终端对PEI-O的检测性能的问题。
第一方面,提供了一种信息获取方法,包括:
终端获取第一偏移量,所述第一偏移量用于指示寻呼提前指示时机PEI-O关联的无线帧与所述PEI-O的第一个寻呼提前指示监听时机PEI-MO之间的偏移量;
所述终端根据所述第一偏移量,进行所述PEI-O的监听;
其中,所述第一偏移量的取值范围与以下至少一项相关:
子载波间隔SCS;
无线帧的长度;
第一密度,所述第一密度为在第一时间跨度内PEI-O或寻呼提前指示帧 PEI-frame的密度;
第二偏移量的取值,所述第二偏移量用于指示所述PEI-O关联的无线帧与目标寻呼帧PF之间的偏移量,所述目标寻呼帧为所述PEI-O关联的寻呼时机PO所在的至少一个PF中时间最早或最晚的PF。
第二方面,提供了一种信息配置方法,包括:
网络侧设备配置第一偏移量,所述第一偏移量用于指示寻呼提前指示时机PEI-O关联的无线帧与所述PEI-O的第一个寻呼提前指示监听时机PEI-MO之间的偏移量;
其中,所述第一偏移量的取值范围与以下至少一项相关:
子载波间隔SCS;
无线帧的长度;
第一密度,所述第一密度为在第一时间跨度内PEI-O或寻呼提前指示帧PEI-frame的密度;
第二偏移量的取值,所述第二偏移量用于指示所述PEI-O关联的无线帧与目标寻呼帧PF之间的偏移量,所述目标寻呼帧为所述PEI-O关联的寻呼时机PO所在的至少一个PF中时间最早或最晚的PF。
第三方面,提供了一种信息获取装置,包括:
第一获取模块,用于获取第一偏移量,所述第一偏移量用于指示寻呼提前指示时机PEI-O关联的无线帧与所述PEI-O的第一个寻呼提前指示监听时机PEI-MO之间的偏移量;
监听模块,用于根据所述第一偏移量,进行所述PEI-O的监听;其中,所述第一偏移量的取值范围与以下至少一项相关:
子载波间隔SCS;
无线帧的长度;
第一密度,所述第一密度为在第一时间跨度内PEI-O或寻呼提前指示帧PEI-frame的密度;
第二偏移量的取值,所述第二偏移量用于指示所述PEI-O关联的无线帧与目标寻呼帧PF之间的偏移量,所述目标寻呼帧为所述PEI-O关联的寻呼时机PO所在的至少一个PF中时间最早或最晚的PF。
第四方面,提供了一种信息配置装置,包括:
配置模块,用于配置第一偏移量,所述第一偏移量用于指示寻呼提前指示时机PEI-O关联的无线帧与所述PEI-O的第一个寻呼提前指示监听时机PEI-MO之间的偏移量;
其中,所述第一偏移量的取值范围与以下至少一项相关:
子载波间隔SCS;
无线帧的长度;
第一密度,所述第一密度为在第一时间跨度内PEI-O或寻呼提前指示帧PEI-frame的密度;
第二偏移量的取值,所述第二偏移量用于指示所述PEI-O关联的无线帧与目标寻呼帧PF之间的偏移量,所述目标寻呼帧为所述PEI-O关联的寻呼时机PO所在的至少一个PF中时间最早或最晚的PF。
第五方面,提供了一种终端,该终端包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第六方面,提供了一种终端,包括处理器及通信接口,其中,所述通信接口用于获取第一偏移量,所述第一偏移量用于指示寻呼提前指示时机PEI-O关联的无线帧与所述PEI-O的第一个寻呼提前指示监听时机PEI-MO之间的偏移量;所述处理器用于根据所述第一偏移量,进行所述PEI-O的监听;
其中,所述第一偏移量的取值范围与以下至少一项相关:
子载波间隔SCS;
无线帧的长度;
第一密度,所述第一密度为在第一时间跨度内PEI-O或寻呼提前指示帧PEI-frame的密度;
第二偏移量的取值,所述第二偏移量用于指示所述PEI-O关联的无线帧与目标寻呼帧PF之间的偏移量,所述目标寻呼帧为所述PEI-O关联的寻呼时机PO所在的至少一个PF中时间最早或最晚的PF。
第七方面,提供了一种网络侧设备,该网络侧设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所 述处理器执行时实现如第二方面所述的方法的步骤。
第八方面,提供了一种网络侧设备,包括处理器及通信接口,其中,所述处理器用于配置第一偏移量,所述第一偏移量用于指示寻呼提前指示时机PEI-O关联的无线帧与所述PEI-O的第一个寻呼提前指示监听时机PEI-MO之间的偏移量;
其中,所述第一偏移量的取值范围与以下至少一项相关:
子载波间隔SCS;
无线帧的长度;
第一密度,所述第一密度为在第一时间跨度内PEI-O或寻呼提前指示帧PEI-frame的密度;
第二偏移量的取值,所述第二偏移量用于指示所述PEI-O关联的无线帧与目标寻呼帧PF之间的偏移量,所述目标寻呼帧为所述PEI-O关联的寻呼时机PO所在的至少一个PF中时间最早或最晚的PF。
第九方面,提供了一种信息处理系统,包括:终端及网络侧设备,所述终端可用于执行如第一方面所述的信息获取方法的步骤,所述网络侧设备可用于执行如第二方面所述的信息配置方法的步骤。
第十方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤。
第十一方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法,或实现如第二方面所述的方法。
第十二方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面所述的方法的步骤或实现如第二方面所述的方法的步骤。
在本申请实施例中,终端获取第一偏移量,第一偏移量用于指示寻呼提前指示时机PEI-O关联的无线帧与PEI-O的第一个PEI-MO之间的偏移量;其中,第一偏移量的取值范围与以下至少一项相关:子载波间隔SCS;无线帧的长度;第一密度,第一密度为在第一时间跨度内PEI-O或PEI-frame的 密度;第二偏移量的取值,第二偏移量用于指示所述PEI-O关联的无线帧与目标寻呼帧PF之间的偏移量,所述目标寻呼帧为所述PEI-O关联的寻呼时机PO所在的至少一个PF中时间最早或最晚的PF。由于上述第一密度、第二偏移量和SCS为可配置的参数且取值范围灵活,因此,基于第一密度、第二偏移量和/或SCS来确定第一偏移量的取值范围,使得该第一偏移量的取值更具适应性和灵活性,进而能够提高终端对PEI-O的检测性能。
附图说明
图1表示本申请实施例可应用的一种通信系统的结构图;
图2表示PEI-frame起始位置与PEI-O的第一个PDCCH MO的位置示意图;
图3表示本申请实施例的信息获取方法的流程示意图;
图4表示本申请实施例的信息配置方法的流程示意图;
图5表示本申请实施例的信息获取装置的模块示意图;
图6表示本申请实施例的通信设备的结构框图;
图7表示本申请实施例的终端的结构框图;
图8表示本申请实施例的信息配置装置的模块示意图;
图9表示本申请实施例的网络侧设备的结构框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说 明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6 th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(Ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(Vehicle User Equipment,VUE)、行人终端(Pedestrian User Equipment,PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备12也可以称为无线接入网设备、无线接入网(Radio Access  Network,RAN)、无线接入网功能或无线接入网单元。接入网设备12可以包括基站、无线局域网(Wireless Local Area Network,WLAN)接入点或WiFi节点等,基站可被称为节点B、演进节点B(Evolved Node B,eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。
为使本领域技术人员能够更好地理解本申请实施例先进行如下说明。
1、寻呼提前指示。
对于空闲(idle)态下的用户设备(User Equipment,UE),需要进行无线资源管理(Radio Resource management,RRM)测量和寻呼(paging)物理下行控制信道(Physical downlink control channel,PDCCH)的接收,paging PDCCH为使用寻呼-无线网络临时标识(Paging RNTI,P-RNTI)进行循环冗余校验(Cyclic Redundancy Check,CRC)加扰的PDCCH。由于在一个寻呼时机(paging occasion,PO)中存在被寻呼的UE的概率不高,所以如果UE每个paging周期都进行paging PDCCH检测,会造成不必要的功耗。
为了降低终端功耗,UE在接收paging PDCCH之前接收PEI。该PEI是一个下行控制信息(Downlink Control Information,DCI)。UE根据寻呼提前指示PEI DCI中所指示的内容来判断是否需要监听后续的paging PDCCH。这样,UE可根据PEI提前判断是否需要接收paging PDCCH,如果PEI指示UE不接收paging PDCCH,则UE后续也不需要去检测1个或多个同步信号块(Synchronization Signal Block,SSB),从而节省功率消耗。
2、PEI-O的设计。
对于寻呼提前指示时机(PEI occasion,PEI-O)的具体位置设计,根据如下两个偏移(offset)来确定PEI-O的相关位置。
1)参数1:Frame-level offset(PEI-F_offset),如图2所示,为PEI-frame的起始位置与其所指示的第一个寻呼帧(Paging Frame,PF)的起始位置之间 的frame级别偏移。
2)参数2:Symbol-level offset(first PDCCH-Monitoring Occasion Of PEI-O),如图2所示,为PEI-O的第一个PDCCH监听时机(Monitoring Occasion,MO)距离其所关联的寻呼提前指示帧(PEI-frame)起始位置之间的symbol级别偏移。
其中,一个PEI-O可以包含为一个或多个PEI PDCCH MO(简称PEI-MO)。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的信息获取方法进行详细地说明。
如图3所示,本申请实施例提供了一种信息获取方法,包括:
步骤301:终端获取第一偏移量,所述第一偏移量用于指示寻呼提前指示时机PEI-O关联的无线帧与所述PEI-O的第一个寻呼提前指示监听时机(Paging Early Indication Monitoring Occasion,PEI-MO)之间的偏移量;
可选地,上述第一偏移量用于指示PEI-O关联的无线帧的起始时刻与所述PEI-O的第一个寻呼提前指示监听时机PEI-MO的起始时刻之间的偏移量。
其中,所述第一偏移量(first PDCCH-Monitoring Occasion Of PEI-O)的取值范围与以下至少一项相关:
子载波间隔(Subcarrier Spacing,SCS);
无线帧的长度;
第一密度,所述第一密度为在第一时间跨度内PEI-O或寻呼提前指示帧PEI-frame的密度;
第二偏移量的取值,所述第二偏移量用于指示所述PEI-O关联的无线帧与目标寻呼帧(Paging frame,PF)之间的偏移量,所述目标寻呼帧为所述PEI-O关联的寻呼时机PO所在的至少一个PF中时间最早或最晚的PF。可选地,所述第二偏移量用于指示所述PEI-O关联的无线帧的起始时刻与目标寻呼帧PF的起始时刻之间的偏移量。
上述第一时间跨度可以为寻呼周期(例如网络侧设备配置的默认寻呼周期),也可为其他预先设定的时间长度。
步骤302:所述终端根据所述第一偏移量,进行所述PEI-O的监听。
本申请实施例中,获取第一偏移量,第一偏移量用于指示寻呼提前指示 时机PEI-O关联的无线帧与PEI-O的第一个PEI-MO之间的偏移量;其中,第一偏移量的取值范围与以下至少一项相关:子载波间隔SCS;无线帧的长度;第一密度,第一密度为在第一时间跨度内PEI-O或PEI-frame的密度;第二偏移量的取值,第二偏移量用于指示所述PEI-O关联的无线帧与目标寻呼帧PF之间的偏移量,所述目标寻呼帧为所述PEI-O关联的寻呼时机(Paging Occasion,PO)所在的至少一个PF中时间最早或最晚的PF。由于上述第一密度、第二偏移量和SCS为可配置的参数且取值范围灵活,因此,基于第一密度、第二偏移量和/或SCS来确定第一偏移量的取值范围,使得该第一偏移量的取值更具适应性和灵活性,进而能够提高终端对PEI-O的检测性能。
作为第一种可选地实现方式,在所述第一偏移量的取值范围与第一密度和SCS相关的情况下,所述第一偏移量满足:
offset≤第一符号数;
可选地,0≤offset≤第一符号数;
其中,offset表示所述第一偏移量的取值,所述第一符号数是根据所述第一密度和SCS计算得到的。
可选地,得到该第一符号数的具体计算过程包括:
根据所述第一密度,得到相邻两个PEI-frame之间的间隔;
根据所述相邻两个PEI-frame之间的间隔和所述SCS得到所述第一符号数。
可选地,所述第一密度与以下至少一项相关:
第二密度;
所述PEI-O关联的PO的个数;
所述PEI-O关联的PO所占PF的个数;
其中,所述第二密度为在第二时间跨度内PF的密度。
可以理解的是,上述第一密度可具体是网络侧设备配置的,也可以是终端根据上述相关项的信息来获取的。
可选地,上述第一时间跨度可以等于上述第二时间跨度。进一步的,第一时间跨度和第二时间跨度同为paging周期长度。
可选地,在所述第一密度与所述第二密度和所述PEI-O关联的PO所占 PF的个数相关的情况下,所述第一密度满足:
第一密度=第二密度÷所述PEI-O关联的PO所占PF的个数。
可选地,所述第一密度与所述第二密度相等。例如,当网络侧设备未配置该第一密度的情况下,网络侧设备跟终端可以理解为第一密度与第二密度默认是相等的。
也就是说,网络侧设备可以不显式的配置第一密度,而通过上述第二密度便可隐式得到第一密度。
一种实施例中,网络侧设备配置了上述第二密度和所述PEI-O关联的PO所占的PF的个数,则网络侧设备跟终端侧设备可以通过隐式的方式获得第一密度,其中,第一密度=第二密度÷所述PEI-O关联的PO所占PF的个数。例如,第二密度为1/2,PEI-O关联的PO所占PF的个数为2,则第一密度为1/4,也即,在第一时间跨度内PEI-frame的密度为1/4,也就是每4个无线帧中,都存在一个PEI-frame。
本申请实施例中,第一密度的取值可以是1,1/2,1/4,1/8,1/16,1/32等,终端可以根据第一密度确定在上述第一时间跨度内PEI-O或PEI-frame的个数。
在该实现方式中,上述第一偏移量的取值范围可以为
Figure PCTCN2023071301-appb-000001
其中,x表示所述第一密度,μ表示SCS的取值。该第一偏移量的取值单位为符号(symbol)。可以理解的是,上述取值范围中
Figure PCTCN2023071301-appb-000002
指的是第一符号数。
例如,SCS为15kHz,第一密度为1/2,则上述第一偏移量的取值范围为(0,(10*1*14*2-1)=279)。该第一偏移量的单位为符号(symbol)。
该实现方式中,根据上述第一密度和SCS得到第一符号数的计算过程如下:
第一密度取倒数,得到两个相邻PEI-frame之间的间隔(该间隔简称:PEI-frame interval)。例如,第一密度为1/2,则PEI-frame interval所占的无线帧个数为2,也就是PEI-frame interval等于20ms;
第一符号数等于上述PEI-frame interval所占的符号数再减1,其中,第 一符号数根据SCS的取值不同而不同。
可以理解的是,第一密度*第一时间跨度所占的无线帧个数=在第一时间跨度内PEI-frame或PEI-O的总个数;
该实现方式中,第一偏移量的取值范围可以是(0,PEI-frame interval所占符号数-1),而网络侧设备可以灵活的配置PEI-frame interval的大小,且该PEI-frame interval的大小大于等于一个无线帧长度,因此第一偏移量的取值范围较大,网络侧设备可以更灵活的配置该第一偏移量,使其适应不同的应用场景。此外,由于第一偏移量的取值范围限制在PEI-frame interval内,也因此能够避免不同PEI-frame所各自包含的PEI-O之间相互重叠的情况。因此,采用该实现方式既保证了PEI-O的检测性能也保证了网络配置的灵活性。
作为第二种可选地实现方式,在所述第一偏移量的取值范围与第二偏移量的取值和SCS相关的情况下,所述第一偏移量满足:
offset≤第二符号数;
可选地,0≤offset≤第二符号数;
其中,offset表示第一偏移量的取值,所述第二符号数是根据所述第二偏移量的取值和所述SCS计算得到的。
在该实现方式中,第一偏移量的取值范围可具体为(0,f*10*2 μ*14-1),其中,f表示所述第二偏移量的取值,f的单位为帧,μ表示SCS的取值。可以理解的是,这里f*10*2 μ*14-1即为第二符号数,也即,上述第二偏移量所占的符号个数再减1。
例如,该第二偏移量包含4个无线帧,SCS为15kHz,则在上述实现方案中,第一偏移量的取值范围为(0,(4*10*1*14-1)=559)。
该实现方式中,由于第二偏移量的取值可配,且取值范围较大,因此,采用这种方法也可以灵活地配置第一偏移量。但该实现方式中,某些场景中不能避免不同PEI-frame所包含的PEI-O之间相互重叠的情况。
作为第三种可选地实现方式,在所述第一偏移量的取值范围与一个无线帧的长度和SCS相关的情况下,所述第一偏移量满足:
offset≤第三符号数;
可选地,0≤offset≤第三符号数;
其中,offset表示所述第一偏移量的取值,所述第三符号数是根据所述无线帧的长度和所述SCS计算得到的。
其中,对于不同的SCS等级,一个无线帧所占的symbol个数不同。
该无线帧的类型可以为特定类型的无线帧,例如为PEI-frame。
该实现方式中,第一偏移量的取值范围可具体为(0,10*2 μ*14-1);μ表示SCS的取值,10*2 μ*14-1即为上述第三符号数。该第一偏移量的单位为符号(symbol)。例如,SCS为15KHz,则在本实现方式中,第一偏移量的取值范围为(0,139)。
在本申请的一具体实施例中,终端获取上述第一偏移量,然后基于此确定PEI-O的位置信息,然后进行PEI-O的监听;如果终端在PEI-O上检测到了第一下行控制信息(Downlink Control Information,DCI)(第一DCI,为承载PEI信息的DCI),则根据该第一DCI中是否需要监听PO的指示信息来确定是否监听自己所关联的PO。
如果终端被第一DCI指示监听其所关联的PO,则终端进行其所关联的PO的监听,其中,所述PO的位置信息根据第二参数来确定,而第二参数的取值范围与第二密度以及SCS有关,其中所述第二密度指的是在第二时间跨度(例如,寻呼周期(paging cycle))内寻呼帧paging frame的密度。也就是说,在这一实施例中,终端根据第一密度跟第二密度来进行PEI-O和/或PO的监听。
通过上述不同实现方式,本申请实施例的方法,提高了网络对上述第一偏移量的配置灵活性,且又通过避免PEI-O与其他信道信号的碰撞或者来自不同PEI-frame所关联的多个PEI-O之间的碰撞来提高终端对PEI-O的检测性能。
如图4所示,本申请实施例还提供了一种信息配置方法,包括:
步骤401:网络侧设备配置第一偏移量,所述第一偏移量用于指示寻呼提前指示时机PEI-O关联的无线帧与所述PEI-O的第一个寻呼提前指示监听时机PEI-MO之间的偏移量;
可选地,所述第一偏移量用于指示PEI-O关联的无线帧的起始时刻与所述PEI-O的第一个PEI-MO的起始时刻之间的偏移量。
其中,所述第一偏移量的取值范围与以下至少一项相关:
子载波间隔SCS;
无线帧的长度;
第一密度,所述第一密度为在第一时间跨度内PEI-O或寻呼提前指示帧PEI-frame的密度;
第二偏移量的取值,所述第二偏移量用于指示所述PEI-O关联的无线帧与目标寻呼帧PF之间的偏移量,所述目标寻呼帧为所述PEI-O关联的寻呼时机PO所在的至少一个PF中时间最早或最晚的PF。
上述第一时间跨度可以为寻呼周期(例如网络侧设备配置的默认寻呼周期),也可为其他预先设定的时间长度。
本申请实施例中,网络侧设备配置上述第一偏移量,并将上述第一偏移量发送给终端,第一偏移量的取值范围与以下至少一项相关:子载波间隔SCS;无线帧的长度;第一密度,第一密度为在第一时间跨度内PEI-O或PEI-frame的密度;第二偏移量的取值,第二偏移量用于指示所述PEI-O关联的无线帧的起始时刻与目标寻呼帧PF的起始时刻之间的偏移量,所述目标寻呼帧为所述PEI-O关联的寻呼时机PO所在的至少一个PF中时间最早或最晚的PF。由于上述第一密度、第二偏移量和SCS为可配置的参数且取值范围灵活,因此,基于第一密度、第二偏移量和/或SCS来确定第一偏移量的取值范围,使得该第一偏移量的取值更具适应性和灵活性,进而能够提高终端对PEI-O的检测性能。
作为第一种可选地实现方式,在所述第一偏移量的取值范围与第一密度和SCS相关的情况下,所述第一偏移量满足:
offset≤第一符号数;
可选地,0≤offset≤第一符号数;
其中,offset表示所述第一偏移量的取值,所述第一符号数是根据所述第一密度和SCS计算得到的。
可选地,本申请实施例的方法,还包括:
根据所述第一密度,得到相邻两个PEI-frame之间的间隔;
根据所述相邻两个PEI-frame之间的间隔和所述SCS得到所述第一符号 数。
可选地,所述第一密度与以下至少一项相关:
第二密度;
所述PEI-O关联的PO的个数;
所述PEI-O关联的PO所占PF的个数;
其中,所述第二密度为在第二时间跨度内PF的密度。
可选地,上述第一时间跨度可以等于上述第二时间跨度。进一步的,第一时间跨度和第二时间跨度同为paging周期长度。
可选地,在所述第一密度与所述第二密度和所述PEI-O关联的PO所占PF的个数相关的情况下,所述第一密度满足:
第一密度=第二密度÷所述PEI-O关联的PO所占PF的个数;
可选地,所述第一密度与所述第二密度相等。例如,当网络侧设备未配置该第一密度的情况下,网络侧设备跟终端可以理解为第一密度与第二密度默认是相等的。
也就是说,网络侧设备可以不显式的配置第一密度,而通过上述第二密度便可隐式得到第一密度。
一种实施例中,网络侧设备配置了上述第二密度和所述PEI-O关联的PO所占的PF的个数,则网络侧设备跟终端侧设备可以通过隐式的方式获得第一密度,其中,第一密度=第二密度÷所述PEI-O关联的PO所占PF的个数。例如,第二密度为1/2,PEI-O关联的PO所占PF的个数为2,则第一密度为1/4,也即,在第一时间跨度内PEI-frame的密度为1/4,也就是每4个无线帧中存在一个PEI-frame。
本申请实施例中,第一密度的取值可以是1,1/2,1/4,1/8,1/16,1/32等,终端可以根据第一密度确定在上述第一时间跨度内PEI-O或PEI-frame的个数。
在该实现方式中,上述第一偏移量的取值范围可以为
Figure PCTCN2023071301-appb-000003
其中,x表示所述第一密度,μ表示SCS的取值。该第一偏移量的取值单位为符号(symbol)。可以理解的是,上述取值范围中
Figure PCTCN2023071301-appb-000004
指的是第一符 号数。
例如,SCS为15kHz,第一密度为1/2,则上述第一偏移量的取值范围为(0,(10*1*14*2-1)=279)。该第一偏移量的单位为符号(symbol)。
该实现方式中,根据上述第一密度和SCS得到第一符号数的计算过程如下:
第一密度取倒数,得到两个相邻PEI-frame之间的间隔(该间隔简称:PEI-frame interval)。例如,第一密度为1/2,则PEI-frame interval所占的无线帧个数为2,也就是PEI-frame interval等于20ms;
第一符号数等于上述PEI-frame interval所占的符号数再减1,其中,第一符号数根据SCS的取值不同而不同。
可以理解的是,第一密度*第一时间跨度所占的无线帧个数=在第一时间跨度内PEI-frame或PEI-O的总个数;
该实现方式中,第一偏移量的取值范围可以是(0,PEI-frame interval所占符号数-1),而网络侧设备可以灵活的配置PEI-frame interval的大小,且该PEI-frame interval的大小大于等于一个无线帧长度,因此第一偏移量的取值范围较大,网络侧设备可以更灵活的配置该第一偏移量,使其适应不同的应用场景。此外,由于第一偏移量的取值范围限制在PEI-frame interval内,也因此能够避免不同PEI-frame所各自包含的PEI-O之间相互重叠的情况。因此,采用该实现方式既保证了PEI-O的检测性能也保证了网络配置的灵活性。
作为第二种可选地实现方式,在所述第一偏移量的取值范围与第二偏移量的取值和SCS相关的情况下,所述第一偏移量满足:
offset≤第二符号数;
可选地,0≤offset≤第二符号数;
其中,offset表示第一偏移量的取值,所述第二符号数是根据所述第二偏移量的取值和所述SCS计算得到的。
在该实现方式中,第一偏移量的取值范围可具体为(0,f*10*2 μ*14-1);f表示所述第二偏移量的取值,f的单位为帧,μ表示SCS的取值。f*10*2 μ*14-1即为第二符号数,也即,上述第二偏移量所占的符号个数再减1。该第一偏移量的单位为符号(symbol)。
作为第三种可选地实现方式,在所述第一偏移量的取值范围与一个无线帧的长度和SCS相关的情况下,所述第一偏移量满足:
offset≤第三符号数;
可选地,0≤offset≤第三符号数;
其中,offset表示所述第一偏移量的取值,所述第三符号数是根据所述一个无线帧的长度和所述SCS计算得到的。
其中,不同的SCS等级,一个frame占的symbol个数不同。
该无线帧的类型可以为特定类型的无线帧,例如为PEI-frame。
该实现方式中,第一偏移量的取值范围可具体为(0,10*2 μ*14-1);μ表示SCS的取值,10*2 μ*14-1即为上述第三符号数。该第一偏移量的单位为符号(symbol)。
可选地,本申请实施例中所述网络侧设备配置第一偏移量,包括:
所述网络侧设备配置第一偏移量列表,所述第一偏移量列表包括至少一个所述第一偏移量,所述第一偏移量列表中包含的所述第一偏移量的数量根据寻呼周期内或PEI-frame内包含的最大PEI-O的数量确定。可选地,第一偏移量列表中包含的所述第一偏移量的数量可根据寻呼周期内或PEI-frame内包含的最大PEI-O的数量确定,最小数量可具体为1。
可选地,所述第一偏移量列表中的每个所述第一偏移量对应一个PEI-O。
在本申请的一具体实施例中,在应用上述第一种可选地实现方式的情况下,网络侧设备配置的无线资源控制(Radio Resource Control,RRC)参数包括如下:
第一密度,即PEI-frame在paging cycle内的密度,参见下述RRC参数信息中的参数nAndPEI-FrameOffset;
PEI-frame的偏移量,参见下述RRC参数信息中的nAndPEI-FrameOffset;
第一偏移量,参见下述RRC参数信息中的参数firstPDCCH-MonitoringOccasionOfPEI-O;
第一偏移量列表,该第一偏移量列表的大小范围为(1,max PEI-O-perPEI-frame or perT),其中,max PEI-O-perPEI-frame or perT指的是在一个PEI-frame或一个paging cycle内包含的最大的PEI-O个数,具体参见 下表1参数firstPDCCH-MonitoringOccasionOfPEI-O。
RRC参数信息:
Figure PCTCN2023071301-appb-000005
2)firstPDCCH-MonitoringOccasionOfPEI-O CHOICE{
SCS15KHZoneT SEQUENCE(SIZE(1..maxPEI-O-perPEI-frame or perT))OF INTEGER(0..139),
SCS30KHZoneT-SCS15KHZhalfT SEQUENCE(SIZE(1..maxPEI-O-perPEI-frame or perT))OF INTEGER(0..279),
SCS60KHZoneT-SCS30KHZhalfT-SCS15KHZquarterT SEQUENCE(SIZE(1..maxPEI-O-perPEI-frame or perT))OF INTEGER(0..559),
SCS120KHZoneT-SCS60KHZhalfT-SCS30KHZquarterT-SCS15KHZoneEighthT
SEQUENCE(SIZE(1..maxPEI-O-perPEI-frame or perT))OF INTEGER(0..1119),
SCS120KHZhalfT-SCS60KHZquarterT-SCS30KHZoneEighthT-SCS15KHZoneSixteenthT SEQUENCE(SIZE(1..maxPEI-O-perPEI-frame or perT))OF INTEGER(0..2239),
SCS120KHZquarterT-SCS60KHZoneEighthT-SCS30KHZoneSixteenthT-SCS15KHZonethirtysecondT SEQUENCE(SIZE(1..maxPEI-O-perPEI-frame or perT))OF INTEGER(0..4479),
SCS120KHZoneEighthT-SCS60KHZoneSixteenthT-SCS30KHZonethirtysecondT SEQUENCE(SIZE(1..maxPEI-O-perPEI-frame or perT))OF INTEGER(0..8959),
SCS120KHZoneSixteenthT-SCS60KHZonethirtysecondT SEQUENCE(SIZE(1..maxPEI-O-perPEI-frame or perT))OF INTEGER(0..17919)
SCS120KHZonethirtysecondT SEQUENCE(SIZE(1..maxPO-perPF))OF INTEGER(0..17919)
…}。
通过上述多种实现方法,提高了网络对上述第一偏移量的配置灵活性,且又通过避免PEI-O与其他信道信号的碰撞或者来自不同PEI-frame所关联的多个PEI-O之间的碰撞来提高终端对PEI-O的检测性能。
本申请实施例提供的信息获取方法,执行主体可以为信息获取装置。本申请实施例中以信息获取装置执行信息获取方法为例,说明本申请实施例提供的信息获取装置。
如图5所示,本申请实施例还提供了一种信息获取装置500,包括:
第一获取模块501,用于获取第一偏移量,所述第一偏移量用于指示寻呼提前指示时机PEI-O关联的无线帧与所述PEI-O的第一个寻呼提前指示监听时机PEI-MO之间的偏移量;
监听模块502,用于根据所述第一偏移量,进行所述PEI-O的监听;
其中,所述第一偏移量的取值范围与以下至少一项相关:
子载波间隔SCS;
无线帧的长度;
第一密度,所述第一密度为在第一时间跨度内PEI-O或寻呼提前指示帧PEI-frame的密度;
第二偏移量的取值,所述第二偏移量用于指示所述PEI-O关联的无线帧与目标寻呼帧PF之间的偏移量,所述目标寻呼帧为所述PEI-O关联的寻呼时机PO所在的至少一个PF中时间最早或最晚的PF。
可选地,在所述第一偏移量的取值范围与第一密度和SCS相关的情况下,所述第一偏移量满足:
offset≤第一符号数;
其中,offset表示所述第一偏移量的取值,所述第一符号数是根据所述第一密度和SCS计算得到的。
可选地,所述第一密度与以下至少一项相关:
第二密度;
所述PEI-O关联的PO的个数;
所述PEI-O关联的PO所占PF的个数;
其中,所述第二密度为在第二时间跨度内PF的密度。
可选地,在所述第一密度与所述第二密度和所述PEI-O关联的PO所占PF的个数相关的情况下,所述第一密度满足:
第一密度=第二密度÷所述PEI-O关联的PO所占PF的个数。
可选地,所述第一密度与所述第二密度相等。
可选地,在所述第一偏移量的取值范围与第二偏移量的取值和SCS相关的情况下,所述第一偏移量满足:
offset≤第二符号数;
其中,offset表示第一偏移量的取值,所述第二符号数是根据所述第二偏移量的取值和所述SCS计算得到的。
可选地,在所述第一偏移量的取值范围与一个无线帧的长度和SCS相关的情况下,所述第一偏移量满足:
offset≤第三符号数;
其中,offset表示所述第一偏移量的取值,所述第三符号数是根据所述无线帧的长度和所述SCS计算得到的。
本申请实施例的装置,获取第一偏移量,第一偏移量用于指示寻呼提前指示时机PEI-O关联的无线帧与PEI-O的第一个PEI-MO之间的偏移量;其中,第一偏移量的取值范围与以下至少一项相关:子载波间隔SCS;无线帧的长度;第一密度,第一密度为在第一时间跨度内PEI-O或PEI-frame的密度;第二偏移量的取值,第二偏移量用于指示所述PEI-O关联的无线帧与目标寻呼帧PF之间的偏移量,所述目标寻呼帧为所述PEI-O关联的寻呼时机PO所在的至少一个PF中时间最早或最晚的PF。由于上述第一密度、第二偏移量和SCS为可配置的参数且取值范围灵活,因此,基于第一密度、第二偏移量和/或SCS来确定第一偏移量的取值范围,使得该第一偏移量的取值更具适应性和灵活性,进而能够提高终端对PEI-O的检测性能。
本申请实施例中的信息获取装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的信息获取装置能够实现图3的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选地,如图6所示,本申请实施例还提供一种通信设备600,包括处理器601和存储器602,存储器602上存储有可在所述处理器601上运行的程序或指令,例如,该通信设备600为终端时,该程序或指令被处理器601执行时实现上述信息获取方法实施例的各个步骤,且能达到相同的技术效果。该通信设备600为网络侧设备时,该程序或指令被处理器601执行时实现上述信息配置方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种终端,包括处理器和通信接口,通信接口用于获取第一偏移量,所述第一偏移量用于指示寻呼提前指示时机PEI-O关联的无线帧与所述PEI-O的第一个寻呼提前指示监听时机PEI-MO之间的偏移量;所述处理器用于根据所述第一偏移量,进行所述PEI-O的监听;
其中,所述第一偏移量(first PDCCH-Monitoring Occasion Of PEI-O)的取值范围与以下至少一项相关:
子载波间隔SCS;
无线帧的长度;
第一密度,所述第一密度为在第一时间跨度内PEI-O或寻呼提前指示帧PEI-frame的密度;
第二偏移量的取值,所述第二偏移量用于指示所述PEI-O关联的无线帧与目标寻呼帧PF之间的偏移量,所述目标寻呼帧为所述PEI-O关联的寻呼时机PO所在的至少一个PF中时间最早或最晚的PF。该终端实施例与上述终端侧方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该终端实施例中,且能达到相同的技术效果。具体地,图7为实现本申请实施例的一种终端的硬件结构示意图。
该终端700包括但不限于:射频单元701、网络模块702、音频输出单元703、输入单元704、传感器705、显示单元706、用户输入单元707、接口单元708、存储器709以及处理器710等中的至少部分部件。
本领域技术人员可以理解,终端700还可以包括给各个部件供电的电源 (比如电池),电源可以通过电源管理系统与处理器710逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图7中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元704可以包括图形处理单元(Graphics Processing Unit,GPU)7041和麦克风7042,图形处理器7041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元706可包括显示面板7061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板7061。用户输入单元707包括触控面板7071以及其他输入设备7072中的至少一种。触控面板7071,也称为触摸屏。触控面板7071可包括触摸检测装置和触摸控制器两个部分。其他输入设备7072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元701接收来自网络侧设备的下行数据后,可以传输给处理器710进行处理;另外,射频单元701可以向网络侧设备发送上行数据。通常,射频单元701包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器709可用于存储软件程序或指令以及各种数据。存储器709可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器709可以包括易失性存储器或非易失性存储器,或者,存储器709可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate  SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器709包括但不限于这些和任意其它适合类型的存储器。
处理器710可包括一个或多个处理单元;可选地,处理器710集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器710中。
其中,射频单元701,用于获取第一偏移量,所述第一偏移量用于指示寻呼提前指示时机PEI-O关联的无线帧与所述PEI-O的第一个寻呼提前指示监听时机PEI-MO之间的偏移量;
处理器710,用于根据所述第一偏移量,进行所述PEI-O的监听;
其中,所述第一偏移量的取值范围与以下至少一项相关:
子载波间隔SCS;
无线帧的长度;
第一密度,所述第一密度为在第一时间跨度内PEI-O或寻呼提前指示帧PEI-frame的密度;
第二偏移量的取值,所述第二偏移量用于指示所述PEI-O关联的无线帧与目标寻呼帧PF之间的偏移量,所述目标寻呼帧为所述PEI-O关联的寻呼时机PO所在的至少一个PF中时间最早或最晚的PF。
本申请实施例中,获取第一偏移量,第一偏移量用于指示寻呼提前指示时机PEI-O关联的无线帧与PEI-O的第一个PEI-MO之间的偏移量;其中,第一偏移量的取值范围与以下至少一项相关:子载波间隔SCS;无线帧的长度;第一密度,第一密度为在第一时间跨度内PEI-O或PEI-frame的密度;第二偏移量的取值,第二偏移量用于指示所述PEI-O关联的无线帧与目标寻呼帧PF之间的偏移量,所述目标寻呼帧为所述PEI-O关联的寻呼时机PO所在的至少一个PF中时间最早或最晚的PF。由于上述第一密度、第二偏移量和SCS为可配置的参数且取值范围灵活,因此,基于第一密度、第二偏移量和/或SCS来确定第一偏移量的取值范围,使得该第一偏移量的取值更具适应 性和灵活性,进而能够提高终端对PEI-O的检测性能。
可选地,在所述第一偏移量的取值范围与第一密度和SCS相关的情况下,所述第一偏移量满足:
offset≤第一符号数;
其中,offset表示所述第一偏移量的取值,所述第一符号数是根据所述第一密度和SCS计算得到的。
可选地,所述第一密度与以下至少一项相关:
第二密度;
所述PEI-O关联的PO的个数;
所述PEI-O关联的PO所占PF的个数;
其中,所述第二密度为在第二时间跨度内PF的密度。
可选地,在所述第一密度与所述第二密度和所述PEI-O关联的PO所占PF的个数相关的情况下,所述第一密度满足:
第一密度=第二密度÷所述PEI-O关联的PO所占PF的个数。
可选地,所述第一密度与所述第二密度相等。
可选地,在所述第一偏移量的取值范围与第二偏移量的取值和SCS相关的情况下,所述第一偏移量满足:
offset≤第二符号数;
其中,offset表示第一偏移量的取值,所述第二符号数是根据所述第二偏移量的取值和所述SCS计算得到的。
可选地,在所述第一偏移量的取值范围与一个无线帧的长度和SCS相关的情况下,所述第一偏移量满足:
offset≤第三符号数;
其中,offset表示所述第一偏移量的取值,所述第三符号数是根据所述无线帧的长度和所述SCS计算得到的。
本申请实施例中,获取第一偏移量,第一偏移量用于指示寻呼提前指示时机PEI-O关联的无线帧与PEI-O的第一个PEI-MO之间的偏移量;其中,第一偏移量的取值范围与以下至少一项相关:子载波间隔SCS;无线帧的长度;第一密度,第一密度为在第一时间跨度内PEI-O或PEI-frame的密度; 第二偏移量的取值,第二偏移量用于指示所述PEI-O关联的无线帧与目标寻呼帧PF之间的偏移量,所述目标寻呼帧为所述PEI-O关联的寻呼时机PO所在的至少一个PF中时间最早或最晚的PF。由于上述第一密度、第二偏移量和SCS为可配置的参数且取值范围灵活,因此,基于第一密度、第二偏移量和/或SCS来确定第一偏移量的取值范围,使得该第一偏移量的取值更具适应性和灵活性,进而能够提高终端对PEI-O的检测性能。
本申请实施例提供的信息配置方法,执行主体可以为信息配置装置。本申请实施例中以信息配置装置执行信息配置方法为例,说明本申请实施例提供的信息配置装置。
如图8所示,本申请实施例还提供了一种信息配置装置800,包括:
配置模块801,用于配置第一偏移量,所述第一偏移量用于指示寻呼提前指示时机PEI-O关联的无线帧与所述PEI-O的第一个寻呼提前指示监听时机PEI-MO之间的偏移量;
其中,所述第一偏移量的取值范围与以下至少一项相关:
子载波间隔SCS;
无线帧的长度;
第一密度,所述第一密度为在第一时间跨度内PEI-O或寻呼提前指示帧PEI-frame的密度;
第二偏移量的取值,所述第二偏移量用于指示所述PEI-O关联的无线帧与目标寻呼帧PF之间的偏移量,所述目标寻呼帧为所述PEI-O关联的寻呼时机PO所在的至少一个PF中时间最早或最晚的PF。
可选地,本申请实施例的装置,还包括:
发送模块,用于发送第一偏移量。
可选地,在所述第一偏移量的取值范围与第一密度和SCS相关的情况下,所述第一偏移量满足:
offset≤第一符号数;
其中,offset表示所述第一偏移量的取值,所述第一符号数是根据所述第一密度和SCS计算得到的。
可选地,本申请实施例的装置,所述第一符号数是根据相邻两个 PEI-frame之间的间隔和所述SCS得到的,其中,相邻两个PEI-frame之间的间隔是根据所述第一密度得到的。
可选地,所述第一密度与以下至少一项相关:
第二密度;
所述PEI-O关联的PO的个数;
所述PEI-O关联的PO所占PF的个数;
其中,所述第二密度为在第二时间跨度内PF的密度。
可选地,在所述第一密度与所述第二密度和所述PEI-O关联的PO所占PF的个数相关的情况下,所述第一密度满足:
第一密度=第二密度÷所述PEI-O关联的PO所占PF的个数;
可选地,所述第一密度与所述第二密度相等。
可选地,在所述第一偏移量的取值范围与第二偏移量的取值和SCS相关的情况下,所述第一偏移量满足:
offset≤第二符号数;
其中,offset表示第一偏移量的取值,所述第二符号数是根据所述第二偏移量的取值和所述SCS计算得到的。
可选地,在所述第一偏移量的取值范围与一个无线帧的长度和SCS相关的情况下,所述第一偏移量满足:
offset≤第三符号数;
其中,offset表示所述第一偏移量的取值,所述第三符号数是根据所述一个无线帧的长度和所述SCS计算得到的。
可选地,所述配置模块用于配置第一偏移量列表,所述第一偏移量列表包括至少一个所述第一偏移量,所述第一偏移量列表中包含的所述第一偏移量的数量根据寻呼周期内或PEI-frame内包含的最大PEI-O的数量确定。
可选地,所述第一偏移量列表中的每个所述第一偏移量对应一个PEI-O。
本申请实施例中,网络侧设备配置上述第一偏移量,并将上述第一偏移量发送给终端,第一偏移量的取值范围与以下至少一项相关:子载波间隔SCS;无线帧的长度;第一密度,第一密度为在第一时间跨度内PEI-O或PEI-frame的密度;第二偏移量的取值,第二偏移量用于指示所述PEI-O关联的无线帧 的起始时刻与目标寻呼帧PF的起始时刻之间的偏移量,所述目标寻呼帧为所述PEI-O关联的寻呼时机PO所在的至少一个PF中时间最早或最晚的PF。由于上述第一密度、第二偏移量和SCS为可配置的参数且取值范围灵活,因此,基于第一密度、第二偏移量和/或SCS来确定第一偏移量的取值范围,使得该第一偏移量的取值更具适应性和灵活性,进而能够提高终端对PEI-O的检测性能。
本申请实施例还提供一种网络侧设备,包括处理器和通信接口,处理器用于配置第一偏移量,所述第一偏移量用于指示寻呼提前指示时机PEI-O关联的无线帧与所述PEI-O的第一个寻呼提前指示监听时机PEI-MO之间的偏移量;
其中,所述第一偏移量的取值范围与以下至少一项相关:
子载波间隔SCS;
无线帧的长度;
第一密度,所述第一密度为在第一时间跨度内PEI-O或寻呼提前指示帧PEI-frame的密度;
第二偏移量的取值,所述第二偏移量用于指示所述PEI-O关联的无线帧与目标寻呼帧PF之间的偏移量,所述目标寻呼帧为所述PEI-O关联的寻呼时机PO所在的至少一个PF中时间最早或最晚的PF。该网络侧设备实施例与上述网络侧设备方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该网络侧设备实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种网络侧设备。如图9所示,该网络侧设备900包括:天线91、射频装置92、基带装置93、处理器94和存储器95。天线91与射频装置92连接。在上行方向上,射频装置92通过天线91接收信息,将接收的信息发送给基带装置93进行处理。在下行方向上,基带装置93对要发送的信息进行处理,并发送给射频装置92,射频装置92对收到的信息进行处理后经过天线91发送出去。
以上实施例中网络侧设备执行的方法可以在基带装置93中实现,该基带装置93包括基带处理器。
基带装置93例如可以包括至少一个基带板,该基带板上设置有多个芯片, 如图9所示,其中一个芯片例如为基带处理器,通过总线接口与存储器95连接,以调用存储器95中的程序,执行以上方法实施例中所示的网络设备操作。
该网络侧设备还可以包括网络接口96,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本申请实施例的网络侧设备900还包括:存储在存储器95上并可在处理器94上运行的指令或程序,处理器94调用存储器95中的指令或程序执行图8所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述信息获取方法或信息配置方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述信息获取方法或信息配置方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述信息获取方法或信息配置方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种信息处理系统,包括:终端及网络侧设备,所述终端可用于执行如上所述的信息获取方法的步骤,所述网络侧设备可用于执行如上所述的信息配置方法的步骤。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体 意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (22)

  1. 一种信息获取方法,包括:
    终端获取第一偏移量,所述第一偏移量用于指示寻呼提前指示时机PEI-O关联的无线帧与所述PEI-O的第一个寻呼提前指示监听时机PEI-MO之间的偏移量;
    所述终端根据所述第一偏移量,进行所述PEI-O的监听;
    其中,所述第一偏移量的取值范围与以下至少一项相关:
    子载波间隔SCS;
    无线帧的长度;
    第一密度,所述第一密度为在第一时间跨度内PEI-O或寻呼提前指示帧PEI-frame的密度;
    第二偏移量的取值,所述第二偏移量用于指示所述PEI-O关联的无线帧与目标寻呼帧PF之间的偏移量,所述目标寻呼帧为所述PEI-O关联的寻呼时机PO所在的至少一个PF中时间最早或最晚的PF。
  2. 根据权利要求1所述的方法,其中,在所述第一偏移量的取值范围与第一密度和SCS相关的情况下,所述第一偏移量满足:
    offset≤第一符号数;
    其中,offset表示所述第一偏移量的取值,所述第一符号数是根据所述第一密度和SCS计算得到的。
  3. 根据权利要求1或2所述的方法,其中,所述第一密度与以下至少一项相关:
    第二密度;
    所述PEI-O关联的PO的个数;
    所述PEI-O关联的PO所占PF的个数;
    其中,所述第二密度为在第二时间跨度内PF的密度。
  4. 根据权利要求3所述的方法,其中,在所述第一密度与所述第二密度和所述PEI-O关联的PO所占PF的个数相关的情况下,所述第一密度满足:
    第一密度=第二密度÷所述PEI-O关联的PO所占PF的个数。
  5. 根据权利要求3所述的方法,其中,所述第一密度与所述第二密度相等。
  6. 根据权利要求1所述的方法,其中,在所述第一偏移量的取值范围与第二偏移量的取值和SCS相关的情况下,所述第一偏移量满足:
    offset≤第二符号数;
    其中,offset表示第一偏移量的取值,所述第二符号数是根据所述第二偏移量的取值和所述SCS计算得到的。
  7. 根据权利要求1所述的方法,其中,在所述第一偏移量的取值范围与一个无线帧的长度和SCS相关的情况下,所述第一偏移量满足:
    offset≤第三符号数;
    其中,offset表示所述第一偏移量的取值,所述第三符号数是根据所述无线帧的长度和所述SCS计算得到的。
  8. 一种信息配置方法,包括:
    网络侧设备配置第一偏移量,所述第一偏移量用于指示寻呼提前指示时机PEI-O关联的无线帧与所述PEI-O的第一个寻呼提前指示监听时机PEI-MO之间的偏移量;
    其中,所述第一偏移量的取值范围与以下至少一项相关:
    子载波间隔SCS;
    无线帧的长度;
    第一密度,所述第一密度为在第一时间跨度内PEI-O或寻呼提前指示帧PEI-frame的密度;
    第二偏移量的取值,所述第二偏移量用于指示所述PEI-O关联的无线帧与目标寻呼帧PF之间的偏移量,所述目标寻呼帧为所述PEI-O关联的寻呼时机PO所在的至少一个PF中时间最早或最晚的PF。
  9. 根据权利要求8所述的方法,其中,在所述第一偏移量的取值范围与第一密度和SCS相关的情况下,所述第一偏移量满足:
    offset≤第一符号数;
    其中,offset表示所述第一偏移量的取值,所述第一符号数是根据所述第一密度和SCS计算得到的。
  10. 根据权利要求9所述的方法,其中,所述第一符号数是根据相邻两个PEI-frame之间的间隔和所述SCS得到的,其中,相邻两个PEI-frame之间的间隔是根据所述第一密度得到的。
  11. 根据权利要求8至10任一项所述的方法,其中,所述第一密度与以下至少一项相关:
    第二密度;
    所述PEI-O关联的PO的个数;
    所述PEI-O关联的PO所占PF的个数;
    其中,所述第二密度为在第二时间跨度内PF的密度。
  12. 根据权利要求11所述的方法,其中,在所述第一密度与所述第二密度和所述PEI-O关联的PO所占PF的个数相关的情况下,所述第一密度满足:
    第一密度=第二密度÷所述PEI-O关联的PO所占PF的个数。
  13. 根据权利要求11所述的方法,其中,所述第一密度与所述第二密度相等。
  14. 根据权利要求8所述的方法,其中,在所述第一偏移量的取值范围与第二偏移量的取值和SCS相关的情况下,所述第一偏移量满足:
    offset≤第二符号数;
    其中,offset表示第一偏移量的取值,所述第二符号数是根据所述第二偏移量的取值和所述SCS计算得到的。
  15. 根据权利要求8所述的方法,其中,在所述第一偏移量的取值范围与一个无线帧的长度和SCS相关的情况下,所述第一偏移量满足:
    offset≤第三符号数;
    其中,offset表示所述第一偏移量的取值,所述第三符号数是根据所述一个无线帧的长度和所述SCS计算得到的。
  16. 根据权利要求8所述的方法,其中,所述网络侧设备配置第一偏移量,包括:
    所述网络侧设备配置第一偏移量列表,所述第一偏移量列表包括至少一个所述第一偏移量,所述第一偏移量列表中包含的所述第一偏移量的数量根据寻呼周期内或PEI-frame内包含的最大PEI-O的数量确定。
  17. 根据权利要求16所述的方法,其中,所述第一偏移量列表中的每个所述第一偏移量对应一个PEI-O。
  18. 一种信息获取装置,包括:
    第一获取模块,用于获取第一偏移量,所述第一偏移量用于指示寻呼提前指示时机PEI-O关联的无线帧与所述PEI-O的第一个寻呼提前指示监听时机PEI-MO之间的偏移量;
    监听模块,用于根据所述第一偏移量,进行所述PEI-O的监听;
    其中,所述第一偏移量的取值范围与以下至少一项相关:
    子载波间隔SCS;
    无线帧的长度;
    第一密度,所述第一密度为在第一时间跨度内PEI-O或寻呼提前指示帧PEI-frame的密度;
    第二偏移量的取值,所述第二偏移量用于指示所述PEI-O关联的无线帧与目标寻呼帧PF之间的偏移量,所述目标寻呼帧为所述PEI-O关联的寻呼时机PO所在的至少一个PF中时间最早或最晚的PF。
  19. 一种信息配置装置,包括:
    配置模块,用于配置第一偏移量,所述第一偏移量用于指示寻呼提前指示时机PEI-O关联的无线帧与所述PEI-O的第一个寻呼提前指示监听时机PEI-MO之间的偏移量;
    其中,所述第一偏移量的取值范围与以下至少一项相关:
    子载波间隔SCS;
    无线帧的长度;
    第一密度,所述第一密度为在第一时间跨度内PEI-O或寻呼提前指示帧PEI-frame的密度;
    第二偏移量的取值,所述第二偏移量用于指示所述PEI-O关联的无线帧与目标寻呼帧PF之间的偏移量,所述目标寻呼帧为所述PEI-O关联的寻呼时机PO所在的至少一个PF中时间最早或最晚的PF。
  20. 一种终端,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求 1至7任一项所述的信息获取方法的步骤。
  21. 一种网络侧设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求8至17任一项所述的信息配置方法的步骤。
  22. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至7任一项所述的信息获取方法的步骤,或者,实现如权利要求8至17任一项所述的信息配置方法的步骤。
PCT/CN2023/071301 2022-01-11 2023-01-09 信息获取、配置方法、装置及通信设备 WO2023134623A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210028318.5A CN116471663A (zh) 2022-01-11 2022-01-11 信息获取、配置方法、装置及通信设备
CN202210028318.5 2022-01-11

Publications (1)

Publication Number Publication Date
WO2023134623A1 true WO2023134623A1 (zh) 2023-07-20

Family

ID=87174023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/071301 WO2023134623A1 (zh) 2022-01-11 2023-01-09 信息获取、配置方法、装置及通信设备

Country Status (2)

Country Link
CN (1) CN116471663A (zh)
WO (1) WO2023134623A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110446258A (zh) * 2018-05-04 2019-11-12 电信科学技术研究院有限公司 一种寻呼机会的位置确定方法及通信设备
CN110474708A (zh) * 2018-05-11 2019-11-19 维沃移动通信有限公司 提前指示信号的检测方法、传输方法、终端及网络侧设备
WO2021235860A1 (en) * 2020-05-20 2021-11-25 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving paging and dedicated system information in a wireless communication system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110446258A (zh) * 2018-05-04 2019-11-12 电信科学技术研究院有限公司 一种寻呼机会的位置确定方法及通信设备
CN110474708A (zh) * 2018-05-11 2019-11-19 维沃移动通信有限公司 提前指示信号的检测方法、传输方法、终端及网络侧设备
WO2021235860A1 (en) * 2020-05-20 2021-11-25 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving paging and dedicated system information in a wireless communication system

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Paging enhancements for UE power saving in IDLE/inactive mode", 3GPP TSG RAN WG1 MEETING #106BIS R1-2108744, 2 October 2021 (2021-10-02), XP052057841 *
TRANSSION HOLDINGS: "Discussion on PEI design", 3GPP TSG RAN WG1 #107-E R1-2111674, 5 November 2021 (2021-11-05), XP052179492 *
XIAOMI COMMUNICATIONS: "Remaining issues on PEI monitoring", 3GPP TSG-RAN WG2 MEETING #116E R2-2111135, 22 October 2021 (2021-10-22), XP052067570 *

Also Published As

Publication number Publication date
CN116471663A (zh) 2023-07-21

Similar Documents

Publication Publication Date Title
US20200245207A1 (en) Method Of Bandwidth Part Switching In Unpaired Spectrum, User Equipment And Network Device
WO2023134623A1 (zh) 信息获取、配置方法、装置及通信设备
WO2023051609A1 (zh) 下行控制信道监测方法、装置及通信设备
US20240187834A1 (en) Emergency service handling method and apparatus and readable storage medium
EP4167657A1 (en) Synchronization signal and pbch block search information determination method and apparatus, and communication device
WO2023116685A1 (zh) Pei的配置方法、终端及网络侧设备
WO2023202603A1 (zh) 条件切换的配置方法、终端及网络侧设备
WO2023078253A1 (zh) Pei检测方法、确定接收时间方法、装置、设备以及介质
WO2023143413A1 (zh) 同步信号块接收方法、同步信号块发送方法及相关设备
WO2023011611A1 (zh) 多载波通信控制方法、装置及通信设备
WO2023109697A1 (zh) 参考确定方法、装置、通信设备及可读存储介质
WO2023131240A1 (zh) Gap冲突的处理方法、装置、终端及网络侧设备
EP4366365A1 (en) Positioning measurement method and positioning configuration method and apparatuses, and communication device
WO2023088317A1 (zh) Gap配置方法、装置、设备及介质
WO2023093716A1 (zh) 预配置Gap的激活状态确定方法、终端及网络侧设备
WO2023066340A1 (zh) 信息上报方法、接收方法、终端、网络侧设备和存储介质
WO2023093692A1 (zh) 监听寻呼提前指示的方法、装置、终端及网络侧设备
WO2023088318A1 (zh) Gap窗口的配置方法、装置、设备及介质
WO2023104025A1 (zh) Srs资源配置方法、装置、终端及网络侧设备
WO2023109763A1 (zh) Prach传输方法、装置及终端
WO2024022316A1 (zh) 下行参考信号发送方法、装置、终端及网络侧设备
WO2023198183A1 (zh) 信息获取方法、信息发送方法、装置、终端及网络侧设备
WO2022206593A1 (zh) Pdcch监听处理方法、监听配置方法及相关设备
WO2023125909A1 (zh) 寻呼指示方法、终端及网络侧设备
CN116567831A (zh) 寻呼方法、装置、终端及无线接入网设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23739965

Country of ref document: EP

Kind code of ref document: A1